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ABSTRACT OF THE THESIS 

 

How Radiation and other Forcing Factors Influence Snowmelt Runoff 

in Western United States 

 

by 

 

Chuyang Li 

 

Master of Arts in Geography 

University of California, Los Angeles, 2022 

 Professor Dennis P. Lettenmaier, Chair  

 

This study investigates how radiation and other forcing factors, such as temperature, 

precipitation, and snow water equivalent (SWE) influence snowmelt runoff in 20 river basins in 

the Western United States. The forcing values are derived from gridded observations of 

precipitation and temperature, and other surface variables (such as downward solar and 

longwave radiation, and humidity). Using daily runoff from U.S. Geological Survey streamflow 

records, this paper calculated several indexes to describe the timing and magnitude of snowmelt 

induced spring runoff peaks and rising limb of the hydrograph. Pearson correlation coefficients is 

used to analyze the relationships between forcings and runoff indexes. The results show that 

snowmelt runoff tends to be earlier and lower at higher temperature. With higher precipitation or 

SWE, snowmelt runoff tends to be later and larger. For most sites, with higher net radiation, 
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snowmelt runoff tends to be earlier. But only for some of the sites, with higher net radiation, 

snowmelt runoff tends to be smaller. For other sites, the magnitude of snowmelt runoff is not 

correlated with net radiation. 
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1. Introduction 
 

Snowmelt provides a crucial water resource for a large part of world's population, especially in 

the northern hemisphere (Mankin et al., 2015). Regions that rely on melt water from seasonal 

snow cover or glaciers include High Mountain Asia, Central Asia, western Russia, southern 

Andes, and the Western United States (Qin et al., 2020). Snowmelt in these regions is being 

impacted by climate change, although the direction and magnitude of changes highly depends on 

geographic location (Barnett et al., 2005). Particularly, in high-elevation regions like High 

Mountain Asia, snowpack and snowmelt changes tend to be determined by precipitation changes, 

while in low-elevation regions, declining snowpack and snowmelt are occurring due to warming 

temperatures (Adam, et al., 2008; Stewart, 2008) 

 

Spring snowmelt plays a key role in runoff in the Western United States (Stewart, et al., 2004). 

Li, et al. (2017) estimate that snowmelt contributes 53% of total runoff in the region, and this 

number is 70% when restricted to mountainous regions. Snowmelt also contributes about 40-

70% of ground water recharge in the Southwestern United States (Earman, et al., 2006). About 

60 million people rely on the rivers, reservoirs, and ground water aquifers of the Western United 

States (Bales, et al., 2006). These water sources all depend on the contribution of snowmelt, and 

hence accurate prediction of snowmelt processes is the basis of water management in the region. 

Snowpacks also serve as reservoirs themselves, accumulating water in mountains in winter, and 

releasing it to drier valleys in spring and summer. In so doing, the existence of snowpacks 

reduces flood risk and improves water-use efficiency in the Western United States (Barnett et al., 

2005). With warming climate, a larger portion of annual precipitation falls as rain rather than 

snow, which may result in increased of flood risk due to rain-on-snow events (Davenport, et al., 
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2020; Cho, et al., 2021). On the other hand, as the climate becomes even warmer, rain-on-snow 

events could decrease. Earlier snowmelt also can result in a higher risk of wildfire (Westerling, 

et al., 2006). 

 

Several studies have shown that the timing of spring snowmelt runoff in the Western United 

States, is occurring earlier (Cayan et al., 2001; Stewart, et al., 2004; Stewart, et al., 2005; 

McCabe & Clark, 2005; Mote, et al., 2005; Fritze, et al., 2011; Dudley, et al., 2017; Uzun, et al., 

2021). Factors that determine the timing of snowmelt runoff include precipitation, SWE, 

temperature, wind, vapor pressure, and radiation (Zuzel & Cox, 1975). Most research agrees that 

winter and spring temperature is the predominating reason for the shift to earlier spring snowmelt 

runoff however (Cayan et al., 2001; Stewart, et al., 2005). Nonetheless, more recent research 

shows that in low-elevation basins, the timing of snowmelt runoff is primarily determined by 

melt season temperature, while in high-elevation basins, winter precipitation also plays a role 

(Dudley, et al., 2017).  

 

Related to the shift in snowmelt runoff timing, the amount of snowpack (seasonal peak) is 

decreasing in most parts of Western United States (Hamlet, et al., 2005; Mote, et al., 2005; Mote 

et al., 2016). The decreasing trends in SWE (on or about April 1st, typically close to the seasonal 

maximum) are mostly due to a long-term increasing trend in temperature throughout the 20th 

Century, with precipitation variations a minor contributor (Hamlet, et al., 2005). However, at 

high-elevation (relatively cold stations) precipitation trends play some role (notably in the 

southern Sierra Nevada) (Mote et al. 2005).  At low-elevation stations with relatively mild winter 
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temperatures SWE trends are almost entirely attributable to the increasing trend of temperature 

(Mote et al., 2005). 

 

The magnitude (volume) of snowmelt runoff is also impacted by climate change. Berghuijs, et al. 

(2014) observed that with a larger fraction of precipitation occurring as rain instead of snow, the 

ratio of mean streamflow to mean precipitation generally is lower, possibly due to increased 

evapotranspiration in winter. Others have observed that with earlier snowmelt, the snowmelt rate 

tends to be slower, resulting in reduced snowmelt runoff (Barnhart, et all., 2016; Musselman et 

al., 2017). This is because reduced snowmelt rates result in larger partition to evapotranspiration, 

instead of subsurface or overland flow. However, there is a counteracting effect from vegetation 

water use that results in larger snowmelt runoff when it occurs earlier, because snowmelt occurs 

before the growing season, during which evapotranspiration is high (Barnhart, et al., 2020). The 

net effect of the above mechanisms is that climate-related changes in snowmelt runoff vary in 

different contexts, but overall, the relative contribution of snowmelt to total annual runoff is 

decreasing (Li, et al., 2017).  

 

Aside from the timing and volume of snowmelt runoff, the shape of the spring snowmelt runoff 

pulse can be important for water management. Dust on snowpacks affects net radiation and 

therefore the energy balance of a snowpack (Painter, et al., 2010). As a result, years with higher 

dust concentrations tend to have steeper runoff pulses (Painter, et al., 2018). Because earlier 

snowmelt occurs at a time of year with less available radiation, a warmer climate arguably could 

reduce the peak value and average slope dust-related the runoff pulses (Barnhart, et al., 2016; 

Musselman, et al., 2017). 
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Among all the factors influencing snowmelt runoff, temperature is mostly commonly used to 

predict the timing, magnitude, and shape of snowmelt runoff pulse, due to the widespread 

availability of temperature observations. However, it has long been argued that including other 

variables could improve the performance of snowmelt runoff predictions (e.g., Zuzel & Cox, 

1975). Historically, the degree-day approach has been widely used. In this approach, 

temperatures above zero are accumulated to reflect heat received by snowpack, and the result is 

used to predict snowmelt. The relatively simple Snowmelt Runoff Model (SRM) (Martinec, 

1975; Rango & Martinec, 1979; Kustas, et al., 1994) is based on this approach. By incorporating 

net radiation received by the snowpacks as a predictor, the performance of SRM has been shown 

to be enhanced (Kustas, et al., 1994; Brubaker, et al., 1996; Hock, 1999; Vafakhah, et al., 2015). 

Arguably, radiation is as important as temperature (if not more so), because the energy balance 

controls the snowmelt process, and solar radiation (in most cases, especially in springtime) is the 

major energy source (Painter, et al., 2007). Net radiation is mainly influenced by cloud cover and 

snow albedo. In some regions, such as the southern Rocky Mountains in Colorado, dust on snow 

reduces the albedo, and is an important component of interannual variability (Painter, et al., 

2012; Skiles, et al., 2015; Skiles, et al., 2018). Black carbon and organic carbon also contribute 

to this albedo reduction in some regions (Kaspari, et al., 2014; Zhang, et al., 2018). Reduction of 

snow albedo is likely to result in earlier snowmelt, and in some cases, reduction in total 

snowmelt runoff (Painter, et al, 2010; Painter, et al., 2018; Skiles, et al., 2018; Zhang, et al., 

2018). 
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Due to lack of radiation observations, previous research on the relationship between radiation 

forcing and snowmelt runoff has been limited to well instrumented sites, for instance in Colorado 

(Painter, et al, 2010; Painter, et al., 2018; Fassnacht, et al., 2022). However, the Western United 

States contains various landscapes and climate types (Bales, et al., 2006; Trujillo & Molotch, 

2014) which affect the space-time variations in net radiation. Here, this study extends the above 

studies to more sites across the Western United States and investigate the diversity of snowmelt 

runoff processes across the 20 sites across the Cascade Range, Sierra Nevada, the Rocky 

Mountains, Colorado Plateau, and the Great Basin. 

 

This study used the Livneh daily CONUS near-surface gridded meteorological and derived 

hydrometeorological data (Livneh, et al., 2013). The Livneh dataset, which is at 1/16th degree 

latitude-longitude spatial resolution across the conterminous U.S., provides a source of long-term 

meteorological forcings required to force large scale hydrological models. Net radiation in the 

Livneh data set is estimated using the Mountain Microclimate Simulation Model (MTCLIM; 

Thornton et al., 2000) algorithm. In the MTCLIM model, the only observed data is temperature 

(daily maximum and minimum) and precipitation. Downward solar radiation is estimated using 

the daily temperature range and vapor pressure. The reflectance is related to snow cover, slope, 

and vegetation type. The calculation of vapor pressure involves dew point (approximated by the 

daily minimum temperature with a correction for precipitation and net radiation). Because the 

calculation of vapor pressure and net radiation involves each other, an iteration is needed to 

approximate the result (Thornton et al., 2000). Bohn, et al. (2013) evaluated the performance of 

MTCLIM net radiation estimates globally, focusing on locations where short-wave radiation, 

long-wave radiation, and vapor pressure were all observed. Bohn et al. (2013) found that inland 
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sites have relatively unbiased estimates of short-wave radiation, compared with coastal sites. 

Estimates of long-wave radiation are relatively unbiased regardless of location. Because the sites 

chosen in our research all are inland in the sense used by Bohn et al. (2013), we argue that errors 

in the Livneh et al. (2013) net radiation should be modest. 

 

2. Study Site and Datasets 

 

2.1 Study Basins and Discharge Data 

 

This study examined daily discharge data at 20 USGS sites. The sites span 10 states of the 

Western U.S.: Colorado, Utah, Wyoming, California, Nevada, Oregon, Washington, Arizona, 

Idaho, and Montana. The sites also span a range of hydroclimatic conditions. They lie within the 

northern Rocky Mountains, middle Rocky Mountains (Yellowstone region), southern Rocky 

Mountains, Sierra Nevada, The Cascade Range, Colorado Plateau, and Great Basin. All the sites 

have complete discharge records from water year 1985 on, and some have complete discharge 

records as far back as 1910. All the sites are free of anthropogenic influences, such as large 

reservoirs and diversions upstream of the gauges. Discharge data are daily mean values in cubic 

feet per second. The data were downloaded from the USGS National Water Information System: 

Web Interface (https://waterdata.usgs.gov/) in July 2022.  

 

The drainage areas upstream of the USGS stream gauges were identified using Open Street Map 

(OSM) topographic map (Figure 2). The drainage basin areas range from 23 km2 (#09047700) to 

2154 km2 (#13185000).  
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Figure 1. Location of the 20 selected USGS sites. The topographic base map was obtained from 

USGS National Water Information System: Map View (https://maps.waterdata.usgs.gov/). 
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Figure 2. Satellite maps of selected gauges. Location of USGS gauges is shown by white 

squares with black centers. Basin boundaries upstream of gauges are shown with green lines. 

Scales (at lower right corner) are different for each map, depending on the basin area. 
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2.2 Radiation Data  

 

One problem that has limited research on radiation forcings in the context of runoff is the lack of 

direct observations. A commonly used high quality radiation observation dataset, SURFRAD 

(Surface Radiation Budget) network, which has records since the 1990s, only has three stations 

in the Western U.S. Some research sites also exist, e.g., within the upper Colorado River Basin at 

the Senator Beck Basin, which is an independent research site rather than a widespread network 

(Painter et al., 2018; Fassnacht et al., 2022). As a practical matter, studies of the vast region of 

the Western U.S. have little choice but to use radiation data from model estimates, which can 

take various forms. 

 

This study chose to use the radiation data from the Livneh daily conterminous U.S. (CONUS) 

near-surface gridded meteorological and derived hydrometeorological data (Livneh, et al., 2013). 

In the Livneh data set, the radiation-related variable is defined as the total amount of net 

longwave radiation and net shortwave radiation, which are both derived using the MTCLIM 

model introduced before. The resulting variable is net radiation. The spatial resolution of the 

Livneh dataset is 1/16th degree latitude-longitude, and the temporal resolution is 3-hour over the 

CONUS. We use the daily resolution instead of 3-hour resolution for the efficiency of 

calculation. Data are available for a 97-year period from January 1st, 1915, to December 31st, 

2018. The part from October 1st, 1991 to September 30th, 2011 is chosen as the study period. 

The data were downloaded from the NOAA Physical Sciences Laboratory website 

(https://psl.noaa.gov/data/gridded/data.livneh.html).  
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2.3 Meteorological Data  

 

Temperature, precipitation, and snow water equivalent are three meteorological and hydrological 

variables related to snowmelt runoff. Livneh dataset is also used as the source for these data. In 

the Livneh dataset, daily maximum temperature, daily minimum temperature, and daily 

precipitation are derived from observations at NOAA Cooperative Observer (COOP) stations. 

This station network, which includes about 20,000 stations, covers the CONUS. Daily snow 

water equivalent (SWE) in the Livneh data set is derived from the Variable Infiltration Capacity 

(VIC) model (Liang, et al., 1994) via energy budget closure. The VIC model generates 

hydrological and energy fluxes given the meteorological inputs. The spatial and temporal 

resolution and temporal coverage of these meteorological variables are the same as those for the 

radiation data (see Section 2.2). Considering the data coverage of our runoff data, radiation data, 

and meteorological data, we define a 20-year research period from water year 1992 to water year 

2011. 

 

3. Methods 

 

3.1 Indices Describing Snowmelt Runoff Peak 

 

This study used nine different indices to describe snowmelt runoff peaks: tQ25, tQ50, DS, DP, QS, 

QP, DL, QL, and S (full names and definitions are listed in Table 1). The first four (tQ25, tQ50, DS, 

and DP) describe the timing of snowmelt runoff peaks. The fifth and sixth (QS and QP) describe 
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the magnitude of snowmelt runoff peaks. The last three (DL, QL, and S) describe the shape of the 

rising limb of the hydrograph in the vicinity of snowmelt runoff peaks. We comment briefly 

below on the motivation and characteristics of the nine indices. 

 

Table 1. Full name and definitions of the indices designed to describe snowmelt runoff peaks. 
Indices Full name Definition 
tQ25 Time of 25% Runoff The date when 25% of total water year runoff has occurred 

tQ50 Time of 50% Runoff The date when 50% of total water year runoff has occurred 
DS Start Date The date when the snowmelt runoff peak starts 
DP Peak Date The date when the snowmelt runoff peak reaches its highest volume 
QS Start Runoff The daily average runoff of Start Date 
QP Peak Runoff The daily average runoff of Peak Date 
DL Date Length The number of days between Start Date and Peak Date 
QL Runoff Length The difference between Start Runoff and Peak Runoff 
S Slope of Peak The average slope of the snowmelt runoff peak 

 

 

tQ25 and tQ50 represent the temporal distribution of runoff. tQ25 is the date when 25% of the total 

water year discharge has occurred. Similarly, tQ50 is the date when exactly 50% of the total water 

year discharge has occurred. tQ50 of an entire water year is equivalent to the center of timing (CT) 

for a water year, which is a commonly used index reflecting runoff distribution (Stewart, et al., 

2004; Stewart, et al., 2005). Following Dudley, et al. (2017) and Fassnacht et al. (2022), tQ50 can 

be calculated for either a whole water year or a certain period, depending on the aim of the 

research. For example, tQ50 could be calculated over a period from January 1st to July 31st, or 

January 1st to September 30th, so that the influence of runoff peaks induced by autumn 

rainstorms is excluded from calculation. Here, considering that the normal starting time of 

snowmelt is always later than January, we calculate tQ25 and tQ50 over a period from February 1st 
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to July 31st. This period excludes the influence of autumn and early winter rainstorms. We 

define this period as the snowmelt season.  

 

To describe the snowmelt runoff pulse more accurately, this study identified the start date (Ds) 

and peak date (DP) of snowmelt runoff in each water year. The simplest definition of DP is the 

day with the highest daily runoff during the snowmelt season. However, narrow peaks created by 

precipitation events can complicate the interpretation of DP because these events occur randomly 

and do not necessarily represent real snowmelt runoff peaks. As a result, we redefined DP as the 

day around which the total runoff in a 30-day period is the largest. The index thus is defined as: 

 

𝐷! is 𝑛 when ∑ (𝑄")#$%&
"'#(%&  is the maximum, in which 𝑛 is the number of days since the start of 

water year, and 𝑄" is the daily average flow in the 𝑖)* day since start of water year. (365 should 

be 366 in leap years).  

 

To restrict the result to the snowmelt season, we limit the range of 𝑛 between 124 (Feb 1st) and 

305 (Aug 1st). (305 should be 306 in leap years).  

 

Identifying DS is not as straightforward as identifying DP. Cayan et al. (2001) first developed an 

algorithm that identified the onset of the snowmelt runoff pulse as the day when the cumulative 

departure from that year's mean flow is most negative. This is equivalent to identifying the day 

after which runoff is largely above average. This method works well for most high-elevation 

basins across the Western United States. Most research using this method adds a restriction to the 

occurrence time of the date, limiting the date to the snowmelt season, and excluding possible 
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high autumn runoff from rainfall (Cayan et al., 2001; Stewart, et al., 2005; Fritze, et al., 2011). 

Painter, et al. (2018) identify Ds as the date when deviation from the running mean flow since 

January 1st exceeds one percent. We compared the two methods, and decided to use the first one, 

since it captures the onset of streamflow peak more accurately, especially in basins with smaller 

peaks before the mean snowmelt peak. This method defines 𝐷+ as:  

 

𝐷+ is 𝑛 when ∑ (𝑄" −
∑ -!
"#$
!%&

./&
*#

"'%  is the minimum, in which 𝑛 is the number of days since the 

start of the water year, and 𝑄", 𝑄0 is the daily average flow in the 𝑖)* and 𝑗)* day since the start 

of the water year. (365 should be 366 in leap years).  

 

To restrict the result to the snowmelt season, we limited the range of 𝑛 between 124 (Feb 1st) 

and 305 (Aug 1st). (305 should be 306 in leap years).  

 

Thus, a method to extract the runoff value of these two dates (Qs and QP) from the daily runoff 

records is generated. 𝐷1 = 𝐷! − 𝐷+ is used to demonstrate the duration of the rising limb of the 

snowmelt runoff peak. 𝑄1 = 𝑄! − 𝑄+ is used to demonstrate the magnitude of the snowmelt 

runoff peak. Finally, we can describe the rising limb of the snowmelt runoff pulse and calculate 

its average slope (S): 𝑆 = -'
2'
= -((-)

2((2)
.  

 

The spatial distribution of average DS, DP, and QP are shown in Figure 3 (a-c). These three 

indices are typical indices for the timing and magnitude of snowmelt runoff, partly reflecting 

climate differences among sites. Because QP is proportional to the basin area, we further divide 

QP of each basin by area of the basin to generate a comparable amount. The spatial distribution 
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of QP/Area is shown in Figure 3 (d). DS and DP are influenced by both latitude and elevation. In 

general, sites in the Rockies and one site in the Cascade Range show later snowmelt than other 

sites. QP is largely influenced by basin area. QP/Area, which gets rid of this influence, generally 

reflects the humidity difference among sites. Sites in the Rockies, the Cascade Range, and Sierra 

Nevada generally show larger snowmelt runoff than sites in the Great Basin and Colorado 

Plateau. However, one Great Basin site (#10316500) has very large QP/Area value. This might be 

due to its small area and steep topology. 
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Figure 3. Spatial distribution of some of the indices and derived amount. They are (a) start date 
of snowmelt runoff (DS), (b) peak date of snowmelt runoff (DP), (c) peak runoff of snowmelt 
runoff (QP), and (d) peak runoff of snowmelt runoff divided by basin area (QP/Area). Color bar is 
used to show the magnitude of indices. Lighter colors are for smaller value, and darker colors are 
for larger value. 
 

3.2 Radiation and Meteorology Variables 
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Radiation and meteorology variables from the Livneh dataset are 3-dimension arrays (x, y, and 

time). This study uses the river basin outlines to crop these data. If a part of a basin falls in a grid 

cell of the x-y array, it is defined as "inside" the basin. For net radiation, we noticed that the 

difference between snow albedo and bare ground albedo is the primary determining factor in the 

snowmelt season, when the snow coverage could vary over a short period and a small spatial 

scale. To bypass this disturbing factor, and to reflect the real yearly difference of net radiation 

over snow-covered surface (which might relate to dust deposition in snow), we calculated the 

average daily radiation energy of the snow-covered area during the melt season. We first 

identified the last snow-covered date of each cell in each year from the SWE data of Livneh 

dataset. Then, we calculated the average net radiation for each cell over the melting period, 

which is from the average snowmelt start date to the last snow-covered date. The average 

snowmelt start date is the yearly average of DS (start date of snowmelt runoff, defined in section 

3.1) of the given site. Finally, we calculated a weighted average of the result of different grid 

cells. The weight is proportional to the number of days between average snowmelt start date and 

last snow-covered date (which varies among cells and years). The defined index is abbreviated as 

Qnet.  

 

Then, considering that even for the meteorology variables, whose value is not as strongly related 

to snowpack as net radiation, cells with more snowpack are more important in our analysis, this 

study calculates a weight for each cell that is proportional to its total SWE over the research 

period (1992-2011). This weight is used to calculate a weighted mean value of meteorology 

variables for each basin. This method ensures that the cells with largest snow cover are 

considered more.  
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All the cells inside a basin are averaged to generate values for that basin: for any meteorology 

variable	𝑉 of a basin at any time 𝑡,  𝑉345"#,) = ∑ 𝑤0𝑉0,)#
0'% , in which 𝑛 is the number of cells 

inside the basin, 𝑤0 is the weight of the jth cell, and 𝑉0,) is the variable value of the jth cell at time 

𝑡 . Thus, for each variable, a 2-demension array (20 basin and 20-year of daily value) is 

generated. This method might include some parts (slightly) outside the basin, but this is 

acceptable and necessary, because some of the smallest basins are smaller than the cell size 

(about 30 km2) and averaging more cells around it should reduce random errors. However, to do 

comparison between years, it is necessary to calculate some indexes reflecting the average 

intensity of radiation and meteorological forcings of each year. The basic thought is to average 

the daily values together, but we need to carefully consider the period over which the data are 

averaged. The detailed calculation of indices is introduced in the following paragraphs. The full 

names and definitions of defined variables are listed in Table 2. 

 

Table 2. Full name and definitions of the indices designed to reflect average magnitude of 
radiation and meteorology forcings. 
Indices Full name Definition 
Qnet Average net radiation Average daily net radiation energy over snow-covered area during melting 

season (from average snowmelt runoff start date to last snow-covered date) 

TmaxW Average maximum 
temperature of winter 

Average maximum temperature from January 1st to average snowmelt runoff 
start date 

TminW Average minimum 
temperature of winter 

Average minimum temperature from January 1st to average snowmelt runoff 
start date 

PrecW Average precipitation of 
winter 

Average precipitation from January 1st to average snowmelt runoff start date 

TmaxS Average maximum 
temperature of spring 

Average maximum temperature from average snowmelt runoff start date to 
average snowmelt runoff peak date 

TminS Average minimum 
temperature of spring 

Average minimum temperature from average snowmelt runoff start date to 
average snowmelt runoff peak date 

PrecS Average precipitation of 
spring 

Average precipitation from average snowmelt runoff start date to average 
snowmelt runoff peak date 
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SWE Maximum SWE of 
water year 

Maximum SWE from October 1st to average snowmelt runoff peak date of the 
same water year 

 

 

For maximum temperature, minimum temperature, and precipitation, two different indexes are 

calculated for each variable, reflecting winter and spring average, respectively. In particular, the 

winter average is defined as an average before snowmelt, while the spring average is defined as 

an average during the snowmelt process. Because snowmelt occurs at different time in different 

basins, it is necessary to calculate a unique time range for each site separately. We used two 

indices defined in section 3.1 to capture the timing of snowmelt. They are the start date (DS) and 

peak date (DP) of snowmelt runoff. Then, we averaged DS and DP over the research period 

(1992-2011) for each basin (see Figure 3), to generate a typical season landmark regardless of 

annual variations. We calculated the average of maximum temperature, minimum temperature, 

and precipitation between January 1st and average DS to generate the winter average of each 

variable (TmaxW, TminW, and PrecW). We calculated the average of maximum temperature, 

minimum temperature, and precipitation between average DS and average DP to generate the 

spring average of each variable (TmaxS, TminS, and PrecS).  

 

For SWE, the maximum SWE of the whole snow season (October 1st to average DP) is used to 

represent the relative magnitude of snow precipitation of a water year. This index is also 

abbreviated as SWE, since it's the only SWE related index regardless of season. 

 

3.3 Correlation Analysis of variables 
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This study used Pearson's correlation coefficient and the corresponding p-values to identify 

relationships between X variables (radiation and meteorology variables) and Y variables (indices 

describing the snowmelt runoff peak). It used eight X variables (Qnet, TmaxW, TmaxS TminW, TminS, 

PrecW, PrecS, and SWE) and nine Y variables (tQ25, tQ50, DS, DP, QS, QP, DL, QL, and S) in total. 

So, there are 72 pairs of relationships for each of the 20 sites. For each single site, then, we can 

determine the major factors determining the features of snowmelt runoff peak, and the directions 

and strength of the interactions. Obviously, any X variable is not independent with other X 

variables, which is also true for any Y variable. Thus, we also perform similar correlation 

analyses between different X variables and between different Y variables, generating 28 pairs of 

relationships between X variables and 36 pairs of relationships between Y variables. We 

classified the correlation results by the P-value. We defined P-value<0.05 as the threshold for 

significant correlations. We defined P-value<0.0001 as the threshold for very significant 

correlations. Then, for each variable pair, we counted the number of sites with very significant 

positive correlation, significant positive correlation, non-significant correlation, significant 

negative correlation, and very significant correlation. These five numbers could reflect the 

general relationship between two variables. For variable pairs that we want to investigate more, 

we would list the specific sites that show some kinds of correlation and map the sites to check if 

any spatial pattern exists. 

 

4. Results 

 

4.1 Correlation between Snowmelt Runoff Indices 
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This study first analyzed the relationships between snowmelt runoff indices. The results are 

displayed in Table 3. Among all the variable pairs, some show significant positive correlations at 

most sites (>15), and very significant positive correlations at part of the sites (>5). They are DS - 

DP, DS - tQ25, DS - tQ50, QS - QP, DP - tQ25, DP - tQ50, QS - QP, QS - QL, QS - S, QP - QL, QP - S, QP - 

tQ25, QP - tQ50, QL - S, QL - tQ25, and tQ25 - tQ50. We conclude that the timing indices of snowmelt 

runoff (DS, DP, tQ25, and tQ50) are highly related. This is because the snowmelt runoff is the 

largest runoff event in the year, and thus determines the timing of tQ25 and tQ50. Also, the time 

difference between DS and DP, which is defined as DL, is irrelevant with other timing indices. As 

a result, whenever DS is earlier, DP is also earlier. They change in the same direction. Another 

conclusion is that the slope of the snowmelt runoff peak is solely determined by the magnitude of 

snowmelt runoff, which is reflected in the variable QL. Moreover, QL is highly related with QS 

and QP, which also show positive correlation between themselves. That means the four related 

variables, S, QL, QS, and QP, all reflect the annual variance of snowmelt magnitude. There 

doesn't exist such events as low but steep runoff peaks, or runoff peaks starting low and ending 

high. We also found that tQ25 and tQ50 are highly correlated with QP and QL, but DS and DP don't 

show this relationship. This is because the calculation of tQ25 and tQ50 also involves the 

proportion of snowmelt runoff to total runoff. 

 

Table 3. Results of Pearson correlation coefficient analysis for Y variable pairs (pairs of indices 
designed to describe snowmelt runoff peaks). For each variable pair, the results of 20 sites are 
classified according to the sign of correlation coefficient (positive and negative) and the 
magnitude of P-value (<0.0001 as very significant, <0.05 as significant, and >0.05 as non-
significant). For non-significant results, the sign of correlation coefficient is not distinguished. 
The first column shows the variable pairs in their abbreviations (see Table 1 for full names and 
definitions). Note that the number of sites in the very significant column is also included in the 
significant column. 
Variable Pair Positive and 

very significant 
P-value<0.0001 

Positive and 
significant 
P-value<0.05 

Non-significant 
P-value>0.05 

Negative and 
significant 
P-value<0.05 

Negative and 
very significant 
P-value<0.0001 
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DS – DP 5 16 4 0 0 

DS – QS 1 13 7 0 0 

DS – QP 1 16 4 0 0 

DS – DL 0 0 10 10 3 

DS – QL 1 14 6 0 0 

DS – S 2 16 4 0 0 

DS – tQ25 12 19 1 0 0 

DS – tQ50 5 18 2 0 0 

DP – QS 0 12 8 0 0 

DP – QP 0 17 3 0 0 

DP – DL 2 9 11 0 0 

DP – QL 1 17 3 0 0 

DP – S 0 6 13 1 1 

DP – tQ25 9 15 5 0 0 

DP – tQ50 14 17 3 0 0 

QS – QP 16 20 0 0 0 

QS – DL 0 1 17 2 0 

QS – QL 14 18 2 0 0 

QS – S 6 18 2 0 0 

QS – tQ25 4 14 6 0 0 

QS – tQ50 2 16 4 0 0 

QP – DL 0 1 16 3 0 

QP – QL 20 20 0 0 0 

QP – S 13 19 1 0 0 

QP – tQ25 9 17 3 0 0 

QP – tQ50 5 17 3 0 0 

DL – QL 0 2 15 3 0 

DL – S 0 0 9 11 1 

DL – tQ25 0 1 16 3 0 

DL – tQ50 0 2 17 1 0 

QL – S 14 19 1 0 0 

QL – tQ25 8 17 3 0 0 

QL – tQ50 4 18 2 0 0 

S – tQ25 2 15 5 0 0 

S – tQ50 0 9 11 0 0 

tQ25 – tQ50 18 20 0 0 0 
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Then, there are variable pairs that show a dominant direction (>5, with the other direction <5) of 

correlation, but with less significant and very significant sites. The pairs with dominant positive 

correlation include DS - QS, DS - QP, DS - QL, DS - S, DP - QS, DP - QP, DP - DL, DP - QL, DP - S, 

QS - tQ25, QS - tQ50, QL - tQ50, QL - tQ50, and S - tQ50. Pairs with dominant negative correlation 

include DS - DL and DL - S. The two pairs with dominant negative correlation and some of the 

pairs with dominant positive correlation are merely a result of the calculation method (e.g., DL = 

DP - DS). Some other pairs reflect a correlation between the timing and magnitude of snowmelt 

runoff peak. These correlations are dominantly positive, indicating that earlier snowmelt runoff 

tends to be smaller in magnitude.  

 

The rest of the variable pairs are mostly non-significant and doesn't have a dominant direction. 

They are QS - DL, QP - DL, DL - QL, DL - tQ25, and DL - tQ50. Obviously, DL is a special index, 

which is relatively independent with other indices. 

 
4.2 Correlation between Radiation and Meteorological Forcings 

 

Then,  relationships between radiation and meteorological forcing variables are analyzed. For 

most variable pairs, non-significant correlations are dominant (>15). These pairs include Qnet - 

TmaxW, Qnet - TminW, Qnet - PrecW, Qnet - SWE, TmaxW - TmaxS, TmaxW - TminS, TmaxW - PrecS, TmaxS - 

TminW, TmaxS - PrecW, TminW - PrecW, TminW - PrecS, TminW - SWE, TminS - PrecW, TminS - PrecS, 

TminS - SWE, and PrecW - PrecS. These include the relationship between Qnet and all the winter-

related variables. This means that net radiation of melting season is relatively independent with 

weather conditions of winter. We also noticed that, in most cases, temperature and precipitation 
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forcings are usually independent between different seasons (e.g., TmaxW - TmaxS). Minimum 

temperature is not relevant with any of the precipitation and SWE variables, but maximum 

temperature is relevant with the precipitation of the corresponding season, as well as SWE. 

 

Table 4. Results of Pearson correlation coefficient analysis for X variable pairs (pairs of indices 
reflecting radiation and meteorology variables). For each variable pair, the results of 20 sites are 
classified according to the sign of correlation coefficient (positive and negative) and the 
magnitude of P-value (<0.0001 as very significant, <0.05 as significant, and >0.05 as non-
significant). For non-significant results, the sign of correlation coefficient is not distinguished. 
The first column shows the variable pairs in their abbreviations (see Table 1 for full names and 
definitions). Note that the number of sites in the very significant column is also included in the 
significant column. 
Variable Pair Positive and 

very significant 
P-value<0.0001 

Positive and 
significant 
P-value<0.05 

Non-
significant 
P-value>0.05 

Negative and 
significant 
P-value<0.05 

Negative and 
very significant 
P-value<0.0001 

Qnet – TmaxW 0 0 19 1 0 

Qnet – TmaxS 6 18 2 0 0 

Qnet – TminW 0 0 19 1 0 

Qnet – TminS 1 8 12 0 0 

Qnet – PrecW 0 2 18 0 0 

Qnet – PrecS 0 0 9 11 0 

Qnet – SWE 0 4 16 0 0 

TmaxW – TmaxS 0 2 18 0 0 

TmaxW – TminW 12 18 2 0 0 

TmaxW – TminS 0 4 16 0 0 

TmaxW – PrecW 0 0 12 8 0 

TmaxW – PrecS 0 0 20 0 0 

TmaxW – SWE 0 0 7 13 0 

TmaxS – TminW 0 2 17 1 0 

TmaxS – TminS 6 17 3 0 0 

TmaxS – PrecW 0 0 16 4 0 

TmaxS – PrecS 0 0 3 17 5 

TmaxS – SWE 0`` 0 12 8 1 

TminW – TminS 0 6 13 1 0 

TminW – PrecW 0 1 19 0 0 

TminW – PrecS 0 0 20 0 0 

TminW – SWE 0 0 19 1 0 
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TminS – PrecW 0 0 18 2 0 

TminS – PrecS 0 0 20 0 0 

TminS – SWE 0 0 16 4 0 

PrecW – PrecS 0 4 16 0 0 

PrecW – SWE 12 20 0 0 0 

PrecS – SWE 1 8 12 0 0 

 

Some variable pairs show significant correlation of same sign in most sites (>15), and very 

significant correlation in part of sites (>5). The variable pairs with positive correlation include 

Qnet - TmaxS, TmaxW - TminW, TmaxS - TminS, and PrecW - SWE. The variable pairs with negative 

correlation include TmaxS - PrecS. We found that net radiation of the melting season is positively 

correlated with average maximum temperature of the same period. This is because both variables 

are associated with clear sky conditions. Despite the different degree of influence that 

precipitation has on maximum and minimum temperatures (see previous paragraph), maximum 

and minimum temperature changes synchronously in the same season. PrecW and SWE are 

related because winter precipitation falls mostly in the form of snow at all the sites. One 

important observation is that the average maximum temperature of spring is negatively 

correlated with spring precipitation in most sites. This is because precipitation is associated with 

cloud cover which is associated with relatively cool conditions. 

 

Finally, some variable pairs do not have a dominant (>15) correlation type. They are Qnet - TminS, 

Qnet - PrecS, TmaxW - PrecW, TmaxS - SWE, TmaxW - SWE, TminW - TminS, and PrecS - SWE. We map 

the sites with different correlation results in Figure 4 (a-g). Sites with significant negative 

correlation between Qnet and TminS or PrecS (Figure 4 (a, b)) are similar. They are sites with 

relatively later snowmelt runoff (see Figure 3 (a, b)), which means lower temperature and longer 

snow cover. Thus, the difference between years with clear conditions and more snowy conditions 
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is more stably reflected in the variation of net radiation. Sites with significant negative 

correlation between TmaxW and PrecW or SWE (Figure 4 (c, e)) are similar. They are mostly sites 

in the northeastern side, where the cloudiness of winter could lower maximum temperature. Sites 

with significant negative correlation between TmaxS and SWE, as well as significant positive 

correlation between PrecS and SWE (Figure 4 (d, g)) are mostly the same. They are sites in the 

southern side of the research region, where maximum SWE could occur in spring, and thus relate 

to the spring precipitation and temperature. The spatial distribution of the sites with correlation 

between TminW and TminS is harder to explain. The possible reason for a positive correlation 

between them is the continuous influence of snow cover on temperature. Otherwise, temperature 

of winter and spring shouldn’t be correlated with each other. 
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Figure 4. Distribution of sites with different correlation results for variable pairs with no 
dominant correlation type (>15 sites). They are (a) Qnet - TminS, (b) Qnet - PrecS, (c) TmaxW - 
PrecW, (d) TmaxS - SWE, (e) TmaxW - SWE, (f) TminW - TminS, (g) PrecS - SWE. Blue points are 
used for sites with significant (P-value<0.05) negative correlations, and red points are used for 
sites with significant (P-value<0.05) positive correlations. White points are used for sites with 
non-significant correlations (P-value>0.05). 
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4.3 Correlation between Radiation and Snowmelt Runoff Indices 

 

Then, this study analyzed the correlation between Qnet and the snowmelt runoff indices (DS, DP, 

QS, QP,    DL, QL, S, tQ25, and tQ50). Results are shown in Table 5. For many of the sites, the 

correlations between Qnet and QS, QP, QL, DL, or S are non-significant. For many of the sites, the 

negative correlations between Qnet and tQ25 or tQ50 are significant. About half of the sites show 

significant negative correlation between Qnet and DS or DP. In general, the relationship between 

net radiation and the timing of snowmelt runoff is stronger than that between net radiation and 

the magnitude of the snowmelt runoff. We list the detailed correlation results of each site with 

significant in Table 6. We will interpret the results in the next paragraphs and map these sites in 

Figure 5.  

 

Table 5. Results of Pearson correlation coefficient analysis for Qnet and snowmelt runoff indices. 
For each variable pair, the results of 20 sites are classified according to the sign of correlation 
coefficient (positive and negative) and the magnitude of P-value (<0.0001 as very significant, 
<0.05 as significant, and >0.05 as non-significant). For non-significant results, the sign of 
correlation coefficient is not distinguished. The first column shows the variable pairs in their 
abbreviations (see Table 1 for full names and definitions). Note that the number of sites in the 
very significant column is also included in the significant column. 
Variable Pair Positive, P-

value<0.0001 
Positive, P-
value<0.05 

Non-significant Negative, P-
value<0.05 

Negative, P-
value<0.0001 

Qnet – DS 0 0 11 9 0 

Qnet – DP 0 0 9 11 2 

Qnet – QS 0 2 13 5 0 

Qnet – QP 0 1 13 6 0 

Qnet – DL 0 1 18 1 0 

Qnet – QL 0 0 15 5 0 

Qnet – S 0 0 19 1 0 

Qnet – tQ25 0 0 4 16 2 

Qnet – tQ50 0 0 7 13 1 
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Table 6. Results of Pearson correlation coefficient analysis for each site. Signs in the cells show 
positive or negative correlation significance. Blank cells show non-significant correlation. Sites 
with non-significant correlation are not shown 
Site ID Qnet - DS Qnet - DP Qnet - QS Qnet - QP Qnet - DL Qnet - QL Qnet - S Qnet - tQ25 Qnet - tQ50 

09352900 
         

09081600        -  

10234500 - - - - 
 

- 
 

- - 

06632400 - - - -  - - - - 

10308200 
       

- 
 

10316500 - - - - 
 

- 
 

- - 

06280300 - - 
  

- 
  

- - 

10343500 
 

- 
     

- - 

10396000   - -  -  - - 

10109001 - - 
     

- - 

09492400 
  

+ + 
     

13185000 - 
       

- 

09047700 - -  - + -  - - 

06043500 - - 
     

- - 

09312600 
 

- - - 
   

- - 

10329500 
       

- - 

13331500 
       

- 
 

12488500 - -      -  

12390700   +     -  

12175500  -       - 

 
 

Most sites show significant negative correlation between Qnet and at least one of tQ25 and tQ50. 

This means when net radiation is larger, the timing of runoff tends to be earlier. Only two sites 

are exceptions: site #09352900 and site #09492400. Both sites are in the southernmost part of 

our study region. These two sites differ in that Qnet shows no significant correlation with any 

indices at site #09352900, while Qnet shows significant positive correlation with snowmelt 

magnitude indices (QS and QP) at site #09492400. However, this positive correlation is caused by 

the calculation method of Qnet. In years with low snow (which could happen in such warm sites 
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as site #09492400), the last snow-covered date could occur before the average start date of 

snowmelt. Thus, the result of Qnet is zero. Site #09492400 is the only site where this kind of 

exception occurs and causes a false positive correlation between Qnet and snowmelt magnitude 

(which is positively correlated with snow fall amount). In general, in these two warmest sites, net 

radiation is not related with snowmelt runoff. 

 

Whenever there is significant negative correlation between Qnet and QL or S, there is significant 

negative correlation between Qnet and QP. The strong relationship between these three indices has 

been explained in section 4.1. DL is relatively random and the correlation between it and Qnet 

could be negative or positive, depending on the how DS and DP is sensitive to Qnet variation. 

However, it is for sure that both DS and DP are negatively correlated with Qnet (if significant). 

Finally, we decided to focus on the pattern of DS, DP, QS, and QP. We simply refer to DS and DP 

as timing indices and refer to QS and QP as magnitude indices. The two timing indices always 

show similar results with each other because they are positively correlated at most sites. This is 

also true for the two magnitude indices. We can classify all the sites into four groups based on if 

Qnet is negatively correlated with any of the timing or magnitude indices (Table 7). We also map 

the four groups in Figure 5. 

 

Table 7. Sites classified into four groups based on whether Qnet is negatively correlated with 
timing indices (DS and DP) and magnitude indices (QS and QP). 
significant negative 
correlation between 
Qnet and any of the 
timing indices 

significant negative 
correlation between 
Qnet and any of the 
magnitude indices 

Sites that apply 

Yes Yes #10234500, #06632400, #10316500, #09047700, #09312600,  

Yes No #06280300, #10343500, #10109001, #13185000, #06043500, #12488500, 
#12175500 

No Yes #10396000,  



 

 30 

No No #09081600, #10308200, #10329500, #13331500, #12390700, #09352900, 
#09492400 

 

Only one site belongs to the third group, in which Qnet shows negative correlation with 

magnitude indices only. This means that the negative correlation between Qnet and timing indices 

is more common than that between Qnet and magnitude indices. In general, whenever there is 

negative correlation between Qnet and magnitude indices, there is also negative correlation 

between Qnet and timing indices. There are five sites that show negative correlation between Qnet 

and both timing and magnitude indices (the first group). There are seven sites that show negative 

correlation between Qnet and timing indices only (the second group). These two groups have very 

clear spatial patterns. In general, the first group is located in the southeastern part of our study 

region, including the Great Basin and the Colorado Rockies. The second group is located in the 

northeastern and northwestern part of our study region, including Sierra Nevada, the Cascades, 

and northern Rockies. This difference could possibly relate to different climate types. In the 

southeastern part of our study region, precipitation is lower than in the northeastern and 

northwestern parts. Lower precipitation means larger sensitivity of snowpack to radiation 

forcings. Finally, there are seven sites where Qnet shows no significant correlation with any of the 

indices. They have no clear spatial pattern. 
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Figure 5. Distribution of four types of sites, classified by the correlation results between Qnet and 
snowmelt runoff indices. Grey points show sites with negative correlation between Qnet and both 
timing (DS and DP) and magnitude indices (QS and QP). Orange points show sites with negative 
correlation between Qnet and timing indices only. Blue points show sites with negative 
correlation between Qnet and magnitude indices only. White points show sites with no significant 
negative correlation between Qnet and any of the timing and magnitude indices 
 

 

4.4 Correlation between Meteorology variables and Snowmelt Runoff Indices 

 

This study first calculated the correlation between temperature related variables and snowmelt 

runoff indices. The results are listed in Table 8. In almost all the cases, the correlation between 

temperature and snowmelt indices is negative (if significant). Thus, we conclude that with higher 

temperature (no matter in winter or spring, and no matter maximum or minimum temperature), 

snowmelt runoff tends to be earlier and smaller. Then, we noticed that the correlation between 
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maximum temperature and snowmelt runoff indices is stronger than that between minimum 

temperature and snowmelt runoff indices. The correlation between spring temperature and 

snowmelt runoff indices is stronger than that between winter temperature and snowmelt runoff 

indices. Then, we investigated the details and found several variable pairs that most sites (>15) 

show significant negative correlation. They are TmaxS - DP, TmaxS - QP, TmaxS - QL, TmaxS - tQ25, 

TmaxS - tQ50, and TminS - tQ50. Obviously, average maximum temperature of spring is the best 

predictor of snowmelt runoff. Whenever this index is higher, we expect an earlier and smaller 

snowmelt runoff.  

 

Table 8. Results of Pearson correlation coefficient analysis for temperature related variables 
(TmaxW, TmaxS, TminW, and TminS) and snowmelt runoff indices. For each variable pair, the results 
of 20 sites are classified according to the sign of correlation coefficient (positive and negative) 
and the magnitude of P-value (<0.0001 as very significant, <0.05 as significant, and >0.05 as 
non-significant). For non-significant results, the sign of correlation coefficient is not 
distinguished. The first column shows the variable pairs in their abbreviations (see Table 1 for 
full names and definitions). Note that the number of sites in the very significant column is also 
included in the significant column. 
Variable Pair Positive, P-

value<0.0001 
Positive, P-
value<0.05 

Non-significant Negative, P-
value<0.05 

Negative, P-
value<0.0001 

TmaxW – DS 0 0 15 5 0 

TmaxW – DP 0 0 16 4 0 

TmaxW – QS 0 0 13 7 0 

TmaxW – QP 0 0 11 9 0 

TmaxW – DL 0 0 20 0 0 

TmaxW – QL 0 0 12 8 0 

TmaxW – S 0 0 14 6 0 

TmaxW – tQ25 0 0 13 7 1 

TmaxW – tQ50 0 0 16 4 0 

TmaxS – DS 0 0 7 13 1 

TmaxS – DP 0 0 4 16 10 

TmaxS – QS 0 0 11 9 0 

TmaxS – QP 0 0 2 18 2 

TmaxS – DL 0 0 16 4 0 

TmaxS – QL 0 0 2 18 2 
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TmaxS – S 0 0 13 7 0 

TmaxS – tQ25 0 0 3 17 8 

TmaxS – tQ50 0 0 1 19 14 

TminW – DS 0 1 16 3 0 

TminW – DP 0 0 20 0 0 

TminW – QS 0 0 20 0 0 

TminW – QP 0 0 17 3 0 

TminW – DL 0 1 19 0 0 

TminW – QL 0 0 17 3 0 

TminW – S 0 0 19 1 0 

TminW – tQ25 0 0 19 1 0 

TminW – tQ50 0 0 20 0 0 

TminS – DS 0 0 12 8 0 

TminS – DP 0 0 7 13 2 

TminS – QS 0 0 17 3 0 

TminS – QP 0 0 16 4 0 

TminS – DL 0 0 18 2 0 

TminS – QL 0 0 16 4 0 

TminS – S 0 0 19 1 0 

TminS – tQ25 0 0 9 11 0 

TminS – tQ50 0 0 3 17 3 

 

The predictivity of temperature related indices among different sites is compared by counting the 

total number of variable pairs that show significant negative correlation for each site. The result 

is shown in Figure 6. The distribution of number is clustered. There are 2 sites within 5-6, 12 

sites within 8-11, 1 site of 15, and five sites within 18-21. Their spatial distribution is also 

clustered. Sites with the 18-21 significant variable pairs generally locate in the northeastern and 

northwestern side of the research region. Sites with 8-11 significant variable pairs generally 

locate in the middle and southern side of the research region. The rest three sites with 5-6 or 15 

significant variable pairs are not clustered. We investigate the difference between two larger 
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clusters and found that the 18-21 group differs from the 8-11 group in that their winter 

temperature show stronger correlation with snowmelt runoff indices.  

 

 

Figure 6. Spatial distribution of the number of variable pairs that show significant negative 
correlation between temperature related variables and snowmelt runoff indices. Color bar is used 
to show the number. Lighter colors are for smaller value, and darker colors are for larger value. 
The division of color bar is designed according to the clustered distribution of the results. 
 

Next, this study calculated the correlation between precipitation and SWE related variables and 

snowmelt runoff indices. The results are listed in Table 9. In almost all the cases, the correlation 

between precipitation and SWE related and snowmelt indices is positive (if significant). Thus, 

we conclude that with higher precipitation and SWE (no matter in winter or spring), snowmelt 

runoff tends to be later and larger. For brevity, we simply define the predictivity of a X variable 

for a Y variable as the number of sites that show significant positive correlation between X and 
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Y and compare the three X variables. For DS and DP, SWE is the best predictor, slightly better 

than PrecS. Both are better than PrecW. For QS, QP, QL, and S, SWE is the best predictor, slightly 

better than PrecW. Both are better than PrecS. For tQ25 and tQ50, PrecS is the best predictor, 

slightly better than SWE. Both are better than PrecW. For DL, none of the variables could predict 

well. In general, SWE, which largely depends on winter precipitation, determines the magnitude 

of snowmelt runoff (which is a way stronger relationship than that between temperature, net 

radiation and snowmelt runoff magnitude). In contrast, spring precipitation is more related with 

the timing of snowmelt runoff. There are several ways spring precipitation might influence 

snowmelt timing. First, more cloud cover could lower temperature, net radiation, and as a result, 

energy balance of snowpack. Second, spring precipitation that falls as snow in the high-elevation 

part of the basin could increase average albedo and reduce net radiation of the period after snow, 

thus reducing energy balance. Third, the additive snow itself could prolong the snowmelt process 

and put peak runoff toward a later date. 

 

Table 9. Results of Pearson correlation coefficient analysis for precipitation and SWE related 
variables (PrecW, PrecS, and SWE) and snowmelt runoff indices. For each variable pair, the 
results of 20 sites are classified according to the sign of correlation coefficient (positive and 
negative) and the magnitude of P-value (<0.0001 as very significant, <0.05 as significant, 
and >0.05 as non-significant). For non-significant results, the sign of correlation coefficient is 
not distinguished. The first column shows the variable pairs in their abbreviations (see Table 1 
for full names and definitions). Note that the number of sites in the very significant column is 
also included in the significant column. 
Variable Pair Positive, P-

value<0.0001 
Positive, P-
value<0.05 

Non-significant Negative, P-
value<0.05 

Negative, P-
value<0.0001 

PrecW – DS 0 4 16 0 0 

PrecW – DP 0 5 15 0 0 

PrecW – QS 2 16 4 0 0 

PrecW – QP 3 18 2 0 0 

PrecW – DL 0 1 18 1 0 

PrecW – QL 2 15 5 0 0 

PrecW – S 1 8 12 0 0 
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PrecW – tQ25 0 8 12 0 0 

PrecW – tQ50 1 7 13 0 0 

PrecS – DS 0 7 13 0 0 

PrecS – DP 0 11 9 0 0 

PrecS – QS 0 9 11 0 0 

PrecS – QP 0 10 10 0 0 

PrecS – DL 0 3 17 0 0 

PrecS – QL 0 9 11 0 0 

PrecS – S 0 4 16 0 0 

PrecS – tQ25 0 12 8 0 0 

PrecS – tQ50 0 13 7 0 0 

SWE – DS 0 8 12 0 0 

SWE – DP 0 10 10 0 0 

SWE – QS 9 18 2 0 0 

SWE – QP 13 20 0 0 0 

SWE – DL 0 2 16 2 0 

SWE – QL 11 19 1 0 0 

SWE – S 2 12 8 0 0 

SWE – tQ25 2 10 10 0 0 

SWE – tQ50 1 12 8 0 0 

 

Like what is done for temperature related variables, this study also put all precipitation and SWE 

related variables together and count the number of significant variable pairs for each site. The 

results are shown in Figure 7. The distribution of number is less clustered than the results of 

temperature related variables. The spatial pattern shows more smooth transition between sites 

with more significant variable pairs and sites with less significant variable pairs. Sites where 

precipitation and SWE related variables show higher predictivity for snowmelt runoff locate in 

the Rockies and Sierra Nevada. Sites in the northwestern side of the research region show poorer 

predictivity.  
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Figure 7. Spatial distribution of the number of variable pairs that show significant positive 
correlation between precipitation and SWE related variables and snowmelt runoff indices. Color 
bar is used to show the number. Lighter colors are for smaller value, and darker colors are for 
larger value. The division of color bar is designed according to the clustered distribution of the 
results. 
 

5. Discussion and Conclusions  

 

This paper investigated how various forcing factors determine the timing and magnitude of 

snowmelt runoff peaks in 20 river basins distributed across the Western U.S. First, we sought a 

group of indices that describes variations in the magnitude and timing of snowmelt runoff peaks 

across the stations. It is found that the onset and peak of snowmelt runoff vary synchronously, 

and they determine the temporal distribution of runoff in the snowmelt season, since snowmelt 

runoff is the predominant runoff event in this period. On the other hand, the period between the 

onset of snowmelt runoff and its peak, the length of the rising limb, doesn't show any clear 
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relationship with other variables, indicating that earlier or later snowmelt doesn't necessarily 

correspond to a shorter or longer rising limb of the runoff peak. As for the magnitude indices, we 

found that runoff at the onset of snowmelt varies synchronously with peak runoff, 

notwithstanding that peak runoff is much higher. As a result, the runoff difference between onset 

and peak almost equals peak runoff, although it is also positively correlated with onset runoff. 

Since yearly variations of peak runoff are much larger than that of the period between onset date 

and peak date, the slope of the rising limb is also determined by the magnitude of peak runoff, 

making it a key index. We expected to find relatively independent indices in at least three 

dimensions that describe runoff peaks: timing, magnitude, and shape. However, the shape index 

is highly correlated with the magnitude index, leaving only two dimensions. Moreover, there is a 

weak but significant positive correlation between the timing of peak runoff and its magnitude; in 

particular, earlier runoff peaks are usually smaller than the later ones. 

 

This paper subsequently investigated several factors that have been proposed as influencing 

snowmelt runoff features. They are net radiation (winter), temperature (winter and spring), 

precipitation (winter and spring), and SWE (maximum). We first look into the relationships 

between these factors. A large proportion of the variables we chose are independent with each 

other, but some variable pairs show higher correlations. Some are because they are related 

inherently. These include the relationship between maximum and minimum temperature and 

between winter precipitation and SWE. Some others are due to physical mechanisms, which we 

are most interested in. These include the relationship between maximum temperature and 

precipitation (as well as SWE), between net radiation and spring temperature and spring 

precipitation, and between winter temperature and spring temperature. Some of the relationships 
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only occur in part of the sites. However, considering that the correlation are of the same sign if 

significant, they reflect similar relationship in most cases, which only differ in magnitude of 

correlation. 

 

The main conclusion of this paper comes from the correlation analysis between influencing 

factors and the snowmelt runoff indices. We first investigated the correlation between net 

radiation and snowmelt. Net radiation is negatively correlated with timing of runoff in most sites. 

In other words, in years with higher net radiation, snowmelt runoff tends to occur earlier. At a 

few sites (concentrated around the Great Basin and Colorado Rockies), net radiation is 

negatively correlated with the magnitude of snowmelt runoff. This might be an artifact of our 

method of calculating the net radiation index. For each grid cell, net radiation is averaged over a 

period with snow cover. Thus, in years with later snowmelt, a grid cell could receive more net 

radiation later in the melt season, when the incidence angle is larger. This could cause a bias 

toward larger net radiation, and result in a false positive correlation between our net radiation 

index and snowmelt timing if there's no actual correlation between them. However, because we 

found negative correlation between net radiation and snowmelt timing, we conclude that this bias 

does not impact our conclusion.  

 

Temperature is negatively correlated to the timing and magnitude of snowmelt runoff, though the 

predictivity of temperature varies by site. In general, maximum temperature and spring 

temperature are more correlated with snowmelt runoff indices than minimum temperature and 

winter temperature. Some sites in the northeastern and northwestern side of our research region 

are more sensitive to temperature. They differ from other sites in that winter temperature is also 
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related to snowmelt runoff. These sites are clustered in high-latitude regions, but we haven't 

found plausible physical mechanism behind it. Precipitation and SWE are positively correlated to 

the timing and magnitude of snowmelt runoff, though the predictivity also varies by site. 

Maximum SWE is the best indicator for the magnitude of snowmelt runoff among all factors and 

does well in predicting the timing of snowmelt runoff. Spring precipitation is more correlated 

with the timing of snowmelt runoff, while winter precipitation is more correlated with the 

magnitude of snowmelt runoff. Sites in the Rockies and Sierra Nevada are more sensitive to 

precipitation and SWE factors than other sites. Northwestern sites are especially not sensitive to 

precipitation and SWE factors. In general, the finding agrees with previous research; snowmelt 

runoff tends to be earlier and smaller with higher temperature, or with lower precipitation (or 

SWE).   
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