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EPIGRAPH

Far better it is to dare mighty things, to win glorious triumphs, even though checkered by failure,
than to rank with those poor spirits who neither enjoy nor suffer much, because they live in the
gray twilight that knows not victory nor defeat.

—Theodore Roosevelt
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ABSTRACT OF THE DISSERTATION

Enhancing Multidisciplinary Design Optimization through Automated Computational Model
Construction and Sensitivity Analysis

by

Victor Gandarillas

Doctor of Philosophy in Engineering Sciences (Aerospace Engineering)

University of California San Diego, 2023

Professor John T. Hwang, Chair

Multidisciplinary design optimization (MDO) is an approach that uses optimization

methods to design complex engineering systems involving multiple disciplines simultaneously.

The coupled nature of multidisciplinary systems and the large number of design variables involved

in complex systems present unique challenges to solving MDO problems. One of these challenges

is the implementation of software necessary to evaluate multidisciplinary models within an

optimization framework. When gradient-based optimization approaches are used, efficient and

accurate derivatives must be computed for each model evaluation. This dissertation presents

an approach that significantly reduces the manual effort required to implement computational

xvii



models for use within a gradient-based MDO framework, especially in large-scale problems. This

dissertation introduces a novel approach to address these challenges and automate the process,

enabling accurate and efficient adjoint-based sensitivity analysis for gradient-based MDO in

particular. To address these challenges, a three-stage compiler methodology is proposed. The

methodology centers around a graph representation that provides a foundation for automating

sensitivity analysis in MDO. In addition, the Computational System Design Language (CSDL)

is introduced, which allows for a concise description of the physical system. The adoption of

CSDL demonstrates a twofold reduction in code complexity for engineering models, significantly

reducing the barrier to entry for MDO practitioners. The three-stage compiler also provides users

of CSDL with the ability to measure the effect of the model structure on run-time performance

and memory complexity using the graph representation. Finally, the methodology developed

in this dissertation is applied to the design of a space-based virtual telescope comprised of two

spacecraft flying in formation. A reformulation of the orbit dynamics of the spacecraft is found to

avoid the introduction of truncation errors due to tight formation constraints that render solving

the optimization problem impossible. A sequential approach to applying MDO to the design of a

space-based virtual telescope is also found to be more robust than solving the MDO problem

where all disicplines are considered simultaneously.
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Chapter 1

Introduction

1.1 Motivation

The field of MDO encompasses the application of optimization techniques to solve complex

design problems involving multiple engineering disciplines such as structures, aerodynamics,

vehicle dynamics, and propulsion. In today’s rapidly evolving landscape, multidisciplinary

design optimization (MDO) has found its application in diverse industries such as aerospace,

automotive, and wind farm optimization. These systems involve multiple disciplines that must

all be considered in the design process. Increasingly demanding requirements for such systems

lead to increasingly complex systems, and as the complexity of systems continues to increase,

the demand for robustness, reliability, and the consideration of uncertainty pose significant

challenges for MDO practitioners. In this context, the evaluation of models of large-scale

systems plays a crucial role in gaining valuable insights that aid the design process. However,

implementing the necessary software for finding an optimal design for large-scale systems

introduces complexity within the design process, often obscuring the original model description

and making it challenging to understand and maintain software used for simulation. Factors

such as model composition, two-way coupling, and derivative computation contribute to this

complexity. The complexity of these systems also poses a challenge to applying optimization

algorithms to solve large-scale MDO problems. Manually implementing software that evaluates

the model of the system within the optimization process exacerbates these challenges, limiting
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the model developer’s ability to explore the design space and compromising the potential for

discovering innovative solutions. Thus, the reliance on manual implementation of software that

evaluates the model within the optimization process not only amplifies the challenges faced

by MDO practitioners but also impedes the overall efficiency and effectiveness of the design

optimization process.

Evaluating a model involves simulating the behavior of the system based on the model’s

description. The description of a model can be interpreted as a specification of a program that

simulates a system’s behavior. Consequently, the software specification must be sufficiently

descriptive to accurately represent the physical system modeled. There is nothing about the

physical system itself that imposes restrictions on how the physical system is modeled. As

pointed out in [2] (citing [3]),

. . . [W]hile the species in the world obeys rules, . . . whether formal or mathemati-
cal, no ‘rule’ whatsoever can dictate how one should map the hypothesized rules
in the world onto the rules in the model. In the words of Rosen, while the world
and the model are each internally ‘entailed’, nothing entails the world with the
model.

To use the terminology in the quote above, it is the responsibility of the engineer to define

the rules in the model that are consistent with the hypothesized rules in the world. The rules in

the model specify how software that is meant to accurately simulate the physical system behaves.

Often, the role of an engineer involves specifying the rules in the model and ensuring that they

are a faithful representation of the physical system, as well as ensuring that the implementation

of the software satisfies the specification. Ideally, MDO practitioners should concentrate their

efforts on specifying the rules in the model and ensuring that they are a faithful representation of

the physical system rather than ensuring that the implementation of the software satisfies the

specification.

Developing such programs can be error-prone since the source code does not clearly

differentiate between the “what” (specification) and the “how” (implementation). It is this later

portion of the MDO workflow that this dissertation aims to automate for MDO practitioners,
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separating the model description (program specification) from the program implementation. Al-

though there are existing solutions to address these challenges, they still have inherent limitations

that can be overcome through a paradigm shift.

Recognizing the need for a transformative approach, I propose a new paradigm that em-

phasizes the integration of automated processes into distinct components within an overarching

methodology. This paradigm shift forms the foundation for a novel approach to MDO that sepa-

rates the manual implementation of low-level software from the original model description. By

adopting this approach, MDO practitioners can streamline their workflows, enhance optimization

capabilities, and gain a deeper understanding of the design space.

This dissertation builds upon computational architectures [4] and software frameworks [5,

6, 7, 8] for MDO, leveraging the Computational System Design Language (CSDL) and its

compiler (Chapter 3). Another obstacle in successful MDO lies in constructing mathematical

models amenable to optimization, which this dissertation explores in a study (Chapter 5). The

language and compiler work in tandem to separate the model description from the computational

architecture.

1.2 Research Needs and Objectives

Motivated by the challenges MDO practitioners face, I have identified the following critical

research needs:

• The need to automate efficient and accurate sensitivity analysis for the class of problems

encountered in MDO.

• The need to remove obstacles to implementation of software that simulates the behavior of

a system for a given model description

• The need to gain insight into the properties of the physical system’s behavior as well as

the program’s run-time behavior from the structure of the model description.
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• The need to reformulate model descriptions to mitigate numerical difficulties encountered

in specific MDO problems.

Based on these needs, the objectives of this dissertation are to:

• Apply a three-stage compiler design to the process of automatically performing efficient

and accurate sensitivity analysis for the class of models present in MDO problems.

• Measure the effect of using a declarative paradigm to describe models used in MDO

problems on user code complexity.

• Measure the effect of the model structure on the run-time memory complexity of the

software used to evaluate the model.

• Apply MDO to the problem of designing a space-based virtual telescope using a model

description amenable to gradient-based optimization.

In pursuit of these research objectives, I have arrived at the following thesis statement:

The use of graph representations in multidisciplinary design optimization en-
ables efficient and accurate sensitivity analysis and compile-time complexity
analysis, accelerating and enhancing the development of models and software
implementations used within optimization frameworks.

To support this thesis, I provide the foundation for generating software used to evaluate

models of physical systems using graph representations, enabling efficient and accurate sensitivity

analysis, and separating the model description from implementation of the software used to

evaluate the model. The methodology developed in this dissertation has been applied to a variety

of MDO problems [9, 10, 11, 12, 13, 14, 15, 16].

The separation of model description from implementation of the software used to evaluate

the model brings to light a set of challenges that directly arise from the choice of the model

description itself, rather than the specific implementation details of the software used to evaluate

the model. Recognizing this gap, I explore a specific challenge within the context of a virtual
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telescope featuring tight formation constraints. In this scenario, the large difference in magnitudes

between the constraint values and the intermediate variables in the model makes gradient-based

optimization impossible due to insufficient numerical precision. Model descriptions, viewed

as program specifications, inherently require that if a solution to the optimization problem

exists, the gradient-based optimizer can converge to a solution with the necessary level of

precision. Consequently, model developers are tasked with providing model descriptions that

serve as program specifications whose implementations are capable of satisfying this requirement.

Importantly, these challenges are distinct from the implementation details of the software used to

evaluate the model and are an integral part of the model description process. While this stage

of the MDO workflow remains a manual process, it is more distinctly isolated from the overall

MDO workflow.

1.3 Dissertation Roadmap

This dissertation is organized as follows:

• Chapter 2 presents related work and background information for chapters 3, 4, and 5.

• Chapter 3 presents a graph-based methodology for constructing the software used to

evaluate the model and automates adjoint-based sensitivity analysis. The methodology

centers around a graph representation of an MDO problem. The abstract representation

can be used to inform the implementation of a software implementation that simulates

the behavior of the system. The methodology and accompanying analyses presented

in Chapter 4 naturally lend themselves to be implemented as a three-stage compiler

dedicated to building executable objects that simulate the behavior of models used in

MDO problems. Models present in MDO problems also lend themselves to be described

using a combination of the functional programming paradigm and object-oriented style.

Collaborators and I designed the Computational System Design Language (CSDL) as a

functional programming language with an object-oriented style to meet this requirement.
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• Chapter 4 presents analyses that can be performed on the graph representation itself

that can also give greater insight into properties of the software implementation, or of

the system itself. These analyses are built into the three-stage compiler presented in

Chapter 3 and provide users with the ability to measure potential performance and memory

complexity for a given model.

• Chapter 5 explores the challenge of describing a system using a model amenable to

gradient-based optimization through the application of MDO to the design and operation

of a virtual-telescope spacecraft swarm in orbit about the Earth. Spacecraft swarms are

an attractive option for space-based telescopes because their mass scales well with the

size of the telescope. That is, large telescopes do not have to be manufactured, but can

still be deployed. The model used in this study is defined in CSDL using the methodology

presented in Chapter 3. The main challenge in generating this contribution is satisfying

tight formation requirements. The orbit model uses the positions of the spacecraft relative

to the center of the Earth, which are on the order of thousands of kilometers, to define the

formation. These requirements are cast as constraints in the optimization problem on the

order of tens of millimeters. The constraint values are smaller than the intermediate states

by eight orders of magnitude. As a consequence, these constraints cannot be satisfied using

an orbit model that models the states of the spacecraft relative to the center of the Earth.

This is due to the lack of numerical precision available on a 64-bit computer to update the

design variables to update the trajectory of each spacecraft to satisfy the constraints. Thus,

the problem requires models for spacecraft proximity or formation dynamics. A new orbit

model is developed for this problem that uses the positions of the spacecraft relative to a

reference orbit, reducing the relative order of magnitude from 8 to 4. For this particular

problem, choice of the model description defines a scalable approach for spacecraft swarm

design optimization.

At the core of this research lies the recognition that software plays a pivotal role in
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analyzing systems by evaluating their models. This evaluation process is a critical aspect of the

design process. To facilitate iterative design improvements, optimization frameworks have been

developed, accelerating the evaluation of models of large-scale systems.
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Chapter 2

Related Work

2.1 Multidisciplinary Design Optimization

This chapter provides an overview of MDO and its practical applications. MDO is an

approach that aims to optimize complex engineering systems by considering multiple disciplines

simultaneously [17, 18]. By integrating and coordinating the design of various subsystems or

disciplines, such as structures, aerodynamics, controls, and more, MDO seeks to achieve an

optimal overall system design.

MDO has found successful applications in various industries and fields. In aerospace,

MDO has been used to optimize commercial aircraft route allocation [19], electric vertical

takeoff and landing (eVTOL) vehicles [20, 21], and spacecraft [22, 23, 16].

Gradient-free methods, also known as derivative-free methods, are optimization tech-

niques that do not rely on gradient information of the objective and constraint functions. These

methods can be useful when the objective and constraint functions are non-differentiable or when

the gradient information is costly or unavailable. Gradient-based methods, on the other hand,

utilize gradient information (first-order derivatives) of the objective and constraint functions to

guide the search for optimal solutions. When available, gradient information provides gradient-

based methods with several advantages over gradient-free methods. Gradient-based methods can

converge to an optimal solution faster than gradient-free methods, especially when the design

space is large or when the number of design variables is high. Gradient-based methods can
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handle large-scale optimization problems with a large number of design variables and constraints

more effectively.

Gradient-based methods are not without their obstacles, however. Non-differentiability

of the objective or constraint functions is a major obstacle to applying gradient-based methods to

optimization problems. In some cases, certain functions can be approximated by a continuous

and differentiable function. Discrete design variables also pose a challenge because a function

cannot be differentiated with respect to a discrete variable. In the case where discrete variables

are integers, the problem is a mixed-integer problem. When the problem is differentiable in the

design variables, computing gradients can also be computationally expensive, especially when

the objective and constraint functions require complex simulations or numerical evaluations.

Finally, gradient-based methods may converge to local optima instead of the global optimum.

2.2 Review of Derivative Computation Methods

Derivative computation is a fundamental aspect of gradient-based optimization and

sensitivity analysis, and various methods have been developed to compute exact derivatives. This

section provides a comprehensive review of derivative computation methods, starting with an

overview of numerical methods that require less implementation effort but they do not provide

exact derivatives. The focus then shifts to analytic methods, which compute exact derivatives but

involve manual differentiation and implementation procedures. The direct method and adjoint

methods compute derivatives of composite functions. The adjoint method offers performance

advantages over the direct method when the number of design variables is large compared to the

number of constraints and the objective. Symbolic differentiation and automatic differentiation

(AD) are presented as alternative approaches for computing exact derivatives. All of the methods

here can be derived from the unifying derivative equation [4], which is reviewed here as well.

Numerical methods require the least amount of implementation effort of all the methods

reviewed here. Among numerical methods, finite-difference methods require the least amount
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of implementation effort. Finite-difference methods approximate derivatives by perturbing the

function in each direction by a finite amount and using that perturbation to compute the change

in the value of the function with respect to each of its inputs. Although finite-difference methods

are straightforward to implement, they suffer from truncation error proportional to the magnitude

of the perturbation. As the size of the perturbation decreases past a certain point, finite-difference

methods also suffer from round-off/subtractive cancellation error. Minimizing error requires

choosing an optimal step/perturbation size that is dependent on the function.

The complex-step method on the other hand, perturbs the function by a step along the

imaginary axis [24, 25]. As a result, the complex-step does not suffer from round-off/subtractive

cancellation error, and the size of the perturbation can be made arbitrarily small (but not zero).

These methods, however, do not compute exact derivatives, so other methods have been developed

to compute derivatives. Furthermore, neither finite-difference nor complex-step methods are

efficient methods for derivative computation as they require at least n function evaluations to

compute a gradient.

In contrast to numerical methods of differentiation, the methods that follow all compute

exact derivatives. Hand coding analytic derivatives instead of relying on numerical approxima-

tions results in a program computing exact derivatives. Although analytic methods compute

exact derivatives and can be efficient, the process of manually implementing derivatives in this

way is tedious and error-prone, especially for large systems.

In general, computing exact derivatives is a two-step process: first, the partial derivatives

of component functions must be computed, and then those results are used to solve for the total

derivatives of the composite functions for the objective and constraints with respect to the design

variables [26]. When implementing analytic derivatives, the process can be automated somewhat

by requiring users to provide partial derivatives for component functions and then automatically

applying the chain rule to compute the total derivatives. For instance, let f ∈ R, x ∈ Rn, y ∈ Rm,

and F : Rn×Rm→R. In the case where y is defined explicitly in terms of x, the (forward) chain
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rule is applied to f = F(x,y) as:

d f
dx

=
∂F
∂x

+
∂F
∂y

dy
dx
. (2.1)

In the case where y is implicitly defined by R(x,y) = 0, where R : Rn×Rm→ Rm, and does not

have a closed-form solution, an iterative solver is used to converge a residual r = R(x,y), where

r ∈ Rm. When the model of the system is evaluated, R(x,y) = 0, and the derivative dr/dx is

given by

dr
dx

=
∂R
∂x

+
∂R
∂y

dy
dx

= 0. (2.2)

If ∂R/∂y has a well-defined inverse, then the implicit function theorem can be applied to solve

for dy/dx according to the adjoint equation [26, 4],

∂R
∂y

dy
dx

=−∂R
∂x
. (2.3)

Note that an explicit function y = Y (x) need not be known to compute dy/dx at any point

r = R(x,y) to solve (2.3). Solving (2.3) for dy/dx and substituting into Equation (2.1) gives

d f
dx

=
∂F
∂x
− ∂F

∂y
∂R
∂y

−1
∂R
∂x
. (2.4)

The adjoint method is given by

d f
dx

=
∂F
∂x

+ψ
T ∂R

∂x
, (2.5)

where

ψ
T =−∂F

∂y
∂R
∂y

−1

(2.6)
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is called the adjoint vector. The adjoint vector can be obtained by solving

∂R
∂y

T

ψ =−∂F
∂y

T

. (2.7)

Computing derivatives via Equation (2.1) and (2.5) are referred to as the direct method

and the adjoint method, respectively, and both equations generalize to cases where f is a

vector [26, 4]. In the case where f is a vector, ψ is referred to as the adjoint matrix. Some

authors make the distinction between the adjoint method (2.5) and the coupled adjoint method

depending on whether or not r = R(x,y) has a closed-form solution; i.e., whether or not the

system is coupled [27]. Although the direct and adjoint methods are referred to as analytic [4]

and semi-analytic methods [27] in the MDO literature, the partial derivatives of the component

functions within the system need not be computed using any particular method of differentiation

of the methods outlined here [4].

The direct method and the adjoint method are also called forward-mode and reverse-mode

differentiation, respectively. Forward-mode and reverse-mode differentiation are also referred to

as the forward chain rule and reverse chain rule, respectively [26]. Forward-mode differentation

is more efficient when the number of constraints and the objective is greater than the number of

design variables, and reverse-mode differentiation is more efficient when the number of design

variables is greater than the number of constraints and the objective [4, 5, 7].

Fully automated methods of derivative computation are also available. Symbolic differ-

entiation automatically generates expressions for derivatives of the expressions in the model,

computes exact derivatives, and can be very efficient. The main disadvantage of symbolic

differentiation packages is that they cannot perform implicit differentiation, thus limiting their

versatility [28, 29].

Automatic Differentiation (AD) is similar to symbolic differentiation and has some

similarities to the complex-step method [24, 25]. Some AD libraries construct a graph of

vectorized operations, reducing the size of the graph and thus the memory footprint of the
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library [30, 31, 32, 33]. Some AD libraries implement forward-mode differentiation (equivalent

to the direct method) only, and some implement reverse-mode differentiation (equivalent to the

adjoint method) [30, 31, 32, 28, 29, 34]. AD libraries are used within the machine learning

community for backpropagation (equivalent to applying reverse-mode differentiation) when

generating neural networks [35]. Some AD libraries implement implicit differentiation by a

trace method, which unrolls the loops and stores all iterations computed during the course of

solving implicit functions/nonlinear systems of equations and applies explicit differentiation

using either forward-mode or reverse-mode differentiation [29]. Some AD libraries implement

vectorization, reverse-mode differentiation, and implicit differentiation [30, 31, 32, 28, 29, 34].

All discrete methods of computing derivatives can be derived from the unifying derivative

equation (UDE) [4], originally referred to as the unifying chain rule [26]. The UDE is given by

∂R

∂u
du
dr

= I =
∂R

∂u

T du
dr

T
, (2.8)

where

u =


x

y

f

 , and R(u) =


x− x∗

−R(x,y)

f −F(x,y)

 (2.9)

is the system cast as a nonlinear system of equations called the fundamental system [4]. Solving

the left-hand side of Equation (2.8) corresponds to forward-mode differentiation while solving

the right-hand side corresponds to reverse-mode differentiation. Forward-mode and reverse-mode

differentiation correspond to the direct method and adjoint method, respectively [4].

Although the values of the total derivatives are the solution to the linear system (2.8), AD

libraries that implement implicit differentiation do not store any matrices or compute a solution

to Equation (2.8) by solving a system of linear equations.

So far, these challenges have been addressed within the MDO community by designing
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computational architectures [4] and software frameworks [5, 7]. OpenMDAO implements

the modular analysis and unified derivatives (MAUD) architecture [4] and computes total

derivatives by solving the UDE (2.8), automatically choosing forward-mode or reverse-mode

differentiation [5, 7].

In the broader engineering community, algebraic modeling languages (AMLs) [36, 37]

have provided model developers with interfaces to describe mathematical models without the

additional overhead of implementing software [6, 8, 38, 39, 40, 41, 42]. The differences between

these AMLs are discussed in detail in Section 2.5.

Higher levels of abstraction for building computational models can be achieved through

software libraries, simulation environments, and modeling languages. Each of these methods

hides the algorithm implementation from the user and facilitates code reuse, reducing overhead

for model developers. Modeling languages provide the highest level of abstraction, allowing

users to operate within the application domain, rather than combining generalized components to

fit their needs. There are three ways of classifying languages: by their features, implementation,

and the types of problems they target, which are described in detail in the sections that follow.

2.3 Modeling Paradigms

While software libraries provide the basic components for building a computational

model, they still require the user to implement a computational model based on a mathematical

model. Domain-specific languages (DSLs) offer a higher level of abstraction than libraries

because users can develop their models at the level of abstraction of the application domain,

rather than combining generalized components to fit their needs. Modeling languages are DSLs

used for describing models. Like general-purpose languages (GPLs), modeling languages can be

categorized according to their features. Each category constitutes a modeling paradigm.

Two similar taxonomies for modeling paradigms are proposed in [43] and [44]. Both

taxonomies define modeling paradigms based on the taxonomy of GPLs and use model design
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structure to categorize models as opposed to the method of execution. In this dissertation, the

term numerical model refers to the discretized mathematical model that describes a system. The

term computational model refers to the software implementation used to simulate the behavior

of the system, and also corresponds to the terms program and formal specification in [43].

Modeling paradigms can be separated into graph-based and language-based

paradigms [44]1. In graph-based paradigms, the user interacts with a graphical user inter-

face (GUI), and in language-based paradigms, the user defines the model by writing source

code in a text file. Within the language-based paradigms, there are declarative and imperative

families of paradigms (in [43], declarative paradigms are referred to as constraint paradigms).

Figure 2.1 shows a diagram of how the various language paradigms described subsequently are

related. Declarative models are so-named because they correspond to declarative programming

languages [44], in which the user declares what the desired result should be (or how known and

unknown variables are related) without providing the implementation for how to compute the

result. In an imperative paradigm, the user primarily communicates how the program changes

state during execution.

The family of imperative paradigms contains the procedural and object-oriented

paradigms. In a procedural paradigm, variables are allowed to change state throughout the

program. Procedural models are referred to as declarative models in [43]. The object-oriented

paradigm associates functions with a shared state. Modeling languages like ObjectMath [45],

Modelica [46], Pyomo [6, 8] and the ad hoc langauge defined by the MDO framework Open-

MDAO [5, 7] use the object-oriented paradigm for hierarchical composition of models. The

hierarchical model composition is especially useful when constructing multidisciplinary models

that combine multiple distinct models often created by communities from different engineering

disciplines.

Two paradigms within the family of declarative paradigms are the functional and equation-

1The term “graph-based” here refers to a property of languages, and not a property of the methodology presented
in this dissertation.
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based paradigms. In the functional programming paradigm, variables are declared to be the result

of a function, but the implementation of that function is hidden. The Unified Form Language

(UFL) is an example of a functional modeling language [47]. Equation-based modeling uses

equations to define noncausal relationships between variables instead of assignments. Noncausal

relationships facilitate code reuse by not constraining which variables are inputs and outputs of a

model. Examples of declarative modeling languages that use equations rather than assignments

include ObjectMath [45] and Modelica [46].

Imperat ive Declarat ive

Object -Oriented Funct ional Equat ion-basedProcedural

Language-based Paradigms

Figure 2.1. Diagram showing the relationship between language-based paradigms. Language
paradigms can be broadly separated into imperative and declarative paradigms. The imperative
family of paradigms contains procedural and object-oriented paradigms, and the declarative
paradigm contains the functional and equation-based paradigms.

Modeling languages are not restricted to a single paradigm. For example, ObjectMath and

Modelica use the equation-based paradigm to express relationships between variables, and the

object-oriented paradigm to express hierarchical model compositions. OpenMDAO and Pyomo

also use the object-oriented paradigm for model composition, and the procedural paradigm to

assign values to variables. JuMP [38] inherits the multiple paradigms of the Julia language [48],

a high-performance dynamic programming language with support for automatic differentiation

[49, 35] that uses a just-in-time (JIT) compilation approach to generate efficient code. Julia

provides a powerful macro system, which JuMP uses to provide users with a simple interface for

defining optimization problems. JuMP macros accept problem descriptions in algebraic form,

but JuMP also accepts problem descriptions defined in native Julia functions, which can be more
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verbose than the original model definition, and use a procedural style.

The AML presented in Section 3.4, the Computational System Design Language (CSDL),

uses a functional paradigm to express relationships between variables, and an object-oriented

paradigm to compose models hierarchically.

2.4 Implementation Strategies

Besides categorizing modeling languages by paradigms, the method of generating an

executable object differentiates languages as well. With the exception of Pyomo and OpenMDAO,

the modeling languages discussed in Section 2.3 all generate code at a lower level of abstraction,

maintaining the readability, reusability, and quality of the code written at the higher-level

language and the performance of the lower-level language, e.g., FORTRAN, C, and C++. Pyomo

and the OpenMDAO framework, on the other hand, do not generate low-level code, and the

Python interpreter evaluates the computational model directly.

Some languages provide a single compiler for generating low-level code, while others are

implemented so that multiple compilers or compiler back ends may be used to generate low-level

code for the same numerical model. The FEniCS project provides users with the ability to define

partial differential equations in weak form using the Unified Form Language (UFL) [47] and

compile programs using either the FEniCS Form Compiler (FFC) [50, 51, 52, 53] or the SyFi

Form Compiler (SFC) [54, 55].

2.5 Algebraic Modeling Languages (AMLs)

Modeling languages are not only classified by their features or how they are implemented;

they are also classified by the types of problems they are designed to solve. Algebraic modeling

languages (AMLs) are DSLs targeting optimization problems. AMPL and GAMS [39, 40, 41],

two commercially available AMLs, provide derivatives for solving optimization problems when

using a gradient-based approach is appropriate, and both scale well with the number of variables.
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They do not, however, provide a hierarchical model composition to either organize model

disciplines or capture coupling between model disciplines. Pyomo [6, 8] is an AML that provides

semantics for hierarchical composition of models. Optimica [42], an extension of Modelica,

supports dynamic optimization. Both use object-oriented features to specify the topology of

physical systems.

Users of Pyomo define relationships between variables using native Python code that

is automatically differentiated. Defining relationships between variables, however, is done

imperatively, which requires the user to translate equations from a model definition to a lower-

level procedure. Finally, all Pyomo simulations are implemented in Python, which prevents users

from having access to more efficient low-level implementations.

The OpenMDAO framework is a modeling framework implemented in Python, designed

for MDO. OpenMDAO defines specialized Python classes for users to compose models hierar-

chically. The same concept of a connection as in ObjectMath and Modelica is used to capture

the nonlinear coupling between disciplines. OpenMDAO implements the modular analysis and

unified derivatives (MAUD) architecture [4], which enables the use of hierarchical solvers to

evaluate the model, and automatically solves the unifying derivative equation (UDE) [26] to

compute total derivatives, overcoming the curse of dimensionality.

None of the modeling languages presented here enables fully automatic computation

of derivatives using adjoint-based sensitivity analysis. Although OpenMDAO automates the

computation of total derivatives by solving the unifying derivatives equation (UDE)2, users

must provide implementations for computing partial derivatives or resort to using a numerical

approximation. Combining the capability of computing partial derivatives automatically and

computing total derivatives via the adjoint method are key benefits of the graph methodology of

Chapter 3.

2There are two modes when solving the UDE: forward mode and reverse mode. Forward mode corresponds to
using the direct method and reverse mode corresponds to using the adjoint method.
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2.6 A New Approach to Generating Computational Models

The preceding software libraries, modeling languages, and frameworks provide a higher

level of abstraction than what is possible with low-level general-purpose languages. Each

modeling language or framework provides a subset of the following: hierarchical composition

for modeling multidisciplinary systems, declarative style of defining relationships between

variables, fully automated computation of derivatives when disciplines are coupled, automatic

code generation, and an interface for an optimizer to solve an optimization problem. The

Computational System Design Language (CSDL), presented in Section 3.4, is a functional and

object-oriented AML. CSDL is an embedded domain-specific language (EDSL) that provides

hierarchical composition (as do OpenMDAO, Pyomo, ObjectMath, and Modelica) for modeling

multidisciplinary systems, a functional style of defining relationships between variables (as

does UFL), fully automated computation of derivatives when disciplines are coupled (which

OpenMDAO achieves in part), automatic code generation (as do AMPL, GAMS, and UFL), and

an interface for an optimizer to solve an optimization problem (as do all AMLs).

Chapter 2, in part, has been submitted for publication of the material as it may appear in

Structural and Multidisciplinary Optimization 2023. Gandarillas, Victor; Gandarillas V, Joshy

AJ, Sperry MZ, Ivanov AK, Hwang JT, Springer Nature, 2023. The dissertation author was the

primary investigator and author of this paper.
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Chapter 3

A Graph-based Methodology for Con-
structing Computational Models that Au-
tomates Adjoint-based Sensitivity Analysis

3.1 Introduction

In science and engineering, computational models (software implementations used to

simulate the behavior of systems) have long been used to aid analysis, avoiding the high cost

of building and running experiments to validate theories and designs. Computational models

are typically implemented in one of several general-purpose languages (GPLs); C++, Fortran,

and Python are popular choices. GPLs provide a higher level of abstraction so that user code

is independent of computer architecture. Some of the algorithmic code may be supplied by

software libraries, which provide interfaces to common implementations in components from

which users can build a computational model. Although GPLs and software libraries provide

building blocks for implementing general programs, they do not directly express domain-specific

constructs and abstractions [56].

DSLs simplify the process of implementing software, providing a level of abstraction

appropriate for domain experts to define a model of a system without implementing common

algorithms. One class of DSLs is AMLs [36, 37], which target solving optimization problems.

AMLs hide implementation details of derivative computation, memory allocation, etc., allowing
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users to describe models defining objective and constraint functions in a more natural way. In

order to solve optimization problems, AMLs come with interfaces to prebuilt solvers. A number

of AMLs [6, 8, 38, 39, 40, 41, 42] have been developed with various overlapping features, but

they do not completely eliminate manual or ad hoc processes.

The focus of this chapter is to automate manual and ad hoc processes used to develop

computational models for multidisciplinary systems, and also present a new AML that hides

the implementation details accordingly. I propose a graph-based methodology for constructing

computational models for large-scale multidisciplinary design optimization problems to enable

accurate and efficient adjoint sensitivity analysis. I implement the methodology as a three-

stage compiler and develop a new modeling language called the Computational System Design

Language (CSDL) that provides an appropriate input to the compiler front end that works well

with multidisciplinary models. At the heart of the three-stage compiler is an implementation-

agnostic graph representation that enables functionality beyond derivative computation at both

compile time and run time, such as time and space complexity analysis, parallel computing,

efficient memory management, and efficient uncertainty quantification.

The chapter is organized as follows. Section 3.2 presents the graph-based methodology

for constructing computational models and the design of the compiler that implements the new

methodology. Section 3.3 presents model code optimizations applied to the graph representation

of Section 3.2.2. Section 3.4 presents an overview of the new algebraic modeling language

(AML), CSDL and provides resources for the reader to access CSDL and compiler source code

for developing numerical and computational models. Section 5.6 presents a comparison of lines

of code using CSDL versus OpenMDAO. Finally, Section 3.6 presents the conclusions of this

work along with future work.
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3.2 Model Code Generation

This section presents a novel graph-based methodology for building computational mod-

els that forms the contribution of the chapter. The methodology constructs a graph representation

of the numerical model, where the nodes of the graph (Definition 1) represent variables and

operations, and each edge represents the dependence of a variable on an operation or an operation

on a variable. Using a graph representation provides a standard structure from which a computa-

tional model may be generated. The graph representation also enables efficient transformations

to the model without changing the original model definition. The methodology is implemented

as a three-stage compiler that translates a numerical model to a computational model for use in

numerical optimization. Numerical models are defined in an AML, such as CSDL, described in

Section 3.4.

Optimization problems are solved by updating design variables until the objective is

minimized and constraints are satisfied. The process of evaluating the objective, constraint,

objective gradient, and constraint Jacobian is separate from the process of updating the design

variables. For simplicity, the computational model is referred to as a Simulator1, which is

the name used in CSDL. Figure 3.1 shows how a Simulator, responsible for evaluating the

computational model, connects to an optimizer, which is responsible for updating design variables

to find a solution to an optimization problem. The Simulator object computes outputs (including

the objective and constraints), the objective gradient, and the constraint Jacobian. The design

variables, objective gradient and constraint Jacobian, are then transferred to the Optimizer at the

end of each iteration. The objective gradient and constraint Jacobian may be computed using any

differentiation method.
1This is the same as the concept of a model within the Problem class in OpenMDAO
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Figure 3.1. The compiler constructs a Simulator object that evaluates the computational model
within an optimization framework. The Simulator and Optimizer execute sequentially until the
Optimizer converges to an optimal solution.

3.2.1 Compiler Overview

The methodology presented in this chapter is formulated as a three-stage compiler that

constructs the Simulator object in Figure 3.1. Figure 3.2 shows the design of the overall compiler

architecture. A three-stage compiler generates an intermediate representation (IR) from source

code and then generates an executable object from the IR. General-purpose languages commonly

use three-stage compilers to share functionality across compilers for the same language, or for

multiple languages to take advantage of the same compiler architecture. One example is the

LLVM compiler framework, which provides a back end for many compiled languages [57]. The

IR that the compiler in this chapter uses represents a user-defined model in the form of a directed

acyclic graph (DAG). A DAG is a directed graph (Definition 1) with no cycles (Definition 3).

Definition 1 (Directed Graph). A directed graph is a pair G = (N ,E ), where N is a set whose

elements are called nodes and E is a set of ordered pairs of nodes (u,v) called edges.
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Definition 2 (Directed Path). A directed path is a sequence of edges (e1,e2, ...,en−1) for which

there is a sequence of nodes (v1,v2, ...,vn) such that ei = (vi,vi+1) for i = 1,2, ....,n−1.

Definition 3 (Cycle). A cycle is a directed path (Definition 2) where v1 = vn.

Definition 4 (Directed Acyclic Graph). A directed acyclic graph (DAG) is a directed graph

without cycles.

The variables and functions within a system model, plus their dependency relationships

can be represented by a DAG (Definition 4), where each node represents a variable or an

operation, and each edge represents a dependency relationship between two nodes.

A three-stage compiler generates an intermediate representation (IR) from the source

code defining a program, performs operations on the IR to optimize the program, and then

generates executable code from the IR. In this work, the source code describes a numerical

model, the IR is a DAG, and the generated executable code evaluates a computational model.

Figure 3.2 shows a schematic of the compiler architecture. Each stage of a three-stage compiler

can be interpreted as a function mapping one object to another. If f : Rn→ Rm is a numerical

model and M is the set of possible models f , a compiler front end can be interpreted as a

function p : M →D that generates a DAG, G ∈D , where D is the set of all DAGs.

Source Code front end middle end back end

Graph Representation Optimized Graph 
Representation

Executable Code

applies sequence of 
graph transformations

design 
variables,

other inputs
Simulator

objective,
constraints,

total derivatives

si n

rt het a

cos * x

* y

r  = decl ar e_var i abl e( ' r ' )
t het a = decl ar e_var i abl e( ' t het a' )

x = r  *  cos( t het a)
y = r  *  s i n( t het a)

r egi st er _out put ( ' x ' ,  x)
r egi st er _out put ( ' y ' ,  y)

Figure 3.2. A three-stage compiler translates a numerical model to executable code implementing
the computational model. The user supplies source code and the compiler generates a Simulator
that evaluates the computational model.
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A compiler middle end applies a sequence of graph transformations to the graph repre-

sentation to optimize the graph representation independent of any strategy used to generate the

executable object. A compiler middle end can be interpreted as a function q : D →D that trans-

forms the graph representation G ∈D of a model f ∈M into another graph representation. Note

that a function q may be a composite function consisting of a sequence of graph transformations

applied to G so that the compiler back end generates efficient code.

A compiler back end can be interpreted as a function r : D → C , where C is a set of

functions representing the set of possible computational models. The compiler back end can also

be used for implementing partial derivative calculations for all functions in the standard library for

a given AML, which are then used to compute the total derivatives for the system-level model. By

automating the computation of partial and total derivatives, the generated computational model

automates derivative computation for complex, high-dimensional, multidisciplinary systems.

The compiler back end is free to generate the computational model as a native executable or

using any language that can subsequently be compiled to native code.

The AML that the compiler front end is designed to translate must provide interfaces to

vectorized continuous and differentiable functions within a standard library, which the compiler

back end is responsible for implementing. Designing the compiler without restricting the gener-

ated code to use any particular language removes any limitation to efficient execution imposed

by building a new, less mature compiler from scratch for a particular language. Eliminating such

a limitation creates the opportunity to improve computational efficiency of the computational

model, which is especially important when solving an optimization problem due to the possibly

large number of model evaluations required.

Users define a numerical model in an AML, and the compiler constructs a graph represen-

tation, followed by a Simulator object according to the user’s choice of compiler back end. The

back end generates executable code from the (optimized) graph representation. One compiler

front end is implemented to translate numerical models from the Computational System Design

Language (CSDL) (Section 3.4), to a graph representation described in Section 3.2.2.
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3.2.2 Graph Representation of Models

The graph representation is an intermediate representation (IR) with a directed ayclic

graph (DAG) structure (Definition 4). Each node represents a multidimensional array variable or

vectorized operation, and the edges represent dependency relationships between variables and

operations, as shown in Figure 3.2. Each variable node can depend on at most one operation

node, and each operation node has at least one variable node that depends on it. Each operation

node represents a function. The DAG structure encodes a partial ordering of all nodes, which is

used to determine the execution order of the operations.

The sequence of functions that apply transformations to the graph representation com-

prise the compiler middle end. These transformations (Section 3.3) ultimately optimize the

computational efficiency of the computational model. The compiler can also gather statistics

about the model prior to generating executable code, which can provide users some insight

into model properties and implementation trade-offs involved in setting model parameters. The

compiler provides an interface for the user to interact with the graph representation, including

applying transformations for optimizing the graph representation and visualizing the graph repre-

sentation and its adjacency matrix prior to generating executable code. This interface provides

access to the analyses presented in Chapter 4 and the capability to perform these analyses, such

as those shown in Section 4.6.

The compiler graph representation is similar to that of the IR used in the UFL, which also

has a DAG structure, where each node is an expression and each edge is a dependency [47]. Both

this compiler graph representation and UFL IR nodes represent array variables and vectorized

operations; doing so reduces the size of the graph as shown in Figure 3.3.

The compiler graph representation is similar to a computational graph used in artificial

neural networks (ANNs) and serves the same purpose as an expression graph used in automatic

differentiation (AD). Although the graph representation is similar to a computational graph and

an expression graph, there are some differences in representation. The nodes in an AD expression
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graph represent variables, and the edges encode dependency relationships between the variables.

* * * *

+ +

+ +

matvec

+

(a) (b) (c) (d)

Figure 3.3. Adjacency matrices and graph representations of y = Ax+b, showing that the size
of the variables in a numerical model has no effect on either the size or the order of the graph
representation. (a) Adjacency matrix sparsity pattern for graph representations generated by
compiler front end using one node, each representing a variable x,y,b,A of any compatible
dimensions, (b) the corresponding graph representation, (c) Adjacency matrix sparsity pattern for
graph representations generated by compiler front end using a node to represent each scalar value
of x,y,b,A, where x,y,b ∈ R50,A ∈ R50×50, and the intermediate scalar values and operations
involved in Ax. (d) Visualization of a graph with nodes representing scalar values, where
x,y,b ∈ R2,A ∈ R2×2.

The graph representation has a unique way of representing variable coupling. Due to the

acyclic property of the DAG, edges can only represent explicit dependencies between variables

and operations, and cannot encode coupling between variables. Instead of representing coupling

by edges that form a cycle, the graph representation uses implicit operation nodes to represent

coupling between variables. Each implicit operation node contains a graph representation defined

by a model, which defines residual variables explicitly in terms of known and unknown variables.

These residual variables must converge to zero at run time using a root-finding solver to compute

the unknown variables. Figure 3.4 shows a schematic of how the graph representation represents

an implicit operation as a node containing another graph representation for a model defining a

residual for an implicit operation.

Isolating coupled relationships within specialized nodes preserves the acyclic nature

of the DAG, enabling a topological ordering of nodes, which guarantees that operations are

executed after their argument values become available. Figure 3.5 shows the adjacency matrices
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Figure 3.4. An implicit operation defined by a model with known variable x, unknown variable y,
and residual r. Users provide a model definition, and a choice of a root-finding solver, but do not
provide implementation details other than solver options, e.g., maximum number of iterations.

for a model with two implicit operation nodes.

Figure 3.5. Adjacency matrix for a model of a propeller rotor using the blade element momentum-
based ideal-loading design (BILD) method with two implicit operations, along with an adjacency
matrix for each model defining each implicit operation.

3.2.3 Derivative Computation

In order to apply a gradient-based approach to multidisciplinary design optimization

problems, the computational model must compute derivatives. This section presents how a

compiler back end automates the implementation of derivatives for a computational model
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using the graph representation of the numerical model. MDO models have particular structure

and characteristics lacking in other models (such as neural networks) whose structure can

be represented by a graph. For example, operations or collections of operations that are not

typically present in an artificial neural network, but are common in MDO problems include those

that represent the evaluation of surrogate models and numerical integrators. Nested implicit

operations (Section 3.2.2) also appear more often in MDO models due to coupling between

disciplines. A compiler back end uses the graph representation in Section 3.2.2 to implement

the adjoint method to compute total derivatives for a computational model used within an MDO

setting.

The graph representation is specifically designed to represent models used in MDO

problems and decoupled from how a compiler back end implements derivatives. A compiler

back end can be designed to implement derivative computation using any strategy, including

automatic, symbolic, and numerical differentiation. The generated computational model can also

call user-defined or external code (e.g., a surrogate model or CFD solver) that provides its own

derivative implementation.2 The Computational System Design Language (Section 3.4) provides

custom operations for this purpose.

Although this chapter does not present an automatic differentiation (AD) library, it is

worth noting that AD libraries follow a similar approach to our methodology, constructing their

own expression graphs, similar to the graph representation in Section 3.2.2, prior to computing

exact derivatives [35, 28]. Just as a compiler back end in the three-stage compiler presented in

Section 3.2.1 operates on the graph representation, Enzyme operates on the LLVM intermediate

representation (IR), implementing AD for a wide variety of general purpose languages, including

C, C++, FORTRAN, Rust, and Swift [58, 59, 60]. Because this graph representation is indepen-

dent of derivative implementation, an AD library could potentially be implemented to use this

graph representation rather than constructing its own, simplifying the implementation of the AD

2The derivative implementation for external code may be inexact due to limitations in how the external code
was implemented.
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library.

Implicit operation nodes (Figure 3.4) encode the relationship r = R(x,y) between a

residual r, and a known variable x and unknown variable y. The adjoint method is the result of

computing ∂R/∂x, ∂R/∂y and applying the implicit function theorem under the condition that

∂R/∂y has an inverse. This strategy of implicit differentiation is outlined in [28, 29, 34] and

also implemented in AD libraries in Julia [61],3 Python [34, 32], and C++ [30, 31]. Although

this strategy of implicit differentiation is implemented in existing AD libraries, the nested nature

of the graph representation enables explicit differentiation of each graph representation; i.e.,

the ∂ r/∂x, ∂ r/∂y can be computed explicitly for the graph representation within each implicit

operation (Figure 3.4) using any differentiation method, including an AD library that only

supports explicit differentiation.

Although the graph representation, JAX [34, 32], and Stan-math [30, 31] represent

implicit relationships in a similar way, JAX and Stan-math are dedicated AD libraries, while the

graph representation in Section 3.2.2 is not limited to derivative computation (See Section 3.2.4).

3.2.4 Beyond Derivative Computation

The three-stage compiler provides benefits for MDO that extend beyond derivative

computation. The implementation-agnostic graph representation (Section 3.2.2) used in the

three-stage compiler also enables functionality at both compile time and run time; e.g., time and

space complexity analysis (Chapter 4), parallel computing, efficient memory management, and

efficient uncertainty quantification.

Since the compiler uses an implementation-agnostic graph representation, generated

code can offer better flexibility, compatibility, and performance of MDO model evaluation over

existing frameworks by targeting specific hardware architectures. Because the compiler is free

3Another AD library that supports implicit differentiation is avaialable at
https://gdalle.github.io/ImplicitDifferentiation.jl/

30

https://gdalle.github.io/ImplicitDifferentiation.jl/


to generate code for any architecture, simulation code could potentially run on an embedded

system4.

Chapter 4 presents time and space complexity analysis performed at compile time using

the graph representation. A compiler back end can use to generate a computational model

that achieves the gains presented in Chapter 4 to parallelize computation and manage memory

efficiently.

In some cases, MDO models also contain uncertain inputs. When uncertain inputs are

present in the model, optimizations can be applied to the graph representation to reduce the

number of model evaluations [10, 13, 62], regardless of the compiler back end’s implementation

strategy.

3.3 Model Code Optimizations

The graph representation in Section 3.2.2 serves two purposes. The first is to provide a

standard representation of a numerical model written in any language for which a compiler front

end is developed, and to implement a computational model according to any implementation

strategy that a compiler back end may use. The second purpose of the graph representation is to

provide the compiler middle end a way to perform implementation-independent optimizations

on model code prior to generating a computational model. Implementation-independent opti-

mizations include changes to the graph representation that result in improvements to efficiency

in terms of both performance and memory. The optimizations in this section are applied to the

graph representation and make no modifications to the user’s source code. Therefore, users are

not required to change their numerical model definitions to take advantage of these optimizations,

regardless of which language they use to define the numerical model or which compiler back

end users choose to generate a computational model.

4This assumes the existence of a compiler back end that can support code generation for a particular architecture,
which is not the case at the time of writing.

31



3.3.1 Optimal Ordering of Graph Nodes

The graph representation of the model is a directed acyclic graph (DAG), from which the

order of execution may be computed by performing a topological sort. The total ordering on the

operation nodes determines the order of execution and ensures an upper-triangular adjacency

matrix as well as a lower (block) triangular Jacobian of partial derivatives. Kahn’s algorithm [63]

provides an efficient way to compute a topological ordering. A DAG, however, does not have a

unique topological ordering. Although the choice of ordering does not affect implementation

efficiency in terms of performance, there is an impact on the memory cost of evaluating a

computational model. This section provides a description of computing the optimal ordering for

minimizing the memory cost for evaluating a computational model at run time.

The objective is to minimize the maximum amount of memory allocated during program

execution. This implies that each variable must be allocated for the shortest amount of time

possible; i.e., allocated as late as possible before it is first used, and deallocated as early as

possible after it is no longer necessary for continuing to evaluate the computational model.

Choosing an ordering of nodes can reduce the maximum amount of memory allocated during

program execution. Kahn’s algorithm, shown in Algorithm 1, performs a topological sort on

a DAG. The algorithm sorts the DAG by visiting the edges according to a depth-first search

strategy, visiting first the nodes with zero outdegree stored in a stack S.

By traversing the nodes in S and {w : (v,w) ∈ E } for each v ∈N in the right order,

variable allocation may be delayed as much s possible. A function u : D×N → N that counts

the number of nodes for which there exists a directed path 2 from those nodes to the current

node, including the current node, is used to sort nodes in the list S and sets {w : (v,w) ∈ E } for

each v ∈N . If the nodes in S are initially sorted by u(G,v) in descending order, then the nodes

initially stored in S appear in L in ascending order of u(G,v). For each v ∈N , if the nodes

in {w : (v,w) ∈ E } are initially sorted by u(G,w) in descending order, then the nodes initially

stored in {w : (v,w) ∈ E } with the same outdegree deg+(w) prior to applying Kahn’s algorithm
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Algorithm 1. Kahn’s Algorihm

1: procedure TOPOLOGICALSORT(G(N ,E ), R = {r ∈ V : deg+(r) = 0})
2: L = ()
3: S = (r1, . . . ,rn),where ri ∈ R, i ∈ {1, . . . ,n},n = |R|
4: while S not empty do
5: v = pop(S)
6: push(L,v)
7: for w in {w : (v,w) ∈ E } do
8: remove(E ,(v,w))
9: if deg+(w) = 1 then

10: push(S,w)
11: end if
12: end for
13: end while
14: return reverse(L)
15: end procedure

appear in L in ascending order of u(G,w). After reversing L, the result of the topological sort is

one that shifts the allocation of variables to the end of the list as close as possible to the point in

the program’s execution where those variables are no longer needed for continuing to evaluate

the computational model and may be deallocated, thus minimizing the maximum memory cost

reached during program execution.

3.3.2 Dead Code Removal

Not all user code in the numerical model is necessarily translated to the computational

model. CSDL requires that all outputs that are registered have a name that the user can use to

access their run-time values. Registered outputs are represented by variable nodes in the graph

representation, which stores edges to indicate a dependency relationship between operations that

define the outputs (predecessors) and operations that use the outputs as arguments (successors).

In some cases, a user does not register an output, indicating that that output is either not an

objective or constraint in the design problem, or is not an output that the user wishes to access at

run time.

If an output that is not registered has no successors, then some nodes may be removed
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safely from the DAG with no effect on the result of evaluating the computational model. The

compiler is allowed to remove all nodes that lie only on paths leading to unregistered outputs

with zero successor nodes, which is equivalent to removing “dead code,” or code that has no

effect on the output. The compiler accomplishes the removal of dead code by modifying the

graph input to Kahn’s algorithm. Kahn’s algorithm [63] takes a list of nodes S, including only

those nodes with zero successors (deg−(r) = 0) as input to Algorithm 1. The result is that the

condition on line 9 of Algorithm 1 is never met, so any node that does not influence a registered

output is excluded from the list of nodes L, and thus the generated executable object.

3.3.3 Combining Element-wise Operations

Many standard functions are vector-valued functions of the form f : Rn→ Rn, whose

scalar outputs have element-wise dependence on the scalar inputs. Functions that define element-

wise relationships have diagonal Jacobians. Mathematical models often contain variables that

are defined by a composition of functions whose Jacobians are diagonal. The Jacobian of the

resulting composite function is also diagonal. This section shows how the compiler decides

when to apply two different approaches of computing partial derivatives for composite functions

with diagonal Jacobians, and analyzes the relative computational cost of both approaches.

One approach to computing partial derivatives for a composite function with diagonal

Jacobian is to apply the chain rule. Applying the chain rule to a composition of m functions

with Jacobians of n×n dimensions requires computing m partial derivatives, followed by m−1

matrix multiplications. The m−1 matrix multiplications involve (m−1)n scalar multiplications.

The number of scalar operations required to compute the derivatives of the composite function is

given by

m

∑
i=1

p(i)+(m−1)n, (3.1)

where p(i) is the cost of computing the derivative of the ith function. An alternative approach is
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to use a numerical approximation to compute the partial derivatives of the composite function,

which may be a less computationally expensive approach, depending on the cost of computing

partial derivatives p(i).

Two numerical approximation methods—the finite-difference method, and the complex-

step method [24]—perturb each element of the input and then compute the ratio of the change

in each output with respect to the size of the perturbation. Computing derivatives using a

numerical approximation requires one function evaluation per perturbation, for a total of at

least n function evaluations, depending on the approximation used. For functions with diagonal

Jacobian, however, computing derivatives by numerical approximation can be accomplished by

perturbing all the elements of the input vector at once, requiring only one function evaluation

when using the complex-step method:

∂ f
∂x

= diag
(

Imag[ f (x+ih1n)]
h

)
, (3.2)

where h ∈ (0,1) is the step size. The number of scalar operations required to compute the

derivative of a composite function composed of m functions, each of the form f : Rn→ Rn is

given by mn+2n. The mn term accounts for evaluating each of the m functions chained together

to form the composite function. The 2n term accounts for computing x+ ih1n and dividing the n

elements of Imag[ f (x+ ih1n)] by h.

In order for the complex-step approximation to offer a performance benefit when com-

puting the partial derivatives of the composite function, the time cost of computing analytic

derivatives and performing matrix multiplications to apply the chain rule ∑
m
i=1 p(i)+(m−1)n

must exceed the time cost of applying the complex-step approximation to the composite function

mn+2n.

Assuming that the time cost of computing the analytic derivatives of any element-wise

function is the same as computing the original element-wise function, p(i) = n,∀i ∈ {1, . . . ,m}.
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Then from Equation (3.1),

mn+(m−1)n≥ mn+2n, (3.3)

mn+mn−n≥ mn+2n, (3.4)

mn≥ 3n, and (3.5)

m≥ 3. (3.6)

That is, if a function is composed of a chain of three or more element-wise functions, then

applying the complex-step method to the composite function requires fewer scalar operations

than applying the chain rule. If p(i) > n, then in some cases, approximating the derivative for a

composition of as few as two element-wise operations is less computationally expensive than

applying the chain rule.

The compiler middle end traverses the graph representation of the model (Section 3.2.2)

to identify paths containing operation nodes representing only functions with diagonal Jacobians

and combines them into a single operation representing the composite function with diagonal

Jacobian.

3.4 The Computational System Design Language

This section presents an overview of a new algebraic modeling language (AML) called

the Computational System Design Language (CSDL). CSDL is a compiled, embedded domain-

specific language (EDSL), which inherits the syntax of its host language, Python, a popular

language used for scientific computing. CSDL provides an interface for the input to the front

end in the novel methodology presented in Section 3.2. CSDL is designed to support natural

mathematical expressions and hide implementation details for derivative computation.

The three defining features of CSDL are: (1) an object-oriented syntax for defining a

model hierarchy, (2) a functional syntax for defining relationships between variables, and (3) an
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implicit operation type containing a model that defines residuals that must be converged when

solving coupled systems of equations. All CSDL users interact with three main Python classes

that comprise the CSDL compiler: Model, GraphRepresentation, and Simulator. Users

can optionally use the CustomExplicitOperation and CustomImplicitOperation to define

functions that are not available in the CSDL standard library.

Listing 3.1 shows the compilation process in CSDL. Detailed documentation for

the Computational System Design Language (CSDL) is available at the CSDL web-

site, https://lsdolab.github.io/csdl/. Links to the GitHub repository containing the com-

piler implementation, including the CSDL compiler front end and compiler middle end (

https://github.com/lsdolab/csdl), along with a list of links to available back ends, are also

provided within the CSDL website.

Listing 3.1. The compilation process using CSDL
# Import language and compiler front end
from csdl import Model , GraphRepresentation
# Import compiler back end
from back_end_package import Simulator

# Define numerical model
class Example(Model ):

def define(self):
# ...

# Generate graph representation
rep = GraphRepresentation(Example ())
# Generate computational model
sim = Simulator(rep)
# Evaluate computational model
sim.run()
# Print results
print(sim["..."])

Model

The first class users interact with is the Model class, which users extend by defining

subclasses that define the numerical model and the optimization problem. Within each Model

subclass, users define relationships between variables. Relationships between variables may be

defined as connections between variables in different instances of user-defined Model subclasses

contained within a user-defined Model subclass (as shown in Listing 3.2), as well as functions
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or compositions of functions (as shown in Listing 3.3). The CSDL standard library provides

standard functions that are continuous and differentiable in their arguments (e.g., trigonometric

functions, exponential function). Users do not have to implement derivatives for any function in

the standard library, facilitating the use of a Model subclass definition for use in an optimization

workflow.

Listing 3.2. Hierarchical composition in CSDL
class Example(Model ):

def define(self):
self.add(Aerodynamics (), name=’aerodynamics ’)
self.add(Structures (), name=’structures ’)

# form connections between variables in different models
self.connect(’aerodynamics.lift’, ’structures.force_z ’)
self.connect(’aerodynamics.drag’, ’structures.force_y ’)

Listing 3.3. Functional composition in CSDL
class Example(Model ):

def define(self):
p = self.declare_variable(’p’, shape =(2,))
x = p[0]
y = p[1]
distance = (x**2 + y**2)**(1/2)
self.register_output(’distance ’, distance)

GraphRepresentation

The GraphRepresentation class contains information for the directed acyclic graph

for the model that is central to the novel methodology presented in Section 3.2.2. The

GraphRepresentation class constructor serves as the compiler front end, which constructs

the DAG from an instance of a user-defined Model sublcass. Both the Model class and the

GraphRepresentation class are defined in a Python package called csdl. The csdl package

also provides functions that users can apply to a GraphRepresentation object to perform

implementation-independent optimizations (Section 3.3), forming the compiler middle end.

Simulator

The Simulator class is a container for the computational model generated from a

GraphRepresentation object. The CSDL compiler generates executable code from an in-
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stance of the GraphRepresentation class by constructing an instance of the Simulator class.

A package separate from the csdl package supplies the Simulator class, whose constructor

serves as the compiler back end, which generates the executable code that evaluates the compu-

tational model. Users can select a back end from any of the available back ends to generate a

computational model based on advantages that one back end might have over another, without

modifying the model definition.

A compiler back end is free to compile directly to low-level machine code using whatever

strategy the compiler back end developer(s) may use. A compiler back end is also free to generate

code in any high-performance general-purpose language (e.g., C, C++, Fortran),5 and rely on

that language’s compiler to generate executable code. The Simulator class interface connects

to an external solver to solve the optimization problem defined in the numerical model and also

provides access to data at run time, so users can also print, plot, and save run-time values after a

simulation terminates.

CustomExplicitOperation and CustomImplicitOperation

In some cases, users may need to define their own custom relationships between variables

and operate at a lower level of abstraction by implementing imperative/procedural code to com-

pute output values as well as the partial derivatives of the function. Custom implementations also

have the potential to provide performance improvements over automatically generated gradients.

CSDL provides the CustomExplicitOperation, and CustomImplicitOperation classes for

defining custom relationships not defined in the standard library. The

CustomExplicitOperation is the base class provided for users to define their own custom ex-

plicit functions and their partial derivatives when a function is not available in the standard library.

Each CustomExplicitOperation subclass can also provide an interface to external analysis

tools to integrate into a larger multidisciplinary optimization. CustomImplicitOperation is

similar to CustomExplicitOperation except that it is used for defining implicit functions

5Back ends that generate code in these languages do not currently exist, but can be developed to use CSDL
GraphRepresentation objects generated by the CSDL compiler front end.
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whose residuals cannot be defined using a composition of functions from the standard library.

Detailed documentation for the Computational System Design Language (CSDL) is

available at the CSDL website, https://lsdolab.github.io/csdl/. Links to the GitHub repository

containing the compiler implementation, including the CSDL compiler front end and compiler

middle end (https://github.com/lsdolab/csdl) along with a list of links to available back ends are

also provided within the CSDL website.

3.5 Quantifying the Impact of Automating Sensitivity Anal-
ysis

This section compares the number of lines of code provided by the user to generate a

computational model between two packages written in CSDL and two similar packages written

in OpenMDAO: OpenAeroStruct [64, 65], and lsdo bemt [21]. The difference in the number

of lines of code quantifies the impact of automating sensitivity analysis. The OpenAeroStruct

package is a tool for performing aerostructural optimization, which uses a vortex-lattice method

(VLM) and a beam finite-element method. The lsdo bemt package, written in OpenMDAO,

implements a blade-element momentum (BEM) method for designing propellers and turbines.

Figure 3.6 shows the difference in the number of lines of code used to define the models in each

project.

The CSDL models use approximately half the number of lines of code to define the same

model as in OpenMDAO. The reason for this is due to the fact that CSDL automates both partial

and total derivative calculations, whereas OpenMDAO requires that users provide implemen-

tations for partial derivative calculations. In this sense, OpenAeroStruct and lsdo bemt also

include implementation details that CSDL code does not, mixing different levels of abstraction,

and reducing the overall readability and maintainability of the model code.
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Figure 3.6. The number of lines of code required to implement or generate a computational
model using OpenMDAO is ∼2x greater than that of using CSDL. OpenMDAO is a software
framework that uses the current state-of-the-art method for exact scalable sensitivity analysis of
complex models.

3.6 Conclusion

Efficient derivative computation for tightly coupled, multidisciplinary systems presents a

challenge for implementing computational models for use within a gradient-based optimization

framework. The adjoint method is a powerful technique for computing derivatives in systems

with a large number of design variables. Various languages, frameworks, and libraries have at-

tempted to automate derivative computation, achieving some combination of: partially automated,

exact derivative computation; fully automated, approximate derivative computation; and high

performance. Existing approaches do not achieve both full automation and high performance for

multidisciplinary design optimization problems.

This chapter presented a novel methodology for constructing computational models

that fully automates adjoint-based sensitivity analysis. The new methodology centers around

constructing a graph representation of a numerical model, applying a series of transformations to

41



the graph representation, and generating a computational model that automatically computes

derivatives. This methodology was implemented as a three-stage compiler.

The implementation of the three-stage compiler motivated the design of a new AML

called CSDL. CSDL provides an interface to input a numerical model to the compiler front end

in the novel methodology. For two engineering models, the use of CSDL showed a reduction in

the number of lines of code required to implement a computational model by ∼2x.
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Chapter 4

An Approach to Measuring Computa-
tional Costs Using Graph Representations
of Models

This chapter presents analyses of the time and memory costs associated with generating

and evaluating a computational model, using the compiler graph representation presented in

Section 3.2.2. Although implementation details affect the amount of memory required to run a

simulation, the compiler can use the graph representation of the model to estimate minimum

memory requirements (as measured by the number of scalar values that must be allocated at any

time during simulation) for evaluating the computational model. These memory requirements

may guide the user to select different model parameters to generate a computational model

with different levels of fidelity to accommodate available resources. The compiler front end

provides an interface for users to perform the analyses presented in this section for any model

prior to generating a computational model. Chapter 4 presents an analysis of the run-time and

compile-time costs incurred by the compiler that implements the methodology presented in

Section 3.2. Numerical results demonstrating the potential for improved run-time costs are shown

in Section 4.6. This chapter also includes complexity analyses for evaluating computational

models and their derivatives.
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4.1 Nomenclature

The compiler front end generates a DAG representing a model, denoted by G(N ,E )

(Definition 4), where N is the set representing nodes, which is defined by the union of the

variables V ⊂N and operations O ⊂N , and E = {(u,v) : u ∈ V ⇔ v ∈O,u ∈O ⇔ v ∈ V }

is the set of directed edges representing dependencies between variables and operations. The

graph G stores each variable node v ∈ V , in general representing a multidimensional array, and

each operation node o ∈O , representing a vectorized operation (an operation whose arguments

and outputs can be multidimensional arrays as opposed to scalar values). The size of a variable

is the number of scalar values in the multidimensional array represented by the variable node.

The size of a node x ∈N is zero if x ∈ O . If x ∈ V , then its size is given by the product of

the dimensions of the n-dimensional array represented by x. Note that operation nodes do not

have a notion of size. The analyses that follow use the sgn function to indicate whether or not a

variable is allocated at some point during program execution. The DAG structure of the graph

representation makes it straightforward to compute the execution order of all operations in the

model so that all variable values are computed prior to their first use in the program.

To compute the memory requirement for the entire system model, including the implicit

operations, recursive functions are defined in the subsections that follow. For the purpose

of defining any function that computes memory costs recursively, the system-level model is

contained within an operation o ∈ O . A function h : O →N n provides a mapping from an

operation to the list of sorted nodes within the model contained within an operation. The function

h is applied to implicit operations and the operation containing the system-level model.

4.2 Analysis of Space Complexity of Model Evaluation at
Run Time

The memory cost associated with computing model outputs may be measured by counting

the number of scalar values (inputs, outputs, and intermediate variables) allocated at run time.
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Allocating all scalar values scales poorly as the size of the model (in terms of the number of

scalar values in the inputs, outputs, and intermediate variables) increases. To minimize the

amount of memory allocated at run time, only the values necessary for continuing to evaluate

outputs within the computational model should be allocated, and all values that will no longer be

used for the remainder of the execution should be deallocated. The minimum number of scalar

values required to compute a given model’s outputs can be found by determining the maximum

number of scalar values that must be allocated during execution.

In what follows, an analysis of the memory costs at run time is presented. The memory

cost in this section only refers to model evaluation, and not evaluation of the derivatives or

uncertainties. In reverse mode, all variables must be kept in memory to compute the total

derivatives after each simulation. The memory cost of the model variables when computing

derivatives in reverse mode is given by

γrev(x,k) =
n

∑
i=1

size
(

xi

)
. (4.1)

The number of scalar value allocations that program execution requires depends on the

size of each variable representing a multidimensional array, as well as the graph structure. In

order for an operation to compute the value of a variable, both the arguments to the operation

and the outputs that the operation computes must be allocated while the operation is executed.

When executing a sequence of operations, the number of scalar values required to be allocated in

memory when the kth vectorized operation is computed is given by

f (x,k) =


∑

k−1
i=1 size(xi)sgn

(
∑

n
j=k Ai j

)
+∑

n
i=k size(xi)Aki xk ∈ O

0 xk ∈ V

, (4.2)

where x = (x1, . . . ,xn) is a vector of n = |N | nodes with xi ∈N , i ∈ {1, . . . ,n}, k ∈ N, and A

is the adjacency matrix of the graph G after performing a topological sort. The matrix A is a
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sparse, strictly upper-triangular matrix. The order of the elements of x is the order produced by

performing a topological sort on the graph G.

The function f computes the amount of memory required for an operation xk ∈ O to

execute. Although operations do not have a notion of size, f is nonzero when xk is an operation,

and zero when xk is a variable. This is due to the fact that only the xi ∈ V within the sums in

Equation (4.2) contribute to the memory required for computing xk ∈O , and not xk ∈O itself.

In the case where xk ∈ O , the first term, ∑
k−1
i=1 size(xi)sgn

(
∑

n
j=k Ai j

)
, takes into account the

memory that must be allocated for all variables on which current and future operations depend

must be allocated while operation xk ∈ O is executed. The second term, ∑
n
i=k size(xi)Aki takes

into account the memory that must be allocated for all outputs of the current operation xk ∈ O

while the current operation is executed.

In the best case, the amount of memory allocated during program execution reaches a

maximum equal to the minimum amount of memory required to complete the program execution.

The function f takes into account the memory that must be allocated for the variables connected

to operations within a model, but it does not include the memory that must be allocated for the

variables within the models contained within the implicit operations o ∈I , where I ⊆O is the

set of implicit operations contained in the model, described in Section 3.2.2. Taking into account

the additional memory cost incurred by the presence of implicit operations, the total memory

cost is given by the recursive function

γfwd(o) = max( max
k∈{1,...,n}

( f (h(o),k)), max
(q,k)∈Q

( f (q,k)+ γfwd(q))), (4.3)

where o ∈ O , Q = {(qk,k) : qk ∈N n∩I } is the set of pairs of implicit operations and their

indices in the list of sorted nodes in the model contained within o. If all operations are explicit

operations, then the second argument to the outer max function is zero. If any operation is an

implicit operation, then it is possible for the memory required to evaluate an implicit operation to

dominate the memory allocation requirement, and g must be applied recursively to each implicit
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operation within the system-level model, as well as any implicit operations contained within the

model within an implicit operation.

4.3 Analysis of Space Complexity of Computing Derivatives
at Run Time

The computational model generated by the compiler supports fully automating deriva-

tive computation for the purpose of applying gradient-based approaches to solving nonlinear

programs. Some nonlinear programs may contain coupled, nonlinear systems that do not have

closed-form solutions. Derivatives are also required in some cases for solving coupled nonlinear

systems. Computing derivatives has additional memory requirements beyond those of computing

the model outputs. This section presents an analysis of the memory cost of allocating the partial

derivatives of all the operations necessary to compute the total derivatives.

The analysis here describes the minimum number of scalar value memory allocations

associated with the partial derivatives required for computing total derivatives using forward-

and reverse-mode differentiation. Since the sparsity structure of the partial derivatives for each

operation is different across operations, there is not a single equation to compute the minimum

number of required scalar value memory allocations. The upper bound on the minimum number

of scalar values to allocate in memory to compute the (dense) partial derivatives of the operation

represented by the kth node is given by

αdense(x,k) =
k−1

∑
a=1

n

∑
b=k+1

size(xa)size(xb)sgn
(

∑
n
j=k Aak

)
sgn
(

∑
n
j=k Akb

)
. (4.4)

The right-hand side of (4.4) computes the number of scalar values that must be allocated

to compute the partial derivatives of the operation represented by the kth node, assuming that

each vector output depends on each vector input. The minimum memory required for allocating

the partial derivatives computed while the operation represented by the kth node is α(x,k) ≤

αdense(x,k). This takes into account only the partial derivatives themselves and not the variable
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values required to be allocated in order to compute the partial derivatives.

For problems such as multidisciplinary design optimization problems where typically the

number of design variables is greater than the number of constraints and objective, reverse-mode

differentiation is faster, but more memory-intensive than forward-mode differentiation. The

minimum memory cost of computing the partial derivatives using reverse-mode differentiation

(not including the model variables used to compute said derivatives) during program execution is

given by the recursive function,

βrev(o) =
n

∑
k=1

α(h(o),k)+ ∑
i∈I

βrev(i). (4.5)

This represents the best-case memory cost of computing total derivatives for the system-level

model, assuming that reverse-mode differentiation is used for the system-level model and all

models are nested within implicit operations. While reverse-mode differentiation is faster

when the number of model inputs is greater than the number of model outputs, forward-mode

differentiation requires allocating less memory regardless of the relative number of inputs and

outputs.

The memory required to compute all partial derivatives of all outputs with respect to all

inputs for the operation represented by the kth node as well as all partial derivatives that need to

be in memory in order to solve for the kth block of the total derivatives when using forward-mode

differentiation is given by

p(x,k) =


∑

k−1
i=1 α(x, i)sgn

(
∑

n
j=k+1 Ai j

)
+α(x,k) xk ∈ O

0 xk ∈ V

, (4.6)

where α(x, i) represents the memory required for computing the partial derivatives of the ith

operation. The function p computes the amount of memory required for evaluating the partial

derivatives for a single operation xk ∈ O . If xk is a variable, p is zero. In the case where xk ∈ O ,
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the first term, ∑
k−1
i=1 α(x, i)sgn

(
∑

n
j=k+1 Ai j

)
, takes into account all partial derivatives on which

current and future components of the total derivatives depend must be allocated while operation

xk ∈ O is executed. The second term, α(x,k), takes into account the memory required for

computing the partial derivatives of the current operation xk ∈ O .

The minimum memory cost of computing the partial derivatives required for computing

the total derivatives using forward-mode differentiation during program execution is given by

the recursive function,

βfwd(o) = max( max
k∈{1,...,n}

(p(h(o),k)), max
(q,k)∈Q

(p(q,k)+βfwd(q))). (4.7)

Equations (4.4), (4.5), (4.6), and (4.7) apply to computing memory costs whether a graph

representation represents multidimensional array variables and vectorized operations, or scalar

variables and nonvectorized operations. The total memory allocation required for computing the

unknown variables (model outputs) is presented in Section 4.2.

The total memory allocation required for computing both the unknown variables (model

outputs) and the partial derivatives necessary to compute the total derivatives is given by the

recursive function

δfwd(o) = max( max
k∈{1,...,n}

( f (h(o),k)+ p(h(o),k)), max
(q,k)∈Q

( f (h(q),k)+ p(q,k)+δfwd(q))).

(4.8)

Equations (4.1), (4.2), (4.3), and (4.8) apply to computing memory costs whether a graph

representation represents multidimensional array variables and vectorized operations, or scalar

variables and nonvectorized operations.
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4.4 Analysis of Space Complexity at Compile Time

At compile time, the compiler generates a graph representation of the model, where

each node represents a multidimensional array variable or a vectorized operation. The graph

representation has a lower compile-time memory cost relative to that of a graph representation,

whose nodes each represent a scalar value or operation that operates on scalar values. This section

presents the compile-time benefits to using the vectorized graph representation of Section 3.2.2.

The relationship between the size of the graph representation used in the compiler and the

graph representation whose nodes represent scalar values and operations is highly dependent on

the model. The number of scalar values represented per variable node in the graph representation

in Section 3.2.2 is at least

n

∑
i

size
(

vi

)
, (4.9)

where n is the number of nodes in the graph representation and vi ∈ V are variable nodes repre-

senting multidimensional arrays. There are, however, other intermediate values in, for example,

linear algebra expressions that are not represented by more nodes in the graph representation.

A computational graph that represents each scalar value with a node may be recovered

from a graph representation, but the exact mapping from a graph representation to a scalar

representation depends on each operation. In the simplest cases, the number of nodes in a

computational graph per operation is given by

∑
i

∑
j

size
(

∂bi
∂a j

)
, (4.10)

where ai, b j are the (multidimensional array) inputs and outputs, respectively, of a given (vec-

torized) operation. In some cases, ∂bi
∂a j

= 0 for a given input-output pair, leading (4.10) to be

an overestimate of the number of nodes in the computational graph. In other cases, (4.10) is

an underestimate. For example, linear algebra operations such as y = Ax+ b, where a node
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representing each intermediate scalar value for each scalar multiplication and addition of each

row of A with x is also part of the graph representation. In the graph representation, there is one

node for each, b, A, x, Ax, and y, regardless of the dimensions of each variable. If each node in

the computational graph is a neuron in the computational graph for an artificial neural network

(ANN), then more than one node in the graph representation will correspond to a node/neuron in

the computational graph, since each neuron is a sum of inputs followed by an activation function,

which would require three nodes in the graph representation, one for the sum operation, one for

the result of the sum, and one for the activation function.

The smaller graph representation does not only reduce memory cost at compile time.

Unlike most expression graphs used in AD libraries, the graph representation does not need to

be kept in memory at run time.

4.5 Analysis of Time Complexity at Run Time

The minimum necessary time to evaluate a computational model can be achieved by tak-

ing advantage of all opportunities for parallelization. When taking advantage of all opportunities

for parallelization, the run time depends on the length of the longest path, or critical path of the

DAG. Directed paths (Definition 2) with common start and end points, and no other nodes in

common, may be traversed in parallel. If multiple paths are traversed in parallel, then the time

required to execute all operations is determined by the number, and execution time of operations

on the critical path, since operations that are on different paths may be executed in parallel. This

section presents an analysis of the time cost of evaluating a computational model when taking

advantage of all opportunities for parallelization.

To compute the execution time of a fully parallelized implementation, let G′(N ′,E ′)

be a DAG, where the edge set E ′ = {(u,w) : (u,v),(v,w) ∈ E ,v ∈ O} represents dependencies

between variables (u,w ∈ V for each (u,w) ∈ E ) and N ′ = {v : v ∈ V } represents variables.

Let t : E → R+ map each edge to a value representing the computation time of an operation
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v ∈O . Then the critical path of the weighted graph (G′, t) serves as an estimate of the execution

time of the simulation when exploiting all opportunities for parallelization. If t = 1, then the

time to compute all operations is simply the number of operations on the critical path.

Consider the following. If an edge e ∈ E ′ corresponds to an operation v ∈J , where

J ⊆ O is the set of explicit operations, then the time t for the operation represented by either e

or v to execute is t(e) = 1. If an edge e ∈ E ′ corresponds to an operation v ∈I , where I ⊆ O

is the set of implicit operations, then the time t for the operation represented by e ∈ E ′ to execute

is as high as t(e) = T (h(v))mv, where h is described at the end of Chapter 4, mv ∈ N is the

maximum number of iterations used to solve the implicit function represented by v, and

T (o) =
k

∑
i=1

t(xi) (4.11)

is the total time to evaluate all operations in series within a model contained within the operation

x ∈O . To compute an estimate of the execution time exploiting all available opportunities for

parallelization, only the xi ∈ O on the critical path need to be included in Equation (4.11).

4.6 Run-Time Costs

This section presents the results of estimating the run-time costs of various system models

based on the analyses presented in Chapter 4. The time and memory costs for nine engineering

models are estimated based on their graph representations of Section 3.2.2. Figures 4.1, 4.2, 4.4,

and 4.5 are based on nine engineering models defined using CSDL (Section 3.4): a model of

a propeller rotor using BEM theory [20], a model of a propeller rotor using the blade element

momentum-based ideal-loading design (BILD) method [66], a model of airflow over an electrical

vertical takeoff and landing (eVTOL) vehicle concept using the vortex lattice method (VLM) [9],

an equivalent circuit model (ECM) of a battery [9], a model of a propeller rotor using a Pitt-Peters

approach, a model of a laser-powered unmanned aerial vehicle (UAV) concept, a model of a

permanent magnet synchronous motor (PMSM) [67], a model used for general aviation aircraft
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weight estimation (“Weights”) [9], and a model of wing, rotor, fuselage, and tail geometries with

mesh generation (“Geometry”) [9].

Figure 4.1 shows the relative time cost of evaluating a computational model when

exploiting all opportunities for parallelization1 for each of the nine models presented in this

section. The compiler can compute these estimates of the parallelized execution time by applying

Equation (4.11) to the graph representation of a model. Compiler back end developers can

use the graph representation to generate a target for the efficiency of generated parallelized

computational models, and users can take advantage of this information to choose whether or

not to exploit opportunities for parallelization if the compiler back end of their choice offers that

capability.
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Figure 4.1. The graph representation for each model is used to predict the time to evaluate a
computational model using all opportunities for parallelization as a percentage of the time to
evaluate a computational model without exploiting any opportunities for parallelization. Note
that all operations are assumed to take the same amount of time to execute.

Figures 4.2, 4.4, and 4.5 show an estimate of the memory footprint required for evaluating

the generated computational model as measured by the number of scalar values. Only the memory

required to evaluate a computational model is computed, and the memory required for derivative

computation is not included. Figure 4.2 shows the total number of scalar values used to define

1Execution of individual vectorized operations may be further parallelized, reducing computation time by more
than what is shown in Figure 4.1.

53



each model versus an estimate of the required memory footprint as measured by the maximum

number of scalar values and the maximum percentage of the total number of scalar values used

to define each model. Each point in Figures 4.2 and 4.4 is computed by applying Equation (4.3)

to the graph representation for each of the nine engineering models under consideration.

Figure 4.2 shows how: (a) the maximum number of scalar values does not increase

rapidly and levels off as the total number of scalar values used to define the model increases, and

(b) this number stays below 35% of the total number of scalar values used to define the model.

These trends suggest that the memory required for evaluating computational models scales well

with the total number of scalar values used to define each model.

(a) Maximum number of scalar values to allocate at  
any point  during program execut ion versus the total 
number of scalar values used to define the model; the 
st raight  line shows the number of scalar values 
allocated if the total number of scalar values used to 
define the model are allocated.

(b) Maximum percentage of the total number of scalar 
values used to define the model to allocate at  any 
point  during program execut ion versus the total 
number of scalar values used to define the model

Figure 4.2. Maximum number of scalar values to allocate at any point during program execution.

Figure 4.4 shows the adjacency matrix density for the graph representation of each

system-level model versus an estimate of the percentage of the total number of scalar values to

allocate. The density of the adjacency matrices for all nine engineering models is less than 1%.

The percentage of total scalar values to allocate shows a positive correlation (albeit small) with
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the adjacency matrix density. This is expected since a larger number of arguments per operation

increases the required memory footprint.

Figure 4.3 shows visualizations and results from three low-fidelity models using a

compiler front end that generates a graph representation from code written in CSDL and a

compiler back end that generates OpenMDAO code. Figure 4.3 also shows the adjacency

matrices of the graph representation for each system-level model.

(a) (b) (c)

Model of Axial Inflow for Propeller using 
Blade Element  Momentum (BEM) Theory

Visualizat ion of Airflow over Elect ric Vert ical 
Takeoff or Landing (eVTOL) Vehicle Modeled 

Using Vortex Lat t ice Method (VLM)

Efficiency Map for Permanent  Magnet  
Synchronous Motor (PMSM)

Figure 4.3. Three models generated using CSDL and the system-level adjacency matrices
corresponding to their compiler graph representations: (a) axial inflow velocity for a propeller
modeled using blade element momentum (BEM) theory [66], (b) airflow over an electrical vertical
takeoff and landing (eVTOL) vehicle concept using the vortex lattice method (VLM) [9], and (c)
an efficiency map for a permanent magnet synchronous motor (PMSM) [67]. The computational
models corresponding to the images in the top row were compiled using a compiler back end
that constructs an OpenMDAO model.

Figure 4.5 shows an estimate of the maximum number of scalar values to allocate at

55



0.000 0.002 0.004 0.006 0.008
Adjacency Matrix Density

0

5

10

15

20

25

30

35

40

M
ax

im
u

m
M

em
or

y
F

o
ot

p
ri

n
t

(p
er

ce
n
ta

ge
of

to
ta

l
n
u

m
b

er
of

sc
al

ar
va

lu
es

)

Memory Footprint Required

BEM

BILD

VLM

ECM

Pitt-Peters

UAV

PMSM

Weights

Geometry

Figure 4.4. Percentage of the total number of scalar values used to define the model that are
allocated during program execution versus the density of the adjacency matrix of the model’s
graph representation. The density remains below 1% for all models examined, and there is a
small positive correlation between overall memory footprint and the density of the adjacency
matrix.

any point during model evaluation as a function of the percentage of the operations executed

in a computational model during run time. The final memory cost depends on the number of

outputs the user chooses to keep in memory for analysis or as objective and constraint values

after the model evaluation is complete. The model outputs account for the rise in memory

requirement until model evaluation is complete. The sharp spikes and drops in Figure 4.5

indicate opportunities for dynamically allocating chunks of memory temporarily during model

evaluation.

In addition to computing an estimate of the memory cost of evaluating a computa-

tional model without computing derivatives, the compiler can also compute an estimate of the

memory cost when evaluating the computational model when using forward or reverse-mode

differentiation. Figure 4.6 shows a comparison of memory cost estimates for existing models

written in CSDL, depending on whether they use forward-mode differentiation or reverse-mode

differentiation.

The difference in memory requirements between forward mode and reverse mode high-

lights a trade-off between speed and memory efficiency for both methods. The derivative
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Figure 4.5. number of scalar values that must be allocated at each vectorized operation during
model evaluation. The number of values that must be allocated rises to the number of values used
to define model outputs (e.g., objective and constraints). These values must remain in memory
until the model is evaluated to provide external access to the resulting values.
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Figure 4.6. Required memory at run time computed by applying Equations (4.1) and (4.3) to
the graph representation (Section 3.2.2) for various models defined in CSDL, as a function of
a key parameter. Clockwise from top left: a model of a propeller rotor using BEM theory; an
aerodynamic model of an eVTOL vehicle concept using the VLM; an ECM of a battery; and a
model of a propeller rotor using BILD method.

computation time is proportional to the number of inputs in the case of forward-mode differentia-

tion, and proportional to the number of outputs in the case of reverse-mode differentiation. If
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the number of outputs (e.g., objective and constraints) is greater than the number of inputs (e.g.,

design variables), then there is no trade-off, and forward-mode differentiation is the obvious

choice. If the number of inputs is greater than the number of outputs, then computation time

for computing total derivatives scales better using reverse-mode differentiation, but the memory

requirement is greater.

These memory requirements may guide the user to select different model parameters

to generate a simulation of a model with different levels of fidelity to accommodate available

resources, depending on the problem. For example, Figure 4.6 shows how increasing the number

of spanwise nodes increases the memory requirement quickly when solving an optimization

problem containing a VLM model using reverse-mode differentiation, but not forward mode. In

this example, increasing the fidelity of the model may require using forward-mode differentiation

if resources are not available to accommodate the increased memory requirement imposed by

using reverse-mode differentiation. On the other hand, increasing the number of time steps in

the ECM model in Figure 4.6 does not have such a dramatic effect on the memory requirement.

In this example, increasing fidelity does not dramatically increase the demand for resources, so

reverse-mode differentiation may remain a viable option, even if the number of time steps is very

large.

4.7 Conclusion

Best-case complexity analyses required for model evaluation when applying the new

methodology were presented as well. The complexity analyses were applied to the graph

representations of nine practical models used in engineering design. Estimates of the memory

required for evaluating the computational model scale well with the total number of scalar values

used in defining the numerical model, but more data is required to build an empirical model of

the relationship between the number of scalar values used to define the numerical model and the

total memory required for evaluating the computational model. Estimates of the time cost of
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evaluating the computational model when exploiting all opportunities for parallelization show

significant savings in computation time compared to the time cost of evaluating the operations

within the computational model in series.
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Chapter 5

Large-scale Multidisciplinary Design Op-
timization of a Virtual-Telescope CubeSat
Swarm

5.1 Introduction

CubeSats and SmallSats are classes of miniature satellites that are becoming increasingly

popular for scientific and commercial missions due to their low cost and versatility. They have

been used for a variety of missions, including Earth observation and scientific research. They

also offer a relatively affordable alternative to traditional large-scale missions and allow for

increased frequency of launches. In recent years, SmallSats and CubeSats have seen a significant

growth in mission diversity, including Earth observation, planetary exploration, space technology

development, and scientific research.

A diversity of mission requirements has led to a diversity of CubeSat and SmallSat

designs. CubeSats such as the Radiometer Assessment using Vertically Aligned Nanotubes

(RAVAN) [68], designed to measure the Earth’s outgoing radiation, and the Lunar Flashlight [69],

designed to search for ice on the Moon’s surface, also showcase the diversity of satellite designs.

The SmallSat X-ray Quantum Calorimeter Satellite (XQCSat) [70, 71] is designed to perform

X-ray spectroscopy.

One advantage of CubeSats and SmallSats is their small size, which makes them easy
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to launch and allows for multiple spacecraft to be launched at once. Some satellite missions

require multiple spacecraft to form a distributed platform and fly in formation. The TerraSAR-X

and Tandem-X (TerraSAR-X add-on for Digital Elevation Measurement) [72] spacecraft use

Synthetic Aperture Radar (SAR) to produce high-resolution images of the Earth’s surface and

generate a Digital Elevation Model (DEM) of the Earth’s surface. The TechSat-21 [73] was a

technology demonstration mission focused on demonstrating new technologies for formation

flight. TanDEM-X and TechSat-21 are both remote sensing systems, but SmallSats have filled

the need for formation flight beyond Earth orbit as well. The Double Asteroid Redirection Test

(DART) [74, 75] was a technology demonstrator aimed at redirecting near-Earth objects (NEOs)

that successfully redirected an asteroid.

Virtual telescopes represent another application of CubeSats and SmallSats, which

leverage formation flying to observe celestial objects. These platforms offer a cost-effective

alternative to traditional telescopes, which can be expensive to build and maintain. Virtual

telescopes are formed from SmallSats, such as the Miniature Distributed Occulter Telescope

(mDOT) [76], Virtual Telescope for X-ray Observations (VTXO) [77, 78, 78, 79], and Proba-

3 [80, 81] missions, or CubeSats, such as the VIrtual Super-resolution Optics with Reconfigurable

Swarms (VISORS) [82, 83, 84].

Multidisciplinary design optimization enjoys a long history of solving spacecraft design

problems successfully [85, 86, 87, 22]. MDO is the use of numerical optimization to generate

designs for engineering systems that involve multiple subsystems or disciplines [88]. Early

studies explored various optimization techniques for applying MDO to spacecraft design [85],

including the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) mission

where modified dynamic programming algorithm was found to guarantee an optimum, but

suffered from exponential time complexity [89].

Software frameworks dedicated to spacecraft MDO problems have also been developed

based on the collaborative optimization (CO) method [86, 87]. The CO method is a multilevel

concurrent optimization approach that solves an optimization problem at the discipline level
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before solving an optimization problem at the system level. At the discipline level, the constraints

for each disciplines are satisfied without taking into acount interactions with other disciplines.

The system level optimization problem is solved to resolve the inconsistencies across disciplines

and the find the compatibility optimal design [86]. CO has the disadvantage of slow convergence

and often does not converge [86]. Some coupled variables are even excluded from the system-

level optimization to reduce complexity at the system level [87].

Gradient-based optimization techniques have emerged as a promising technique for

large-scale MDO problems [22, 4, 88, 7, 90]. Gradient-based methods can be applied to MDO

problems with objective and constraint functions that are continuous and differentiable in the

design variables, also referred to as nonlinear programs (NLPs) and scale better with the number

of design variables than gradient-free approaches. A disadvantage of gradient-based approaches

is that they require derivative information from the model of the system, which can be difficult to

implement for large-scale multidisciplinary systems, especially when there is coupling across

disciplines. Computing exact derivatives for models with multiple disciplines often relies

on computational architectures [4], software frameworks [7], and modeling languages [90]

that facilitate multidisciplinary model definition, evaluation, and derivative computation. The

large-scale MDO of a CubeSat mission has been demonstrated previously with the CubeSat

investigating Atmospheric Density Response to Extreme driving (CADRE), a remote-sensing

Earth observation mission [22]. The CADRE MDO algorithm involved several disciplines:

communication, battery, thermal, electrical, attitude dynamics, and orbit dynamics. These

disciplines are all tightly coupled, and due to the simulation of 9 orbits, the NLP contains tens of

thousands of variables.

This chapter is concerned with a mission inspired by the VISORS mission. VISORS

is a CubeSat swarm mission with the objective of observing active solar regions with a virtual

telescope, where the optics and detector reside on separate spacecraft [82, 83, 84]. As such,

VISORS imposes tight alignment and separation constraints during the observation phase of

the mission, which couples the dynamics of all the CubeSats in the swarm. Major challenges
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present themselves with a virtual telescope that are not present with a single-CubeSat mission.

First, tight alignment and pointing constraints are imposed on the swarm. These constraints are

on the order of tens of millimeters while the positions of the spacecraft relative to the center

of the Earth are on the order of thousands of kilometers, requiring an approach that captures

multi-scale effects without introducing numerical error. Prior approaches to virtual telescope

design have focused on designing one spacecraft subsystem using gradient-free approaches. For

example, the attitude control for VTXO is optimized in [77] using neural networks and a genetic

algorithm, a gradient-free approach.

This chapter applies gradient-based MDO to the design of a virtual telescope mission

with two CubeSats flying in formation. The problem definition uses a relative orbit model that

captures orbit perturbations and whose numerical accuracy is robust to the size of the orbit of

the spacecraft and the number of spacecraft in a swarm. Solving the complete design problem

simultaneously was found not to converge robustly, but convergence to an optimal solution

was robust when using an approach that solves a series of optimization problems sequentially.

The successful design of a virtual telescope mission demonstrates MDO as a practical, scalable

approach to solving spacecraft mission design problems involving swarms flying in formation.

The chapter is organized as follows. Section 5.2 describes the approach used to apply

MDO in this study. Section 5.3 presents an overview of the mission design. Section 5.4 presents

an overview of the spacecraft discipline models. Section 5.5 presents the optimization problems

solved using the approach in Section 5.2. Section 5.6 presents results for this study. Section 5.7

concludes the chapter.

5.2 Approach

This section presents the approach for solving the problem of designing a virtual telescope

using multidisciplinary design optimization (MDO). A virtual telescope is a telescope where the

main components such as the optics and detector reside on different spacecraft (Figures 5.2, 5.3).
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Designing a virtual telescope is a large-scale MDO problem with complex interactions across

spacecraft and spacecraft subsystems. The interactions between the spacecraft models occur

through the separation and pointing constraints during the observation phase of the mission. The

telescope formation places constraints on the interactions between the spacecraft, and power

requirements lead to constraints on variables within the individual spacecraft subsystems.

The large number of variables and complex interactions between the spacecraft disciplines

and the spacecraft subsystem disciplines present a challenge to finding an optimal design for

a virtual-telescope mission. Therefore, an approach that handles a large number of variables

and complex interactions between disciplines is necessary to achieve an optimal design for a

virtual-telescope mission.

The approach used in this chapter is a gradient-based approach that solves the trajectory,

attitude profile, and battery pack optimization problem. Gradient-based approaches are preferable

to gradient-free approaches when the problem objective and constraints are continuous and

differentiable functions of the design variables because they converge to a solution much more

quickly than gradient-free methods. Since gradient-free methods need to explore the entire design

space, the number of function evaluations required for convergence grows as an exponential

function of the number of the design variables. Alternatively, gradient-based methods exhibit

a quadratic rate of convergence near a local optimum. It is important to note that neither

gradient-free nor gradient-based methods guarantee convergence to a global optimum.

This mission, however, presents some obstacles to using gradient-based methods. First,

gradient-based methods can only be applied to problems where the objective and constraint

functions are continuous and differentiable in the design variables. Second, computing derivatives

for all the functions in the system model scales poorly in terms of development time and effort

unless a framework provides some level of automation for computing derivatives. Third, some

discipline models can be discrete functions, which prevent the use of gradient-based methods

unless a well-justified continuous and differentiable approximation to the discrete model can be

incorporated into the system model.
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The first obstacle is that not all design variables in the optimization problem are continu-

ous quantities, and the problem must be modified in order to use a gradient-based approach. Four

design variables are integer design variables: the number of battery cells connected in each series,

and the number of battery cell series connected in parallel, for each of the two spacecraft (Ta-

ble 5.3). With the introduction of integer design variables, the problem becomes a mixed-integer

nonlinear program (MINLP). To solve the MINLP, the problem is relaxed so that the number of

battery cells connected in each series and the number of battery cell series connected in parallel

are real numbers. If the solution is not an integral solution, a branch-and-bound method is used.

The second challenge of implementing derivative computation for large-scale models

is overcome by using the adjoint method to compute derivatives. The cost of adjoint-based

derivative computation is largely independent of the number of inputs (design variables) when

the number of inputs is greater than the number of outputs (objective and constraints) [26].

Although the cost of the adjoint method does not scale with the number of design variables,

which leads to slower convergence when solving the optimization problem. Constraints on array

variables, e.g., variables that are the result of discretized functions of time, may be aggregated

into one constraint to take full advantage of faster derivative computation offered by the adjoint

method. Constraints are aggregated into a single inequality constraint using the Kresselmeier–

Steinhausser (KS) function [91]. The KS function is a continuous and differentiable function that

aggregates constraints across all time steps into one constraint by approximating the maximum

value of an array. The KS function is given by

KS(g(x)) = gmax(x)+
1
ρ

ln∑
i

exp[ρ(gi(x)−gmax(x))], (5.1)

where gi(x) is the ith value of the function g(x), gmax(x) is the maximum value of the function

g(x), and ρ is a smoothing parameter. As ρ approaches infinity, the value of the KS function

approaches the true maximum. However, a large value of ρ leads to poor conditioning of the
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derivatives, so a moderate value of ρ must be selected. The value of ρ is problem dependent.

By enforcing an upper (lower) bound on the maximum (minimum) value of an array, the KS

function encourages the optimizer to resolve the largest infeasibilities first. In this chapter, the

KS function (5.1) is modified such that KS(kg(x))/k is used with ρ = 1, where k is a large

number. In this application, using the KS function in this way appears to be behave well with

arbitrarily large k.

The implementation overhead of applying the adjoint method is also a factor in the

decision to use the adjoint method to compute derivatives. Fortunately, software frameworks

such as OpenMDAO [7] and CSDL [90] are available to facilitate implementation of derivatives

for large-scale MDO, making gradient-based optimization accessible to users. In this chapter, the

MDO problem is defined and solved using CSDL. The key advantages of using CSDL over other

frameworks are that: (1) CSDL provides a natural way to compose models and their interactions,

and (2) CSDL fully automates adjoint-based derivative computation for large-scale, coupled

systems. CSDL is used to define the optimization problem and the reduced-Hessian SQP solver

SNOPT [92] is used to solve the optimization problems summarized in Section 5.5.

The third challenge of applying gradient-based methods to optimization problems arises

when physics-based models are not available and system modelers only have access to discrete

data points for a given system (e.g., discrete functions, experimental data). This challenge is

overcome by training continuous and differentiable surrogate models on discontinuous data. All

surrogate models in this chapter rely on regularized minimal-energy tensor-product B-splines

(RMTB) [93]. RMTB models provide fast predictions for low-dimensional models and do not

suffer from numerical issues when trained using large data sets.

5.3 Mission Overview

This section provides an overview of the mission to which the approach described

in Section 5.2 is applied. Section 5.4 presents overviews of each discipline involved in the
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model. The mission under consideration is inspired by the Virtual Super-resolution Optics

with Reconfigurable Swarms (VISORS), a space-based virtual telescope whose primary mission

objective is to capture high-resolution images of active solar regions to enable testing fundamental

theories of coronal heating on the Sun [82]. Greater observational capability generally requires

larger telescopes capable of collecting more light and/or focusing at greater distances.

A space-based virtual telescope is a compelling concept for space-based telescope design

that is comprised of more than one spacecraft, each carrying different elements of the telescope.

Because a virtual telescope is not restricted to house the components on a single spacecraft, the

mass of the telescope remains relatively constant as the dimensions of the telescope increase.

The dimensions of the telescope depend more on the in-flight formation than on the size

of the individual spacecraft. To ensure that launch costs scale well with the size of the telescope,

the trajectory must be chosen to minimize the total propellant used.

Each orbit contains an observation and standby phase (Figure 5.1). In the observation

phase, the telescope makes scientific observations of the corona. In order to form a telescope,

the spacecraft must satisfy tight alignment, separation, and pointing constraints during the

observation phase, obtaining accurate measurements of the target area on the corona. In the

standby phase, the spacecraft must satisfy power requirements. The virtual telescope in this

study is comprised of two CubeSats, one carrying the optics portion of the telescope, and the

other carrying the detector used to record images. Each CubeSat is referred to by the scientific

equipment it carries: the spacecraft carrying the optics is called the optics spacecraft (OSC), and

the spacecraft carrying the detector is called the detector spacecraft (DSC).

Each observation requires that the OSC and DSC maintain telescope formation for one

10 s interval per orbit. During the observation phase, the spacecraft are required to maintain a

nominal separation of 40 m±15 mm, alignment within 18 mm, and pointing error below 90 arcsec

(Figure 5.2).
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Standby Phase

Earth

Observat ion Phase Sun

Figure 5.1. Concept of operations for the virtual telescope based on the Virtual Super-resolution
Optics with Reconfigurable Swarms (VISORS) mission.

Sun

Earth

Detector spacecraft  (DSC) Opt ics spacecraft  (OSC)

Figure 5.2. Spacecraft with positions r(i) relative to Earth, and positions u(i) relative to reference
orbit r(0) with alignment, separation, and pointing requirements.
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Figure 5.3. CubeSats shown in their attitude configuration during observations of the Sun. The
body reference frame of each spacecraft is shown fixed in the body of each spacecraft. The
detector spacecraft is oriented such that light from the Sun enters the detector and the optics
spacecraft is oriented such that light from the Sun passes through the optics onboard the optics
spacecraft. Solar arrays are shown in blue.

5.4 Discipline Models

5.4.1 Propulsion

Each CubeSat is equipped with thrusters to control the translational motion. The propul-

sion discipline for each CubeSat is modeled such that each CubeSat has omnidirectional transla-

tional control. Omnidirectional translational control requires six thrusters firing in the direction

of the positive and negative directions along each axis of the body frame. For simplicity, the

thrust over time Fthrust,i(t), i ∈ {1,2,3} is defined in the Earth-centered Inertial (ECI) frame,

which is the same frame used in the orbit dynamics model (Section 5.4.2), and can be translated

to the body frame to model the amount of force that each thruster imparts to the spacecraft.

The thrusters used for this mission are cold-gas thrusters in accordance with the VISORS

concept of operations [82]. The initial propellant mass m0 for each CubeSat is a design variable

in the optimization problem. The propellant mass evolves over time according to the differential

equation
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ṁ(t) =−∑
3
i=1 |Fthrust,i(t)|

g0Isp
, (5.2)

where g0 is the acceleration due to gravity at sea level and Isp is the specific impulse of the

cold gas thruster. The absolute value is used to capture the fact that propellant is always used

regardless of the direction of thrust. Since the absolute value function is not differentiable at

zero, the number of thrust design variables is doubled: one set of design variables represents the

positive values of each component of thrust over time, and the other set represents the negative

values of each component of thrust over time. For gradient-based optimization, however, the

absolute value function is discontinuous at zero, so the thrust design variables are split into a set

of positive and negative values.

5.4.2 Orbit Dynamics

This section presents a relative orbit model that can be used for optimizing trajectories

of spacecraft swarms subject to millimeter-level constraints. The new orbit model can be used

within an MDO framework to design swarm missions with any number of spacecraft.

The key challenge of trajectory optimization with millimeter-level constraints lies in

computing the positions of the spacecraft with the numerical precision necessary for solver

convergence. In low earth orbit (LEO), the equations of motion for the spacecraft orbits are

functions of the positions of spacecraft relative to the Earth, which are on the order of thousands

of kilometers, while the constraints on the dimensions of the swarm formation are on the order

of tens of millimeters. This is a difference of eight orders of magnitude.

When integrating the equations of motion of the spacecraft positions relative to the center

of the Earth, large differences in orders of magnitude introduce truncation errors, rendering

numerical optimization impossible. As a result, the optimizing solver cannot update the constraint

values with the required level of precision to converge to a feasible solution.
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A model of the orbits of the spacecraft in the swarm that does not introduce truncation

errors is developed to make numerical optimization of the swarm design problem possible. To

reduce the relative orders of magnitude between the constraint values, design variable values,

and intermediate state variable values, a trajectory for each spacecraft relative to a reference orbit

is used. The position of the ith spacecraft r(i) (Figure 5.2) is given by

r(i) = r(0)+u(i), (5.3)

where r(0) ∈ R3 is a reference orbit position, and u(i) ∈ R3 is the position of the ith spacecraft

relative to the reference orbit. The equations of motion for the spacecraft relative to the reference

orbit r(0) are given by

ü(i) = r̈(i)− r̈(0). (5.4)

The orbit dynamics of the reference orbit r(0) and the spacecraft positions relative to the center

of the Earth r(i) are modeled by

r̈ =− µ

r3 r− 3µJ2R2
e

2r5

[(
1− 5r2

z

r2

)
r+2rzẑ

]
− 5µJ3R3
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r
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z

3r2

)
rzẑ
]
.

(5.5)

The J2, J3, and J4 terms capture perturbations that affect the orbit on the order of months, whereas

the orbital period for LEO is generally on the order of 90 minutes. The use of MDO will capture

these effects across multiple time scales, as well as the effect of rotating the orbital plane on
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power generation. Note that if r̈(i) and r̈(0) are modeled using Equation (5.5), then r̈(0) is a

function of r(0), and r̈(i) is a function of r(i) = u(i)+ r(0). Expanding Equation (5.4) by modeling

r̈(0) and r̈(i) using Equation (5.5) leads to

ü =− 3µJ2R2
e

2‖r(0)‖5

[(
1− 5(r(0)z +uz)

2
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u+2uzẑ
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8‖r(0)‖7

[(
1− 14(r(0)z +uz)

2

‖r(0)‖2
+

21(r(0)z +uz)
4

‖r(0)‖4

)
u

+

(
4− 28

3‖r(0)‖2
(3(r(0)z )2 +3r(0)z uz +u2

z )

)
uzẑ
]
.

(5.6)

Then the ü(i) in Equations (5.4) and (5.6) are functions of r(0), and u(i) with no explicit depen-

dence on r(i). Since r(0) does not depend on any design variables, the magnitude of r(0) has no

impact on the precision of the constraints imposed on the u(i) or their derivatives. Furthermore,

the reference orbit r(0) can be computed once prior to optimization, reducing computation time

each time the model is evaluated. Figure 5.4 shows two trajectories of free-flying spacecraft

relative to a reference orbit. These trajectories are computed by integrating Equation (5.6) for

each spacecraft using initial conditions corresponding to the desired orbit in Table 5.1.

The desired orbit parameters in Table 5.1 are based on the orbit requirements for the VI-

SORS mission [83]. The mission requirements call for a telescope maintaining a sun-synchronous

orbit due to the ease of accessibility by secondary payloads and the slow and predictable change

in beta angle throughout the year [84].

5.4.3 Attitude Dynamics and Control

Both the observation phase and standby phase of the orbit impose requirements on

the spacecraft behavior that determines the attitude profiles of the spacecraft. The pointing
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Figure 5.4. Positions of two free-flying spacecraft relative to a sun-synchronous reference orbit
over 3 orbits around the Earth. The initial conditions of the spacecraft are offset from the initial
condition for the reference orbit by 20 m in the +x and −x directions. Coordinates are in the
ECI frame of reference.

Table 5.1. VISORS orbit requirements, preferred orbit, and orbit-insertion tolerance

Orbital Parameter Requirement Preferred Tolerance
Altitude 450-600km 500km ± 50km

Inclination ≥ 30◦ 97.4◦ ±0.2◦

Eccentricity ≤ 0.1 0.01 ±0.001

requirements imposed on the spacecraft to maintain the telescope formation dictate the attitude

profile during the observation phase. Power requirements imposed on the electrical power

subsystem to maximize mission lifetime constrain the attitude profile throughout the standby

phase. In this chapter, the Euler angles (roll, pitch, and yaw) defining the attitude of each

spacecraft are optimized to satisfy the individual spacecraft pointing and sizing constraints.

During the observation phase of the orbit, the spacecraft must point its telescope components

toward the Sun to record observations, and the battery state of charge must remain within 20-95%

throughout the orbit to minimize battery degradation while maintaining a power balance. The

73



battery and solar power models are presented in Sections 5.4.6 and 5.4.5, respectively. The

reaction wheels controlling the attitude of the spacecraft are also limited to a maximum torque

and power of 0.004 Nm and 1 W, respectively, to match the Blue Canyon Technologies RWP015

reaction wheel specifications [94]. The reaction wheel constraints, listed in Table 5.3, are

enforced using a KS function (5.1) in Section 5.2.

First, a rotation matrix is constructed to transform coordinates from the ECI frame to the

spacecraft body frame by

RB/I =


cθ cψ cθ sψ −sθ

sφ sθ cψ − cφ sψ sφ sθ sψ + cφ cψ cθ sφ

cφ sθ cψ + sφ sψ cφ sθ sψ − sφ cψ cθ cφ

 ,

where s(·) and c(·) denote the sine and cosine of an angle, respectively, and ψ , θ , φ are roll, pitch,

and yaw, respectively. The rotational dynamics of the spacecraft (in the body frame) are given by

L̇B = τB + τRW +ωB× (LRW )+ τg = 0,

where LB is the angular momentum of the spacecraft, τRW = JRW · ω̇RW is the torque imparted to

the spacecraft by reaction wheels, and τgis the torque imparted to the spacecraft by the Earth’s

gravity. The torques τB, τg are given by,

τB = JB · ω̇B +ωB× (JB ·ωB)+ τg, (5.7)

τg,x =−3(JB,y− JB,z)Ω
2(RB/A)21(RB/A)31, (5.8)

τg,y =−3(JB,z− JB,x)Ω
2(RB/A)31(RB/A)11, (5.9)

τg,z =−3(JB,x− JB,y)Ω
2(RB/A)11(RB/A)21, (5.10)

where Ω is the osculating angular speed of the spacecraft position in the orbit and RB/A is the

rotation matrix from the orbit frame to the body frame given by
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RB/A =


r̂T

((r̂× v̂)× r̂)T

(r̂× v̂)T

 .
Using a constant orbit angular speed models the attitude dynamics under the assumption that the

orbit is circular, while using the osculating orbit angular speed takes into account the effect of

orbit perturbations.

The angular velocity of the spacecraft ωB is known from computing ω
×
B = ṘB/I(RB/I)

T ,

where ṘB/I is computed via finite-differences. The angular acceleration of the spacecraft ω̇B is

also computed via finite-differences. The resulting ordinary differential equation

ω̇RW = J−1
RW (ωB× (JRW ·ωRW )− τB)

is then integrated to obtain reaction wheel angular velocities ωRW (t). Once the reaction wheel

angular velocities are computed, the reaction wheel torques τRW and power draw for each reaction

wheel ¶RW are computed by

τRW = JRW ω̇B (5.11)

PRW = τRW ωB. (5.12)

5.4.4 Solar Illumination

The amount of power generated by the solar arrays depends on the amount of solar

illumination. The solar illumination is a function of the orientation of the spacecraft relative

to the Sun, the placement of the solar arrays on the spacecraft, and the dimensions of the solar

arrays. To compute the solar illumination, a ray-tracing algorithm is provided by the Toolbox for

Analysis and Large-scale Optimization of Spacecraft (TALOS) [1]. Figure 5.5 shows training

and test data for the solar arrays used in this study.
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Figure 5.5. Solar illumination as a percent of the area of solar arrays illuminated as a function
of azimuth and elevation. The training data is generated using a ray-tracing algorithm provided
by the Toolbox for Analysis and Large-scale Optimization of Spacecraft [1].

The percent solar illumination depends on the position of the CubeSats in the orbit as

well as its attitude. For each CubeSat, a line-of-sight indicator is also computed as shown in

Figure 5.6. The Sun line-of-sight indicator is defined as

LOSs =



1 r̂b/e · r̂s/e ≥ 0
1, ds > Re

3η2−2η2, αRe < ds < Re

0, ds < αRe

, r̂b/e · r̂s/e < 0
,

where

ds = ‖r̂b/e× r̂s/e‖2 η =
ds−αRe

Re−αRe
.
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Sun

0 1

Figure 5.6. Schematic of Sun line-of-sight (LOSs) variable indicating when each spacecraft has
a line of sight to the Sun. When LOSs = 0, the spacecraft is hidden behind the Earth’s shadow,
and when LOSs = 1, the spacecraft has a line of sight to the Sun. A gradient-based approach
to optimization cannot handle the discontinuous jump between the two states, so a continuous
and differentiable function is used. The continuous and differentiable function is also physically
justified by modeling the umbra and penumbra effects of the Earth’s shadow.

5.4.5 Solar Power

The solar power discipline models the power supplied by the solar arrays on the spacecraft.

For this study, the solar power discipline described in [95] is used to model the current and

voltage of the solar arrays. The solar array current I is a design variable in the optimization

problem. The solar array voltage V is given by

V (I) =
VOC +V0

2
+

VOC−V0

2
tanh

(
b(I− Isc)+ arctanh

(
V0 +VOC

V0−VOC

))
, (5.13)

where
b =

1
VOC−V0

dV
dI
,

dV
dI

=− VT

VT + IsatRsh
Rsh,

VOC = 1.1VT ln
VT

IsatR1
,

R1 = 1 (by assumption),

(5.14)
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and the constants and variables in 5.13 are listed in [23]. The solar array discipline in [95] is an

explicit approximation of the model described in [96]. Figure 5.7 shows the I-V curve for the

solar arrays.
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Figure 5.7. I-V curve for solar arrays.

5.4.6 Battery Model

Each CubeSat needs to be able to store enough power to deliver to other subsystems for

the mission. The spacecraft subsystems drain power from the battery pack, limiting its use. Each

CubeSat is equipped with solar arrays to recharge its batteries using energy from the Sun in flight.

Using rechargeable batteries greatly extends the life of the mission. Charging and discharging

the batteries too much can lead to premature degradation, however. To maximize the lifetime

of the CubeSats, the state of charge of the batteries is constrained to be within 20-95%. The

attitude profile (Section 5.4.3) must be designed to satisfy this constraint so that the solar arrays

are oriented toward the Sun during the standby phase long enough to store the energy required to
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power the spacecraft subsystems, but not so long that the batteries are overcharged. Each battery

cell is modeled by a Thevenin equivalent circuit model shown in Figure 5.8.

+

+

-

-

+ -

Figure 5.8. Equivalent circuit model of a battery cell using a Thevenin model with a single RC
element.

The battery cell state of charge z and voltage UL are modeled by

ż(t) =
IL

Q
,

UL =UOC−UTh− ILR0,

(5.15)

where z is the state of charge (SOC), Q is the cell capacity, IL is the current, UOC is the open-

circuit voltage of the cell, R0 is the internal resistance of the cell, and UL is the voltage across

the battery cell. Note that the battery cell itself is not an RC circuit, but the behavior of the cell

is modeled by an equivalent circuit. The Thevenin voltage UT h is modeled by the differential

equation

U̇Th =−
UTh

R1C1
+

IL

C1
, (5.16)

where R1 is the polarization resistance in the RC circuit and C1 is the equivalent capacitance in

the RC circuit. The state of charge z is limited to be between 20% and 95%.

The values for the equivalent circuit model are computed using

UOC,C1,R1R0 = f (z), (5.17)
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where f is a surrogate model generated from data for a lithium-ion battery provided by [97].

The battery pack current, voltage, and power are given by

Ibat = ILnp,

Ubat =ULns,

Pbat = IbatUbat,

(5.18)

where ns and np are the number of battery cells connected in each series and number of battery

cell series connected in parallel, respectively. The total number of battery cells in the battery

pack is given by nsnp. The variables ns and np are design variables in the optimization problem

given by Table 5.3.

5.5 Optimization

This section describes the optimization problem solved using the approach described

in Section 5.2 to design the mission presented in Section 5.3. The problem of maximizing

its mission lifetime is solved by solving two optimization problems: a trajectory optimization

problem summarized in Table 5.2, and then an attitude profile and battery pack optimization

problem summarized in Table 5.3. The problem summarized in Table 5.3 is solved for each

spacecraft. Solving these problems sequentially is justified by the fact that the solution to

the trajectory optimization problem is not affected greatly by the attitude and electrical power

subsystem disciplines.1 Figures 5.9 and 5.10 contain a variant of the eXtended Design Structure

Matrix (XDSM) diagram [98] of the multidisciplinary systems in the problems summarized in

Tables 5.2 and 5.3, respectively. These diagrams serve to show the data flow across disciplines.

For the sake of brevity, Figures 5.9 and 5.10 show the major disciplines of the system models to

emphasize the general structure of the models used to define each optimization problem.

1As a general rule, this is not the case. For example, if instead of omnidirectional thrust, the spacecraft were
equipped with unidirectional thrusters, then the attitude discipline could not be decoupled from the trajectory
optimization problem.
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Figure 5.9. XDSM diagram for problem summarized in Table 5.2.
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Figure 5.10. XDSM diagram for problem summarized in Table 5.3.

The procedure for maximizing mission lifetime is as follows. First, the trajectory

optimization problem (Table 5.2) is solved over one orbit with the constraints shown in Figure 5.2

imposed on the relative positions of the two spacecraft. The objective of the first problem is to

minimize the total propellant used over one orbit. Constraints are enforced on the separation

between the two spacecraft and the pointing error of the telescope. The alignment constraint

shown in Figure 5.2 is redundant and not included in this problem definition. Then, the orbit

from the trajectory optimization problem is fed into the problem summarized in Table 5.3 that

simultaneously optimizes the attitude profile and battery model. The objective of the second

problem is to minimize the number of battery cells in the battery pack. Constraints are enforced

on the reaction wheels and battery pack according to Table 5.3.

There are two scalar design variables per spacecraft; the number of battery cells connected

in each series, and the number of battery cell series connected in parallel. Since these variables

are integer design variables, the problem is a mixed-integer nonlinear program (MINLP).
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The model in all optimization problems simulates a single orbit, approximately 90

minutes, split into 301 time steps. The profile variables were discretized with nt = 301 points

and the time-dependent design variables were represented using fourth-order B-splines with

ncp = 60 control points.

Table 5.2. Trajectory Optimization Problem

Variable Description Quantity

Objective ∑
2
i=1(mprop,0−mprop,f) Total propellant mass

used

Design

Variables

−Tmax ≤ T (t)≤ 0 Thrust in negative direc-

tion of each component

(omnidirectional)

2× 3× ncp (a B-spline

interpolation is used to

obtain thrust for all

time)

0≤ T (t)≤ Tmax Thrust in positive direc-

tion of each component

(omnidirectional)

2× 3× ncp (a B-spline

interpolation is used to

obtain thrust for all

time)

Total no. of design vari-

ables

12ncp

Constraints 450−h(t)≤ 0 Altitude 2 (reduced from 2nt us-

ing KS function)

(‖u(DSC)(t) −

u(OSC)(t)‖ − 40 −

ε)LOSs ≤ 0

Separation (along LOS) 1 (reduced from nt us-

ing KS function)

(40 − ε − ‖u(DSC) −

u(OSC)‖)LOSs ≤ 0

Separation (along LOS) 1 (reduced from nt us-

ing KS function)

Continued on next page
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Table 5.2 Trajectory Optimization Problem – continued from previous page

Variable Description Quantity

‖(u(OSC)(t)−u(DSC)(t)) ·

r̂sun‖LOSs− ε ≤ 0

Pointing 1 (reduced from nt us-

ing KS function)

Total no. of constraints 5

Table 5.3. Attitude & Battery Optimization Problem

Variable Description Quantity

Objective nsnp Total number of battery

cells

Design

Variables

0≤ I ≤ Isc,0 Solar power current 1

0.2≤ z0 ≤ 0.95 Initial state of charge 1

ns ≥ 1, np ≥ 1 Number of battery cells

connected in series and

in parallel

2

φB/I(t), θB/I(t), ψB/I(t) Spacecraft roll, pitch,

and yaw in ECI frame

3×ncp (a B-spline inter-

polation is used to ob-

tain thrust for all time)

Total no. of design vari-

ables

4+3ncp

Constraints 0.2− z(t)≤ 0 State of charge 1 (reduced from nt us-

ing KS function)

Continued on next page
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Table 5.3 Attitude & Battery Optimization Problem – continued from previous page

Variable Description Quantity

z(t)−0.95≤ 0 State of charge 1 (reduced from nt us-

ing KS function)

−τRW,max− τRW (t)≤ 0 Reaction wheel torque

along each axis

3 (reduced from 3× nt

using KS function)

τRW (t)− τRW,max ≤ 0 Reaction wheel torque

along each axis

3 (reduced from 3× nt

using KS function)

Ibatt(t)−5≤ 0 Battery charge rate 1 (reduced from nt us-

ing KS function)

−10− Ibatt(t)≤ 0 Battery discharge rate 1 (reduced from 1nt us-

ing KS function)

(1 − ε −

(R(OSC)
B/I (t)r̂sun)y)LOSs ≤

0

optics spacecraft orien-

tation

1 (reduced from nt us-

ing KS function)

(1 − ε −

(R(DSC)
B/I (t)r̂sun)x)LOSs ≤

0

detector spacecraft ori-

entation

1 (reduced from nt us-

ing KS function)

Total no. of constraints 11

5.6 Results

The optimization problems summarized in Tables 5.2 and 5.3 were defined using

CSDL [90], and sovled using SNOPT [92], a reduced-Hessian active-set SQP solver to solve

the optimization problems. I used the modOpt2 framework as an interface between CSDL
2https://lsdolab.github.io/modopt/
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and SNOPT. Section 5.6.1 presents the solution to the problem summarized in Table 5.2 and

Section 5.6.2 presents the solution to the problem summarized in Table 5.3. All inequality

constraints are aggregated using a KS function (5.1) such that KS(kg(x))/k is used with ρ = 1,

where k is a large number.

5.6.1 Trajectory Optimization

The overall objective is to maximize the mission lifetime. The problem is split into a

trajectory optimization problem and for each spacecraft, an attitude profile and battery pack

optimization problem. The objective of the trajectory optimization problem is to minimize the

total propellant used. The trajectory optimization converges to a feasibility of 10−5 and an

optimality of 10−6 (Figure 5.11). The convergence history in Figure 5.11 shows that feasibility

converges quickly relative to optimality, indicating that once the formation requirements are

satisfied, they remain satisfied until the propellant mass is minimized. Figure 5.12 shows

the positions of the optics and detector spacecraft (OSC and DSC, respectively) relative to the

reference orbit after solving the problem summarized in Table 5.2. The positions of the spacecraft

relative to the reference orbit at the solution are on the order of hundreds of meters. Figure 5.12

shows that the reformulated orbital dynamics are capable of reducing the magnitude of the

intermediate state variables (in this case, the positions of the spacecraft relative to a reference

orbit) to a level low enough to avoid the introduction of truncation errors that would otherwise

prevent optimization.

Figure 5.13 shows the values of the constraint variables on the telescope formation over

time. The constraints are only enforced during the observation phase (highlighted in green).

Figure 5.13 shows the successful optimization of the trajectory to satisfy the millimeter- and

arcsecond-level constraints on the swarm formation. The spacecraft break formation soon after

the end of the observation phase, suggesting that the formation must be maintained actively.

Figure 5.14 shows the optimal thrust profile for each spacecraft. The thrust for both

spacecraft varies the most prior to and during the observation phase and drops to zero for the rest
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Figure 5.11. SNOPT convergence history for problem summarized in Table 5.2.

of the orbit. The thrust is nonzero shortly after the observation phase. This is due to the use of a

B-spline interpolation to reduce the number of design variables. The thrust profile is discretized

into 301 time steps and the thrust design variables are 60 B-spline interpolants. Each interval

between the B-spline interpolants lasts for 95 s, which is about the length of time that the thrust

is nonzero after the observation phase.

Figure 5.15 shows the history of the values of the objective and aggregated constraint

values for the trajectory optimization problem. The constraint values are aggregated from time-

dependent constraints using the KS function (5.1). As mentioned in the discussion surrounding

Figure 5.11, the constraint values approach the values representing the formation requirements

early in the optimization and the total propellant used is minimized thereafter. The total propellant

used starts at zero because the thrust design variables are initialized to zero prior to the first

function evaluation. The total propellant used is approximately equal for each spacecraft,

suggesting that the final design use the same or similarly sized propellant tanks for both spacecraft.
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Figure 5.12. 3D plot of relative orbits of both spacecraft relative to reference orbit at optimal
solution of problem summarized in Table 5.2. Coordinates are in the ECI frame of reference.

The constraint on maximum separation over the entire orbit becomes inactive early in the

optimization. This suggests that if there are any destabilizing effects on the separation between

the spacecraft, they are not strong enough to affect the solution over one orbit.

5.6.2 Attitude Profile and Battery Pack Optimization

This section presents the solution to the problem summarized in Table 5.3 for each

spacecraft. The orbit from the solution presented in Section 5.6.1 is fed into in the problem

summarized in Table 5.3. The problem is solved independently for each spacecraft. The attitude

and battery pack optimizations converge to a feasibility of at most 10−4 and an optimality of at

most 10−4 (Figure 5.16) for both the OSC and DSC. The rates of convergence for both spacecraft

are different due to the initial guess for the attitude profile of each spacecraft so that the telescope

components are oriented toward the Sun as shown in Figure 5.3.

Figure 5.17 shows the number of battery cells connected in each series, number of
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Figure 5.13. Telescope dimensions over one orbit. The green highlighted vertical strip indicates
the observation phase of the orbit. The formation constraints are satisfied during the observation
phase (separation is 40 m±15 mm, telescope pointing error is ≤90 arcsec, and telescope mis-
alignment is ≤18 mm). The formation is maintained throughout the observation phase, which
lasts for 38 s, exceeding the 10 s requirement.

battery cell series connected in parallel, and maximum telescope component exposure during the

observation phase for the OSC and DSC at the solution to the problem summarized in Table 5.3.

The number of battery cells connected in each series np and the number of battery cell series

connected in parallel np are each initialized to 2 prior to optimization and drop to their lower

bound of 1 early in the optimization. The total number of battery cells in the later iterations and

at the solution is nsnp = 1, indicating that the battery cell capacity is large enough to power the

subsystems for this configuration. Since the design variables ns and np are both 1 at the solution,

they are both integer values, which yield a solution to the mixed-integer nonlinear program

(MINLP) without the need to use a branch-and-bound approach. The minimum exposure for

each spacecraft reaches 98% early in the optimization as well.
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Figure 5.14. Thrust profile for each spacecraft over one orbit. Thrusters have omnidirectional
capability, and each component of thrust is in the ECI frame of reference. The green highlighted
vertical strip indicates the observation phase of the orbit.

Figure 5.18 shows the roll, pitch, and yaw angles of the OSC and DSC at the solution,

and the transition between the observation phase and standby phase of the orbit. The transition

between observation phase and standby phase is more apparent in the OSC attitude profile

because both spacecraft have the same initial guess for their respective attitude profiles, but

different desired orientations during the observation phase (Figure 5.3, Table 5.3).

Figure 5.19 shows the percent exposure, a measure of the amount of light from the Sun

that reaches the telescope component throughout the orbit. During the observation phase, both

spacecraft achieve an exposure of 98% or greater. The detector on the DSC is oriented towards

the Sun for more of the orbit than the optics on the OSC is oriented toward the Sun. This is due

to the fact that the optics and the detector are oriented differently relative to the solar arrays on

each spacecraft, requiring a different orientation during the observation phase for each spacecraft

(Figure 5.3).

Figure 5.20 shows the state of the battery pack onboard each spacecraft at the optimal
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Figure 5.15. Objective and constraint history for trajectory optimization problem summarized
in Table 5.2

solution. Both battery states of charge remain well above 20% and reach a maximum of 95%.

The state of charge for both batteries decreases prior to the observation phase as both spacecraft

reaction wheels consume power to achieve the desired orientation, and both spacecraft orient

their solar arrays to drive the state of charge back to its value at the start of the orbit. The battery

current, voltage, and power vary much less over time for the OSC than for the DSC, indicating

that battery packs onboard the two spacecraft do not have the same demands placed on them.

Figure 5.21 shows the reaction wheel speed, torque, and power over time at the solution.

The reaction wheel speeds, the torque applied by the reaction wheels, and the power supplied to

the reaction wheels do not have behaviors that show the observation phase and standby phase

clearly. This indicates that the torque applied by the Earth’s gravity field is a significant torque

for the reaction wheels to counteract throughout the orbit.
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Figure 5.16. SNOPT convergence history for problem summarized in Table 5.3 applied to (a)
optics spacecraft and (b) detector spacecraft.

91



0 100 200 300 400
1.0

1.5

2.0

N
u

m
b

er
of

C
el

ls

Number of Battery Cells Connected in Each Series

0 100 200 300 400
1.0

1.5

2.0

N
u

m
b

er
of

C
el

ls

Number of Battery Cell Series Connected in Parallel

0 100 200 300 400
Function Evaluations

0

50

100

E
x
p

os
u

re
[%

]

Minimum Component Exposure

(a)

0 50 100 150 200 250
1.0

1.5

2.0

N
u

m
b

er
of

C
el

ls

Number of Battery Cells Connected in Each Series

0 50 100 150 200 250
1.0

1.5

2.0

N
u

m
b

er
of

C
el

ls

Number of Battery Cell Series Connected in Parallel

0 50 100 150 200 250
Function Evaluations

95.0

97.5

E
x
p

os
u

re
[%

]

Minimum Component Exposure

(b)

Figure 5.17. Scalar design variables and constraints for problem summarized in Table 5.3. Each
plot shows the history of the design variable values for the battery pack sizing (number of battery
cells connected in each series and number of battery cell series connected in parallel) and the
exposure of each telescope component on the (a) optics spacecraft and (b) detector spacecraft.
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Figure 5.18. Attitude profile of (a) optics and (b) detector spacecraft as measured by roll, pitch,
and yaw angles relative to Earth-Centered Inertial (ECI) frame after solving problem summarized
in Table 5.3.
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Figure 5.19. Percent of light available for each telescope component for: (a) optics and (b)
detector spacecraft after solving problem summarized in Table 5.3. As the spacecraft points
away from the Sun or enters Earth’s shadow, the exposure to the Sun decreases.
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Figure 5.20. Battery state of charge, current, voltage, and power for: (a) optics and (b) detector
spacecraft after solving problem summarized in Table 5.3.

Figure 5.22 shows the state of the solar arrays for each spacecraft. The solar array voltage

is nearly identical for both spacecraft except during the observation phase where there is a
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Figure 5.21. Reaction wheel speed, torque, and power for: (a) optics and (b) detector spacecraft
after solving problem summarized in Table 5.3.

slight dip for the OSC. The solar illumination is also similar for both spacecraft except during

the observation phase. The solar array voltage and solar illumination of the OSC solar arrays
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drop during the observation phase due to the fact that the optics and the detector are oriented

differently relative to the solar arrays on each spacecraft, requiring a different orientation during

the observation phase for each spacecraft. The solar illumination of the DSC solar arrays follows

a similar trend as the exposure of the detector instrument in Figure 5.19 (b) because the detector

instrument is oriented in the same direction as the direction normal to the solar arrays.

5.7 Conclusion

The objective of this study was to apply multidisciplinary design optimization (MDO) to

the design of a virtual telescope comprised of two CubeSats. I used gradient-based optimization

to optimize the trajectory, attitude profile, and battery sizing for each spacecraft. The solution

relied on constraint aggregation and B-spline interpolation to reduce the size of the optimization

problems. The key challenge was to satisfy constraints to millimeter-level accuracy when the

positions of the CubeSats are on the order of thousands of kilometers. These large differences in

orders of magnitude introduced truncation errors that render numerical optimization impossible.

To enable numerical optimization, this chapter contributes a relative orbit model to reduce

the relative magnitudes of intermediate state variables in the model. I find that the relative

orbit model enables numerical gradient-based optimization while also taking into account orbit

perturbations over multiple time scales.

The MDO problem was solved using a sequential approach, first solving the trajectory

optimization problem for both spacecraft, and then using the solution in a subsequent optimization

problem that simultaneously optimizes the attitude profile and battery pack. The successful

design of a virtual telescope mission demonstrates MDO as a practical, scalable approach to

solving spacecraft mission design problems involving swarms flying in formation. I find that a

sequential approach to solving the original problem has robust convergence, while the approach

that optimizes all disciplines simultaneously does not. In practice, aggregating constraints using a

KS function (5.1) modified such that KS(kg(x))/k is used with ρ = 1, where k is a large number
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Figure 5.22. Line of sight indicator and solar array illumination, power, current, and voltage for:
(a) optics and (b) detector spacecraft after solving problem summarized in Table 5.3

appears to improve robustness across all optimization problems presented here.

Future work can take multiple directions. First, applying the methods developed in this
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chapter to a swarm with a greater number of spacecraft will demonstrate the effectiveness of the

orbit model developed in this chapter. Second, increasing the number and fidelity of spacecraft

subsystem disciplines will demonstrate the robustness of the approach used in this chapter to

changes in spacecraft configuration. Third, combining the trajectory, attitude profile, and battery

sizing problems into one optimization problem and solving it simultaneously may lead to a better

local optimum, although convergence remains an obstacle.
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Chapter 6

Conclusion

6.1 Summary of Contributions

The objectives of this dissertation were to: (1) apply a three-stage compiler design to the

process of automatically performing efficient and accurate computation of derivatives for the

class of models present in MDO problems; (2) measure the effect of using a declarative paradigm

to describe models used in MDO problems on user code complexity; (3) measure the effect of

the model structure on the run-time memory complexity of the software used to evaluate the

model; and (4) apply MDO to the problem of designing a space-based virtual telescope using

a model description amenable to gradient-based optimization. In this section, I summarize the

contributions made by my research and their implications for the broader field of MDO.

My first contribution is a graph-based methdology for automatically generating software

for evaluating models and automating adjoint-based sensitivity analysis. The graph-based

methdology addresses the need to automate efficient and accurate derivative computation for

the class of problems encountered in MDO through the application of a three-stage compiler

to code-generation for models used in MDO problems. The three-stage compiler constructs a

graph representation of the model based on whatever language is compatible with the compiler,

and free to generate software to evaluate the model and compute sensitivities in any low-level

language. The three-stage compiler uses the graph representation to enable efficient and accurate

sensitivity analysis, and perform implementation-independent optimizations to improve run-time
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performance.

My second contribution is the Computational System Design Language (CSDL), a

declarative language that enables users to provide model descriptions rather than software

implementations to a computer when solving MDO problems. CSDL addresses the need to

remove obstacles to software implementation. Comparing the number of lines of code written

in CSDL to the number of lines of code in other languages and frameworks (e.g. OpenMDAO)

measures the effect of using a declarative language on code complexity and quantifies the impact

of automating sensitivity analysis. CSDL was developed to separate model description from

software implementation and yielded a twofold reduction in model code complexity over the

OpenMDAO architecture. The measurable reduction in user code complexity and separation

of model description from software implementation in the MDO workflow allows researchers

and practitioners to focus on modeling and analysis without being burdened by the intricacies of

software implementation, potentially reducing overall development time for large-scale design

problems.

My third contribution is an approach for measuring the effect of the structure of the

graph representation on potential run-time memory complexity and performance. This approach

addresses the need to gain insight into the physical system’s behavior and the program’s run-

time behavior from the model structure. The three-stage compiler developed in support of the

first contribution uses a graph representation of the model structure. Analysis of the graph

representation used within the three-stage compiler enables measuring the potential impact of

the model structure on run-time memory complexity and performance. Users of the three-stage

compiler can perform this analysis on their models regardless of the language used to describe

the model or the compiler back end used to generate software to evaluate the model and perform

sensitivity analysis. These measurements also inform the implementation strategy for generating

software to evaluate the model, independent of the language used to describe the model.

My fourth contribution is a spacecraft model formulation that enables gradient-based

MDO of spacecraft swarms with millimeter-level formation constraints. This contribution fills
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a gap within the need to reformulate model descriptions by applying MDO to the design of

a space-based virtual telescope, demonstrating the practical application and efficacy of the

proposed methodologies developed in the first three contributions. In this problem, the discipline

modeling orbital dynamics could be modeled in such a way so as to introduce numerical

difficulties, rendering gradient-based optimization impossible. I also found that solving a series

of optimization problems sequentially has robust convergence, while the approach that optimizes

all disciplines simultaneously does not.

6.2 Recommendations for Future Work

In this section, I outline recommendations for future work given the contributions outlined

in Section 6.1. First, I recommend continuing to explore developing CSDL as a mainly functional

programming language, as the functional programming paradigm has not been explored for

MDO languages outside of CSDL. Declarative paradigms such as functional programming make

simpler expressions, independent of underlying implementations, the default. For example,

CSDL currently enforces the rule that relationships defining each variable must be expressed

once and only once; i.e., variables are immutable. This design forces the user to describe a model

that resembles the original mathematical expressions that would appear in a paper, effectively

bypassing a “translation layer” between mathematical notation and procedural syntax. Ironically,

removing this “translation layer” has created a learning curve for new users of CSDL. Fortunately

this immutability lifts from users the burden of defining unnecessary implementations and forces

users to operate in the physical, rather than the computational domain. I recommend that any

changes to the design of CSDL adhere to the philosophy of using a declarative paradigm to

simplify model descriptions as much as possible. Furthermore, I encourage researchers in

programming languages and human-computer interaction to investigate the impact of CSDL on

MDO workflows. This includes studying the effect of language design choices on the speed of

model development for individuals and teams.
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Second, I recommend developing algorithms that leverage the structure of a graph

representation to improve run-time memory complexity and performance. For example, taking

advantage of dependency information within the graph to parallelize computation would lead to

greater performance. Identifying the type of optimization problem will enable recommending

or automatically choosing for the user the solver that will perform best on a given optimization

problem.

Third, I recommend exploring the use of graph representations of models to gain insight

into both the physical behavior of a system and the behavior of the software that evaluates

the model, and using these insights to further automate processes within the MDO workflow.

More implementation-independent optimizations could be developed to improve efficiency. For

example, graph search algorithms could identify the type of optimization problem and inform

users to choose an optimizer that performs well on that type of problem.
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