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Construction of G2 rounded corners

with Pythagorean–hodograph curves

Rida T. Farouki
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA.

Abstract

The problem of designing smoothly rounded right–angle corners with
Pythagorean–hodograph (PH) curves is addressed. A G1 corner can be
uniquely specified as a single PH cubic segment, closely approximating
a circular arc. Similarly, a G2 corner can be uniquely constructed with
a single PH quintic segment having a unimodal curvature distribution.
To obtain G2 corners incorporating shape freedoms that permit a fine
tuning of the curvature profile, PH curves of degree 7 are required. It
is shown that degree 7 PH curves define a one–parameter family of G2

corners, facilitating precise control over the extremum of the unimodal
curvature distribution, within a certain range of the parameter. As an
alternative, a G2 corner construction based upon splicing together two
PH quintic segments is proposed, that provides two free parameters
for shape adjustment. The smooth corner shapes constructed through
these schemes can exploit the computational advantages of PH curves,
including exact computation of arc length, rational offset curves, and
real–time interpolator algorithms for motion control in manufacturing,
robotics, inspection, and similar applications.

Keywords: rounded corners; Pythagorean–hodograph curves;
complex polynomials; G2 continuity; curvature distribution.

e–mail: farouki@ucdavis.edu





1 Introduction

The problem of “smoothly rounding” the sharp corners of a nominal shape is
a key requirement in many geometric design contexts. In consumer products
or architectural design, for example, rounded corners are often preferred on
the basis of aesthetic or ergonomic considerations. The rounding or “filleting”
of sharp corners in load–bearing mechanical components plays a critical role
in minimizing stress concentration effects, and thus prolonging fatigue life. In
the layout of highways or railways, the precise variation of curvature along a
turn between linear segments determines the maximum safe traversal speed,
due to the instantaneous centripetal acceleration it incurs.

The focus of this study is on the design of G2 corner shapes with planar
Pythagorean–hodograph (PH) curves, a family of curves compatible with the
standard Bézier/B–spline representations of modern CAD systems, that offer
attractive computational advantages over “ordinary” polynomial curves [4].
Despite its ubiquitous applications, this “corner rounding” problem does not
appear to have received much attention. Walton and Meek [19] formulated a
scheme for G2 blending of the corners on polygonal curves using “ordinary”
cubic and PH quintic segments. The unique G2 PH quintic corner described
in Section 4 below may be regarded as a special case of this scheme, but it
offers no residual degrees freedoms for fine–tuning the corner shape.

A substantial literature on design of “spiral segments” has accumulated
[1, 7, 8, 9, 10, 11, 12, 13] including the use of PH curves [3, 6, 14, 15, 16, 17, 18,
20] in this context. However, spiral segments are not directly applicable to the
corner rounding problem, since they have monotone curvature variation, and
a G2 rounded corner shape must incorporate vanishing end–point curvatures.
It is, in principle, possible to construct a G2 rounded corner shape by splicing
spiral PH curve segments together.1 But a single–segment solution, which is
G∞ over its interior, is obviously preferable whenever possible.

The solution procedure (and the analysis of the existence of solutions) is
much simpler if the PH curve corner–rounding problem is addressed directly,
rather than as an application of existing spiral–segment methods. Invoking
the complex representation of planar PH curves, it is shown that G2 rounded
corners with the desired symmetry and unimodal curvature properties can be
constructed using little more than the solutions of quadratic equations. For
brevity, the focus of this study is on rounding right–angle corners (the case of

1Such a solution is presented in Section 6 below.
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most practical importance). However, the methods can be extended without
undue complication to the case of corners with acute or obtuse angles.

The plan for the remainder of this paper is as follows. Section 2 briefly
reviews the construction and basic properties of planar PH curves, and their
advantageous features in the corner rounding problem. The simplest solution,
the G1 PH cubic corner, is then derived in Section 3, and is found to be unique
and to closely approximate a circular arc. Quintic PH curves are necessary
to obtain a G2 corner, and in Section 4 it is observed that the G2 PH quintic
corner is also unique, with a unimodal curvature distribution. Proceeding to
degree 7 PH curves in Section 5, a G2 corner incorporating one free parameter
is constructed. The curvature remains unimodal over a certain range of this
parameter, which can be exploited to fine tune the extremum curvature. As
an alternative, another G2 scheme based on splicing together two PH quintic
curves is described in Section 6, that provides two free parameters for shape
adjustment. Finally, Section 7 summarizes the main results of this study and
identifies some possible topics for further investigation.

2 Planar Pythagorean–hodograph curves

A planar polynomial Pythagorean–hodograph (PH) curve r(ξ) = (x(ξ), y(ξ))
is characterized by the fact that its derivative components x′(ξ), y′(ξ) satisfy
[5] the Pythagorean condition

x′2(ξ) + y′2(ξ) = σ2(ξ) (1)

for some polynomial σ(ξ), which defines the parametric speed of r(ξ), i.e., the
rate of change ds/dξ of arc length s with repect to the curve parameter ξ. The
fact that σ(ξ) is a polynomial (rather than the square root of a polynomial)
endows PH curves with several attractive computational properties.

For a primitive curve — i.e., gcd(x′(ξ), y′(ξ)) = constant — a sufficient
and necessary condition for satisfaction of (1) is that x′(ξ) and y′(ξ) should
be expressible in terms of polynomials u(ξ), v(ξ) in the form

x′(ξ) = u2(ξ) − v2(ξ) , y′(ξ) = 2 u(ξ)v(ξ) .

This structure is captured by the complex representation [2], in which a PH
curve of degree n = 2m+1 is generated from a degree–m complex polynomial

w(ξ) = u(ξ) + i v(ξ) =
m

∑

k=0

wk

(

m

k

)

(1 − ξ)m−kξk (2)
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with Bernstein coefficients wk = uk + i vk by integration of the expression

r′(ξ) = w2(ξ) . (3)

The parametric speed, unit tangent, and curvature of r(ξ) may be formulated
[2] in terms of w(ξ) as

σ(ξ) = |w(ξ)|2 , t(ξ) =
w2(ξ)

σ(ξ)
, κ(ξ) = 2

Im(w(ξ)w′(ξ))

σ2(ξ)
. (4)

As noted above, the parametric speed is a polynomial, while the unit tangent
and curvature2 are rational functions of ξ. The unit normal n(ξ) = t(ξ)× z,
where z is a unit vector orthogonal to the plane, is also rational. Since σ(ξ)
is a polynomial, the cumulative arc length

s(ξ) =

∫ ξ

0

σ(t) dt

is also a polynomial in ξ. Moreover, the offset curves

rd(ξ) = r(ξ) + dn(ξ)

at each distance d can be exactly represented as rational curves.
To construct smooth PH curve corner shapes, it is convenient to adopt

a standardized coordinate system. Solutions obtained in this system can be
transformed to specific model coordinates through a suitable combination of
scaling, translation, and rotation transformations. A canonical G2 corner is
defined as a smooth curve, with initial and final positions, unit tangents, and
curvatures specified by

pi = (0, 0), ti = (1, 0), κi = 0, pf = (1, 1), tf = (0, 1), κf = 0 .

Furthermore, the corner curve should exhibit monotone variation of its x, y
coordinates between the end points, a unimodal curvature distribution, and
be symmetric about the diagonal line from (0, 1) to (1, 0). If the curvature
conditions κi = κf = 0 are relaxed, we have a canonical G1 corner.

2The numerator and denominator of κ(ξ) are of degree 2m − 2 and 4m, respectively.
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3 Unique G1 PH cubic corner

The simplest non–trivial planar PH curves are cubics. PH cubics are capable
of (uniquely) defining a canonical G1 corner, but not a G2 corner. Any PH
cubic is simply a translated, rotated, scaled and re–parameterized segment
of a unique curve — the Tschirnhaus cubic [5]. Instead of using the complex
representation, the PH cubics may be characterized by simple geometrical
constraints on their Bézier control polygons, namely

L2 =
√

L1L3 and θ1 = θ2 , (5)

where L1, L2, L3 are the lengths of the control polygon legs, and θ1, θ2 are
the interior control polygon angles. Writing

r(ξ) = p0(1 − ξ)3 + p13(1 − ξ)2ξ + p23(1 − ξ)ξ2 + p3ξ
3 ,

one can easily verify that the unique PH cubic with r(0) = pi, r(1) = pf and
r′(0) = |r′(0)| ti, r′(1) = |r′(1)| tf has the control points

p0 = (0, 0) , p1 = (2 −
√

2, 0) , p2 = (1,
√

2 − 1) , p3 = (1, 1) ,

and satisfies conditions (5) with L1 = L2 = L3 = 2 −
√

2 and θ1 = θ2 = 3

4
π.

The parametric speed of this curve is specified by the quadratic polynomial

σ(ξ) = |r′(ξ)| = σ0(1 − ξ)2 + σ12(1 − ξ)ξ + σ2ξ
2

with coefficients σ0 = σ2 = 3(2 −
√

2) and σ1 = 3(
√

2 − 1). It has a rather
mild variation between 3(2 −

√
2) ≈ 1.757359 at the end–points and 1.5 at

the mid–point, r(1

2
) = 1

8
(10 − 3

√
2, 3

√
2 − 2) ≈ (0.719670, 0.280330).

The total arc length of the G1 PH cubic corner is S = 1

3
(σ0 + σ1 + σ2) =

3 −
√

2 ≈ 1.585786 (∼ 12.1% greater than the chord length). The curvature
can be expressed as

κ(ξ) =
6(
√

2 − 1)

σ2(ξ)
,

and it increases from κ(0) = κ(1) = (1+
√

2)/3 ≈ 0.804738 at the end points
to κ(1

2
) = 8(

√
2 − 1)/3 ≈ 1.104570 at the mid–point, an increase of ∼ 37%

(due entirely to the variation of the parametric speed).
As may be seen in Figure 1, the shape of the G1 cubic corner curve is not

aesthetically displeasing, and may be satisfactory for many design problems.
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Figure 1: Left: canonical G1 PH cubic corner curve, togther with its Bézier
control polygon. Right: curvature profile of the G1 PH cubic corner curve.

In fact, as seen in Figure 2, it closely approximates an arc of the unit circle.
The greatest distance

d = 1

4

√

59 − 30
√

2 ≈ 1.017767

from the center of the circle occurs at the mid–point r(1

2
), amounting to a

deviation of < 2%. The main drawback of the G1 PH cubic is the curvature
discontinuity it incurs in rounding out a right–angle corner (see Figure 1).

Figure 2: Comparison of G1 PH cubic corner (bold curve) and a circular arc
(light curve) — the maximum deviation from the circular arc is less than 2%.
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4 Unique G2 PH quintic corner

Since the cubic PH curves can only define G1 corners (with no residual shape
freedoms), we now consider the quintic PH curves. It is advantageous to use
the complex representation defined by (2) and (3) with m = 2. Consider the
PH quintic r(ξ) defined by subsituting a quadratic complex polynomial

w(ξ) = w0(1 − ξ)2 + w12(1 − ξ)ξ + w2ξ
2 (6)

into (3) and integrating. The Bézier control points of r(ξ) may be determined
from the coefficients w0,w1,w2 as

p1 = p0 +
1

5
w2

0
,

p2 = p1 +
1

5
w0w1 ,

p3 = p2 +
1

5

2w2

1
+ w0w2

3
,

p4 = p3 +
1

5
w1w2 ,

p5 = p4 +
1

5
w2

2
, (7)

where p0 is a free integration constant. The end–derivatives of r(ξ) are

r′(0) = w2

0
and r′(1) = w2

2
, (8)

and its end–point curvatures of r(ξ) are specified by

κ(0) = 4
Im(w0w1)

|w0|4
and κ(1) = 4

Im(w1w2)

|w2|4
. (9)

Symmetric interpolation of the end tangents and curvatures thus implies that
w0,w1,w2 must satisfy

w2

0
= λ2 , w2

2
= i λ2 and Im(w0w1) = Im(w1w2) = 0

for a non–zero real value λ. Since the curve defined by substituting w(ξ) into
(3) and integrating is unchanged on replacing w0,w1,w2 by −w0,−w1,−w2

we may assume that
w0 = λ > 0 (10)
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from the first condition, while the second condition gives

w2 = s
1 + i√

2
λ , (11)

where s = ±1. Writing w1 = u1 + i v1 and substituting w0,w2 into the last
two conditions then gives v1 = u1 − v1 = 0, i.e., w1 = 0. From (7) we then
have p2 = p1 and p4 = p3, so the G2 corner is a special PH quintic, with just
four distinct control points instead of six [2]. The fact that any PH quintic
with zero end curvatures must have w1 = 0, and hence p2 = p1 and p4 = p3,
has been noted (in a more general context) in Theorem 5.1 of [19].

With p0 = 0 and p5 = 1 + i, interpolation of the corner end points yields
the condition

1

5

[

w2

0
+ w0w1 +

2w2

1
+ w0w2

3
+ w1w2 + w2

2

]

= 1 + i ,

and on substituting for w0,w1,w2 this becomes

1

5

[

λ2 + s
1 + i

3
√

2
λ2 + i λ2

]

= 1 + i ,

which is equivalent to
(3
√

2 + s)λ2 = 15
√

2 .

Hence, since λ > 0 by assumption, we have

λ =

[

15
√

2

3
√

2 + s

]1/2

. (12)

Although the sign choices s = ±1 both define formally correct interpolants to
the prescribed data, only s = +1 generates an acceptable G2 corner curve (see
Figure 3). The curve defined by taking s = −1 exhibits negative curvature
and a tight loop, so it must be discounted.

Hence, there exists an essentially unique canonical G2 PH quintic corner,
specified by the coefficients (10)–(12) with s = 1. Setting c = 3(6−

√
2)/17,

the control points of this curve can be expressed as

p0 = (0, 0) , p1 = p2 = (c, 0) , p3 = p4 = (1, 1 − c) , p5 = (1, 1) .

The canonical G2 PH quintic corner may be regarded as a special case of the
solution described in Section 5 of [19], corresponding to the choices h = k = 1
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Figure 3: Left: canonical G2 PH quintic corner curve, with its Bézier control
polygon — note that, since p1 = p2 and p3 = p4, there are only four distinct
control points. Right: curvature profile of the G2 PH quintic corner curve.

and θ = 1

2
π. The curvature profile is shown in Figure 3 — compared to the

G1 PH cubic corner in Figure 1, it is evident that the imposition of zero end
curvatures incurs a much stronger variation of curvature.

The parametric speed is defined by the quadratic polynomial

σ(ξ) =
4

∑

k=0

σk

(

4

k

)

(1 − ξ)4−kξk

with coefficients

σ0 = σ4 =
15

17
(6 −

√
2) , σ1 = σ3 = 0 , σ2 =

5

17
(3
√

2 − 1) .

It varies from 15(6−
√

2)/17 ≈ 4.046282 at the end points to 15(5+2
√

2)/136 ≈
0.863429 at the midpoint, namely

r(1

2
) =

(542 − 45
√

2, 2 + 45
√

2)

544
≈ (0.879339, 0.120661) .

The arc length of the G2 PH quintic corner is S = 1

5
(σ0 +σ1 +σ2 +σ3 +σ4) =

(35 − 3
√

2)/17 ≈ 1.809256, or ∼ 27.9% greater than the chord length. The
curvature of this PH quintic can be expressed as

κ(ξ) =
60

17
(3
√

2 − 1)
(1 − ξ)ξ

σ2(ξ)
. (13)
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It increases from 0 at the end points to κ(1

2
) = 64(7

√
2 − 9)/15 ≈ 3.837845

at the mid–point. From Figure 3 one gains the impression that the G2 PH
quintic corner is almost G3, i.e., the arc–length derivative of curvature dκ/ds
vanishes at its end points. From (13) one can verify it is not exactly G3 since

dκ

ds

∣

∣

∣

∣

ξ=0

= − dκ

ds

∣

∣

∣

∣

ξ=1

=
12 + 19

√
2

225
≈ 0.172756 .

5 Degree 7 G2 PH corner

Since the G2 PH quintic corner curve offers no residual shape freedoms, we
consider now G2 corners specified by degree 7 planar PH curves. Such curves
are defined by substituting a cubic complex polynomial

w(ξ) = w0(1 − ξ)3 + w13(1 − ξ)2ξ + w23(1 − ξ)ξ2 + w3ξ
3

into the hodograph (3) and integrating. For symmetric interpolation of the
end tangents we must have r′(0) = λ2 and r′(1) = i λ2 with λ 6= 0. Since
r′(0) = w2

0
and r′(1) = w2

3
, these conditions imply that

w0 = λ and w3 = p
1 + i√

2
λ , (14)

where p = ±1 and we again take λ > 0 without loss of generality. Also, since

κ(0) = 6
Im(w0w1)

|w0|4
and κ(1) = 6

Im(w2w3)

|w3|4
,

the conditions κ(0) = 0 and κ(1) = 0, together with the symmetry constraint
|w1| = |w2|, imply that

w1 = µ and w2 = q
1 + i√

2
µ (15)

where q = ±1, for some real number µ. Finally, with p0 = 0 and p3 = 1 + i,
the end–point displacement condition

∫

1

0

r′(ξ) dξ = p3 − p0 = 1 + i

9



yields the equation

1

7

[

w2

0
+ w0w1 +

3w2

1
+ 2w0w2

5
+

w0w3 + 9w1w2

10

+
3w2

2
+ 2w1w3

5
+ w2w3 + w2

3

]

= 1 + i .

Substituting for w0,w1,w2,w3, the real and imaginary parts of the above
condition yield the two equations

(10
√

2 + p) λ2 + 2 (5
√

2 + 2p + 2q) λµ + (6
√

2 + 9q) µ2 = 70
√

2 ,

(10
√

2 + p) λ2 + 2 (5
√

2 pq + 2p + 2q) λµ + (6
√

2 + 9q) µ2 = 70
√

2 ,

for λ, µ. In order for these equations to be consistent, we must have pq = 1,
i.e., p = q, and the two equations are then identical. Setting

a =
20 +

√
2 s

140
, b =

10 + 4
√

2 s

140
, c =

12 + 9
√

2 s

140
,

where s = ±1, they can be expressed in the form

[

λ µ
]

[

a b
b c

] [

λ
µ

]

= 1 . (16)

The eigenvalues of the 2 × 2 matrix are

ζ1, ζ2 =
a + c ±

√

(a − c)2 + 4b2

2
=

16 + 5
√

2 s ± 2
√

45 + 12
√

2 s

140
,

and the corresponding unit eigenvectors are

1
√

(ζ1 − a)2 + b2

[

b
ζ1 − a

]

and
1

√

(ζ2 − a)2 + b2

[

b
ζ2 − a

]

.

Assuming that ζ1 < ζ2, both eigenvalues are positive when s = +1, but ζ1 is
negative and ζ2 positive when s = −1.

By diagonalizing the matrix on the left in equation (16) its solutions may
be parameterized in terms of a free angular variable φ when s = +1 as

λ(φ) =
b cos φ

√

ζ1[ (ζ1 − a)2 + b2 ]
+

b sin φ
√

ζ2[ (ζ2 − a)2 + b2 ]
, (17)

µ(φ) =
(ζ1 − a) cos φ

√

ζ1[ (ζ1 − a)2 + b2 ]
+

(ζ2 − a) sin φ
√

ζ2[ (ζ2 − a)2 + b2 ]
, (18)
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and when s = −1 as

λ(φ) =
b tan φ

√

|ζ1|[ (ζ1 − a)2 + b2 ]
+

b sec φ
√

ζ2[ (ζ2 − a)2 + b2 ]
, (19)

µ(φ) =
(ζ1 − a) tanφ

√

|ζ1|[ (ζ1 − a)2 + b2 ]
+

(ζ2 − a) sec φ
√

ζ2[ (ζ2 − a)2 + b2 ]
. (20)

As shown in Figure 4, the above solutions describe an ellipse and a hyperbola,
respectively, in the (λ, µ) plane. In practice, φ can be restricted to the interval
[ 0, π ] in the case of (17)–(18), since it is apparent that replacing φ with φ+π
simply reverses the sign of λ and µ, and hence also w0,w1,w2,w3 from (14)
and (15), and such a sign reversal leaves the curve unchanged.

–4 –2 0 2 4
–4

–2

0

2

4

λ

µ

–40 –20 0 20 40
–40

–20

0

20

40

λ

µ

Figure 4: The locus of solutions to equation (16) in the (λ, µ) plane, defined
by equations (17)–(18) and (19)–(20) when s = +1 and s = −1, respectively.

Once the complex values w0,w1,w2,w3 are computed from (14)–(15) and
(17)–(18) or (19)–(20), the Bézier control points of the G2 degree 7 PH corner

11



curve may be constructed from them through the expressions

p1 = p0 +
1

7
w2

0
,

p2 = p1 +
1

7
w0w1 ,

p3 = p2 +
1

7

3w2

1
+ 2w0w2

5
,

p4 = p3 +
1

7

w0w3 + 9w1w2

10
,

p5 = p4 +
1

7

3w2

2
+ 2w1w3

5
,

p6 = p5 +
1

7
w2w3 ,

p7 = p6 +
1

7
w2

3
.
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Figure 5: Left: canonical degree 7 G2 PH corner curve for φ = 1

2
π, with its

Bézier control polygon. Right: curvature profile of this G2 PH corner curve.

It is found that the shape of the degree 7 PH corner defined by (14)–(15)
and (17)–(18) is sensitive to the choice of the φ parameter, with acceptable
shapes resulting from a relatively narrow range about φ = 1

2
π. Figure 5 shows

the corner shape and its curvature profile for the specific case φ = 1

2
π. The

curve compares favorably with the unique G1 PH cubic and G2 PH quintic
corners shown in Figures 1 and Figure 3. Unlike the former, it is curvature–
continuous and does not closely resemble a circular arc. Also, the extremum
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curvature is only ∼ 1.4974, as compared to ∼ 3.8378 for the latter. The three
corner shapes, and their curvatures versus fractional arc length (the total arc
lengths are somewhat different), are compared in Figure 6.

0.0 0.2 0.4 0.6 0.8 1.0
0
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fractional arc length
cu

rv
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Figure 6: Left: comparison of G1 PH cubic, G2 PH quintic, and G2 degree 7
PH corners. Right: curvature profiles, as functions of fractional arc length.

As a further shape comparison of the G1 PH cubic, G2 PH quintic, and G2

degree 7 PH corner with φ = 1

2
π, Figure 7 shows each of these curve together

with its evolute (locus of centers of curvature) and circle of curvature at the
vertex (point of extremum curvature) of the corner curve. Note that the cusp
of the evolute corresponds to the center of curvature at the vertex.

Figure 7: The evolutes and smallest circles of curvature for the G1 PH cubic
(left), G2 PH quintic (center), and degree 7 G2 PH corner (right) with φ = 1

2
π.
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Figure 8 illustrates the effect3 of varying φ away from 1

2
π. As φ is reduced

below 1

2
π, one obtains a sharper corner, with a more pronounced mid–point

curvature extremum, but for φ less than ∼ 0.36 π the corner develops slight
negative curvatures and a severe curvature extremum. As φ increases above
1

2
π, on the other hand, the corner becomes much shallower. When φ ≈ 0.53π,

one obtains a quite remarkable curvature distribution — nearly constant over
most of the curve, with a rapid rise and fall near the end points. As observed
in Figure 8, the curvature profile exhibits an increasingly pronounced bimodal
distribution as φ increases above ∼ 0.53π. Figure 9 illustrates the variation
of the maximum (mid–point) curvature for 0.36 π ≤ φ ≤ 0.53 π.
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Figure 8: G2 PH corner curves of degree 7, with their curvature profiles, for
the parameter ranges 0.4π ≤ φ ≤ 0.5π (upper) and 0.5π ≤ φ ≤ 0.6π (lower).

3Since the total arc length of the corner curves varies with φ, the curvature profiles are
plotted as functions of the curve parameter t, rather than arc length, in Figure 8.
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Experiments show that values of φ outside the interval [ 0.36 π, 0.53 π ]
typically produce curves of poor shape, with tight loops, negative curvature,
or a bimodal curvature profile, and should therefore be avoided. In practice,
the range 0.36 π ≤ φ ≤ 0.53 π offers considerable freedom in manipulating
the corner shape, while ensuring (i) a unimodal curvature distribution; (ii) a
reasonable curvature extremum; and (iii) absence of negative curvature and
loops. As a default, the case φ = 1

2
π is an excellent choice (see Figure 5).
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Figure 9: Variation of the maximum curvature with the parameter φ for the
degree 7 G2 PH corner defined by (14), (15), and (17)–(18) with p = q = 1.
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Figure 10: The control point p3 traces an ellipse as φ varies, with only the
portion between φ ≈ 0.36 π (on the right) and φ ≈ 0.62 π (on the left) lying
above the x–axis. The location of p3 for the value φ = 1

2
π is also shown.
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Figure 10 shows that the locus traced by the control point p3, as φ varies,
is an ellipse. It is observed that p3 lies above the x–axis — ensuring positive
curvature — only for 0.36 π <∼ φ <∼ 0.62 π. The highest location of p3 above

the x–axis occurs for φ slightly less than 1

2
π — namely, φ ≈ 0.49 π.

Although they are formal solutions to the given boundary conditions, the
G2 interpolants to the corner data defined by (14)–(15) with p = q = −1,
in conjunction with expressions (19)–(20), were found to be of unacceptable
shape — with negative curvature and/or small or large loops — for all values
of the parameter φ. These solutions should therefore be discounted.

6 Spliced G2 PH quintic corner

It has been seen that the PH cubics and PH quintics define unique G1 and
G2 corners, respectively, while degree 7 PH curves admit G2 corners embody
a single free parameter, that proves useful in tuning the curvature profile. As
a final corner shape, incorporating two degrees of freedom, we consider here
a solution based on splicing together two PH quintic segments.

Consider two PH quintic segments r1(ξ) and r2(ξ), such that r1(0) =
(0, 0), r1(1) = r2(0), r2(1) = (1, 1). By symmetry, the juncture point must
have coordinates r1(1) = r2(0) = (α, 1 − α) with 0 < α < 1. At that point,
the two curves must also have a common tangent (inclined at angle 1

4
π with

the positive x–direction), and equal curvatures, to ensure a G2 splice.
In fact, r2(ξ) must be a reflection of r1(ξ) in the diagonal line between

(0, 0) to (1, 1), so we can focus on the construction of r1(ξ). Specfiying r1(ξ)
in the complex representation by substituting (6) into (3) and integrating, it
must satisfy the interpolation constraints

r1(0) = 0 , r′
1
(0) = λ2 , κ(0) = 0 ,

and
r1(1) = α + i (1 − α) , r′

1
(1) = µ2 exp(i1

4
π)

with λ 6= 0, µ 6= 0, and 0 < α < 1. The condition r1(0) = 0 is achieved by
choice of the integration constant upon integrating (3), and r′(0) = λ2 yields
w0 = λ, where we again assume λ > 0 without loss of generality. Also, the
condition κ(0) = 0 becomes Im(λ(u1 + i v1)) = 0, so v1 = 0 since λ 6= 0, and
hence w1 = u1. Finally, from r′(1) = µ2 exp(i1

4
π) we have w2 = ±µ exp(i1

8
π).
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These expressions for w0,w1,w2 must satisfy the end–point condition
r(1) = α + (1 − α)i, which may be expressed as

1

5

[

w2

0
+ w0w1 +

2w2

1
+ w0w2

3
+ w1w2 + w2

2

]

= α + (1 − α) i .

Substituting for w0,w1,w2 and taking real and imaginary parts, this becomes

2u2

1
+ 3(λ ± µ cos 1

8
π) u1 + 3λ2 ± λµ cos 1

8
π + 3µ2 cos 1

4
π = 15 α , (21)

±3µ sin 1

8
π u1 ± λµ sin 1

8
π + 3µ2 sin 1

4
π = 15(1 − α) . (22)

Since these two real equations incorporate the four free parameters α, λ, µ, u1

we may expect the solutions to exhibit two degrees of freedom. Eliminating
α between (21) and (22) yields a quadratic equation

a2u
2

1
+ a1u1 + a0 = 0 (23)

in u1 with coefficients dependent on λ and µ, namely

a2 = 2 , a1 = 3(λ ± µ(sin 1

8
π + cos 1

8
π)) ,

a0 = 3λ2 ± λµ(sin 1

8
π + cos 1

8
π) + 3µ2(sin 1

4
π + cos 1

4
π) − 15 .

Note that the discriminant ∆ = a2

1
− 4a0a2 of (23) can be expressed as

∆ = 120 − 15λ2 ± 10(sin 1

8
π + cos 1

8
π)λµ + (9 − 15 sin 1

4
π − 24 cos 1

4
π)µ2 ,

and we must have ∆ ≥ 0 to obtain a real u1 value. If the + sign is chosen,
this condition identifies the set of feasible values as the interior of an ellipse
centered on the origin in the (λ, µ) plane. Choosing feasible λ and µ values,
one can solve (23) for u1 and obtain α from (21) — the complex coefficients
w0,w1,w2 in (6) are then completely determined.

Once the control points for the first segment of the spliced G2 PH quintic
corner are computed from (7) using p0 = 0 and these w0,w1,w2 values, the
control points for the second segment can be determined from (7) using p0 =
α + (1 − α)i and w0,w1,w2 values obtained by applying the transformation

wk → 1 + i√
2

wk−2 , k = 0, 1, 2

to the values for the first segment — this transformation allows for the fact
r2(ξ) is the mirror image of r1(ξ) in the diagonal line from (0, 1) to (1, 0).
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Figure 11: Left: spliced G2 PH quintic corner curve defined by the parameter
values (λ, µ) = (0.99, 0.91). Right: the corresponding curvature distribution.

The parameter values (λ, µ) = (0.99, 0.91) were found empirically to yield
an excellent spliced G2 PH quintic corner shape when the + sign is used in
(21)–(22). The curve, together with its control polygon and curvature profile,
are illustrated in Figure 11. The extremum curvature, at the juncture of the
two segments, is ∼ 1.8013 — slightly higher than for the degree 7 G2 corner
with φ = 1

2
π, but much lower than for that defined by a single PH quintic.
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Figure 12: Dependence of the curvature profiles for the G2 spliced PH quintic
corner on the λ and µ parameters — left: for the values λ = 0.8, 1.0, 1.2 with
µ fixed at 0.9; and right: for the values µ = 0.8, 0.9, 1.0 with λ fixed at 1.0.

Figure 12 illustrates the influence of the λ and µ parameters on the corner
curvature profile. If either parameter is reduced below the nominal value, the
extremum curvature increases. If either is increased above the nominal value,
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the curvature profile assumes a bimodal configuration. These effects are more
pronounced with variation of the µ parameter than with the λ parameter.4

A systematic shape optimization of the spliced G2 PH quintic corner with
respect to the (λ, µ) parameters is a non–trivial task, that we do not attempt
here. It should be noted that these parameters can also be exploited in other
ways — for example, a G3 splice can be achieved by requiring that κ′(1) = 0.
From (4) the derivative of the curvature can be expressed as

κ′ =
2 |w|2Im(ww′′) − 8 Re(ww′) Im(ww′)

|w|6 ,

and substituting (6) with the above expressions for w0,w1,w2 the condition
κ′(1) = 0 reduces to

8 cos 1

8
π u2

1
∓ 6 µ u1 ∓ λµ = 0 . (24)

Equations (23) and (24) must have a common root, i.e., their resultant with
respect to u1 must vanish. This imposes a constraint between λ and µ, leaving
just one freedom (there are insufficient freedoms to ensure G3 continuity at
the splice point and the connections with the linear segments).

7 Closure

Several solutions to the problem of specifying rounded right–angle corners in
terms of G2 planar Pythagorean–hodograph curves have been presented. The
simplest consists of a (unique) single PH quintic segment — in this case, the
extremum curvature is relatively large, but the corner shape is nevertheless
aesthetically quite attractive. The G2 corners defined by a single PH curve of
degree 7 comprise a one–parameter family, offering scope for adjustment of
the curvature distribution. A nominal value for this parameter was identified,
that generates an appealing corner shape with a smooth unimodal curvature
distribution, and a modest extremum curvature. Finally, a G2 corner based
on splicing together two PH quintics was proposed, with two free parameters
for shape adjustment. Nominal values for the parameters were identified,
and their influence on the curvature profile was studied.

4It is also possible to study the dependence of the location of control point p3 on the
parameters λ, µ (as with the degree 7 case in Section 5), but the analysis is more involved
because of the two degrees of freedom and the intermediate quadratic equation (23).
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The G2 corner constructions can be easily implemented using the complex
representation of planar PH curve, and incur little more than the solutions of
quadratic equations. It should be noted that sign ambiguities arise at various
points in the solution procedure, and inappropriate choices can yield curves
with unacceptable shape properties (negative curvature or tight loops) that
nevertheless satisfy the specified boundary conditions. The appropriate signs,
and ranges for the free parameters, are indicated throughout the presentation
to ensure that such undesired extraneous solutions are circumvented.

The design of G2 corners in terms of PH curves offers several important
advantages over “ordinary” polynomial or spline curves, including exact arc
length measurement, rational offset curves, and the availability of real–time
interpolator algorithms to drive CNC machines directly from the analytic
curve description for manufacturing or inspection applications.
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