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Abstract 

LBL-14683 

Hamiltonian field theories, for models of nonlinear plasma dynamics, 

require a Poisson bracket structure for functionals of the field vari-

ab1~s. These are presented, appli~d, and derived for several sets ~f 

field variables: coher~nt waves, incoherent waves, particle distribu-· 

tions, and multifluidelectrodynamics. Parametric coupling of waves and 

plasma yields concise expressions f9r ponderomotive effects (in kinetic 

and fluid models) and for induced scattering. 

* This work was supported by the Office of Energy Research, Offices of 
Fusion Energy and of Basic Energy Sciences, of the U. S. Department of 
Energy, under Contract No. DE-AC03-76SF00098. 

Presented at Chalmers Symposium on Plasma Theory and Experiment, ~ 

Aspenasgarden, Sweden, 16-18 June 1982; to be published in Physica 
Scripta. 



I. Introduction 

A deeper understanding of plasma processes can be obtained from 

formulations that exhibit the Hamiltonian structure underlying those 

processes. Such formulations have only recently been freed l from the 

widespread belief that canonically conjugate ,fields are required for a 

Hamiltonian structure. On. ~xaminin~ the ~ech~~quesof Hamiltonian 

dynamics, one recog~izes that its essential ingredients are: (1) a 

Poisson bracket (PB) rule 

(1). 

that acts bilif1~arly,.antisymmetrically, .and as a.first derivative on 
- ,.,". " .' .. 

observable~ AJ o{:thesystem studi.ed; and (2). a Hamiltonian H. which 

governs the_evol~t~on ofobservables pyt~e ~ule 

o ,:. \. 

,4 (2 ). 

It is helpful to separate the two parts of the Hamiltonian structure. 

The PB part, or Poisson structure, appears to be more fundamental, and 

in some sense unique; we use the term "natural" to characterize those 

structures which look fundamental. 

In this paper we shall present some Poisson structures appropriate 

to plasmadynamics~ showing how. they may be used to dea' with problems 

that are much more difficult bynon-H.amiltonian methods; we shall also. 

indicate how these structures may be derived. 
..,' 
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The dynamical systems we shall deal with are particle distributions 

f(!) in single-particle phase space; wave-a~tion densities a(!'~) in ray 

ph~se space; action J(~) and phase 'H!) for eikonal waves in !-space; , 

fluid models in x-space. 

II. Incoherent Waves 

Perhaps the the simplest example of a natural noncanonical Poisson 

structure is that for action densities. We begin by introducing the 

canonical phase space y = (!, ~) for rays. 

this space, we define the ray PB as 

~" -
~((I gCC2,. _. 
J{ ~ ~~ 

(3) 

Note that the right side is again a ,function on phase 5pace; the rule 

(3) defines a Lie algebra. ( 

Next consider the space of action densities ~(!, ~), for a given 

wave branch; and functionals of action density, Ai~). As an example, 

consider the linear wave energy 

',. 

(4) , 

where Iil
O
(!' !.)is a root of a real '(linear).dispersion equation 

• r 
(5) 
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Fot weakly nonlinear waves, a suitable model is2 

"'. 

,'-H,) = Sol~ ~(:t)«{(:a) -I- i Jf; fa'V~(~) ~(~/) c.J.t(~)-tIJ. (6) 

Thus functionals may be linear or nonlinear. Other examples are the 

(linear) wave momentum 

(7) 

and the (nonlinear) wav~ entropy 

(8) 

For two functionals A,B, the PB is 2 : 

(9) 

where A~ = oA/o~(l) is the functional derivative, and is a functi'onon 

ray ph~e space, for which the PB (3) is defined. The right side of (9) 
. -

is again a functional. Ftom :the g~neral rule- (2) for evolution, we now 
'. \ 

have • 
A = Jd''a'l rAJ J I-lJ) 

- - Si,? A} (~J 1-1», 
(10) 
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• I 
~' 

upon integration by parts. ,But by implicit differentiation, we also have 

(11 ) 

. . 

By comparing-(lO) and (11), we deduce the nonlinear Liouville equation 

for action density (often called the "wave-kinetic equation"): 

(12) 

where 

(13) 

i',sithe local-,nonlinear wave frequency. For' the example (6), 

The Li,ouvi lle equation .states. that action density is invariant along . .. 
rays. The ray equations..! = alilla!.,!. = -alii/a..! are the canonical 

equatjonsfor the nonlinear ray Hamilton.ian (13), which is the 

functional derivati ve of the .wav~ Hami ltonian H{~ ),. 

The Hami lton ian funct iona 1 approach allows us to use Noether IS 

theorem, to relate invariants and symmetries of the Hamiltonian. At a 

simpler level, we see from (2) thatA'{~) is invariant under the 

Hamiltonian iff [A, H]=O. 

- 5 -



As a first example, suppose that ~he coefficients Wo and w2 in 

(6) exhibit some geometrical symmetry, e.g., axial symmetry. It then 

follows from (9) and (3) that. the wave angular momentum Jd6y k'l ~(~.,!.) 
is invariant. 

, As another example, we can write 
.... ,. ; 

(15) 

. . 

upon integrating (9) by parts. It follows that the set of functionals 

of the form 

(16) 

n = 1,2, 3, •.•. , are invariants under ~ H. (These are called 

III. Particle Distributions 

As the next eXample"oT it. natural Poisson"sttucture we' consider' 

particledistributi'ons. 'As in the ,case of waves, 'we begin with the'six 

dimensional phase space z for particle motion. (For sorTie purposes, 'the 
row 

ei ght-dimens ional ·extended phase space may be 'preferable.) The PB for 

f . 'h' . 3 unctlons on t is space 1S 

, :, 
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where lJA~(~) is the (antisymmetric) Poisson tensor [ill, z"}, whose 

inverse is'the symplectic two-form. For particles in a weakly nonuni­
ll" 

form magnetic field, we adopt Littlejohn's expression4 for I ; 

However, our present formalism is coordinate-free, so one could use 
. .' . 

non':"physicalcanonical coordinates (!.' E) in (17). 

As with waves, we next consider the space of Vlasov distributions 

fez), treating one species for simplicity. We are concerned with ..., 

functionals of f, such as the energy in the Coulomb model (possibly in 

an ambient magneti c field): 

. . 

where ho represents kinetic energy, and h2 represents Coulomb 

interaction. (Note the analogy to (6).) Other examples of functionals 

.~e thespati~i de~sity ata point i: 

(19) 

where n(x;z) = 6
3

{X - r~z)) is the density of on~ particle; and the 
- ,.,. - - fI'IlIoI 

entropy: 

( 20) 

The PB for functionals' of f i's5 analogous to (9): 

(21 ) 
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Performing the algebraic steps of (10) and (11), we obtain the nonlinear 

V1asov equation: 

(22) 

where the self-consistent particle Hamiltonian is 

. '., 

{( (!, ~ f ) ::: (23) 

For the model (16), we have the standard result 

As another illustration of the power of a Ham)ltonian formali~m, we 

now introduce a probability functional p(f) and the corresponding 

expectation of A(f): 

(25) 
! ", 

(The integration is functiona1J We may now follow the standard methods 

of statistical mechanics to obtain the Liouville equation for p: 

(26) 

and arguments for a coarse-grained 'approach tp a microcanonica1 ensemble 

p(f)- 6(H(f) - E) or a canonical ensemble p(f) -exp(-sH(f). In the 
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latter case, a- l may be intepreted as an effective temperature for 

correlation~. - Adding an infinitesimal coupli~g of H(f) to a 
\ 

time-:::dependent perturbation yields the Kubo form of the fluctuation- , 

dissipation theorem. The "thermal" fluctuations in f represents- waves 

and clumps; the dissipation is the anti-Hermitian part of the 

"turbulent" response matrix, related by Kramers-Kronig to the Hermitian 

part of the response. 

IV. Wave-Particle Non-Resonant Coupling 

Having introduced Poisson structures for waves and particles 

separately, we now couple them by going to the oscillation-center 

description. We use lie transforms to remove the linear wave 

oscnlation from t'he particle mo
i

tion6, and consider the distribution 

F(z) of oscillation centers. 7 We adopt the Hamiltonian - -

where Ho(F) is the- analogue of (18),while~0 is a root of the 

'F-dependent dispersion function: 

'f\ {'CA)' It. X' 1=)= O. ..Y II J -~ - J 

The natural Poisson structure is now2 

- 9 -
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where the PBIS on the right are of course in the two separate phase 

spaces. 

From (2) and (29) we obta~n the coupled evolution equations for J 
and F: 

(30a) 

+ (30b) 

where 

( 31a) 

K (L~-' FJ= .. JI4(J~ F )/H-(;!J. 
. . )', ~ . 

(3Ib) 

Thus & and F each satisfies a Liouville equation in its respective phase 

space; the ray Hamiltonian w{y) depends on F, and the oscillation-center 
. . _., . 

Hami 1 ton ian K C~) depends on ~ and F. 

Since the ray and oscillation-center Hamiltonians (31) are the two 

functional derivatives of H(~, F~, a reciprocity relation follows by 

equating the mixed second functional derivatives: 

.~ K(!)/f~· (~J ~ Jw(~J/fF(~),· (32) 

For the model (27), which is linear inJ' (32) reduces to 

-J 
~ K(!Jj cfJ ('-t) = - (~J)/dW) f])(W) ~~~j F J/[F(;YJ (33) 

- 10 -
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where (28) has been used. This result, that the ponderomotive 

contribution to K canobe obtai-neod from~the line~r response D~ has 

previously been derived by more explicit calculations. 6,8 

v. Coherent Waves 

So far, our description of waves is appropriate for the incoherent 
~. .;' , : . ,'~ ; . : 

case, where phase information is absent. To ,include phase information, 

we introduce the set of phase functions lI1x), and their canonical 't'i-

conjugates, the wave acti6n densities J.(x): ,,-
(34) 

;, " '. 

These represent the amplitude and phase of the eikonal description of 

the linear wavefi~ld: 

/ 

(Near caustics, an equivalent description is available in k-space; 

better yet, the fields can be referred to Lagrangian submanifolds. 9) 

For functionals A(J,'I'L the PB follows immediately from (34): 

(36 ) 
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The equations of evolution for </1 (x) and Ji (~) are canonical:. 

(37a) 

(37b) 

The simplest application is for the linear Hamiltonian: 

where Wo(~,~) is again a root of (5). The evolution. equations (37) 

are then the standard Hamilton-Jacobi equation of the phase: 

(39a) 

and the standard action "transport" equation: 

(3gb) 

To make use of the phase funct;'ons lfi (~), we may now select 

Hamiltonians that depend on ~, in additon to V~. We begin with a 

model for three-wave interaction: 

I-t :: ~ S£" J i (~) c.J (X I V ~.(XJ) 
1.:' 0" 

+Sct)x f (i~~)'1.~i(*-~-~) 

- 12 -
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r 

;:"l. 

where the coefficient a{~'\]<V1' V'l'2,V~3) can be obtained from the 

trilinear terms in the oscillation-center Hamiltonian. IO This wave J. 

Hami1~onian yields the local Manley-:R,owe relations aJ, /at = - aJJ../at = 

- aJ
3

/at; the evolution equations are the standard ones11 for 

nonuniform medi a •. 

VI. Wave-Particle Resonant' Coupling 

The inclusion of wave phase allows ·us to treat wave-particle 

r~sonances. To illustrate, we cons ider, induced scatteri ng of two 
. -. 

waves12 ("nonlinear Landau damping"); the treatment of linear Landau 
, . 

d90}ping and quasilineardiffusionissimi.lar. 'We adopt the Hamiltonian 

~'( J; \p ~'F ),:= 1-4 h ( l=) + .t. s cJ! IC J."o (X) Wo (~" V tf1 ; P) 
v 1.=1 

. rJ .)( )"t. i(~-~) (41) 
+ Jax ~(~.I Qtt:J Q~ ; F J, ~ e 1 2 +- C.CO

J 

". \ .. ,. 

where the (complex) coupling coefficienta.can be expressed in terms of 

the linear and bilinear susceptibilities, which in turn are expressible 

as PB. (For present purposes, the explicit ~xpression for a is not 

needed; we note, howe\(er,. that it is nonlinear in F because of shielding 

effects. ). 

Lettingd/dt denote the contribution of the interaction term (Ha), . 

we see t,hat dJ1/dt = .-dJ2/ dt , which is the Manley-Rowe relation. 

L~tting F = Fo + F2, where F2 is of ~rder (J1J2)1/2"we. have 

d~/cU..=-£ ~ j rH~ IfF), 

- -fcf:r f F;;, If IfF )(J; J,)~" e"f*-t/;)+c .c. 
(42) 

- 13 -



The action is transferred as 

d.. J, / cJ:! = f I-l ~I [l/r (l{) 
i~ (F )(.7; lz )'I .. e WI; -If-.. J +c. c. (43) 

We expand a(F) = a(Fo) +fd6
Z F2 oa(~)loF, and substitute from 

(42), retaining only the terms which survive phase averaging. We obtain 

dJ,IJ.L :: - i 1; J .. S.t~s ~f[d"llt - Q<'-").,r + i e~ - ~<>~ )d' 

)rJcl"~ l ~.J rf~ (2f-:IJt-t:)/IF=') r~ (~Jt)/[l=" (.!) 

r' (" i(l· 6 &: - 7: bwl' ' , 
:t J,J2 -A- Jcfs Jd~ €- . - [r(]{,i),t(~-JJ.j,-"t)). 

(44) 

Because this expression is again in terms of PB, it can be immediately 

applied 'to plasma in general geometry. 

VII. Multifluid Electrodynamics 

Natural Poisson structures are known for several fluid models. We 

select, for discussion here, the model of multi fluid electrodynamics;13 

f 
I~., 

irst, because its derivation is elementary, and secondly, because it is 

easily used to deduce ponderomotive effects. For simplicity, we omit 

species labels, and ignore thermal effects. 

'The dynamical variables are mass density p(~), kinetic momentum 

density ~(~), and electromagnetic field E(x), B(x). The PB, for 

~unctionals F(p,~,I,!) i~ 13 

- 14 -



[F, G) : Six (FE · Q ~ G.~ 
- -

F - Vx ~ ) 
~ E' - -

+ Sci x ((i . 'J F . ,.4 
+ fi,. (~i ~ 1. 

·F 
E -

To. use the PB (45), we need a Hami"l ton ian funct iona 1 of the 

fluid-model variables. We adopt .the ~nergy .. 

, l 

. 
From (2.), (45), and (46),. we obtain the evolution equations: 

dJ /~= - ~ Af H 4) = - ~ . .'d > . 

(45) 

(46) 

'J~ /.}f ~ -:- ~ "(~ ~ (r ) +,(e/,.,.) f (f +~)(~» 
~f/;){ == ~)(~ - (e/~) ~ J. 

';rB/~ ~ - ~xE - - . 

. (47) 
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VIII. Ponderomotive Effects on Fluids 

Now, in analogy to our treatment of ponderornotive effects at the 

kinetic level, we investigate these effects ~t the fluid level by 
f ,~.~ ¥ ' 

coupling the fluid Hamiltonian (46) and PB (45) to the wave Hamiltonian 

(38) and PB (36). For purposes of illustratiori, we yie the coherent 
1'" .~!'~,,# 

.' 

wave description (the incoherent one was used for th~' kinetic problem), 

and consider a,single~ave. -Thus we adopt the total Hamiltonian 

~ = S ot.3.x ( ~ EJ.. + l '"E oi.. + ip-' 3:t.. 
+ J"~) (.Jo (V~(~J j f(~l ~(~)J 13 (:1) J., (48) 

where now (p, ..9., I, .!!.) are interpreted as the slow fluid variables, . 

which appear parametrically in·tlie· (high) frequency 'function lIJo(!~3P'~' .!!), 

which is a root of the dispersion equation: 

.-'., . 

'J>(WJ ij f)~.1 'B) = o. (49) 

The total PB is now taken as the sum of the fluid PB (45) and the wave 

PB C~6). 

It is now strai~htfo~ward to detiv~ the'equatioris of evolution for 

the slow field (p,,!!,I,.!!.) and for the wave (J,'#1. We note that the 

resulting equations automatically conserve; energy and momentum, since 
. .. 6.f· , . 

the Hamiltonian and PB are invariant under space-time translation. 
'" 

For brevity, we write down only two of the evolution equations. For 

density, we have 

- 16 -
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\ 
">...,J 

('\ 

. -.... ) 

Now the Dqppler shift'implies that p awo/a.9. = awo/a.!! = j£, so we 

obtain 

(50) 

indicating that the total mass flux density consists of the quasi-static 

part .9. and the wave momentum density~k. 

For the other evolution equation, we choose the quasi-static 

electric field: 

In the last t,erm, we recognize :the wave-momentum contribution to 

quasi-static current. The other new term is evidently the wave-induced 

magneti zation current ~ag = VxM, with M = -J aWol a~. By (49), we 

can write the m~gnetization as 

and by (35) as 

M ( 52) 

- 17 -



...., 
where E is the 'wave amplitude,. and !is the cold-fluid dielectric ten-

sor. This is the standard result of Pitaevskii 15 , and serves as a' 

check- point for our for~alism. In the limit of weak !, the Hall term 

in £ yields the result -
(53) 

which has been derived by many authors and methods. 

IX. Derivation of Poisson Structures 

Finally, weindicateho~i these various PB may be derived, touching 

on the main concepts, but omitting details. We begin with a derivation· 

of the Poisson structurefor'asingle coherent eikonalwave,16 treat­

ing thescalar'case for Simplicity, and omitting the2w of fourier 

tr ansforlTis .', 

Let the potential ~(x) satisfy a self-adjoint linear integral 

equation: 

(54) 

where x = (~,t), and £'(xl,x) =£'(x,x l ). This' is equivalent to the 

variational principle 6S = 0, where 

(55) 

- 18 -
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Introduce the local spectral density 

(56) 

r;' 

and th~ local diel~ctric function 

(57) 

where k = (~'Wo). Then a short calculation yields 

Insertion of the eikonal form 

" ,; '"'-J 

t (x) = <P (X) r<41' i l/J(x) + c. C. ( 59) 

into (56), and phase averaging, yields 

. Substituting (60) ;nto,(58), we have, 

(I 

(61) 

) 

- 19 -



By the canonical methods of Lagrangian field theory, we deduce that the 

conjugate to Cj..tx) is 6L/6(a'¥/at) = - i2 a£/aw !! - J(~), so that - " 

{J(~),'k~')} = 6(x-x'),'which is (34). Var,iation of Swith respect to ~ 

yields 

'( 62) 

the dispersion equation. The canonical Hamiltonian for (61) i~, using 

(62), 

I-l - S &.,3,/ [( - J )'V'-/;/;)t.. --- L ] 

-= Sctl " :r(~ J Wo (~= \}CP(~JJ -ifJ i.). (63) 

The extension to several waves is trivial. ',.' " 

To find the PB' for functionals of J' we first relateJto J.J~: 

(64) 

Then, using (36), we calculate 

FinallY, we calculate 

[~(~), ~(~/)]; we omit the details. 

[A (~),13~)] = 9-''1 SdVA)(~}"B~(~,) [»(~J, ~(~/J], (65) 

I 

and substitute the preceding bracket. After some manipulations, the 

result is (9). 

Next we turn to functionals of particle distributions. 17 As in 

(65), we have 

[A (f).J '"BC!)]; Jclbt fct'oi' Af(!)13 f{!') [fClt f(~/J).(66) 
-20 -
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We express f(!) in Klimontovich form (analogous to (64)): 

(67) 

and consider 

(68) 

I Now we interpret the right ,side of (68) ,as a PB on the many-particle 

phase space: 

[:f (~), ~(~/) J = ? I~Y (!, J['d d~!-1)IVi:~ ] If (69) 

I( ~r& (~/- ~ .)/CJ:tt.': ] . LC ,... -, &. 

Substit~tion of (69) into (66), and manipulation, yield 

wh i ch is (21). 

Lastly, we derive one set (as illustrative of the method11 ) of the 

t~rms of the PB (43) for fluid electrodynamics. For functionals of 

momentum density ~, we have 

[F, G;. J = f,l" Jof'x/ ~ F I [~(Z) 'iG./rdS~'J • 
If [~r-(~).1 ~" (~/)J . 

We represent ~(~) analogously to (67); 

- 21 -
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and use the known PB for the noncanonical particle variables (~i'~i). 

After some algebra, we obtafn all the terms of (45) bilinear in F.9. and 

G,9.. For functionals of all the variables, one introduces the usual 

electromagnetic canonical structure, and obtains (45). 

x. Conclusions 

In conclusion, the recent discovery of Poisson structures for many 

systems of interest poses several challenges: How are they related to 

each other ~ How can they be derived from first principles~ How should 

dissipative18 and stochastic perturbations be incorporated? How can 

they be exploited- to simplify old results and derive ne'wresults ? 

- 22 -
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