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Abstract

In this thesis, we study geometry-based non-equilibrium steady-state transport phe-

nomena theoretically with the overarching goal to understand how the multi-path

geometry can affect transport in classical and quantum systems. We begin with an

overview of the physics associated with classical and quantum transport and the for-

malisms used to obtain results. In the non-equilibrium steady-state, one would expect

that the local gradient imposed by the reservoirs would define a unique direction of

flow from high-to-low. However, through this thesis we show that may not always be

the case as one can devise a local steady-state atypical flow which goes from (low-

to-high) by using a system with multi-path geometry. We address the universality

of these steady-state local atypical flows in systems with multiple paths, through the

following undertakings:

• We show a classical harmonic system of Hookean springs and point masses

coupled in a multi-path geometry driven by two Langevin reservoirs at dif-

ferent temperatures can give rise to a steady-state local atypical thermal flow.

Through molecular dynamics simulations of Langevin equations for this system,

we show that the atypical current depends on both internal and external pa-

rameters such as ratio of spring constants, ratio of masses and system-reservoir

coupling respectively. We also show the robust nature of this atypical current

against substrate induced non-linearity and asymmetric system-reservoir cou-

pling.

• Two different approaches, namely the Redfield and Lindblad master equation,

are used to extract the non-equilibrium steady-state thermal transport of a
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quantum system of oscillators coupled in a triangular geometry described in

the coordinate-momentum space and as a Bose-Hubbard Hamiltonian respec-

tively. Through the third quantization formalism and numerical simulation of

the quantum master equations we show that atypical flows are universal to

multi-path geometry and arise in both descriptions. We show that these atypi-

cal flows give rise to two patterns of internal steady-state circulations, clockwise

and counterclockwise. We map out phase diagrams for these flow patterns as a

function of system parameters thereby showing its robust nature.

• Finally, we show that these atypical flows and internal steady-state circulations

are not limited to thermal transport but can be achieved for particle trans-

port as well. We phenomenologically describe a hybrid system comprising of

photonic structures and electronic quantum dots and show that the triangular

geometry of this system can give rise to steady-state photonic circulations. We

show the robust nature of these circulations against photon blockade and inter-

actions through numerically calculated phase maps with the ratio of tunneling

coefficients and system-reservoir coupling as the parameters.

At the end, we elaborate on the applications of these geometry-based steady-state

atypical flows and outline possible experimental realizations to observe these atypical

flows and circulations.
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Chapter 1

Introduction

1.1 Motivation

Recent experimental advances in the realization of low dimensional systems have revo-

lutionized the modern industry [1–4]. These advances are a culmination of theoretical

and experimental efforts spanning over half a century. Understanding and control of

transport in low dimensional systems down to the atomic and molecular scale will

continue to play a vital role in the development of future technology. Characteriza-

tion of transport phenomena requires one to work at the interface of non-equilibrium

physics, thermodynamics classical and quantum mechanics. A simple example of

transport phenomena is when a system is subjected to an external environment such

that it develops a chemical potential or temperature gradient, which results in particle

current or energy current through it.

Imposing a gradient on a system places restrictions on the direction of the total

current but no such restrictions are levied on the local currents within the system. For

example, it is known from the second law of thermodynamics, that a total steady-

state thermal current from a cold to hot body without any other changes to the

system is not possible [5]. However, no statement of the second law imposes any

such restrictions on a local current in the system [6]. Therefore, looking into the

local transport in the system can lead to interesting physics [6, 7]. Ref. [7] exploits

different geometries to show that “anything is possible” in regards to the direction of

1
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flux within a system of harmonic oscillators.

When an electron beam traverses a two arm interferometer which encloses a con-

stant magnetic field, a magnetic field dependent shift in the interference pattern can

be observed even though the electron paths are in a region of zero magnetic field this

non-local effect is popularly known as the Aharonov-Bohm effect [8]. The ring geom-

etry provides a convenient platform for realization of the persistent current induced

by a magnetic flux from an external magnetic field [9–11]. For charged particles like

electrons, it is always possible to use an external magnetic field to induce a circulating

current in classical [12] as well as quantum systems [11]. However, for neutral carriers

such as photons or phonons, there are no natural means for inducing circulations.

For these neutral particles, it is possible to exploit their interaction with matter to

generate an artificial gauge field [13–15], which drives them the way a magnetic field

drives a charged particle.

Moreover, without a magnetic field the ring geometry by itself has been used to in-

duce current vortices [16–19], chiral current [20], current magnifications [21]. The ring

geometry also offers an elementary probe to study topological properties of 1D Bose

fields [22]. Furthermore, it has been shown that a ring embedded with two quantum

dots and connected to external electrodes shows circulating currents [23]. Ref. [24]

shows quantum non-locality without inputs for a triangular network, a consequence

of its triangular network configuration which is different from previously known forms

of quantum non-locality. Ref. [6] shows that the quantum interference of tunneling

electrons in a system of two quantum dots individually coupled to two reservoirs

can also result in a circulating electric current. Ref. [25] shows that the steady-state

quantum electronic current through a triangular geometry shows circulation even in

the absence of magnetic field.

It is clear to see from these examples that geometry plays a crucial role in deter-

mining the system’s transport properties. Motivated by these non-trivial results, in

this thesis we explore the geometry of multi-path systems and show its influence on

classical and quantum thermal and quantum particle transport. With this thesis, we

aim to show that multi-path systems can give rise to an atypical steady-state current

in classical harmonic systems and tunable internal steady-state thermal and photonic
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Figure 1.1: Relation between EOM and distribution function approaches.

current circulations in bosonic systems without using any additional media as required

for artificial gauge fields or interactions. We show that these circulations are a con-

sequence of the multi-path system geometry and are a universal phenomenon in the

sense that they can be observed in all quantum systems with multi-path geometries.

1.2 Approaches to non-equilibrium transport

Open systems provide a natural framework to study non-equilibrium transport. The

basic idea of an open system is that a system of interest interacts with an external

environment and evolves under its influence. Standard approaches to study non-

equilibrium transport can be broadly categorized into the following: Non-equilibrium

Green’s function [26,27], path integral [28,29], equation of motion (EOM) and prob-

ability distribution approaches. All of which can be adapted to work in both the

classical and quantum regimes. There are a couple of equation of motion approaches

such as Langevin equations [30–33] and quantum stochastic Schrödinger equation [34].

Classically, open systems can be equivalently described by stochastic Langevin equa-

tion and through deterministic evolution equation for the system’s phase space distri-

bution function more commonly known as the Fokker-Planck equation. In the limit

~ → 0, the quantum fluctuation-dissipation relation becomes the δ−correlated clas-

sical fluctuation-dissipation relationship [35,36]. Unlike its classical counterpart, the

relationship between the quantum Langevin equation and the quantum equivalent of
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Fokker Planck equation, more commonly referred to as quantum master equation,

is generally not obvious [37] and sometimes not present [38, 39]. These relations are

summarised in Fig. 1.1. The reason behind the absence of this equivalence are the

approximations one employs in deriving the quantum master equations. We will

elaborate upon these approximations in chapter 2.

1.3 Outline

In chapter 2, we introduce the classical Langevin equation and the quantum master

equations. We briefly discuss the numerical schemes used to simulate the Langevin

and quantum master equation. We introduce the idea behind the third quantization

formalism and show the framework for bosonic systems.

In chapter 3, we present our work on a minimal classical multi-path system made

up of Hookean springs and three masses. We show that the local steady-state thermal

current can show an atypical behavior. We present our numerical results and show

through phase diagrams that the regime of atypical thermal current depends explicitly

on the system-reservoir coupling, ratio of spring constants and ratio of masses. We

also show that adding a non-linearity to the system does not destroy the atypical

behaviour but rather can be used to tune the atypical regime.

In chapter 4, we present our results for a system of coupled oscillators placed

on a multi-path triangular geometry modeled through the co-ordinate-momentum

operators and Bose-Hubbard Hamiltonian. We calculate the non-equilibrium steady-

state local and total currents through the Redfield quantum master equation (RQME)

and Lindblad quantum master equation (LQME), and show the system exhibits an

internal circulation of steady state thermal currents in both representations. We show

how tuning internal and external system parameters affects the regimes of circulations.

We also show that the circulations survive in the presence of onsite interactions.

In chapter 5, we show that the steady state photonic current in a phenomenological

model of a triple quantum dot metastructure, calculated using the Lindblad form of

the quantum master equation shows an internal circulation of current. Through

phase maps, we outline the behavior of the circulations as a function of the maximum
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number of photons allowed per dot, system-reservoir coupling, ration of tunneling

coefficients and on-site interaction.

In chapter 6, we discuss possible experimental realizations of the classical and

quantum multi-path systems presented in the previous chapters. We also present

applications of the classical atypical thermal current and the circulation of thermal

and particle currents.

In chapter 7, we summarize all the results in this thesis.



Chapter 2

Formalism

2.1 Classical Langevin equation

It is known that Newton’s equation of motion describes the dynamics of classical

systems. The dynamics of a classical system which follows Newton’s law while in

contact with reservoirs can be described by the Langevin equation [32,40].

Classical Langevin equations are stochastic equations where the effect of the en-

vironment can be modelled phenomenologically by adding two terms, the frictional

force and a fluctuating random force also known as noise, ηn(t), simultaneously to the

system’s Newton’s equation. The noise is defined through its statistics and is gener-

ally taken to be Gaussian and mean 〈ηn(t)〉 = 0. This phenomenological stochastic

equation of motion can be written as:

mnẍn = Fn − bnẋn + ηn(t). (2.1)

Here mn is the mass of the oscillator, Fn is the deterministic Newton’s force on

the n-th mass and bn is the frictional coefficient coupling the system to a reservoir.

Since the origin of the frictional and random forces is the same (effect of coupling

to a reservoir) these forces should be correlated, which physically manifests as the

fluctuation–dissipation theorem [41]. This relation essentially describes the linear

response of a system and ensures that in the long time limit the system achieves

6
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equilibrium or is in a non-equilibrium steady-state.

Eq. (2.1) does not depend on the past of the reservoir and falls under the category

of Markovian Langevin equations, which assumes that dissipation is instantaneous

and independent of the system’s past velocities. This instantaneous dissipation in

the above equation means that the noise, ηn(t) is δ−correlated and has a vanishing

mean 〈ηn(t)〉 = 0; this type of noise is more commonly referred to as white noise.

This white noise satisfies the fluctuation-dissipation relation of the first kind [41,42]:

〈ηn(τ)ηn(τ + t)〉 = 2bnkBTnδ(t), (2.2)

where kB is the Boltzmann constant, Tn is the temperature of the reservoir and 〈〉
denotes the ensemble average taken over independent random realizations. The white

noise used here, or any type of noise in general represent stochastic processes which

are characterized through their probability distribution. To describe the probability

distribution of a stochastic process, one can discuss either its expectation for a single

system over time or its expectation over many identical systems at a time instance.

The latter type of averaging is known as an ensemble average and it is what we use

in this thesis to characterize the white noise.

We note that the Markovian Langevin equation is an idealization [41] as it im-

plicitly assumes that the reservoir interacts instantaneously with the system. For

a system to be in steady state, the position and velocity correlations by definition

should be time independent. However, for Markovian Langevin equation even the

equilibrium velocity correlations will have a time dependence [41]. Nonetheless, this

time dependence is exponentially decaying and the use of Eq. (2.1) is reasonable and

acceptable when the time scale associated with the reservoir is short compared to the

time scale associated with system dynamics. But when a distinction between these

time scales cannot be made, one needs to formulate an improved version of Eq. (2.1)

commonly known as the generalized Langevin equation [43] through a non-Markovian

framework which can model the system dynamics more accurately [43, 44]. We sim-

ulate the classcial langevin equation through non-equilibirum molecular dynamics

(NEMD). In our simulations, we use the Euler scheme [42,45] which is accurate up to
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first order in time step size and a second order scheme introduced in Ref. [46] which

is accurate up to second order in time step size.

2.1.1 Euler-Maruyama method

The Euler-Maruyama method is an extension of the well known Euler method which

is used to approximate solutions of deterministic differential equations. The Euler-

Maruyama method provides a first order numerical approximation technique to solve

stochastic differential equations. The classical Langevin equation, Eq. (2.1) under

the Euler-Maruyama method [45] can be approximated as:

xn(t+ dt) = xn(t) + dtvn(t) (2.3)

vn(t+ dt) = vn(t) +
dt

mn

Fn(t)− dt

mn

bnvn(t) +
dWn

mn

, (2.4)

here the Wn is the Wiener process [47] (Wn(t+ dt)−Wn(t) = dWn) which is related

to the stochastic force ηn(t) as:

dWn = ηn(t)dt. (2.5)

The amplitude of the Wiener process has a characteristic
√
t dependence which arises

as a consequence of the following properties of Wiener process:

〈Wn(s)Wn(s
′
)〉 = 2kbTnbnmin(s, s

′
) (2.6)

〈(Wn(t+ dt)−Wn(t))2〉 = 2kbTnbndt. (2.7)

Hence dWn can be written as:

Wn(t+ dt)−Wn(t) =
√

2kbTnbndtN (0, 1), (2.8)

where N (0, 1) is a normal random number with zero mean and unit variance and all

symbols have their previously defined meaning.
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2.1.2 Second order method

A second order approximation in both the deterministic and stochastic parts of the

differential equation can be obtained from the method described in Ref. [46]. An

approximation accurate upto (dt)2 contains the integral of the difference between two

Wiener processes and hence the random number becomes correlated. To simplify

the situation, the correlated random number is decomposed into two uncorrelated

random numbers with specific weights. Following the prescription in Ref. [46], the

equations take the following form:

xn(t+ dt) = xn(t) + dtvn(t) + Cn(t) (2.9)

vn(t+ dt) = vn(t) +
dt

2mn

(Fn(t) + Fn(t+ dt))

− dt

mn

bnvn(t) +
dWna

mn

− bnCn(t)

mn

(2.10)

Cn(t) =
dt2

2mn

(Fn(t)− bnvn(t)) +
dt

2mn

(dWna +
dWnb√

3
), (2.11)

where dWna and dWnb are two independent Wiener processes of the form of Eq. (2.8).

For the classical harmonic system, the results from Euler-Maruyama and this sec-

ond order method are almost equivalent. However, on addition of nonlinear substrate

effects the Euler-Maruyama requires a long simulation run time therefore, we em-

ploy the full second-order method as it gives the steady state results for a smaller

simulation run time.

2.2 Quantum master equation

For a closed quantum system described with pure states, the dynamics can be de-

scribed by the Schrödinger equation [48]. Equivalently, the Liouville–von Neumann

equation describes the time evolution of the density matrix of a closed quantum sys-

tem with mixed states [48]. Both these closed system approaches describe a unitary

evolution of the system.

To model the transport in a system of interest, we work in the open quantum
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system framework, by coupling the system to reservoirs which mimic an external en-

vironment. Since reservoirs are treated as systems with infinite degrees of freedom, it

is not possible to describe the complete system dynamics as is done for closed systems.

In such cases, the system dynamics are not only dictated by the system of interest’s

internal dynamics, but are also influenced by its interactions with reservoirs. As one

is generally interested in the dynamics of the system of interest one can trace out

the reservoir degrees of freedom, and get the reduced density matrix for the system

of interest. The evolution of this reduced density matrix can be determined through

effective equations of motion known as quantum master equations [49, 50]. Different

sets of approximations are made to derive different types of quantum master equa-

tions. In the following section, we list the approximations involved in the derivation

of the Redfield and Lindblad forms of the master equation.

2.2.1 Derivation

The following derivation has been adapted from references [49–53] to understand

where and what are the approximations required. Here, S, the system of interest

interacting with reservoirs, B constitutes an open quantum system and the complete

Hamiltonian for it can be written as:

H = HS + HB + Hint, (2.12)

where HS is the system Hamiltonian, HB is the Hamiltonian of the reservoirs and

Hint represents the Hamiltonian for the interaction between the system and the reser-

voirs.

In the interaction picture [48, 50], Hamiltonian and the density matrix can be

written as:

Hint(t) = eιH0tHinte
−ιH0t (2.13)

ρ(I)(t) = eιH0te−ιH tρeιH te−ιH0t (2.14)

where, H0 = HS + HB is the total free Hamiltonian. The time evolution for this
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system in the interaction picture can be written with the Liouville–von Neumann

equation as:
dρ(I)(t)

dt
= −ι[Hint(t), ρ

(I)(t)] (2.15)

Integrating the above equation and then substituting the integral for ρ(I)(t) in the

RHS of Eq. (2.15) we get:

dρ(I)(t)

dt
= (−ι)[Hint(t), ρ

(I)(0)] + (−ι)2
ˆ t

0

dt
′
[Hint(t), [Hint(t

′
), ρ(I)(t

′
)]]. (2.16)

Performing a partial trace over reservoir degrees of freedom gives:

TrB{
dρ(I)(t)

dt
} =

dρ
(I)
S (t)

dt
= −
ˆ t

0

dt
′
TrB{[Hint(t), [Hint(t

′
), ρ(I)(t

′
)]]} (2.17)

Here, one can take TrB{[Hint(t), ρ
(I)(0)]} to be zero, provided the reservoir operators

are shifted appropriately [50] . The above equation still depends on the total inter-

action picture density operator and is not time local (ρI(t) is evaluated at all times

between 0 to t), therefore to solve the above equation, one needs to make certain ap-

proximations, such as the Born and Markov approximation. The Born approximation

takes away the dependence on the total interaction picture density operator and the

Markov approximation renders Eq. (2.17) as a time local equation.

Born approximation

Under this approximation, the reservoir is assumed to be large and the system-

reservoir coupling is assumed to be weak enough such that the reservoir is negligibly

affected by the system-reservoir coupling and the total density operator remains in

an approximate product state at all times:

ρ(I)(t
′
) ≈ ρ

(I)
S (t

′
)⊗ ρB. (2.18)

Here, ⊗ denotes the tensor product.
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Markov approximation

Under this approximation, the reservoirs become “memory-less”, i.e. the reservoir

correlation functions decay on a timescale shorter than the characteristic timescale

τS, associated with the system dynamics over which the interaction picture density

operator can change. The first consequence of this approximation is that we can

replace ρ
(I)
S (t

′
) with ρ

(I)
S (t). This gives us the Redfield quantum master equation

which can be written as:

dρ
(I)
S (t)

dt
= −
ˆ t

0

dt
′
TrB{[Hint(t), [Hint(t

′
), ρ

(I)
S (t)⊗ ρB]]}. (2.19)

With the substitution: t′ = t−τ , the Redfield equation above can be further simplified

as:
dρ

(I)
S (t)

dt
= −
ˆ ∞
0

dτTrB{[Hint(t), [Hint(t− τ), ρ
(I)
S (t)⊗ ρB]]}, (2.20)

where the limit of integration has been extended to infinity.

Redfield quantum master equation: To connect with the RQME we use in

chapter 4, we define Hint(t) as:

Hint(t) = Σµ(Xµ(t)⊗ Yµ(t)), (2.21)

here Xµ(t) represents the system operators, Yµ(t) represents the reservoir operators

and µ indexes over the different reservoirs. This is considered as the interaction

Hamiltonian in Eq. (2.17) and the system-reservoir correlation function is defined as:

Γβµ,ν(t) = TrB(eιHBte−ιYµHBtYνe
−βHB)/TrB(e−βHB), (2.22)

here β = 1/kBT is the inverse temperature of the reservoir. With these system and

reservoir operators, the Schrödinger picture equivalent of Eq. (2.20) is:

dρ(t)

dt
= ι[ρ(t),HS] + Σµ,ν

ˆ ∞
0

dτΓβµ,ν(τ)[Xµ,ν(−τ)ρ(t), Xµ,ν ] + h.c. (2.23)

Lindblad quantum master equation: Now, one may obtain the the LQME
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from a phenomenological equation [51, 54–56] derived from the Kraus operator for-

malism [51]. This derivation may not provide all the microscopic details such as the

interaction and reservoir Hamiltonian but for the purpose of this thesis, it is this

phenomenological LQME that we will use.

LQME from Kraus operator representation:

We follow Ref. [50, 51, 57] to outline the steps to get to a phenomenological LQME.

The evolution of the reduced density matrix of a system can be written in terms of a

map connecting the initial density matrix to the evolved one as:

ρ(t) =M[ρ(0)], (2.24)

where the mapping M = {Mk} is linear and constructed such that it preserves the

positivity, trace and hermiticity of the density matrix [57] and k over all the possible

transitions (dephasing, damping, depolarization etc.) that a system may undergo due

to its interaction with a reservoir. In the Kraus operator representation [50, 51], the

evolution of the reduced density matrix of the system can be written in terms of the

Kraus operators Mk as:

ρ(t+ δt) =
∑
k

Mk(δt)ρ(t)M†
k(δt). (2.25)

Here, taking the infinitesimal time limit while keeping only the first order terms, the

Kraus operators can be defined as [50,57]:

M0 = I + δt(−ιH +K), Mk =
√
δtLk, (2.26)

Here, M0 describes how the system evolves when no quantum jumps take place, Lk
are quantum jump operators or Lindblad operators [58] and for ρ(t + δt) to remain

hermitian, K needs to be a hermitian operator [50]. Hence Eq. (2.25) can be written

as:

ρ(t+ δt) = ρ(t) + δtδρ =M0ρ(t)M†
0 +

∑
k>0

Mkρ(t)M†
k. (2.27)
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Here, K = −1/2(
∑

k>0 L
†
kLk) to satisfy the Kraus sum normalization [50]. Substi-

tuting K and taking the limit limδ→0(ρ(t) + δtδρ) = ρ(t) + dtρ̇, Eq. (2.27) takes the

form of a LQME:

ρ̇(t) = −ι[H , ρ(t)] +
M∑
k=1

(
Lkρ(t)L†k − 1/2{L†kLk, ρ(t)}

)
. (2.28)

Here, {A,B} represents the anti-commutator of operators A and B. Limited

versions of the LQME can be obtained from the Redfield quantum master equation

[39, 49, 59, 60] by applying certain approximations. For sake of completion, we will

briefly discuss the type of approximation and the corresponding final form of the

LQME obtained.

Secular approximation

For this approximation, the system Hamiltonian is first expressed in the energy eigen-

basis HS =
∑

iEi |Ei〉 〈Ei|. Then the system operator can be expressed as:

Xµ(τ) =
∑

(Ei−Ej=ω′)

X(ω′)e−ιω
′τ . (2.29)

Here we define the Fourier transform Γµ,ν(ω
′) =
´∞
0
dτΓµ,ν(τ), and collect all the time

dependence, such that the interaction picture equivalent of Eq. (2.23) becomes:

dρ
(I)
S (t)

dt
= −

∑
µ,ν

∑
ω′,ω′′

Γµ,ν(ω
′)e−ι(ω

′′−ω′)t[X†µ(ω′′), Xν(ω
′)ρ

(I)
S (t)] + h.c. (2.30)

Now application of the secular approximation to the above RQME implies that the

fast rotating terms (ω
′ 6= ω

′′
) can be neglected. Following Ref. [50, 59], this in

Schrödinger picture gives us the global LQME:

dρ(t)

dt
= ι[ρ,HS] + Σµ,νγµ,ν(ω

′)(Xµ(ω′)ρ,X†ν(ω
′)− 1

2
{X†ν(ω′)Xµ(ω′), ρ}), (2.31)
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where γµ,ν(ω
′) = Γµ,ν(ω

′) + Γ∗ν,µ(ω′) [50] which according to Ref. [61] is equivalent to

retrieving γµ,ν from Γµ,ν(τ) = γµ,νδ(τ +0) when the Fourier transform of the reservoir

correlations are defined appropriately.

Weak internal coupling approximation

In the case of a Bose-Hubbard Hamiltonian which has an onsite potential term (∼ Ω0),

tunneling related terms (∼ tij) and a term for onsite interactions U , with the weak

internal coupling approximation one can assume that (Ω0 > tij), all the tunnelling

coefficients are weaker compared to the onsite frequency such that the system dynam-

ics in the non-unitary evolution of the reduced density matrix can be approximated

with just the onsite-frequency term instead of the system Hamiltonian. With this the

local LQME in the Schrödinger picture [59,61] can be written as:

dρ(t)

dt
= ι[ρ,HS] + Σµ,νγµ,ν(Xµρ,X

†
ν −

1

2
{X†νXµ, ρ}). (2.32)

For a bosonic system, the density matrix can be infinite as a single site can accommo-

date an infinite number of bosons. However, due to limited resources such as memory

and time, numerical simulations of bosonic systems use a truncated space where the

maximum number of bosons per site is limited. The algorithm [62] for construction of

this truncated basis has been outlined in Appendix A.1. The LQME is a determinis-

tic differential equation, hence for its integration one can use higher-order algorithms

like fourth-order Runge-Kutta method. Unlike in the case for stochastic equations,

where going to higher-order methodology requires calculation of specific correlations

between the random numbers depending on the type of noise used.

This truncation of Fock space usually turns out to be a good approximation qual-

itatively [63]. However, for a true qualitative and quantitative picture of the system

in the untruncated Fock space we use the third quantization formalism introduced in

the following section.
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2.2.2 Third quantization

Third quantization formalism is designed to study open systems with non-interacting

Hamiltonians coupled to a reservoir through linear operators. The space in which the

system density matrix for an open quantum system resides is known as the Liouville

space and L , commonly referred to as the Liouvillean, is the generator of the open

quantum system:
∂ρ(T )

∂T
= L ρ(T ). (2.33)

In the third quantization formalism, Prosen [64,65] canonically quantizes the Liouville

space for open bosonic systems. By introducing specific mappings for left and right

multiplication maps in the operator space, the Liouvillean is diagonalized. With the

diagonalization of the Liouvillean one can obtain the non-equilibrium stationary state

correlations by solving the Lyapunov equation for the system. The formalism provides

complete information on the steady state correlations in the untruncated Fock space.

Following Ref. [64] we give a brief overview of the process of third quantization.

The authors introduce a dual vector space K,K′ where K contains trace class oper-

ators, whose element is represented as |ρ〉 and K′ contains the unbounded, physical

operators whose element is represented as (X|. Over this dual space, the authors

define 4K maps for the left and right multiplication:

â0,j = fLj , â
′

0,j = α(dLj − dRj ),

â1,j = dRj , â
′

1,j = α(fRj − fLj ),
(2.34)

where j goes from 1 to the number of sites, K. fj, dk satisfy a known commutation

relation and α is a constant that depends on the commutation relation. For example,

a system of harmonic oscillators described in the coordinate-momentum space satisfies

[qj, pk] = ιδj,k which leads to α = ι. In the second quantization framework, for the

associated unit energy quanta of an oscillator, the oscillators satisfy [cj, c
†
k] = δj,k

with qj = (c†j + cj)/
√

2 and pj = ι(c†j − cj)/
√

2 which leads to an α = 1. These 4K
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mappings are defined such that they satisfy the following commutation relation:

[âν,j, â
′

µ,k] =δµ,νδj,k [âν,j, âµ,k] =[â
′

ν,j, â
′

µ,k] = 0. (2.35)

The authors call the above commutation relations as the almost-commutation re-

lation to distinguish them from the second quantization bosonic commutation rela-

tion. These maps are defined such that the identity operator (1| is left annihilated

(1|â′

µ,k = 0 and the vacuum pure state |ρ0〉 is right annihilated, âµ,k |ρ0〉 = 0. With

the construction of these 4K multiplication maps, a dual, bi-orthonormal Fock space

can be formulated for the dual vector spaces:

|m〉 =Πν,j

(â
′
ν,j)

(mν,j)√
mν,j!

|ρ0〉 (m| =(1|Πν,j
(âν,j)

(mν,j)√
mν,j!

(2.36)

Following the algebra introduced above, the respective master equations of the open

quantum system 2.33 are recast in terms of the almost-commutation relation such

that the Liouvillean of the open quantum system can be written in the following

quadratic form:

L = b.Sb− S0I, (2.37)

where b = (â0, â1, â
′
0, â

′
1)
T , with S:

S =

(
0 −X
−XT Y

)
, (2.38)

and S0 as a scalar. The X and Y matrices are constructed using the system Hamil-

tonian, system-reservoir coupling and reservoir spectral function and hence will be

different for different forms of the Hamiltonian and quantum master equations. Once

X and Y are known, solving the Lyapunov equation XTZ + ZX = Y will give us

the non-equilibrium steady-state correlation matrix Z.

In appendix A.3 we show the step by step process to apply third quantization to

the Redfield quantum master equation [65]. From this canonical quantization process,
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we derive the Lyapunov equation for the non-equilibrium steady state coordinate-

momentum correlation matrix. Following Ref. [63, 64] in appendix A.4 we show the

application of third quantization to the LQME.



Chapter 3

Geometry-induced atypical

thermal current

The work presented in this chapter has been published in Physical Review E 99

(2019): 022131 as:

“Geometry-induced local thermal current from cold to hot in a classical harmonic

system.”

Authors: Palak Dugar and Chih-Chun Chien
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Ohm’s law predicts the flow of electrical current when subjected to the potential

difference and the strength of the current is proportional to the gradient of electric

potential. In a classical circuit governed by Ohm’s law, the direction of the total

current is constrained by the direction of the potential gradient.When a temperature

gradient is applied to a system, thermodynamical laws forbid an overall current from

a cold to hot body without any other changes [66]. However, nothing prohibits a local

thermal current to go from a cold to hot body [6]. We study a minimal system of

three classical harmonic oscillator and show how coupling the oscillators in a multi-

path geometry can result in interesting transport behavior. We show that this simple

system in conjunction with Langevin reservoirs is capable of showing a local thermal

current which goes from a cold to hot site. We refer to this cold-to-hot local current

as atypical current.

We outline the model and the formalism to study atypical transport in sec. 3.1.

In the next section, we show the analytical formula and present the numerical results

for our system. From our numerical results shown in sec. 3.2.2 we unambiguously

demonstrate a local atypical thermal current from cold to hot. This is followed by

a discussion on the robust nature of the atypical local current against asymmetric

system-reservoir coupling, nonlinear effects and additions of more masses and springs.

3.1 Model to study transport in a classical har-

monic multi-path system

We consider a system of three masses m1, m2, and m3 connected by some springs and

coupled to two Langevin reservoirs at different temperatures, as illustrated in Fig.

3.1. We only consider the motion of the masses in one transverse direction labeled

by their displacements xn with n = 1, 2, 3. The system is described by Newtonian

mechanics with the Hamiltonian:

H =
∑
n

[
1

2
mnẋ

2
n + V (xn − xn+1) + U(xn)], (3.1)
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Figure 3.1: Schematics for the classical mass-spring system coupled to Langevin
reservoirs (red square boxes) at temperatures TL and TR, respectively. m1 and m3

are connected to hard walls (the slabs) via springs with spring constant K0 and to
each other with two springs with spring constant K3/2. m2 is connected to both m1

and m3 through springs with spring constant K2.

where V is the nearest-neighbor interaction potential and U is the on-site nonlinear

potential. The system is harmonically coupled to two hard-walls with spring constant

K0. The hard-walls essentially confine the system such that we can take x0 = 0

and x4 = 0. These hard-walls prevent overall translational motions of the entire

system [67].

We focus on harmonic couplings between the masses, while the coupling to the

substrate is described by a nonlinear onsite potential [68,69] U(xn) = 1
4
gx4n with g as

its coupling strength. Explicitly, the potentials of the three masses have the following

forms:

(V + U)1 =
K0

2
(x1 − x0)2 +

K2

2
(x1 − x2)2 +

K3

2
(x1 − x3)2 +

g

4
(x1)

4,

(V + U)2 =
K2

2
(x2 − x1)2 +

K2

2
(x2 − x3)2 +

g

4
(x2)

4,

(V + U)3 =
K0

2
(x3 − x4)2 +

K2

2
(x3 − x2)2 +

K3

2
(x3 − x1)2 +

g

4
(x3)

4. (3.2)
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Here K2 is the spring constant of the spring connecting m2 to both m1 and m3,

and K3/2 is the spring constant of the two identical springs connecting m1 and m3

directly.

Thermal transport through the system is driven by coupling it to two reservoirs at

temperatures TL and TR. We consider the Langevin reservoirs [32, 70,71] introduced

in chapter 2. The equations of motion [72] for the classical multi-path system coupled

to Langevin reservoirs are

m1,3ẍ1,3 = F1,3 − bL,Rẋ1,3 + ηL,R(t),

m2ẍ2 = F2. (3.3)

Here Fn = −∂(U + V )n/∂xn denotes the deterministic force on the n-th mass. The

subscripts L and R denote the left and right reservoirs, respectively. bL,R is the

friction coefficient coupling the system to the left and right reservoir, and ηL,R(t)

is the force from the left and right reservoirs. The random forces ηL,R(t) have a

zero mean 〈ηL,R(t)〉 = 0 and satisfy the fluctuation-dissipation relation of the first

kind [32,41] introduced in sec. (2.1):

〈ηL,R(t1)ηL,R(t2)〉 = 2bkBTL,Rδ(t1 − t2), (3.4)

where kB is the Boltzmann constant. In the following discussion, we keep m1 = m3 =

m and K0 = K3 = K. We will show that in the parameter regime we consider,

using slightly different values of bL and bR does not change the results qualitatively.

Hence, unless stated otherwise we will use the symmetric system-reservoir coupling,

bL = bR = b.

The local thermal current from site i to site j can be defined using the continuity

equation [40]. The general definition is 〈Jij〉 = 〈Fijẋj〉, where Fij is the force acting

on mass j due to mass i and 〈〉 denotes the average over an ensemble of independent

random realizations. Using the equations of motion and the definition of current

between two sites, the explicit form of the total thermal current from m1 to m3 is

〈J13〉 = 〈ẋ3(K2x2 +K3x1)〉. (3.5)
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Similarly, we can find the local current flowing from m1 to m2, which written explicitly

is:

〈J12〉 = 〈ẋ2(K2x1)〉. (3.6)

For a harmonic system in the steady state, the currents should satisfy 〈Jij〉 = −〈Jji〉.
Additionally for our system, the current through m2 should 〈J12〉 = 〈J23〉 in the

steady state.

In our work, we use the first-order Euler-Maruyama method [45] and the second-

order method [46] to numerically simulate Langevin equation. The above methods

and simulation process for the white noise follows the protocol outlined in section

2.1. In the absence of substrate effects, in general the results from those methods are

indistinguishable. However, to simulate substrate effects we choose the full second-

order method as it gives steady state results for a smaller simulation time. The time

step size in our simulations is ∆t/t0 = 10−4. We present the results averaged over

an ensemble of 1600 independent realizations. To ensure that the system is in the

steady-state regime, we monitor the time evolution of the thermal current and wait

until the transient behavior decays away. In general, we start taking the steady-state

value after t > 300t0 and then average the value over a time period of τ/t0 = 500

afterwards. Importantly, we have checked there is no energy accumulation in the

system in the steady state by verifying the thermal current coming into each mass

equals the current out of each mass. Unless specified otherwise, the reservoirs were

maintained at TL/T0 = 2 and TR/T0 = 1. We show the direction of the steady state

thermal current through m2 as a function of K2/K3, m2/m3, bL,R, and g.

For numerical simulation of our model, we construct dimensionless quantities using

m, K, kB, and ~. For instance, the units of energy, temperature, time, angular

frequency, length, thermal current, system-reservoir coupling, and system-substrate

coupling are E0 = ~
√

K
m

, T0 = ~
kB

√
K
m

, t0 =
√

m
K

, ω0 =
√

K
m

, l0 =
√

~√
mk

, J0 = ~K
m

,

b0 =
√
mK, and g0 =

√
mK3

~ , respectively. The setup of Fig. 3.1 is generic and may be

applicable to molecular or nano-mechanical systems in the classical regime [73, 74],

or even macroscopic objects as long as the Langevin equation (3.3) applies. The

numerical parameters would result in a nano system [75, 76] with m ' 10−26 kg,
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√
K
m
' 1012 rad/s, l0 ' 10−10 m subject to an ambient temperature, T0 around 73K .

3.2 Results

3.2.1 Analytic formula for total current

We will start our investigation of thermal currents with the harmonic case without any

substrate effects g = 0. A general formalism for the thermal current and conductance

of harmonic systems coupled to Langevin reservoirs can be found in refs. [32,77]. For

a classical system consisting of N masses coupled by harmonic springs whose ends are

under contact with two Langevin reservoirs which provide a temperature difference

of ∆T = TL − TR, the total thermal current is given by

J = ∆TbLbR

ˆ ∞
−∞

dω

π
ω2|[Z−1(ω)]1N |2 (3.7)

In this formalism, a force matrix Φ which specifies the harmonic couplings between

pairs of masses, a mass matrix M which is constructed with the masses m1,m2, ...,mN

on the diagonal and a B matrix which has only two nonvanishing elements B11 = bL

and BNN = bR are used to build the matrix, Z = Φ−Mω̈− iωB. Following Ref. [77],

the total thermal current can be written as:

J = ∆TbLbR

ˆ ∞
−∞

dω

π
ω2|C1N |2[(K1,N − ω2bLbRK2,N−1)

2

+ω2(bRK1,N−1 + bLK2,N)2]−1. (3.8)

Here, Ki,j denotes the determinant of the matrix from the i-th row (column) to

the j-th row (column) of the matrix (Φ−Mω2). C1N is the cofactor of the (1, N)-th

element of Z. For the setup shown in Fig. 3.1, the force matrix is

Φ =


K0 +K2 +K3 −K2 −K3

−K2 2K2 −K2

−K3 −K2 K0 +K2 +K3

 . (3.9)
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The numerical value of the total thermal current J13 flowing through the classical

system shown in Fig. 3.1 can be obtain from Eq. (3.8) after one calculates the cofactor

and determinants needed. Expressions based on Eq. (3.8) are available for specific

types of 1D harmonic chains in the infinite-chain limit [77–80].

Fig. 3.2 shows the total thermal current J13 as a function of m2/m3 and K2/K3

according to Eq. (3.8) with m1 = m3, K0 = K1 = K3, ∆T/T0 = 1, and selected values

of bL = bR = b. When b is small, for instance b/b0 = 0.1, one observes that the surface

of J13 exhibits a dip, implying a non-monotonic dependence of J13 on the parameters

m2/m3 and K2/K3. However, as b is increased the dip disappears. We have checked

the more general cases with 0.5 ≤ bL/bR ≤ 2, and made sure that the total current

has the same qualitative behavior with the presence of a dip (or no dip) when bL, bR

are small. At this stage, the dip of J13 may look mysterious. In the next section,

we will show by numerically analyzing the local thermal current through each path,

that the dip of the total thermal current is associated with a local atypical thermal

current flowing through the mass m2 from cold to hot.

3.2.2 Atypical local current

The results we will present only depend quantitatively on K0, and all the conclusions

are insensitive to K0. The non-monotonic behaviour of the total thermal current seen

in Fig. 3.2 is rooted in an interesting phenomenon of a local thermal current flowing

opposite to the total current which we will refer to as atypical current. We take the

nonlinear substrate coupling strength g to zero and numerically calculate the total and

local currents in the harmonic system. Fig. 3.3 (a) shows the total, J13 and (b) shows

the local steady state current, J12 for bL = bR = b = 0.1b0. The insets of Fig. 3.3

(a) and (b) show the corresponding total and local currents for bL = bR = b = 1.0b0.

We emphasize that the steady-state values are taken after t > 300t0 to ensure the

transient behavior has decayed away. The opposite directions of J13 and J12 in the

steady state for the case with b/b0 = 0.1 unambiguously demonstrate the existence of

a local atypical thermal current from cold to hot. The insets of Fig. 3.3 (a) and (b)

show the typical, normal behavior obtained for b/b0 = 1.0, where J12 and J13 show
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Figure 3.2: Total thermal current J13 through the harmonic system shown in Fig. 3.1,
according to the analytic formula, Eq. (3.8). Here bL = bR = b, m1/m3 = 1, K0/K3 =
K1/K3 = 1, g = 0, ∆T/T0 = 1, and b/b0 = 0.1 for (a) and b/b0 = 1.0 for (b).

the direction of flow in the steady state. We found that, in general, the local thermal

current through m2 can flow from cold to hot only in the weakly coupled regime

when b/b0 is small compared to the other system parameters. The dependence of the
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Figure 3.3: (a) The total thermal current J13 and (b) the local thermal current J12
through m2 with b/b0 = 0.1, showing the local atypical current from cold to hot. The
insets present the corresponding quantities for the case with b/b0 = 1.0, showing all
currents flowing from hot to cold. The dots show the average over 1600 realizations.
The thick blue lines show the average over a period of 500t0 in the steady state
(t > 300t0). Here K2/K3 = 0.35, m2/m3 = 0.3, ∆T/T0 = 1, and g/g0 = 0. (c) The
total and local thermal currents vs. ∆T for the two cases shown in (a) and (b).
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thermal current of a one-dimensional (1D) harmonic system on b has been studied in

Refs. [40, 81], but the setup shown in Fig. 3.1 is not a simple 1D system.

To verify the local thermal current from cold to hot is not an artifact, we vary

the temperature difference ∆T between the two reservoirs and demonstrate that both

the normal and atypical local current indeed scale linearly with ∆T/T0 just like the

total current. This result shown in Fig. 3.3 (c) firmly establishes the existence of a

local atypical thermal current from cold to hot in a simple classical harmonic system

driven by Langevin reservoirs.

While TL and TR are fixed, sweeping the values of (K2/K3,m2/m3) in the pa-

rameter space for small b/b0, we have found that the steady-state thermal current

through m2 can flow either in the direction of m1 to m3 i.e. normal (hot to cold)

or opposite to it i.e. atypical (cold to hot). Away from the small b/b0 regime, the

system only exhibits the normal behavior for reasonable values of m2/m3 and K2/K3.

The dependence of J12 on b is illustrated in Fig. 3.4 (a) with the selected parameters

m2/m3 = 0.3 and K2/K3 = 0.35.

For symmetric system reservoir coupling, (bR = bL = b)/b0 as b/b0 increases, J12

goes from being atypical to normal. Notably, there is a critical point (b/b0 ≈ 0.4 for

this case), where the local current J12 vanishes in the steady state. We point out

that there is still a thermal current flowing through the two springs coupling m1 and

m3 directly, but the path through m2 carries no thermal current in the steady state.

Asymmetric system-reservoir couplings yields qualitatively the same results as the

case with symmetric system-reservoir coupling as shown in Fig. 3.4 (a) as the local

current J12 changes from the atypical to normal behavior as bL increases. However,

the choice of bR = (0.5, 1.0, 2.0)bL does alter the value of the critical point where the

local current changes its behavior.

We evaluate the local temperatures of the three masses and verify that m1 is really

hotter than m2 in the steady state. The local temperature of mass j (with j = 1, 2, 3)

is defined as

Tj =
1

kB
mj〈v2j 〉. (3.10)

In Fig. 3.4 (b), we show the steady-state local temperatures of the three masses as a
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Figure 3.4: (a) The dependence of the local current J12 on the system-reservoir cou-
pling bL/b0 for asymmetric couplings bR = 0.5bL (triangles) and bR = 2.0bL (squares)
and symmetric coupling bR = bL (circles). (b) The local temperatures of the three
sites as functions of b/b0 for the case of symmetric coupling in the steady state. Here
m2/m3 = 0.3, K2/K3 = 0.35, ∆T/T0 = 1, and g = 0.

function of b for the case with symmetric system-reservoir coupling. One can see that

regardless of the presence the atypical local thermal current, the local temperatures

always follow T1 > T2 > T3.

In Fig. 3.5 (a) we show the phase diagram of the system with b/b0 = 0.1, where the

blue triangles (red dots) indicate the parameters at which the local thermal current

through m2 is atypical (normal) when b/b0 = 0.1. Increasing b/b0 in the atypical

regime always drives the system from one with a local atypical current to one with

only normal currents, similar to the result shown in Fig. 3.4 (a). On the other hand,

varying m2/m3 and K2/K3 leads to more complicated behavior of the local current

and the atypical regime may be sandwiched in between the normal regimes.
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Figure 3.5: (a) Phase diagram showing where a local atypical thermal current from
cold to hot can be found. The blue triangles (red dots) indicate where the local
current is atypical (normal). Here b/b0 = 0.1 and g/g0 = 0. (b) and (c) show the
normal mode frequencies, ω/ω0, of the system shown in Fig. 3.1 without the reservoirs
for (b) K2/K3 = 0.35 and (c) K2/K3 = 0.15.

The dependence of the direction of the local thermal current on the system-

reservoir coupling b, shown in Fig. 3.4 (a), indicates the mechanism behind the atyp-

ical local current is not an intrinsic property of the harmonic system. To corroborate

the observation, we evaluate the normal-mode frequencies of the harmonic system

shown in Fig. 3.1 without the reservoirs and show the spectra in Fig. 3.5 (b) and

(c) for two selected cases. As shown in Fig. 3.5 (b) and (c), the normal-mode fre-

quencies for both values of K2/K3 exhibit level crossings. We found the locations of

the level crossings are close to the left boundary of the region exhibiting the atypical

current in the phase diagram shown in Fig. 3.5 (a). The observation that tuning the
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system-reservoir coupling b/b0 can change the direction of the local thermal current

even when m2/m3 and K2/K3 are fixed, as shown in Fig. 3.4 (a), coupled with the

normal-mode frequencies shown in Fig. 3.5 (b) and (c) for parameters which show

different behavior of local currents when attached to reservoirs we can claim that the

atypical current is a combined effect of the system and reservoirs.

Moreover, the location of the dip in the total current from the analytic formula,

shown in Fig. 3.2 (a), is close to the left boundary of the atypical regime shown in

Fig. 3.5 (a) for small b/b0. We found this to be the general case. One can use the dip

in the total current from the analytic formula to estimate where the atypical local

current emerges. There is no indication of the right boundary of the atypical regime

from the analytic formula, though. Therefore, it may be insufficient to determine

the whole atypical regime by analyzing the total thermal current or the normal-mode

spectrum.

It is known that for quantum transport of electrons through a triangular quantum

dot metastructure [25], the local atypical electric current is due to the combination

of wave nature of quantum particles and multiple paths. Thermal transport in clas-

sical harmonic systems is carried by the normal modes of the oscillators coupled to

the reservoirs. The normal modes may be viewed as mechanical waves. As one of

the Langevin reservoir pumps in while the other takes out energy through the nor-

mal modes, there is no rule forbidding a path from overshooting the overall thermal

current.

The conservation of charge in electronic transport imposes Kirchhoff’s law re-

quiring the net electric current through a node should be zero [82]. Similarly, in

steady-state thermal transport the net thermal current through a mass in a har-

monic system should vanish. Therefore, if an overshoot occurs along a path, another

path will compensate for the excess thermal current by carrying the thermal current

backward, resulting in an atypical local thermal current.
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3.2.3 Atypical local current and nonlinear onsite potential

The harmonic system with the Langevin reservoirs is a linear system, allowing a

detailed analysis of its dynamics. After establishing the local thermal current from

cold to hot, we consider a nonlinear onsite potential U(xn) = (1/4)gx4n which mimicks

the effect of coupling the system to a substrate [68,69]. In the presence of a nonlinear

potential, the vibrational spectrum of the system cannot be always be described by

the normal modes. Nevertheless, our simulations of the system with the nonlinear

substrate effect using the second order method shows the direction of the local thermal

current from cold to hot as a function of the onsite nonlinear potential.

Fig. 3.6 (a) and (b) show the phase diagrams of the system with g/g0 = 0.1 and

0.5 at fixed system-reservoir coupling, b/b0 = 0.1. The regime with a local atypical

thermal current (the blue triangles) does not show any big changes as the interaction

strength is changed. Therefore, we conclude that the atypical local thermal current

is robust against the nonlinear onsite potential. The dependence on m2/m3 and

K2/K3 shows similar behavior as the case with g/g0 = 0. Fig. 3.6 (c) shows

the dependence of the local thermal current J12 on the system-reservoir coupling

for the symmetric (bL = bR) and asymmetric (bL 6= bR) cases for m2/m3 = 0.9,

K2/K3 = 0.35, ∆T/T0 = 1, and g/g0 = 0.5. Tuning the system-reservoir coupling in

both the symmetric and asymmetric cases leads to a change in the behavior of the

local thermal current. As the magnitude of the asymmetric system-reservoir coupling

is increased the local current goes from atypical regime to the normal regime.

3.2.4 Robustness of atypical local current

We have shown that the atypical local thermal current in the steady state is robust

against asymmetric system-reservoir coupling (bL 6= bR) in both the linear (g/g0 = 0)

and nonlinear (g/g0 = 0.1, 0.5) cases, as demonstrated in Fig. 3.4 (a) and Fig. 3.6

(b,c). To show the robust nature of the atypical current we add another mass to the

system such that a direct coupling between m1 and m3 in Fig. 3.1 is not present. The

setup is illustrated in Fig. 3.7 (a), where m1 and m3 are coupled to each other through

m2 and m4. Similar to Eq. (3.1) for the three oscillator system, the Hamiltonian for



CHAPTER 3. GEOMETRY-INDUCED ATYPICAL THERMAL CURRENT 33

Figure 3.6: (a) and (b): Phase diagrams of the system with nonlinear substrate
effect. Here g/g0 = 0.1 in (a) and g/g0 = 0.5 in (b). The blue triangles (red dots)
show where a local thermal current from cold to hot can (cannot) be observed. Here
b/b0 = 0.1. (c) The local thermal current as a function of the system-reservoir coupling
for the symmetric case with bR = bL (circles) and asymmetric cases with bR = 0.5bL
(triangles) and bR = 2.0bL (squares). Here m2/m3 = 0.9, K2/K3 = 0.35, ∆T/T0 = 1,
and g/g0 = 0.5.

this system is:

H4 =
4∑

n=1

[
1

2
mnẋ

2
n + V (xn, xn+r) + U(xn)], (3.11)
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Figure 3.7: (a) schematic for a four-mass setup. The addition of m4 avoids a direct
coupling between m1 and m3, which are connected to the Langevin reservoirs at
temperatures TL and TR, respectively. The convention follows Fig. 3.1. (b) The local
thermal current J12 through m2 in the steady state as a function of the symmetric
system-reservoir coupling bR = bL = b. Here m1/m3 = 1, m2/m3 = 0.4, m4/m3 = 0.5,
K0/K3 = 1, K2/K3 = 0.35, ∆T/T0 = 1, and g = 0.

where V and U denote the harmonic coupling and onsite potentials. Two hard-walls

are introduced with x0 = x5 = 0. The potentials have the following forms:

(V + U)1 =
K0

2
(x1 − x0)2 +

K2

2
(x1 − x2)2 +

K3

2
(x1 − x4)2 +

g

4
(x1)

4,

(V + U)2 =
K2

2
(x2 − x1)2 +

K2

2
(x2 − x3)2 +

g

4
(x2)

4,

(V + U)3 =
K0

2
(x3 − x5)2 +

K2

2
(x3 − x2)2 +

K3

2
(x3 − x4)2 +

g

4
(x3)

4,

(V + U)4 =
K3

2
(x4 − x1)2 +

K3

2
(x4 − x3)2 +

g

4
(x4)

4. (3.12)



CHAPTER 3. GEOMETRY-INDUCED ATYPICAL THERMAL CURRENT 35

Here K2 is the spring constant of the two springs connecting m2 to m1 and m3, and

K3 is the spring constant of the springs connecting m4 to m1 and m3.

We implement the same protocol we followed for the system shown in Fig. 3.1

to numerically simulate the total and local currents for the four site system. For

simplicity, we consider the harmonic case with fixed m1/m3 = 1, K0/K3 = 1 and

bL = bR = b. Fig. 3.7 (b) shows the local thermal current flowing through m2 in the

steady state when m2/m3 = 0.4, m4/m3 = 0.5, and K2/K3 = 0.35 as a function of the

system-reservoir coupling and show that the local atypical thermal current survives

in a setup with no direct coupling between the two masses connected to the Langevin

reservoirs. Moreover, the dependence of the local current on the system-reservoir

coupling is similar to the result shown in Fig. 3.4 (a). Therefore, the local atypical

thermal current is robust against asymmetry in the system-reservoir coupling, and

additions of more masses and springs to the system.

3.3 Summary

To summarize we demonstrate a steady-state local thermal current from cold to hot

in a multi-path system of classical harmonic oscillators subject to Langevin reservoirs

at different temperatures while the total thermal current always follows the second

law of thermodynamics, as it goes from hot to cold. The regime of the local atypical

current is dependent on both the parameters of the harmonic system, and the coupling

to the reservoirs. We show that the local atypical thermal current is robust against

asymmetric system-reservoir coupling, nonlinearity and additions of more masses and

springs.



Chapter 4

Quantum thermal transport

Motivated by the emergence of an atypical local thermal current in a classical har-

monic system with a multi-path geometry, in this chapter we explore the implications

of multiple pathways on the steady-state local quantum thermal current. We study

a system of three quantum oscillators coupled in a way that they form a triangle.

This triangular geometry provides the ‘multiple paths’, the essential ingredient for

the system to exhibit an internal circulation of quantum thermal current. We describe

the system of quantum oscillators in the coordinate-momentum space in the Redfield

form and through a Bose-Hubbard model in Lindblad form of the quantum master

equation respectively and show the presence of internal circulations in both these for-

malisms. Our goal for this chapter is not to establish a rigorous connection between

the Hamiltonians and forms of the quantum master equation but to demonstrate the

universal nature of the internal circulation of local thermal current in open quantum

systems.

In section 4.1, we lay out the system Hamiltonian for the multi-path quantum

oscillator system in the coordinate-momentum basis and through the Bose-Hubbard

Hamiltonian. Each system of interest Hamiltonian representation is followed by a de-

scription of the quantum master equation employed to study the steady state thermal

currents and the corresponding definitions of local thermal currents in both the ap-

proaches. In section 4.2, we present our third quantization results for the multi-path

36
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quantum oscillator system in the Redfield and Lindblad master equation formal-

ism. We discuss the relevant parameter space in which these internal circulations are

present and finally their behavior when interactions are added to the system. We

summarize our results in section 4.3.

4.1 Models and methods

4.1.1 Quantum harmonic oscillators with RQME

Throughout this chapter, we take ~ = kB = 1. To investigate local quantum thermal

transport in a multi-path geometry, we consider a minimal system of three quantum

oscillators harmonically coupled to each other and to a substrate, as shown in Fig. 4.1

(a). We consider a simple set of parameters, but all the parameters may be tuned.

All three quantum oscillators have the same mass, mj = m. Following Ref. [65], the

Hamiltonian of this system in the mass weighted coordinates can be written as:

H =
1

2

3∑
j=1

(p2j + ω2
0q

2
j ) +

k3
2m

(q1 − q3)2 +
k

2m

2∑
j=1

(qj − qj+1)
2

=
1

2
(p.p+ q.Qq).

Here qj and pj with j = 1, 2, 3, denote the coordinate and momentum operator of

the j-th oscillator and the coupling to the substrate k0 is associated with the onsite

frequency ω0 =
√
k0/m. The harmonic coupling constant between the m1 −m2 link

and the m2 − m3 link is k and between the m1 − m3 link is k3. p and q store the

coordinate and momentum information of all the oscillators in a column vector form

and

Q = ω2
013 + ω2

c


1 + k3

k
−1 −k3

k

−1 2 −1

−k3
k
−1 1 + k3

k

 , (4.1)

with ωc =
√
k/m.

To study its thermal transport, the system of quantum oscillators is connected
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Figure 4.1: Schematic illustrations of the systems for studying geometry-based circu-
lation in quantum thermal transport. (a) Two of the quantum oscillators j = 1, 2 are
coupled to reservoirs with temperatures TL and TR, respectively. The quantum oscil-
lator of mass m2 is harmonically coupled to both m1 and m3 with coupling constant
k while m1 and m3 are harmonically coupled to each other with coupling constant k3.
All masses couple to the substrate with harmonic coupling constant k0. (b) The Bose-
Hubbard model modeling the energy quanta as bosons with tunneling coefficients t
along the upper path and t3 along the lower path. The system is connected via the
system-reservoir couplings γL and γR to two reservoirs with different temperatures
TL and TR which determines the phonon number density NL and NR for the left and
right reservoir respectively.

to thermal reservoirs maintained at temperatures TL,R, respectively. Without loss of

generality, we assume TL > TR. We evaluate the time evolution of the reduced density
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matrix of this system under the influence of the reservoirs through the RQME [65]:

dρ(T )

dT
= ι[ρ,H ] + Dρ. (4.2)

Here D is the Redfield dissipator defined as:

DL,Rρ =

ˆ ∞
0

dτΓL,R(τ)[XL,R(−τ)ρ,XL,R] + h.c. (4.3)

[A,B] represents the commutator of operators A and B. For this system, the coupling

operators are [65] XL,R =
√
εL,Rq1,3, with L,R denoting the left and right reservoir

respectively. Here εL and εR are the system-reservoir coupling constants which es-

sentially represent the strength of the system-reservoir coupling. Ref. [65] presents a

general form of the spectral function of the thermal reservoir. In this chapter, we fo-

cus on the reservoirs with an ohmic spectral function, which is the Fourier transform

of ΓL,R(τ):

ΓL,R(ω) =
sign(ω)|ω|

exp (ω/TL,R)− 1
(4.4)

As this open quantum system comprises of a system of interest with a quadratic

Hamiltonian of the form of Eq. (4.1) coupled to ohmic reservoirs through linear cou-

pling operators [65], we can use the third quantization formalism introduced in sec.

2.2.2 to extract the non-equilibrium steady state (NESS) coordinate-momentum cor-

relations. The implementation of third quantization formalism to calculate the NESS

correlations for this system is outlined in appendix A.3.

Using the continuity equation, the thermal current from the ith oscillator to the

adjacent jth oscillator can be derived [32,61]. We follow the notation of Ref. [65] and

use the following simplified definition of the local thermal current from the ith to jth

oscillator:

〈Jij〉 =
K

m
tr(pjqiρNESS), (4.5)

where K denotes the harmonic coupling constant between the two sites. For a har-

monic system in the NESS, 〈J12〉 = 〈J23〉, as there should not be any energy accumu-

lation in oscillator 2. The total steady-state thermal current through the system is
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given by the steady-state value of

〈JT 〉 = 〈J13〉+ 〈J12〉. (4.6)

4.1.2 Bose-Hubbard model with LQME

In the second quantization representation, a quantum oscillator can be expressed

in terms of creation and annihilation operators [48]. Under the rotating wave ap-

proximation one can neglect number non-conserving terms (c†ic
†
j, cicj) such that the

Hamiltonian of a system of harmonically coupled quantum oscillators can expressed in

the form of the non-interacting Bose-Hubbard model [83,84]. The rotating wave ap-

proximation is usually justified when the onsite frequency is stronger than tunneling

coefficients.

In this section, we investigate local thermal transport of a Bose-Hubbard model

in a multi-path geometry illustrated in Fig. 4.1 (b). In general, a three site Bose-

Hubbard Hamiltonian can be written as:

HBH =
3∑
j=1

Ω0c
†
jcj − t(c

†
1c2 + c†2c1 + c†2c3 + c†3c2)

− t3(c†1c3 + c†3c1) +
U

2

3∑
j=1

nj(nj − 1).

(4.7)

Here a uniform onsite potential Ω0 possibly from the system-substrate coupling has

been included, c†j and cj are the creation and annihilation operators at the jth site.

t is the tunneling coefficients between site 1-site 2 and site 2-site 3, and t3 is the

tunneling coefficient between site 1-site 3. U denotes the onsite interaction strength

and nj is the number density operator on the jth site.

One can make the rotating wave approximation on Eq. (4.1) and approximate

Eq. (4.1), the Hamiltonian of the system of coupled oscillators, through Eq. (4.7)

with U = 0. To be able to make the rotating wave approximation, we work within

a regime where Ω0 >> t, t3. We reiterate that the aim of this chapter is to show

that geometry-based circulations transcends formalisms and are universally found in
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multi-path quantum systems and not to justify a rigorous correspondence between

different models and formalisms. We begin our investigation with the non-interacting

Bose-Hubbard Hamiltonian U = 0 and address the interacting case later.

Similar to how we used the Langevin equation and RQME for multi-path classical

and quantum system of oscillators respectively, for the open Bose-Hubbard system

shown in Fig. 4.1 (b) we utilize the LQME [51] which describes the evolution of the

reduced density matrix of this system of interest under the influence of the reservoirs.

The LQME we work with has the form:

∂ρ(T )/∂T = ι[ρ,HBH ] + γLNL(c†1ρc1 −
1

2
{c1c†1, ρ}) +

γL(NL + 1)(c1ρc
†
1 −

1

2
{c†1c1, ρ}) + γRNR(c†3ρc3 −

1

2
{c3c†3, ρ}) +

γR(NR + 1)(c3ρc
†
3 −

1

2
{c†3c3, ρ}). (4.8)

Here T , is the time, {A,B} represents the anti-commutator of operators A and B.

γL and γR represent the strength of the system-reservoir coupling to the left and

right reservoir respectively. The reservoirs are assumed to maintain fixed excitation

numbers NL and NR, respectively with NL,R = 1/[exp(Ω0/TL,R)− 1]. The reservoirs

emits an excitation at the rate γjNj into the system and absorbs excitation from the

system at the rate γj(Nj + 1) with j = L,R, as shown in Eq. (4.8). These exchange

rates of excitation follow the assumption of Bose statistics and leads to the system

being in equilibrium when coupled to a single reservoir.

Recently there have been concerns about the thermodynamic consistency of the

local (position basis) LQME that we employ here [39,85–87]. However, these issues

can be addressed by choosing the thermodynamically correct definition of current

related to work and heat [88, 89]. When it comes to thermal transport through a

bosonic system described by the Bose-Hubbard model, there are multiple ways to

define and calculate the thermal current in quantum systems [61,83,89].

Ref. [83] shows two different expressions for the thermal current of a linear chain.

The first one utilizes the fact that in the steady state the time derivative of the

expectation value of the system Hamiltonian should be zero, Tr(H ∂ρ
∂T ) = 0. The
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authors use Eq. (4.8) for the time derivative of the reduced density matrix. As it

turns outs, the commutator in Eq. (4.8) does not contribute, while the contributions

from the two reservoirs should sum up to zero in the steady state, making them

equal and opposite to each other. Hence without loss of generality, either of the

contribution from the left or right reservoir may be picked as the expression for

thermal current. This expression for the thermal current accounts for not only heat

current but also the current related to work [89–91]. As explained in Ref. [89], only

the diagonal terms of the Hamiltonian contribute to the heat related current as those

diagonal terms are the ones that are responsible for entropy production. The non-

diagonal terms of the Hamiltonian contribute to the work done at the system-reservoir

interface. As our focus is on the heat transferred through the system, we choose the

second expression [61,83] and derive a formula of the thermal current associated with

only heat. For a linear chain described by the Bose-Hubbard Hamiltonian, the local

thermal current operator associated with heat through a link between the ith and

(i+ 1)th sites can be evaluated by the Heisenberg equation of motion. Explicitly, one

defines the Hamiltonian of the partial chain up to the link as HL. Then, Ji,i+1 =

dHL/dt = i[HL, H], where HL contains the Hamiltonian from the left end to the left

site of the link. By generalizing the definition, the thermal current operator from site

i to site j is given by

Jij = −ιtij(Ω0 − U)(c†icj − c
†
jci)− ιUtij(c

†
icjc

†
jcj − c

†
jcjc

†
jci). (4.9)

Here tij takes the value t or t3 for J12 or J13, respectively. The expectation value

of the local current is obtained from 〈Jij〉 = tr(ρJij). By using Eq. (4.9) as the

definition of current we make sure that the total thermal current does not violate the

second law of thermodynamics as it always flows from hot to cold.

For the noninteracting case with U = 0, we implement the third quantization

method for the LQME [63, 64] and follow the steps in appendix A.4 to obtain the

non-equilibrium steady-state correlations. The third quantization formalism is lim-

ited to non-interacting Hamiltonians and cannot be used for a system with interac-

tions. To study the Bose-Hubbard system with a non-zero interaction strength, we
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numerically integrate the LMQE (4.8) and get the evolution of the reduced density

matrix. The numerical integration is done through the fourth-order Runge-Kutta

method. Theoretically, the density matrix of a bosonic system can be infinite di-

mensional as each site can accommodate an infinite number of bosons due to their

Bose-Einstein statistics. However, due to limited resources, numerical simulations of

bosonic systems are usually performed by restricting the maximal number of bosons

per site. This restriction leads to a truncated basis. We follow the algorithm outlined

in Ref. [62] to construct this truncated basis for our multi-path system. In our sim-

ulations, we restrict the number of bosons per site to three. to find the steady state

thermal currents. Once the integration of the LQME is carried out, one can calculate

the expectation values of the local currents by taking their trace with the reduced

density operator. The steady state local thermal currents for an interacting system

should obey
∑

i〈Ji2 + J2i〉 = 0, such that there is no energy accumulation on site 2.

4.2 Results and discussion

4.2.1 Quantum harmonic oscillators with RQME

In this section we present the results of the quantum thermal transport for the har-

monically coupled quantum oscillators coupled to ohmic reservoirs shown in Fig. 4.1

(a). Before showing the results of the setup shown in Fig. 4.1, we ensure that our

results for a linear chain of quantum oscillators are consistent with those presented in

Ref. [65]. We work in the small temperature regime i.e. when TL−TR = ∆T << Tavg,

where Tavg = (TL + TR)/2 is the average temperature of the reservoirs. We assume

symmetric coupling to the reservoirs with εL,R = ε. The parameter space of this

coupled quantum oscillator system in a triangular geometry consists of internal pa-

rameters k/k3 and external parameters TL/ω0, TR/ω0, and ε/ω0.

We show the behavior of the thermal conductance 〈JT 〉/∆T as a function of Tavg

for different values of the system-reservoir coupling ε in Fig. 4.2 with k = k3 = mω2
0.

We note that when the coupling constants and masses of the three oscillators are

equal, the currents on each of the links are also equal. The quantum of thermal
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Figure 4.2: Quantum thermal conductance from the total current through the three-
site harmonic oscillators with k = k3 = mω2

0 as a function of Tavg/ω0 for different
values of the system-reservoir coupling and fixed ∆T/Tavg = 0.02. The black line
shows the quantum of thermal conductance and the colored dashed lines show the
corresponding values of the classical thermal conductance.

conductance [32] = πkB
2Tavg/6~ is shown by the black curve of Fig. 4.2. In the

low temperature regime when ω0 > Tavg, the conductance increases monotonically

as Tavg increases. As one can see, the quantum of thermal conductance becomes an

upper bound for the numerical values as Tavg → 0. As Tavg increases, the thermal

conductance starts to saturate and becomes constant. At high temperatures, the

conductance of the system shown in Fig. 4.1 (a) can be explained classically. The

classical thermal transport in multi-path systems such as Fig. 3.1 with Langevin

reservoirs has been shown in chapter 3 the RQME results approach the corresponding

classical values [77] in the high-temperature limit. In Ref. [65], the authors show that

the classical Langevin results agree with the RQME in the high temperature limit

ω0 � Tavg for a linear chain of quantum harmonic oscillators, and here we confirm

this agreement for a multi-path geometry.

Since the RQME is essentially a second-order perturbation formalism [65], it can

be used reliably when the system-reservoir coupling is weak. Within the weak coupling

regime, we found the thermal conductance increases with ε/ω0, as shown in Fig. 4.2.
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Figure 4.3: Total and local steady-state thermal currents of the three site coupled
quantum oscillators described by the RQME as a function of k/k3 for ε/ω0 = 0.1.
Here TL/ω0 = 1.01 and TR/ω0 = 0.99. ω0 is the onsite frequency of the quantum
oscillators. The solid grey line marks the zero of the y-axis.

It has been shown [81] that the thermal conductance of a classical harmonic chain

changes non-monotonically as the system-reservoir coupling strength is varied over

several orders of magnitude. However, due to the weak system reservoir coupling

assumption that is needed to write the RQME we cannot explore the behavior of the

quantum thermal transport in the regime where ε/ω0 � 1.

The total quantum thermal current and its thermal conductance do not show

any unexpected behavior. However, when we examine the local steady state current

on each of the links we unambiguously demonstrate the existence of atypical local

thermal current in the coupled quantum system. For the quantum system shown in

Fig. 4.1 with k3 = mω2
0, and ε/ω0 = 0.1 coupled to reservoirs with TL/ω0 = 1.01,

TR/ω0 = 0.99, the total and local steady state thermal currents are shown in Fig. 4.3.

As one can see, when k < k3 the local thermal current along the 1− 3 link flows from

hot to cold according to the direction of the reservoirs, but the local thermal current

along the 1 − 2 link flows in the opposite direction or from cold to hot as indicated

by its negative value. We term this local floe from cold to hot as an atypical local

current. In the steady state, we have verified that 〈J12〉 = 〈J23〉. The combination of
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an atypical 〈J12〉 with a normal 〈J13〉 gives rise to a counterclockwise (CCW) internal

circulation. At k = k3, the local thermal currents on all the links are the same and

flow in the normal direction, i.e. from hot to cold. When all local thermal currents

flow in the same direction no circulations can arise, we call the flow unidirectional

(UD). For k > k3, the local thermal currents on the 1 − 2 and 2 − 3 links flow from

hot to cold, but the local thermal current on the 1 − 3 link shows atypical behavior

as it flows from cold to hot, indicated by its negative value. In this case, the local

thermal currents give rise to an internal clockwise (CW) circulation. For k >> k3,

the local thermal currents become unidirectional again. The three patterns (CCW,

UD, and CW) are illustrated in the top panel of Fig. 4.4. The positive value of the

total steady state thermal current throughout the the parameter regime explored in

Fig. 4.4 confirms that although a local thermal current may show atypical behavior

by flowing from cold to hot, the total steady state thermal current is always from hot

to cold, consistent with the second law of thermodynamics.

Fig. 4.4 shows the phase diagram for the three patterns as a function of the

parameters k/k3 and ε/ω0. When ε/ω0 is small, both types of circulations are ob-

servable. The circulation has the property that the atypical local current is along the

link with the smaller value of the harmonic coupling constant. For example, k/k3 > 1

implies the atypical current is along the link with k3, which is the 1 − 3 link, giving

rise to CW circulation. However, as ε/ω0 is increased, the regimes of both circulations

shrink. Beyond a certain critical value of ε/ω0, only the UD flow survives.

4.2.2 Bose-Hubbard model with LQME

In this section we present the local steady-state thermal currents of the open quantum

system of coupled oscillators modeled through the LQME. Eq. (4.8) where the system

of interest shown in Fig. 4.1 (b) is modelled through the Bose-Hubbard Hamiltonian.

We begin with the non-interacting Bose-Hubbard model for which U = 0 in Eq. (4.7).

We take t3/Ω0 = 0.1, and vary t/Ω0 from 0.01 to 0.2 such that we are in the regime

where the rotating wave approximation is valid. The system is coupled to the thermal

reservoirs symmetrically which are maintained at TL/Ω0 = 1.01 and TR/Ω0 = 0.99
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Figure 4.4: The top panel illustrates the patterns of local thermal currents. From
left to right: counterclockwise (CCW), unidirectional (UD) and clockwise (CW). The
lower panel shows where each pattern is found as a function of k/k3 and ε/ω0 for the
three coupled quantum harmonic oscillators under the influence of ohmic reservoirs.
Here TL/ω0 = 1.01 and TR/ω0 = 0.99, and the masses are the same with

√
k3/m = ω0.

In the phase diagram, the blue triangles, black circles, and pink inverted triangles
represent the CCW circulation, unidirectional flow, and CW circulation, respectively.

through out our discussion. We employ the third quantization formalism outlined in

appendix A.4 to solve for the steady state correlations of this system.

In Fig. 4.5 we show the total and local currents for γ/Ω0 = 0.1 as a function of

t/t3. As we tune t/t3, we see that the local currents follow the trend of three patterns

observed in the previous section. For t/t3 < 1, the local currents combine to give

rise to an internal CCW circulation. For t/t3 > 1, the local currents show a CW

internal circulation. While at t/t3 = 1, both the local currents flow unidirectionally.

At all these parameter points, the total steady state thermal current is positive and

is accompanied by a dip at the point where there is a change in circulation pattern.

Next, we examine the three patterns as a function of t/t3 and γ/Ω0 which is shown

in Fig. 4.6. From the phase diagram, we infer that both CCW and CW circulations
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Figure 4.5: The total and local steady-state thermal currents of the non-interacting
Bose-Hubbard model described by the LQME as a function of t/t3 for t3/Ω0 = 0.1
and γ/Ω0 = 0.1 with TL/Ω0 = 1.01, TR/Ω0 = 0.99. Ω0 is the onsite frequency. The
solid grey line marks the zero of the y-axis.

dominate at small γ/Ω0. As γ/Ω0 is increased both regions of circulations decrease

quite similar to our RQME results shown in sec. 4.2 A. We note that increasing γ/Ω0

depletes the CCW circulation regime more in comparison to the CW circulation

regime.

We conclude this section by showing the robust nature of these circulations against

interactions. Here, U/Ω0 may be used to model underlying interactions with a sub-

strate and anharmonicity or disorder in the system. To be in the weakly interacting

regime, U/Ω0 should be the smallest energy scale in the system and hence should

satisfy U < (t, t3). In the presence of interactions, in addition to the usual two op-

erator correlations the thermal steady state current also depends on four operator

correlations as seen in Eq. (4.9). We also note that the four operator correlators

in Eq. (4.9) depend on the number density of the oscillator into which the heat is

flowing. In Fig. 4.7 (a) and (b) we show the total and local steady-state thermal

currents for the Bose Hubbard model with interaction strength of U/Ω = 0.01, 0.05

respectively. To make sure we are within the weakly interacting regime we use stan-

dardized tunneling, where the tunneling coefficients on the upper and lower path
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Figure 4.6: Phase diagram of the noninteracting Bose Hubbard described by the
LQME, showing the CCW circulation (blue triangles), CW circulation (pink inverted
triangles), and UD flow (black dots) on the plane of t/t3 and γ/Ω0. Here, TL/Ω0 =
1.01, TR/Ω0 = 0.99, t3/Ω0 = 0.1.

satisfy min{(t, t3)/Ω0} = 0.1 such that (t, t3) > U is always true. We make sure that

the net current through the site into which the current is flowing is zero and the signs

of the local currents 〈J12〉/Ω0
2, 〈J23〉/Ω0

2 agree. We infer from Fig. 4.7 that even in

the presence of interactions, the local steady state thermal currents combine to give

rise to both the circulation patterns.

4.3 Summary

In this chapter we demonstrated that a minimal system of three quantum oscillators

in conjunction with reservoirs show an internal circulations of the steady state thermal

currents. We show that these circulations are universal in the sense that they can be

found through both the Redfield and Lindblad form of the quantum master equations

wherein a different Hamiltonian is used to describe the system. The local currents and

flow patterns obtained show the same qualitative nature. We map the two patterns

of internal circulation of steady-state local thermal currents, CCW and CW as a
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Figure 4.7: The total and local steady-state thermal currents of the Bose Hubbard
model with self-interactions described by the LQME for (a)U/Ω0 = 0.01 and (b)
U/Ω0 = 0.05 as a function of t/t3 with standardized tunneling coefficients satisfying
min{(t, t3)/Ω0} = 0.1. Here TL/Ω0 = 1.01, TR/Ω0 = 0.99, γ/Ω0 = 0.1, and the solid
grey line marks the zero of the y-axis.

function of internal parameters such as k/k3 or t/t3 and external parameters such

as ε/ω0 or γ/Ω0. The Redfield calculations show a re-entrant regime between the

unidirectional flow while no such such behavior is show in the Lindblad calculations,

highlighting their different quantitative nature. Finally, through numerical simulation

of the LQME, we show that the circulation patterns are robust against interactions.



Chapter 5

Quantum transport of Photons

The work presented in this chapter has been previously published in Physical Re-

view A 102 (2020): 023704 as:

“Geometry-based circulation of local photonic transport in a triangular metastruc-

ture.”

Authors: Palak Dugar, Michael Scheibner and Chih-Chun Chien.
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Having dealt with classical and quantum thermal transport in a multi-path ge-

ometry in the previous chapters where we unambiguously proved the presence of an

atypical local steady-state thermal current, in this chapter we show that this ‘atyp-

ical behavior’ associated with local thermal current can also be found for photonic

particle transport in a multi-path geometry. Ref. [25] shows how the multi-path ge-

ometry of a triangle can be utilized to show internal circulation of the steady-state

electronic current. The typical route to achieve circulation of photons is through arti-

ficial gauge fields. In this chapter we demonstrate steady-state photonic transport in

a multi-path geometry can show circulation patterns without using an artificial gauge

field. We examine the parameter regimes where atypical behavior can arise and lead

to an internal circulation of the steady-state photonic current.

For the system of interest, we consider a triple quantum dot system with each of

the three quantum dots embedded in separate photonic arrays, coupled to each other

such that they form a triangle. In this chapter, we will refer to the entire system of the

three quantum dots, photonic crystals, arrays and waveguide as the triple quantum

dot metastructure, or TQDM for short. To study photonic transport, this TQDM

is coupled to appropriate particle reservoirs which act as photonic pump and sink

generating the photonic current within the system.

Now theoretically, the Bose-Einstein statistics of photons allows an arbitrary large

numbers of photons on any given site. However due to limited resources such as

memory and time, numerical simulation of a system with a large density matrix

is not feasible [63, 92]. The TQDM considered here provides a constraint on the

photons that can participate in transport. The main function of the quantum dots in

the TQDM is to provide excitons for coupling to the incoming and outgoing photons.

Due to the coupling between the photons and the excitons in the quantum dots, the

spectrum of the coupled photons may differ from that of the uncoupled cavity photons.

With carefully designed waveguides, only the photons coupled to the excitons can be

transmitted [93, 94]. Given the limited number of excitons with a specific energy

on each quantum dot, the number of photons on each site that can participate in

transport is limited making a realistic numerical simulation of the photonic transport

possible.
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In sec. 5.1 we describe the model for the TQDM and the LQME used to study

the steady state photonic transport. In our results section, we present our numeri-

cal results for the noninteracting system where we explicitly show the emergence of

circulation patterns. Next, in 5.2.2 we present the phase maps of the flow patterns

in the TQDM as a function of system parameters and the system-reservoir coupling

in the weakly and strongly interacting regimes. We talk about decoupling of number

densities at the sites and the local currents in sec. 5.2.3. We end our results section

by presenting a phase map obtained through the third quantization formalism for the

noninteracting TQDM without any photon blockade in sec. 5.2.4 and summarize the

chapter in 5.3.

5.1 Model and method

Illustrated in Fig. 5.1, the TQDM that we envision has a triangular geometry

where the photonic cavites, each embedded with quantum dots are placed at the

vertices. Photonic waveguides are placed between the cavities for transferring pho-

tons. The photonic crystal structure forms the “photonic connections” as the photons

can evanescently couple from one cavity to the waveguides [95,96], resulting in pho-

tonic transport across the cavities. The system is connected via additional waveguides

to two photon reservoirs which play the role of an incoherent photon pump and sink

to sustain photonic transport across the TQDM.

A complete description of the photon-exciton interactions at the quantum dots

and its transport across the waveguides requires the microscopic system Hamilto-

nian to include interactions between electrons, holes and photons. Here we take a

phenomenological point of view and consider an effective model of the photons by in-

tegrating out the electron-hole contributions, such that the transport of photons can

be treated as a simple tunneling process. We choose the Bose-Hubbard Hamiltonian

to model the photons in the TQDM which describes the tunneling of the photons and

also has repulsive onsite interaction between the photons present due to the repulsive

coulombic interaction between the underlying electrons in the quantum dots. The

effective Bose-Hubbard Hamiltonian for the TQDM has the same form as the one
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used to study circulations in steady state thermal currents in chapter 4. For the sake

of completion we repeat it here:

H = −t1(c†1c2 + c†2c1 + c†2c3 + c†3c2)− t3(c
†
1c3 + c†3c1) +

U

2

3∑
i=1

ni(ni − 1). (5.1)

Here t1 is the tunnelling coefficient between the first and second site, as well as

the tunnelling coefficient between the second and third site t1. t3 is the tunneling

coefficient between the first and third site. U is the strength of the effective onsite

interaction which we assume to be repulsive U ≥ 0. The photonic number operator

at the ith site is ni = c†ici. We take ~ = 1 and the time unit is defined as T0 = ~
t1

.

In the open quantum system approach, physical observables, such as the density

or current, can be obtained from taking the expectation of the corresponding oper-

ators once the time evolution of the reduced density matrix of the TQDM photons

participating in the transport, ρ(T ), is known. We use the Lindblad form of the

quantum master equation introduced in sec. 2.2.

∂ρ(T )

∂T
=

ι

~
[ρ,H ]

+γLNL(c†1ρc1 −
1

2
{c1c†1, ρ}) + γL(NL + 1)(c1ρc

†
1 −

1

2
{c†1c1, ρ})

+γRNR(c†3ρc3 −
1

2
{c3c†3, ρ}) + γR(NR + 1)(c3ρc

†
3 −

1

2
{c†3c3, ρ}). (5.2)

The same form of LQME (4.8) with the Bose-Hubbard Hamiltonian (4.7) was used

to describe the quantum thermal transport in a multi-path geometry in chapter 4.

Here, H is the TQDM Hamiltonian and NL and NR are the fixed photon numbers

of the left and right reservoirs respectively. The above exchange rates of photons are

consistent with the quantum optical master equation [49,51].

The Lindblad equation (5.2) describes a homogeneous Markov process. According

to Ref. [97], there exists at least one steady-state solution in a finite-dimensional

space. Ref. [97] shows that when ρ is rewritten as an equivalent column vector, the

Lindblad superoperator L can be written as a square matrix. However, L may
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Figure 5.1: The open TQDM to study photonic transport has the same skeletal form
as that of Fig. 4.1 (b). The three quantum dots are embedded in the three photonic
cavities labeled by 1, 2, and 3. The cavities are connected by photonic waveguides.
The quantum dots provide excitons for coupling to the photons, and only the photons
coupled to the excitons are transported via the waveguides. The photonic transport
is described by the effective hopping of the photons and effective repulsion from the
underlying electrons. Site 1 (3) of the system is connected to a photon pump (sink)
via additional waveguides for maintaining a steady-state.

not be a normal matrix (L L † 6= L †L ) and hence may not be diagonalizable [98].

To overcome this technical difficulty, we implement the fourth-order Runge-Kutta

method [99] to integrate Eq. (5.2) from a given initial state and obtain the steady-

state density matrix after the transient behavior decays away. The expectation value

〈A〉 of an operator A can be obtained from Tr(ρA). Here Tr denotes the trace. After

the steady-state density matrix ρss is found from Eq. (5.2), the steady-state current

and occupation nummbers can be obtained accordingly.

For a linear chain, the local photonic current operator through a link between

the ith and (i + 1)th sites can be evaluated by using the continuity equation and

Heisenberg’s equation of motion, Ji,i+1 = dNL/dt = i[NL, H], where NL contains the

number density of the partial chain from the left end to the ith site. By generalizing

the definition, the photonic current operator from site i to site j is given by:

Jij = −ι(tijc†icj − tijc
†
jci), (5.3)

where tij takes the value t1 or t3 for J12 or J13, respectively. In the steady-state,
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〈J12〉 = 〈J23〉, with the total steady-state photonic current through the TQDM:

〈JT 〉 = 〈J12〉+ 〈J13〉. (5.4)

Due to the limited availability of electron-hole pairs with a specific energy at a

quantum dot, the coupling between the photons and the electron-hole pairs can be uti-

lized to limit the number of photons that participate in transport. This phenomenon

is generally known as the photon blockade [100–102] and we employ it here to intro-

duce a truncated basis for the TQDM photons. The truncation parameter M denotes

the maximum number of photons that a site can accommodate. These truncated

basis states are constructed following the algorithm of Ref. [62]. In our simulations,

the initial density matrix was set to the one with no photons in the system or to the

maximal entropic state. Both types of initial states lead to the same steady-state

density matrix. However, in the strongly interacting regime when γT0 is very small,

the convergence to the steady-state value can be slow, so we use the steady-state

value of an adjacent point in the parameter space as the initial condition to achieve

faster convergence. Importantly, we have checked that steady-state ρ obtained from

the numerical integration of Eq. (5.2) indeed makes the right-hand side vanish within

machine precision.

5.2 Results and discussion

5.2.1 Noninteracting photons with photon blockade

We study photonic transport through the TQDM illustrated in Fig. 5.1 in the inco-

herently pumped and dissipative regime with γL = γR = γ 6= 0 for fixed NL = 1

and NR = 0. The photon blockade due to the photon-exciton interaction restricts

the maximum number of allowed photons on each site by M . We begin with the

noninteracting Bose-Hubbard Hamiltonian, U = 0 with M = 1. In the upper panel

of Fig. 5.2, we show the time evolution of the local currents J12 and J13 for two

selected values of t3/t1 = 0.6, 1.4 for γT0 = 0.5. It is clear from the plateau in the

long time limit that the local currents are in their steady-state. More importantly,



CHAPTER 5. QUANTUM TRANSPORT OF PHOTONS 57

0 10 20 30 40 50
T/T0

0.00

0.05

0.10

0.15

JT
0 J12 for t3/t1 = 0.6

J13 for t3/t1 = 0.6
J12 for t3/t1 = 1.4
J13 for t3/t1 = 1.4

0.0 0.5 1.0 1.5 2.0
t3/t1

0.08

0.10

0.12

JT
0

JTT0

0.00

0.05

0.10

0.15

J13T0
J12T0

Figure 5.2: (Top panel) The local currents J12 and J13 as functions of time with
t3/t1 = 0.6, 1.4, γT0 = 0.5, and M = 1 without the onsite interaction (U = 0). The
plateaus of the currents are the signature of a steady-state. (Bottom panel) The
steady-state values of the local currents J12, J13 and the total current JT as functions
of t3/t1 with the same γT0 and M , showing opposite signs of J12 and J13 in certain
regimes.

one can see that J13 for t3/t1 = 0.6 and J12 for t3/t1 = 1.4 are negative and show an

atypical behavior by flowing opposite to the normal flow from the reservoir with the

higher to a lower photon number density.

Next keeping the system-reservoir coupling fixed, γT0 = 0.5 we investigate the

steady-state local and total currents as a function of t3/t1, these currents are shown

in the lower panel of Fig. 5.2. For small t3/t1, we get a normal flow for J12 while J13
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Figure 5.3: Phase diagrams showing the steady-state patterns of the photonic current
with U = 0 and M = 1, 2, 3, 4, 5 (from left to right). Here the pink upside-down
triangles denote the CW circulation, the black circles denote the UD flow, and the
blue triangles denote the CCW circulation.

shows atypical behavior. Here, the combination of J12 > 0 and J13 < 0 corresponds to

an internal clockwise (CW) circulation of the photons in the TQDM. For intermediate

ratio, 0.8 ≤ t3/t1 ≤ 1.2 both J12 and J13 exhibit normal behavior leading to a lack of

circulation which we call unidirectional (UD) flow. Finally, for large t3/t1, we get get

atypical behavior for J12 while J13 is normal. This combination of J12 < 0 and J13 > 0

corresponds to an internal counter-clockwise (CCW) circulation. This convention for

labeling the orientation of the circulation is the same as used in chapter 4. It can

be clearly inferred that varying the ratio t3/t1 can lead to tuning of the pattern of

internal circulation of the photons in the steady-state. We emphasize that the internal

circulation of photons is a steady-state phenomenon, not a transient one, because the

long-time limit has been taken.

The mechanism behind the photonic circulations is a combination of the wave

nature of quantum particles and multi-path geometry. As explained in Ref. [25],

the wave functions spread out over the whole system in the triangular geometry

during the dynamic process, making it possible for one path to overflow while another

path transports the particles backward to compensate for it. This mechanism of
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overflow transcends classical-quantum boundary as well as spin-statistics. The Bose-

Einstein statistics of photons allows us to explore the dependence of the circulation

on M , which we will address shortly. Moreover, the geometry-induced circulation

presented here is not associated with any real or artificial gauge field. Thus, there is

no quantization condition on the vorticity of the photons.

When M = 1, the non-monotonic behavior of JT on t3/t1 shown in Fig. 5.2 may

be considered as an indication of a change of the orientation of the photon circulation

in the metastructure. We notice that the M = 1 case of photons is similar to the

spinless fermions studied in Ref. [25] because there cannot be two particles on the

same site. However, a careful comparison shows that the similarity is only qualitative

because of the different spin-statistics. Specifically, the evaluations of the commuta-

tor in Eq. (5.2) and the exchange terms with the reservoirs depend on whether the

particles are bosonic or fermionic. Thus, it can be concluded that the spin-statistics

cause quantitative differences between electronic and photonic transport under the

constraint M = 1.

After establishing the existence of internal photon circulations in the TQDM, we

explore whether these circulations can survive in the photon blockade regime with

more photons per site. We consider M = 2, 3, 4, 5 and the TQDM exhibits both CW

and CCW circulations for all cases with M > 1. Later on we will show the phase

diagram without any photon blockade, M → ∞, and confirm that the photonic

transport already saturates for relatively small values of M . Fig. 5.3 shows the

phase diagrams of the steady-state flow patterns as a function of M , t3/t1, and γ.

By comparing the phase diagrams of noninteracting photons with M = 1, 2, 3, 4, 5,

we infer that in the photon blockade regime with higher allowed number of photons

per site, the internal circulations of photons not only survive survive but the regimes

of both CW and CCW circulations increase as M increases. We conjecture that

more photons are present in each site when M increases which increases the possible

configurations of the photon wavefunctions, leading to overshoots of the flows along

certain paths and causing the internal circulation.
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Figure 5.4: Phase diagrams showing the steady-state patterns of the photonic current
for the cases with U = t1 (the top row) and U = 5t1 (the bottom row). Here
M = 2, 3, 4, 5 from left to right. The pink upside-down triangles denote the CW
circulation, the black circles denote the UD flow, and the blue triangles denote the
CCW circulation.

5.2.2 Photons with effective onsite interactions and photon

blockade

While photons in vacuum do not interact with each other [103], the photons in the

TQDM interact with the excitons in the quantum dots and may experience an effective

repulsion amongst themselves. To investigate photonic transport in a system with

such effective repulsive interaction, we utilize the Bose-Hubbard Hamiltonian with

a non-zero U and calculate the steady-state expectation values of the local currents

from Eq. (5.2). Once the steady state local photonic currents are known, the phase

diagrams of of flow patterns for interacting photons in the TQDM are constructed



CHAPTER 5. QUANTUM TRANSPORT OF PHOTONS 61

and shown in Fig. 5.4.

When U is smaller or comparable to the tunneling coefficient t1, the phase maps

of the circulation patterns shown in the upper row of Fig. 5.4 are qualitatively similar

to the noninteracting maps shown in Fig. 5.3. The regimes showing CW and CCW

circulations increase as M increase from 1 to 4, but beyond that the circulation

regimes seem to saturate as M is increased further. Thus, we establish that the

photon circulation is not unique to noninteracting systems.

As U is increased further, both the CW or CCW regimes of circulations are

suppressed, as shown in the lower panel of Fig. 5.4. In Ref. [25] the authors reason

that the suppression of internal electronic circulations in a triangular triple quantum

dot system is due to the scattering of the electrons due to the onsite interactions.

Extending that to the case of internal circulation of photons presented here, the

photons may also suffer an effective scattering and may suppress the circulation as

well.

The phase maps in the regime of weak γT0 and strong U/t1 is interesting in the

sense that as t3/t1 is varied, regimes with CW or CCW circulation are interspersed

with the UD flow for M = 3, 4, 5. The t3/t1 < 1 parameter regime of the phase dia-

grams shown in the bottom row of Fig. 5.4 have CW circulations emerging at small

values of t3/t1, but the UD regime occurs both above and below the CW regime.

The competition among the different circulations in the small γT0 and strong inter-

action regime implies the system is sensitive to the parameters, making the accurate

measurement of phase diagrams of strongly interacting non-equilibrium systems chal-

lenging.

5.2.3 Photon number dependence of local transport

In this section we show how the local currents and densities of the photons are in-

fluenced by M . Fig. 5.5 shows the local steady-state photonic currents J12, J23, and

J13 as functions of 1/M with γT0 = 0.5 and U = 0 for (top) t3/t1 = 0.6, (middle)

t3/t1 = 1.0, (bottom) t3/t1 = 1.4. The insets of Fig. 5.5 show the occupation numbers

on the three sites, n1, n2, n3, as functions of 1/M with the same set of parameters of
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Figure 5.5: The dependence of the local steady-state currents J12 (blue hollow
hexagons), J23 (green triangles), and J13 (red upside-down triangles) on 1/M for
t3/t1 = 0.6, 1.0, 1.4 from top to bottom. Here γT0 = 0.5 and U = 0. J12 and J23 over-
lap in the steady-state. The insets show the photon occupation numbers on the three
sites, n1, n2, and n3 (cyan circles, black squares, and brown diamonds), as functions
of 1/M with the same parameters as those in the main panels.

the main panels. While the local occupation numbers of the photons always follow
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n3 < n2 < n1 as shown in the insets of Fig. 5.5, the local currents exhibit different

patterns depending on t3/t1. The 1/M = 0 point shown in Fig. 5.5 were obtained

using the third-quantization approach which we will talk about in sec. 5.2.4. With

these results we show proof that the directions of the local currents are decoupled

from the local densities in quantum transport of photons. In other words, it is possible

to transport photons from a low-density site to a high-density one in the steady-state

by using a multi-path geometry.
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Figure 5.6: Tuning the local currents by the system-reservoir coupling γ: The upper
(lower) panel shows J13 for t3/t1 = 0.6 and M = 5 (J12 for t3/t1 = 1.4 and M = 5).
Both cases show a change of the sign of the local current as γ increases.

To further demonstrate the tunability of the local photonic currents, we show

that for a given t3/t1 the local currents can change signs as γT0 is varied. Fig. 5.6

shows J13 for t3/t1 = 0.6 and J12 for t3/t1 = 1.4 for the noninteracting case with

M = 5 as functions of γT0. A change in the sign of the local current implies the

reversal of the direction of local flow. The possibility of tuning the local currents

using the system-reservoir coupling γT0 introduces additional knobs for controlling

the photonic transport. Moreover, the dependence of the local photonic currents on
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γT0 implies that the photonic circulation results from a combination of the system and

reservoirs, and hence as was the case in classical transport the atypical flow resulting

in circulation is not an intrinsic property of just the TQDM.

We have verified that the results of the cases with asymmetric system-reservoir

couplings (γL 6= γR) are qualitatively similar to those of the case with the symmetric

condition as all flown patterns can be found in the asymmetric cases as well. We have

also checked other values of NL and NR of the reservoirs, and the results seem to

differ quantitatively. With all these results and checks, we conclude that the internal

circulation of local photonic currents are robust against the asymmetry of the system-

reservoir couplings and the number of particles in the reservoirs. This robustness

of the geometry-induced circulation may increase the possibility of observing this

phenomenon experimentally.

5.2.4 Photon circulation without photon blockade

In this section, we explicitly show that photon blockade is not necessary, at least in

the noninteracting case, for internal circulation of local currents in the TQDM. We

use the third-quantization formalism [64] for bosons outlined in sec. 2.2.2 and follow

the protocol outlined in appendix A.4 to find the steady-state local currents when

the basis for the TQDM photons is not truncated i.e. when M →∞.

Fig. 5.7 shows the phase diagram of the steady-state circulations of the nonin-

teracting photons in the TQDM without any restriction on the number of photons

on each site. All three types of flow patterns (CW, CCW, UD) are indeed present.

Importantly, the noninteracting photons with M →∞ are the genuine case of a non-

interacting system because imposing a restriction on the number of photons on each

site may be considered as introducing effective interactions into the TQDM photons.

Therefore, Fig. 5.7 establishes two crucial factors for internal circulation of local

steady state photonic currents in the TQDM, the first is that the photon blockade

is not a necessary condition and the second is that the geometry-induced circulation

survives in the genuine noninteracting case.

A comparison of Fig. 5.7 for M →∞ with Fig. 5.3 for M = 1, · · · , 5, reveals that
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Figure 5.7: Phase diagram showing different steady-state patterns of the photonic
current in a noninteracting (U = 0) system in absence of the photon blockade (M →
∞). The pink upside-down triangles denote the CW circulation, the black circles
denote the UD flow, and the blue triangles denote the CCW circulation.

the phase diagram of the untruncated TQDM photons is almost identical to the one

with M = 5. Therefore, we surmise that circulation regimes saturate with increasing

M in absence of the onsite interaction, and it is sufficient to analyze the systems with

M ≤ 5 for all practical purposes as we expect that the local currents and circulation

patterns will remain basically the same as M increases above 5. The 1/M = 0 point

shown in Fig. 5.5 were also obtained using the third-quantization approach. We note

that as 1/M decreases, the local currents and occupation numbers all approach the

1/M = 0 values. This result also corroborates that the photonic transport in the

TQDM saturates as M increases. It may be possible to approximate the qualitative

behavior of the M →∞ limit through in systems with a moderate number of allowed

photons.

The third-quantization method, however, is limited to noninteracting systems with

linear system reservoir couplings. To study interaction effects in intermediate-sized

systems one may use numerical methods such as the density-matrix renormalization

group [63,92,104]. In this study, we have shown that the photon circulation survives
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in the TQDM with effective interactions, upto a maximum of M ≤ 5 photons allowed

per site.

5.3 Summary

In this chapter, we have shown that a multi-path geometry can lead to steady-state

circulation of local photonic currents without introducing any artificial gauge field.

The minimal system for emergence of these circulation patterns may be realized in a

triangular geometry metastructure which is made up of photonic structures embedded

with electronic quantum dots. The photon-exciton interactions may induce a photon

blockade that restricts the number of photons per quantum dot. We show that the

circulation patterns are observable for the both the noninteracting and interacting

TQDM with photon blockade. Additionally, the photonic circulations have a non-

trivial dependence not only on the internal system parameters such as the tunneling

coefficients, or the onsite effective interaction but also on external parameters such as

the system-reservoir coupling. Moreover we demonstrate decoupling of the direction

of the local current from the density difference between the sites in the TQDM. We

also show from our third quantization calculation that the circulations are robust, in

the sense that photon blockade is not a necessary condition for the circulations to

arise.



Chapter 6

Applications and experimental

realization

In this chapter we begin with a discussion on how the systems of chapters 3, 4 and

5 may be realized experimentally. We follow up with possible applications of the

geometry-based local atypical classical thermal current and quantum circulations.

6.1 Experimental realizations

Before we consider potential experimental setups which may be used to verify the

classical local atypical current and quantum circulations we will briefly discuss the

techniques for tuning system parameters. This discussion is pivotal as the applica-

tions introduced in the latter section require tuning of parameters of the multi-path

systems.

Tuning mechanisms can be classified into two categories: mechanical or electro-

magnetic. In mechanical tuning, one may use atomic force microscopy [105, 106] to

locally strain the material. The strain may modify the coupling between the system

and the reservoirs. Density-functional theory calculations in Ref. [107] show that

the thermal current in a molecular junction can be manipulated through mechanical

compression for a wide range of temperatures, essentially due to mode localization.

Ref. [108] shows, also using density functional theory, a significant suppression in the

67
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phononic thermal conductance of a molecular junction due to its structure.

Under electromagnetic techniques one can use lasers [109] to manipulate the in-

teractions between the system and reservoirs on both the micro and mesoscopic scale.

Alternatively, for substrates that are conducting or piezoelectric [110], can be sub-

jected to an electric current or field to modify its coupling with the system. The

modification will also affect the connections between the system and reservoirs, such

that the system-reservoir coupling can be tuned indirectly. The biasing of quan-

tum dots can also lead to change in certain system parameters of the metastructure

proposed in chapter 5.

6.1.1 Classical multi-path system with Langevin reservoirs

The Langevin equation (3.3) does not differentiate the size of the system. For exam-

ple, in Ref. [111] the authors experimentally study the motion of a macroscopic glass

prism under the influence of Coulombic and kinematic friction while subjected to ex-

ternal white or Cauchy noise. They show that their experimental findings agree with

drift velocities and diffusivities calculated through Langevin equation. In their exper-

iment, the energy is delivered to the slider in terms of work and not thermal energy

and additionally the friction and noise are introduced to the system through separate

individual processes. However, as Langevin equations describe systems where the fric-

tion and noise are simultaneous effects introduced by just the presence of a reservoir

i.e. these two effects are two different faces of the same action, it may be more feasible

to realize local atypical currents in molecular or nano-mechanical systems [112–114].

For example, Ref. [113] describes the vibrational motion of a nanoelectromechanical

system through classical Langevin equation where the coupling to the electrons re-

sults in the frictional and random force being exerted on the vibrational mode of the

system.

There are studies and techniques for tuning the coupling between a molecular or

nano-mechanical system and its environment [105–107, 109, 115–119]. One can en-

vision realization of the setup shown in Figs. 3.1 and 3.7 in experiments performed

at liquid nitrogen temperatures with nano-mechanical devices in which tuning the
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system-reservoir coupling by mechanical pressing or electromagnetic field as men-

tioned above can reverse the local thermal current, with which one may design a

local thermal switch embedded in a multi-path geometry.

6.1.2 Geometry-based transport in quantum systems

In general, the ‘quantum-ness’ of a system can be determined through the fugacity

z of the system [120]. The fugacity of the system can be defined as the ratio of the

thermal de Broglie wavelength to the length per particle in a 1D system [120]. Hence

any treatment of a system, whether classical (z << 1) or quantum (z > 1) mechanical,

must be done after careful consideration of the fugacity of the system. For example,

a molecular system with mass ≈ 10−24kg confined to a nanometer sized geometry has

(z ≈ 10−2 < 1) at liquid Nitrogen temperatures and a (z > 1) at µK temperatures.

Hence the same system is capable of showing both quantum and classical behavior

depending on the operating temperature of the reservoirs.

For quantum systems, a laser may function as a reservoir that supplies energy or

particles to a localized part of the system. For example, in Ref. [121] the authors

use a pulsed laser to excite a chain of trapped ions and study its energy transport.

In accordance with the theoretical parameters, the geometry-based circulations may

survive in experiments performed at Liquid Helium temperature with the frequencies

of the system of interest in the terahertz range.

The systems shown in Figs. 4.1, 5.1 may be realizable in quantum dots [122],

quantum dot - cavity systems, [123], molecular systems [124, 125] or trapped ion

systems [121]. In addition, these systems may also be realizable through cold-atom

simulators. Recently there has been progress towards engineering nearest neighbor

and next-nearest neighbor hopping coefficients of bosonic atoms in optical potentials

connected to particle reservoirs [126], which may resemble the setup of Fig. 5.1. The

bosonic cold-atoms are massive bosons, but the photons are massless bosons. How-

ever, as the geometry-based circulation only concerns the wave nature, circulations

should emerge in both systems with massive and massless bosons.

The TQDM we envision in Fig. 5.1 comprises of a photonic crystal which houses
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Figure 6.1: Illustration of an experimental realization of the TQDM and the schemat-
ics of the layer structure of the pin-diode structure. In the TQDM, the dots are
embedded in three L3 cavities in a photonic crystal membrane, formed by a pin-type
diode. Photons are injected from the left waveguide, LWG and extracted from the
right waveguide, RWG. Additional wave guides (AWGL, AWGR) may be used to mea-
sure the directionality of the photon flux. Reproduced with permission from “Tunable
current circulation in triangular quantum-dot metastructures” EPL 123 (2018) 47002.
Copyright (2018) Europhysics Letters

.

the photonic cavities embedded with the electronic quantum dots. The photonic crys-

tal structures are commonly fabricated with electron-beam lithography and chemical

etching. Protocol for fabricating nanophotonic crystal cavities and photonic crys-

tal waveguides containing quantum dots have been established, for example in Refs.

[127,128].

For the experimental realization of the TQDM shown in Fig. 5.1 one needs to

consider a system where the length scales of all the components of the TQDM such

as the size of the photonic crystal and cavities, and the separation length of the

cavities are of the order of the wavelength of the photons. The TQDM should be

designed such that it allows individual tuning of each photonic crystal cavity through

additional waveguides between the TQDM and the reservoirs such that it is possible

to couple only two sites to the reservoirs [25]. Fig. 6.1 adapted from Ref. [25]

outlines a realization of this TQDM and the corresponding pin-diode structures which

houses the electronic quantum dots. In their visualization of the TQDM, they embed

the quantum dots in three L3 cavities of a photonic crystal membrane through the

fabrication of a pin-type diode illustrated in Fig. 6.1 adapted from Ref. [25]. Etching
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through the top layer of this pin-diode structure along the photonic crystal holes

allows for separate tuning of the quantum dot excitonic transitions through gate

voltages. In their setup, the photons are injected and extracted through waveguides

and they suggest using additional waveguides to measure the directionality of the

photon flux.

The cavity photon and quantum dot exciton composite system has two branches,

an upper and a lower exciton-polariton branch. One can tune the reservoir to a

frequency slightly above the lower branch to incoherently pump the photons into

the TQDM, similar to the idea of Ref. [94]. The waveguides, through which the

photons travel [25], should also be tuned to the frequency of the lower branch. To

achieve sufficient polaritonic coupling between the cavity photons and quantum-dot

excitons, the wavelength of the quantum dot should match with that of the photonic

cavities. The separation between the cavities and the distance between the cavities

and the waveguides determines the upper limit for the coupling strength, which in

turn constrains the tunneling coefficients in the effective model.

The photon blockade in the TQDM may be realized using the quantum dot ex-

citons. As suggested in Ref. [25], the number of excitons in each quantum dot can

be tuned by the gate voltage. The excitonic transitions can be tuned in-situ, most

conveniently by electric fields via the quantum confined Stark effect if the sample

structure is designed as a (pin-type) diode as shown in Fig. 6.1. Since we only con-

sider the transport of photons that couple to the excitons, the number of photons on

each site may also be tuned by the gate voltage. However, each quantum dot may

not accommodate more than a few excitons, so tuning the gate voltage may be more

suitable for M ≤ 2. To study transport in a photon blockade regime with M > 2,

it is possible to adopt and modify the quantum-dot metastructure of Ref. [129]. The

idea is to let each vertex of the triangle shown in Fig. 5.1 consist of multiple quantum

dots, and each dot can hold up to one exciton. Therefore, each group of M quantum

dots represents an effective site that can accommodate up to M photons, which can

then be transported via the photonic structures.

For nanomechanical or molecular systems, the thermal currents may be measured
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through thermoreflectance [130] or scanning-probe techniques [125, 131–133]. To de-

termine the circulation in the TQDM, additional photon detectors may be used which

couple to the sites and siphon out some photons to measure their momentum, which

determines the direction of the photonic current.

6.2 Applications

The direction of the classical local thermal current can be controlled by tuning internal

and external system parameters such as ratio of springs and masses, and system-

reservoir coupling. With this control over the direction of the local thermal current

through system parameters, one can design a local thermal switch embedded in a

multi-path geometry. For example, by tuning the system-reservoir coupling one can

control the direction of the local thermal current. In another application, one may

identify the two types of the local thermal current namely normal and atypical, with

binary digits 0 and 1 and design classical memory elements.

As evident from the phase maps shown in chapter 4 and 5, the quantum circula-

tions of internal currents can be manipulated by tuning internal system parameters

such as the tunneling coefficients, interaction strength or external parameters such as

the system-reservoir coupling, temperature, average number of particles in reservoir,

the photon blockade parameter. Similar to building classical memory elements, geom-

etry based CW and CCW internal circulation of thermal and particle transport may

be used to encode the binary numbers 0 and 1 for realizing heat or particle based

memory elements. Our ability to control electrons has driven major technological

revolutions in the past; perhaps devices based on the above theoretical predictions

which manipulate photons and phonons may result in exciting analogous advances

and help utilize the higher frequency range of phonons and photons.

Another application of the TQMD proposed in chapter 5 allows the possibility of

transporting photons from a low-density site to a high-density one using the multi-

path geometry. The system shown in Fig. 5.1 may be viewed as a proof-of-principle

device which may function as a controllable local photonic router. If one needs to

transport photons from, say, site 2 to site 1 regardless of the densities on those sites,
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one can tune the internal or external parameters to ensure the system stays in the

CCW circulation regime. This router is made possible by the underlying multi-path

geometry which does not require interactions or artificial gauge fields.

There have been analogous studies of the local transport phenomena in the litera-

ture. Refs. [16,134] utilize the similarity between the Helmholtz equation for classical

electromagnetic waves and the Schrödinger equation for the wavefunction of nonin-

teracting quantum systems. Transport in a noninteracting many-body system can

be solved by tackling the single-particle Hamiltonian as the many-body Hamiltonian

of noninteracting particles is a direct sum of the single-particle Hamiltonians. In

the analogous study, the role of the local current between two atoms in the single-

particle picture is played by the transmission coefficient of microwaves between adja-

cent macroscopic resonators in the experiments. Ref. [16] experimentally verifies that

the transmission coefficients of the microwave correspond to a circulating current in

a benzene-like ring, showing the wave nature and the ability of multi-path geome-

try to induce an internal circulation. Quantum systems with interactions exhibit rich

physics and in the presence of interactions, it is no longer possible to write the system

Hamiltonian as a direct sum of single-particle Hamiltonians. Hence to study of quan-

tum systems with interactions one needs to treat the system as a many-body problem

which cannot be explained through the single-particle picture. While the microwave

simulators have demonstrated circulating current for single-particle transport of the

analogous quantum systems, the systems presented in Figs. 4.1 and 5.1 with non-zero

U , may offer a route to the simulate many-body transport in quantum systems.



Chapter 7

Conclusion

There have been scattered studies of interesting phenomena in local thermal trans-

port in specific multi-path networks [6,7,21,135] which talk about either classical or

quantum thermal transport but these documentations lack a comprehensive analysis

of geometry-based local transport phenomena. With this thesis, we provide a system-

atic and comprehensive survey of geometry based steady-state transport in minimal

multi-path systems and convey its ability to show a local atypical current universally

across domains and different drives not just limited to thermal. A steady-state atyp-

ical local current is identified as the current that flows opposite to the direction of

the total current which is determined by the external gradient.

Through this thesis, we show that a local steady-state atypical current is universal

to multi-path system geometry and can arise across classical and quantum realms,

using different formalisms and external drives. The physics behind the local atypical

flow remains the same across these different scenarios. The transport of heat in the

classical system is through normal modes while in the quantum system is through

quantum particle waves. The multi-path geometry provides the flux different path-

ways to reach the other reservoir. Combined with the wave nature of transport and

depending on the system parameters, this multi-path geometry allows certain paths

to overflow; this overflow is compensated by an atypical flow on the other path. We

also show that this atypical current is tunable and robust.

We consider a classical system made up of few masses and harmonic springs (Fig.

74
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3.1), a system of three quantum oscillators coupled in a triangular multi-path ge-

ometry described in the coordinate-momentum space and through a Bose-Hubbard

model (Fig. 4.1) and photons in a TQMD (Fig. 5.1). These systems are the minimal

structures with either three oscillators or three quantum dots. In the next few para-

graphs, we will summarise our results for these systems and show the universal and

robust nature of steady-state local atypical currents.

First we looked at a classical multi-path harmonic system of three masses subject

to Langevin reservoirs shown in Fig. 3.1. We show that the system exhibits a steady-

state local atypical thermal current (hot-to-cold). Once we establish the emergence

of atypical current we map out phase diagrams to demonstrate that the local atypical

current is a function of both internal and external system parameters such as the

ratio of spring constants, ratio of masses and system-reservoir coupling. We also

show that the atypical current is robust against non-linearity introduced through

substrate coupling, asymmetry of system-reservoir coupling and addition of masses.

Next, we show through the third quantization method for Redfield and Lind-

blad quantum master equations that local steady-state atypical thermal flows arise

in a non-interacting quantum system of oscillators coupled in a triangular multi-path

geometry. We show that in the appropriate high temperature limit, the Redfield

results reproduce the classical results for thermal conductance. The local atypical

flow gives rise to two circulation patterns in the system, namely clockwise and coun-

terclockwise. We map out phase diagrams for the three flow patterns observed, the

two circulations and unidirectional flow as a function of an internal parameter and

the system-reservoir coupling. We also show numerical simulations of the Lindblad

quantum master equation for the interacting Bose-Hubbard model and unequivocally

show that the circulations are robust against onsite interactions.

Finally, we look at photons coupled to quantum dot excitons modelled phenomeno-

logically through a Bose-Hubbard Hamiltonian. We run the simulations of the Lind-

blad quantum master equation in the photon blockade regime where the number of

photons that participate in transport can be limited by the quantum-dot excitons.

When subjected to photonic reservoirs, the system exhibits local atypical photonic

current which gives rise to three flow patterns similar to what we saw in the case
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of thermal transport. We demonstrate again through phase maps that these steady-

state internal circulations are present even as the number of allowed photons per site

is increased from 1 to 5 and for both weak and strong onsite interactions. We show

through third quantization calculations that the circulations exist in the regime with-

out photon blockade. Lastly, we also show a decoupling between the direction of the

local current and the occupation number at the sites.

With these results, we establish that geometry-based internal steady-state circu-

lation of thermal and particle current is a robust and universal phenomenon found

in quantum bosonic systems with multi-path geometries. Due to the same physics

of waves in multi-path geometry, these circulations are not just limited to bosonic

systems but can be found in fermionic systems as well [25]. Ref. [25] analyzes the

electronic transport in a triple quantum dot metastructure, and it shows the same

qualitative behavior (three flow patterns) as shown by the photons in a quantum

dot metastructure and by the thermal currents in a multi-path geometry of a tri-

angle. The transport analysis through the quantum master equation depends on

the whether the carrier is bosonic or fermionic as the calculation of the commutator

and the terms which model the interaction with the reservoirs implicitly depend on

the spin-statistics of the carrier. This spin-statistics dependence causes quantitative

differences in the circulation phase maps while the qualitative nature is intact.

We present phase maps for the quantum bosonic systems with multi-path geome-

try, which show how these circulations can be controlled for application purposes via

tuning internal and external parameters. We clearly demonstrate that the steady-

state circulations in systems with multi-path geometry do not require interactions or

additional media. This may be useful for inducing circulations of neutral carriers such

as photons and phonons, whose circulation generally requires interactions or coupling

to matter.

The local atypical thermal currents may find application as temperature controlled

classical memory elements or as a thermal switch. While in addition to these applica-

tions, the decoupling of atypical behavior and occupation number in the TQDM may

be utilized to built a photonic router. The prospect of applications of the universal
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and non-trivial properties of multi-path system geometry combined with recent ex-

perimental progress in the fabrication and control of atomic, nano and mesoscopic

systems lead us to believe that the atypical local currents may be realizable in a broad

range of systems ranging from nano or molecular systems, quantum dot-photonic hy-

brid structures, to trapped atoms or ion systems. As our ability to control electrons

has driven major technological revolutions in the past; we expect devices based on

the above theoretical predictions which manipulate photons and phonons may result

in exciting analogous advances.
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Appendix

A.1 Basis construction

In this appendix, we provide an example of the basis states used for the numerical

simulation of the LQME in a truncated space used in chapters 4 and 5. Theoretically,

the basis for a single site bosonic system can be large as it can accommodate an infinite

number of bosons. Now, the size of the Fock space for a system of N bosons in K

sites is [136]:
(N +K − 1)!

N !(K − 1)!
=
(N +K − 1

K − 1

)
. (A.1)

Numerical simulations are usually performed by limiting the maximum number of

bosons per site, which we denote by M. This limitation leads to a ‘truncation’ of the

system basis. For a single site system, it means:

|Site1〉 = {|0〉 , |1〉 , |2〉 ..... |M〉}. (A.2)

The size of the Fock space for a system of K sites with N bosons such that at most

M allowed per site (M < N) can be calculated [137]:

[ N
M+1

]

Σ
j=0

(−1)j
(N +K − 1− j(M + 1)

K − 1

)(K
j

)
. (A.3)
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Here and in the algorithm, [] denote the floor function. It is clear to see how M

reduces the size of the Fock space for the system. For example, given K=3 and N=4,

the size of the untruncated Fock space is 15 while introducing M = 3 results in a

size of 6. For sake of completeness, we explicitly write the algorithm of Ref. [62]

with corrected typographical errors present in the original text. Here, the occupation

vector is defined as nI = (n1, n2, ...., nK), for us as K = 3, we have nI = (n1, n2, n3).

Algorithm 1 Construction of ordered truncated basis

1: Inputs:
I = 1, K,N,M

2: Initialize:
n1 = ... = n[N/M ] = M,
n[N/M ]+1 = N −M ∗ [N/M ],
n[N/M ]+2 = .... = nK = 0
nI = (n1, n2, ..., 0)

3: 1 I = I + 1
4: if n1 > 0 then
5: δ = 0
6: if n1 < M then
7: δ = M − n1

8: n1 = M

9: Let i be the smallest site index for which ni < M and i > 1
10: ni = ni + 1, ni−1 = ni−1 − 1− δ
11: nI = (n1, n2, ..., 0)
12: goto 1

13: if n1 > 0 then
14: Let j be the smallest site index for which nj > 0 and j > 1
15: Let i be the smallest site index for which ni < M and i > j
16: If no such i exists goto 2
17: ni = ni + 1, ni−j = nj − 1
18: if (i− j − 1) > 0 then
19: ni−j−1 = ni−j−2 = ... = n1 = M

20: ni−j+1 = ni−j+2 = ... = ni−1 = 0
21: nI = (n1, n2, ...)
22: goto 1

23: 2 end

We follow the above algorithm and build up the basis for each N ranging from 0
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to Nmax, where Nmax = KM is the maximum allowed bosons for the system given a

specific K and M. Once the basis states are constructed, the next step is to assemble

all the other elements such as the Hamiltonian, creation and annihilation matrices for

each site which go into the LQME. To get the reduced density matrix of the system,

the LQME is integrated through the fourth order Runge-Kutta method outlined in

the next section.

A.2 Fourth order Runge-Kutta method

The fourth order Runge-Kutta method is used to numerically integrate differential

equation:
dρ

dt
=
ρn+1 − ρn

∆t
= f(ρn, tn) (A.4)

The Runge-Kutta algorithm breaks the interval, ∆t into four smaller intervals through

the mid-point method, such that more weight is assigned to the mid-points as follows:

ρn+1 − ρn =
1

6
(k1 + 2(k2 + k3) + k4) (A.5)

k1 = ∆tf(ρn, tn)

k2 = ∆tf(ρn +
1

2
∆t, tn +

1

2
k1)

k3 = ∆tf(ρn +
1

2
∆t, tn +

1

2
k2)

k4 = ∆tf(ρn + ∆t, tn + k3)

The application of the fourth-order Runge-Kutta to the LQME gives us the time evo-

lution of the reduced density matrix. The expectation value of the system operators

such as the local current and local occupation numbers can be calculated by taking

the trace of the system operator with the reduced density matrix. Furthermore, the

steady states values of the operator expectation value are extracted by taking the

long time limit.
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A.3 Third quantization formalism for the RQME

In this appendix, we show the step by step process to obtain the steady state corre-

lations from the third quantization formalism for the RQME. First, we diagonalize

the Q of Eq. (4.1):

Q = UΩU †. (A.6)

Here, the columns of U are the right eigenvectors of Q and Ω is a diagonal matrix

whose entries are the corresponding eigenvalues of Q. We also define λj =
√

Ωj,j.

For our system, with this U , we can transform the momentum and coordinate vectors

to the normal basis:

p′ = p.U q′ = q.U (A.7)

Hereon, ′ indicate vectors and operators in the normal basis. Now, according to

Ref. [65], for our coupled quantum oscillator system we need to solve the following

continuous Lyapunov equation:

XTZ + ZX = Y (A.8)

Solving Eq. (A.8) yields the matrix Z, whose elements are equivalent to the NESS

correlation functions Za,b
ij = 〈aibj〉, with a, b ∈ {p, q}. The local currents and occupa-

tion numbers can then be calculated from these correlation functions. XT and Y of

Eq. (A.8) are defined as:

XT =

(
Mq′p′

im
Ω
2

−13

2
0

)
(A.9)

and

Y =
1

2

(
Mq′q′

r + (Mq′q′

r )T 0

0 0

)
. (A.10)

Here, M are the bath matrices whose subscript im and r refer to imaginary and
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real part of those matrices. Following, Ref. [65], the bath matrices are:

Mq′q′
=

1

2
X ′L ⊗X ′Ldiag((1 + exp(

λj
TL

))ΓL(λj))

+
1

2
X ′R ⊗X ′Rdiag((1 + exp(

λj
TR

))ΓR(λj)) (A.11)

Mq′p′
=

ι

2
X ′L ⊗X ′Ldiag((

exp(λj/TL)− 1

λj
)ΓL(λj))

+
ι

2
X ′R ⊗X ′Rdiag((

exp(λj/TR)− 1

λj
)ΓR(λj)) (A.12)

A.4 Third quantization formalism for LQME

The Lindblad master equation considered in Ref. [64] is

∂ρ(T )

∂T
= L ρ(t) (A.13)

= i[ρ,H ] +
∑
µ

(2LµρL
†
µ − {L†µLµ, ρ}).

Here Lµ denotes the Lindblad operators. The generalized decomposition of H and

Lµ for the system shown in Fig. 3.1 are

H = c†.Hc,

Lµ = lµ.c+ kµ.c
†, (A.14)

where

H =


0 −t1 −t3
−t1 0 −t1
−t3 −t1 0

 (A.15)

encodes the information of the system parameters. c and c† are column vectors of the

creation and annihilation operators. lµ and kµ are column vectors of the coefficients.
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µ is the index over the reservoir terms. lµ and kµ for our system are given by

l1 =
(

0 0 0
)T

; k1 =
( √

γNL/2 0 0
)T

;

l2 =
( √

γ(NL + 1)/2 0 0
)T

; k2 =
(

0 0 0
)T

;

l3 =
(

0 0 0
)T

; k3 =
(

0 0
√
γNR/2

)T
;

l4 =
(

0 0
√
γ(NR + 1)/2

)T
; k4 =

(
0 0 0

)T
.

(A.16)

With those quantities, we can build the matrices M ,N , and L mentioned in Ref. [64].

For our systems, they have the following expressions:

M =


γ(NL + 1)/2 0 0

0 0 0

0 0 γ(NR + 1)/2

 . (A.17)

N =


γ(NL)/2 0 0

0 0 0

0 0 γ(NR)/2

 . (A.18)

L =


0 0 0

0 0 0

0 0 0

 . (A.19)

Here we assume γL = γR = γ.

The Lindbladian L may be written in terms of b, the transformation of

(a0, a1, a
′
0, a

′
1)
T

, where a0, a1, a
′
0, a

′
1 represent combinations of the creation and annihi-

lation operators c, c† and satisfy the almost commutation relations of Ref. [64] shown

explicitly in sec. (2.2.2). Here, X and Y are defined as:

X =
1

2

(
ιH̄ − N̄ + M −2ιK −L + LT

2ιK̄ − L̄ + L̄T −ιH −N + M̄

)
(A.20)
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and

Y =
1

2

(
−2ιK̄ − L̄− L̄T 2N

2NT 2ιK −L−LT

)
. (A.21)

According to Ref. [63], the continuous Lyapunov equation XTZ +ZX = Y in the

absence of any coherent pumping term can be simplified as

X̃Z̃ + Z̃X̃† = Ỹ , (A.22)

Where

X =

(
X̃ 0

0 X̃∗

)
, Y =

(
0 Ỹ

Ỹ 0

)
. (A.23)

For our system, using the previously defined M ,N , and L matrices in conjunction

with Eqs. (18) and (19) of Ref. [64], we can write X̃ andỸ as:

X̃ =
1

2


γ/2 −ιt1 −ιt3
−ιt1 0 −ιt1
−ιt3 −ιt1 γ/2

 . (A.24)

and

Ỹ =


γNL/2 0 0

0 0 0

0 0 γNR/2

 . (A.25)

Solving Eq. (A.22) yields the matrix Z̃, whose elements are equivalent to the correla-

tion functions Z̃lj = 〈c†jcl〉. The local currents and occupation numbers can then be

calculated from the correlation functions.
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