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Abstract

Hamiltonian field theories, for models of nonlinear plasma dynamics,
require é Poisson bracket structure for functiohalsvof the field vérig
ables. " These are presented, applied, and derived for seyera] sets of
field variables: coherent waves, incoherent waves, particle'diStribu-'_
tions,iand mu]tif]uid-e]ectrodynamics. Parametric coupling of waves and
plasma yields concise expreséions for ponderomotive effects (ih kinetic

and f]uid”models) and for induced-séattering.
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I. Introduction

A deeper understanding of plasma processes can.be obtained from
formulations that exhibit the Hamiltonian structure underiying those
processes. Such formulations have only recently been_fkeedl_from the
widespread belief that canonically conjugate fields are required for a
Hamiltonian structure. Oh‘éxamihiné'the féchﬁﬁdues:of'Hémi]tonian
-dynamics, one recognizes that its esseﬁtia] ingredients are: (1) a

Poisson bracket (PB) rule L
[ALVA=A, OB

that gcts»biLingarJy,ﬁantisymmetrica]ly,Aand_as_aifjrstvderivatjve on

observab1e§.Ai of -the system studied; and (2)_a,Hami]thian H. which ..

governs_the.evolution of.observables\py,the nulé,'

A=[aH]  w

It is he]bfu] to separate the two parts of the Hamiltonian structure.

The PB part, or Poisson structure, appears to bé more fundamental, and
in some sense unique; we_hse the term "natural" to characterize those

structures which look fundamental.

In this paper we shall present some Poisson structures appkopriate

to plasma dynamics, showing how they may be used to deal with problems

that are much more difficd1t 6&gnoanamijfoh{éh'méthods; we sth] §1564

indicate how these structures may be derived.

>
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The dynamical systems we shall deal with are particle distributions
f(g) in single-particle phase space; wave-action densities \J(x,k) in ray
phase space; action J(i) and phase 4{5) for eikonal waves in x-space;

fluid models in Zfspace.

II. Incoherent Waves

Perhaps the the simplest example of a natural noncanonical Poisson

structure is that for action densities. We begin by introducing the

canonical phase space y = (53'5) for rays. For functions ai(y) on

this space, we define the ray PB as

R B S

{a .a:-) : 9a| ng_ QQ| 9&,_

Note that the right side is again a function on phase .space; the rule

(3) defines a Lie algebra.

~ Next consider the space of act1on densities 9(x, k), for a given

wave branch ‘and functionals of action dens1ty, A. gﬂ) As an example, -

consider the linear wave energy
H(‘})‘ fd?}(&ﬁ)%(gﬁ), | (4
where w (x, k) is a root of_é real (Tinéar).dispersion equation

D ;% x)=0 " ‘ - (5)



For weakly nonlinear wavés; a suitable model fszv-
H(9)= jdg‘? E(ﬁ)wo(fa)‘(' éj‘f’yfd{’?’}(g)é(g')wa(gﬁal) (6) -

Thus functionals may be linear or nonlinear. Other examples are the

(linear) wave momentum
and the (non]inear) wave entropy
SO)= Jay L8000 @
- For two functionals A,B, the PBAisza -
~TAB)= (b N(q) {A, Be), @
[ ,’B]_ Iy ,(:3) {f )’ .),}. L
where A, = 6A/89(Z) is tﬁe functional derivative, and is a funchon-on
ray pha2

e space, for which the PB (3) is defined. The right side of (9)

ié'again a functional. .FgomffhefgénéfaT ru1e*(2) forﬁévéjhtidn, we nqw
A = d".;»,..A M,
‘[\ _ Jﬂ Er.& {i 9_) 3})
I g o\

have

0

(10)



Yt fGhetugd=e

uponlihtegration by parts.  But by imp1ic{t‘differentiatibn, we a1so have

/i())zfd‘; pya)(#)/af.. BRIty

By comparihg’(lO) and (11), we deduce the nonlinear Liouvine eduation

for action density (often ca]]ed"the "wave-kinetic equation"):

where

wlgg)= SHO/ S o

.;iﬁgthe.local?nonlinear_wave frequency. For .the example (6),

(9= wlp) + [y w gt oo

The Liouville equation states that action density is invariant along

..rays. The ray equations g_; am/akﬁ,£_= -dw/ax are the canonical

~ equations for the nonlinear ray Hamiltonian (13), which is the .

functional derivative. of the wave Hamiltonian H(g),. .

The Hami]ténian functional approach allows us to use Noether's
theorem, to relate invariants and symmetries of the Hami]tonian.' At a
simpler 1éve1, we see from'(ZA)‘ thélt"AV(9)._ .1"s_ invariant under fhe

Hamiltonian iff [A, H]=0.



As a first example, suppose that the coefficients w, and wy in
'(6) exhibit some geometric61 s§hmef;y, e.q., akfa1 sym@é¥ry.' It then
follows from (9) and (3),th§t{the wave angu]af'momentum,fdﬁy ﬁ?9(§,&)
'is invariant. S o | .

“f‘As_gnother exaw?le, wg cgq wrife B . | _ [

upon integrating'(9)'by'parfs; It félloﬁs that the set pf‘fuﬁctionals

of the form |

= ¢ n ‘ ' ,_,('16)
n=1,2,3, ...., are invariants under any H. (These are called
wCasimir functionals®.) This set;fdfm$ a basis fbh'fdnttiohalswA(g) =

\fd6y f(»), such as the entropy (8), which are thus invariant. -

I1I. Particle Distributions

- 'As the next example:’of a natural Poisson‘structure we consider "
'pafticie'distribUtions; ‘As in the -case of wéies,-werbegih with the-six
dimensional phase spacef;;for partit]é motion. ~ (For some purposes, ‘the
eight-dimensibna]~ex¥ended phase-space may be preferable.) - The PB for

functions on this space 1s3~ R o S [

1 9q, Gy |
557‘55’]: @ an

{'al 5" qi } =



where I/"(th) js the (antisymmetric) Poisson tensor {i”, z"}, whose
inverse is?the symb]ectic tWo-ferm. Fof’pertielee in a Weaklylnonuni-
form magnetic field, we adopt Littlejohn's expresswn4 fer Iuv"ﬁ
However our present formalism is coord1nate—free, so one cou]d use
non—phys1ca1 canon1ca1 coordinates (r, E) in (17).

As with waves, we next consider the space of Vlasov distributions
f(z), treating one species for:éimp1iCity. We are concerned with

functionals of f, such as the energy in the Coulomb model (poss1b1y in

an ambient magnetic f1e1d)

HiA)= fotl fayf ) + 4 [d% Jua! Fa) Fand ), (18)

“where h 'repreSehts-kihetie'eherdy, and h, repfesents Coulomb
: _1nteract1on (Note the ana]ogy to (6) ) Other examplee'of functionals

v'are the spat1a1 dens1ty at a po1nt x

M F )= [d Fa)nix;e), O (19)

where n(x;z) = 53(5 'uI(Z)) is the Hensity of one partic]e; and the

entropy:

SH#F)= ~ [ds fa)l. fa) k '<'zo€>

The PB for functionals of f is éﬁé]ogdus to (9):

[A ’BJ jdc [ ,.*B;).;“ | (21)



Performing the algebraic steps of (10) and (11), wg pbf§in the nonlinear

'V]asov‘equa?ion: |
f@i/e + {F(2), Rz £)) =0, ()
where the gelf;congistght particle‘Hémi]tonian i% | - L
‘K(%,:c).—. ” SH (:‘)/ §f(2). | (23) _
For the mo@ét (16)?_we haygvthe ;tandard resg]t

R F)= Ko () + [da/ R, g, fa). @)
As another illustration of}the power of a Hamiltonian forma]igm, we

now introduce a probability functional p(f) and the corresponding

gxpectation of A(f):
<AY = [Jaf AJp).

(The integration is functional) We may now follow the standard methods

of statistical mechanics»to obtajn_the Liouvi]le equatjonjfor p:
p(#)/ot = — Lp(#), K] )

and arguments for a coarse-grained:approach to a microcanonical ensemble

o(f)~ &(H(f) - E) or a canonical ensemble o(f) ~ exp(-8H(f)). In the



latter case, B“]vmay be intepreted as an effective temperature for

correlations. Adding an infinitesimal cbupTing of'ﬂ(f) to a

timetdependent perturbation yields the Kubo form of the fluctuation-.

'dissipation theorem. The "thermal® fluctuations in f represents waves

and clumps; the dissipation is the anti—Hermitién part of the
"turbulent" response matrix, re]ated,by Kramers-Kronig to the Hermitian

part of the response.

"IV. Wave-Particle Non-Resonant Coub]ing

Having introduced Poisson structures for waves and particles
separately, we now couple them by going to the osci]]ation—centerf,
descr1pt1on We use L1e transforms to remove the 11near wave

osc11]at1on from the partlcle mot1on6, and conS1der the d1str1but1on

'F(z) of osc11]at1on centers 7_ we adopt the Ham1lton1an ;

H(F)) H{F)-l—fol )(s;)w(,‘gsf:) | (21

“where H (F) is the ana]ogue of (18), wh11e m is a"root,of thé'

~F- dependent d1spers1on funct1on

’D(w,ﬁx f:) O T

The natural Poisson structure is now2 *-\" -
[A,B] = fdc g()t) {A) /g)
| “+=.fd§a Fo (AL ,BL)

(29)

Fva



where the PB's on the right are of course in the two separate phase

spaces. | J S _ S ,

From (2) a‘nd (29) we obtaip the coupled eyo]utidf\ e;q"ua'tions_for ) ‘

and F: o ) . o , | |

20y /ot + () (g F)y=0, (00) v
WFR)/AE + {Fa) K §,F)) =0,  (m)

where

wlyiR)s SHOLFN G, o

| K(;%J g, F)s JH(QJ F)/SF(%) | (3:1‘b‘) |

Thus \} and F each satisfies a LiOuQille equation in its respective phase
space; thevray:Hamiltonian m(x) depends on F, and the oscillation-center

Hamiltonian K(z) depends on \ and F.

“Since the ray and oscil]ation;center Hami]tbnians'(31)_are_the two
functional derivatives of H(?, F)é a reciprocity relation follows by

equating the mixed second functional derivatives: |
~SK(2)/«Y9(;) = Jw(g)/SF(i-,)ﬂ. | (32)
 For the mode! (27»), wh%cﬁ is linear in 3 (32) l'r"educés o
SK@)/JQ '(‘,3:) = — (3])/%))_'5:0(«),1‘,26; F)/J'F(g), (33)

- 10 -



where (28) has been used. This result, that the ponderomotive
contribution to K can'be obtaihed from the linear response D, has.

previously been derived by more explicit ca]cu]ations.5’8_

# V. Coherent Waves

So far, our descr1pt1on of waves 1s appropr1ate for the 1ncoherent
case, where phase 1nformat1on is absent To,1nc1ude phase 1nformatjon,
we introduce the set of phase functions \+35),-and their canonical

conjuéates, the'nave actibn-densities Ji(i):
A A

These represent the amp11tude and phase of the eikonal descr1pt1on of

the linear wave f1e1d

| n ke
EZ)=2e (x)[J(x)(@/aoo) 1*e e o)

/

(Near caustics, an equivalent deScription is available in Efspaée; -
better yet, the fields can be referred to Lagrangian submanifo]ds.g)

For functional's A(3,}), the PB follows immediately from (34):

B A By
- [A B} Zf"gx (SJ (zt) Stlzm 'J(@m JJ‘.(!)), - (%)

- 11 -



The equations of e_vo]ut_ion for.-%(x') and Jj(x) are canonical:.

T, (x)/od = SH/§P.(x), | (37a)

D"—PL.(x)’/at.-‘.-“ — SH/J J(x). (37b) It
The éimp]est apph’cationvis for the 1invearHami1".con1'ah:
- H(G y) = szae?x J)w (X, Wex)), (3

- where wo(x,k) is.again a root of (5). The evolution equations (37)

are then the standard Hamilton-Jacobi equation of the phase:
ak}i(?_()/ai = = (A)o (’)_C)V‘/JL (X)), (39a)

and the standard action "transport" equation:

'957;.(_3_6)/91: = — V- (Jx) a;f (_xj)_ | ~ (39b)

To make use of the phase functions S&(ﬁ,,we may now select
_ Hamiltonians that depend on \H, in 'additon to V‘H-, We begin with a [

model for three-wave interaction: (./

H = % Jx T (x) W (x, VWx)) -
+ (3,3 Yoy (- %-%) + e

40)

- 12 -
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)

where the coefficient 8(x, V4], V¥, T4;) can be obtained from the
trilinear terms in the oscillation-center HamiTtonian.lo This wave _
Hamiltonian yields the local Manley-Rowe relations aJl/at = - adljat =
- aJ3/at; the evolution equations are the standard onesl! for

nonuniform media..

VI. Wave- Part1c1e Resonant Coup11ng

R The 1nc1us1on of wave phase a]]ows -us to treat wave-particle
resonances To 11]ustrate we cons1der 1nduced scatter1ng of two
wave512 ("non11near Landau damp1ng"), the treatment of linear Landau

damp1ng and quas111near d1ffus1on is similar. ‘We adopt the Hamiltonian

H(J«p F)= H(F) + i’joe’x T, (x) <, (2, W F)

+ el 9, ose,-p)(w*e“‘?-‘%hc.c, .

where the (comp]ex) coup11ng coeff1c1ent B. can be expressed in terms of
the linear and bilinear suscept1b111t1es,»wh1ch in turn are express1b]e
as PB. :(For present purposes, the exp]icitiexpression for 8 is;not
needed; -we note,:howeyer;,that it is nonlinear‘in F because of shielding
effects. ) | L - .

Lettlng d/dt denote the contribution of the interaction term (H ),
we see that dJl/dt -:—dJZ/dt which is the Manley-Rowe relation.

Letting F = Fo * Fo, where F, is of order (J1J2) 172, ‘we_have

dR/aL -~{F SHe /F )
- - [& iE, KF/IF}(JT) ¢ 'i%)+6-c. (42)

- 13 -



The action is transferred as

dJ, fdd = SH" /%(x)

{g(F)(J )/1. L(%—%L) -}_-‘C.C_‘ S (43)

We expand g(F) = B(FO) + fHGZ F2 s8(x)/sF, and substitute from

(42), retaining only the terms which survive phé§e averaging. We 6btain
o(J/daL-——L fcl @xffz_(\?q/—v(&)-;+i(a$»~-—ﬁ)'t_]*
f 2 {F_, SF (x-5,%- z)/JF} f(s(zt,4=)/ﬂ-‘(a)

(s Aﬁ - 'cbw)

=- l JJ »Qm Solz.r dt e [F(x -e)li (x-.ré -7))

(44)
Because this eXpression is again in terms of PB, it can be immediate]y

app]ied”to plasma- in general geometry.

VII. Multifluid Electrodynamics

'Natural Poisson structures are known for sevefa}“fluid models. We
select, for discussion here, the.model of multifluid e]ectrodynamics;13‘
first, because its derivation is e]ementary?{and secondly, because:it is
easily used to.deduce ponderomotive effects. For simplicity, we omit '

species labels, and ignore thermal effects.

"The dynamical variables are mass dens1ty p( %), k1net1c momentum -

density g(x), and electromagnetic field E(x), B(x). The PB, for

functionals F(p,q,E,B) is 13

- 14 -



[FG) - Lﬁx(r vxc;' ~ F -6 )

s -?«z: v_g; - 50
G

RS A

(45)
, ~To use the- PB (45), we need a Hamiltonian functional of the

f]u1d—mode1 variables. we .adopt .the energy .-
, .

H(f’)ﬁ: E,B)= j-"‘j ( El VB&. +“;.f-'?1)'

| (46)
From (9)‘ (45), and (46), we obtain the evolution equat16ns:
C phts - pH) == Vg,
» /ot = —Q /o) + (efn) (e: +ux’B)
. 9/t = =g p) + lehp (
. - %/3{ OB — (e/n)%_
v | D’B/J{ = — WE.
(47)

- 15 -



VIII. Ponderomotive Effects on Fluids

. ¢ .

Now, in analogy to_our treatmenf of ponderomofive effects at the
kinetic level, we 1nvest1gate these effects at the f1u1d level by
coupling the fluid Ham1lton1an (46) and PB (45) to the wave Hamiltonian
(38) and PB (36). For purposes of 111ustrat1on, we use the coherent

wave description (the 1ncoherent one was used for the k1net1c problem),

and consider a.s 1ng1 wave,_fThus we’ adopt the total Hamiltonian

Joix (L E* + 1 B%+ 17" g"

+ Jx) W, (V,,‘P(z);f(zz %(2_4),1’:(25)) ), (48)

where now (o, g, E B) are interpreted as the slow fluid variables, -
which appear’ parametr1ca1]y in-the- (high) frequency funct1on w. (k,p,ﬂ, B),.

“which is a root of the dispersion equation:

e

The'tota] PB is now taken as the sumfof the fluid PB‘(45) and the nave
PR (36). |
Tt is now straightfonward to derive the equations of evolution for
the slow field (p,u,E,B) and for the wave (J,¥). We note that the
resulting equations automatically conserve . energy and momentum 'since
‘the Hamiltonian and PB are 1nvar1ant under shace tlme trans]at1on
For brevity, we wr1te down on]y two of the evo]ut1on equat1ons For

density, we have

af(x)/of_- -~ V- (% + JJo oW, /93)

- 16 -
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Now the Doppler shift -implies that o w,/ag = Jwg/au = k, so we

obtain

Wfot = —Q.(gqg + T VY |
£ (g + ), (50)
indicating that the total mass flux density consists of the quasi-static
part g and the wave momentum density Jk. |

For the other evolution equation, we choose the quasi—static

electric field:
/ot = Ux (B +J 94/0B ) — (ehe)(g + TVW) . (s1)

In the last term, we recognize: the wave-momentum contribution to
quasi—static current. ‘The other new term is evident]y'the'wave—induced
magnetization current lma’g =VUxM, with M = -J dwy/9B. By (49),. we

can write the magnetization as

—

M = (/o) T 2D/9B,

and by (35) as

]

M

Ef*EJ-“aeij /9B NS

-17 -



where Efis-the‘wave»amplitude,,and € is the co]d—fluﬁdvdieléctric ten-
sor. 'This is the standard result of Pitaevskiils, and serves as a
check- point for our'fqrmalism. In the Timit of weak B, the Hall term

in é’yie]ds the result
M= de/m) (W /WIETE, e e

~ which has been derived by many authors and methods.

ookt

IX. Derivation of Poiséoﬁ Structﬁfes’_u'

Finally, we'vindi"c;aie.how‘ these various PB may be derived, fdu'c.hing
on the main concepts, but omitting details. We begin with a derivation
of the_Poisson‘strthUrevfor“a~single-coherent eikonal Wave,ls-treat-
‘ing the ‘scalar'case for simplicity, and omitting the 2= of fourier
transforms. - |

Let the potential ¢(x) satisfy a sé]f;aﬂjéiht'linear ihtegraT

equation:
Jdl% & e x)px)= 0, (54)

where x = (x,t), and €(x',x) ='EKx,X'). This is eduiva]ent'to the

variational principle §S = 0, where A

o

S($)= Jd% Jd'’ &(x x7) Px) P(x). (55)

- 18 -



Introduce the.loca] spectra] density

4>(x,£) jdLJ ¢(”‘+ 5) ¢(¥—-J) Sik

(56)
: and the local dielectric function
; é(og 'f'_.')‘= f&q,r €(’)£+-J' x—-.r) e—lﬂj (57)
| whére ;:— (Kywy). ‘Then a short catcu]ation yieldé
S@) = S furt eon &) $0xb). (58)
Insertion of'tﬁe eikonal f&rm :
</>(x) (7;) exp 'bLP(x) + c.C. (59)

into (56), and phase averaging, yields

439'(&,#; tw)= &, ) P4 — W)+ i

a—t{_x,é)}w)
- substituting (60) in‘\to (58), we .havé - - |
noo S= Ju jeéx B, 'E) e(xt 1= W» w:—?‘P/«?U
- - fou 5&& L_ (zc,t v, aLF/at cb) o
6

19 -



By the canonical methods of Lagrangian fie]d theory, we deduce that the
conjugate to \L(x) is sLls(aQ)/at) = - 62 3e/ow = - JW(._x_), so that
{3(x),HUx" )} = 8(x—x"), which is (34). Vahiation of S with respeét to §
yields o

€(x,t,t,w)=0 (62) o

the dispersion equation. The canonical Hamiltonian for (61) is, USihg

(62),

Sl [(=T)odlot ~ L)
J% Tx)w, (£= =), x,4). (63)

H

The extens1on to several waves is trivial.

" To find the PB for functionals ofg, we f1rst relate )to LY:
g(x )= 2 J&®) Sf({ - Vkl»(x)) (e

Then using (36), we calculate [>(‘%) g(gi)] we omit the details.

F1na11y, we ca]cu]ate

6 ¢ / :: v (o /‘4 -
[AQB§)] = B [ A)(gp%,)[w),%)],<ss>
. n
and substitute the pfeceding'bfacket. After some manipulations, the |

result is (9).

Next we turn to functiona]S'of partic]e distributions.l? As in

(65), we have

[A(£),BE] = e fa‘- 'A ’8“ ) [$es, &(a./)] (66)

- ,20_ L



We express f(z) in Klimontovich form (analogous to (64)):
¥ S5 $%a s | | o
@)= 2 3(2-¢g;), o (67)
and-consider

[fG)dan]= T [a-z), Sal-g)

Py
. ! (68)

 Now we interpret the right side of (68) as .a PB on the many-particle

phase space:

| Y
[fa)#:)])= 2 I (3, )3 Sc(g-zé)/ai‘f‘ IE (69)
v 055~ 2,)/027 ] .
Substitution of (69) into (66), and manipulation, yield

[AB) = Jd% Fi) ") (aAf/ae“)(D B, /22”)(10)

which is (21).
" Lastly, we derive one set (as illustrative of the methodll) of the
terms of the PB (43) for fluid electrodynamics. For functionals of

momentum density g, we have

[F&]= [obx ot SF/fgr(x) SG/X%W . (71)
| x [%}‘(Z)} ?y (ZI)J .

We represent g(x) analogously to (67):

v (X-)_z Z m Sl -2y, (72)

- 21 -



and use the known PB for the noncanonical particle variables (55’!j)'
After some a]gebra,Awe obtain all the terms of (45) bilinear in Fﬂ and
93- For functionals of all the variables, one introduces the usual
electromagnetic canonical structure, and obtdiné (45).

X. Conclusions )
In cdnc]usion, the recent discovery of‘Poisson structures for many

systems of interest boses several ché11eﬁges5 ‘How are.fhey ré]ated to

each other? How can they be derived from firét princip]es? How should

dissipativel8 and stochastic perturbations be incorporated? How can

they be EXpToited-to simplify old results and derive new results ?v
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