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Abstract 

SOLITON MATTER AS A MODEL OF DENSE NUCLEAR MATTER 

N. K. Glendenning 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

We employ the hybrid soliton model of the nucleon consisting of a topological meson 

field and deeply bound quarks to investigate the behavior of the quarks in soliton matter as a 

function of density. To organize the calculation, we place the solitons on a spatial lattice. The 

model suggests the transition of matter from a color insulator to a color conductor above a 

critical density of a few times normal nuclear density. 

*This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of 
High Energy and Nuclear Physics of the U. S. Department of Energy under Contract DE-AC03-76SF00098. 
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SOLITON MATTER AS A MODEL OF DENSE NUCLEAR MATTER 

N. K. Glendenning 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

A great deal of interest has focussed recently on solitons as representing non-perturbative 

solutions of QCD for baryons [1]. A number of authors have shown that at the 30 % level, soli­

tons resemble nucleons [2]. What we find particularly appealing in this development is that, 

having a Lagrangian that describes the internal structure of the nucleon (soliton), one can inves-

tigate interesting questions concerning how the internal structure changes when solitons are 

assembled to form dense matter, and how the properties of matter correspondingly change. 

Several of the more interesting questions concern the quark behavior in normal and in dense 

matter, such as the anomalous muon scattering on nuclei as compared to nucleons (EMC effect) 

[3] , and the onset of deconfinement. Of course we will not believe literally the predictions of 

the theory. It is in the large Nc-limit that QCD becomes equivalent to an effective field theory 

of mesons, and counting rules suggest that baryons may emerge as solitons [1]. We live in a 

three color world and I know of no criteria by which we may judge how far from the limit we 

are, aside from the empirical success at the 30 % level that has been claimed by a number of 

authors for soliton models of the nucleon. In any case I do not expect that our model of matter 

as consisting of solitons will rival the lattice gauge calculations for quantitative predictions of 

phase transitions. However, when a physical theory is very complex, as is the theory of strong 

interactions, it is always useful to have a model with which to form at least qualitative pictures 

of how the theory works. The model may suggest ways of probing nature that the exact theory, 

solved on large computers may not do. In this paper I will report on the start that several of us 

have made on such a program [4] . It is far from finished and there remain serious problems to 

be overcome so this is a progress report. 
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But before introducing our model of matter, I will recall for you some of the salient 

features of soliton models of the nucleon. First of all, what is a soliton? Briefly, it is a solution 

to a non-linear theory whose energy density has a finite spatial extent, and which is stable in 

the sense that if several soliton solutions are constructed in different regions of space and 

allowed to come into proximity so that they interact, after they have moved apart they are 

restored to their original form. 

It was Skyrme who first suggested that baryons might be understood as soliton solutions 

of a field theory having only mesons as· the fields [5] . How do baryons emerge from a theory 

that has only meson fields? I can't make that altogether convincing, but it is easy to see that an 

anomalous integer quantum number emerges, which Skyrme conjectured to be baryon number, 

and which Witten recently confirmed [1]. Skyrme studied a theory based on a scalar and triplet 

of pi mesons, constructing the two by two matrix, 

1 ( u + 11"3 i1l"1 + 11"2) 
U = -. = u(x) + ir • 1I"(x) f -111"1 + 11"2 u - 11"3 ... 

(1) 

and from this the quantity, 

L = u+a U po po (2) 

Skyrme constructed the Lagrangian, 

(3) 

The first term is an unfamiliar way of writing the more familiar meson part of the non-linear 

sigma model [6] . It turns out that there are no stable finite size soliton solutions for a theory 

possessing only the first term, and the second term was added to provide stability against col-

lapse of the solution. I want to draw attention to the fact that it is of fourth order in derivatives 

of the fields, and that a sixth order term or higher would also stabilize the solution. This term 

plays no other essential role. In particular the quantum number is unaffected by it. The reason 
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for drawing attention to this arbitrary form will emerge at the end of the paper. 

To show that there is a soliton solution, one makes the very peculiar ansatz that a solu-

tion of the form, 

iT • r8(r) 
Vo = e - - = cosO(r) + T • r sinO(r) (4) 

exists. That is, that the isospin components of the pion field point in the spatial radial direc-

tion, 

q = f,..cosO(r) 7r = r f,..sinO( r) (5) 

For that reason the solution is called the hedgehog. It is not my purpose to proceed to show 

that this is a solution. That can be done easily by calculating the canonical form of the energy 

from the Lagrangian, substituting the ansatz for the fields, and minimizing. This yields an equa-

tion for the chiral angle, O(r), which has a solution that smoothly connects the boundary values 

0(0) = -n7r 0(00) = 0 (6) 

With these bounary values, the energy is finite and can be seen to be localized in the vicinity of 

the origin where O(r) is non-vanishing. 

What I do want to draw attention to is that in addition to the Noether currents that 

correspond to the invariances of the Lagrangian, the theory possesses an anomalous current, 

(7) 

. where clJ.CX{J-y is the antisymmetric tensor in all indices. By construction this quantity is diver-

genceless, 

(8) 

and the charge, corresponding to the ansatz (5) and the boundary conditions (6) is 
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d'r Ilo(r) ~ ! [8(r) - ~ sin28(r) r 
o 

=n (9) 

This soliton solution has therefore a conserved quantity which is integer, and is associated with 

the non-trivial mapping of isospin space and 3-space represented by (4). Therefor B is called the 

topological charge, and it is what Skyrme conjectured to be baryon number. 

My purpose in reviewing this material was to introduce the conserved topological charge, 

which you see is associated with the'SU(2) character of the theory, and will carry over to other 

modifications of the theory. The Skyrmion as such is not interesting to us for the purpose set 

out in the beginning, because it has no quarks, and we want to see how the quarks begin to leak 

out of the baryons as' the density of matter is increased. This is perhaps relevant both to the 

deconfineinent phase transition as well· as to anomalous lepton' scattering Jrom nuclei (EMC 

effect). Therefor, we would like to have a soliton with quarks that are confined, but not through 

the artificial mechanism of an impervious bag. In the absence of a known soliton solution pos-
, " 

sessing true confinement, we opt for a model in which the quarks are deeply bound in a topo-

logical soliton field. The hybrid soliton model fills this requirement [7,8]. The hybrid soliton, 

like the Skyrmion, is based on the chiral sigma model, but now including'the fermion sector, 

which here are quarks. In the limit oflarge scalar meson mass, the Lagrangian is, 

(10) 

This consists of the first term 5>f (3) and in addition the Lagrangian of the quarks,with spinors 

q(x), which are Yukawa coupled to the scalar and pion fields. What Kahana et al [7] , and Birse 

and Banerjee [8] showed is that there is a solution in which the quarks are deeply bound to the 

topological soliton field of'the mesons, and for which the mass of the object is the nucleon 

mass. They were uncertain about the baryon charge of the object however. The solitoti carries 

, 
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its conserved topological charge, which has been identified with baryon number, while the three 

quarks carry a baryon charge. The authors of ref. [7] concluded that the hybrid soliton has B=2, 

for this reason. However, we shall show below how to identify the charge as B= 1. First however 

I need to tell you how the field equations that follow from (10) can be solved, in the mean field 

approximation. For the hedgehog configuration (5) there is one non-linear differential equation 

for the chiral angle 8(r) which is coupled to the Dirac equation for the quark spinors. The latter 

is, 

{i'Y.a• - m(cos8(r) + i'Y':: • t Sin8(r))} q(x) ~ 0 (11) 

where m = gf is the constituent quark mass. The Dirac equation has a solution of the form, 
1r 

( 
F(r) ) 

q(E.) = iu • r G(r) Iv > 
(12) 

where Iv> is a spin or eigenstate of the sum of spin and isospin, having eigenvalue zero, 

(~ + ~) Iv > = 0 (13) 

That such a peculiar coupling of spin and isospin occurs, follows from the coupling of the 

quarks to the hedgehog meson field in which the isospin components of the pion field point in 

the radial direction. The differential equations for the F and G are, 

- F' + m Fsin8(r) = ( E + m cos8(r» G 

G' + (1. + m sin8(r») G = ( E - m cos8(r» F 
r 

(14) 

We call the state (12) a positive parity state after the transformation of the large component. 

The state of opposite parity satisfies equations like (14) but with m _-m. The eigenstates (12) 

are triply (color) degenerate. 

I shall not write the equation for 8(r). Kahana et al solved the coupled equations numeri-

cally, with the boundary conditions (6), and they also found that a good representation for 8(r) 



is given by, 

{ 
1I"(r/Rs -1) 

8(r) = 0 

6 

(15) 

where we can call R the soliton size. It is found by minimizing the total energy of the soliton 
5 '. 

(quarks + meson fields). Of particular interest to us at this point is the behavior of the triply 
< ." :..' 

degenerate quark eigenvalues as a function of R . This is indicated schematically in Fig. 1. At 
5 .' .. 

this point we can discuss the baryon charge on the soliton. For large Rs' the 0+ state falls to the 

vicinity of -m. That is to say, the spectrum of Dirac states appears as the usual free states with 

a gap between m and -m. We shall consider the configuration in which the negative energy sea 

is completely occupied. The filled negative sea has by definition no baryon charge. The meson 

field however carries one unit of topological charge. Now as we shrink the soliton the 0+ state 

rises, even to positive energy for small enough R . In any case we add no additional quarks to 

the system. The same states throughout are occupied. Therefor the baryon number remains 

unchanged, and equal to one, the value of the topological charge .. 
-, .,.t .. 

Now we wish to assemble a large number of such solitons to form dense matter. You can 

appreciate on reflection that this poses on intractable problem as it stands. It is a many-body 

problem in which the quarks within the individual solitons are moving in interaction ""ith each 

other through the meson fields, while the solitons are moving about under the influence of the 

interaction of their constituent quarks with those of neighbouring soliton fields. We shail there-

for study a particular possible ground state configuration of matter, one in which the solitons 

are arranged on a lattice. The short-range repulsion between the solitons, (refer to Fig. 1 to see 

how the valence quark level rises as the soliton is squeezed), makes this a plausible configura­

tion. Since t~e valence quarks are deeply bound, by of the order of their constituent mass, they 

are relativistic. We have therefor a relativistic solid state problem. 

As an initial orientation on what to expect, we solved for the Dirac equation, a problem 

that had been solved long ago for the Schroedinger equation by Kronig and Penny, namely the 
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eigenvalue spectrum for fermions in a periodic square well potential in one-dimension. For the 

potential shown in Fig. 2, the analytic solution is given by, 

Q2 _ K2 + V2 
2 QK sinh 2 Qb sin 2 Ka + cosh 2 Qb cos 2 Ka = cos 2k(a + b) (16) 

where, 

(17) 

and k is the so-called crystal momentum. In the limit e _ m, (16) goes over to the non-

relativistic formula of Kronig and Penny. The allowed values of the particle energy are those 

for which the left side does not exceed in absolute value, unity, so that the spectrum has the 

well known band structure. A typical spectrum as a function of the spacing between the attrac-

tive regions is shown in Fig. 2. The parameters of the problem are chosen so that the fermions 

become relativistic toward the top of the well. As in the non-relativistic case, the levels of the 

isolated wells, spread out into bands with each well contributing a level to each band. For close 

spacing, the bands tend to touch. The band structure persists into the positive energy spectrum 

above the top of the potential, with the gaps tending toward zero as the energy increases. Rela-

tivity complicated the problem, but it did not introduce any qualitative changes. 

We turn now to the solution of the problem at hand, the spectrum of quarks in soliton 

crystal matter. The hedgehog meson configurations are centered at lattice points thus generat-

ing a periodic field in which the quarks move. From solid state physics we know that the solu-

tion of the Hamiltonian for a periodic system must obey Bloch's theorem. Therefor the quark 

spinor must be of the form, 

(18) 

where k is called the crystal momentum and uk(r) is a periodic spin or function having the 

period of the lattice. That is to say, the solutions are modulated plane waves. 
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To solve (14) on the lattice we employ the Wigner-Seitz approximation. Thus the actual 

problem is replaced by a spherically symmetric one which is solved for k=O, which is the 

ground state of the band. For convenience we shall make an ansatz for the behavior of the 

chiral angle, similar in spirit to Kahana et al. [7]. Denote by Rs the equilibrium radius of the 

isolated soliton. When the lattice spacing, 2R , between solitons exceeds the diameter of a soli-

ton, 

{ 
1r(r/Rs -1) 

8(r) = 0 

Otherwise, 

8(r) = 1r(r/R - 1) 

R> Rs (19a) 

(19b) 

For the ground state of the band, the periodicity of the Schroedinger wave function required by 

the Bloch theorem imposes the condition that it have zero slope at the Wigner-Seitz boundary. 

This requirement translates in the case of the Dirac equation to 

F'(R) = 0 G(R) = 0 (20) 

i.e. the large component has zero slope and the small component, zero value at the boundary, 

as follows from (14) and (19). At the origin, it is evident from (14) that G(O)=O. This in turn 

requires that F(O)=O. Therefor the boundary conditions 

G(O) = G(R) = 0 (21) 

ensure that the Bloch theorem is satisfied, i.e. that both F and G are periodic. We solve the 

coupled Dirac equations (14) with the boundary condition in the Wigner-Seitz cell (21), by 

numerical integration. The eigenvalues for the 0+,- states are shown in fig 3. The lower of these 

two belongs to the filled sea of quarks, and the other is the valence orbital. This orbital as 

would be expected from the Schrodinger theory, is lowered in energy from the isolated soliton 

eigenvalue over a certain range of crystal spacings, and then it rises due to the compression of 

the solitons by their neighbours. The lower eigenvalue is increased for all crystal spacings, 
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which behavior can be traced to the small component of the Dirac spinor when the eigenvalue 

is close to -m. 

The Wigner-Seitz approximation allows us to calculate the eigenvalue of the ground state 

of each band (k=O), Denote such an eigenvalue for a particular band by eo' We need to estimate 

the band width .. In the Schroedinger theory this is done by calculating follows the expectation 

value of the energy of the state, k, which is eo + k2/2. One could do the same in the Dirac case, 

and find t\{ = yea + k2 with k= 0 to 7r/2R. Alternately we are motivated by the tight binding 

approximation of solid state physics. We calculate the eigenvalue for isolated solitons, ie with 

exponentially decaying boundary condition, but with chiral field given by (21). The band width 

is then estimated as twice the difference between this energy and that computed with the crystal 

boundary condition; because the band should be spread symmetrically about the unperturbed 
<. 

case. For the valence levels the Wigner-Seitz approximation locates the bottom of the band. 

However for the levels belonging to the sea, it locates the top of the band, just as the sea eigen­

values in the free case are - v'm2 + k2• 

The band structure is shown in fig 3 by the shaded areas and the solid lines are the 

Wigner-Seitzeigenvalues (k=O). Several points deserve comment. We see a lowering of the 

valence quark eigenvalue by about 16 Me V at a lattice spacing 2R = 2.4S fm. For smaller spac-

ing the level rises steeply and the top of the band intersects the continuum at a spacing of about 

1 fm, which corresponds to a density of 7 times normal nuclear density (.lS/fm3). Since the 

occupied triply degenerate levels of the isolated solitons are filled, so too the occupied bands of 

the crystal are filled, and it is an insulator. However at that density where the top of an occu-

pied band passes into the continuum, matter ceases to be an insulator and becomes increasingly 

a color and electric conductor as the density is further increased. 

The above behavior is suggestive of quark deconfinement, although in this model the 

quarks are not truly confined but only deeply bound in the isolated state. The wave functions 

of the sea and valence orbitals are shown for a typical lattice spacing in fig. 4, illustrating their 
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periodicity in the crystal. In fig. 5, we compare the quark distribution in soliton matter of 

several densities, illustrating the increasing concentration at the cell boundary for increasing 

density. For the pion decay constant we employ the experimental value f =93 MeV, and a cou-
". 

pIing constant g=7.55, which yields a soliton mass of 966 MeV, close enough to the nucleon 

mass for our purpose. 

During the course of this work another paper has been published which investigated Skyr-

mion matter in a crystal lattice approximation [9] . This model however does not possess 

quarks. Nevertheless, as these authors point out, the asymptotic behavior of the equation of 

state is such that the energy density behaves like p4/3, just as a relativistic gas of Fermions. This 

is also the behavior in the model studied here, since the quarks pass into the continuum states 

of dense matter. We point out however, that for the Skyrmion, this behavior is an artifact of 

the form chosen to stabilize the Skyrmion, namely a term of fourth order in derivatives and 

hence in k -- pl/3. This is the lowest order stabilizing term, and can be viewed as the first in a 

series, the last of which will dominate the momentum dependence of the equation of state at 

high density. 

In summary, we have investigated the behavior of quarks in soliton matter, using the 

hybrid model consisting of a topological meson field and <ieeply bound quarks. To organize the 

calculation, we placed the solitons in a crystal lattice. This trial configuration is justified at high 

density because of the repulsion of the topological solitons. At a certain critical density, the top 

of the valence quark band becomes degenerate with the Fermi sea, meaning that th'e quarks in 

those states are no longer bound to a lattice site. At still higher densities, additional levels of the 

band rise into the continuum, suggesting that color conductivity is a gradual function of 

compression. 
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Figure 1. Schematic of quark eigenvalues in 

topological meson field as a function of soliton 
.. 

radius. (adapted from [7]) 

.' 

Figure 2. Energy level band structure of rela-

tivistic particles in a one-dimensional square 

well lattice as a function of spacing between the 

attractive regions. This is a graphical represen-

tation of the analytic solution. , 
E 
~ 
\,L) 

Figure 3. Eigenvalues of the valance (0+) and 

sea (0-) orbitals of quarks in soliton matter as a 

function of Wigner-Seitz cell radius, R. The 

band of levels that develops as the spacing 

decreases is shown by the shaded region. In the 

upper right comer, an enlargement of the region 

indicated is shown. The eigenvalue of a free 

soliton is indicated by the arrow. 
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Figure 4. Upper (F) and lower (G) components 

of the Dirac spinor are shown for the valence 

and sea orbitals for a cell radius of 0.6 fm. 

Figure 5. Probability distribution for the 

valence quarks for several cell radii, illustrating 

the increasing concentration of quarks at the· 

cell boundary as the compression of soliton 

matter increases. 
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