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Abstract 

The anomalous chiral Schwinger model is solved by summing the pertur­

bation series.' A gauge invariant spectrum is obtained if a Wess-Zumino 

term is appended to the original action. The resulting spectrum depends 

on ambiguities in the specification of the anomaly and is singular at the 

value corresponding to the minimal anomaly. 

*This work was supported by the Director, Office of High Energy and Nuclear Physics, Division of 

High Energy Physics of the U.S. Department of Energy under contract DE-AC03-76SF00098. 
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The requirement of anomaly cancellation plays a fundamental role in four di­

mensional gauge theories and in string theories in higher dimensions. It is important 

to ask whether it is a truly fundamental requirement or an artifact of our present 

dependence on perturbative techniques that demand renormalizability in four or 

more dimensions. Gauge theories in two space-time dimensions are an interest­

ing laboratory in which to examine this question, since they can be solved exactly 

by a variety of techniques. Jackiw and Rajaraman1 and Halliday, Rabinovici and 

Schwimmer et al..2 have used the method of bosonization to solve versions of the 

chiral Schwinger model. The former evaluate the fermionic determinant, reducing 

the theory to a bosonic theory with an arbitrary gauge boson mass parameter. The 

latter investigated a suggestion by Fadeev3 that a sensible theory can be constructed 

by "subtracting" (i.e., adding with a negative sign) the Wess-Zumino action4 from 

the action of the original anomalous theory. The authors of ref. (2) found that the 

action of reference (1) can in fact be realized by the Fadeev construction taken in 

a "unitary" gauge in which the Wess-Zumino scalar is gauged away. 

In this paper I solve the chiral Schwinger model in its aboriginal fermionic form, 

thereby finessing any subtleties that might arise in bosonization of an anomalous 

theory. I define the theory as the sum of its perturbation expansion and solve for 

the spectrum by explicit summation of the perturbation series.5 I find that the 

solution depends on ambiguities in the chiral anomaly. The anomaly ambiguities 

are crucial to the analysis, because it turns out that there is a singularity at the 

value of the ambiguous parameter corresponding to the minimal anomaly. As in 

reference 2, the model with an uncancelled anomaly is unitary but violates Lorentz 

invariance in a temporal gauge, while in covariant gauges the spectrum is Lorentz 

invariant but depends on the gauge parameter and is unitary or not according­

to the particular value of the gauge parameter.6 Upon "subtracting" the Wess­

Zumino term the gauge invariance of the spectrum is restored: in temporal gauge 

the spectrum has a Lorentz invariant dispersion relation, in covariant gauges it is 

gauge parameter independent, and the two spectra agree. As in refs. 1 and 2 

the spectrum depends on a single parameter, seen here to reflect the ambiguity in 

specifying the anomaly. The spectrum has a massless particle when the parameter 

assumes the value conventionally associated with the bosonization prescription. 

I have also examined the "commutator anomalies" of the generator of time­

independent gauge transformations, the operator that in temporal gauge must anni­

hilate physical states to enforce Gauss' law. Though it does not in general commute 

with the Hamiltonian in the original anomalous theory, it commutes with itself and 
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the Hamiltonian in the Wess-Zumino "subtracted" theory - another sign of the 

restoration of gauge invariance. 

The theory consists of one left and one right chiral massless fermion coupled to 

a massless "photon", 

where 

.Co= -~F,.vF'"v + ii;(i{J+ j!e)t/J 
4 

"'= ( ~:) 
e = ( eR eL) 

(1) 

and the Dirac matrices are "Yo = u1 , "Y1 = iu2 , and "Y5 = -"Y0 "Y 1 so that (1 - "Ys) /2 

projects out tPL which is left-moving. The Hamiltonian in temporal gauge is 

with 

)I= ~A.2- (iP,.,la • .,p + AJl 
2 

J'" = ib'"f'"et/J. 

The vacuum polarization tensor 

ITj~ = J d2xeip·• (T J'"(x)Jv(O)) 

(2) 

(3) 

may be decomposed by writing J as a sum of vector and axial vector currents, 

1 .,. 1 .,. 
J" = -e+Jv + -e-JA 

2 2 
(4) 

where e± = eR±eL, J"t = ib"Y"t/1, and j~ = iP"Y""YstP· The vacuum polarization tensors 

of it and i~ computed perturbatively are determined up to three real, arbitrary 

constants, a, b, c: 

II~~ = _i_(S"v + cg'"v) 
7r 

(sa) 

IIZt = _i_(-P~"v + bg"v) 
7r 

(5b) 

II~~ = II~A = -~(!"aS"v + a!"v) (5c) 

where S"v = g"v-~, p11v =~'the metric has g00 = +1, and the antisymmetric 

tensor has ! 01 = +1. The theory is completely specified by choosing a, b, c. For 
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instance, for eR = eL our theory is QED and the choice c = 0 is necessary to 

have the usual gauge invariant theory. The formal "duality" relation it = !'"vjV is 

enforced among the three tensors in eq. (5) if a= b = c (e.g., II~= !~""II~'V), in 

which case conservation of VV requires nonconservation of AA. Alternatively we 

can make VV and AA both conserved (but not VA) by setting c = b- 1 = 0, with 

the sacrifice of the "duality" relationship. These are examples of ambiguities in the 

anomaly. The essential, unambiguous anomaly resides in the VA tensor (5b), since 

there is no choice of the parameter a that makes II~~ conserved on both indices. 

Combining eqs. (3-5), the vacuum polarization tensor of the gauge current is 

II'"v = -i { e~ + e: S'"v + clg~"v + c2(€'" S"v + !v S"'")} 
471" " " 

(6) 

where 
1 

c1 = 
4

71" (ce~ + (b- 1)e:) (7a) 

c2 = _..!:_e+e- = ek - eJ. 
47r 471" 

(7b) 

While c1 is arbitrary since it depends on b and c, c2 depends only on the charges 

eR,L· The essential (or minimal) anomaly is the term c2, which arises in eq. (6) 

from the VA cross term (5c). The complete anomalous Ward identity is just 

p,.II'"v = -ic1pv - ic2€v aP" · (8) 

The spectrum is determined by the vacuum polarization tensor, eq. (6). In 

A0 = 0 gauge the exact photon propagator is obtained5 by summing the geometric 

series of bubble graphs 

Defining 

i i ( 11 ( )) i D = - +- -IIJJ p - + · · · P5 Pa P5 
i 

= Pa +iii}). 

2 
iiin - Po X 

JJ-- p2 0 

(9) 

(10) 

the pole is at p2 = X0 (there is also a pole at p0 = 0, an artifact of the temporal 

gauge that occurs also in QED) where 

ek + eJ. pl P2 
Xo = ---- 2c20 + c12· 

271" P Po 
(11) 
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To recover QED we set eR = eL = e and choose c = 0 in eq. (Sa), so that c1 = c2 = 0 

and m 2 = X 0 = e2j1r. For eR f- eL, we have a non-Lorentz invariant dispersion 

relation. For instance, for c1 = 0 the pole is at 

P
2 = o• 1' eR2 + eL2 pl e2 - e2 
-P -p =-----R L 

21r po2;-

and in general the position of the pole depends on how we specify c1. 

(12) 

Eq. (12) is the result obtained in eq. (24) of ref. (2), so apparently the bosoniza­

tion prescription followed there is equivalent to the choice c1 = 0 and not the choice 

a = b = c = 0 that preserves "duality" and vector current conservation. (In fact, if 

vector current conservation, c = 0, is assumed, then it happens that c1 = 0 follows 

from the anticommuting "is prescription advocated in dimensional regularization for 

graphs with an even number of axial vertices.6 ) 

The conclusion, as in ref. (2), is that in A0 = 0 gauge the breaking of gauge 

invariance by the anomaly is manifested, as expected, by the breaking of Lorentz 

invariance. Similarly in a generalized covariant gauge we would find that the spec­

trum has an explicit dependence on the gauge parameter.6 

Next we consider the theory in which the Wess-Zumino term is "subtracted" 

from the initial Lagrangian f.o of eq. (1). Following the construction of ref. (4) we 

find 
cl 2 

f.wz = 2(a,.8) + 8(c1a,.A" + c2£14va" Av) (13) 

where 8 is the Wess-Zumino scalar. We define the theory with the subtraction 

f.T = f.o- f.wz (14) 

For the current of this Lagrangian we now find a conserved vacuum polarization 

tensor 

IT~v = i (e~ + e: + ~ + c1) S"v. 
47r c1 

(15) 

Clearly the W Z term has restored the gauge invariance of the theory. It is espe-

cially interesting that gauge invariance is restored for any value of the ambiguous 

parameter c1. 

Since IT~v is conserved it comes as no surprise that Lorentz invariance is restored 

in A0 = 0 gauge. Summing the geometric series for the photon propagator we find 

that the pole is at 
2 2 c2 

2 _ e+ + e_ + _1 + c1 
p - 47r c1 (16) 

4 

.__ ;::,., 

or 
2+ 2 2 2( ) 2 eR eL eR - eL c2 c1 

p =---+--- -+- . 
21r · 47r c1 c2 

(17) 

Eq. (17) has the same form as the solution obtained in ref. (2) for the W Z modified 

theory: eq. (17) is identical to their eq. (47) if their parameter a (discussed below) 

is identified with c2fc1. If we set eR = 0 to compare with ref. (1) we again find 

agreement, identifying their parameter "a" with c + b = 1 + (47rc1/ei.) and their e2 

with e"if47r. In ref. (1) "a" emerges from the fermionic determinant as a mass for 

the gauge boson. 

From the conserved form of the polarization tensor it is clear that the same 

solution is obtained in generalized covariant gauges. 

Notice that the solution (17) is singular at c1 = 0 (though not at c2 = 0). It 

is already apparent from the form of f.wz in eq. (13) that c1 = 0 plays a unique 

role in the analysis. We can still recover the QED limit by respecting the following 

order of limits: first eR --+ eL, then c --+ 0. 

As noted in reference (2) gauge invariance also allows the addition of a term 

f.a = ~(a,.8- A,.) 2 (18) 

where the gauge transformations are A" --+ A"+ a14 € and 8 --+ 8 + €. Choosing2 

the unitary gauge (J = -€, we have f.wz = 0 and f.a becomes just a gauge boson 

mass term, as in the construction of reference (1). Returning to the original non­

unitary gauge, if we sum the series for the photon propagator in the theory defined 

by f.o- f.wz + f.a, the result is eq. (17) with c1--+ c1 +a, 

2 ek + ei, ( c2 c1 +a) p =---+c2 --+-- . 
21r c1 +a c2 

(19) 

f. a may then "regulate" the theory at c1 = 0. Conversely, while the solution of ref. 

(2) is singular at a = 0, eq. (19) is finite at a = 0 if c1 f- 0. (The singularity of the 

solution of ref. (2) at a = 0 is another indication that their analysis is equivalent 

to taking c1 = 0.) 

Returning to the case a = 0 and specifying the anomaly by assuming vector 

current conservation and "duality", b = c = 0, then c1 = -e:/47r and eq. (17) 

yields a massless pole 

2 _ __±___:;_ ___ -+- -. e2 + e2 e+e- (e+ e_) _ 0 
P - 47r 47r e_ e+ 

(20) 
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I have also investigated the equal time commutators [G, Jl] and [G, GJ in the 

theory with and without the W Z term. G is the generator of time independent 

gauge transformations, the residual gauge invariance of a gauge invariant theory in 

A0 = 0 gauge, given by 
aE _ Jo 

G(x) = ax (21) 

with E the electric field. In a gauge invariant theory Gauss' law is imposed in 

A0 = 0 gauge by requiring that G annihilate the physical states. Since I have 

defined the theory as the sum of its perturbation expansion, it is appropriate to 

use the BJ L limit8 to evaluate the equal time commutators. Explicit calculations 

show9 that it correctly reproduces ETC's calculated in perturbation theory, where 

other methods (such as point-splitting at equal times) fail. 

For the theory without W Z term the results are 

[J0 (x,O), J 0(0)] = 2ic26'(x) (22) 

2 + 2 
[J0 (x, 0), J 1(0)] = -i~6'(x) (23) 

271" 

[E(x,O), J 0(0)] = ic26(x) (24) 

[ ~! (x, 0), J0 (o)] = ic26'(x) (24.1) 

[~! (x,O),J1 (o)] = -i (c1 + ek 
2
: ei) 6'(x) (25) 

where (24) and (25) are evaluated in A0 = 0 gauge. Using the definition (21) and 

the Hamiltonian (2) defined in A0 = 0 gauge, we then find 

[G(x,O),G(O)] = 0 

[G(x,O), JI(O)] = -i (c 1A(0)6'(x) + c2E(0)6(x)) 

(26) 

(27) 

Eq. (26) agrees with the results of Jo10 and Hwang11 , also computed with the BJL 

limit. For eR = 0, eqs. (26) and (27) also agree with a BJL calculation11 and with the 

Poisson bracket evaluations of Rajaraman12, based on the bosonized construction 

of ref. (1); as for the mass, eq. (17), agreement is obtained with eq. (27) if the 

parameter "a" ofrefs. (1) and (12) is identified with our c + b = 1 + (47rct/ el). Eqs. 

(26) and (27) do not agree with the commutation relations given in ref. (2).13 

For the theory with W Z term, eq. (14), the commutators are like those of QED. 

6 

-~ -c 

We have 

[J0 (x,O),J0 (0)] = [E(x,O),J0 (o)] = 0 

so that trivially 

[G(x,O),G(O)J = 0. 

The usual Schwinger and Seagull terms 

[J0 (x, 0), J 1 (0)] 

[ aE (x,O),Jt(o)] 
ax 

cancel in the familiar way 

= -i eR + eL + Ct + ~ 6'(x) ( 
2 2 2) 

271" Ct 

= -i (ek + ei + Ct + :i) 6'(x) 
271" Ct 

[G(x,O),JI(O)] = 0, 

all as expected in a gauge invariant theory. 

(28) 

(29) 

(30) 

(31) 

To conclude, both the spectrum and the equal time commutators indicate that 

gauge invariance is restored by "subtracting" a Wess-Zumino term from the orig­

inal anomalous lagrangian. The resulting theory depends on how the ambiguous 

anomaly parameter Ct is specified. To me the most striking feature of this mecha­

nism is that it restores gauge invariance for all nonzero values of Ct. In this respect 

it seems a "stronger"mechanism than anomaly cancellation by addition of heavy 

fermions. 
r 
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