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Ising Model on Locally Tree-like Graphs:
Uniqueness of Solutions to Cavity Equations

Qian Yu, Member, IEEE, and Yury Polyanskiy, Senior Member, IEEE

Abstract—In the study of Ising models on large locally tree-
like graphs, in both rigorous and non-rigorous methods one
is often led to understanding the so-called belief propagation
distributional recursions and its fixed points. We prove that
there is at most one non-trivial fixed point for Ising models
with zero or certain random external fields. Previously this was
only known for sufficiently “low-temperature” models. Our main
innovation is in applying information-theoretic ideas of channel
comparison leading to a new metric (degradation index) between
binary-input-symmetric (BMS) channels under which the Belief
Propagation (BP) operator is a strict contraction (albeit non-
multiplicative). A key ingredient of our proof is a strengthening
of the classical stringy tree lemma of [1].

Our result simultaneously closes the following 6 conjectures in
the literature: 1) independence of robust reconstruction accuracy
to leaf noise in broadcasting on trees [2]; 2) uselessness of
global information for a labeled 2-community stochastic block
model, or 2-SBM [3]; 3) optimality of local algorithms for 2-
SBM under noisy side information [4]; 4) uniqueness of BP
fixed point in broadcasting on trees in the Gaussian (large
degree) limit [4]; 5) boundary irrelevance in broadcasting on
trees [5]; 6) characterization of entropy (and mutual information)
of community labels given the graph in 2-SBM [5].

Index Terms—Belief propagation, cavity equations, Ising
model, stochastic block model, broadcasting on trees.
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I. MAIN RESULT AND MOTIVATION

The central object of interest in this paper is a belief prop-
agation (BP) operator Qs that takes a symmetric distribution
µ and produces another symmetric distribution Qsµ. We call
a probability distribution µ on (−∞,+∞] symmetric if

dµ(r) = erdµ(−r),

⇐⇒ µ[E] =

∫
e−r

1{−r ∈ E}dµ(r) (1)
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for every measurable subset E ⊆ (−∞,+∞) (see [6, Section.
15.2.2] or Section I-A for motivation). A special distribution
µ({0}) = 1 is denoted by a Dirac-delta δ0 and is called trivial.
The operator Qs depends on three parameters: a crossover
probability δ ∈ [0, 1], a symmetric survey distribution µs and
a (branching or) degree distribution Pd on Z+. Given these,
we define Qsµ for any symmetric µ to be the probability law
of random variable R

R ≜
d∑

u=1

ZuFδ(R̃u) + S, (2)

where d ∼ Pd, R̃u
iid∼ µ, Zu

iid∼ (−1)Ber(δ), S ∼ µs (all jointly
independent) and

Fδ(x) ≜ ln
(1− δ)ex + δ

δex + 1− δ
= 2 tanh−1

(
(1− 2δ) tanh

x

2

)
.

The special case of S = 0 or, equivalently, µs = δ0 is referred
to as BP without survey and in this case we denote the BP
operator by Q without the subscript s.

In this paper we consider the topic of convergence of
iterations Qh

sµ0 as h → ∞. Naturally, in this regard, we define
distribution µ to be a BP fixed point if Qsµ = µ. Note that in
the case of no survey (S = 0), and only in that case, there is
a trivial fixed point µ = δ0.

The main result of our work is the following.

Theorem 1. There exists at most one non-trivial symmetric
BP fixed point µ∗, unless we are in the exceptional case of
S = 0 (no survey), d = 1 a.s. and δ ∈ {0, 1} (in which case
Qs is an identity operator). In the non-exceptional case, for all
non-trivial symmetric µ, the recursion Qh

s µ converges weakly
to the same fixed point, to µ∗ if it exists, or to the trivial δ0
otherwise.

This result is contained in Theorems 4 and 15 below. As
alluded to in the abstract, Theorem 1 resolves a number of
long-standing questions in the theory of Ising models on trees
and locally tree-like graphs. In a nutshell, the main innovation
of our work is the discovery of a (rather strange) metric
between distributions (equivalently, between BMS channels)
under which a finite number of applications of Qs is strictly
contracting (see Definition 13 below).

We note, however, that our result says little about the actual
structure of the fixed point. From prior work, though, we know
that in the case of S = 0 (no survey) and fixed degree d the δ0
is the unique fixed point iff (1− 2δ)2d ≤ 1 (a Kesten-Stigum
threshold [1]). Above criticality the non-trivial fixed point µ∗

emerges and it is known to be approximately Gaussian [7] in
the sense that if Rδ ∼ µ∗ then as (1− 2δ)2d → 1+:

Rδ√
1− 2δ − d−

1
2

d→ N (0,
σ2

2
), σ2 ≜

16d
√
d

d− 1
.

We next proceed to deriving the recursion (2) and explaining
its connection to Ising models, statistical physics and stochas-
tic block model.

A. Derivation of BP recursion

Consider an inference problem for the Ising model on
infinite trees (see Fig.1 for an illustration). We have a rooted
tree channel that is generated recursively, where each vertex v
has an i.i.d. number of children sampled from a given degree
distribution Pd. Each vertex v is associated with a binary
random variable Xv . The variable on the root, denoted by
X0, is Ber( 12 ). Then for any other vertex v, Xv is identical
to the variable on their parent node with probability 1 − δ,
conditioned on all other variables that are not their descendant,
where δ is a given parameter in [0, 1].

leaf observations

µs

µr. . .

X0

X1 X2 X3

X7 X8

Y0

Y1 Y2 Y3

X4 X5 X6

Y4 Y5 Y6 Y7 Y8

. . . . . .

depth h

Xv

X̃v

Fig. 1: Illustration of a tree channel with depth h. The
solid lines represent binary symmetric channels with error
probability δ. The estimation of X0 is based on leaf obser-
vations and the possible surveys. The corresponding channels
are represented by the solid arrows and the dashed arrows,
with log-likelihood ratio distributions given by µr and µs,
respectively. The leaf observations consist of only the vertices
at depth h, not including vertex 2 in this example.

In a basic setting called broadcasting on trees (BOT), we are
interested in the process of estimating X0 given the random
tree graph structure and the collection of variables on all
vertices with depth h. Formally, we aim to characterize the
distribution of the log-likelihood ratio (LLR) for estimating
X0 conditioned on X0 = 0. Let Lh denote the set of all
vertices at depth h from the root, XLh

= {Xv : v ∈ Lh}
be the vector of all values at depth h, and T(h) denote the
tree subgraph induced by all vertices in {L0, L1, ..., Lh}. The
set of all observed information consists of T(h) and XLh

. The
LLR distribution for tree networks of depth h, denoted by
µ(h), is given by

µ(h)[E] = P
[
ln

P[T(h), XLh
|X0 = 0]

P[T(h), XLh
|X0 = 1]

∈ E

∣∣∣∣X0 = 0

]
for any measurable E ⊆ (−∞,+∞].

Knowing the LLR distribution, we can compute fundamen-
tal quantities such as minimum error probabilities and mutual
information. Particularly, the recoverability of X0 with non-
trivial error probability (bounded away from 1

2 for large h)
is possible if and only if the LLR distributions converge to a
non-trivial distribution.

More generally, a variant of BOT is considered in [5], where
in addition to the leaf observations (i.e., variables at depth h),
each vertex above depth h is also observed through identical
BMS channels, and the received information is called the
surveys. This formulation can be further generalized to include
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the case where leaf observations are noisy, with corresponding
observation channels being identical and BMS. The LLR
distributions for such cases can be similarly defined. Formally,
for any vertex v with depth less than h, there is a survey obser-
vation denoted by Yv . For any vertex v with depth h, there is a
(possibly) noisy leaf observation denoted by X̃v . All Yv’s and
X̃v’s are jointly independent conditioned on the tree structure
and the variables on the tree. The conditional distribution of
each Yv and X̃v only depends on their corresponding variable
Xv . They are specified by either the transition distribution
of the survey channels or the leaf observation channels,
respectively. Let Y(h) ≜ {Yv : v ∈ L0 ∪ L1 ∪ ... ∪ Lh−1}
be the collection of all surveys and X̃(h) ≜ {X̃v : v ∈ Lh}
be the collection of noisy leaf observations. The set of all
observations is given by Oh ≜ (Th, Y(h), X̃(h)).

Now that Oh can belong to continuous domains, we define
the LLR distribution µ(h) to be the law of1

ln
f0,h (Oh)

f1,h (Oh)
given X0 = 0, where fv,h ≜

dPOh|X0=v

dPOh

.

Following the same definition, we define the LLR distributions
for all binary-input channels by replacing X0 with their input
variables and Oh with their outputs.

The BP operator arises naturally as the recursion rule for
the LLR distributions of the tree channels described above. In
the no survey setting, we have µ(h+1) = Qµ(h). When survey
channels are present, we have µ(h+1) = Qsµ(h), where µs
is set to be the LLR distribution of the corresponding survey
channels.

The derivation of BP recursion relies on the fact that the
observed information can be partitioned into subsets of inde-
pendent variables given X0 and the tree structure. Therefore,
the overall LLR can be written as the summation of individual
LLRs from each component. Specifically, consider the tree
channel of depth h+1. Let d be the degree of the root vertex
and let 1, ..., d be the labels of the d children. The individual
terms consist of the LLRs from the subtrees rooted at each
vertex u ∈ [d], and the LLR from the survey when it exists.

Due to the recursive structure of the tree construction, the
subtree rooted at each vertex u ∈ [d] resembles the same
network that is defined for depth h. Consequently, if we
consider the LLR variable for estimating Xu with the subtree
information, which is a function of all relevant surveys, leaf
observations, and the subtree structure, then by definition, the
law of this variable is given by µ(h) conditioned on Xu = 0.
For convenience, we denote this variable by R̂u. Observe
that each subtree is a BMS channel. We have −R̂u ∼ µ(h)

conditioned on Xu = 1. Hence, by letting Zu ≜ (−1)Xu and
R̃u ≜ ZuR̂u, we have R̃u ∼ µ(h) independent of Xu. The
LLR component for X0 that corresponds to this subtree takes

1Here the LLR variable ln
f0,h(Oh)

f1,h(Oh)
is constructed using the

Radon–Nikodym derivative, which is well-defined for all measurable spaces
and unique up to a set of zero measure.

into account of the uncertainty of Xu, which is given by

ln
eR̂uP[Xu = 0|X0 = 0] + P[Xu = 1|X0 = 0]

eR̂uP[Xu = 0|X0 = 1] + P[Xu = 1|X0 = 1]
= Fδ(R̂u)

=ZuFδ(R̃u).

Hence, the overall LLR can be written as
∑d

u=1 ZuFδ(R̃u)+
S, where S is the LLR variable for the survey at vertex 0.
Recall that R̃u, Zu, and S are jointly independent conditioned
on X0 = 0, which is given by the tree channel construction.
Further, we also have Zu ∼ (−1)Ber(δ) and S ∼ µs under
the same condition. Thus, we have recovered the BP operator
specified by equation (2). Finally, the initial condition of the
recursion is simply given by µ(0) = µr, where µr is the LLR
distribution of the leaf observation channels.

The symmetry condition of µs, µr, and µ(h) arises from the
BMS property of the corresponding channels. Generally, for
any BMS channel, let µ denote its LLR distribution and let µ−

be the distribution of the same LLR function generated with
input X0 = 1. By the BMS property, we must have dµ−(r) =
dµ(−r) for any r ∈ [−∞,+∞). Then the definition of LLR
gives dµ(h)(r) = erdµ−

(h)(r), which implies equation (1).

B. Cavity method and previous work

The operator Q is also known as density evolution [8,
Section 2.2], Bethe recursion [9, Definition 1.6]. It arises
from a so-called cavity method [10], which (non-rigorously,
but often correctly) allows one to infer important qualities
and quantities of statistical physical systems based on the
knowledge of the fixed points of the Q. Correspondingly, the
distributional identity Qµ = µ is known as the 1RSB cavity
equation, with Parisi parameter set to x = 1 [6, Section 14.6,
(19.72)]. The particular version of the Q corresponds to cavity
equations for the Ising model on a locally tree-like graph for
ferromagnetic δ < 1

2 or anti-ferromagnetic δ > 1
2 case. We

mention that distributional recursions are not necessary for
understanding the former [11] (due to absence of frustration in
the boundary condition) but are necessary for the latter, see [8].
The version with survey (BP operator Qs) would correspond
to certain random external fields, which are not independent
across sites.

Both the BOT and the BP fixed point formulations have
been widely studied in statistical physics [11], [12], evolution-
ary biology [13], [14], and information theory [1], [15]. The
condition for the existence of non-trivial symmetric BP fixed
points has been determined exactly, which can be described
using the branching number [1], [12], [16]. Equivalently, this
resolved the problem of identifying the set of (Pd, δ) for
which recovery is possible in the BOT. The version of BOT
with noisy leaf observations was introduced in [17], who
also demonstrated that the regime of recovery (for general
leaf observation channels under the Ising model case we are
considering here) is unchanged.

A renewed interest in BOT was sparked by the ground-
breaking works of [18], [19], which connected it to the
stochastic block model with 2 communities (2-SBM). In 2-
SBM the goal is to estimate a set of hidden labels by observing
an associated random graph. The labels are defined on n
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vertices, each being i.i.d. Ber( 12 ). The graph is constructed by
independently connecting any pair of vertices, with probability
a
n for pairs with the same labels and with probability b

n for
the rest. It turned out that in the regime of n → ∞ the
probability of error of estimating the label given the graph
can be lower bounded by the probability of recovery error
in BOT with Pd = Poisson(a+b

2 ) and δ = b
a+b . On the

other hand, [2] shows that the 2-SBM error can be upper
bounded by the recovery error in the robust BOT with the same
parameters. This was established by running BP from a good
initialization (for details, see [2, Section 5]). Consequently, the
uniqueness of BP fixed point implies that the upper and the
lower bounds coincide, showing that the performance of the
optimal (but exponential time) maximum likelihood estimator
can be achieved in polynomial time. This result, however,
was only shown in [2] under the condition of “high SNR”
or low temperature. They made a conjecture that the result
(and BP uniqueness) should hold unconditionally. In [5] the
range under which the uniqueness holds was further enlarged.
This paper resolves the conjecture in full.

The consequence of the discussion above is that for the 2-
SBM we can explicitly (modulo computing the BP fixed point)
evaluate the probability of error for recovering an individual
vertex label. A more global quantity is conditional entropy of
all vertex labels given the graph. [5] gives a formula for the
latter, but only under the assumption of boundary irrelevance
(BI) for the problem of BOT with survey. BI refers to the
effect of leaf observations becoming independent of the root
variable when conditioned on the survey information. BI was
conjectured to be true in [3] for binary erasure survey channels,
and in [5] for general symmetric survey channels. In our
language, BI is equivalent to uniqueness of BP fixed point for
the Qs. We thus provide a positive proof of these conjectures
in Section IV-B.

The setting of BOT with survey arose in the line of work [3],
[4] which investigated optimality of local algorithms (of BP
type) and made conjectures similar to the BI. Furthermore,
using methods of [2] they were able to prove those conjectures
in the regime of high-SNR. Our proof for all those conjectures
closes the full spectra of the SNR and essentially follows from
BI – see Section IV-E.

We also mention that uniqueness of BP fixed point has
been investigated under a simplified formulation, where the
recursion is approximated using central limit theorem when
the degrees are large – see Conjecture 2.6 in [4]. Our proof
techniques directly extend to this limiting regime as well – see
Section IV-C.

In conclusion, identifying the uniqueness of the BP fixed
point for either Q (no survey) or Qs (with survey) has been
a long-unsolved question, appearing in a web of interlinked
problems. Our resolution of the uniqueness closes all related
conjectures as well (Section IV). Although partial resolutions
were already presented in [2], [5] the method here appears to
be completely different and we do not believe that tightening
of the previous methods would be able to close the full range
of SNR – this is briefly discussed further in Section II-A.

C. Extension to non-symmetric distributions

In the context of cavity equation, the BP recursion can be
defined and studied for asymmetric distributions. To under-
stand how the general class of distributions is defined, we need
to recall that the BP operator is derived in a framework where
the input µ can be viewed as the LLR distribution of some
binary-input leaf observation channels conditioned on X0 = 0.
Any such distribution must satisfy the following condition.

Definition 2. We call a probability distribution µ on
(−∞,+∞] an LLR distribution if∫

e−rdµ(r) ≤ 1. (3)

We define the complement distribution of µ to be any distri-
bution µ− on [−∞,+∞) that satisfies

dµ(r) = erdµ−(r)

⇐⇒ µ−[E] =

∫
e−r

1{r ∈ E}dµ(r) (4)

for every measurable subset E ⊆ (−∞,+∞).

In other words, µ must allow the existence of a µ− that can
serve as the law of the LLR variable generated by X0 = 1.2

For general asymmetric LLR distributions, the BP operator
that reflects the same process (i.e., BOT recursion specified
by the same parameters but with asymmetric leaf observation
channels) needs to be written in a slightly different form. It can
be derived from the same steps in Section I-A. Specifically,
for any LLR distribution µ and any associated complement
distribution µ−, we define Qsµ to be the probability law of
random variable R

R ≜
d∑

u=1

Fδ(R̂u) + S, (5)

where d ∼ Pd, R̂u
iid∼ (1− δ)µ+ δµ−, and S ∼ µs, all jointly

independent. We call any LLR distribution µ a BP fixed point
if Qsµ = µ. It can be seen that for symmetric µ this definition
coincides with the one we gave earlier in this section.

Our main result implies the uniqueness of BP fixed points
over general distributions and the unique convergence of
BP recursion with general initialization. The proof for the
following result is presented in Appendix C.

Corollary 3 (Asymmetric BP fixed points). Fix any degree
distribution Pd, parameter δ ∈ [0, 1], and symmetric µs that
belongs to the non-exceptional case specified in Theorem 1.
There is at most one non-trivial BP fixed point µ∗, and it is
symmetric. For all non-trivial LLR distribution µ, the recursion
Qh

s µ converges weakly to the same symmetric fixed point, to
µ∗ if it exists, or to the trivial δ0 otherwise.

D. Organization of the paper

The rest of the paper is organized as follows. In Section II,
we define some important tools and provide the proof ideas for

2Conversely, any LLR distribution can be mapped to a binary-input channel,
similar to that any symmetric distribution is the LLR distribution of a BMS
channel.
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our main theorem. Then in Section III, we provide the proof
details for the key intermediate steps. We illustrate in Section
IV how our results imply the solutions to the open conjectures
mentioned earlier. Finally in Section V, we extend our results
to general tree structures, covering curious cases where the
spin interactions can be stochastic (see the setting of i.i.d.
weights in [13]), periodic (see the first example in [16]), or
nonisotropic (see the illustration in Fig. 2).

II. PROOF IDEAS AND OUTLINE

We first present the proof of the main result for the case of
no survey µs = δ0. Namely, we show the following.

Theorem 4 (Uniqueness without survey). Fix any degree
distribution Pd and parameter δ ∈ [0, 1] such that either
P[d = 1] < 1 or δ ∈ (0, 1). There is at most one non-
trivial symmetric BP fixed point µ∗ for Q. For all non-
trivial symmetric µ, the recursion Qhµ converges weakly when
h → ∞ to the same fixed point, to µ∗ if it exists, or to the
trivial δ0 otherwise.

The proof of Theorem 4 builds upon ideas of channel
comparison (a.k.a. comparison of experiments), which were
previously used in [1] to show certain negative results, and
more recently by [15] for the positive side. Here we extend
this methodology in two ways: a) strengthening the stringy
tree lemma from [1]; and b) introducing of the concept of
degradation index. The latter allows us to define a potential
function over symmetric distributions (and LLR distributions
in general) that is only stabilized at a unique solution. For
clarity, we illustrate the main concepts over symmetric dis-
tributions, which enables simplifications compared to their
general forms. We first state the definition of degradation (see
[6, Section 15.2.3] for a reference).

Definition 5. For any two symmetric distributions µY , µZ

defined on (−∞,+∞], we say µY is a degraded version of
µZ , denoted by µY ⪯ µZ , if one can define a joint distribution
µY,Z with µY , µZ as marginal distributions, such that µY |Z
is invariant under (Y,Z) → (−Y,−Z).

Intuitively, for any µY ⪯ µZ , µZ can be viewed as the LLR
distribution of a symmetric binary hypothesis testing problem
and µY can be viewed as a noisy version of µZ where the
observation is corrupted by a symmetric noise channel µY |Z .
A more detailed discussion on degradation can be found in
Appendix A.

Our definition of the degradation index is based on the
operator known as box-convolution (notation coming from the
LDPC codes, see [20, page 181]). Consider a pair of BMS
channels A1 and A2, with LLR distributions µi, i ∈ {1, 2}.
Out of them we can produce a new BMS channel A as follows:
consider an input bit X and generate an independent X ′ as
Bernoulli(1/2), let Y ′ = A2(X

′) be the noisy observation of
X ′ and let Y = A1(X ⊕ X ′) be the noisy observation of
XOR of X and X ′. The A channel is a channel from X to
the pair (Y, Y ′) and we denote its LLR by µ = µ1□∗ µ2. More
formally, we have the following definition.

Definition 6 (Box Convolution for Symmetric Distributions).
For any ϕ ∈ [0, 1], let Bϕ denote the symmetric distribution
defined on {− ln 1−ϕ

ϕ , ln 1−ϕ
ϕ }. We define box convolution □∗

to be the weakly continuous bilinear operator over the space
of symmetric distributions satisfying the following condition

Bϕ1
□∗ Bϕ2

≜ Bϕ1+ϕ2−2ϕ1ϕ2
for all ϕ1, ϕ2 ∈ [0, 1] .

It is clear that box convolution is commutative. One can
show the following alternative definition, which proves that
box convolution is associative.

Proposition 7. Let X ∼ µ, Y ∼ ν be independent random
variables with symmetric distributions, then µ□∗ ν is identical
to the law of

Z ≜ 2 tanh−1

(
tanh

X

2
tanh

Y

2

)
. (6)

Proof. Note that the law specified by equation (6) is weakly
continuous and bilinear. It fulfills all requirements in Defi-
nition 6 (the special cases of µ = Bϕ1

and ν = Bϕ2
can

be directly verified). On the other hand, the box convolution
is uniquely determined through bilinear expansion where the
input distributions are expressed as mixtures of {Bϕ}ϕ∈[0,1].
For instance, any symmetric µ is a mixture under the law of
ϕ ∼ 1

2 (1 − tanh |X|
2 ). Hence, based on this uniqueness, any

operator that satisfies Definition 6 needs to be identical to the
instance provided in the proposition.

Remark 1. We point out a convenient interpretation of the
channel corresponding to Bϕ□∗ µ. This channel corresponds to
sequentially concatenating a binary symmetric channel (BSC)
with crossover probability ϕ and a channel with LLR µ. Thus,
compared to the µ channel the input bit first experiences a
random ϕ-flip. The general box convolution µ1□∗µ corresponds
to the same channel, except that the crossover probability ϕ
is random (but known to the receiver) and log 1−ϕ

ϕ ∼ µ1.
The stringy tree lemma in [1] can be stated as follows, using

box convolution.

Theorem 8. [Stringy Tree Lemma (STL) [1]] For any ϕ ∈
[0, 1] and any symmetric distributions µ1, µ2, ..., µd, we have

Bϕ□∗ (µ1∗µ2∗ ... ∗µd) ⪯ (Bϕ□∗µ1)∗(Bϕ□∗µ2)∗ ... ∗(Bϕ□∗µd).

Remark 2. Recall the physical interpretation of box-
convolution. Applying the theorem above repetitively com-
pares any tree channel with a depth 1 tree channel, each edge
formed by concatenating all channels on a path in the original
tree from its root to a corresponding leaf (hence the name
stringy tree).

We establish the commutation relation between the BP op-
erator and box convolution, but instead under a stronger notion
of degradation (to be specified in Definition 10). Observe that
the BP operator can be expressed using elementary operations.

Proposition 9. For any symmetric µ, we have Qµ =
EPd

[(Bδ □∗ µ)∗(d)], where (·)∗(d) denotes self convolution by
d times.

Proof. Recall the definition of BP operators. As implied by
Proposition 7, for any independent Zu ∼ (−1)Ber(δ) and R̃u ∼
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µ, the law of ZuFδ(R̃u) can be exactly written as Bδ □∗ µ.
Then, conditioned on any fixed d, the law for the summation
of those intermediate variables equals the convolution of their
distributions. Finally, the distribution Qµ is obtained by taking
the mixture over the randomness in degree distribution.

The key result is summarized in Theorem 11 (proved in
Section III), which relies on the following definition.

Definition 10 (Strict Degradation). For any two distributions
ν and µ, we define ν ≺ µ if ∃ ϕ ∈ (0, 1

2 ] such that ν ⪯ Bϕ□∗ µ.

Theorem 11. For any δ ∈ [0, 1] and degree distribution Pd

satisfying P[d ≤ 1] < 1, let Q be the associated BP operator.
Then for any ϕ ∈ (0, 1

2 ) and symmetric µ, we have

Bϕ □∗ Q2µ ≺ Q2(Bϕ □∗ µ) if P[d > 2] = 0, (7)
Bϕ □∗ Qµ ≺ Q(Bϕ □∗ µ) otherwise. (8)

Remark 3. Note that the fixed point equation can be written
as Qµ = µ, Theorem 11 implies that µ and Bϕ□∗ µ can not be
both non-trivial symmetric fixed points. As we will show later
in this work (see Remark 6), Theorem 11 essentially states
that either Q2 or Q will always reduce a distance function
between distinct non-trivial symmetric distributions measured
based on the degradation index.

Remark 4. The stringy tree construction in [1] implies that
Bϕ □∗ Qµ ⪯ Q(Bϕ □∗ µ) for any degree distribution. Theorem
11 provides a strict version of this result for P[d > 2] > 0.
Note that this condition can not be further relaxed, as one can
show that inequality (8) is not satisfied when P[d > 2] = 0.

Remark 5. Theorem 11 shows that our proof requires special
treatment when d ≤ 2. As shown in Section V, these two
possible cases can be naturally unified when viewed under a
generalized model, where the infinite tree is generated from
arbitrary elements. A generalized version of inequality (7) and
(8) is provided, and the number of applications of the BP
operator for strict inequality to hold depends on a requirement
called polygon condition (see Definition 44 and Theorem 45).

We also have the following fact shown in Appendix B-A (by
checking that degradation is transitive and box-convolution-
preserving):

Proposition 12. If ν ⪯ τ ≺ µ or ν ≺ τ ⪯ µ, then ν ≺ µ.

Given these results, we are ready to prove the main theorem
for the no survey case.

Proof of Theorem 4. Consider any two non-trivial symmetric
fixed points µ, ν, we first prove that µ ⪯ ν.

Definition 13 (Degradation Index). For any two symmetric
distributions µ and ν, we define the degradation index from
ν to µ to be

ϕ∗(µ, ν) ≜ inf {ϕ | Bϕ □∗ µ ⪯ ν} . (9)

We use the following Proposition, which is proved in
Appendix B-B.

Proposition 14. Degradation index has the following proper-
ties.

1) We always have ϕ∗(µ, ν) < 1
2 for ν non-trivial.

2) For any symmetric µ and ν, we have Bϕ∗(µ,ν) □∗ µ ⪯ ν.
3) For any ϕ ∈ (0, 1

2 ) and any symmetric µ and ν satisfying
Bϕ □∗ µ ≺ ν, we have ϕ∗(µ, ν) < ϕ.

4) For any symmetric µ, ν, τ , we have 1 − 2ϕ∗(µ, τ) ≥
(1− 2ϕ∗(µ, ν))(1− 2ϕ∗(ν, τ)).

We consider the fixed point condition Qµ = µ and any
ϕ ∈ (0, 1

2 ) satisfying Bϕ □∗ µ ⪯ ν. From the first property in
Proposition 14, such ϕ exists. Then from the second property,
we can choose ϕ = ϕ∗(µ, ν) unless ϕ∗(µ, ν) = 0. We focus
on the non-trivial case where P[d ≤ 1] < 1. Otherwise, any
fixed point µ has to satisfy µ({0}) = 1, which makes them
unique and trivial, unless P[d ≤ 1] = 1, which falls into the
exceptional case stated in the theorems. Under this condition,
Theorem 11 states that there is an integer k for any degree
distribution such that

Bϕ □∗ µ ≺ Qk(Bϕ □∗ µ).

Because Q describes BP, it preserves degradation. Hence,

Qk(Bϕ □∗ µ) ⪯ Qkν = ν.

Recall the transitivity property stated in Proposition 12. This
implies Bϕ □∗ µ ≺ ν.

However, this conclusion is mutually exclusive with ϕ =
ϕ∗(µ, ν) according to the third property in Proposition 14,
which states that strict degradation provides strict upper bound
on degradation index. Thus, we must have ϕ∗(µ, ν) = 0, and
µ ⪯ ν follows from the second property in Proposition 14.

By symmetry, we have ν ⪯ µ as well, which in turn implies
ν = µ since degradation satisfies antisymmetry (see the fourth
property in Proposition 48). Therefore, there can be at most
one non-trivial symmetric BP fixed point.

We next prove convergence of iterations µh = Qhµ to
µ∗, which denotes from now on either the unique non-trivial
fixed point (if it exists) or δ0 (otherwise). First, notice that
if µh → µ∞ (weakly) then µ∞ must be a fixed point of Q.
Indeed, we have µh+1 = Qµh and taking h → ∞ we get the
statement Qµ∞ = µ∞ after applying (weak) continuity of Q.
The weak continuity follows from the following argument.
Let {Rh,u, u = 1, . . .} be iid ∼ µh. From Skorokhod’s
representation we can assume Rh,u → Ru (almost surely) as
h → ∞. But then from equation (2) we see that conditioned
on any value of degree d we have

d∑
u=1

ZuFδ(Rh,u)
a.s.→

d∑
u=1

ZuFδ(Ru) ,

implying that Qµh → Qµ∞.
Second, we notice that the sequence µ̃h = QhB0 (i.e.

BP iteration initialized from the measure corresponding to
perfectly observed leaves: B0[+∞] = 1) is monotonically
decreasing (since it corresponds to a channel from X0 to
XLh

, see Fig. 1). Thus, it is convergent (Prop. 48) and even
µ̃h → µ∗. Indeed, since B0 ⪰ µ∗ we must have lim µ̃h ⪰ µ∗,
which implies that the limit cannot be δ0 unless µ∗ = δ0.

Third, we notice that for any ϕ ∈ [0, 1], the stringy tree
lemma implies that the sequence µ̂h = Qhµ̂, where µ̂ =
Bϕ□∗ µ∗, is monotonically increasing and hence convergent by
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Prop. 48. Indeed, µ̂1 = Qµ̂ = Q(Bϕ□∗ µ∗) ⪰ Bϕ□∗ Qµ∗ = µ̂.
Thus applying Qh−1 to both sides we obtain µ̂h ⪰ µ̂h−1.
Further, if µ̂ ̸= δ0 then we can see that the limit point satisfies
limh→∞ µ̂h ⪰ µ̂, which can not be δ0. Hence, the convergence
in this case is always to µ∗.

Finally, we complete the proof. If µ∗ = δ0 (i.e. no non-
trivial fixed points exist) then δ0 ⪯ µ ⪯ B0 and applying
Qh we obtain that µh → δ0 by sandwiching (cf. Prop. 48). If
µ∗ ̸= δ0 and µ ̸= δ0 then let ϕ < 1/2 be such that Bϕ□∗µ∗ ⪯ µ
(Prop. 14) and we have µ̂ ≜ Bϕ □∗ µ∗ ̸= δ0. In this case,
µ̂h ⪯ µh ⪯ µ̃h and again the sandwich property shows µh →
µ∗.

Remark 6 (Distance contraction). We have shown that a
finite number of applications of the BP operator satisfies the
following contractivity condition

d(Qkµ,Qkν) < d(µ, ν) ∀µ, ν ̸= δ0 ,

for a metric d between non-trivial symmetric distributions,
defined as

d(µ, ν) = | ln(1− 2ϕ∗(µ, ν)) + ln(1− 2ϕ∗(ν, µ))|. (10)

That d(µ, ν) = 0 implies µ = ν is clear, while the triangle
inequality follows from Proposition 14 (fourth property). Some
properties of this metric are discussed in Appendix A-A. In
particular, it is strictly stronger than weak convergence (Levy-
Prokhorov) metric.

A common way to prove convergence is to apply a well-
known principle of Edelstein, which states that contractive
self-map over a compact metric space defines recursions that
converge to a unique fixed point [21, Remark 3.2]. However,
as Remark 15 in Appendix A shows, the space of symmetric
distributions is not compact under the degradation metric, even
with a radius constraint. Thus, we proved the convergence of
BP recursion directly.

We mention that classically, contraction methods have
mostly been studied for linear recursions (i.e. affine combi-
nations of independent variables), see [22]–[24]. Note that
setting S = 0, Zu = c (constant) and Fδ(r) = r in (2)
reduces the search for BP fixed points to finding stable laws.
The speed of convergence to stable laws (in particular in
the central limit theorems) has been studied by constructing
special distances such as Zolotarev metrics [25]. (For such
metrics contraction properties can be proved by analyzing the
norms of the coefficient matrices [24].) Our work may be
seen as identifying the appropriate counterpart (degradation
distance) for the non-linear model of (2).

A. Comparison to the methods of [2] and [5]

Since partial resolutions of the BP uniqueness were already
done in [2], it is natural to ask whether the method here is
merely tightening of [2]. Especially since in [5] the range
in which uniqueness holds was extended compared to [2] by
precisely leveraging channel degradation. We want to argue,
however, that the proof here is fundamentally different and
explain why the methods as in [2], [5] are inherently tailored
to “high-SNR” cases exclusively.

Consider the case of regular trees (i.e., with fixed d) which
are key building blocks in the proofs of [2], [5]. The authors
investigated contraction properties of potential functions that
are either defined in the form of the Lp distance, or can be
lower bounded by them. In the regime of d(1 − 2δ)2 > 1,
such potential functions are non-contractive when the LLR
distributions are close to the trivial distribution. For instance,
taking symmetric Gaussian distributions with vanishing second
moments. The application of BP operators can be approxi-
mated with Fδ(R) ≈ (1 − 2δ)R, and the distributions are
scaled by a factor of d

1
2 (1 − 2δ). As a consequence, metrics

defined in Lp norms are also increased by the same factor
after each BP recursion. Therefore, to exploit any contraction
property, the core of the proofs in [2], [5] is to identify cases
where the BP recursion is bounded away from the trivial
distribution. However, when this condition is imposed, the high
SNR requirement emerges as all BP fixed points converge to
δ0 when d(1− 2δ)2 → 1+.

In this work, we employed a different approach by con-
structing a new measure of distance between the LLR distri-
butions. In contrast to previous works, where degradation was
mainly used to assist the analysis for existing potential func-
tions, we incorporate degradation as a part of the construction.
The metric we developed is in some sense “scale-invariant”
and allows us to treat the “low–SNR” cases and “high–SNR”
cases simultaneously.

B. Extension to Broadcast with Survey

Now we present the proof ideas for non-trivial survey
distributions. Formally, we prove the following theorem.

Theorem 15 (Uniqueness with non-trivial survey). Fix any
degree distribution Pd, parameter δ ∈ [0, 1], and non-trivial
symmetric survey distribution µs. There is exactly one non-
trivial symmetric BP fixed point µ∗. For all symmetric µ, the
recursion Qh

s µ converges weakly to µ∗.

The proof of uniqueness relies on the following intermediate
step, which is proved in Section III-B.

Theorem 16. For any δ ∈ [0, 1], non-trivial symmetric µs,
and degree distribution Pd with P[d = 0] < 1, let Qs be
the associated BP operator. Then for any ϕ ∈ (0, 1

2 ) and
symmetric µ, we have

Bϕ □∗ Qk
s µ ≺ Qk

s (Bϕ □∗ µ) if P[d > 1] = 0, (11)
Bϕ □∗ Qsµ ≺ Qs(Bϕ □∗ µ) otherwise, (12)

for some k ∈ N+.

Assuming the correctness of Theorem 16, the proof is
obtained as follows.

Proof of Theorem 15. We focus on the non-trivial case where
P[d = 0] < 1, otherwise, we have Qsµ = µs and Theorem
15 clearly holds. The key observation here is that Theorem
16 plays the same role as Theorem 11 in the no survey
case. Hence, by following the same steps in the proof of
Theorem 4, one can show that there is at most one non-trivial
symmetric BP fixed point. On the other hand, by the monotone
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convergence property of degradation, the BP recursion with
noiseless leaf observation (i.e., µr({+∞}) = 1) converges
weakly to a symmetric fixed point. Note that µs is non-trivial.
Any BP fixed point with respect to Qs must also be non-trivial.
This proves the existence of µ∗. To summarize, there is exactly
one unique non-trivial symmetric BP fixed point.

The convergence of µh = Qh
s µ to µ∗ can be proved by

sandwiching between the BP recursions initialized by B0 and
δ0. The first sequence Qh

s B0 corresponds to the noiseless
leaf observation case, which converges to µ∗. The second
sequence Qh

s δ0 corresponds to the no leaf observation case
(i.e., µr({0}) = 1), which is monotonically increasing (since
they each corresponds to a channel with an increasing set of
surveys), and hence convergent to same the symmetric fixed
point (due to uniqueness). Therefore, the sandwiching of Prop.
48 can be applied with the comparison Qh

s δ0 ⪯ µh ⪯ Qh
s B0,

which is due to the natural coupling.

Remark 7. The existence of survey channels significantly
affects the properties of BP fixed points. As we have shown,
when the survey channels have a non-zero capacity, there
is always one unique BP fixed point, and it is non-trivial.
However, when survey channels are absent, either the trivial
and non-trivial fixed points coexist, or only the trivial solution
remains. This difference is also reflected in the statements of
the uniqueness theorems.

III. TECHNICAL DETAILS

In this section, we prove the key intermediate steps, i.e.,
Theorem 11 and Theorem 16. The gist of the proof is to char-
acterize the commutation rules between the building blocks of
the BP operators. In particular, we use the commutativity of
box convolution, which is equivalently Fϕ ◦ Fδ = Fδ ◦ Fϕ.
Then we develop an exchange rule between convolution and
box convolution. For convenience, we make the following
definition.

Definition 17. For any symmetric distribution µ, we define its
β-curve as a function on domain t ∈ R given by the following
equation.

β(t;µ) ≜ ER∼µ

[
max

{
tanh

|R|
2

, |t|
}]

. (13)

We also define

tmax(µ) ≜ inf{t ∈ [0, 1] | β(t) = t}.

The meaning of the β-curve is given by the next two results
(one trivial, one classical).

Proposition 18. For any t ∈ [0, 1] and symmetric µ, the
function value 1

2 (1 − β(t;µ)) equals the minimum error
probability for a binary hypothesis testing problem with LLR
distribution given by µ and prior given by Ber( 1−t

2 ).

See Appendix B-C for a proof of the first result. The
next result is a celebrated Blackwell–Sherman–Stein (BSS)
theorem [26]–[29] (an equivalent form is also stated in [20,
Theorem 4.74]), which connects degradation and the β-curves.

Theorem 19. [Blackwell–Sherman–Stein] For any pair of
symmetric distributions ν and µ, we have ν ⪯ µ if and only
if β(t; ν) ≤ β(t;µ) for all t ∈ [0, 1].

Our principal analytical tool is the following extension
of the BSS result to the relation of strict degradation (see
Appendix B-D for the proof).

Proposition 20. For any non-trivial symmetric distributions µ
and ν, the following statements are equivalent.

1) ν ≺ µ.
2) β(t; ν) < β(t;µ) for all t ∈ [0, tmax(ν)].
3) β(t; ν) < β(t;µ) for all t ∈ [0, tmax(µ)) and tmax(ν) <

tmax(µ).

Together with Prop. 18 we can see that strict degradation
between two distributions can be checked by comparing their
associated Bayesian inference problems. The proof of Propo-
sition 20 relies on a several elementary steps. One such step
is the fact that box convolution with any Bϕ can be viewed
as a homothetic transformation:

Proposition 21. For any ϕ ∈ [0, 1
2 ), the β-curve of Bϕ is

given by

β(t;Bϕ) = max{|t|, 1− 2ϕ}. (14)

More generally, for any symmetric µ,

β(t;Bϕ □∗ µ) = (1− 2ϕ)β

(
t

1− 2ϕ
;µ

)
. (15)

Proof. Equation (14) directly follows from the definition of
β-curves. Then equation (15) can be proved from the second
definition of box convolution.

In order to prove the needed β-curve gaps for Theorem 11
and Theorem 16, we define the following refinement of strict
degradation.

Definition 22. For any symmetric distributions µ, ν, and
parameter s, we define ν ≺s µ if β(t; ν) < β(t;µ) for all
t satisfying

t ∈
(
tanh

(s
2

)
, tmax(ν)

]
and β(t; ν) ≤ β(t;µ) for all other t. We also define

rmax(µ) ≜ sup{r ∈ [0,+∞] | µ([r,+∞]) > 0}
= 2 tanh−1 tmax(µ).

The following propositions are proved in Appendix B-E and
Appendix B-F, respectively.

Proposition 23. Let µ, ν, τ be symmetric distributions.
1) We have ν ≺s µ if β(t; ν) < β(t;µ) for all t ∈(

tanh
(
s
2

)
, tmax(µ)

)
, β(t; ν) ≤ β(t;µ) for all other

t, and tmax(ν) < tmax(µ); when s < rmax(µ), the
converse also holds true.

2) If ν ⪯ τ ≺s µ or ν ≺s τ ⪯ µ, then ν ≺s µ.
3) ν ≺ µ implies ν ≺s µ for any s ≥ −rmax(µ), the latter

implies ν ⪯ µ.
4) ν ≺s µ is always true when s ≥ rmax(ν) and ν ⪯ µ; if

ν ≺s µ for any s < 0, then ν ≺ µ.
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Proposition 24. For any ϕ ∈ (0, 1) and δ1, δ2 ∈ [0, 1], let
smin = |Fϕ(rmax(Bδ1))− Fϕ(rmax(Bδ2))|. Then we have

Bϕ □∗ (Bδ1 ∗Bδ2) ≺smin (Bϕ □∗ Bδ1) ∗ (Bϕ □∗ Bδ2). (16)

The β-curves for the distributions on both sides of inequality
(16) are piecewise linear. Moreover, the proof in Appendix
B-F provides the exact condition for the inequality between
β-curves to be strict. By averaging over δ1, δ2 the β-curves in
the above special case, one can prove the following corollary
(see Appendix B-G for details).

Corollary 25. For any ϕ ∈ (0, 1) and any two symmetric
distributions µ1, µ2, we have

Bϕ □∗ (µ1 ∗ µ2) ≺s (Bϕ □∗ µ1) ∗ (Bϕ □∗ µ2) (17)

for
s = |Fϕ(rmax(µ1))− Fϕ(rmax(µ2))|.

Now we establish connections between β-curve and convo-
lution.

Proposition 26. For any ϕ ∈ [0, 1
2 ], t ∈ [0, 1), and symmetric

µ, we have

β(t;Bϕ ∗ µ) =
(
1 + t− 2tϕ

2

)
β (t0;µ)

+

(
1− t+ 2tϕ

2

)
β (t1;µ) ,

where

t0 ≜
1 + t− 2ϕ

1 + t− 2tϕ
= tanh

(
rmax(Bϕ)

2
+ tanh−1(t)

)
,

t1 ≜

∣∣∣∣ 1− t− 2ϕ

1− t+ 2tϕ

∣∣∣∣ = tanh

(∣∣∣∣rmax(Bϕ)

2
− tanh−1(t)

∣∣∣∣) .

Proposition 26 is proved in Appendix B-H. By averaging
the β-curves in Proposition 26 over ϕ, we have the following
“rule of convolution”, which is proved in Appendix B-I.

Definition 27. For any symmetric µ, define supp(µ) ≜ {v ∈
R | µ([v − ϵ, v + ϵ]) > 0 ∀ϵ > 0}.

Proposition 28 (Rule of Convolution). For any symmetric µ,
ν, τ , and ℓ ∈ supp(τ), if ν ≺s µ, then

β
(
tanh

r

2
; ν ∗ τ

)
< β

(
tanh

r

2
;µ ∗ τ

)
(18)

for any r ∈ (s − ℓ, rmax(µ) − ℓ); if ν ≺ µ, then inequality
(18) holds for r ∈ [−ℓ, rmax(µ)− ℓ).

Notice that the above β-curve analysis can be used to show
the expected convolution-preserving properties of degradation.
We extend them to ≺s and ≺, stated as follows.

Proposition 29. For any symmetric µ, ν, and τ , we have the
following facts.

1) If ν ≺ µ, then τ □∗ ν ≺ τ □∗ µ.
2) If ν ≺s µ, then τ □∗ ν ≺sτ τ □∗ µ, where sτ ≜

ln esermax(τ)+1
es+ermax(τ) .

3) If ν ≺ µ, then unless rmax(τ) = rmax(µ) = +∞, we
have τ ∗ ν ≺s τ ∗ µ with s = rmax(τ)− rmax(µ) ; if in
addition, rmax(τ) < rmax(µ), then τ ∗ ν ≺ τ ∗ µ.

Proof. The first two properties are based on the fact that box
convolution with any symmetric τ can be viewed as a mixture
of homothetic transformations in β-curve (see Proposition 21).
Hence, any strict inequality is preserved, except when τ is
trivial, where the proof is straightforward.

The third property can be proved with Proposition 28.
Specifically, for the non-trivial case where rmax(τ) < +∞,
we can choose ℓ = ±rmax(τ) and obtain that the β-curve
inequalities are strict for t ∈ [−rmax(τ), rmax(µ)−rmax(τ))∪
[rmax(τ), rmax(µ) + rmax(τ)). Note that β-curves are even
functions. We have the strict condition for any t ∈ (rmax(τ)−
rmax(µ), rmax(µ)+rmax(τ)). Then we can apply Proposition
23 to complete the proof.

The above results can be used to prove the following
statements.

Proposition 30. For any ϕ ∈ (0, 1) and any symmetric ν, we
have

Bϕ □∗ (ν∗(2)) ≺0 (Bϕ □∗ ν)∗(2), (19)

Bϕ □∗ (ν∗(d)) ≺ (Bϕ □∗ ν)∗(d) ∀ d > 2. (20)

Proof. Inequality (19) directly follows from Corollary 25.
Inequality (20) clearly holds when ϕ = 1

2 or ν is trivial. We
prove inequality (20) by induction for both Bϕ and ν are non-
trivial.

(a). Consider the base case where d = 3. Let rν = rmax(ν).
Because convolution preserves degradation, by stringy tree
lemma, or inequality (19) and Proposition 23, we have

(Bϕ □∗ ν) ∗ (Bϕ □∗ (ν∗(2))) ⪯ (Bϕ □∗ ν)∗(3). (21)

Next, from Corollary 25, we have

Bϕ □∗ (ν∗(3)) ≺s (Bϕ □∗ ν) ∗ (Bϕ □∗ (ν∗(2))), (22)

where

s = Fϕ(rmax(ν
∗(2)))− Fϕ(rmax(ν)) = Fϕ(2rν)− Fϕ(rν).

The above two steps form a chain of degradation. By transi-
tivity stated in Proposition 23, this implies

Bϕ □∗ (ν∗(3)) ≺s (Bϕ □∗ ν)∗(3).

To prove the needed statement, it suffices to show that any
of these two steps has strict inequality in β-curves for t ∈
[0, s]. We apply Rule of Convolution to inequality (21) and
let ℓ = Fϕ(rν) = rmax(Bϕ □∗ ν) ∈ supp(Bϕ □∗ ν), the strict
condition holds for

t ∈
[
0, tanh

rmax((Bϕ □∗ ν)∗(2))− ℓ

2

)
=

[
0, tanh

Fϕ(rν)

2

)
.

Because Fϕ(rν) > s for both Bϕ and ν non-trivial, the strict
degradation statement is implied by Proposition 20.

(b) Assume inequality (20) is proved for some d = d0 ≥ 3.
By induction assumption, we have the following chain similar
to the base case.

Bϕ□∗ (ν∗(d0+1)) ⪯ (Bϕ□∗ ν)∗Bϕ□∗ (ν∗(d0)) ≺ (Bϕ□∗ ν)∗(d0+1).

In particular, we apply the third property in Proposition 29
to show strict degradation in the second step. Therefore, the
induction step follows from Proposition 12.
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(c) To conclude, inequality (20) is proved for any d ≥ 3.

Proposition 30 implies the following degradation relation-
ships between Bϕ □∗ (Qµ) and Q(Bϕ □∗ µ) when d is deter-
ministic.

Corollary 31. If P[d = d0] = 1 for some fixed d0, then for
any ϕ ∈ (0, 1

2 ) and symmetric µ, we have

Bϕ □∗ (Qµ) ≺0 Q(Bϕ □∗ µ) if d0 = 2, (23)
Bϕ □∗ (Qµ) ≺ Q(Bϕ □∗ µ) if d0 > 2. (24)

Proof. Recall that Q can be expressed as in Proposition 9.
The results in the corollary can be exactly obtained by letting
ν = Bδ□∗ µ in Proposition 30 and applying the commutativity
of box convolution.

A. Proof of Theorem 11

Proof. For brevity, we focus on non-trivial cases where µ is
non-trivial and δ ̸= 1

2 . We first consider the deterministic d
case and fill in the gap for d = 2. Note that Q preserves
degradation. By Corollary 31 and Proposition 23, we have the
following chain of degradation.

Bϕ □∗ Q2µ ≺0 Q(Bϕ □∗ Qµ) ⪯ Q2(Bϕ □∗ µ).

In particular, the first step is obtained by replacing µ with Qµ
in Corollary 31. The above chain implies strict inequality in β-
curves for t ∈ (0, tmax(Bϕ □∗ Q2µ)]. By non-trivial condition,
from Proposition 20, it remains to prove strict inequality of
β-curves at t = 0.

To that end, we zoom in on the second step and apply Rule
of Convolution to the first inequality of the following chain.

Q(Bϕ □∗ Qµ) = (Bϕ □∗ Bδ □∗ Qµ)∗(2) (25)
⪯ (Bϕ □∗ Bδ □∗ Qµ) ∗ (Bδ □∗ Q(Bϕ □∗ µ))

(26)

⪯ (Bδ □∗ Q(Bϕ □∗ µ))∗(2) = Q2(Bϕ □∗ µ).
(27)

Note that Corollary 31 and Proposition 29 implies

Bϕ □∗ Bδ □∗ Qµ ≺0 Bδ □∗ Q(Bϕ □∗ µ),

and the non-trivial condition implies that the rmax functions
for both sides are different. Therefore, we can choose ℓ =
rmax(Bϕ □∗ Bδ □∗ Qµ) for the Rule of Convolution and apply
it to inequality (26), which leads to the needed strict condition
at t = 0.

Now we consider general degree distributions. First for
P[d > 2] = 0, recall that our formulation assumes non-trivial
cases where P[d ≤ 1] < 1. We have d = 2 with non-zero
probability. Then the rmax function of Bϕ□∗ (Q2µ) is identical
to that of its d = 2 component. Thus, by linearity, our earlier
proof for the deterministic d = 2 case implies strict inequality
of β-curves for the full range t ∈ [0, tmax(Bϕ □∗ (Q2µ))], and
the needed statement is implied.

On the other case, we have P[d > 2] > 0. If d is upper
bounded by some fixed integer almost surely, we can let d0
be the largest possible d for such degree distribution and
apply the same linearity argument to inequality (24) to prove

the statement. Otherwise, d is unbounded, and we have strict
inequality on β-curves for any t < tmax(Q(Bϕ □∗ µ)) = 1.
Note that tmax(Bϕ □∗ (Q2µ) = 1 − 2ϕ < 1. The statement
follows from Proposition 23.

B. Proof of Theorem 16

We start by formulating two useful results.

Proposition 32. For any ϕ ∈ (0, 1) and any symmetric
distributions µ, ν, let smin ≜ Fϕ(rmax(µ)) − rmax(ν). We
have

Bϕ □∗ (µ ∗ ν) ≺ (Bϕ □∗ µ) ∗ ν (28)

if smin < 0, and

Bϕ □∗ (µ ∗ ν) ≺smin
(Bϕ □∗ µ) ∗ ν (29)

otherwise.

Proof. Similar to the basic setting, our technique is to prove
strict inequalities for beta-curves by forming a chain of degra-
dation. First observe that Bϕ □∗ ν ≺ ν for any ϕ ∈ (0, 1). By
convolving Bϕ □∗ µ on both sides and note that degradation is
convolution-preserving, we have

(Bϕ □∗ µ) ∗ (Bϕ □∗ ν) ⪯ (Bϕ □∗ µ) ∗ ν. (30)

On the other hand, Corollary 25 implies following step, which
completes the chain.

Bϕ □∗ (µ ∗ ν) ⪯ (Bϕ □∗ µ) ∗ (Bϕ □∗ ν) (31)

When smin < 0, we have rmax(Bϕ □∗ µ) = Fϕ(rmax(µ)) <
rmax(ν). Hence, we can apply the third statement in Propo-
sition 29 to obtain a strict version of inequality (30), i.e.,
(Bϕ □∗ µ) ∗ (Bϕ □∗ ν) ≺ (Bϕ □∗ µ) ∗ ν. Then, inequality (28)
follows from the transitivity statement in Proposition 12.

More generally, the strict version of inequality (30) can be
written as (Bϕ□∗ µ)∗(Bϕ□∗ ν) ≺smin

(Bϕ□∗ µ)∗ν according to
Proposition 29. Then, inequality (29) is proved by the second
statement in Proposition 23.

Next, consider the case of d = 1, so that Qsµ = (Bδ □∗ µ)∗
µs. By induction, one can derive the following result (proof
in Appendix B-J).

Proposition 33. For ϕ ∈ (0, 1) and d = 1, let rs ≜ rmax(µs),
s0 ≜ Fϕ(rmax(µ)), then for any k ∈ N, we have

Bϕ □∗ (Qk
s µ) ≺ Qk

s (Bϕ □∗ µ)

if sk ≜ Fδ(sk−1)− rs < 0, and

Bϕ □∗ (Qk
s µ) ≺sk Qk

s (Bϕ □∗ µ)

otherwise.

One can show that there is a finite k for sk < 0. For exam-
ple, as a rough estimate, we have s0 ≤ Fϕ(+∞) < +∞ and
sk ≤ sk−1 − rs for any positive sk. Because µs is non-trivial,
we also have rs > 0. Hence, we can find k ≤ 1 + s0/rs for
strict degradation to hold, which gives the needed statement.

Proof of Theorem 16. First, consider the case P[d > 1] = 0.
Recall that the theorem statement assumes P[d = 0] < 1, so
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that we have d = 1 with non-zero probability. Consequently,
the β-curve analysis is dominated by the d = 1 component,
and strict inequalities in the full range of t can be obtained
using Proposition 33.

Formally, Qs can be written as a linear combination of
two operators, each corresponds to the BP operator for a
deterministic d ∈ {0, 1}. For brevity, we denote them by
Qs,0 and Qs,1. Then, Qk

s can be expanded into a linear
combination of 2k chains, and each side of inequality (11)
can be decomposed into the following 2k terms.

∑
d1,...,dk∈{0,1}

Bϕ □∗ Qs,d1
Qs,d2

...Qs,dk
µ ·

k∏
j=1

P[d = dj ]

≺
∑

d1,...,dk∈{0,1}

Qs,d1
Qs,d2

...Qs,dk
(Bϕ □∗ µ) ·

k∏
j=1

P[d = dj ]

Each corresponding terms in the above inequality can be
compared individually. Recall that Qsµ = (Qµ) ∗ µs. By
Corollary 31 and Proposition 32, the inequality Bϕ□∗ (Qsµ) ⪯
Qs(Bϕ□∗µ) holds for any BP operator Qs, which includes Qs,0
and Qs,1. By applying this inequality recursively, we have the
following individual comparisons.

Bϕ □∗ Qs,d1Qs,d2 ...Qs,dk
µ ⪯ Qs,d1Qs,d2 ...Qs,dk

(Bϕ □∗ µ)

Among all terms, the ones with all BP operators corresponds to
d = 1 achieves strict degradation due to Proposition 33. Note
that these terms have the largest tmax values on both sides,
because tmax(Qs,dν) is non-decreasing with respect to d and
tmax(ν) for any symmetric ν. The interval t ∈ [0, tmax(Bϕ □∗
(Qk

s µ))] must be contained within the range where the β-
curve inequality between these two terms is strict. The P[d =
0] < 1 condition ensures that this gap has non-zero weights
in the overall β functions. Then inequality (11) is proved by
Proposition 20.

It remains to consider general degree distributions with
P[d > 1] > 0. Note that in the basic setting, we have
essentially proved that if P[d > 1] > 0, then

Bϕ □∗ Qµ ≺0 Q(Bϕ □∗ µ). (32)

Specifically, the above inequality is directly implied by The-
orem 11 if P[d > 2] > 0. In the other case, we have that
the rmax function of Bϕ □∗ Qµ is dominated by its d = 2
component. Thus, inequality (23) implies non-zero gaps in β-
curves for all t ∈ (0, tmax(Bϕ□∗ Qµ)], which proves inequality
(32).

Let rs = rmax(µs), rQ = rmax(Qµ), r̃Q = rmax(Q(Bϕ □∗
µ)). We first apply Proposition 32 and then the Rule of
Convolution to obtain

Bϕ □∗ Qsµ ⪯ (Bϕ □∗ Qµ) ∗ µs ⪯ Qs(Bϕ □∗ µ). (33)

Consider the first step of inequality (33), the statement of
Proposition 32 implies that the gap between the β-curves on
both sides is strict for any t = tanh |s|

2 with

Fϕ(rQ)− rs < s < Fϕ(rQ) + rs. (34)

Then by the rule of convolution, the β-curve inequality for the
second step is strict for t = tanh |s|

2 with

−rs < s < r̃Q − rs. (35)

Note that inequality (32) implies that r̃Q > rmax(Bϕ□∗ Qµ) =
Fϕ(rQ). Thus, (34) and (35) cover all 0 ≤ s < Fϕ(rQ) + rs,
concluding the proof of

Bϕ □∗ Qsµ ≺ Qs(Bϕ □∗ µ). (36)

IV. IMPLICATIONS

A. Implications on Robust Reconstruction

A variant of BOT was formulated in [17], called robust re-
construction, where all leaf observations are obtained through
some identical noisy channels. The estimation problem is to
infer the root variable given the tree structure and the noisy
leaf observations. Robust reconstruction for the Ising model
case was studied in [2], which can be described as in the
setting of Fig. 1, except that we select µs to be the trivial
distribution δ0. As derived earlier, the LLR distributions for
this formulation at depth h is exactly given by Qhµr, where
Q is the BP operator defined in Section I.

Theorem 4 (or Corollary 3 for the asymmetric case) implies
the following statement.

Theorem 34. For any fixed Pd and δ ∈ [0, 1], the distributions
in the following classes all exist and are identical, unless d = 1
a.s. and δ ∈ {0, 1}.

(a) The limiting LLR distribution for the basic setting.
(b) The limiting LLR distribution for robust construction

with any non-trivial initialization.
(c) The dominant BP fixed point, i.e., a fixed point µ∗ of Q

where any other fixed point µ satisfies µ ⪯ µ∗.

Remark 8. In [2], it was conjectured that the error probability
for the maximum likelihood estimator is independent of the
observation channels when h → ∞, as long as their channel
capacity is non-zero. Note that this error probability can
be written as an expectation over the LLR distribution (see
Proposition 18). The unique convergence stated in Theorem
34 provides a positive proof to this conjecture. More gener-
ally, the same guarantee holds for any quantity that can be
written as the expectation of a bounded continuous function
on (−∞,+∞], such as mutual information and Bayesian
estimation errors under different prior distributions. Theorem
34 also provides a proof of Proposition 1 in [7].

B. Boundary Irrelevance for Broadcast with Survey

We first present a definition of boundary irrelevance in terms
of LLR distributions.

Definition 35. For any degree distribution Pd, δ ∈ [0, 1],
and symmetric non-trivial survey distribution µs, let Qs be
the associated BP operator. We say boundary irrelevance (BI)
is satisfied if both µ(h) ≜ Qh

s B0 and µ
(h)

≜ Qh
s B 1

2
weakly

converges to the same distribution on domain (−∞,+∞] as
h → ∞.
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Note that µ(h) represents the LLR distribution for estimation
with full leaf information, and µ

(h)
represents the correspond-

ing LLR distribution with no leaf information (see Fig. 1). The
above definition essentially states that ignoring leaf informa-
tion will not affect estimation as h → ∞, which is consistent
with the notation of BI defined in the literature. In particular,
one can show that our definition is equivalent to the version
in [5], and is stronger than the error-probability guarantee in
[3]. Therefore, we present the following Theorem, which is
a direct consequence of Theorem 15, which simultaneously
resolves Conjecture 1 in [5] and Conjecture 1 in [3].

Theorem 36. BI holds for any combination of Pd, δ ∈ [0, 1],
and symmetric non-trivial µs.

C. Uniqueness and Convergence in the Large d Limit
We consider a recursion process characterized by the fol-

lowing operator QL: For any symmetric µs and any distribution
Pd on domain [0,+∞], we set

QLµ = Ed∼Pd

[
N

(
d · Vµ

)]
∗ µs,

where N (s) ≜ N ( s2 , s) for any s ∈ [0,+∞], Vµ ≜
ER∼µ

[
4tanh

(
R
2

)]
for any symmetric µ, and Ed∼Pd

[·] rep-
resents a mixture of distributions over the law of d̄. This
operator was considered in [4] as a limit of Qs (or Q when
µs is trivial) for δ → 1

2 , where the degree distribution Pd is
parameterized by δ, and d ≜ d(1−δ)2 converges in distribution
to Pd on domain [0,+∞]. Similar to earlier sections, one
can define the fixed point equation to be µ = QLµ and
define BP recursion as µ(h+1) = QLµ(h). The operator QL
can also be defined for asymmetric distributions by setting
Vµ = ER∼ 1

2 (µ+µ−)[4 tanh
2
(
R
2

)
], where µ− is the comple-

ment of µ (see Definition 2).
To extend our earlier results to QL, we prove its contractivity

in terms of the degradation index. In particular, note that the
contraction implied by the BP operator is non-multiplicative, a
careful investigation is needed to show that strict inequalities
in β-curves are maintained in the limit of large d. We present
the results in the following theorem, and provide a proof in
Appendix D.

Theorem 37. Consider the large d regime defined by any Pd

and any symmetric µs.
1) There is at most one unique non-trivial BP fixed point,

and it is symmetric. (Uniqueness of non-trivial BP fixed
point)

2) Non-trivial symmetric BP fixed point exists if and only if
either E

[
d
]
∈ (1,+∞] or µs is non-trivial. (Existence

of non-trivial BP fixed point)
3) BP recursion with any non-trivial initialization con-

verges to the unique non-trivial fixed point if it exists,
or to the trivial δ0 otherwise. (Independence of Conver-
gence and Initialization)

4) When µs is non-trivial, the above convergence statement
also applies for the trivial initialization. (Boundary
Irrelevance)

Remark 9. The uniqueness statement in the above theorem
resolves Conjecture 2.6 in [4], by applying the special case

where Pd is a delta distribution and µs = Bα. Generally, our
formulation does not assume d scales with (1−2δ)−2 in high
probability. The sublinear and superlinear components of Pd

are naturally captured by non-zero mass points in Pd at 0 and
+∞.

D. Full Characterizations of Accuracy and Entropy in
Stochastic Block Model

Consider a 2-SBM problem with a set of n vertices V =
{v1, v2, ..., vn}. Let Xv denote the label on vertex v, and X =
(Xv1 , Xv2 , ..., Xvn) denote the collection of all labels. The
entries of X are i.i.d. Ber( 12 ). A random graph G is generated
based on the labels according to the rules of SBM. Formally,
we represent G using its adjacency matrix, i.e., Gij = 1 if
and only if vi and vj are adjacent. Then all {Gij}i≤j are
independent Bernoulli random variables, with

P[Gij = 1] =


a
n if Xvi = Xvj and i ̸= j,
b
n if Xvi ̸= Xvj ,

0 otherwise.

The goal in this setting is to design algorithms that use the
random graph to produce an estimate of X .

There are two main quantities of interests. For any estimator
X̂ , its estimation accuracy, denoted by accn(X̂), is defined as
follows [2].

accn(X̂) ≜
1

2
+

∣∣∣∣∣ 1n ∑
v∈V

∣∣∣Xv − X̂v

∣∣∣− 1

2

∣∣∣∣∣ . (37)

In particular, note that the conditioned graph distribution is
invariant under a global bit flip of hidden labels. No algorithm
can achieve a non-trivial estimation in the expected number of
correctly estimated labels. The accuracy defined in equation
(37) captures the correlation between the partitions induced
by the labels, which removes the global bit-flip effect.

Note that accn(X̂) is random. The quantity pG(a, b) was
introduced in [2] to measure the performance of estimators,
defined as the maximum accuracy that can be achieved by any
estimator for large n with non-zero probability. Formally, let
f denote the function that takes the observations and returns
X̂ , pG(a, b) is defined as follows.

pG(a, b) = lim
ϵ→0

lim sup
n→∞

sup
f

sup
{
p
∣∣∣ P [

accn(X̂) ≥ p
]
≥ ϵ

}
.

The problems of interests are to characterize pG(a, b) and to
prove whether it can be achieved by any algorithm with high-
probability. Both were only resolved when a and b satisfy
certain conditions. However, with the leaf-independence result
proved in Section IV-A, the proofs in [2], [19], [30] can be
extended to all regimes.

The other quantity of interest is the so called SBM entropy,
denoted by H(a, b), which is defined to be the limit of the
normalized conditional entropy of all labels X given the graph
G, as n → ∞:

H(a, b) ≜ lim
n→∞

1

n
H(X|G).
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The SBM entropy also characterizes the normalized mutual
information between the labels and the graph defined as

I(a, b) ≜ lim
n→∞

1

n
I(X;G) .

Similar to the accuracy metric, it was an open problem to
characterize H(a, b) and I(a, b) for all parameter values using
BP fixed points. It was pointed out in [5] that a complete
characterization can be obtained once the BI result stated in
Section IV-B is proved.

To summarize, we have the following theorem, which
strengthens Theorem 2.9 in [2] and Theorem 1 in [5].

Theorem 38. For any a and b,
1) we have pG(a, b) = p(µ∗

a,b), where µ∗
a,b is the dominant

BP fixed point (as specified in Theorem 34) for the
broadcast on tree problem with Pd = Pois(a+b

2 ) and
δ = b

a+b , and p(µ∗
a,b) ≜ µ∗

a,b((0,+∞]) + 1
2µ

∗
a,b({0});

2) there is a polynomial time algorithm that achieves
pG(a, b) with high probability, i.e., with accn(X̂) con-
verges in probability to pG(a, b) as n → ∞;

3) we have H(a, b) = log 2 − I(a, b) =∫ 1

0
ER∼µϵ,a,b

[log(2 cosh R
2 ) − R

2 tanh(R2 )]dϵ, where
µϵ,a,b is the unique BP fixed point for the broadcast
with survey setting with Pd = Pois(a+b

2 ), δ = b
a+b , and

BEC survey µs = ϵB0 + (1− ϵ)B 1
2

.

E. Stochastic Block Model with Side Information

Consider a variant of the 2-SBM formulation, where the
estimator has additional access to a noisy version of all hidden
labels. Similar to the broadcast with survey setting, each label
is observed through an independent symmetric channel, and
we denote their LLR distribution by µs.

In the presence of this side information, a different notion
of accuracy was considered in the literature. In [3], [4], the
authors considered estimators that asymptotically maximizes
the expected fraction of correctly estimated labels. Formally,
we denote this function by pn(X̂), which can be defined by
the following equation.

pn(X̂) ≜ E

[
1

n

∑
v∈V

∣∣∣Xv − X̂v

∣∣∣] =
1

n

∑
v∈V

P
[
Xv = X̂v

]
.

(38)

The estimation accuracy defined in equation (38) can be
maximized by applying the ML estimator individually for each
Xv . However, the ML estimator becomes computationally
intractable when the graph is large as it relies on global in-
formation. Therefore, local algorithms have been studied, and
they have been conjectured to be optimal [3], [4]. In particular,
for any fixed parameter t ∈ N+, an algorithm is called t-local
if it estimates each Xv only using the information within the
subgraph induced by vertices with a distance from v less than
t. Such local information resembles the distribution of local
observation in the broadcast with survey setting as n → ∞
for fixed a and b, up to a graph isomorphism. Hence, one can
estimate each Xv using the same belief propagation whenever
the graph is locally tree-like.

Local BP is asymptotically optimal among local algorithms.
We present the following theorem, which states that there are
no gaps between the estimation accuracies of local and global
algorithms.3

Theorem 39. For 2-SBM with any fixed a, b and side
information generated based on any non-trivial µs, we have

lim
t→∞

lim
n→∞

pn(X̂
(t)
BP ) = lim

n→∞
p∗n, (39)

where X̂
(t)
BP is any estimator that runs local BP with parameter

δ = b
a+b , and p∗n is the optimal estimation accuracy over all

estimators.

Remark 10. Conjecture 1 in [3] corresponds to taking µs =
pB0 + (1 − p)B 1

2
for p > 0 (binary erasure channels).

Conjecture 2.5 in [4] corresponds to taking µs = Bα for
α ∈ [0, 1

2 ) (binary symmetric channels). Thus, Theorem 39
closes both of them.

Proof of Theorem 39. The proof can be established by first
connecting SBM to the broadcast with survey setting, similar
to the approach presented in [4, Section 2.4]. Formally, one can
show that Lemma 3.7 and Lemma 3.9 in [4] holds for general
symmetric µs, which bound the accuracies on both sides of
equation (39) using limiting distributions of BP recursion. I.e.,
for any fixed t, a, b, and symmetric µs, we have

lim
n→∞

pn

(
X̂

(t)
BP

)
= p

(
µ(t)

)
,

lim sup
n→∞

p∗n ≤ p
(
µ
(t)

)
,

where µ(t) and µ
(t)

are the LLR distributions in the BP
recursions initialized by µ(0) = B0 and µ

(0)
= B 1

2
. As a

consequence, the needed equality condition is implied if all
limiting distributions are identical, which is essentially the BI
condition stated in Section IV-B. In this work, we proved that
the BI condition holds for all regimes (Theorem 36), which
completes the proof of optimality of local BP algorithms.

V. FURTHER EXTENSIONS

Consider an infinite tree channel generated by the following
class of structures.

Definition 40 (Element Tree). An element tree T is defined
to be a tuple that consist of

(a) a finite rooted tree;
(b) a parameter δe for each edge e;
(c) a subset of leaves VG called the growing points;
(d) a symmetric distribution µv for each vertex v /∈ VG.

The tree network is generated recursively based on a dis-
tribution of element trees, denoted by PT . Initially, the tree
has a single growing point at the root vertex. Then for each
step h ∈ N+, all growing points are replaced by some random

3In certain parts of [4], a generalized setting was considered, where a, b
are n-dependent. It is clear that the same generalization is not considered in
their Conjecture 1, otherwise the stated limits may not converge. However,
one can still prove a similar optimality result using the BI presented in Section
IV-B and IV-C, stated in terms of the absolute difference between estimation
accuracies. More generally, this asymptotical optimality can hold whenever
the local tree-like condition is satisfied for large n.
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subtrees, that are i.i.d. with distribution PT .4 Given the tree
structure, a single bit X0 is broadcast downlink from the root,
and each edge e serves as a BSC channel with crossover
probability δe. We consider the process of estimating X0

for the tree channel generated at each step h, where the
estimator has access to the tree structure, the variables on
the boundary of the network (i.e., the growing points) and
survey observations at all other vertices each through a channel
characterized by the corresponding µv . Generally, we also
allow that the observations on the growing points are noisy,
i.e., independently though identical binary-input channels.

Similar to earlier formulations, the LLR distribution of this
problem can be determined through BP recursion. For any
fixed element tree T , we denote its BP operator by QT , which
is defined as follows. If T is a single growing point, then QT

is the identity map. Otherwise, let o denote the root vertex,
e1, ..., ed denote its incident edges, and T1, ..., Td denote the
corresponding subtrees rooted at the d children vertices, then
QTµ is given by the law of

R ≜ Rs +

d∑
u=1

Fδeu
(R̂u) , (40)

where Rs ∼ µo, R̂u ∼ (1 − δeu)µ̂u + δeu µ̂
−
u (all jointly

independent), µ̂u ≜ QTuµ, and µ̂−
u is the complement (see

Definition 2) of µ̂u. For a general distribution PT , we define
QPT

µ ≜ EPT
[QTµ], and we say µ is a BP fixed point if

µ = QPT
µ.

Proposition 41. Let µ(h) be the LLR distribution of the tree
model at step h, we have µ(h+1) = QPT

µ(h).

Proof. The derivation follows the same steps in Section I-A,
as BP applies to any tree graphical models.

The above framework generalizes the settings in earlier
sections, which allows us to cover several models of interest
as special cases (see Fig. 2). We provide a full characterization
for the uniqueness of BP fixed points in all cases. For ease
of discussion, we assume non-zero capacity for all edges, i.e.,
δe ̸= 1

2 , otherwise the channel can be simplified by removing
the corresponding subtrees. Among all tree distributions, there
is one subclass where the recursion is easy to analyze, but the
results need to be stated separately.

Definition 42. We say an element tree simple, if the tree
network reduces to a noiseless simple path, i.e., there is exactly
one growing point, all edges on the path from the growing
point to the root has δe ∈ {0, 1}, and all survey distributions
µv are trivial. We say an element tree distribution PT is trivial
if T is simple w.p.1.

This subclass of trivial tree distributions corresponds to
the exceptional cases specified in Theorem 1 in the basic
formulation. Generally, QPT

is the identity operator for any
trivial PT . Given this definition, we state our main theorem
for non-trivial cases as follows.

4For readers interested in models where the tree can grow from non-leaf
vertices, any such growing point can be treated equivalently as a leaf vertex
connected to the tree through an edge with δe = 0.

. . .

X0

X2

X5 X6

. . .

X1

X3 X4

δ1

δ3

δ2

δ4 δ5 δ6

BSC(δi)

with δi i.i.d. sampled

(a) Crossover probabilities being i.i.d. random and
known to the estimator.

. . .

X0

. . .

X3 X5

X1

X4

X9 X10

X6 X8

X2

X7

X19 X20

. . .

BSC(δ)

(b) Periodic, i.e., the degree of each vertex depends
periodically on their depths.

. . .

X0

X2

X5 X6

. . .

X1

X3 X4
BSC(δ1)
BSC(δ2)

(c) Nonisotropic, i.e., each vertex is connected through
a fixed list of channels, each with distinct crossover
probabilities.

Fig. 2: An Illustration of three different classes of Ising
models. All presented examples can be generated from certain
element-tree distributions.

Theorem 43. Fix any non-trivial distribution PT . The oper-
ator QPT

has at most one unique non-trivial fixed point µ∗,
and it is symmetric. For all non-trivial µ, the recursion Qh

PT
µ

converges weakly to the same fixed point, to µ∗ if it exists,
and to the trivial δ0 otherwise.

Remark 11. Note that the trivial fixed point µ = δ0 exists
if and only if all survey distributions are trivial w.p.1. This
corresponds to the no survey case in the basic formulation.
In all other cases, the operator QPT

has exactly one unique
non-trivial fixed point, and all BP recursions converge to µ∗,
including ones initialized with the trivial distribution.

To state the key intermediate results, we introduce the
following concepts.

Definition 44. For any fixed tree channel T and any r >
0, we say a growing point v is dominant, if the sign of the
LLR message returned by the BP algorithm remains consistent
whenever the input message at v is r and the inputs at all
other growing points are within [−r, r]. For a given parameter
r, we say T satisfies the polygon condition if there are no
dominant growing points, and we say T is representative if it
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also satisfies

FT (r) ≜ rmax

(
QTB 1

1+er

)
> r.

Theorem 45. For any distribution PT , any non-trivial sym-
metric fixed point µ, and any ϕ ∈ (0, 1

2 ), let r = rmax(Bϕ□∗µ),
we have

Bϕ □∗ QPT
µ ≺ QPT

(Bϕ □∗ µ) (41)

if T is representative with non-zero probability. Moreover, for
any PT that is non-trivial, there is an integer h > 0 that
the tree network created by distribution PT in h steps is
representative with non-zero probability, implying

Bϕ □∗ Qh
PT

µ ≺ Qh
PT

(Bϕ □∗ µ). (42)

Remark 12. Intuitively, for any growing point v to be dom-
inant, it is equivalent to state that the estimation error prob-
ability in a robust reconstruction setting can be minimized
by solely measuring Xv . In particular, the estimation error
is Bayes with Ber( 12 ) prior, and the observing channels are
BSC with crossover probability 1

1+er . Theorem 45 states that
whenever an element tree is not equivalent to a trivial network,
its self-concatenation will forbid such optimal estimators as the
tree grows large.
Remark 13. The settings in earlier sections can be interpreted
as special cases where the heights of the element trees are
no greater than 1 and all δe parameters are constant. The
contraction results stated in our general formulation provide
a natural interpretation on the need of special treatments for
d ≤ 2. When no survey channels are present, the polygon
condition requires Fδe(r) for all edges to be the side lengths
of a polygon. It requires at least d ≥ 3 equilateral edges to
form a polygon. Otherwise, self-concatenation or non-trivial
survey distributions are needed to meet the condition.

We also state some useful properties. which can be proved
by induction over the structure of element trees.

Proposition 46. The following statements hold for any distri-
bution PT .

1) If µ ⪯ ν, then QPT
µ ⪯ QPT

ν.
2) If {µn}n∈N converges weakly to µ, then QPT

µn con-
verges weakly to QPT

µ.
3) For any symmetric µ and ϕ ∈ [0, 1], we have Bϕ □∗

QPT
µ ⪯ QPT

(Bϕ □∗ µ).

Proof. The first property follows from the fact that BP pre-
serves degradation. The second property is due to the continu-
ity of convolution and box convolution for weak convergence.
Formally, one can repeat the same relevant steps in the proof
of Theorem 4 as follows. For any fixed rooted tree, we write
QTµn as the law of a function that depends on a list of
independent random variables with distributions given by µn

and µv’s. The value of this function converges in probability
as n → ∞, due to the weak convergence of µn, and this
convergence is uniform with respect to all parameter values of
δe’s. Then the weak convergence of QPT

µn follows from the
fact that finite rooted trees are countable. The third property
follows from the stringy tree lemma and the commutativity of
box convolution.

In the rest of this section, we prove the uniqueness theorem
assuming the correctness of above intermediate results. Then
we provide a proof of Theorem 45 in Appendix E.

Proof of Theorem 43. First, as explained in the proof of The-
orem 4, a contraction statement in the form of inequality
(42) implies the uniqueness of non-trivial symmetric BP fixed
point. Then, as noted in the proof for asymmetric distributions
(see proof of Corollary 3), the non-existence of asymmetric
fixed point and the needed BP convergence can be proved
by focusing on a certain subclass of the initial distributions.
In particular, let µ(h) ≜ Qh

PT
B0 denote the recursion with a

noiseless channel initialization. We only need to show that
when µ(h) converges to the non-trivial µ∗, the following
recursion converges to the same limit for any non-trivial µ.

µ
(h)

≜ Qh
PT

µ
(0)

,

µ
(0)

≜ Bϕ∗(µ∗,µ) □∗ µ∗.

This generalization is guaranteed by the fact that QPT
pre-

serves degradation.
Recall that µ∗ is a symmetric fixed point. We can apply the

third property of Proposition 46 to show that

µ
(0)

= Bϕ∗(µ∗,µ) □∗ (QPT
µ∗) ⪯ QPT

(Bϕ∗(µ∗,µ) □∗ µ∗) = µ
(1)

.

More generally, we have the following chain by applying the
first property of Proposition 46.

µ
(h)

= Qh
PT

µ
(0)

⪯ Qh
PT

µ
(1)

= µ
(h+1)

. (43)

Therefore, the monotone convergence property of degradation
can be applied and the recursion µ

(h)
converges to a symmetric

distribution. By the second property of Proposition 46, this
limit is a BP fixed point (see relevant steps in the proof of
Theorem 4), and we denote it by µ∗.

Because the degradation index ϕ∗(µ∗, µ) always belongs
to [0, 1

2 ) for non-trivial µ. We have that µ
(0)

is non-trivial.
Given the degradation chain stated by inequality (43), all µ

(h)
are bounded by µ

(0)
, so is their limit. Hence, µ∗ is non-trivial

as well. Then by the uniqueness of non-trivial symmetric fixed
point we have µ∗ = µ∗.

APPENDIX A
PROPERTIES OF DEGRADATION, β-CURVES AND WEAK

CONVERGENCE

When discussing symmetric distributions, here we consider
the most general formulation where distributions can have non-
zero mass at +∞, similar to [31], [32], we adopt the natural
definition of weak convergence over domain (−∞,+∞].

Proposition 47. The set of symmetric probability distributions
on (−∞,∞] and the set of convex, monotone functions β :
[0, 1] → [0, 1] such that β(t) ≥ t are in 1-1 correspondence
given by Def. 17. Furthermore, the following are equivalent:

1) The sequence of symmetric distributions µn weakly
converge to µ

2) β(t;µn) → β(t;µ) for all t ∈ [0, 1].
3) β(t;µn) → β(t;µ) uniformly over t ∈ [0, 1].
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Proof. First, notice that every symmetric R ∼ µ is completely
determined by the distribution of T = tanh |R|

2 . Indeed, for
any bounded function f that is continuous on (−∞,+∞] we
have

ER∼µ[f(R)] = ER∼µ

[
eRf(R) + f(−R)

eR + 1

]
.

The function under the latter expectation is even and thus can
be written as h(T ) for some continuous function h : [0, 1] →
R. Hence, we can equivalently study correspondence between
measures ν of T on [0, 1] and β(t;µ) = ET∼ν [T∨t]. A simple
integration by parts shows

β(t;µ) = 1−
∫ 1

t

dyP[T ≤ y] = t+

∫ 1

t

dyP[T > y] . (44)

From this identity it is clear how to recover the CDF of T
from the β(t;µ) by differentiation.

For 1 ⇒ 2 we only need to use the fact that tanh |R|
2 ∨ t

is a bounded continuous function of R. For 2 ⇒ 3 we
simply notice that β-curves are always 1-Lipschitz, and thus
the family β(t;µn), n ≥ 1 is equicontinuous (hence pointwise
convergence and uniform convergence coincide). For 3 ⇒ 1
we first notice that µn → µ (weakly) is equivalent to
convergence of corresponding distributions of tanh |R|

2 (as
discussed above). Denote this (to be shown) convergence by
νn → ν (weakly). To that end, notice that from (44) we have
β(0) = E[T ] and∫ 1

0

ts−1(β(t)− t)dt =
1

s(s+ 1)
E[T s+1] ∀ s > 0.

Therefore, uniform convergence of β-curves implies conver-
gence of moments of T and thus (since T is supported on
[0, 1]) the weak convergence as well.

Proposition 48. Degradation has the following properties.

1) (Continuity) For any two sequences of distributions
{µn}n∈N and {νn}n∈N that weakly converge to µ and
ν respectively and satisfy µn ⪯ νn for any n, we have
µ ⪯ ν.

2) (Sandwich Theorem) For any sequences of distributions
{µ

n
}n∈N, {µn}n∈N, {µn}n∈N satisfying µ

n
⪯ µn ⪯ µn

for any n and µ
n
, µn weakly converges to µ∗ for some

µ∗, we have µn weakly converges to µ∗.
3) (Monotone Convergence) For any sequence of symmetric

distributions {µn}n∈N, if either µn ⪯ µn+1 or µn+1 ⪯
µn holds for all n, then the sequence converges weakly
to a symmetric distribution.

4) (Poset Structure and Antisymmetry) Degradation defines
a partial order on the set of all symmetric distributions.
Especially, µ ⪯ ν and ν ⪯ µ implies µ = ν.

5) (Convolution-preserving) For any symmetric distribu-
tions µ, ν, and τ satisfying µ ⪯ ν, we have τ ∗µ ⪯ τ ∗ν
and τ □∗ µ ⪯ τ □∗ ν.

6) (Invertibility over BSC Operator) For any ϕ ∈ [0, 1
2 )

and any symmetric distributions µ and ν, the statements
µ ⪯ ν and Bϕ □∗ µ ⪯ Bϕ □∗ ν are equivalent.

7) (BP-preserving) For any δ ∈ [0, 1] and degree distribu-
tion Pd, let Qs be the operator defined in Section I. Then
for any two symmetric distributions µ ⪯ ν, we have

Qsµ ⪯ Qsν.

Remark 14. The concept of degradation has been studied as
early as in [26]–[29], under a topic called comparison of
experiments. It has also appeared later in [20], [33]–[38] for
communication channels. Under those contexts, degradation
serves as a preorder that divides experiments or communica-
tion channels into equivalent classes. The relationship given by
Definition 5 permits antisymmetry due to the fact that LLR is
a minimal sufficient statistic.

Proof of Proposition 48. The first property follows from the
sequential compactness of joint distributions. Consider any
choice of joint distributions between µn and νn that satisfy
Definition 5. We can find a subsequence of these distributions
that converges weakly as n → ∞. Their limit provides a valid
construction for degradation. Specifically, let PY,Z be any such
limit and by marginal convergence we assume that Y ∼ µ and
Z ∼ ν. The invariance of PY |Z under (Y,Z) → (−Y,−Z)
is preserved under weak convergence as it is equivalent to
dPY,Z = eZdP−Y,−Z .

The second property is clear from Theorem 19 and Prop. 47.
Specifically, we only use the part of Theorem 19 that states
β-curve inequalities are implied by degradation. This directly
follows from the fact that degradation implies inequalities in
Bayes estimation errors, which lead to the needed inequalities
in β-curves (Proposition 18).

The third follows from the identification with β-curves
(see [20, Lemma 4.75]). The fourth property is again via the
β-curve inequalities stated in Theorem 19.

The rest of the properties state that degradation is pre-
served under several elementary operations and their com-
positions. They can be proved by considering the binary-
input-channel equivalence of the related distributions, and the
needed Markov chain constructions naturally follow from the
probabilistic interpretations of these operations. In particular,
box convolution can be viewed as channel concatenation
(see Remark 1), and convolution can be viewed as parallel
concatenation.

A. Convergence in Degradation Metric

The next result explains that topology of the degradation
metric is strictly finer than that of weak convergence.

Proposition 49. Let {µn}n∈N and µ be non-trivial symmetric
distributions, then the following are equivalent

1) d(µn, µ) → 0
2) µn → µ (weakly) and tmax(µn) → tmax(µ)

Proof. We first prove that convergence in degradation metric
implies weak convergence. Recall Proposition 47. It suffices
to show the pointwise convergence of β-curves. The proof
follows from the fact that both ϕ∗(µn, µ) and ϕ∗(µ, µn)
converges to 0 as d(µn, µ) → 0, and each degradation index
implies a uniform bound on β(t;µ)− β(t;µn).
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Consider any pair of symmetric distributions µ and ν, we
derive a bound on β(t;µ)−β(t; ν) using ϕ∗(µ, ν). Recall the
second property of Proposition 14 states that

Bϕ∗(µ,ν) □∗ µ ⪯ ν.

By applying Theorem 19 and equation (15), we have

β(t; ν) ≥ (1− 2ϕ∗(µ, ν))β

(
t

1− 2ϕ∗(µ, ν)
;µ

)
.

Note that β-curves are non-negative, non-decreasing function
of |t| that are upper bounded by 1 for any |t| ≤ 1. If
ϕ∗(µ, ν) < 1

2 , we have the following inequality.

β(t; ν) ≥ (1− 2ϕ∗(µ, ν))β (t;µ) ≥ β (t;µ)− 2ϕ∗(µ, ν) for |t| ≤ 1.

Because β(t; ν) = β(t; ν) = |t| for |t| > 1, we have obtained
an bound of supt(β(t;µ)− β(t; ν)), which converges to 0 as
ϕ∗(µ, ν) → 0.

By symmetry, we also have

β(t;µ) ≥ β (t; ν)− 2ϕ∗(ν, µ)

for ϕ∗(ν, µ) < 1
2 . Therefore, the convergence of degradation

index function implies that

lim
n→∞

sup
t

|β(t;µn)−β(t;µ)| ≤ lim
n→∞

2(ϕ∗(µ, µn)+ϕ∗(µn, µ)) = 0,

which proves the weak convergence.
Similarly, we provide an analysis of tmax functions based

on the BSS Theorem 19 and equation (15). For any symmetric
µ and ν, Proposition 14 implies that

tmax(ν) ≥ (1− 2ϕ∗(µ, ν))tmax(µ) ≥ tmax(µ)− 2ϕ∗(µ, ν).

Therefore, by symmetry, we have

lim
n→∞

|tmax(µn)− tmax(µ)| ≤ lim
n→∞

2(ϕ∗(µ, µn) + ϕ∗(µn, µ))

= 0.

Now we prove the opposite direction. First, we show that
unconditionally, the weak convergence of µn to µ implies

lim
n→∞

ϕ∗(µ, µn) = 0. (45)

Recall that weak convergence implies L∞-convergence in β-
curves (Proposition 47). We can find a sequence of non-
negative numbers ϵ1, ϵ2, ... converging to 0 such that

β(t;µn) ≥ β (t;µ)− ϵn (46)

for all t ∈ [0, 1] and n ∈ N+. The above lower bound can
be realized by symmetric distributions. Formally, let βn(t) =
max{β (t;µ)−ϵn, t}. It is clear from Proposition 47 that each
βn is a valid β-curve and we can find a symmetric νn such
that β (t; νn) = βn(t). Specifically, we have

νn[(−r, r)] =

{
µ[(−r, r)] if r ∈ (0, rmax(νn)],

1 if r ∈ (rmax(νn),+∞).
(47)

For µ being non-trivial, we have tmax(µ) > 0. Therefore,
we can choose

ϕn =
1

2

(
1− tmax(νn)

tmax(µ)

)

so that rmax(νn) = Fϕn
(rmax(µ)) and

νn[(−Fϕn
(r), Fϕn

(r))] ≤ µ[(−r, r)]

= Bϕn
□∗ µ [(−Fϕn

(r), Fϕn
(r))]

for all r ∈ (0,+∞). By the integration law in equation (44)
and the BSS Theorem, the above inequality implies

Bϕn □∗ µ ⪯ νn ⪯ µn,

which proves that ϕ∗(µ, µn) ≤ ϕn. From the continu-
ity of β-curves, the convergence of ϵn to 0 implies that
limn→∞ tmax(νn) = tmax(µ). Hence,

lim
n→∞

ϕ∗(µ, µn) ≤ lim
n→∞

ϕn = 0.

On the other hand, we prove the following convergence with
the additional assumption of tmax(µn) → tmax(µ).

lim
n→∞

ϕ∗(µn, µ) = 0. (48)

By the same arguments, we pick any sequence of non-negative
numbers ϵ1, ϵ2, ... converging to 0 such that

β(t;µ) ≥ β (t;µn)− ϵn (49)

holds for all t ∈ [0, 1] and n ∈ N+. Let µ̃n, ν̃n be the sym-
metric distributions with β (t; µ̃n) = max{β (t;µn) , β (t;µ)}
and β (t; ν̃n) = max{β (t; µ̃n) − ϵn, t}. From BSS theorem
we have µn ⪯ µ̃n and ν̃n ⪯ µ.

Recall that µ is non-trivial, which implies that tmax(µ̃n) ≥
tmax(µ) > 0. We can choose

ϕ̃n =
1

2

(
1− tmax(ν̃n)

tmax(µ̃n)

)
,

so the earlier proof steps imply that Bϕ̃n
□∗ µ̃n ⪯ ν̃n. Hence,

we have the following chain

Bϕ̃n
□∗ µn ⪯ Bϕ̃n

□∗ µ̃n ⪯ ν̃n ⪯ µ,

which leads to the upper bound ϕ∗(µ, µn) ≤ ϕ̃n. Note that
inequality (49) and the definition of ν̃n imply that

β(t; ν̃n) ∈ [β(t;µ)− ϵn, β(t;µ)].

We have the convergence of tmax(ν̃n) to tmax(µ) by the
continuity of β-curves and the convergence of ϵn. Note that
tmax(µ̃n) = max{tmax(µn), tmax(µ)}. We also have the
convergence of tmax(µ̃n) to tmax(µ). Therefore,

lim
n→∞

ϕ∗(µn, µ) ≤ lim
n→∞

ϕ̃n = 0.

To conclude, the convergence of both ϕ∗(µ, µn) and
ϕ∗(µn, µ) to 0 proves the convergence in degradation met-
ric.

Remark 15. The convergence in degradation metric is not
implied solely by the weak convergence (or L∞-convergence
in β-curves). For example, the sequence µn = 2−n · B 1

6
+

(1− 2−n) · B 1
3

converges to µ = B 1
3

both weakly and in
β-curves, but d(µn, µ) = ln 2 for any n. However, as we
have shown in the earlier proof, a converse can be proved
for a single-sided function ϕ(µ, µn), which can be viewed
as a potential function that is stabilized by the BP recursion.
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We present a slightly more general version of this result in
Proposition 50.

Besides, note that even the sequence µn has a bounded
radius in d, it has no convergent subsequence under the same
metric, which shows that bounded closed sets are not compact
in the d-metric. Further, all pairwise distances in this sequence
are bounded away from zero as d(µm, µn) = ln 2

1+2−|m−n| .
Thus, while d-convergence is almost equivalent to weak con-
vergence as per Prop. 49, the induced topologies are quite
different.

Proposition 50. If a sequence of LLR distributions {µn}n∈N
converges weakly to µ, then for any symmetric ν

lim
n→∞

ϕ∗(ν, µn) = ϕ∗(ν, µ).

Proof. The following lower bound follows from the first
property in Proposition 48 and the definition of degradation
index,

lim inf
n→∞

ϕ∗(ν, µn) ≥ ϕ∗(ν, µ).

Hence, it remains to show that

lim sup
n→∞

ϕ∗(ν, µn) ≤ ϕ∗(ν, µ). (50)

Recall that in the proof of Proposition 49 we have proved
equation (45), which covers the special case of ν = µ. We
bound the degradation index for general ν by applying the
triangle inequality, i.e., the fourth property of Proposition 14.

ϕ∗(ν, µn) ≤ ϕ∗(µ, µn) + ϕ∗(ν, µ)− 2ϕ∗(µ, µn)ϕ
∗(ν, µ).

(51)

Then the needed result is proved using equation (45), partic-
ularly,

lim sup
n→∞

ϕ∗(ν, µn) ≤ lim sup
n→∞

ϕ∗(µ, µn) + ϕ∗(ν, µ) = ϕ∗(ν, µ).

APPENDIX B
SUPPLEMENTARY PROOFS FOR THEOREM 1

A. Proof of Proposition 12

Proof. We first prove the proposition for condition ν ⪯ τ ≺ µ.
Recall the definition of strict degradation. We can find ϕ ∈
(0, 1

2 ] such that ν ⪯ τ ⪯ Bϕ □∗ µ. By applying the transitivity
of degradation, we have ν ⪯ Bϕ □∗ µ, which proves ν ≺ µ.

On the other hand, if ν ≺ τ ⪯ µ, we have ϕ ∈ (0, 1
2 ] such

that ν ⪯ Bϕ□∗ τ . Now we need the fifth property in Proposition
48 to obtain Bϕ□∗ τ ⪯ Bϕ□∗ µ. Then the rest follows from the
transitivity of degradation through the same arguments.

B. Proof of Proposition 14

Proof. The first property is proved by a probability-of-error
argument. Recall the definition of degradation index. We only
need to show the existence of a ϕ ∈ [0, 1

2 ) that satisfies Bϕ □∗
µ ⪯ ν. We prove this fact by choosing ϕ = ER∼ν [

1−sgn(R)
2 ].

Because ν is non-trivial and symmetric, we have ϕ ∈ [0, 1
2 ).

Following the commutativity of box convolution and the
physical interpretation, we have Bϕ □∗ µ ⪯ Bϕ. On the other

hand, Bϕ can be viewed as the LLR distribution of the 1-
bit maximum likelihood estimator for the estimation problem
characterized by ν. Hence, there is a natural joint distribution
that implies Bϕ ⪯ ν. Then the statement Bϕ □∗ µ ⪯ ν follows
from the transitivity of degradation.

The second property states that the set defined in equa-
tion (9) has a minimum. It follows from the continuity of
degradation under weak convergence, see the first property
in Proposition 48. The third property can be proved using
the sixth property in Proposition 48. The fourth property is
due to the transitivity of degradation and associativity of box
convolution.

C. Proof of Proposition 18

Proof. Recall that the optimal Bayes estimation error is
achieved by the maximum a posteriori (MAP) estimator,
which compares the LLR with a fixed threshold ln 1−t

1+t =

−2 tanh−1 t for the given prior distribution. Therefore, the
achieved error can be written as

1 + t

2
· µ

[(
−∞,−2 tanh−1 t

]]
+
1− t

2
·
∫

e−r
1{r ∈ (−2 tanh−1 t,+∞)}dµ(r),

where the second term is derived from the definition of LLR.
For brevity, we denote this quantity by Pe(t).

Note that for any bounded Borel function f : (−∞,+∞] →
R, its expectation over µ can be written as follows using the
symmetry condition.

ER∼µ [f(R)] = ER∼µ

[
e

R
2

e
R
2 + e−

R
2

f(R) +
e−

R
2

e
R
2 + e−

R
2

f(R)

]

= ER∼µ

[
e

R
2

e
R
2 + e−

R
2

f(R) +
e−

R
2

e
R
2 + e−

R
2

f(−R)

]
.

We specialize the above formula for Pe(t), which can be
viewed as the expectation of the following function

p(R) ≜
1 + t

2
1

{
t ≤ − tanh

R

2

}
+

1− t

2
e−R

1

{
t > − tanh

R

2

}
.

The resulting expectation is given by

ER∼µ

[
min

{
e−|R|

e
R
2 + e−

R
2

,
1− t

2

}]
which equals 1

2 (1− β(t;µ)).

D. Proof of Proposition 20

Proof. Proof of 1) ⇒ 3). From ν ≺ µ and the non-trivial
condition, we can choose ϕ ∈ (0, 1

2 ) to satisfy ν ⪯ Bϕ □∗ µ.
By either applying Theorem 19 or Jensen’s inequality over
any joint distribution consistent with Definition 5, we have
β(t; ν) ≤ β(t;Bϕ □∗ µ) for any t ∈ R. Using equation (15),
we have

(1− 2ϕ)β(t;µ) ≥ β ((1− 2ϕ)t; ν).
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Therefore, following the definition of tmax and non-trivial
condition, we have tmax(ν) ≤ (1 − 2ϕ)tmax(µ) < tmax(µ).
On the other hand, note that any β-curve is 1-Lipschitz. For
t ∈ [0, tmax(µ)), we have

β ((1− 2ϕ)t; ν) ≥ β (t; ν)− 2ϕt.

> β (t; ν)− 2ϕβ(t;µ).

Combining the above inequalities, we obtain the stated gap
condition.

Proof of 3) ⇒ 2). If tmax(ν) < tmax(µ), then [0, tmax(ν)] is
a subset of [0, tmax(µ)). Thus, the same gap condition applies.

Proof of 2) ⇒ 1). Recall that both µ and ν are non-trivial.
The β-curves for both distributions are positive and continuous
over R. Therefore, the following quantity is well-defined

ϕ ≜ min
t∈[0,tmax(ν)]

1

2

(
1− β(t; ν)

β(t;µ)

)
.

From the gap condition, we have ϕ ∈
(
0, 1

2

)
. It remains to

show ν ⪯ Bϕ □∗ µ.
One can verify that the β-curve is non-decreasing for any

measure. Hence, for any t ∈ [0, tmax(ν)], the above definition
implies the following inequality.

β(t; ν) ≤ (1− 2ϕ)β (t;µ) ≤ (1− 2ϕ)β

(
t

1− 2ϕ
;µ

)
.

Using equation (15), the above inequality can be written as

β(t; ν) ≤ β (t;Bϕ □∗ µ) . (52)

Because the β-curve is lower bounded by the identity function,
recall the definition of tmax(ν), inequality (52) holds for t >
tmax(ν) as well. Apply this conclusion to Theorem 19, we
have proved that ν ⪯ Bϕ□∗ µ, which implies strict degradation.

E. Proof of Proposition 23

Proof. Proof of 1). The forward statement is proved by noting
that when tmax(ν) < tmax(µ), the set

(
tanh

(
s
2

)
, tmax(ν)

]
is contained in the set

(
tanh

(
s
2

)
, tmax(µ)

)
. For the con-

verse statement, we have β(t; ν) = t < β(t;µ) for all
t ∈ (tmax(ν), tmax(µ)) from the definition of tmax. So it
remains to prove that tmax(ν) < tmax(µ). If s ≥ rmax(ν),
this inequality is implied by rmax(ν) ≤ s < rmax(µ).
Otherwise, we have β(tmax(ν), µ) > β(tmax(ν), ν) = t, and
the inequality is implied due to the continuity of β-curves.

Proof of 2). The stated condition provides a chain of
degradation, so we have β(t; ν) ≤ β(t; τ) ≤ β(t;µ) for all
t. In either cases, the individual steps in the condition implies
that the inequality is strict for t ∈

(
tanh

(
s
2

)
, tmax(ν)

]
.

Proof of 3). The first statement is a direct consequence of
Proposition 20 and the fact that β-curves are even functions.
The second statement is implied by the BSS Theorem.

Proof of 4). The first statement directly follows from the
definition. The second statement is implied by Proposition 20.

F. Proof of Proposition 24

Proof. For convenience, we define

τ(T) = Bϕ □∗ (Bδ1 ∗Bδ2),

τ(S) = (Bϕ □∗ Bδ1) ∗ (Bϕ □∗ Bδ2).

To prove Proposition 24, we first derive closed-form expres-
sions for the β-curves. Note that τ(T) is a symmetric discrete
distribution that can be written as a linear combination of Bδ−(T)

and Bδ+(T)
for some 0 ≤ δ+(T) ≤ δ−(T) ≤

1
2 . From Proposition 21,

the β-curve of τ(T) must be a piecewise linear function with
at most two corner points. Concretely, let5

t−(T) ≜ tmax

(
Bδ−(T)

)
= (1− 2ϕ) tanh

|rmax(Bδ1)− rmax(Bδ2)|
2

,

t+(T) ≜ tmax

(
Bδ+(T)

)
= (1− 2ϕ) tanh

rmax(Bδ1) + rmax(Bδ2)

2
,

β(T),0 ≜ β
(
0; τ(T)

)
= (1− 2ϕ)max{(1− 2δ1), (1− 2δ2)}.

The value-function pair (t, β(t; τ(S))) for t ∈ [0, 1] is on the
lower convex envelope of the following finite set of points.{

(0, β(T),0) ,
(
t−(T), β(T),0

)
,
(
t+(T), t

+
(T)

)
, (1, 1)

}
.

Similarly, let

t−(S) ≜ tmax

(
Bδ−(S)

)
= tanh

|Fϕ (rmax(Bδ1))− Fϕ (rmax(Bδ1)) |
2

,

t+(S) ≜ tmax

(
Bδ+(S)

)
= tanh

Fϕ (rmax(Bδ1)) + Fϕ (rmax(Bδ1))

2
,

β(S),0 ≜ β
(
0; τ(S)

)
= (1− 2ϕ)max{(1− 2δ1), (1− 2δ2)}.

Then function β(t; τ(S)) for t ∈ [0, 1] is given by the lower
convex envelope of the following finite set.{

(0, β(S),0) ,
(
t−(S), β(S),0

)
,
(
t+(S), t

+
(S)

)
, (1, 1)

}
.

By some elementary calculus6, one can prove the following
equation and inequalities, which shows that β(t; τ(T)) ≤
β(t; τ(S)) for all t ∈ R.

t−(S) ≤ t−(T),

t+(S) ≥ t+(T).

β(S),0 = β(T),0.

Moreover, we always have t+(S) > t+(T) except when any of
ϕ, δ1, δ2 is 1

2 . In all cases, this leads to β(t; τ(T)) < β(t; τ(S))
for any t ∈ (t−(S), t

+
(T)]. Note that t−(S) = tanh smin

2 and t+(T) =
tmax(τ(T)). We have τ(T) ≺smin

τ(S).

5When rmax(Bδ1 ) = rmax(Bδ2 ) = +∞, τ(T) is simply B
δ+(T)

, and we

can let t−(T) take any value in [0, t+(T)].
6In particular, the concavity of Fϕ on R≥0.
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G. Proof of Corollary 25

Proof. Let R1 ∼ µ1, R2 ∼ µ2 be independent variables. Then
each µj for j ∈ {1, 2} can be expressed as a mixture of
distributions Bδj with δj = 1

1+eRj
. From the bilinearity of

convolution, the distributions on both sides of inequality (17)
can be expressed as mixtures of the corresponding terms in
inequality (16), i.e.,

Bϕ □∗ (µ1 ∗ µ2) = ER1,R2
[Bϕ □∗ (Bδ1 ∗Bδ2)],

(Bϕ □∗ µ1) ∗ (Bϕ □∗ µ2) = ER1,R2
[(Bϕ □∗ Bδ1) ∗ (Bϕ □∗ Bδ2)].

The β-curves can be compared using the (obvious) property:
β-curve of a mixture is given by a mixture of the β-curves.
Thus, the degradation relation stated in Proposition 24 implies
that Bϕ □∗ (µ1 ∗ µ2) ⪯ (Bϕ □∗ µ1) ∗ (Bϕ □∗ µ2).

It remains to verify the strict condition for the inequality
on β-curves. For brevity, we focus on the non-trivial cases
where ϕ ̸= 1

2 and both µ1 and µ2 are non-trivial. By the strict
concavity of Fϕ on R≥0, and the definition of rmax, we have

rmax(Bϕ □∗ (µ1 ∗ µ2)) = Fϕ(rmax(µ1) + rmax(µ2))

< Fϕ(rmax(µ1)) + Fϕ(rmax(µ2))

= rmax((Bϕ □∗ µ1) ∗ (Bϕ □∗ µ2)),

which implies that tmax(Bϕ □∗ (µ1 ∗µ2)) < tmax((Bϕ □∗ µ1) ∗
(Bϕ □∗ µ2)). Therefore, it suffices to compare the β-curves at
any fixed t ∈

(
tanh

(
s
2

)
, tmax((Bϕ □∗ µ1) ∗ (Bϕ □∗ µ2))

)
. By

the definition of rmax function, there is a non-zero probability
that R1, R2 are sufficiently close to rmax(µ1) and rmax(µ2),
respectively, such that

t ∈
(
tanh

(
|Fϕ(rmax(Bδ1))− Fϕ(rmax(Bδ2))|

2

)
,

tmax((Bϕ □∗ Bδ1) ∗ (Bϕ □∗ Bδ2))

)
.

According to Proposition 24 and the first statement in Propo-
sition 23, this condition implies strict inequality in β-curves at
point t between Bϕ□∗ (Bδ1 ∗Bδ2) and (Bϕ□∗Bδ1)∗(Bϕ□∗Bδ2).
Hence, their integration also contributes to a strict inequal-
ity.

H. Proof of Proposition 26

Proof. Recall that β-curves are characterized by the error
probabilities of MAP estimators (see Proposition 18). We
construct an estimation problem with prior X ∼ Ber( 1−t

2 ),
and independent observations Y,Z such that Y is measured
through a symmetric channel characterized by µ and Z is
measured through a BSC with crossover probability ϕ. Let
X̂ be the MAP estimator. Because the LLR distribution of
this experiment is characterized by Bϕ ∗ µ, we have

P[X̂ = X] =
1 + β(t;Bϕ ∗ µ)

2
.

Conditioned on Z = 0 or Z = 1, the inference problem
reduces to estimating X given Y with different priors. Note
that the MAP estimator remains the same. We have

P[X̂ = X|Z = 0] =
1 + β(t0;Bϕ ∗ µ)

2
,

P[X̂ = X|Z = 1] =
1 + β(t1;Bϕ ∗ µ)

2
.

Combining above results, we obtain the following equation,
which is identical to the needed statement.

β(t;Bϕ∗µ) = P[Z = 0]β(t0;Bϕ∗µ)+P[Z = 1]β(t1;Bϕ∗µ).

I. Proof of Proposition 28

Proof. Consider any fixed r ∈ (s − ℓ, rmax(µ) − ℓ). Let t =
tanh |r|

2 , we have t ∈ [0, 1). Then we can apply Proposition
26 to evaluate β(t; τ ∗ µ) − β(t; τ ∗ ν) by writing τ as an
integration of Bϕ distributions. In particular, let Z ∼ τ and
ϕ = 1

e|Z|+1
. In general, we have

β(t; τ ∗ µ) = E
[(

1 + t− 2tϕ

2

)
β (t0;µ)

+

(
1− t+ 2tϕ

2

)
β (t1;µ)

]
(53)

for any symmetric µ, where

t0 = tanh

(
|Z|+ |r|

2

)
,

t1 = tanh

(∣∣∣∣ |Z| − |r|
2

∣∣∣∣) .

When ν ≺s µ, we always have β (t0; ν) ≤ β (t0;µ) and
β (t1; ν) ≤ β (t1;µ). To prove β(t; τ ∗ ν) < β(t; τ ∗ µ) using
equation (53), it remains to show that β (t0; ν) < β (t0;µ)
or β (t1; ν) < β (t1;µ) with non-zero probability. Let tZ =
tanh

(∣∣ r+Z
2

∣∣). Because r+ ℓ ∈ (s, rmax(µ)) and ℓ ∈ supp(τ),
we have β (tZ ;µ) > β (tZ ; ν) for Z in a neighbourhood of ℓ,
which holds with non-zero probability. Note that tZ ∈ {t0, t1}.
The needed inequality is proved.

For the second statement, we can assume µ is non-trivial,
otherwise the stated interval is an empty set and nothing needs
to be proved. Note that in this case, ν ≺ µ is equivalent to
ν ≺s µ for any s ∈ (−rmax(µ), 0). Therefore, following ex-
actly the same steps, we have the needed strict inequality holds
for r ∈ (s− ℓ, rmax(µ)− ℓ) for any such s. Hence, inequality
(18) holds if r belongs to r ∈ (−rmax(µ) − ℓ, rmax(µ) − ℓ),
which contains [−ℓ, rmax(µ)− ℓ) as a subset.

J. Proof of Proposition 33

Proof. We apply induction over k ∈ N. The base case k = 1
follows directly from Proposition 32. Indeed, when s1 < 0, it
implies

Bϕ □∗ Qsµ = Bϕ □∗ ((Bδ □∗ µ) ∗ µs)

≺ (Bϕ □∗ Bδ □∗ µ) ∗ µs = Qs(Bϕ □∗ µ)

as smin = Fϕ(rmax(Bδ □∗ µ)) − rs = Fϕ(Fδ(rmax(µ))) −
rs = s1 < 0. Here we used the fact that rmax(Bτ □∗ ν) =
Fτ (rmax(ν)) and

Fϕ ◦ Fδ = Fδ ◦ Fϕ ,

due to commutativity of Bϕ□∗ Bδ . Similarly, when s1 ≥ 0, the
statement of Proposition 32 implies Bϕ□∗Qsµ ≺s1 Qs(Bϕ□∗µ).
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Assume Proposition 33 holds for some k ∈ N. We prove
that it holds for k + 1. As everywhere before, our method is
to start from a non-strict degradation chain given by

Bϕ □∗ (Qk+1
s µ) ⪯ Qs(Bϕ □∗ Qk

s µ) ⪯ Qs(Qk
s (Bϕ □∗ µ)) (54)

and keep track of areas where the comparison of β-curves is
strict. Denote for convenience µk = Qk

s µ, νk = Qk
s (Bϕ □∗

µ) and rk = rmax(µk). We will repeatedly use the fact that
rmax(Bτ □∗ ν) = Fτ (rmax(ν)), so that for example rk+1 =
Fδ(rk) + rs.

Observe the first step of inequality (54), which essentially
states that

Bϕ □∗ ((Bδ □∗ µk) ∗ µs) ⪯ (Bδ □∗ Bϕ □∗ µk) ∗ µs .

This is simply an instance of applying Proposition 32. Thus,
we have that the comparison of β-curves is strict for

Fϕ(Fδ(rk))− rs < s < Fϕ(Fδ(rk)) + rs . (55)

Therefore, we can assume rs is finite for the rest of the proof
because otherwise we have already established strict compari-
son for the entire s ∈ R, which includes [0, rmax(Bϕ□∗ µk+1)]
as a subset.

Now we analyze the second step in (54). From the induction
hypothesis we know that

Bϕ □∗ µk ≺sk νk (56)

for sk ≥ 0, and Bϕ □∗ µk ≺ νk otherwise. Applying box
convolution with Bδ to both sides of these inequalities and by
equation (15), we obtain

Bδ □∗ Bϕ □∗ µk ≺s′k
Bδ □∗ νk ,

for s′k ≜ Fδ(sk). Next, by convolving with µs on both sides,
and then Proposition 28 with ℓ = rs, we get that

(Bδ □∗ Bϕ □∗ µk) ∗ µs ⪯ (Bδ □∗ νk) ∗ µs = νk+1

with inequality for β-curves strict for all t = tanh |s|
2 with

sk+1 = s′k − rs < s < Fδ(rmax(νk))− rs . (57)

From induction hypothesis (56) we have rmax(νk) >
rmax(Bϕ □∗ µk) = Fϕ(rk). Therefore, because of the strict-
ness of the inequality we have that (57) and (55) together
imply comparison of first and last β-curves in (54) for all
t = tanh(|s|/2) with

sk+1 < s < Fϕ(Fδ(rk)) + rs . (58)

Finally, notice that Fϕ(x+ y) < Fϕ(x) + y for x ≥ 0, y > 0,
and ϕ ∈ (0, 1). Thus the right-hand side of (58) is strictly
bigger than rmax(Bϕ□∗ µk+1) = Fϕ(rk+1) = Fϕ(Fδ(rk)+rs).
In all, we have established strict comparison of β-curves for

sk+1 < s ≤ rmax(Bϕ □∗ µk+1) .

APPENDIX C
PROOF OF COROLLARY 3

Proposition 51. The following statements are true.
1) All symmetric distributions are LLR distributions.
2) Any LLR distribution has a unique complement.
3) Any distribution µ on (−∞,+∞] is an LLR distribution

if and only if it has a complement.

Proof. For the first statement, consider any symmetric µ. The
LHS of inequality (3) equals µ[(−∞,+∞)], which is no
greater than 1. For the second statement, the CDF of any
complement distribution is completely determined by equation
(4), which proves the uniqueness. Then, inequality (3) ensures
that the CDF specified by equation (4) is always bounded
within [0, 1], which proves the existence. For third statement,
the LHS of inequality (3) equals µ−[(−∞,+∞)], which is no
greater than 1.

The notion of degradation can be generalized to LLR
distributions. One can verify that the following definition is
consistent with Definition 5 on symmetric distributions.

Definition 52. For any two LLR distributions µY , µZ , we say
µY is a degraded version of µZ , denoted by µY ⪯ µZ , if one
can define joint distributions µY,Z and µY −,Z− , with µY , µZ ,
and their complements being the marginal distributions, such
that µY |Z and µY −|Z− are identical.

Moreover, we have the following generalization.

Proposition 53. Degradation defines a partial order on the set
of all LLR distributions, which satisfies continuity, sandwich
theorem, and has monotone convergence.

Proof. Our proof relies on the following generalization of β-
curves.

Definition 54. For any LLR distribution µ, we define its β-
curve as a function on domain t ∈ R given by the following
equation.

β(t;µ) ≜ ER∼ 1
2 (µ+µ−)

[∣∣∣∣tanh R

2
− t

∣∣∣∣] , (59)

where µ− is the complement distribution.

Given this definition, one can prove that LLR distributions
and their β-curves are in one-to-one correspondence. This is
because every symmetric µ is completely determined by the
distribution of T = tanh R

2 for R ∼ 1
2 (µ + µ−), and their

CDF can be obtained by differentiating the β-curve based on
the following equation.

β(t;µ) = 1− t+

∫ t

−1

dyP[T ≤ y]−
∫ 1

t

dyP[T ≤ y] .

The BSS theorem can be generalized for asymmetric distribu-
tions for the above β-curve definition. In particular, we only
require β(t; ν) ≤ β(t;µ) for any t ∈ R and ν ⪯ µ. This can
be proved by the fact that Proposition 18 holds for asymmetric
distributions, then the comparison of β-curves is implied by
the comparison of corresponding hypothesis testing problems.
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Combining the above results, for any µ ⪯ ν ⪯ µ the β-
curves of µ and ν are identical. Therefore, we have µ = ν,
which proves antisymmetry. The rest of the properties are
obtained by the corresponding steps in Proof of Proposition 48,
except that for continuity, the (Y, Z) → (−Y,−Z) transfor-
mation is replaced by the comparison to the joint distribution
generated by complements.

Proof of Corollary 3. The corollary is proved by first showing
the unique convergence, i.e., the BP recursion converges to the
same symmetric fixed point for all non-trivial initializations.
Once it is proved, the non-existence of asymmetric fixed point
follows naturally from the fact that any fixed point is the
limiting distribution of the BP recursion with itself as the
initialization.

Consider any fixed non-trivial initialization µ. We denote its
recursion by µ̃(h) ≜ Qh

s µ. As a reference, we also consider the
BP recursion in the setting with perfect leaf observation, which
is given by µ(h) = Qh

s B0. Note that µ̃(h) can be interpreted
as the LLR distributions with noisy leaf observations. By the
natural coupling, we have B 1

2
⪯ µ̃(h) ⪯ µ(h). Recall that

the sandwich theorem of degradation holds for general LLR
distributions. This implies the needed convergence if µ(h)

converges to the trivial distribution.
For the other case, we have that µ(h) converges to a non-

trivial symmetric fixed point µ∗ by the statement of Theorem
1. When the limit of µ(h) is non-trivial, we need to replace
B 1

2
with degradation bounds that also converge to µ∗. To that

end, we extend the notion of degradation index. Because µ∗ is
symmetric, we can define ϕ∗(µ∗, µ̃(0)) exactly the same way
as in equation (9), and we let µ

(h)
be the recursion initialized

by

µ
(0)

≜ Bϕ∗(µ∗,µ̃(0)) □∗ µ∗.

The first and the second property in Proposition 14 hold under
this extension, implying that µ

(0)
is non-trivial and µ

(0)
⪯ µ.

The proof for the first property can be generalized by choosing
ϕ in the proof of in Proposition 14 as follows.

ϕ = inf
PZ|Y

max {PY∼ν [Z = 0],PY∼ν− [Z = 1]} ,

where ν− is the complement distribution of ν. From elemen-
tary statistics, it is known that Bϕ is the LLR distribution of
a thresholding quantized version of the estimation problem
characterized by ν, where the quantizer is chosen to achieve
the minimax error probability. Therefore, we have Bϕ ⪯ ν,
and the rest of the proof follows the same steps.

Because degradation is still preserved under BP recursion
for general distributions. We have

µ
(h)

= Qhµ
(0)

⪯ Qhµ = µ̃(h).

Note that µ
(0)

is symmetric. The uniqueness theorem states
that the the constructed lower bounds converge to µ∗. Then
the unique convergence of Qhµ follows from the sandwich
theorem.

APPENDIX D
PROOF OF THEOREM 37

Note that the definition of degradation index remain un-
changed. Theorem 37 can be proved using the same steps
upon the following proposition.7

Proposition 55. For any symmetric µ and ν,
1) if ν ⪯ µ, then QLν ⪯ QLµ;
2) we have Bϕ □∗ QLµ ≺ QL(Bϕ □∗ µ) for any ϕ ∈ (0, 1

2 );
3) if ν is nontrivial, then ϕ∗(QLµ,QLν) < ϕ∗(µ, ν) or

µ ⪯ ν.

Proof. The first statement in Proposition 55 is proved by
viewing QL as a limit of Q or Qs. The third statement can
be proved using the second statement and Proposition 14.
Therefore, we focus on the proof for the second statement,
which is obtained by deriving and comparing related β-curve
functions. For brevity, we shall ignore cases where µ is trivial
or Pd is a delta distribution at 0, where the statement is
obviously true. Hence, the LHS of the needed inequality is
non-trivial, and it suffices to examine the β-curves on both
sides due to Proposition 20.

We first focus on the case where µs is trivial, which implies
that any QLµ is a mixture of Gaussians, and their β-curves can
be written using integrals of elementary functions. We have
the following statement, which is derived from the fact that
β-curves are linear functions of the errors in Bayes estimation.
The error function for each fixed prior distribution is the
minimum of estimation error over all threshold decoders, and
the optimal threshold is the LLR that is consistent with the
prior.

Proposition 56. For any t ∈ [0, 1] and s ∈ [0,+∞], we have

β(t;N (s)) = max
r∈[0,+∞]

1

2

(
(1− t)erf

( √
s

2
√
2
− r

)
+(1 + t)erf

( √
s

2
√
2
+ r

))
,

where erf(z) ≜ 2√
π

∫ z

0
e−x2

dx, and a maximizer is given by

r = r∗(s, t) ≜
√

2
s arctanh(t). Moreover, for any fixed t ∈

[0, 1],

d

d
√
s
β(t;N (s)) =

√
1− t2

2π
e−r∗(s,t)2− s

8 .

Due to convexity of arctanh, we have r∗(θ2s, θt) ≤ r∗(s, t)
for any θ ∈ (0, 1) and t ∈ [0, 1]. Therefore, the following
proposition is implied by the Lagrange mean value theorem.

Proposition 57. The following inequality holds for any θ ∈
(0, 1), t ∈ [0, θ], and s ∈ (0,+∞].

β(t;N (θ2s)) > θβ(t/θ;N (s)).

From linearity of β-curves, for µs being the trivial distribu-
tion, we have

β(t;QLµ) = EPd

[
β(t;N

(
d · Vµ

)]
.

7Except for the existence of non-trivial fixed points, which can be proved
by analyzing the evolution of Vµh with noiseless initialization.
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For brevity, let θ ≜ (1− 2ϕ)2. Note that VBϕ□∗µ = θ2Vµ and
recall Proposition 21. For any t ∈ [0, θ] we have

β(t;Bϕ □∗ QLµ) = θEPd

[
β(t/θ;N

(
d · Vµ

)]
,

β(t;QL(Bϕ □∗ µ)) = EPd

[
β(t;N

(
d · θ2Vµ

)]
.

Recall that we only need to provide a prove for P[d > 0] > 0
and non-trivial µ. We have Vµ > 0 and tmax(Bϕ □∗ QLµ) = θ.
By an integration argument, the above results implies that

β(t;QL(Bϕ □∗ µ)) > β(t;Bϕ □∗ QLµ)

for any t ∈ [0, tmax(Bϕ □∗ QLµ)], which proves the needed
statement.

Now we take non-trivial µs into account. Let QL,δ0µ ≜
Ed∼Pd

[
N

(
d · Vµ

)]
, we have that QLµ = QL,δ0µ ∗ µs. The

earlier proof steps have essentially shown that

Bϕ □∗ QL,δ0µ ≺ QL,δ0(Bϕ □∗ µ)

for any ϕ ∈ (0, 1
2 ). Compared to the case with fixed Pd, the

above inequality exactly leads to a form that corresponds to
inequality (32). Therefore, the proof can be completed using
the same steps from inequality (33) to inequality (36).

APPENDIX E
PROOF OF THEOREM 45

In this appendix, we prove the intermediate results for the
uniqueness theorem stated in Section V. For brevity, we shall
assume δe < 1

2 throughout this section, as the more general
cases produce the same set of BP operators. We start by
investigating the case of deterministic T , where a generalized
version of inequality (41) can be proved based on the following
concepts.

Definition 58. For any element tree T and parameter r > 0,
we define the polygon number of any growing point v to be
essential infimum of the LLR message returned by the BP
algorithm, constrained on the input message at v being r and
at all other growing points being −r. We define the polygon
number of the pair (T, r) to be maximum polygon number
over all growing points, and denote it by p(T, r).

Proposition 59. For any r > 0, an element tree T satisfies
the polygon condition if and only if p(T, r) < 0.

Proof. Recall Definition 44. By the monotonicity of BP, any
growing point is domiant if and only if their polygon number
non-negative. Thus, the polygon coditon holds if and only if all
of them are negative, which is equivalent to having p(T, r) <
0.

Proposition 60. Let QT denote the BP operator for any de-
terministic element tree T . Then for any non-trivial symmetric
µ and any ϕ ∈ (0, 1

2 ), we have

Bϕ □∗ QTµ ≺p QT (Bϕ □∗ µ), (60)

where p = p(T, rmax(Bϕ □∗ µ)).

Proof. We prove the proposition by induction over the size
of the tree. For the base cases where the element tree only

has one single vertex, there are two possibilities. If the tree
has a growing point, we have p = rmax(Bϕ □∗ µ) and QT

being the identity function. In this case, inequality (60) reduces
to ν ≺rmax(ν) ν with ν = Bϕ □∗ µ, which directly follows
from the definition of ≺p. Otherwise, let µo denote the survey
distribution on the only vertex. We have p = −rmax(µo) and
QT being the constant operator that returns µo. In this case,
inequality (60) reduces to Bϕ □∗ µo ≺−rmax(µo) µo, which
can be proved using the rule of box convolution on β-curves
(Proposition 21).

Now we prove the induction step by considering three
possible cases. Again, let o denote the root vertex. We first
prove the inequality when µo is trivial and the root has at
most one child. Note that the base cases have already covered
one-vertex trees. The root has exactly one incident edge in this
regime. We denote this edge by e, and the sub element tree
rooted at the unique child by T̃ . The induction assumption
implies

Bϕ □∗ QT̃µ ≺p̃ QT̃ (Bϕ □∗ µ),

where p̃ = p(T̃ , rmax(Bϕ□∗ µ)). It is clear that p = Fδe(p̃) and
QT ν = Bδe□∗QT̃ ν for any symmetric ν. Therefore, the needed
inequality in this case can be obtained by box convolving both
sides of the above inequality with Bδe , and the analysis follows
from the commutativity of box convolution and the second
property of Proposition 29.

For the second regime, we assume that µo is trivial, but the
root has at least two children. We create a new element tree for
each incident edge of the root, by removing all other incident
edges and their subtrees, and we denote them by T̃1, ..., T̃d.
Further, let j∗ be any index that minimizes rmax(QTj

µ). We
create another element tree, denoted by T̂j∗ , to be the sub
element tree of T that excludes everything from T̃j∗ , but not
the root vertex. It is clear that QTµ = (QT̃j∗

µ) ∗ (QT̂j∗
µ).

Hence, the following is implied by Corollary 25.

Bϕ □∗ QTµ ≺p∗ (Bϕ □∗ QT̃j∗
µ) ∗ (Bϕ □∗ QT̂j∗

µ), (61)

where p∗ = |Fϕ(rmax(QT̂j∗
µ)) − Fϕ(rmax(QT̃j∗

µ))|. Recall
that both T̃j∗ and T̂j∗ are not identical to the full tree in this
regime. The induction assumptions can be applied to each,
and we have the following inequalities due to that convolution
preserves degradation (see Proposition 48).

(Bϕ □∗ QT̃j∗
µ) ∗ (Bϕ □∗ QT̂j∗

µ)

⪯ (QT̃j∗
(Bϕ □∗ µ)) ∗ (Bϕ □∗ QT̂j∗

µ) (62)

⪯ (QT̃j∗
(Bϕ □∗ µ)) ∗ (QT̂j∗

(Bϕ □∗ µ)) (63)

= QT (Bϕ □∗ µ).

Note that the above steps and inequality (61) exactly complete
a full chain of degradation. Similar to the basic settings, we
can prove the overall strict inequality in β-curves by keeping
track of the strict conditions for each individual step. We first
look at inequality (63). By induction assumptions, we have

Bϕ □∗ QT̂j∗
µ ≺p̂ QT̂j∗

(Bϕ □∗ µ),
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where p̂ = p(T̂j∗ , rmax(Bϕ□∗ µ)). Therefore, by choosing ℓ =
rmax(QT̃j∗

(Bϕ □∗ µ)) for the rule of convolution, inequality
(63) provides strict conditions for

s ∈ (p̂− rmax(QT̃j∗
(Bϕ □∗ µ)),

rmax(Bϕ □∗ QT̂j∗
µ)− rmax(QT̃j∗

(Bϕ □∗ µ))].

The lower boundary of the above set is no greater than p,
because it is exactly the maximum polygon number over
growing points that are within T̂j∗ . As mentioned earlier,
inequality (61) already provides non-zero gaps for s ∈
(p∗, rmax(Bϕ □∗ QTµ)]. Given our choice of j∗, we also have
p∗ = rmax(Bϕ □∗ QT̂j∗

µ) − rmax(Bϕ □∗ QT̃j∗
µ). Therefore,

when T̃j∗ is simple, we have

QT̃j∗
(Bϕ □∗ µ) = Bϕ □∗ µ = Bϕ □∗ QT̃j∗

µ,

and we have already established strict inequality for s ∈
(p, rmax(Bϕ □∗ QTµ)].

When T̃j∗ is not simple, we also need to investigate in-
equality (62). Similarly, by applying rule of convolution to
the induction assumption, with ℓ = rmax(Bϕ □∗ QT̂j∗

µ), and
using the fact that β-curves are even functions for symmetric
distributions, we obtain strict inequalities for

s ∈ (rmax(Bϕ □∗ QT̂j∗
µ)− rmax(QT̃j∗

(Bϕ □∗ µ)),

rmax(Bϕ □∗ QT̂j∗
µ)− p(T̃j∗ , rmax(Bϕ □∗ µ))).

To proceed, we need to prove a simple fact: for any T̃j∗ being
non-simple, we have

p(T̃j∗ , rmax(Bϕ □∗ µ)) < rmax(Bϕ □∗ QT̃j∗
µ). (64)

Let v be a growing point in T̃j∗ that maximizes the polygon
number for r = rmax(Bϕ □∗ µ), and let δ1, ..., δk denote the
parameters of the edges on the path from the root to v. We
define p0 = rmax(Bϕ □∗ Bδ1 □∗ ...□∗ Bδk □∗ µ). We have p0 >
p(T̃j∗ , rmax(Bϕ □∗ µ)), because p0 is exactly the output LLR
message of the BP algorithm with the input at v being r and all
other inputs setting to 0 (including the surveys). Here we used
the commutativity of box convolution. On the other hand, note
that Bδ1 □∗ ...□∗ Bδk □∗ µ ⪯ QT̃j∗

µ, because the first quantity
corresponds to a network with strictly less observation points.
Hence, p0 < rmax(Bϕ□∗QT̃j∗

µ), and inequality (64) is proved.
This implies that the upper boundary of the set obtained from
inequality (62) is greater than p∗. Thus, the union of all three
intervals covers the entire (p, rmax(Bϕ □∗ QTµ)].

Having proved the induction step for any element tree with
trivial µo, we consider the third regime where µo can be any
symmetric distribution. Let T̃ be the element tree obtained
by removing the survey channel at the root from T . We have
QT ν = µo ∗ QT̃ ν for any symmetric ν, and we have already
proved that QT̃ .

Bϕ □∗ QT̃µ ≺p̃ QT̃ (Bϕ □∗ µ), (65)

where p̃ = p(T̃ , rmax(Bϕ□∗ µ)). The above inequality leads to
the following chain

Bϕ □∗ QT̃µ = Bϕ □∗ (µo ∗ QT̃µ)

⪯ µo ∗ (Bϕ □∗ QT̃µ)

⪯ µo ∗ QT̃ (Bϕ □∗ µ) = QT (Bϕ □∗ µ).

The first inequality is a direct application of Proposition 32,
and it states strict inequality in β-curves for

s ∈ (Fϕ(rmax(QT̃µ))− rmax(µo), rmax(Bϕ □∗ QT̃µ)].

Apply rule of convolution to the second inequality with ℓ =
rmax(µo), we obtain strict conditions for

s ∈ (p̃− rmax(µo), Fϕ(rmax(QT̃µ))− ℓ].

By the definition of polygon number, the lower boundary of
the above interval is exactly p. Hence, we have proved that
the overall degradation implied by the above chain has strict
inequalities in β-curves for all s ∈ (p, rmax(Bϕ□∗ QT̃µ)].

We present another important fact.

Proposition 61. For any distribution PT , non-trivial symmet-
ric point µ, and any ϕ ∈ (0, 1

2 ), let r = rmax(Bϕ □∗ µ), we
have

esssupFT (r) ≥ r. (66)

Moreover, the above inequality is strict if and only if PT is
non-trivial.

Proof. The stated inequality is a direct consequence from the
third statement in Proposition 46, by taking rmax on both sides
and using the fact that µ is a BP fixed point. So, our proof
will be focused on the strict condition. Specifically, it is clear
that the equality condition holds for trivial PT , because FT

is the identity function w.p.1 under such condition. We only
need to prove the converse, showing that the equality condition
implies the trivialness of PT .

For convenience, we define

α(s; ν) ≜ β
(
tanh

s

2
; ν

)
− tanh

|s|
2

for symmetric ν. Our proof relies on the following property,
which is proved in Appendix E-A.

Proposition 62. For any element tree T , symmetric ν, and
s ∈ (0, rmax(ν)), we have

α (FT (s);QT ν) ≤ tanh
FT (s)

2
· α (s; ν) / tanh

s

2
, (67)

where QT denotes the BP operator for the fixed T . The
equality condition holds if and only if T has no more than
one growing point and all survey distributions are trivial.

Assume the equality condition of inequality (66). We have
FT (r) ≤ r w.p.1. Note that α(s, ν) is non-increasing for s ≥
0. This condition implies

α (r;QTµ) ≤ α (FT (r);QTµ) .

Recall that µ is non-trivial and ϕ ∈ (0, 1
2 ). We have

r = Fϕ(rmax(µ)) ∈ (0, rmax(µ)). Hence, one can apply
Proposition 62 to the above inequality and obtain

α (r;QTµ) ≤ tanh
FT (r)

2
· α (r;µ) / tanh

r

2
≤ α (r;µ) .

(68)

Because µ is a BP fixed point, two sides of the above inequal-
ities are identical in expectation. Therefore, we need all equal-
ity conditions to hold in probability. First, r ∈ (0, rmax(ν))
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implies α (r;µ) > 0. We must have FT (s) = s w.p.1 for
the second step in inequality (68). Then, combined with the
equality condition stated in Proposition 62, the tree T must be
simple w.p.1, implying that PT is trivial.

Now we use these results to prove Theorem 45.

Proof. The first statement relies on the linearity of β-curves
and Proposition 60. As proved earlier in this appendix (recall
Proposition 59 and Proposition 60), any element tree T that
satisfies the polygon condition with parameter r = rmax(Bϕ□∗
µ) implies

Bϕ □∗ QTµ ≺p QT (Bϕ □∗ µ)

for some p = p(T, r) < 0. From the fourth property of
Proposition 23, we essentially have

Bϕ □∗ QTµ ≺ QT (Bϕ □∗ µ).

Given this relation, any T that is representative implies strict
inequalities in β-curves for all s ∈ [0, r]. By linearity, the
same non-zero gap condition holds for two sides of inequality
(41). Hence, the needed strict degradation is implied by the
fact that rmax(Bϕ □∗ QPT

µ) is exactly r, as µ is a BP fixed
point.

To prove that random self-concatenation leads to represen-
tative trees with non-zero probability, it suffices to find a
subset of element trees with non-zero measure on PT , such
that all self-concatenations within this subset is representative
for some fixed h. Recall that PT is not simple. According
to Proposition 61, we can find r̃ > r such that P[FT (r) >
r̃] > 0. Hence, let T be the subset of element trees satisfying
FT (r) > r̃, the set T has non-zero measure.

Now we show that there is a fixed h such that all self-
concatenations within T with h steps lead to element trees
satisfying the polygon condition. Assume the contrary, by
Definition 44, for each sufficiently large h there is a concate-
nation T(h) of trees from T and a growing point v at the leaf
such that the polygon number of v is non-negative. We utilize
the following proposition, proved in Appendix E-B, which
essentially provides an upper bound of polygon numbers using
FT (r).

Proposition 63. Consider any element tree with k growing
points and a list of non-negative numbers r0, r1, ..., rk. Let s
denote the essential supremum of the output LLR message for
the BP algorithm with k inputs at the growing points given
by r1, r2, ..., rk, and let p denote the essential infimum with k
inputs given by r0,−r2,−r3, ...,−rk. If p ≥ 0, then p+ s ≤
r0 + r1.

Let L denote the path from the root to v, and let T1, ..., Th

denote the element trees that overlaps with L in the sequential
order that the root belongs to T1 and v belongs to Th. Let oj−1

denote the root of Tj , and let oh denote v. We consider the
BP algorithm on T(h) where the input is r for v and −r for
all other growing points. Let pj denote essential infimum of
the message sent from vertex oj . Because all inputs except for
the one at v are negative and p0 is non-negative in the end,

the essential infimum for all messages sent from vertices on
L must be non-negative, i.e., p0, ..., ph ≥ 0.

Now we use Proposition 63 to derive a recursive relation
between these quantities. Consider each Tj , let pj be the input
at its growing point on L (i.e., oj). For each other growing
point, let their input be the essential infimum of their message
sent in the above process. Then the essential infimum of the
message sent from oj−1 is exactly pj−1. We view the input
at oj to be r0, and the inputs at all other growing points to
be −r2,−r3, ...,−rk. Then the variable p in Proposition 63 is
identical to pj−1. Consider the other set of input configurations
with r1 = r. Because of the monotonicity of BP algorithms
and FT (r) > r for all element trees in T , all r2, ..., rk are
lower bounded by r. Again, due to monotonicity, we have
s ≥ r̃. Therefore, Proposition 63 states that pj−1 ≤ pj−(r̃−r).

Because ph = r is finite, and r̃−r is a fixed positive number
given T . There can be at most finitely many h for the recursion
to holds with p0 ≥ 0, which leads to a contradiction.

A. Proof of Proposition 62

Note that any BP operator is a composition of convolution
and box convolution. We prove the inequality by keeping track
of all the composition steps. We first state the specialized state-
ments for each building block in the following proposition.

Proposition 64. Consider any symmetric ν and s > 0.
1) For any δ ∈ [0, 1], we have

α(Fδ(s);Bδ □∗ ν) =

(
tanh

Fδ(s)

2

)
· α(s; ν)
tanh s

2

. (69)

2) For any symmetric τ and r ≥ 0, we have

α(s+ r; ν ∗ τ) ≤
(
tanh

s+ r

2

)
· α(s; ν) + α(r; τ)

tanh s
2 + tanh r

2

,

(70)

where the equality condition holds if and only if either
r = 0 and τ is trivial, or α(s; ν) = α(r; τ) = 0.

Proof. The first property follows from the rule of box con-
volution on β-curves (Proposition 21). To prove the second
property, consider independent variables Rν ∼ ν and Rτ ∼ τ .
We have

α(s+r; ν∗τ) = E
[
max

{
tanh

|Rν +Rτ |
2

− tanh
s+ r

2
, 0

}]
.

By symmetry condition, the above quantity can be written as

α(s+ r; ν ∗ τ) = E[f(|Rν |, |Rτ |)],

where

f(|Rν |, |Rτ |) ≜



tanhmax
{

|Rν |
2 , |Rτ |

2

}
− tanh s+r

2

if s+ r < ||Rν | − |Rτ ||,

1
2

(
tanh |Rν |+|Rτ |

2 − tanh s+r
2

)
·
(
1 + tanh |Rν |

2 tanh |Rτ |
2

)
if ||Rν | − |Rτ || ≤ s+ r < |Rν |+ |Rτ |,

0 otherwise.

.
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Note that the RHS of inequality (70) can be written similarly
as the expectation of the following function

g(|Rν |, |Rτ |) ≜
(
tanh

s+ r

2

)

·

 tanhmax
{

|Rν |
2 , s

2

}
+ tanhmax

{
|Rτ |
2 , r

2

}
tanh s

2 + tanh r
2

− 1

 .

By elementary calculus, we have

f(|Rν |, |Rτ |) ≤ g(|Rν |, |Rτ |).

Then by taking the expectation, we have proved inequality
(70).

When equality holds, we need f(|Rν |, |Rτ |) =
g(|Rν |, |Rτ |) w.p.1. We prove that either one of the
equality conditions stated in Proposition 64 is needed
for this statement. When s ∈ (0, rmax(ν)), we have
P[|Rν | > s] > 0. Then for any fixed |Rν | > s, the equality
f(|Rν |, |Rτ |) = g(|Rν |, |Rτ |) is equivalent to r = 0 and
trivial τ . Consequently, the first condition is needed in this
regime.

For the other case, we have s ≥ rmax(ν), which implies
α(s; ν) = 0. By symmetry, one can prove that inequality (70)
is strict for r < rmax(τ), given that we assumed s > 0. Hence,
in this case, equality also requires r ≥ rmax(τ), which implies
α(r; τ) = 0. To summarize, the second equality condition is
needed in this regime.

Proof of Proposition 62. If T has no growing points, then QT

returns a fixed distribution and FT (s) = rmax(QT ν). Hence,
the LHS of inequality (67) is zero. Then, because s < rmax(ν),
we have α(s; ν) being positive, and the inequality is proved.
The equality condition in this case is given by FT (s) = 0.
Recall that we assumed all edges to have non-zero capacity.
This condition is equivalent to having all survey distributions
be trivial, which is the same condition stated in the proposition.

In the rest of this proof, we assume T has at least one
growing point. Again, we prove the stated inequality by
induction over the size of the tree and the number of non-trivial
survey distributions. Consider the base case where T only has
one vertex. It has to be a single growing point. Therefore, we
have FT (s) = s and QT being the identity function. Hence,
the equality condition holds.

For the induction step, T has at least two vertices. We
can choose one incident edge e of the root vertex, such
that the corresponding subtree contains at least one growing
point. We consider two possible cases. First, if the root has
only one incident edge and µo is trivial, we let T̃ denote
the subtree obtained by removing the the root and edge e.
The BP operator can be written as QT ν = Bδe □∗ QT̃ ν
and FT (s) = Fδe(FT̃ (s)). Recall that T̃ has at least one
growing point and all edges have non-zero capacity. We have
FT̃ (s) > 0 for any s > 0. Hence, the rule of box convolution
on β-curves implies

α(FT (s);QT ν) = α(Fδ(FT̃ (s));Bδ □∗ QT̃ ν)

=

(
tanh

FT (s)

2

)
·
α(FT̃ (s);QT̃ ν)

tanh
FT̃ (s)

2

.

By applying the induction assumption on T̃ , the RHS of the
above inequality is exactly upper bounded by the RHS of
inequality (67). Furthermore, the equality holds if and only if
T̃ has exactly one growing point and all survey distributions
are trivial. This is consistent with the statement in Proposition
62.

For the other case, let T1 denote the subtree consists of T̃ ,
e, and a root with a trivial survey distribution; let T2 denote
the subtree that contains all other contents of T . We have
QT ν = QT1

ν ∗QT2
ν and FT (s) = FT1

(s)+FT2
(s). Because

T1 contains at least one growing point, we have FT1
(s) >

0. Thus, we have the following expression from the second
statement of Proposition 64.

α(FT (s);QT ν) = α(FT1
(s) + FT2

(s);QT1
ν ∗ QT2

ν)

≤
(
tanh

FT (s)

2

)
· α(FT1(s);QT1ν) + α(FT2(s);QT2ν)

tanh
FT1

(s)

2 + tanh
FT2

(s)

2

.

Note that both T1 and T2 contain either at least one less
vertex or one less non-trivial survey distribution compared
to T . Hence, induction assumptions can be applied, which
exactly gives inequality (67). On the other hand, recall that
α(s; ν) > 0 and FT (s) > 0. The overall equality requires
α(FT1(s);QT1ν)+α(FT2(s);QT2ν) > 0. Hence, to satisfy the
equality condition of Proposition 64, we need FT2

(s) = 0 and
QT2

ν is trivial. Because s is positive, these conditions imply
that T2 has no growing points, and all its survey distributions
are trivial. Again, because FT (s) > 0, overall equality requires
the equality condition for the T1 induction. Therefore, T1 can
have at most one growing point, and all its survey distributions
are trivial as well. Combining the requirements on T1 and T2,
the element tree T must have have at most one growing point
and all trivial survey distributions.

B. Proof of Proposition 63

Proof. Let v0 denote the root, and L = (v0, v1, v2, ..., vℓ)
denote the path from the root to the first growing point. When
the inputs are given by r1, r2, r3, ..., rk, let qj be the essential
supremum of the summation of all messages received at vj
excluding the one received from the path. Because messages
are degraded when passing through each edge, the final output
is upper bounded by the summation of all external messages
received on the path, i.e.,

s ≤ r1 + q0 + ...+ qk−1.

When the inputs are given by r0,−r2,−r3, ...,−rk, let pj
denote the essential infimum of the message sent from rj .
Because p ≥ 0 and all input messages except for the first
growing point are non-positive. We must have p0, ..., pk ≥ 0.
Thus, the essential infimum of the message received at rj from
the path is no greater than pj+1. By symmetry, the essential
infimum of the summation of all other received messages at
rj is −qj . Hence, we have pj ≤ pj+1−qj , which implies that

p ≤ r0 − q0 − ...− qk−1.

Combine these two bounds, we have p+ s ≤ r0 + r1.
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