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"Simplified Earthquake Analysis of Buildings Including Site Effects”

By
James D. Hart and Edward L. Wilson

Abstract

The September 19, 1985 Mexico City earthquake clearly illustrated the potentially
dangerous modifying effect that soft soil profiles can have on the earthquake motions as
they propagate from the bedrock level to the ground surface, and the importance of consid-
ering this phenomenon in the seismic analysis of building systems. The use of simple

methods for the earthquake analysis of buildings founded on soft soil sites is investigated.

The topic of site response analysis is addressed including the development and imple-
mentation of efficient time domain numerical procedures which are incorporated into a
one-dimensional site response analysis computer program, WAVES. A soft clay site in
downtown Mexico City is modeled and analyzed with WAVES for various base input
records and the computed results are compared to data recorded during the September

1985 earthquake.

An overview of conventional building response analysis procedures is followed by a
discussion of the use of simple harmonic earthquake motions to represent the "near har-
monic” motions frequently recorded at the surface of soft soil profiles. A study comparing
the analytical response of a multi-degree-of-freedom representation of a two-dimensional
frame system with that of an equivalent single-degree-of-freedom representation for har-
monic earthquake loading is presented and the extension of single-degree-of-freedom

analysis to general two and three-dimensional systems is discussed.

A brief discussion of various soil-structure interaction analysis methods is followed by
a presentation of the free-field formulation of the equations of motion for soil-structure sys-
tems. Simplified procedures which include the effects of site amplification and foundation

flexibility, are suggested and applied in the investigation of a simple soil-structure s;ystem.
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CHAPTER 1

INTRODUCTION

The September 19, 1985 Mexico City earthquake, which had a Richter magnitude of
8.1 and a Modified Mercalli Intensity of IX, was one of the most devastating ground
motions ever recorded. The acceleration record from the SCT station, which is located on
a soft soil site in downtown Mexico City, had a peak ground acceleration of 0.17g and a
duration of 180 seconds. The SCT ground motions were dominated by near harmonic
vibration at a period of approximately 2.0 seconds with maximum acceleration amplitudes
three to five times larger than the maximum accelerations recorded at nearby "rock” sites.
Structures damaged in the downtown area included structures with vibration periods equal
to or less then the 2.0 second site period. Structures with vibration periods near 2.0
seconds were damaged due to resonant response while structures with periods less than
approximately 0.5 seconds were damaged because they did not have sufficient strength to
withstand the sequence of relatively long period acceleration pulses. The devastation
caused by the 1985 Mexico City earthquake clearly illustrates the influence of site effects

on the seismic response of buildings.

1.1. Research Objectives

In order to design earthquake resistant buildings, engineers and designers require
detailed information related to the magnitude and distribution of seismic forces and defor-
mations induced by earthquake loading. Almost all building codes offer the static method
of analysis wherein the dynamic lateral forces generated by earthquake ground motions are
replaced by equivalent static forces. When a more accurate evaluation of seismic loading
and structural response is required, modal analysis techniques or time history analyses for
hypothetical earthquakes can be implemented. Nonlinear analysis methods can also be

utilized, but are usually reserved for very important, expensive or complicated structures.



The first step in conventional earthquake analysis of structures, which is common to
all analysis methods, is the discretization of the real structure to an equivalent mathemati-
cal model. Typically, the beams, columns and walls of the building are idealized by line
elements with equivalent mechanical properties and the mass of the building is lumped at
the story levels where horizontal dynamic degrees-of-freedom (DOF’s) are defined. The
resulting structural model can then be analyzed as a dynamic force resisting system, and
the response of the model in terms of displacements and stresses can be used to evaluate a
structural design. The fundamental oversight in this procedure is that the earthquake
motions effect not only the structure, but also the site upon which the structure is founded.
In other words, the structure and the site form a combined dynamic system which responds

to the earthquake motions.

It is common to neglect the effect of foundation flexibility for very stiff sites, but
softer (more flexible) sites introduce foundation flexibility which can increase the effective
natural period of the building and significantly modify the lateral force requirements.
Additionally, neglecting the seismic energy dissipated by the site can give rise to larger
lateral forces, base shears and overturning moments resulting in overly conservative seismic
designs. Neglecting site effects is not always conservative; many of the most significant
earthquakes have demonstrated that the amplification of seismic waves through a soil pro-
file can have disastrous effects on buildings. In any case, it is clear that earthquake
analysis procedures which can include site effects, even in an approximate sense, can lead
to more realistic and safer design of building structures with a very small increase in com-

putational effort.

The evolution of advanced structural analysis software and the increased availability
of mini and micro computers has greatly enhanced the ability of structural design firms to
accurately determine the magnitude and distribution of forces and deformations inducgd
by grdund motions and hence, produce more efficient and robust earthquake resistant

designs. Sophisticated linear structural analysis programs [14,54,73,77] are routinely imple-



mented to produce designs of even irregular, three-dimensional structures which satisfy
building code requirements. Sophisticated nonlinear analysis programs [1,17,19,45] which
can be used to model the distribution of damage in structures under extreme earthquake

loadings, are also available as a means to evaluate seismic designs.

Design offices must often attempt to strike a balance between the importance, size
and complexity of the structure and the level of sophistication and cost of the analysis for
seismic forces and deformations. The lack of modern technology transfer and easy-to-use
nonlinear analysis computer programs has resulted in an extremely limited application of
nonlinear procedures in conventional building design practice. However, conventional
linear procedures are of no use in estimating the member ductility demands and the distri-
bution of damage throughout the structure as a result of severe earthquake ground
motions. Thus, there is an immediate requirement, at least for practical design purposes,
to adopt simple and approximate nonlinear analysis methods which permit rapid earth-
quake response analysis of even complex structures with reasonable accuracy. Simplified
nonlinear analysis procedures, which could provide a means to efficiently evaluate the
earthquake resistance of various structural designs, would prove to be a valuable tool for
earthquake engineers and designers. Moreover, the availability of such simple procedures
could provide an important step toward a better understanding and wider use of nonlinear
analysis.

The work presented in this report was undertaken in consideration of these observa-
tions regarding the effect of the site on the earthquake response of structures and the need
for simplified analysis procedures for evaluating the seismic design of buildings. The pri-

mary objectives of this report are to:

1) Present simple, efficient and easy-to-use procedures for evaluating the earthquake

response of horizontally layered soil profiles.

2) Present simplified procedures for evaluating the seismic response and performance of

building structures.



3) Review various methods of soil-structure interaction analysis and present simplified pro-
cedures for analyzing the earthquake response of building structures including site

effects.

The emphasis of the work presented herein is on the use of simple, physical modeling
procedures which can capture the essential features of the response of soil profiles, building

structures and interacting soil-structure systems.

1.1.1. Site Response Analysis

Investigations of major destructive earthquakes (Caracus 1967, Managua 1972, Mex-
ico City 1985) indicate that perhaps the single most important aspect of the response of
soil-structure systems is the amplifying effect that the soil profile can have on the bedrock
motions [9,16,33,60,61,63]. In cases where the predominant period of the bedrock motion
roughly matches the fundamental site period, severe amplification of the earthquake waves
between the bedrock and the ground surface can be expected. If, in addition, the funda-
mental structural period matches the fundamental site period, potentially devastating

resonant motions can occur.

Extensive research has been conducted regarding the earthquake response of soil pro-
files. Several computer programs for evaluating the effect of local soil conditions on the
ground surface response are presently available. LAYER [53] is a finite elemenf program
for linear convolution and deconvolution analysis of one-dimensional soil deposits.
SHAKE [59] is a widely used program which implements frequency domain analysis and
equivalent linear techniques to compute the one-dimensional earthquake response of soil
profiles. QUAD4 [26] evaluates the two-dimensional seismic response of soil deposits
using a variable damping finite element procedure and equivalent linear iterative analysis.
LUSH2 (39] is a two-dimensional finite element program which utilizes frequency domain
analysis and equivalent linear iteration to compute the earthquake response of soil systems.
CHARSOIL [65] implements hysteretic soil elements and applies the method of characteris-

tics for computing one-dimensional site response. MASH [42] utilizes hystéretﬁ finite



elements and time domain integration to compute the earthquake response of one-

dimensional soil profiles.

These programs are all based on the assumption that the response of a soil deposit is
dominated by the upward propagation of shear waves from the underlying bedrock.
Analytical procedures based on shear wave propagation which account for the nonlinear
behavior of soils have been shown to yield results in reasonable agreement with field obser-

vations in many cases.

1.1.2. Building Response Analysis

The first step in the earthquake analysis of building structures consists of discretizing
the real structure to an equivalent multi-degree-of-freedom (MDOF) mathematical model,
which in the most general case is a three-dimensional model, but may consist of one or
more two-dimensional representations. The result of the discretization is an MDOF build-
ing model which must be analyzed for seismic fofces and deformations, using either static
or dynamic analysis methods. Over the past 20 years, extensive research has been con-
ducted regarding the analytical response of structural systems to static and dynamic load-
ings. Numerous structural analysis programs have been developed and are routinely imple-
mented in structural design practice. SAP90 [54], DRAIN-2DX [1], FACTS [17] and
ANSR [45] are a few examples of general purpose structural analysis programs which are

presently available.

For practical design purposes, it is often prudent to employ approximate analysis
methods which can efficiently evaluate structural response to earthquake ground motions
with reasonable accuracy. ETABS [14,77] is a computer program for the simplified linear
analysis of three-dimensional frame and shear wall buildings subjected to equivalent static
or dynamic earthquake loads. The building is idealized by a system of independent frame
and shear wall substructures interconnected by rigid floor diaphragms. The program is an
efficient tool based on physically reasonable simplifications that can model the essential

behavior of three-dimensional structural systems. ETABS provides an excellent exémple of



a simplified structural analysis procedure which produces a good estimate of the distribu-

tions of force and deformation in complex three-dimensional buildings.

Because earthquake ground motions tend to strongly excite only the lowest modes of
structural vibration, reasonable approximations of the linear earthquake response of MDOF
structures can be obtained by carrying out the analysis for only one or a few modal coordi-
nates [11]. The use of load dependent Ritz vectors for coordinate reduction can yield more
accurate results than the use of the same number of exact mode shapes, with a fraction of
the computational effort [37]. In any case, formal coordinate reduction methods using
either the exact mode shapes or derived Ritz vectors can lead to very efficient and accurate

approximations of the earthquake response of linear MDOF structures.

Procedures for coordinate reduction of MDOF systems to equivalent single-degree-of-
freedom (SDOF) approximations for use in nonlinear response analysis have also been
developed [8]. A good deal of research related to SDOF representations of regular struc-
tures [56,58], irregular structures [S5], and torsionally coupled structural systems [35,57] for
~ nonlinear response analysis has been conducted. The essential features of MDOF to SDOF
reduction for nonlinear analysis are the assumptions that the vibrational response of the
MDOF system is dominated by one vibration shape and that the nonlinear resistance of the
MDOF system can be represented by a simple hysteretic resistance function. Time history
earthquake response of the resulting SDOF system can be used to estimate the MDOF
response or alternately, inelastic response spectrum analysis can be implemented to estimate

the response maxima.

The use of simplified procedures to predict the linear or nonlinear earthquake
response analysis of MDOF systems could provide a useful means of evaluating various
preliminary seismic designs. However, in order to be of use to engineers and designers,
simplified procedures must be improved and their correlation with the results of MDOF

response analysis must be evaluated.



1.1.3. Soil-Structure Interaction Analysis

Soil-structure interaction (SSI) is one of the most widely studied phenomena in earth-
quake engineering. It is important because the vibrational behavior of structures during
earthquakes can be influenced significantly by the properties of the soil profile upon which
they are founded and the feedback mechanisms that exist between the soil and the struc-

ture.

Extensive reviews of various SSI analysis methods are presented in [6] and [41]. SSI
analysis methods have been developed to account for rocking behavior [67,70], torsional
effects [4,69], different support motions [11], nonlinear behavior [6] and many other com-
plex phenomena. Various substructure methods [21], hybrid methods [20], and volume
methods [40] have been implemented for one, two and three-dimensional analysis using

finite element and continuum based procedures.

SSI solution procedures are commonly carried out in the frequency domain. The pri-
mary reason for the use of frequency domain analysis is that it permits the use of fre-
quency dependent impedance coefficients and frequency dependent radiation boundaries at
the terminus of the soil model. As an example, the program SASSI [40] implements a sys-
tem of SSI analysis in the frequency domain following the flexible volume formulation. It
uses frequency dependent radiation boundaries and complex stiffness coefficients to
account for element damping. LUSH [39] and FLUSH [38] are other examples of SSI pro-

grams which utilize frequency domain analysis.

The primary disadvantages of frequency domain analysis are that it cannot solve true
nonlinear soil and structure problems and it is computationally inefficient for the solution
of three-dimensional problems. Efficient time domain procedures for SSI analysis have
been developed [6]. These procedures can be utilized for the solution of nonlinear vibra-
tion problems and are especially applicable for problems with local nonlinearities at the
foundaﬁon level such as structural uplift or soil nonlinearity near the soil-structure inter-

face.
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Even though numerous methods ére available for SSI analysis, they are typically only
implemented for very important structures such as dams or nuclear power plants. The
complex nature of the modeling and formulation of SSI analysis problems and the prohibi-
tive costs associated with such analyses are the primary reasons why SSI analyses are not
routinely implemented in seismic analysis for design of typical building structures. How-
ever, simplified procedures, such as‘ those presented in ATC-03-06 [3], which reflect the
essential characteristics of the response of the soil-structure system, can easily be imple-

mented in practice.

1.2. Organization of Text

The text of this report is divided into five chapters. The contents of the various

chapters are outlined below.

Chapter 1 serves as an introduction and outlines the research objectives of this work.
A brief introduction and literature review on the topics of site amplification analysis, sim-

plified building analysis, and soil-structure interaction are also presented in this chapter.

Chapter 2 deals with the topic of site amplification analysis. Frequency domain pro-
cedures are reviewed and various time domain procedures are developed and implemented

in various examples.

In Chapter 3, the topic of simplified building analysis is presented. Linear analysis
methods are discussed and nonlinear analysis methods for MDOF and SDOF systems are
presented. A comparison of the response of a MDOF frame system and an equivalent
SDOF representation subjected to harmonic base motion is conducted. The extension of
simplified SDOF analysis procedures to other two and three-dimensional systems is also
presented. Methods of design evaluation based on structural response to earthquakes

represented as harmonic motion are also discussed.

Chapter 4 reviews various methods of soil-structure interaction analysis. Simplified
soil-structure interaction analysis procedures, which account for the most important interac-

tion effects, are discussed and demonstrated for a simple soil-structure system.



Chapter 5 provides a summary of the results from previous chapters and presents con-

clusions and recommendations based on these results.
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CHAPTER 2

SITE RESPONSE ANALYSIS

As discussed in Chapter 1, earthquake analyses of building structures which include

site effects, even in an approximate sense, can lead to more realistic, efficient and safer

earthquake resistant designs. Perhaps the most important consideration is the amplifying

effect that the site can have on the earthquake motions. This consideration is reflected in

many building codes which modify the lateral design forces based on a knowledge of the

fundamental period of the site. Site effects can be investigated more thoroughly by imple-

menting site response analysis procedures. The basic idea behind site response analysis is

outlined as follows;

1)

2)

3)

Determine the dynamic properties (mass, stiffness and damping) of the soil deposit.
Site boring logs and the results of geophysical tests together with empirical relation-
ships [22,28,62] developed for various soil types can be used to determine the mass
properties and the strain dependent shear moduli and damping ratios of the soil
layers. Ambient site vibration tests can also be used to determine the natural vibra-

tion frequencies of a site.

Based on variables such as distance from causative faults and expected earthquake
magnitudes, determine the characteristics of the design motions likely to develop in
the base rock underlying the site. Important base motion characteristics are the
earthquake magnitude, duration, effective peak acceleration and frequency content.
Once these (and other) characteristics are established, design motions can be selected
from previously record;ad earthquake accelerograms or from artificial earthquakes

which are compatible with a given target spectrum.

The analytical response of the soil deposit to various base rock motions can then be

computed using any of the various site response analysis methods.

In this chapter, frequency domain procedures for site response analysis are reviewed and



11

simplified time domain methods are introduced and applied to the analysis of an example

soil profile.

2.1. Review of Frequency Domain Analysis

The basic object of site response analysis is to obtain an estimate of the motions at or
near the surface of a soil profile resulting from a given base rock motion. Regardless of
the analysis procedure implemented, one of the most important considerations is the
discretization of the site into an appropriate mathematical model. The most general site
model is a three-dimensional representation. However, simpler two-dimensional or even

one-dimensional models can often be utilized to approximate the subsurface conditions.

Frequency domain procedures obtain the response of the site model by assuming that
the input and output motions are the summation of harmonic motions which are related
through a frequency domain transfer function. Details regarding the development and
implementation of complex analysis are presented in [39], [S9] and [78]. Only a qualita-

tive discussion will be presented herein.

In the most basic form, the method of complex analysis assumes that the earthquake
loading, expressed here as a vector R(t), is a harmonic function of frequency w;

R(t) = R(w) eV (2.1)
where the amplitude vector l_l(w) may be complex. This assumption implies that the
response (which may be a vector) is also harmonic;

U(t) = U(w) ele? (2.2)
where the response amplitude vector U(w) is also, in general, complex. The amplitudes of
the harmonic input and output are related through the frequency domain equations of
motion;

() U(0) = R(w) (2.3)
where f(w) is the complex stiffness or impedance matrix of the finite element model, which

includes the resistance due to inertial, viscous and static forces. The response amplitude
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I_J(m) can be obtained as a function of w using the complex frequency response function
H(w);

U(w) = H(v) R(w) (2.4)
The complex frequency response function is also called the compliance matrix or the com-

plex flexibility matrix and is equal to the inverse of the complex stiffness matrix;

H(o) = [I(w)]™ (2.5)
Once the vector of response amplitudes is determined, it can be used to generate the time

history of the response vector U(t).

Frequency domain analysis relies on the use of Fourier transformation and inverse
Fourier transformation to move from the time domain to the frequency domain and back.
The essential operations of response analysis in the frequency domain are outlined as fol-

lows:

1)  Obtain the Fourier transform of the earthquake load vector:
R(w)= [ R(t)e(%dt (2.6)

2) Based on the mass, stiffness and damping matrices of the site model, obtain the

impedance matrix of the system, f(w).
3)  Obtain the compliance matrix of the system:
H(w) = [K(w)]™ (2.5)
4) Obtain the vector of response amplitudes from the Fourier transform of the earth-
quake load vector and the compliance matrix:
ﬁ(m) = ﬁ(w) l_l(m) (2.4)

5) Transform the response amplitude vector to the time domain using the inverse

Fourier transform:

UG = } U(w)e™Vdw e
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Numerical implementation of frequency domain analysis requires the use of discrete
rather than continuous Fourier analysis and is usually accomplished using efficient Fast

Fourier Transform (FFT) algorithms [12].

2.2. Time Domain Procedures

As mentioned in previous sections, the ground motions developed near the surface of
a soil deposit during an earthquake can be attributed primarily to the upward propagation
of shear waves from an underlying rock formation. If it is assumed that the soil profile
consists of horizontal layers, then the lateral extent of the soil layers has no influence on
the shear wave propagation and the soil deposit may be considered as a one-dimensional
shear beam system. Clearly, the use of a one-dimensional site model is not applicable for
sites with two or three-dimensional subsurface geometries, but for practical engineering
analysis, one-dimensional site models can provide reasonable results which reflect the
essential character of the site response. Moreover, the use of even the simplest site ideali-
zation to estimate the earthquake response is an improvement over completely neglecting

site effects.

This section presents various time domain numerical procedures for the earthquake
response analysis of soil deposits modeled as one-dimensional shear beam finite element
systems. All of the procedures presented herein have been developed as Fortran subrou-
tines and are available in the site response analysis program, WAVES. The primary
advantages of WAVES over previously developed site response analysis programs are; 1)
the free-field input format is very easy-to-use, 2) it is extremely computationally efficient,
3) it combines linear, equivalent linear and nonlinear analysis options in one package, 4) it
performs energy balance computations as a means to investigate the distribution of earth-
quake energy in the soil profile, and 5) it can be used in direct conjunction with structural
analysis programs. The user manual for the WAVES program can be found in Appendix
C.
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In order to model a horizontally layered soil deposit, it must first be discretized into
an equivalent shear beam finite element system. Figure 2.1 shows a horizontally stratified
soil deposit, the corresponding finite element discretization and a physically analogous
lumped mass, spring system. Before the details of the numerical procedures are discussed,
the dynamic property matrices and the equilibrium equations of the finite element system

(which are common to all of the analysis methods) must be developed.

Element Shape Functions: Utilizing a finite element formulation, each layer or sublayer of
the soil profile is replaced by an element of unit cross sectional area (Figure 2.2) for which
the shape functions N(z) are assumed to be linear for unit values of the nodal displace-
ments y; and uy:
y=1,u=0:N(2)= (1—{{—)
wy=0,u4=1:N;@-= (ff)

where z is the element coordinate and H is the element thickness. This displacement pat-
tern corresponds to pure (constant) shear deformation. Once the element shape functions

have been established, the displacement within an element can be interpolated based on

the nodal displacements:

z z u. .
uz=[1——— ——-][‘]=Nu (2.8)
@ =10 GP] |

The shear strain within each element can likewise be established from the nodal displace-

ments:

e WO = NN U I Y B SR 2.9
where B is the strain-displacement transformation matrix.
Element and Global Stiffness Matrices: Application of the virtual displacements principal

leads to the relationship between nodal forces and nodal displacements, i.e. the layer ele-

ment stiffness matrix, k;:
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H 1 -1 ]
- [RT -G [
kl—_{B Gde-Hl_1 1] (2.10)
where G is the element shear modulus. Using direct stiffness assembly the layer element

stiffness matrices are added into the global stiffness matrix:

#layers
K= 2 Kk (2.11)

where Z is an assembly operator. It should be noted that K is a tri-diagonal matrix with a
half-bandwidth of two which enables the use of an extremely efficient numerical solution

scheme.

Element and Global Mass Matrices: It is possible to formally develop the layer element
mass matrix using the principal of virtual displacements. However, such an approach
would result in a matrix with the same coupling properties as the stiffness matrix. If a phy-
sical lumped mass approximation is used, the element mass matrix is diagonal resulting in
a slight reduction in accuracy and a considerable savings in computer storage and time. In

this formulation, one-half of the element mass is lumped at each node to obtain:

(2.12)

where p is the mass density of the layer element. The global mass matrix of the system is
generated by assembling the mass matrices of each layer element:

#layers
M= l§1 m; (213)

Element and Global Damping Matrices: Since the exact nature of damping forces on an
underdamped physical system is not well understood, and since the effect of these forces on
the transient response is generally small, a simplifying assumption regarding the nature of
these forces is justified. For most structural engineering applications, it is common to
assume that the damping matrix is proportional to both the mass and stiffness matrices
(proportional damping). Application of this assumption at the element level results in the

following form of the layer element damping matrix:
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¢q=om+ Bk (2.14)
Because most of the experimental information regarding damping has been related to the
frequencies and mode shapes of the vibrating system, it is natural to determine the con-
stants a and B for each element based on a knowledge of the element damping ratio &,
and the frequencies of the system. Two approaches for determining the constants a and B
will be presented herein; the first uses a single control frequency and the second uses two

control frequencies.

The determination of a and B based on a knowledge of the damping ratio £ and a
single vibration frequency w is termed equivalent modal damping [72]. It can be shown
that the modal damping ratio §; for mode number i is given in terms of the constants o

and B by:

_ @«  Bo :
&= 20, + (2.15)

where w; is the frequency of mode i. For given values of « and B, the frequency " which

yields a minimum value of damping ratio ¢ is given by :

o = ( % ) % (2.16)
If the minimum damping ratio ¢ and the frequency @  are given, the damping coeffi-

cients a and B are calculated from the following equations:

a=§w (2.17)
B =L (2.18)
(O]

The modal damping expression can now be rewritten as:

el e £ 2.19
El ( (l)i w‘ ) 2 ( ¢ )
or in terms of period as:

L S W
G=(=+ )5 o

1
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which is represented graphically in Figure 2.3. It is most common to select « and B based
on the fundamental frequency of the system, which insures that all of the higher frequen-

cies are more heavily damped than the fundamental frequency.

Determination of « and B based on a knowledge of a damping ratio ¢* and two fre-
quencies is termed damping with two mode control. Assuming the damping ratio is the

same in modes i and j yields the following expressions for a and B :

(o5+ (nj) ’
__2&
e (2.22)

This relationship between damping ratio and frequency is shown in Figure 2.4. It is
observed that for frequencies between w; and wj, the damping ratio is less than ¢ while for

frequencies outside of this range, larger damping ratios are obtained.

Once the element damping matrices have been determined, the global damping

matrix can be assembled:

= 2 2.23

AL (2.23)

Note that C is also a tri-diagonal matrix with a half-bandwidth of two. It is important to
note that because each soil layer element in the finite element mesh can have a different
damping ratio, the global damping matrix assembled from the proportional element damp-

ing matrices is, in general, nonproportional.

Dynamic Equilibrium Equations: Using the ﬁﬁite element formulation, the soil profile is
first discretized into layer elements, each of which is completely defined by a thickness H,
shear modulus G, mass density p and damping ratio £&. The element property matrices are
then assembled into the global property matrices, which can be used in the dynamic equili;

brium equations for the site model:

M U(t) + C U(t) + K U(t) = R() (229
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U(t) = vector of relative nodal accelerations
U(t) = vector of relative nodal velocities
U(t) = vector of relative nodal displacements
M = global mass matrix

C = global damping matrix

K = global stiffness matrix

R(t) = earthquake load vector = — M1iig(t)
1 = unity vector

ug(t) = base acceleration

The primary advantage of this discrete formulation is that the dynamic equilibrium of the soil profile
is expressed as a set of ordinary differential equations rather than the partial differential equation re-
quired to describe the continuous profile model. The dynamic equilibrium equations can be solved
numerically by discretizing them in the time domain with the exact solution U(t), U(t) and U(t) ap-

proximated by U,, I:It and ﬁt, respectively.

2.2.1. Linear Analysis

For linear systems, the solution of the dynamic equilibrium equations can be obtained
in two ways; the mode superposition method or by direct integration procedures. Because
the standard mode superposition method is applicable only to proportionally damped sys-

tems, the discussion herein focuses on direct integration techniques.

The basic idea behind direct integration is to begin with the known initial conditions
of motion and to march forward in time computing solution states at discrete time intervals
(hence the term step-by-step integration). References [2], [5], and [24] discuss the accu-
racy and stability of various numerical integration schemes.

The integration method employed herein is the Newmark 8 method [47] with modifi-

cations by Wilson [5]. In this scheme, three integration parameters, vy, B and 6 can be
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selected to provide the desired accuracy and stability. As developed in [2], the Newmark

method is based on the following equations:
Mﬁt+At + Cth+At + KUpsar = Retat (2.25)
Usear = Up + AU+ AR(S = B)U, + ACBULae (226)
Urar = U + A1 —7)U, + AtyUpyp, (2.27)
These equations constitute three vector equations for determining three vector unknowns;
Ut+ats ﬁt-!-At and ﬁH.At. Values of y < 1/2 will introduce positive numerical damping in
the solution while values of y > 1/2 will introduce negative numerical damping (which in
effect adds spurious energy to the system). For y = 1/2, no numerical damping is intro-
duced to the solution. These observations, coupled with the fact that second order accu-
racy is achieved if and only if vy = 1/2, essentially force the selection of vy = 1/2. The 8
parameter controls the assumed "shape function” of the nodal accelerations across the time

interval At. The most popular selections of y and B are:

1) vy = 1/2,B = 1/4 : This is the constant average acceleration (CAA) method which
assumes a constant acceleration vector with a value of % ( ﬁt-f- ﬁt.m,) over the time
step. This assumption results in a linear variation in velocity and a quadratic varia-

tion in displacement over the time step (Figure 2.5a).

2) vy = 12,8 = 1/6 : This is the linear acceleration method which assumes a linear
variation of acceleration vector between ﬁt and ﬂt+At over the time step. This
assumption results in a quadratic variation of velocity and a cubic variation in dis-

placement over the time step (Figure 2.5b).

The Wilson 6 method [5] is a modification of the linear acceleration method. The
technique includes satisfying equilibrium at a time t+6At then interpolating (based on
linear acceleration) to calculate the state of motion at time t+At for use as initial condi-
tions for the next time step. An unconditionally stable method with large damping in the

higher modes is produced with 8 = 1.4.
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Figure 2.5a Time Domain Shape Functions for CAA Method
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Figure 2.5b Time Domain Shape Functions for
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A Fortran subroutine, TSTEPS has been developed to integrate the dynamic equili-
brium equations for a tri-diagonal system implementing the Newmark-Wilson scheme for
use in linear earthquake response analysis of soil profiles. The algorithm is outlined in

Table 2.1.

2.2.2 Equivalent Linear Analysis

Because it is known that soils can exhibit nonlinear behavior, even at small strain
amplitudes, it is important to appropriately account for the effects of nonlinearity on the
earthquake response of the soil profile. In many cases, the use of an equivalent linear site
model has been found to provide a satisfactory means of evaluating the nonlinear seismic
response characteristics of soil profiles [59]. The idea is to perform linear analysis using
strain-compatible dynamic stiffness and damping properties selected to qualitatively
represent the effects of nonlinear behavior in each layer.

For a single hysteretic strain cycle in a given layer, equivalent linear dynamic proper-
ties can be determined graphically as shown in Figure 2.6. The equivalent shear modulus,
Geg, is the slope of the line connecting the two unloading points while the equivalent
viscous damping ratio, £, is established by equating the energy dissipated by the hys-
teretic layer to that dissipated in the viscous layer over the cycle [31]. For multiple hys-
teresis cycles in a given layer, the equivalent linear properties can be obtained by using the
average of the properties for each cycle, or equivalently by using the graphical approach on
the hysteretic cycle corresponding to the average or effective strain developed during the
cycling. Empirical observations indicate that for cyclic shear strain histories, the ratio of
effective strain to maximum strain is between 0.5 and 0.7 [59]. Relationships between
equivalent linear dynamic properties and effective strains have been established for various
soil types [22,28,62]. The trends observed in typical soil types are that the shear modulus
and damping ratio decrease and increase, respectively, with increasing effective strain

values (Figure 2.7).



TABLE 2.1 TSTEPS - ALGORITHM SUMMARY
Linear Earthquake Response Analysis
a. Assemble global stiffness matrix K, mass matrix M, and damping matrix C.
b. Set initial conditions; U, Uq, Uy
c. Specify integration parameters; <y,8,9
1. Compute integration constants :

- = 1 - _ 1
T = 0At a, @ 'rz) ay ) ay )

=1 _ =X _ =T _ = -
3= 28 1 a4 B as 2( B 2) ag=At(1-v)
a, = Aty ag = AF(-;- —B) ag=AfB

2. Form and triangularize dynamic stiffness :

K =K+ agM + a,C
K = LDLT

3. Compute effective load vector at time t+7 :

R. = Rt+‘l’ + M (aoUt + azﬁt + 3360 + C (alUt + a4i]t + asijt)

4. Solve for displacement at time t+7 :

LDLT U,y = R’
5. Compute state of motion at time t+ At :
ﬁt-l-'r = ag(Up+- = Up — azﬁt - aSﬁt
tjt+At = 6! + —;_(ﬁt+1' - Ut.)
ﬁt+At = ﬁt + aéﬂt + a7ijt+At
Upsae = Uy + AtU+2gU; + agUssa,

6. Perform energy balance calculations if required.
7. Update maxima

8. If t < duration, go to step 3.
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The fundamental idea behind the application of equivalent linear analysis to the
earthquake response of soil profiles is that after some iteration to obtain strain compatible
dynamic properties, a qualitative representation of the true nonlinear response of the pro-

file can be obtained. The steps involved in the analysis are outlined as follows:

1)  Perform linear earthquake response analysis based on the current layer properties
monitoring the layer strain histories for maxima. The dynamic equilibrium equa-
tions can be integrated using the linear techniques discussed in Section 2.2.1.

2)  Calculate effective strains in each layer; yeg = N ypay Where A is usually assumed to
be between 0.55 and 0.65 [59] with the larger value appropriate for giving more uni-

form strain histories.

3) Using the effective strains, update the shear modulus and damping ratio for each

layer using the strain dependent curves (Figure 2.7).

Steps 1, 2, and 3 are repeated until the difference between the modulus and damping
used and the strain compatible modulus and damping ratio are less than some acceptable
difference for eacﬁ layer. A Fortran subroutine, ITERAT has been developed for use in
equivalent linear iterative response analysis of soil profiles. The algorithm is summarized

in Table 2.2.

2.2.3. Nonlinear Analysis

During cyclic loading, the stress-strain behavior of soils is nonlinear and hysteretic,
hence the earthquake response of soil profiles may be influenced significantly by nonlinear
effects. The discrete finite element site model can be used to approximate the nonlinear
response of soil profiles by implementing soil layer elements whose nonlinear hysteretic
properties are representative of soil behavior. Appendix A discusses the Ramberg-Osgoo&
hysteresis model which is used herein to represent the constitutive relationships of the soil
layer elements. This section dis;cusses the extension of the discrete finite element site

model to the nonlinear earthquake analysis of soil profiles.



TABLE 2.2 ITERAT - ALGORITHM SUMMARY

Iterative Equivalent Linear Earthquake Response Analysis

1. Form global mass matrix, M.

2. Set vector of maximum layer strains to zero:

Ymax = 0

3. Form global stiffness matrix based on current layer shear moduli, G :

K = K(G)
4. Form global damping matrix based on current layer damping ratics, £ :

C=C(®

5. Call TSTEPS integration subroutine, save maximum layer strains, vy may-

6. Compute vector of effective strains, y :

Yetf = N Ymax

7. Calculate strain compatible layer shear moduli, G :

G = G(ve)

8. Calculate strain compatible layer damping ratios, & :

£ = E(vew)

9. If strain compatible dynamic properties have converged, repeat steps 3, 4 and 5.

10. If strain compatible dynamic properties have not converged, go to step 2.

30
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The instantaneous dynamic equilibrium equations of the finite element site model can
be expressed in vector form as:
R; + Rp + Rg = Rg (2.28)
where:
R = vector of inertial resisting forces
Rp = vector of damping resisting forces
Rg = vector of stiffness or static resisting forces

Rg = earthquake load vector

When the property matrices af the system remain constant with time, the resisting force
vectors Ry, Rp and Rg are explicit functions of the nodal accelerations, velocities and dis-

placements, respectively:

Ri=MU (2.29)

Rp=CU (2.30)
Rs=KU (2.31)

For linear systems, equilibrium éan be satisfied at discrete time intervals using step-by-step
integration (Section 2.2.1). In the analysis of systems whose elements have nonlinear
stress-strain behavior, the global stiffness matrix becomes a function of the time varying
nodal displacements and the element constitutive relationships, i.e., K = K (U). In such
systems, the static resisting force vector can no longer be determined as above, rather it
must be determined indirectly from the nodal displacements using the element constitutive

relationships:

Rg = Rg (U) (2.32)
In general, the application of step-by-step integration to systems with nonlinear stiff-
ness properties results in a loss of equilibrium at the end of each time step. The instan-

taneous unbalance can be expressed as:

RU = RE - R[ - RD - Rs (U) (233)
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If the unbalanced forces are allowed to accumulate over successive time steps, substantial
errors can be introduced into the solution. Hence it is apparent that the step-by-step solu-
tion strategy must be appropriately modified to account for equilibrium errors in order to
generaté accurate solutions. Several methods have been developed to deal with the loss of
equilibrium at a time step for nonlinear dynamic analysis [2,18,19] but the choice of solu-
tion strategy is largely problem dependent and must be selected with judgement. Because
the Ramberg-Osgood hysteresis model (see Figure A.1) provides a continuous relationship
between stresses and strains for a given branch of the hysteresis loop but is discontinuous
between branches (at unloadings), a solution strategy which implements tangent stiffness
iteration within a branch and an event-to-event scheme between branches will be employed

herein.

Iteration Strategy: The primary reasons for selecting a Newton type iteration scheme to
correct equilibrium errors at the end of a time step are that reformation and solution of the
tri-diagonal global stiffness matrix is relatively inexpensive and the element constitutive
model (Ramberg-Osgood) provides a continuous relationship between stress and strain on
a given branch of the hysteresis loop. Within a branch, the Ramberg-Osgood function is
well behaved and the tangent stiffness is continuously defined; these conditions are critical
for convergence with the Newton method [15]. The essential features of iteration. to satisfy
equilibrium can be investigated by considering the relationships between dynamic load and
displacement for a SDOF system. Figure 2.8 shows the dynamic load vs. displacement in

the R—-U plane. The steps corresponding to Figure 2.8 are summarized as follows:

1)  An equilibrium state has been obtained at time t. The state is defined by the instan-
taneous displacement, velocity, acceleration, static resisting force and tangent
dynamic stiffness (U, U, U, Rg and K°). |

2)  The solution is advanced by assuming the dynamic stiffness remains constant over
the time step and solving the pseudo-static equation for the incremental displacement

(AU) :
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R =K AU (2.34)

then calculating the tentative acceleration, velocity and displacement based on the

numerical integration scheme.

The static resisting force and the tangent stiffness corresponding to the tentative dis-

placement (U,,) are obtained from the element constitutive relationship:

Rs = Rs (Utear) (2.35)

K =K (Ugn) (2.36)

The unbalance between the dynamic load Rg and the tentative internal resisting
forces at time t+ At is then obtained:

Ry = Rg =M Upge — C Upegt — Rg (Upen) (2.37)

If the unbalance is unacceptably large, the solution is advanced to a new tentative

state by solving the following pseudo static equation for the incremental displace-

ment:

Ry = K" AU (2.38)
Steps 3, 4 and S are then continued until the unbalanced force is smaller than the
acceptable level, at which point the tentative state becomes the equilibrium state at

time t+ At.

This iteration strategy is directly applicable to MDOF systems, but because of the vector

states in the MDOF problem, the graphic representation of the iteration occurs in the R—U

space rather than the R—U plane. Hence, the MDOF iteration strategy is more difficult to

interpret physically.

The number of iterations within a given time step depends on the degree of non-

linearity and the step size, but for earthquake analysis of moderately nonlinear soil pro-

files, only a few iterations should provide acceptable accuracy. Details regarding the con-

vergence rate of Newton iteration can be found in [15].

Event-to-Event Strategy: Because the slope of the Ramberg-Osgood function is discontinu-
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ous between branches of the hysteresis loops (Figure A.1) Newton iteration is not applica-
ble when unloading occurs. A solution strategy which captures unloading events will
insure that the equilibrium paths or branches are properly linked. Herein, the linking of

equilibrium paths is accomplished with an event-to-event scheme.

The Ramberg-Osgood model satisfies the Masing criterion [29] which dictates that the
unloading and reloading branches of the hysteresis loop are the same backbone curve with
both the stress and strain scales expanded by a factor of two and the origin translated.
One consequence of this stipulation is that the unloading stiffness is equal to the initial
stiffness. Physically, element unloading occurs when the element strain rate has a zero
crossing, or in discrete time, when two subsequent strain increments are of opposite sign.
The method used to capture unloading events within the step-by-step integration scheme is

outlined as follows:

1) At the beginning of a time step, the incremental shear strains are determined from
the incremental displacements using the strain-displacement transformation:

Ay = B AU (2.39)

2) The strain increment of each layer element is compared to the corresponding strain

increment from the previous time step. If the strain increments are of opposite sign,

then unloading has occurred in the selected layer element during the time step. The

shear modulus of each unloading element is set to the unloading shear modulus.

3) If unloading occurred, the global stiffness matrix is reformed based on the updated

shear moduli and the time step is restarted.

This type of event-to-event scheme was developed in [18]. It is important to note that this
procedure is not exact because it assumes that unloading occurs at time t when in reality,
unloading occurs somewhere between times t and t+At. However, for the small time steps
used in earthquake response analysis, the errors generated by this method are not expected

to be significant.
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A Fortran subroutine WALK has been developed to perform linear or nonlinear
earthquake response analysis of soil profiles implementing the combination iteration and
event-to-event strategy with the CAA integration method. The algorithm is presented in

Table 2.3.

Automatic Time Step Control: The idea behind most step-by-step integration techniques is
to satisfy the dynamic equilibrium equations of the finite element system at discrete time
intervals. If is important to note that within a given time step, the equilibrium equations
are not satisfied, otherwise the numerical solution would be the same as the exact solution.
As the integration time step is reduced, the discretization errors tend to zero and the
numerical solution approaches the exact solution. It is obvious that the appropriate selec-
tion of the integration time step is critical for generating accurate numerical solutions. It is
very common for the analyst to select an integration time step based on various rules of
thumb, perform the dynamic analysis, then rerun the analysis with a smaller time step until
only small differences exist between subsequent solutions. Although this technique does
insure the numerical solution will not change with further decreases in the time step, it
wastes a tremendous amount of computational effort. Therefore, a more efficient pro-
cedure is desirable. This section discusses a procedure in which the accuracy of the numer-
ical solution is controlled by increasing or decreasing the integration time step as the
analysis progresses based on a measure of the mean equilibrium error over a time step.
The technique presented herein is based in part on work presented in [2] and represents an
attempt to balance the tradeoff between solution accuracy and computational efficiency for

the earthquake response analysis of soil profiles.

Within a given time step, if the vectors of inertia forces, damping forces, static forces
and external loads varied linearly with time, the equilibrium errors would be zero at all
times. If the CAA method is applied to a linear system, the variation of the dynamic force
vectors over the time step is shown in Figure 2.9. By considering the time average of the

difference between the assumed force variations and a linear variation over the time step, a
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TABLE 2.3 WALK - ALGORITHM SUMMARY
Nonlinear Earthquake Response Analysis (Constant Time Step)
a. Form stiffness matrix K, mass matrix M, and damping matrix C.
b. Set initial conditions; Ug,Uq, U,
1. Compute integration constants (CAA method) :

2
ag=—5 a=-— az=2 4= 4= ag =2
2. Compute dynamic portion of dynamic stiffness matrix, D :

D= alM + a4C
3. Compute effective load vector at time t+ At :

R’ = Ry + M (3,0, + a3Up) + C (asU))
4. Form dynamic stiffness, K :

K'=K+D

5. Solve for incremental displacement vector, AU :

K'AU =R’

6. Compute layer strain increments, Ay :

Ay = B AU
7. Check for unloading event :
if unloading occurred :
reform K based on unloading shear moduli; K = K (G)
g0 to step 4

8. Update tentative state of motion :
if iter = 0 :
ﬁm = ﬁt + a,AU — azﬁt - a3i5t
Ui = U; + 2,AU — agU,
Uper = U + AU
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TABLE 2.3 WALK -- ALGORITHM SUMMARY (CONTINUED)
if iter = 1:
ﬁwm = ﬁ.m + a,AU
I'Jmt = ﬁwm + a,AU
Ugent = Ugenr + AU
9. Calculate resisting force vector, R and updated shear moduli, G :
R, = Ry (Ugen)
G = G (Ytew)

10. Calculate unbalance force vector, Ry, :

Ry = Rt ‘Mﬁm—Cﬁmt“Rs
11. Reform stiffness based on current shear moduli, G :
K= K (G)

12. Check equilibrium error :
if (|| RyJ| > tolerance ) :
set iteration flag, iter = 1
go to step 4

13. Set state at time t+ At equal to tentative state :

Uprat = Upent
Utrat = Utent
Utsat = Ugent

14. Perform energy balance calculations if required.
15. Update maxima

16. If t < duration, go to step 3.
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Figure 2.9 Variation of Internal Forces for a Linear System

using CAA Method
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measure of the mean equilibrium error over the step can be computed. Because the iner-
tial and damping forces are constant and linear, respectively, over the time step, the time
average of the difference between these distributions and a linear distribution integrates to
zero (see Figure 2.9). However, the error due to static forces varies quadratically and has

a nonzero mean value given by:

At :
E,= —7 KAU (2.40)
12
For nonlinear systems which utilize an iteration strategy, the stiffness matrix K may vary
over the time step and this equation for mean static error is no longer valid. However, by
using an effective stiffness matrix, K¢ based on the element states at the beginning and

end of the time step (see Figure 2.10), the mean equilibrium error of the system can be

approximated by replacing K with K.

In order to perform earthquake response analysis with automatic step size control, a
tolerance for the mean equilibrium error over the time step is specified. If the norm of the
mean equilibrium error vector exceeds the tolerance then the time step is halved and the
step is repeated with the new time step. If the error norm is less than the tolerance for a
user specified number of time steps (implying that At is unnecessarily small) then the time
step is doubled and the step is repeated. It should be noted that the maximum time step
cannot exceed the time step of the input earthquake acceleration if the loading is to be
properly discretized. Methods for determining appropriate tolerances on the mean equili-
brium error are developed in [2] or may be developed with experience and by comparison

with the results of constant time step analyses.

A Fortran subroutine AUTO has been developed to perform linear or nonlinear
earthquake response analysis of soil profiles implementing the iteration and event-to-event
strategy (similar to WALK) including automatic time step control. The algorithm is

presented in Table 2.4.
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a.

Y

TABLE 2.4 AUTO -- ALGORITHM SUMMARY
Nonlinear Earthquake Response Analysis (Variable Time Step)

Form stiffness matrix K, mass matrix M, and damping matrix C.

b. Set initial conditions; Ug, Uy, Ug

1

. Compute integration constants (CAA method) :
4 4 2
31=A—t2' 82=E a3=2 a4=—A-; a5=2

. Compute dynamic portion of dynamic stiffness matrix, D :

D = aM + 3,C

. Compute effective load vector at time t+ At :

R‘ = Rt+At + M (azﬁt + a3ﬁt) +C (35[..]'_)

. Form dynamic stiffness, K :

K'=K+D
. Solve for incremental displacemenfvector, AU :
K'AU = R’
. Compute layer strain increments, Ay :
Ay = B AU
. Check for unloading event :
if unloading occurred :
reform K based on unloading shear moduli; K = K (G)

go to step 4

. Update tentative state of motion :
ifiter = 0:
ﬁtm = ﬁt + a;AU — azﬁt - a36t
(Itmt = th + a4AU — asl'J,
Ugent = Uy + AU
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TABLE 2.4 AUTO -- ALGORITHM SUMMARY (CONTINUED)
if iter = 1:
ijtcm = ﬁtem + a;AU
ﬂwm = ime + a,4,AU
Utent = Utene + AU
9. Calculate resisting force vector, R and updated shear moduli, G :
R, = R (Upent)

G = G (Veen)
10. Calculate unbalance force vector, Ry :

Ry, = Riype — M [jtcnt -C ﬁtcnt - Ry

11. Reform stiffness based on current shear moduli, G :

K = K (G)

12. Check equilibrium error :
if ( | Ry|| > tolerance ) :
set iteration flag, iter = 1
go to step 4
13. Form effective stiffness for time step control :

Keit = Kegr (Gegr)

14. Calculate mean equilibrium error vector over time step :

E= %Kcﬁm}



TABLE 2.4 AUTO -- ALGORITHM SUMMARY (CONTINUED)

15. Check accuracy, change time step if required :
if (| E || > tolerance ) :
reduce time step : At = At/2
set change flag, ichange = 1
start step counter, icount = 1
if (|| E || = tolerance AND icount = nmax ) :
increase time step : At = 2At
set change flag, ichange = 1
start step counter, icount = 1
if (| E || = tolerance AND icount < nmax ) :
unset change flag, ichange = 0
increment step counter, icount = icount + 1
16. If time step has been changed (ichange = 1) :
restore previous state
go to step 1
17. Set state at time t+ At equal to tentative state :
ﬁt+At = ijteut
th+At = Utent

Utrat = Utent

18. Perform energy balance calculations if required.
19. Update maxima

20. If t < duration, go to step 3.
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2.3. Application of Time Domain Procedures

As a demonstration of time domain site response analysis procedures, the WAVES
computer program is utilized to investigate the seismic response of a horizontally layered
soil profile. In this section, the soil profile and the corresponding finite element discretiza-

tion are discussed and some of the analysis results are presented.

The soil profile selected for analysis (shown in Figure 2.11) represents the subsurface
conditions at the SCT site in downtown Mexico City. The most important feature of the
site conditions in downtown Mexico City is the thick deposit of soft clay extending hor-
izontally across a wide area, which was once a lake bed. Detailed investigations of the
seismic response of this site and other sites at acceleration recording stations around Mex-
ico City have been conducted and the analytical results are in reasonable agreement with
measured results [63]. However, it is extremely important to note that the discretization of
the SCT site used in [63] was based on an "interpreted soil profile" which was obtained by
selecting (or "tuning”) the average shear wave velocity of the site to yield the same funda-
mental site period observed in the recorded motions. It should also be noted that the aver-
age shear wave velocity of the clay layer in the "interpreted soil profile” (75 m/s or 246 ft/s)
is significantly larger than the corresponding range of values measured in field investiga-
tions (40 to 60 m/s or 131 to 197 ft/s). Clearly, this "interpretive” procedure is only appli-
cable when site specific strong motion or ambient vibration records are available. Rather
than attempting to duplicate the results obtained using the "interpreted soil profile", the
discretization used in this investigation was based on direct field measurements of shear
wave velocity and soil unit weight obtained using P-S suspension logging techniques and
boring and sampling procedures, respectively. The discretization shown in Figure 2.11,
which is hereafter referred to as the "measured soil profile”, was obtained using the follow-

ing general procedure:

1) Plot the variation of measured shear wave velocity (V) with depth (as provided in

[63] for the SCT site).
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2)  Plot the variation of soil unit weight (y) or density (p) with depth (as provided in
[30] for the SCT site).

3) Compare the plots obtained in steps 1) and 2) to obtain an indication of the impor-
tant subsurface features as a guide for selecting individual soil layer elements which

represent a stratum with constant shear modulus (G=pVg2) and unit weight (y).

4)  Subdivide layer elements as required to insure spatial convergence (i.e., to insure that
further mesh subdivision will not effect the solution). A general rule of thumb is to
select the maximum layer thickness such that 8 elements fit within the wave length of
the important seismic waves propagating vertically through the site; effectively approx-
imating a full sine wave with 8 equal length, straight line segments. For example, if
the average shear wave velocity of a site is assumed to be 50 m/s (164 ft/s) and the
fundamental site period is 2.0 seconds, the corresponding harmonic wavelength is 100
m (328 ft), resulting in a maximum layer thickness of 100/8 = 12.5 m (41 ft). Simi-
larly, the harmonic wave length corresponding to the secondv site period (0.66
seconds) is 33.3 m (110 ft) resulting in a maximum layer thickness of 33.3/8 = 4.2 m

(13.8 ft).

As discussed in [63], numerous accelerogram stations located around Mexico City
recorded ground motions during the September 19, 1985 earthquake. The pseudo-
acceleration response spectra (5% damping) computed from the EW and NS components
of the surface acceleration recorded at the SCT site are shown along with the average spec-
trum in Figure 2.12. These spectra can serve as the basis for comparison with analytical
results computed using WAVES. For the purposes of site response analysis, it is necessary
to select input motions which can be considered as representative of the motions developed
at the base rock level of the SCT site. Typically, base input motions are obtained by scal_-
ing the amplitude and/or the frequency of previously recorded earthquake accelerograms to
reflect site variables such as distance from causative faﬁlt and earthquake magnitude [59].

Fortunately, many of the Mexico City accelerogram stations are located on rock or hard
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soil formations located near the SCT site and hence the acceleration signals recorded at
these stations can be used directly as input motions for the SCT site. In this study,
motions recorded at two "rock” locations, namely, 1) the CUMV station and 2) the Tacu-
baya station were assumed to be representative of the SCT base rock input motions.
Pseudo-acceleration response spectra (5% damping) computed from the EW and NS com-
ponents of the surface acceleration recorded at the CUMV and Tacubaya stations are

shown along with their average spectra in Figures 2.13 and 2.14, respectively.

The first step in this investigation was to determine the elastic vibration periods and
mode shapes of the SCT site. The first and second mode shapes of the site, which
correspond to vibration periods of 2.09 and 0.66 seconds, respectively, are shown in Figure

2.15.

Because the Mexico City clays are known to exhibit nearly linear behavior over a
large strain range [63], linear earthquake response analysis of the site based on the initial
dynamic soil properties was conducted. Figures 2.16 through 2.20 provide comparisons of
the response spectra of the computed and measured surface motions. In general, the corre-
lation of the computed results with the measured results is good for periods less than
approximately 2.0 seconds while for periods above approximately 2.0 seconds, the spectral
ordinates of the measured motion are somewhat larger than the corresponding computed
values. The lack of correlation at vibration periods greater than about 2.0 seconds may be
the manifestation of two-dimensional behavior in the measured results. In all cases, both
the measured and computed spectra indicate that the response of the SCT site was dom-

inated by vibration in the fundamental mode at a period of approximately 2.0 seconds.

The next step in the study was to conduct equivalent linear site response analysis as a
means of estimating the dynamic response of the site including, in an approximate sense,
nonlinear soil effects. As presented in [63], the results of equivalent linear analyses con-
ducted on the site model corresponding to the “"interpreted soil profile" show a correlation

similar to that obtained using linear analyses of the "measured soil profile” model (Figures
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2.16 through 2.20). However, it is important to note that the results obtained using
equivalent linear analysis of the "measured soil profile" displayed poor correlation with the
measured results. The poor correlation can be readily explained by the results of a sensi-
tivity study presented in [63], which indicated that a minor change in the shear wave velo-
city (-15 m/s or -49 ft/s) over a portion of the clay layer at the SCT site drastically changes
the dynamic response of the site, effectively eliminating the spectral peak near 2.0 seconds.
Because the shear wave velocity in the clay layer of the "measured soil profile" was roughly
20 m/s (66 ft/s) less than that of the "interpreted soil profile”, the softening effect of
equivalent linear analysis can be expected to decrease the correlation of the "measured soil
profile” and actually improve the correlation of the "interpreted soil profile” model. No
attempt was made to duplicate the results presented in [63] by performing equivalent linear

analyses on the "interpreted soil profile" model.

As a final demonstration of time domain analysis, the SCT site was analyzed using
true nonlinear site response analysis. The Ramberg-Osgood parameters (o« and <) which
control the hysteretic properties of the soil layer elements, were selected to reflect the near
linear characteristics of the Mexico City clay. The properties used for the analyses were a
= 0.5 and vy = 1.4, which resulted in effective shear stiffness values close to those used in
the linear analyses. It should be noted that no attempts were made to "tune” the
Ramberg-Osgood parameters to provide a better correlation with the measured results.
Figures 2.21 through 2.23 provide comparisons of the response spectra of various computed
and measured surface motions, Figure 2.24 shows the surface acceleration history com-
puted from the CUMV EW input motion and Figure 2.25 displays an example of the near
linear stress-strain response computed in a typical clay layer. The correlation obtained with
nonlinear analysis is quite similar to that obtained using linear analysis, which was
expected since the nonlinear properties were selected to reflect near linear response. It
should be noted that better correlation between the nonlinear analysis results and the meas-
ured results may have been obtained by adjusting the Ramberg-Osgood parameters to

better fit the measured data. However, this adjustment was not pursued.
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CHAPTER 3

BUILDING RESPONSE ANALYSIS

The analysis of structural behavior under seismic loading using rigorous modeling
and analysis procedures is an important step in reliable and economical earthquake resis-
tant designs. It is rational, however, from an engineering viewpoint, to carry out an
analysis appropriate for the structural system, configuration, size and importance as well as
other relevant characteristics of the structure under consideration. One of the keys to
effective earthquake resistant design of structures is the use of representative structural -
models from which the distribution of seismic forces and deformations can be determined.
The most general seismic response analysis procedure would consider a three-dimensional
representation of the structure subjected to three-dimensional seismic forces. Simpler
three-dimensional models which approximate floor systems as rigid diaphragms have been
shown to be acceptable for most buildings [14]. For buildings of regular geometry, where
no stiffness and mass discontinuities exist, results from the analyses of two-dimensional
planar representations can be combined for seismic design. In any case, the result of the
structural discretization is a MDOF lumped mass building model which must be analyzed
for seismic forces, using either static or dynamic analysis methods. The major advantage
of using the forces and deformations obtained from dynamic analysis as a basis for struc-
tural design is that their distributions can be significantly different than the distributions

obtained from an equivalent static load analysis.

In conventional earthquake response analysis of building structures, it is most com-
mon to assume that the building responds as a linear elastic system. The concepts involved
with the linear earthquake response analysis of two and three-dimensional structures are
well established. and well understood and analysis and design procedures based on the
assumption of linear response are routinely implemented. The primary disadvantage of
linear earthquake response analysis is that it cannot provide any informatiog_relgted to

ductility demands and the distribution of damage throughout the structure in the event of
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severe earthquake ground motions. In such situations, the response of buildings is influ-
enced, if not dominated by nonlinear behavior. Code designs based on linear response
spectra require detailing which will ensure reasonable ductility, essentially providing for
damage tolerant structures in the event of strong earthquake ground motions. This reflects
the underlying philosophy that codes rely on nonlinear structural behavior as a means to
reduce the required elastic strength and to increase the seismic energy dissipation of struc-
tural systems. Although sophisticated procedures for the nonlinear earthquake analysis of
building structures are available, their application in conventional design practice is some-
what limited and usually implemented only for very important, expensive or complicated
structures. The primary reasons for the limited use of nonlinear earthquake response
analysis are; 1) it is not required by most building codes, 2) it is more difficult to develop
a nonlinear mathematical model than a linear model, 3) it generally requires significantly
more computational effort than linear analysis and hence is more expensive, and 4) the
results of nonlinear analysis are more difficult to understand and must be carefully inter-

preted.

Two extremely important considerations in establishing the level of sophistication of
the modeling and analysis procedures used for seismic design are; 1) the uncertainties asso-
ciated with the seismic loading, and 2) the sensitivity of the structural response to varia-
tions in the seismic loading. Ideally, structural designs should be evaluated for a wide
variety of seismic events, consistent with site-specific seismic hazards. Investigating the
sensitivity of the analytical structural response to variations in the seismic input is a critical

step in effective earthquake resistant design.

Selecting the appropriate seismic analysis procedure is a difficult task which must con-
sider issues such as the type of structural system and configuration, the cost and impor-
tance of the structure, the time involved in developing and analyzing a representative struc-
tural model as well as the uncertainties associated with the seismic loading and their effects

on the structural vresponse. As a starting point, it is often prudent to a adopt simplified
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modeling and analysis procedures which idealize the structure and the dynamic loading to
some degree. Simplified procedures which permit rapid and inexpensive analysis of struc-
tures with reasonable accuracy can be used to evaluate structural response to a wide variety
of earthquake loadings. The simplified evaluation of preliminary designs can serve as a
basis for more refined designs, which can then be evaluated using more refined modeling

and analysis procedures.

It is clear that an important first step toward the wider use and better understanding
of nonlinear dynamic analysis is the implementation of simblified modeling and analysis
methodologies which reflect the essential nature of the structural response. In this chapter,
a brief overview of conventional linear and nonlinear dynamic analysis procedures is
presented. A comparison of the nonlinear response of various MDOF building systems with
the nonlinear response of equivalent SDOF representations is then presented for earth-
quake motions which are idealized as harmonic motions. Finally, methods for evaluating
seismic designs based on simplified nonlinear analysis for harmonic ground motions are

presented.
3.1. Overview of Conventional Methods

3.1.1. Linear Analysis

The most general form of the equations of motion of a linear, lumped mass, MDOF
structural model subjected to earthquake loading is:

M U(t) + C U(t) + K U(t) = R(t) (3.1)
where the terms on the left hand side are the finite element property matrices and state
vectors of the structural model similar to those defined in Chapter 2 for soil profile models.
The finite element property matrices, which are developed using direct stiffness assembly
procedures, are often reduced in size using static condensation procedures [5] so that only
the essential dynamic DOF’s are considered in the dynamic equilibrium equations. Typi-

cally, the three-dimensional dynamic properties of a building can be accurately represented
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by models with two horizontal translational DOF and a rotational DOF about the vertical
axis for each story level. The right hand side of the equation represents the earthquake
load vector which, in general, may include three components of base translation as well as
the effects of different ground motions at different supports [11]. For typical building sys-
tems, the effects of multiple support excitation can usually be neglected and the earthquake

load vector can be expressed as:

[..
ugx(t)
RO) = —M [r, &, ] g, (1) (3.2)
| i |
or
R(t) = — M riigt) (3.3)
where :

M = lumped mass matrix of the MDOF system

ry = static displacement influence vector for the x direction
ry = static displacement influence vector for the y direction
r, = static displacement influence vector for the z direction
Ug(t) = base acceleration in the x direction

Ugy(t) = base acceleration in the y direction

g (t) = base acceleration in the z direction

-

B
ug(t) = | ugy(t)

5%

As developed in [11], the static displacement influence vectors represent the structural dis-

placements resulting. from unit support displacements in the x, y and z directions.

The solution of this system of ordinary differential equations can be obtained by

direct integration to obtain a response history. The time history of the structural response
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can also be obtained using mode superposition analysis. If only the response maxima are
required, response spectrum modal analysis can be implemented. The following sections

review direct integration, mode superposition and response spectrum analysis procedures.

3.1.1.1. Direct Integration of MDOF Equations of Motion

The dynamic equilibrium equations of the linear MDOF structural model can be
integrated numerically using standard procedures to obtain the response history of the sys-
tem. The response histories of structural displacement, velocity and acceleration as well as
base shear, overturning moment and member forces can be used to evaluate the seismic
design. One of the most versatile numerical integration schemes is the Newmark B method
[47] with modifications by Wilson [S]. The details of this step-by-step algorithm are
presented in [74]. The only difference between the direct integration of the equilibrium
equations of MDOF structural models and the one-dimensional soil profile models
(presented in detail in Chapter 2) is the need for an equation solution algorithm which

allows for a general banded system of equations.

3.1.1.2. Mode Superposition and Response Spectrum Analysis

The mode superposition method of dynamic analysis is based on formal coordinate
transformations which serve to change the set of N coupled equations of motion of a
MDOF system into a system of N uncoupled SDOF equations. The transformation is typi-
cally accomplished using the exact mode shapes of the structural system but more efficient
transformations using Ritz vectors [37] can also be implemented. Details regarding coordi-
nate transformations using vibration mode shapes or derived Ritz vectors can be found in
many references [6,25,37] and are not presented here.

The geometric coordinates of the finite element system U are related to the modal

coordinates Y through the transformation matrix ® as follows:

U=9Y (3.4)
The result of the transformation is a system of N uncoupled SDOF equilibrium’ equations:
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MaYo(t) + Cu¥a(t) + KpY,(t) = By(t) (3.5)
where M,,, G,, and K, are the generalized mass, damping and stiffness of the nth mode,
?n(t), Yn(t) and Y (t) are the modal acceleration, velocity and displacement of the nth

mode and P(t) is the generalized load for the nth mode:

Py(t) = @5 R(Y) (3.6)
These N independent equations of motion can be solved by any suitable method. Once

the response for each mode Y,(t) has been computed, the displacement in the original

coordinates is obtained by superposition:

u(t) = @ Y(t) (3.7)

U(t) = &;Y(t) +....+DNYn() (3.8)
The primary advantage of using mode superposition analysis to calculate the earthquake
response of structures is that the ground motions tend to strongly excite only the lower
modes of structural vibration. Hence, reasonable approximations of the response of
MDOF systems can be obtained by only carrying out the analysis for modes which signifi-
cantly participate in the response. As developed in [11], the earthquake excitation factor
L, provides a measure of the relative participation of each mode ®, in the earthquake

response:

Ly=®IMr (3.9)

In most design applications, only the extreme values of the structural response are
required. In such cases, earthquake response spectrum analysis is an attractive procedure
for determining the magnitude and distribution of seismic forces. Each point of an earth-
quake response spectrum represents a response maximum from a complete time history
analysis for a given structural vibration frequency and damping ratio. Hence, the earth-
quake response maxima for each vibraﬁon mode can be determined directly from the
response spectrum. However, because all modal maxima do not occur simultaneously, they
are typically combined using SRSS or CQC [75] modal combination procedures In this

fashion, the magnitude and distribution of maximum seismic forces and deformanons can
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be estimated for elastic seismic design.

3.1.2. Nonlinear Analysis

Under severe earthquake ground motions, the response of buildings may be influ-
enced, if not dominated by nonlinear behavior. Thus, to estimate the dynamic response of
a structure subjected to a severe earthquake, a nonlinear dynamic response analysis is
necessary. The dynamic equilibrium equation for a nonlinear, lumped mass, MDOF struc-
tural model subjected to earthquake loading is:

M U(t) + C U(t) + Rg(U) = R(t) (3.10)
The only difference between this equation and the equation for linear systems is in the
third term on the left hand side. For finite element systems whose elements can have non-
linear force-deformation relationships, the stiffness matrix becomes a function of the time
varying nodal displacements and the element force-deformation relationships, i.e.
K=K(U). Hence, for nonlinear systems, the vector of static resisting forces must be deter-
mined indirectly from the nodal displacements and the element force-deformation relation-
ships:
Rs = Rg(U) (3.11)
The solution of the system of ordinary differential equations for nonlinear systems is typi-
cally obtained using direct integration methods which account for nonlinear behavior.
Approximate solutions can be obtained by transforming the MDOF nonlinear system to an
equivalent SDOF system and implementing numerical integration or nonlinear response
spectrum methods. The following sections review procedures for direct numerical integra-
tion of the nonlinear equations of motion and procedures for obtaining approximate solu-

tions by transforming the MDOF system to an equivalent SDOF system.

3.1.2.1. Direct Integration of MDOF Equations of Motion

The dynamic equilibrium equations of the nonlinear MDOF structural system can be

integrated using various numerical solution strategies. The nonlinear solution strategies
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presented for one-dimensional soil profile models in Chapter 2 can be applied to MDOF
structural models by utilizing a general banded equation solver. Various nonlinear analysis
programs [1,17,19,45] perform direct numerical integration of the equilibrium equations of
two-dimensional and three-dimensional structural models using various numerical solution
strategies. Techniques such as Newton iteration [64] or event-to-event methods [18] have
been developed to deal with the loss of equilibrium which may develop as a result of struc-
tural state changes during the numerical integration of the dynamic equilibrium equations.
Methods which implement a variable integration time step size have also been developed
and implemented in [2], which also provides an excellent overview of numerical integration

schemes for nonlinear dynamic response analysis.

3.1.2.2. MDOF to SDOF Reduction Methods

Although the concepts of coordinate reduction from MDOF to SDOF systems are usu-
ally applied to linear elastic systems, a good deal of research has been conducted on SDOF
representations of MDOF systems for use in nonlinear response analysis [8,35,55,56,57,58].
The essential feature of coordinate reduction techniques using either the exact mode shapes
or load dependent Ritz vectors, is that the vibration of the MDOF system is dominated by
a few vibration shapes, and in most cases, sufficient accuracy can be obtained using only
one vibration shape. Under large amplitude dynamic loading, yielding of the structure
and subsequent stiffness changes make it intuitively obvious that the vibration shape of the
structure is not constant throughout the duration of the excitation. However, results from
the static nonlinear analysis of structures designed with the strong column - weak beam
philosophy indicate that variations of the deflected shape at deformation levels beyond
some effective yield of the structure are not significant. Based on this observation, it is
plausible to employ an average effective shape which can capture the essential nature of the

nonlinear response of building structures.

Procedures for MDOF to SDOF reductions for use in nonlinear analysis have been

developed [8] and implemented for the earthquake response analysis of buildirig structures
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[35,55,56,57,58]. Several procedures for obtaining the vibration shape for SDOF nonlinear

earthquake response analysis of buildings are presented in Appendix D.

Once the vibration shape is established, the equations of dynamic equilibrium for the
MDOF system can be transformed to a single equilibrium equation. Consider the equili-
brium of the undamped linear MDOF system:

M U(t) + K U(t) = R(t) (3.12)

Making the substitution U = ® x and premultiplying the equations by ®T leads to the fol-
lowing SDOF equation:

O™ @ X(t) + ®TK @ x(t) = ®TR(t) (3.13)

The SDOF analogy corresponding to this transformation is shown in Figure 3.1. This

SDOF system can be interpreted as a "macro element” used to model the displacement

response of the structure. It is most convenient to select the SDOF system such that the

deflection x, of the equivalent mass ®TM®, is the same as that of some significant point

(for example, the roof level) of the MDOF system. The significant point is hereafter

termed the control point. The equilibrium equation of the SDOF system can be presented

as follows [56]:

ap my X(t) + ak x(t) = ar(t) (3-.14)
where; ‘
#DOF
m= 2 m : (3.15)
i=1
#DOF
= 2 15 (3.16)
Ci=1
T
Ay = w (3.17)
my
T
a = '(%)' (3.18)
t

The terms m; and r; are the mass and external load associated with DOF "i" and hence the
term m, is the total mass of the MDOF system and r, is the total external load acting on the

MDOF system. The terms o, and o are the mass and load factors, respectively. The
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scalar stiffness k, is numerically equal to the total load from a given static load distribution
which would cause a unit deflection at the control point of the MDOF system, ie;

kl=r, (3.19)
The equation is verified by observing that:

®™® = o, m, (3.20)
®TR = o, (3.21)
OTK® = ok (3.22)
- @Tkrit
= ¢TR

The equation can be rearranged to the following form:
mX(t) + kx(t) = ry(t) (3.23)

a
where m, = (—f—) m,, is the equivalent mass of the system. It is important to observe that
1

for earthquake loading, the external force term is defined as:

1(t) = —mli(t) (3.24)
where ig(t) is the base acceleration.

In order to use a more physical SDOF analogy than the one shown in Figure 3.1, it is
desirable to transform to the inverted pendulum oscillator shown in Figure 3.2. The
equivalent height of the pendulum oscillator b, (the height of control point of the MDOF
system) is obtained by simultaneously considering the equilibrium of the MDOF and
equivalent SDOF systems under free-vibration conditions. If the amplitude of the vibra-
tion shape ®, at the location h, is denoted ®,, the SDOF and MDOF expressions for base
shear due to inertial forces are proportional to the following expressions:

#DOF
m¢<I>e= > micbi (325)

i=1

The base moments due to inertia forces for the SDOF and MDOF systems must also be

equal and proportional to the following expressions:
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#DOF
mePeh, = 2 mi®ih (3.26)

where h; is the height of story level i. Combining these equilibrium expressions leads to
the following expression for the equivalent height:

#DOF
( m@h)
1=

Be = mdy)
#DOF
(2 mom)

#DOF
( .21 m;®;)
l=

(3.27)

Transformation from a translational system in x to a rotational system in 8 is accomplished
by substituting x = 6 h, and summing moments about the base, resulting in:
(mch2) 8() + (kh2) B(1) = 1(t) b (3.28)
which, for convenience, can be rewritten as:
Meo(t) + Ko(t) = R(1) (3.29)
In this expression, the term K6(t) represents the structural resistance in terms of base
moment versus rotation. For nonlinear systems, this term is replaced by a static resistance

term Rg(8) which represents the restoring force of the oscillator in terms of base moment.

The simplest model for representing the nonlinear base moment resistance of the sys-
tem is a bilinear spring. A bilinear approximation to a base moment verses lateral deflec-
tion curve (similar to those obtained using the procedures in Appendix D) is illustrated in
Figure 3.3. This figure indicates the displacement levels (x;, X, and x4) at which structural
elements 1, 2 and 4 yield as well as the yielding displacement (x,) assumed for the bilinear
resistance approximation. The ductility of the SDOF oscillator system (ispoF = Xmax / Xy)
can be related to the element ductilities (feementi = Xmax / Xi) using the following ductility

transformation:

Pelementi = Pi ISDOF (3.30)
where p; = xy/x;. Thus, the ductilities of specified elements in the model can be estimated
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from the SDOF ductility through the following matrix transformation:

Peelements = P HSDOF (3.31)
It should be noted that damping can be included in the equivalent SDOF nonlinear

system by adding a rotational viscous damper which resists the angular velocity of the
inverted pendulum system. The rotational equilibrium of the damped oscillator can now

be expressed as:
M8(t) + CO(t) + Rg(8) = R(t) (3.32)
3.1.2.3. Integration of SDOF Equation

The equilibrium equation for a viscously damped SDOF nonlinear system can be
expressed in the general form:

Mx(t) + Cx(t) + Rg(x) = R(t) (3.33)

where M is the mass of the system, C is the system’s damping coefficient, Rg is its restoring

force, R(t) is the external dynamic load and x(t) is the system displacement coordinate.

The response history can be obtained by numerically integrating the equation of
motion using small time steps. In general, any of the standard numerical integration stra-
tegies that satisfy equilibrium at discrete time intervals and account for changes in the stiff-
ness within the time steps can provide an accurate solution. Newton and quasi-Newton
[64] or event-to-event strategies [18] have been developed to correct for the loss of equili-
brium which may result during each time step. Chapter 2 presents nonlinear solution stra-
tegies developed for the CAA method (Newmark method with B = 1/4) which can be
applied to the solution of the SDOF equilibrium equation. NONSPEC [44] is a computer
program which obtains the s;)lution for the nonlinear SDOF system subjected to arbitrary
loading using the Linear Acceleration Method (Newmark method with B = 1/6) and pro-

vides for time step repetition and/or equilibrium correction to account for nonlinearity.

Once the response x(t) of the SDOF system is obtained, the approximate response of

the MDOF system can be obtained by the following transformation:
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U@ = @ x(t) (3.34)
The response U(t) of the MDOF system obtained in such a fashion is subject to the

assumptions involved in the transformation from a MDOF system to an equivalent SDOF

system and thus, must be interpreted carefully.

3.1.2.4. Nonlinear Response Spectra

When it is feasible to represent MDOF structures as equivalent SDOF systemé, non-
linear response spectrum analysis procedures can provide useful guidance in selecting the
overall stiffness and strength characteristics of the system. Moreover, a variety of nonlinear
response spectra can easily be investigated and used to assess the sensitivity of the overall

response of a proposed structure to different excitations.

As discussed in [43], nonlinear response spectra are constructed by either; a) directly
computing a sequence of response histories of nonlinear SDOF systems of varying elastic
period subjected to a given excitation and extracting the maximum response values, b)
implementing random vibration theory to estimate the inelastic response in probabilistic
terms, or ¢) modifying smoothed linear elastic response spectra developed for a site.
Method a) provides the most accurate assessment of inelastic response uiaxima and is
attractive'since it can be implemented for various hysteretic systems [44]. However, it
should be noted that methods a) and b) require significant computational effort, while
method c) is relatively simple. Because of the technical and practical difficulties associated
with methods a) and b), method c) is the most widely used method for obtaining inelastic
response spectra.

Procedures have been developed to obtain approximate seismic design forces for
multi-story structures based on elastic SRSS modal superposition techniques using the elas-
tic dynamic characteristics of the structure and an inelastic response spectrum. Typically
however, inélastic earthquake response spectra are used in conjunction with the elastic fun-
damental vibration frequency of the structure to obtain estimates of ductility demands for

the purposes of evaluating or developing preliminary designs.
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3.2. Response of MDOF and SDOF Systems to Harmonic Ground Motions

3.2.1. General Considerations and Objectives

The complex, random nature of earthquake ground motions represents a major
source of uncertainty in the analysis and design of structures for seismic loading. The lack
of a specific "design earthquake” for response analysis often results in the use of ensemble
of design earthquakes compatible with a site specific response spectrum. As presented in
[50], the computed inelastic response of buildings subjected to an ensemble of similar
earthquake ground motions can vary greatly from one motion to the next. Clearly, the use
of deterministic seismic analysis to investigate the effects of probabilistic earthquake load-
ing is a complex task requiring significant experience and engineering judgement.

For preliminary design purposes, it may be possible to employ some simplifying
assumptions regarding the nature of the seismic loading. In qualitative terms, real earth-
quake ground motions can be classified somewhere between "impulsive type" motions con-
sisting of one or a few strong acceleration pulses and "harmonic type"” motions consisting of
several cycles of similar acceleration pulses. "Harmonic type" ground motions are charac-
teristic of soft soil sites where the response to bedrock motions tends to be dominated by
the fundamental vibration mode of the soil profile. A portion of the acceleration history
recorded at the SCT site (a soft clay site in downtown Mexico City) during the 1985 earth-
quake (Figure 3.4) provides an excellent example of essentially harmonic site response.
For buildings founded on such soft soil sites, it can be argued that a pure harmonic seismic
loading can be used to obtain upper bounds on the cyclic response demands placed on the
structure during "harmonic type" site response. Assuming that the earthquake ground
motions are harmonic is clearly a very simplistic approach which neglects the complex evo-
lutionary character of the amplitude and frequency observed in typical earthquake his-
tories.. However, it is an attractive simplification since it allows an earthquake loading to
be completely defined by only two parameters; the acceleration amplitude A, and the

vibration period T,;
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R(t) = - Mriigt) = — M r A, sin (-,zrl ) (3.35)
g .

For linear structural systems or for non-degrading nonlinear structural systems, the
response obtained from harmonic earthquake input eventually reaches a steady-state with a
vibration period equal to the ground motion period [11,32]. This implies that the response
of the MDOF structural representation (including the phase angle, the displacement
response, the energy dissipation response and the base shear and overturning moment

responses) is entirely contained in a single steady-state cycle of structural response.

The clementary nature of the harmonic earthquake loading and the existence of a
steady-state response imply that approximate analysis methods may be applied to obtain
more efficient solutions. By applying formal coordinate reduction procedures, the MDOF
structural model can be represented by an equivalent SDOF system which can be analyzed
for harmonic earthquake loading with a fraction of the computations required for the
MDOF system. SDOF procedures permit rapid and inexpensive analysis and re-analysis of
a sequence of preliminary designs subjected to a wide range of ground motion amplitudes
and frequencies. The results of these analyses can serve as the basis for more refined

designs to be evaluated using more refined modeling and analysis procedures.

In tt;is section, the response of MDOF and SDOF structural systems subjected to har-
monic earthquake loading is investigated. The procedures are applicable to the analysis
for preliminary design of buildings founded on soft soil sites for which the ground surface
motions are essentially harmonic. The correlation between the steady-state response of
MDOF structural models and their equivalent SDOF representations can be used to reduce
the number of MDOF dynamic analyses required to assess the sensitivity of the structure to
a range of harmonic ground motions. For the special case of harmonic loading, it may be

possible to replace MDOF .dynamic analysis with MDOF static and SDOF dynamic ana-

lyses.
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3.2.2. Application to Two-Dimensional Frame System

In order to examine the applicability of equivalent SDOF structural models for
representing the steady-state response of MDOF structural models, a very simple two-
dimensional moment resisting frame system was investigated. As shown in Figure 3.5, the

system considered was a ten story, one bay steel frame.

It was assumed that the frame, which has a fundamental elastic vibration period T =
1.25 sec, was located on a soft soil site with a nearly coincident natural site period (Ty)
representing worst case, resonant vibration conditions between the site and the structure.
Harmonic ground motion periods of 0.75, 1.25 and 1.75 seconds, corresponding to a fre-
quency ratio (B = wg/wg = TJT,) range from roughly 0.72 to 1.67, were considered. The
frequency ratio B is commonly used to examine the steady-state response of systems sub-
jected to harmonic loading. Harmonic acceleration amplitudes (Ap) of 0.02g, 0.11g and
0.20g were considered. This range of harmonic ground motion parameters can be displayed
in the Ty— A, plane as shown in Figure 3.6. Each point in this plane defines a harmonic
ground motion, and a series or "sweep” of harmonic earthquake analyses, performed at a
grid of these points can be used to assess the sensitivity of the structure to harmonic ground
motions. It should be noted that the maxima of various structural response parameters can
be plotted above the grid points in the T;— A plane resulting in a three-dimensional spec-

tral surface.

The instantaneous application of large amplitude harmonic ground motions to an ine-
lastic structural model can result in a bias in the steady-state displacement response of the
system. The bias is caused by plastic deformations in structural elements producing a tilt
in the frame as a result of the sudden application of the load with initial vibration condi-
tions which do not correspond to the steady-state conditions. In order to eliminate the bias
from the computed steady state displacement response, the harmonic ground acceleration
was increased gradually over the first several vibration cycles to the maximum amplitude,

A,. Analyses conducted at each of the grid points generally indicated that the use of five
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or six build-up cycles was sufficient to eliminate the bias tendencies. A build-up harmonic

wave form used in the analyses is illustrated in Figure 3.7.

A steady-state is obtained when the response of the system for one vibration cycle
becomes essentially indistinguishable from that of the previous cycle. The analyses indi-

cated that in general, a stable steady-state response is obtained after only a few vibration

cycles at the maximum load amplitude.

3.2.2.1. MDOF Response

Inelastic dynamic analyses were conducted on the ten story frame utilizing the pro-
gram DRAIN-2DX [1]. Equilibrium was maintained in the MDOF structural model by

implementing an event-to-event analysis procedure [2]. The following assumptions were

employed in the analyses:

a) The structure was idealized as an assemblage of two-dimensional beam-column ele-

ments, capable of yielding only at plastic hinges at the element ends.
b) Beam axial deformations and all shear deformations were neglected.
¢) Axial force - bending moment interaction was considered in all column members.
d) 50 kip story weights and a 30 kip roof weight were assumed.

e) P-A effects were accounted for by using the geometric stiffness associated with a two-

dimensional truss element.
f) 1.0 % strain hardening in steel was assumed (E=30000 ksi).
g) 5.0 % of critical damping was assumed for dynamic response analysis.
h) Lumped static gravity loads were applied to the frame to simulate the initial state of

stress in the column elements prior to the application of dynamic or static lateral

loads.

The inelastic dynamic analyses conducted to obtain the steady-state response of the frame

subjected to a range of harmonic ground motions were organized as follows:
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1)  Select the harmonic ground motion parameters Ag and T

2) Perform harmonic earthquake response analysis to obtain the steady-state response of

the MDOF system.

3) From the steady-state response, obtain the displacement response, the base shear

response and the vibration shapes.

3.2.2.2. SDOF Response

Several inelastic static analyses were conducted on the frame utilizing DRAIN-2DX
[1]. The applicable assumptions from the dynamic analyses were also implemented for the
static analyses. The static analyses were applications of the iterative shape improvement
method (Appendix D) to obtain the vibration shape for the SDOF system. The converged
static analysis results are presented in Figure 3.8. Once the approximate vibration shape
and base moment resistance characteristics were established, the transformations presented
in Section 3.1.2.2 were implemented to relate the MDOF system to an equivalent SDOF
system represented dynamically by an inverted pendulum oscillator (as shown in Figure

3.2). The properties of the equivalent SDOF oscillator are shown in Table 3.1.

The steady-state response of the bilinear SDOF oscillator subjected to harmonic earth-
quake loading can be obtained using various procedures [29,31,32,34,44]. In this investi-
gation, the response was obtained by considering the rotational equilibrium of the oscillator
subjected to harmonic base motion;

MB(t) + Ci(t) + Rg(8) = R sin (%‘- )
g

The base moment resistance term Rg(8) of a bilinear system is shown in Figure 3.9. The
instantaneous base resisting moment can always be expressed as a linear function of the
rotation 0;

Rg(8) = K; 6 + R;
where K; is the instantaneous stiffness and R; is the corresponding moment intercept (see

Figure 3.9) Making this substitution results in the following equilibrium equation;
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Progression of Deflected Shape in Final Iteration
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Figure 3.8 Iterative Shape Improvement Resuits for 2-D Frame



TABLE 3.1 EQUIVALENT SDOF PROPERTIES FOR 2-D FRAME
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Property Value Units

K, 19,016,040 kip-inch/md‘
K, 0.04 x K, kip-inch/rad
M, 150,870 kip-inch

Xy 7.1 inches

3 5.0 (%)

W, 375.0 kips

h, 888.6 inches
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Figure 3.9 Bilinear Base Moment vs. Rotation Relationship
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M8(t) + CB(t) + K; 6(t) + R; = R sin (-?rl )
g

A general closed form solution to this second order differential equation can be obtained
using conventional methods [79]. An algorithm which monitored the progression of the
closed form solution at discrete time intervals was used to obtain the steady-state response
of the oscillator. An event-to-event strategy was used to detect state changes (yielding and
unloading) during time steps. Equilibrium was maintained by updating the stiffness and
moment intercept at each state change. The vibration conditions that exist at the time of
each state change are used as the initial conditions for the next phase of the solution. In
this fashion, the evolution of the response is obtained by properly linking a series of exact
solutions resulting in a pseudo-exact numerical solution procedure. It should be noted that
the solution can also be obtained using various numerical integration procedures [5,47].

The SDOF analyses were organized as follows:

1) Obtain the approximate bilinear moment resistance relationship and the approximate

vibration shape for the SDOF oscillator.
2)  Select the harmonic ground motion parameters A, and T,

3) Perform harmonic earthquake response analysis to obtain the steady-state response of

the equivalent SDOF system.

4) Transform the SDOF results to obtain the displacement response and the base shear

response.

3.2.2.3. Correlation of MDOF and SDOF Response

The correlation of the results from the harmonic analyses of MDOF structural
representations and their equivalent SDOF representations can be used to assess the accu-
racy of SDOF procedures and to determine the range of harmonic ground motion parame-
ters over which such sixhple represenmﬁons are applicable. Figures 3.10 through 3.18
present comparisons of steady-state roof displacement response computed with the MDOF

and SDOF models at each of the grid points in the T; - Ag plane. The steady-state base
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shear response is compared in Figures 3.19 through 3.27. The following observations can be made
regarding the steady-state response of the MDOF and SDOF systems;

1) The MDOF and SDOF steady-state displacement response is in relatively good agree-

ment at all points in the T, - A; plane.

2) The MDOF and SDOF base shear response is in good agreement for all points in the
Tg - Ag plane for which Ty = T,. The correlation of maximum base shear response is
particularly good for Ty - A, combinations which induced nonlinear behavior (T =
1.25 seconds, Ay = 0.11g; T; = 1.25 seconds, Ag = 0.20g, and T; = 1.75 seconds,
Ag = 0.20g)

3) The base shear response of was over estimated by a factor of approximately four for
all of the analyses in which T; = 0.75 second. It should be noted that in all of these

cases, the response of both the MDOF and SDOF systems was linear.

The poor correlation of the base shear response computed for the MDOF and SDOF
systems at T, = 0.75 second is a result of the participation of the second mode (which has
a vibration period of T; = 0.46 seconds). The steady-state base shear response computed
using superposition of the first and second elastic mode shapes of the system is indistin-
guishable from the response computed for the MDOF system. For this structure, harmonic
earthquake loading at T; =0.75 second represents dynamic loading at a period approxi-
mately midway between T; = 1.25 seconds and T, = 0.46 seconds, and hence, both
- modes can be expected to participate in the response. For this combination of Tg, T; and
T, (B1 = 1.67 and B, = 0.617), the amplitude of the dynamic base shear (which is pro-
portional to the square of the vibration frequency) from the second mode is roughly 20%
larger than that of the first mode, and because B, and B, straddle the resonance point and
the corresponding phase transition near § = 1.0, the response of the second mode is
roughly 180 degrees out-of-phase with that of the first mode. The superposition of the
response of the two modes results in significant cancellation of the steady-state base shear,

explaining why the SDOF system provides a poor representation of the base shear rééponse
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in this frequency range. Analyses of the MDOF and SDOF systems at T, values between

0.75 and 1.25 seconds indicated that for Ty < 1.125 seconds, the influence of the second

mode on the base shear response could not be neglected. The steady-state base shear

response of the MDOF and SDOF systems at T, = 1.125 seconds are shown in Figures

3.28 through 3.30. It should be noted that for this combination of Ty, Ty and T; (B =

1.11 and B, = 0.412), the amplitude of the dynamic base shear from the second mode is

only about 13% of that of the first mode.

A general procedure for determining the T, range between T; and T, over which

SDOF harmonic analysis can be used to estimate the steady-state base shear response of a

MDOF system is outlined as follows:

1)
2)

3)

4

5)

Obtain the vibration periods T; and T,.

From T; compute 8 and B,.

Use B, and B, to determine the dynamic amplification of the first and second modes
and resolve the modal amplitudes to obtain modal base shear amplitudes V1 and V.
If V; >> V,, the second mode effect can be neglected.

If V; and V, are of the same order, the second mode effect cannot be neglected. It
should be noted that for moment resisting frame systems, a general rule of thumb is
that T, = T,/3 while for braced frames or shear wall systems, T, = Ty/5 to T,/7.

This indicates that SDOF harmonic analyses may be applied over a wider B range for

braced frame and shear wall systems than for moment resisting frame systems.

Once the range of applicability of the SDOF harmonic analysis is established, the

dynamic structural response within this range can be reasonably estimated using SDOF pro-

cedures. Figure 3.31 illustrates how SDOF analysis can be used to assess the structural

response of T, - A, grids that are much finer than the nine point grid shown in Figure 3.6.
g~ g8
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3.2.3. Extension to Other Two-Dimensional Systems

The procedures used to obtain the vibration shapes for MDOF to SDOF reduction are
based on physically reasonable assumptions regarding the distribution and amplitude of the
inertia forces, and hence can also be applied to the analysis of more general two-

dimensional building systems.

One fundamental difference between the analyses of different types of two-
dimensional systems is that the vibration shapes used for MDOF to SDOF reduction are
different for various systems. Figure 3.32 shows examples of qualitative vibration shapes

obtained for moment resisting frame systems, shear wall systems and base isolated systems.

Another difference between the analyses of various two-dimensional systems is the
manner in which the systems resist lateral forces. The essential requirement for the simpli-
fied SDOF analysis is that the resistance of the system can be represented using a bilinear
model. Well designed lateral force resisting systems will resist moderate earthquakes
without sustaining any damage and withstand major earthquakes undergoing controlled
structural yielding without actually collapsing. This implies that the use of a bilinear resis-
tance function, which qualitatively represents the damaged and undamaged states, is appli-

cable for modeling well designed lateral force resisting systems.

3.2.4. Extension to Three-Dimensional Systems

Because the procedures to obtain the vibration shapes for simplified SDOF analysis
are based on physical reasoning regarding the amplitude and distribution of the inertia
forces, it is logical to extend the procedures to the analyses of general three-dimensional
systems. Perhaps the most rational way to establish the vibration shapes for MDOF to
SDOF reduction for three-dimensional systems is to observe that earthquake ground
motions tend to excite the lowest modes of structural response, resulting in inertia forces
oriented in directions associated with these modes. Hence, as a first step, it is rational to

apply simplified analysis procedures in the principal directions of the three-dimensional
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Moment Resisting Frame Systems

Shear Wall Systems

Base Isolated Systems

Figure 3.32 Qualitative Vibration Shapes for 2-D Systems
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system. The principal directions are established by computing the elastic mode shapes of a
simple elastic model of the structure. Three-dimensional building systems with several
hundred displacement DOF can be investigated using a rigid diaphragm assumption and
lumping three components of mass (two horizontal translational DOF and a rotational
DOF about the vertical axis) at each story level. A simplified three-dimensional buiding
model is illustrated in Figure 3.33 As discussed in [76], each mode shape of the elastic
system can be considered to be the deflected shape due to a set of static loads. Hence, six
base reaction forces (three base shears and three base moments) can be computed for each
mode shape. Note that the six modal base reactions can be resolved to obtain an effective
inertia force acting at an equivalent height and radial distance. Modes with a large radial
distance have a large torsional component, while modes with a large effective height contri-
bute to the overturning of the structure and modes which have a low effective height con-
tribute mainly to the base shear. The orientation of the resultant horizontal base shear
force provides a unique definition of the direction for each mode shape. Based on this
observation, it is possible to deﬁne the principal directions of the structure in the directions
of the base shear reactions for the two lowest modes of structural vibration [76]. These
directions qualitatively represent the most flexible directions of the three-dimensional sys-

tem.

Once the vibration shapes and structural resistance are established, the coordinate
reduction and equivalent SDOF analysis procedures are identical to the procedures applied
to two-dimensional systems. The only additional difficulty arises from the fact that the
orthogonality conditions associated with the principal directions of the structure will be
effected by the onset of nonlinear behavior. Therefore, the influence of loading in one
principal direction on the inelastic displacement response in the other principal direction

must also be examined.

The simple three-dimensional structure shown in Figure 3.34 can be used to demon-

strate the application of the SDOF analysis procedure to three-dimensional systems. The
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Figure 3.33 Rigid Diaphragm Model for 3-D Buildings
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121



122

building is a six story system consisting of four identical one bay frame substructures. The
frames are arranged to provide equal lateral force resistance in the X and Y directions.
Since the out-of-plane stiffness of the frames is negligible, each frame is capable of resisting
only in-plane forces. Thus the structure is simplified to a three-dimensional system of
two-dimensional frame substructures. The L shaped plan of the slab connecting the frames
insures a dynamic eccentricity, resulting in the mode shapes of the building having a true

three-dimensional character.

The building was first analyzed using the SAP89 [73] computer program for linear
three-dimensional response analysis. The following assumptions were employed in the
analysis:

a) The structure was idealized as an assemblage of three-dimensional elastic frame ele-

ments.
b) 190 kip story weights and a 110 kip roof weight were assumed.
c)  All shear deformations were neglected.

d) All of the nodes at a story level were slaved to a master node, enforcing a rigid
diaphragm assumption. This resulted in three dynamic DOF per story for a total of
18 dynamic DOF. Each master node was located eccentrically with respect to the
story center of gravity (eight inches of eccentricity in the X and Y directions) to aug-

ment the three-dimensional behavior of the system.

The first six vibratioh mode shapes and frequencies of the structure were computed. The

resulting modal vibration properties are presented in Table 3.2.

Once the elastic mode shapes of the frame system were established, static collapse
analyses using rectangular and triangular lateral force patterns were conducted in the prin-
cipal directions of the three-dimensional system. The computer program 3DSCAS [36] was
implemented to conduct the inelastic static analyses. The following assumptions were

applied in the analysis;



TABLE 3.2 MODAL RESULTS FOR 3-D SYSTEM

Base Shear Base Shear

Period Reaction Reaction Angle Height Radius
Mode (sec) Factor (X) Factor (Y) (deg) (inches) (inches)
1 0.878 0.568 0.823 -55.4 600.0 287.6
2 0.871 0.823 -0.568 34.6 599.8 576.9
3 0.488 0.574 <0.819 -55.0 580.3 3565.0
4 0.289 0.551 0.835 -56.6 3.93 301.9
5 0.287 0.835 -0.551 334 441 561.0
6 0.163 0.609 -0.793 -52.5 4.27 2963.7
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a)  The structure is idealized as a system of two-dimensional frames, each an assemblage
of two-dimensional beam-column elements, capable of yielding only at plastic hinges

at the element ends.
b)  All shear deformations were neglected.

c) All of the nodes at a story level were slaved to the master node, enforcing a rigid
diaphragm assumption.

d) Axial force - bending moment interaction was considered in all column members.

e) 190 kip story weigh‘ts and a 110 kip roof weight were assumed.

f)  P-A effects were accounted for by using the geometric stiffness associated with a two-

dimensional truss element.
g) 1.0 % strain hardening in steel was assumed (E=30000 ksi).

h) Lumped static gravity loads were applied to the system to simulate the initial state of

stress in the column elements prior to the application static lateral loads.

The base shear resistance versus lateral displacement relationships obtained from the ana-
lyses in the principal directions are shown in Figures 3.35 and 3.36. It should be noted
that in general, the base shear versus lateral displacement relationship in a given principal
direction may be unsymmetric, and hence must be established by analyses in both the posi-
tive and negative principal directions. Figure 3.37 illustrates the location of the roof mas-
ter node in the X - Y plane for (positive and negative) rectangular loading in the principal
directions. Figure 3.38 presents the absolute value of the response angle in the X - Y plane
as a function of the base shear amplitude for rectangular loading in the principal direc-
tions. Both Figures 3.37 and 3.38 illustrate the range of displacements (or lateral forces)
over which the response in one principal direction does not influence the response in the
other principal direction (i.e., the range over which it is possible to estimate the MDOF
response using a SDOF representation). The onset of effective yielding of the frames
oriented in the X and Y directions is illustrated in these figures as a discontinuity in the

displacement response path. It is possible that for more realistic three-dimensional syStems
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with a higher degree of redundancy, the effective yielding of frames with a given orienta-
tion would be less pronounced, which in turn would tend to increase the range over which

the directions of the linear and nonlinear response are coincident.

It can also be argued that if the system were excited in uni-modal vibration in either
of the first two modes, the inertial forces would provide a stabilizing or guiding influence,
tending to maintain vibration in the principal direction, even after the onset of yielding in
the frames oriented in the X and Y directions. The stabilizing influence of the inertial
forces on the nonlinear vibration can be estimated by applying the static lateral loading
with the constraint that the response of the structure remain oriented in the principal direc-
tions. This was accomplished by first relocating the story master nodes at a large radial
distance (800 ft) away from the center of gravity of the stories along one of the principal
directions. The master nodes were then restrained from translation in the X and Y direc-
tions. Triangular or rectangular moment patterns applied about the vertical (Z) axis at the
master nodes located eccentrically along one principal direction produce the static
equivalent of triangular or rectangular lateral force patterns oriented in the other principal
direction. The rigid diaphragm between the master nodes and the structure constrain the
system response to a circular arc tangent to either principal direction. Because the eccentri-
city is large with respect to the largest plan dimension of the building (a factor of ten was
selected), the circular arc is essentially a straight line. Figures 3.39 through 3.42 provide a
comparison of the base shear versus lateral displacement in the principal directions for tri-
angular and rectangular load patterns induced by forces at concentric master nodes and by
moments at eccentric master nodes. It is important to observe that the effective yielding
strengths induced by the mon;ent patterns applied at eccentric master nodes are roughly 10
to 15% larger than the corresponding effective yielding strengths induced by the force pat-
terns applied at concentric master nodes. The post-yielding stiffness obtained with the
moment induced loading are observed to be slightly larger than the post-yielding stiffness
obtained with the translational force patterns. The strength and post-yielding stiffness

increases observed when the lateral loads are induced by moments at eccentric master
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nodes are the result of a more uniform distribution of yielding between the frames oriented

in the X and Y directions.

Based on the discussions presented in Section 3.1.2.2 and in Appendix D, it is rea-
sonable to assume that the MDOF response to the actual dynamic lateral force distributions
acting on the system in the principal directions can be approximated by the static response
to either triangular or rectangular lateral load patterns. It is aslo reasonable to assume that
for a given lateral force pattern, the MDOF dynamic response would lie somewhere
between the static response induced by moments at eccentric master nodes and that

induced by concentric force patterns.

3.2.5. Design Evaluation Based on Harmonic Analyses

As previously discussed, a pure harmonic seismic loading can be used to obtain upper
bounds on the cyclic response demands placed on structures subjected to "harmonic type”
ground surface motions frequently observed at soft soil sites. The use of pure harmonic
earthquake loading neglects the complex nature of earthquake loading but provides an
attractive simplification wherein the earthquake is completely defined by the acceleration
amplitude A; and the vibration period T,. For seismic design applications, it is important
to establish measures of structural response which can be used to assess the performance of
various designs. Typically, structural response is quantified by examining various peak
response parameters [43,44] or the energy balance in the structural system [68]. The use of
harmonic earthquake loading simplifies the assessment of the structural response since the

response is entirely contained within a single cycle of steady-state vibration.

Conventional earthquaké response spectra are plots of the maximum response (dis-
placement, velocity, acceleration, ductility, etc.) of a SDOF structural representation sub-
jected to a specific earthquake motion as a function of the elastic vibration frequency (or
period) of the structure. As discussed in [13], it is common to subdivide earthquake
response spectra into three distinct period regions; the short-period region where tl'!e max-

imum response is controlled by the maximum ground acceleration, the medium-period
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region where the maximum response is controlled by the maximum ground velocity, and
the long-period region where the maximum response is controlled by the maximum ground

displacement.

In evaluating the response of a given structure to harmonic ground motions of a given
amplitude, it is convenient to present plots of various response maxima as a function of the
harmonic excitation frequency (or period). Harmonic spectra of this form differ from con-
ventional earthquake response spectra in that they present the response maxima of one
SDOF structure subjected to a range of harmonic earthquake motions as opposed to
presenting the response maxima of a range of structures (defined by the elastic vibration
periAod) excited by a single earthquake excitation. In situations where the predominant
period (Tp) of the expected "harmonic type" site response is close to a natural period of
structural vibration (T), a sweep of harmonic earthquake analyses at frequency ratios (B
= TJTg) in the vicinity of = 1.0 can provide estimates of the structural response at or
near resonant vibration conditions. Considering B values well above and below 1.0 can be
useful in estimating structural response to relatively short and relatively long period ground

motions.

The response maxima from a series of harmonic analyses over a range of Tg and A
can be examined using two-dimensional spectra wherein the spectral ordinates are
presented as a spectral surface above the T;— A, plane. As an example, Figure 3.31 shows
a three-dimensional perspective plot of the maximum ductilities obtained from harmonic
analyses of a SDOF oscillator system at a grid of T;— A, points. Alternately, a topograph-
ical plot of this spectral surface showing contours of equal ductility (as shown in Figure
3.43) can be used to determine the ductility demand corresponding to a given harmonic
ground acceleration amplitude. Sﬁch plots can be useful in determining if the response
demands associated with a given harmonic earthquake can be accommodated by the struc-

ture and the structural members.

Various procedures have been developed to evaluate seismic designs based on an
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energy balance between the structure and the earthquake excitation. It is important to note
that different expressions for earthquake input and kinetic energies result depending if the
energy balance is developed using a relative or absolute formulation of the dynamic equili-
brium equations [68]. The use of an absolute energy balance formulation is advantageous
because it represents the earthquake input energy as the work done by the total shear at
the base of the structure moving through the base displacement rather than as an
equivalent lateral force moving through the relative structural displacements. In any case,
the fundamental idea behind energy based procedures is that the energy dissipation and
absorption supply of the structure must exceed the energy dissipation and absorption
demands associated with the seismic loading. For the special case of steady-state vibration
under harmonic earthquake excitation, the energy balance of the system can be evaluated
on a "per cycle” basis. As an example, the area contained in a steady-state hysteresis loop
represents the hysteretic energy dissipated during a steady-state vibration cycle. Moreover,
normalizing the cyclic energy quantities by the vibration period Ty provides an estimate of
the mean rate at which the energy quanti_ties evolve. Examining the evolution of various
energy quantities over a steady-state cycle can provide a means of assessing the energy bal-

ance as a function of the frequency ratio 8.
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CHAPTER 4

SOIL-STRUCTURE INTERACTION ANALYSIS

Soil-structure interaction (SSI) is one of the most widely studied phenomena in earth-
quake engineering. It is an important subject because the earthquake response of struc-
tures can be influenced significantly by the properties of the soil profile upon which they
are founded and by the feedback mechanisms that can exist between the soil and the struc-
ture. The fundamental idea behind seismic SSI analysis techniques is that the structure
and the soil site upon which it is founded form a combined dynamic system which
responds to earthquake excitation. One of the most important considerations in SSI
analysis is the potentially dangerous modifying effect of the site on the seismic waves as
they propagate from the base rock to the ground surface (the bedrock motions in Mexico
City were amplified by a factor of approximately five). Neglecting the seismic energy dissi-
pated by the site can give rise to larger lateral forces, base shears and overturning moments
which in turn could result in overly conservative elastic seismic designs. Another impor-
tant consideration in SSI analysis is the interaction at and near the soil-structure interface
which is influenced significantly by the foundation flexibility and the relative mass of the
structure. Rocking behavior at the foundation level is known to increase the .vibration
period and frequently the damping in the structure’s fundamental translational vibration
mode(s) without greatly affecting the higher modes [48]. The increased vibration period is
of particular concern for structures whose fixed base period is slightly below a large peak in
the site response spectrum (for example, just below the peak near 2.0 seconds in the SCT
pseudo acceleration spectrum shown in Figure 2.12). For such systems, an increased fun-
damental period could result in a dramatic increase in seismic excitation amplitude. Rock-

ing behavior tends to magnify P-A effects and also tends to straighten the vibration shape
| of the fundamental translational mode(s) which results in a more triangular distribution of
horizontal accelerations [48]. This observation may be important if simpliﬁe§ static

analysis procedures are implemented to approximate seismic inertia force effects.
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Many sophisticated SSI analysis procedures have been developed to account for
numerous SSI phenomena; [6] provides an excellent overview of various SSI analysis pro-
cedures including general methods which consider structural embedment, arbitrary soil pro-
file, foundation flexibility, spatial variation of the free-field motions and nonlinear
behavior. It should be noted that rigorous SSI analysis procedures are typically only imple-
mented for very important structures such as dams or nuclear power plants. The complex
nature of the modeling and formulation of SSI analysis problems and the prohibitive costs
associated with such analyses are the primary reasons why SSI analyses are not routinely

utilized in seismic analysis for design of typical building structures.

In this chapter, the equations of dynamic equilibrium for soil-structure systems
modeled using conventional SSI analysis procedures are presented. Simplified SSI analysis
modeling procedures, which account for the effects of site response and foundation flexibil-

ity, are then discussed and illustrated for a simple soil-structure system.

4.1. General Equations of Motion

The dynamic equilibrium equations of interacting soil-structure systems depend on
the modeling approach implemented. Various modeling approaches can be utilized to con-
duct SSI analysis, for example, the soil and the structure are modeled together as a
dynamic system and the response of the combined system to base rock motions applied at
the rock-soil boundary is computed. In another approach, the soil and the structure are
modeled together and the response of the combined system to free-field motions (the
motions which would result, in the absence of the structure, from the site response due to
base rock motions) applied at'the soil-structure interface is computed. Various substructure

modeling approaches can also be employed.

A combined soil-structure system to be analyzed for base rock motions applied at the
soil boundary is shown schematically in Figure 4.1. As shown in the figure, the structure
is idealized using a lumped mass system of structural finite elements and the soil profile is

discretized as a mesh of soil finite elements. Note that the soil mesh is selected _so"that
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nodes are located coincident with the structural supports, forming the soil-structure inter- ‘
face. As developed in [11], the dynamic equilibrium for a discrete linear system which
may have different support motions is:

M U(t) + C U®M) + KU(t) = — (Mr + M,) U(t) 4.1)
The terms on the left hand side are the finite element property matrices and state vectors
for the combined soil-structure system. The terms on the right hand side of the equation
represent the earthquake load vector in which M is the MDOF lumped mass matrix, r is
the static influence matrix, M, is the mass coupling matrix which expresses the forces
developed in the active DOF resulting from different base accelerations, and ﬁ,(t) is the
vector of base rock accelerations at the soil boundary. If the effect of different support
motions is not considered, the base rock mass coupling matrix (M,) is dropped from the
earthquake load vector. It should be noted that for nonlinear systems, the term K U(t) on

the left hand side can be replaced by the vector of static resisting forces, Rg(U).

In order to simplify subsequent derivations, the time dependence of the vectors, up to
this point denoted by (t), will be implied (i.e., U(t) = U). As illustrated in Figure 4.1, the
dynamic DOF’s (U) of the combined soil-structure system can be partitioned into DOF
associated with the base rock motions U,, and the combined soil-structure DOF, U.. The
combined soil-structure DOF can be further partiioned into DOF associated with the
building Uy, the building-soil interface U, and the soil U;. Following the free-field (or
added motion) procedures outlined in [11], the equilibrium equations of the soil-structure
system can be manipulated such that the effective earthquake load vector is a function of
only the free-field motions of the contact DOF (U,) at the soil-structure interface. The fol-

lowing notation is employed:

M, C, and K are the property matrices of the soil system without the added structure

ﬁ‘c, ch and U, are the total free-field motions which would result at the site in the

absence of the structure
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M,, Cy, and K, are the property matrices of the added structure

Ut, UL, and Ut are the total (absolute) added or interaction motions which reflect the

difference between the total motion of the combined system and the free-field motion

The combined displacement vectors are partitioned as follows;

Ut ) 0 ‘
Ut = (éé U= | U, 4.2)
S Us

while the combined mass, damping and stiffness matrices can be presented in the following

form (presented here for the mass matrix only);

M= | Mg Mg 0 =[0"g] 4.3)
0 0 OJ
and
M, = 31;? 1\'2 =|00 4.4
(4 g8 s = 0M ()
0 M, M, | s

If the soil DOF are augmented to include the DOF at the boundary between the base rock

and the soil system, the free-field equations of motion are;

My M, rc,,x. ¢l o], [Rs B TG
] B (& &l (B (£ [E]- 11 @
The first matrix equation can be written as;
M. U, + G U, + Rg U, = - Mg U, - €, U, - R U, (4.6)

where the right hand side is the earthquake load vector corresponding to the input motions
at the rock-soil interface. When the building is superimposed on the soil, the properties
and motion on the left hand side are modified by the added building motions while the
input motions at the base rock level remain unchanged. The equilibrium equation of the

combined soil-structure system subjected to rock motion input is:
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= -M. U, -C. U
which can be manipulated into the following form;

{Mc'l'Mc] {’ﬁﬁ ﬁg}+ {(':c+ Cc] {i'lc+ ﬁg}+
U, - K, U

[Kc-x- Kc} {ﬁc+ Ug}

[Mc+ M, } Ut + [(’:c+ Cc}iJ§+ {Kc+ KC]U},»

= M. U.-C. U - KT, (4.8)

The right hand side of this expression can be reduced to;
=[ﬁ: U+|rgbg ?J+hlébg]|[') (4.9)

| 0 J ’ l (fg | - l (fg ’ .

resulting in an earthquake load vector that is a function of only the free-field motions at
the soil-structure interface. If the structure is embedded in the soil, different interface
DOF will have different free-field motions, requiring the solution of a scattering problem
[6]. Note that the earthquake load vector obtained with the formulation presented in
Equation (4.9) requires the free-field velocities and displacements which must be obtained
by integrating the free-field acceleration record. This inconvenience can be eliminated by
expressing the added displacement response U! as the sum of the relative and pseudo-static

components [11];
Ul = U, + r0, (4.10)
where the influence matrix, r. is defined as;

rc.-—-—[f(c+l(c}‘1[
L

The pseudo-static motion represents the motion of the combined system produced by the

Ié:: ] (4.11)
o |

free-field displacements imposed at the contact DOF when dynamic effects are neglected.
If the damping proportional part of the earthquake load vector (which is typically quité
small relative to the mass proportional part) is neglected, the equilibrium equation can be

expressed with the following simplified formulation;
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Mo+ M |G+ [ecrc ] o+ [+ k]

. bg 7.

_ {Mc+ Mc]rc+ Mgg] IUg (4.12)
[ 0

If it is assumed that the free-field motions are the same at all contact DOF, the resulting

pseudo-static displacements reduce to rigid body motions, and Equation (4.12) reduces to;

[Mc+Mc}ﬁc+ [(':c+ Cc}ﬁc-i- [f(c+ KC]Uc

'f My |
l 1\; | (4.13)

4.2 Simplified Methods

As previously discussed, the complex nature of the modeling procedures and the
problem formulation associated with SSI analysis has resulted in an extremely limited appli-
cation of SSI analyses for seismic design of typical building structures. However, when the
uncertainties associated with earthquake motions and the uncertainties associated with the
material properties of the soil and the structure are considered, it can be argued that
rigorous SSI analysis procedures are unduly complicated and the results of such analyses
are of questionable value. With this in mind, it may be possible and desirable to imple-
ment simplified SSI analysis methods which attempt to capture the most important features
of the response of soil-structure systems. The basic motivation behind the use of simplified
SSI procedures is that the level of sophistication of the analysis should be compatible with

the uncertainties of the input motion and the system material properties.

Because rigorous SSI anélysis methods treat the building and the site as a combined
dynamic system, they implicitly include; the site response, the structural response, the
influence of the site on the structural response and the influence of the structure on the site
response. The two most important characteristics of the earthquake response of soil-
structure systems are, 1) the dynamic response of the soil profile, and 2) the effect of the

soil (foundation) flexibility on the structural response. In this section, simplified
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procedures which attempt to include the effects of site amplification and foundation flexi-

bility are discussed.

For very massive structures, such as dams or nuclear power plants, the earthquake
motions which develop at the soil-structure interface are likely to be significantly different
from the motions which would develop in the absence of the structure. For typical build-
ing structures, which are far less massive then dams or nuclear power plants, the structure
has a much smaller, more localized influence on the response of the site, which is typically
assumed to be negligible. This is a reasonable assumption, since the volume (or mass) of
the soil (which is essentially solid) far exceeds the volume (or mass) of the structure (which
is mostly open space or "voids") in the combined soil-structure system. In fact, the net
overburden effect of a building is often no greater than that of small soil berm at the
ground surface. Based on this observation, and considering the stochastic nature of earth-
quake ground motions, it is reasonable to use the free-field motions directly as input to the
structural model. With this approach, it is possible to obtain the seismic input for the
structural model from separate site response analyses, from previously recorded accelero-
grams, or from artificial earthquake records compatible with a site specific response spec-

trum.

Perhaps the best simplified procedure to account for the effect of foundation flexibil-
ity on the structural response is the so called "massless foundation method” [10,25], which
implements the free-field formulation. This method was developed based on the observa-
tion that although the property matrices and state vectors on the left hand side of Equation
(4.13) involve the DOF of the combined soil-structure system, the earthquake load vector
on the right hand side does not involve any of the mass associated with the soil DOF. The
matrix formulation of the massless foundation method is illustrated in Figure 4.2 for an
undamped soil-structure system. It is evident that this procedure neglects the effect of soil
mass at the soil-structure interface (i.e., the terms in Mgg are negligible relative to the

terms in M) but includes the effect of soil stiffness (or flexibility) at the soil-structure
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Mpp Mpg Kpb Kpg
) - ) -
Mgp Mgg Kop Kgg
[ M N ] B ~ ~/ ]
~ 71 _ | Veg Megs ~ Kog Kgs
M| = ~ ~ Ks| =1 w
Mgg Mgss | Ksg Kss
Consistent Formulation:
) e aF - -
M, |0 [Ty [Kb ] 0 || Up bg |
0 Mgii| U 0 Ks||| U 0

Figure 4.2 Illustration of Massless Foundation Formulation.
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interface (i.e., the terms in Kgg are significant relative to the terms in Kgg). Thus, the
method is physically analogous to including massless foundation sprihgs at the interface

DOF, as illustrated schematically in Figure 4.3.

An experimental and analytical in\;estigaﬁon of a thirty story condominium building
[66] indicated that a flexible foundation model did provide better correlation with experi-
mental results. However, very little structure-foundation interaction was observed. Flexi-
ble foundation models were also shown to provide good agreement between analytical and
measured vibration periods for both free-vibration and aftershock tests conducted on a
multi-story building in Chile after the March 3, 1985 earthquake [71]. Analytical sensi-
tivity studies [25] of a two-dimensional, ten story, one bay frame (similar to the frame
investigated in Chapter 3) founded on soft soil compared the results of a fixed base system
with systems which included various foundation extents. These studies indicated that, as
expected, interaction effects were not significant and were mainly manifested by a slight
increase in the vibration periods. Similar sensitivity studies [25] conducted on a gravity
dam which was the subject of previous experimental and analytical investigations [10],
compared the response spectrum analysis results obtained using a massless foundation for-
mulation with those obtained using a consistent formulation. The study indicated that for
this structure (where soil-structure interaction effects are significant) the massless founda-
tion method provided an excellent approximation of the periods of the first and second
modes of the system but tended to underestimate the periods of the higher modes. How-
ever, since soil-structure interaction effects are most significant in the low modes, the base
shears and top displacements computed with the massless foundation method were essen-

tially the same (within 4%) as those computed using the consistent formulation.

These results indicate that the massless foundation formulation can be used to
account for the effect of foundation flexibility and provides an excellent approximation to
the more rigorous, consistent formulation. For soils that can be idealized as a homogene-

ous elastic half-space, springs which represent resistance of the half-space to the transla-



148

g-4 uondag

WIISAS 3.UNJINIIS-]10S [BUOISUWI(]-E JO INBWIYIS €' 31nB1y]

V-V uondag




149

tional and rotational DOF of a rigid circular plate (foundation) supported at the surface
[11,48] can be used to model the foundation resistance at the soil-structure interface.
ATC-3-06 [3] provides guidelines for computing the increase in the vibration periods based
on a knowledge of the foundation stiffness values. Approximate procedures can be used to
estimate the flexibility of deep foundations or foundations on piles. Even order-of-
magnitude estimates of the foundation flexibility of the structure, based on engineering

judgement, are superior to assuming that the structure is fixed rigidly at the base.

4.3. Application to Simplified Soil-Structure System

As an illustration of simplified seismic analysis including site effects, analyses were
conducted on a simple soil-structure system. The system consisted of the SCT soil profile
model investigated in Chapter 2 (Figure 2.11) and the two-dimensional frame studied in

Chapter 3 (Figure 3.5).

Linear site response analysis was conducted on the SCT site model subjected to the
first 30.0 seconds of the CUMV EW base input. The computed SCT surface acceleration
history, which has a peak ground acceleration of 0.16g, is shown in Figure 4.4, and the
pseudo-acceleration spectrum is shown in Figure 2.16. It should be noted that, aside from
some apparent higher frequency motions in the very beginning and near the end of the
acceleration history, the response is nearly harmonic with a vibration period (Tg) of

roughly 2.0 seconds and "steady-state” amplitude of slightly larger than 0.10g.

The two-dimensional frame system was assumed to be founded on a rigid, massless
foundation disk with a 25 ft radius. The soil profile was idealized as a Homogeneous elas-
tic half-space with a shear modulus equal to the weighted average of the layer shear moduli
shown in Figure 2.11. As presented in [11,48], the rotational stiffness of a circular disk on

an elastic half-space is:
Kg=27GP (4.14)
which for this system is Ky = 38,475,000 kip-inches/radian. Adding this massless founda-

tion spring to the base of the frame results in a 3% increase in the fundamental vibration
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period T; from 1.25 to 1.29 seconds.

The computed SCT surface motion was used as free-field input to the MDOF and
SDOF representations of the two-dimensional system. The analyses were conducted using
DRAIN-2DX [1] employing step-by-step, event-to-event dynamic analysis [2] as discussed
in Section 3.2.2.1. The time and amplitude axes of the near harmonic input motion were
scaled to obtain four combinations of peak ground acceleration (PGA) and predominant
site period Tg, namely; a) Ty = 2.0 seconds and PGA = 0.16g, b) Ty = 2.0 seconds and
PGA = 0.32g, ¢) T = 1.25 seconds and PGA = 0.16g and d) T; = 1.25 seconds and
PGA = 0.32g. Combinations a) and b) reflect the site vibration conditions in downtown
Mexico City, while combinations c) and d) were selected to represent resonant conditions
between the site and the structure. Figures 4.5 through 4.8 present the roof displacement
histories computed with the MDOF and SDOF models, while the base shear histories are
shown in Figures 4.9 through 4.12. The following observations can be made regarding the

correlation of the MDOF and SDOF analysis results:

1) The maximum roof displacements computed with the MDOF and SDOF representa-
tions are in good agreement. The worst agreement was obtained for Ty = 2.0
seconds and PGA = 0.32g where the SDOF maximum displacement exceeds that of
the MDOF system by roughly 20%; for all other cases the maximum SDOF and
MDOF roof displacements were within 10% agreement. The maximum base shears
computed with the MDOF and SDOF representations are reasonably well correlated

(all within 10% agreement).

2) For Ty = 2.0 seconds, the MDOF and SDOF roof displacement and base shear
response histories are poorly correlated in the last 10.0 seconds of the record, possibly
due to influence of higher frequencies in the MDOF response. For T, = 2.0 seconds
apd- PGA = 0.32g, the tilt in the SDOF oscillator response, which is the result of
plastic base rotation induced by the large yielding excursion near 17.5 seconds, is not

as pronounced in the MDOF system.
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MDOF vs. SDOF Earthquake Response
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Figure 4.9 Response to Near Harmonic Earthquake
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Figure 4.10 Response to Near Harmonic Earthquake
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3) For the cases in which T, = 2.0 seconds, the entire MDOF and SDOF roof displace-
ment histories display a very good correlation. The corresponding base shear
response histories are shown to be reasonably well correlated. It should be noted that

significant nonlinear behavior was induced in both the MDOF and SDOF models.

It is very important to observe that for this particular structure, the computer execu-
tion time required to conduct the MDOF dynamic analyses was approximately 15 times
greater than the time required to conduct the SDOF dynamic analyses. The fact that the
SDOF representation provides a reasonable estimate of the MDOF response (particularly
the response maxima) for harmonic and near harmonic ground motion input with a frac-
tion of the computational effort illustrates the usefulness of simplified building response

analysis.
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CHAPTER 5

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

The work presented in this report was undertaken in consideration of the potentially
dangerous modifying effect that flexible (soft) soil sites can have on earthquake motions as
they propagate from the bedrock level to the ground surface, and the need to incorporate
site response into the seismic analysis of buildings. A further motivation was that for
structures founded on soft soil sites such as the Mexico City lake bed, it may be possible to
represent the earthquake excitations as a harmonic motion and to estimate the structural
response using simplified procedures. The emphasis of this work is on the introduction
and use of simple, physical modeling and analysis procedures which can capture the impor-

tant features of the response of soil profiles, buildings, and soil-structure systems.
The primary objectives of this report were to:

1) Present simple, efficient and easy-to-use procedures for evaluating the earthquake

response of horizontally layered soil profiles.

2) Present simplified procedures for evaluating the seismic response and performance of

building structures.

3) Review various methods of soil-structure interaction analysis and present simplified pro-
cedures for analyzing the earthquake response of building structures including site

effects.

Chapter 1 provided an introduction to the motivation and objectives of this work and
furnished a brief literature review on the topics of site response analysis, simplified build-

ing analysis and soil-structure interaction.

In Chapter 2, the topic of site response analysis was addressed including a basic
review of frequency domain procedures and the development and implementation of vari-

ous time domain analysis methods using a new one-dimensional site response analysis
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program, WAVES.

The WAVES program implements a one-dimensional, lumped mass finite element
formulation and takes advantage of the tri-diagonal nature of the one-dimensional equili-
brium equations by implementing an extremely efficient Gauss elimination solution
scheme. The program can compute the mode shapes and vibration periods, of the finite
element site model and can also conduct linear or iterative, equivalent linear site response
analysis using direct step-by-step time domain procedures. Time domain procedures can
result in slightly more efficient numerical solutions than similar frequency domain based
procedures [23] with the added advantage of being able to perform true nonlinear site
response analysis using various solution strategies. The input to the program consists of
site information (number of layers, and the layer material properties) and earthquake input
information (the user can select from a library of twenty earthquake records). Histories of
any layer response quantity (including stress, strain, displacement, velocity or acceleration)
can be requested as output. Earthquake response spectra, computed from the analytical

acceleration response of any layer, can also be obtained.

The analysis results presented in Chapter 2, comparing the results of WAVES ana-
lyses with the results measured at the SCT site, indicated that simple procedures can cap-
ture the essential features of the dynamic response of soil profiles represented as one-
dimensional systems. Both linear and nonlinear analyses predicted that the response of the
SCT site was dominated by vibration at a period of approximately 2.0 seconds. The lack
of \correlation at vibration periods above 2.0 .seconds may be the manifestation of two-
dimensional behavior in the measured results. Clearly, the use of a one-dimensional site
model is not applicable for the analysis of sites which exhibit two or three-dimensional
behavior, but they may be used (with judgement) to obtain estimates of the important

response characteristics of such sites.

Chapter 3 focused on building response analysis. An overview of conventional linear

and nonlinear analysis methods was followed by a discussion of the use of harmonic earth-
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quake motions to represent the "harmonic type" site motions frequently recorded at the sur-
face of soft soil profiles. A correlation study, which related the harmonic response of a
MDOF two-dimensional frame system with that of an equivalent SDOF representation was
then presented. The extension of simplified harmonic analysis to other two and three-
dimensional systems was then discussed followed by a section regarding seismic design

evaluation based on the results of harmonic analyses.

As a step toward a better understanding and wider use of nonlinear analysis, it is pru-
dent to begin with simple models. Approximate procedures, which are based on the
transformation of a MDOF system to an equivalent SDOF bilinear oscillator using the
results from MDOF static collapse analyses, provide a simple (and relatively inexpensive)

starting point for predicting the global linear and nonlinear response of MDOF systems.

The ground motions at the SCT site in Mexico City during the 1985 earthquake illus-
trate a near harmonic wave form. Well over forty vibration cycles at a period of approxi-
mately 2.0 seconds can be observed in the record. For buildings founded on such soft soil
sites, it may be argued that pure harmonic earthquake loading, at a frequency near the
natural site period, can be used to estimate the cyclic response demands likely to be placed
on the structure during "harmonic type" site response. The steady-state harmonic response
of linear or (nondegrading) nonlinear structural models, which is often achieved after only
a few vibration cycles, provides a condensed representation of the structural force, defor-
mation, and energy response characteristics since they are entirely contained in a single
vibration cycle.

The investigation of the steady state harmonic response of a MDOF two-dimensional
frame model with that of an equivalent SDOF representation for a range of harmonic
earthquakes indicated that the SDOF system provided a good estimate of the global dis-
placement of the MDOF system for the full range of harmonic earthquakes considered.
The steady state base shears computed with the SDOF system were accurate for all har-

monic analyses for which Ty = Ty, but for T, values less than T, the base shear contribu-
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tion from the second mode provides a cancellation effect, reducing the MDOF base shear
response amplitude relative to that of the SDOF system. It is most important to observe
that when the response amplitudes af the MDOF and SDOF systems were relatively large,
and in particular when nonlinear behavior was induced, the SDOF representation provided
an excellent approximation to the MDOF results, reducing the need for extensive harmonic

MDOF dynamic analyses.

The idea of simplified SDOF analysis procedures can be extended to the approximate
analysis of three-dimensional MDOF systems by using MDOF to SDOF transformations on
the results obtained from three-dimensional static collapse analyses in the principal direc-
tions of the structure. The relationships between the nonlinear resistance and the lateral
displacement of the three-dimensional structure obtained from lateral loading induced by
forces at concentric master nodes and moments at eccentric master nodes provide a rational

starting point for estimating the MDOF dynamic response using SDOF procedures.

The assumption of harmonic earthquake excitation simplifies the task of evaluating
the seismic performance of structural models. Harmonic spectra differ from conventional
spectra in that they present the response maxima of one SDOF structure subjected to a
range of harmonic earthquake motions, as opposed to presenting the response maxima of a
range of structures (defined by the elastic vibration period) excited by a single earthquake
excitation. Spectra from SDOF harmonic analysis can be used to rapidly assess the sensi-
tivity of the structural response to parameters such as strength, stiffness or damping ratio,

as well as the bilinear stiffness ratio of the oscillator.

In Chapter 4, a brief discussion of various methods of soil-structure interaction
analysis procedures is followed by a presentation of the conventional, free-field formulation
of the equations of motion for soil-structure systems. Simplified procedures; which attempt
to capture the most important features of the seismic response of soil-structure systems are

then suggested and applied to a simple soil-structure system.

The complex nature of the modeling and formulation of soil-structure analysis prob-
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lems and the increased costs associated with such analyses are the primary reasons why SSI
analyses are not routinely utilized in seismic analysis for design of typical building struc-
tures. However, when the uncertainty associated with the soil and structural properties and
the uncertainties associated with the earthquake ground motions are considered, it can be
argued that rigorous SSI analysis procedures are unduly complicated. The use of simple
models is often justified by the idea that the level of sophistication of the analysis should

be compatible with the uncertainty of the input and system material properties.

One of the most fundamental and commonly used simplifications is to neglect the
influence of the building on the site response (i.e., the free-field motions can be used
directly as input to the structural model). Hence, the input to structural models can be
obtained from separate site response analyses, from previously recorded earthquake

motions or from artificial earthquakes compatible with a site-specific response spectrum.

Elastic foundation deformations can be important and are typically manifested by an
~ increased fundamental structural vibration period. Depending on the spectral properties of
the structural input, an increased fundamental vibration period may increase the structural
response (as in the case of structures located at the SCT site with a fixed base period
slightly smaller than 2.0 seconds), or decrease the structural response (as in the case of
structures located at the SCT site with a fixed base period slightly larger than 2.0 seconds).
In either case, the flexibility effect can be accounted for in most building systems using the
massless foundation formulation, where the structure DOF located at the soil-structure

interface are restrained by zero mass foundation springs.

The investigation of a simple soil-structure system provided an illustration of simpli-
fied earthquake response analysis of a building including site effects. The surface response
of the SCT site model subject to the CUMV EW base input was computed using WAVES
and used as free-field input to MDOF and SDOF representations of a two-dimensional
frame system. The fact that the SDOP; representation provided a reasonable estimate of the

MDOF response with a fraction of the computational effort illustrates the usefulness of sim-



166

plified building response analysis.

5.2 Conclusions

The research presented in this report spanned the topics of simplified site response

analysis, building response analysis and soil-structure interaction analysis and attempted to

briefly highlight the most important aspects of these subjects. The simplified procedures

provided in this work can be easily understood and implemented by structural engineers

and hence can provide a step toward a wider implementation of building response analysis

including site effects. Numerous conclusions can be made regarding this study. The most

important conclusions are:

Regarding site response analysis as presented in Chapter 2;

1)

2)

Site response analysis is extremely important and should be considered, especially for
structures founded on soft soil profiles where the motions can be dramatically ampli-
fied between the bedrock and ground surface levels. As a minimum, estimates of the
fundamental site period should be obtained to check for the potential of resonant
vibration conditions between the site and the structure. The site period can be
obtained from ambient vibration tests or using WAVES models based on site boring
logs and/or measurements of the site shear wave velocity profile. WAVES can also
be used to generate site-specific response spectra based on the analytical response of

the site to an ensemble of base motion inputs.

The comparison of the results from WAVES analyses with the results measured at the
SCT site, indicates that WAVES can be used to accurately model the essential
features of the dynamic response of one-dimensional soil profiles. The program pro-
vides a simple and efficient site response analysis tool which can be of use to struc-

tural engineers and designers.

Regarding building response analysis as presented in Chapter 3;

1)

Conventional linear structural analysis procedures are well established and numerous
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3)

4)

5)
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computer codes are available an widely used by structural engineers in design prac-
tice. Linear analysis provides a rational starting point for evaluating the earthquake

resistance of various seismic designs.

Nonlinear analysis can provide estimates of the distribution of damage throughout a
structure and the ductility demands placed on a structure during severe seismic excita-
tion. Unfortunately, the complexity of nonlinear analysis has generally resulted in
only a very limited application of nonlinear procedures in conventional building
design practice. Hence, the use of simple nonlinear models based on the results of
MDOF static collapse analysis provides a sound starting point for predicting the non-
linear response of MDOF systems, especially for the evaluation of response of prelim-
inary designs.

For buildings founded on soft soil sites such as the Mexico City lake bed, the use of
pure harmonic earthquake loading, at a frequency near the natural site period,
should be considered as one critical load case to estimate the cyclic response demands

likely to be placed on the structure during "harmonic type" site response.

For the two-dimensional frame system investigated under harmonic earthquake load-
ings, the global displacement response computed with the SDOF system closely
matched that of the MDOF system for the range of harmonic earthquakes considered.
The steady state base shears computed with the SDOF system were accurate for all
harmonic analyses in which the influence of the second mode was not significant. In
cases where the response amplitudes af the MDOF and SDOF systems were relatively
large, and in particular When nonlinear behavior was induced, the SDOF representa-
tion provided an excellent approximation to the MDOF displacements and base

shears.

It is difficult to make conclusions regarding the applicability of approximate SDOF
procedures for representing the response of general two and three-dimensional struc-

tural systems based on the limited investigation presented herein. However, for the
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simple case of harmonic earthquake loading, it is reasonable to expect that trends
similar to those observed in the correlation of the global MDOF and SDOF response
(presented in Section 3.2.2.3) would also be observed in the response of other, similar

structural systems.

Regarding soil-structure interaction analysis as presented in Chapter 4;

1)

2)

3)

4)

As discussed in Chapter 2, site response can be extremely important and should be
considered, especially for structures founded on soft soil profiles. Simplified pro-
cedures can easily be implemented to model the response of soil profiles and to obtain
estimates of the surface (free-field) motions likely to be developed at the base of the

structure.

Elastic foundation deformations can be important and are typically manifested by an
increased fundamental structural vibration period. The flexibility effect can be

accounted for in most building systems using the massless foundation formulation.

For the "harmonic type" earthquake input motions considered in the analyses of the
two-dimensional frame system, the maximum roof displacements and base shears
computed using a simple SDOF representation were within 20%, and in most cases,

within 10% of those computed using a MDOF representation.

The analysis of the soil-structure system presented in Chapter 4 illustrated the impor-
tant ideas behind simplified earthquake analysis of buildings including site effects,
namely; a) site response analysis, b) massless foundation springs and c) simplified
building analysis. The efficiency and simplicity of these procedures make them use-

ful tools for evaluating the seismic response of soil-structure systems.

5.3. Recommendations

In consideration of the work presented in this report, several recommendations

regarding the earthquake analysis of buildings including site effects, as well as recommen-

dations for future research can be made:
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2)

3)

4)

5)
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Structural engineers and designers should make every effort to obtain as much infor-
mation as possible describing the properties of the site upon which a proposed struc-
ture is to be located. Useful site information includes site boring logs and soils test
results, geophysical test results, and the results from ambient site vibration tests. The
costs of obtaining this field data are easily justified when considered in light of the

potentially devastating effect of site amplification.

The site properties should be used to build simple site models, which in turn can be
used to provide a better definition of the input motions likely to develop at the base
of the structure. The site properties should also be used to obtain the stiffness of

massless foundation springs for modeling the foundation flexibility.

If the structure can be accurately represented as a two-dimensional system, then a
linear two-dimensional structural model provides a reasonable starting point for
evaluating the seismic design. However, since all structures really occupy three-
dimensions, and since easy-to-use three-dimensional linear structural analysis pro-
grams are readily available, it is recommended that a linear three-dimensional struc-
tural model be developed in the early stages of the design. The mode shapes and
vibration periods obtained from such a model give the engineer a good physical feel-
ing for the dynamic behavior of the structure, which in turn can be used to improve

the design.

A well designed structure should have a minimum amount of torsion in the three-
dimensional mode shapes associated with the lower frequencies of the structure,
which are most likely to be excited by earthquake loading [76]. As discussed in
Chapter 3, the principal directions of the structure qualitatively represent its most flex-
ible directions. It is intuitive that a well designed structure should have equal stiff-
ness in all lateral directions so that there is no tendency for the structure to be excited
in. any one particular direction.

If an estimate of the ductility demands or the distribution of damage throughout a
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7

8)
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structure are required, two or three-dimensional nonlinear dynamic analysis can be
conducted. SDOF nonlinear dynamic analysis procedures, based on the results of two
or three-dimensional static collapse analysis are recommended as a simplified alterna-

tive to MDOF dynamic analysis.

The idea that a well designed structure should have equal stiffness in all lateral direc-
tions can be extended to nonlinear response by recommending that the structure
should also have equal strengths in all lateral directions, precluding the development
of a "weak" direction when the structure is subject to severe seismic loading. Clearly,

this design objective would be difficult to achieve in practice.

More work should be devoted to the implementation and verification of simplified
nonlinear analysis methods. MDOF to SDOF transformation procedures should be
evaluated for the approximate earthquake analyses of two and three-dimensional

structures of various heights and configurations, designed using current seismic codes.

Existing structural analysis programs should be modified to include transformations
that allow for the inclusion of additional translational and rotational DOF at the base

of the structural model where massless foundation springs could be utilized.
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APPENDIX A

RAMBERG-0OSGOOD HYSTERESIS MODEL

The Ramberg-Osgood hysteresis model [51] was developed in 1943 to model the
stress-strain relationships of steel using three control parameters. In 1963, Jennings [32]
modified the relationship by adding a fourth control parameter. The model calculates
strains or deformations as an explicit function of stress or forces. As shown in Figure A.1,
the relationship is defined by two functions; one for loading on the primary curve and one

for unloading:

Loading:
d f f -
.d_=E(1+aE(1 1)) (A1)
(4
Unloading:
d-d f—f f-
2d° = zfc°(1+a f°(v-1)) (A2)
C
where:

f = current force

d = current deformation

f. = control force

d. = control deformation

f, = force at current unloading point

d, = deformation at current unloading point

vy = exponential control parameter

a = control parameter introduced by Jennings

Figure A.1 shows the range of nonlinearity that can be obtained by varying the parameter
v; y=1 will produce a linear-elastic primary curve while y== will produce an elasto-plastic

primary curve.
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In the state determination phase of a nonlinear analysis, the function of the hysteresis
model is to return the "state” of an element after an increment of strain or deformation is
imposed. The element state essentially consists of the internal stress or resisting force and
the tangent modulus. In order to implement the Ramberg-Osgood model into a displace-
ment method of analysis, it must be modified to obtain the stress or force as a function of
strain or deformation. This is accomplished by applying a Newton-Raphson iteration
scheme to the one-to-one correspondence between force and deformation given by the

Ramberg-Osgood functions.

The most important aspect of the practical use of the Ramberg-Osgood model is the
proper selection of the four control parameters; f., d., « and y. The control force and con-
trol deformation, f. and d., should be selected based on a knowledge of the initial tangent
modulus of the material. For shear deformations, the shear modulus at low strains can be
expressed as a function of the mass density and shear wave velocity:

Gpax = p \A (A.3)

For y = 1, the initial shear modulus is given by:

f.
= —F A4
Grmax d.(1+ a) (A-4)
For y > 1, the initial shear modulus is given by:
Gpay = 3 (A.S)
d

Note that for relatively small values of vy, the tangent modulus is equal to f. / d only for a
very limited range of deformation, while for relatively large  values, the tangent modulus
is equal to f. / d. for a much larger range of deformations. Once a value of the control
deformation d. is selected, the control force f. is computed based on the above relation-
ships.

Techniques for determining the parameters o and y for various materials have been
presented in [27], [28], [52] and [65]. The basic approach to determine the parameters

requires a knowledge of the force-deformation relationship of the material. A plot is made
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of the log of the departure from linearity of the deformation versus the applied force.
Examination of the primary loading curve relationship indicates that the departure from

linearity is given by:

f
log (o) + v log (3°) (A.6)

(~
Thus, a and vy are the intercept and the slope of the straight line which best fits the data of
the semi-logarithmic plot. In one investigation [27] the hyperbolic modulus and damping

curves proposed for soils by Hardin and Drenovich [22] were best fit by using:

£, = 0.8f, (A7)
a =1.0 (A.8)
¥y =3.0 (A.9)

When measured stress-strain data for a given material is unavailable, results from other
investigations can be used. Experiments performed on various soil samples indicate that
the approximate ranges:

1.0<y <40 03<a<3.0 (A.10)
may be appropriate [27,28,65]. In any case, the ideal selection of the Ramberg-Osgood
parameters requires at least the basic information on the soil properties and the application

of engineering judgement.
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APPENDIX B

ENERGY BALANCE CALCULATIONS

Energy balance calculations performed on a finite element system subjected to
dynamic loading can provide both a measure of the errors generated by numerical integra-
tion and an idea of the distribution of the different types of energy throughout the system.
The energy balance can be developed by premultiplying the dynamic equilibrium equations
by the transpose of the infinitesimal relative displacement vector dU yielding the following
scalar equation:

[AUIT[MU,+ CU+KU]=0 (B.1)
Where U, is the vector of total nodal accelerations. Making the substitution
dU = [dU, — 1du,], into the first term of the above equation and rearranging terms results
in the following differential energy expression:

dE; + dEp + dEg = dEg (B.2)

where:

dE; = [dU]T M U, = kinetic energy differential

dEp = [dU]TC U damped energy differential
dEg = [dU]JT K U = stiffness energy differential

dEg = dung M ﬁt = earthquake energy differential

Each of these scalar differential energy terms can be expressed in the general form:
dE = [dU]TR = RTdU (B.3)
where R and dU are force and incremental displacement vectors, respectively. It follows
that each energy term can be expressed as:
E= [RTdU (B.4)
Physically, this integral represents the area under the force-displacement curves for each
component of the R and U vectors. Integrating each differential energy term wou}d yield

the energy balance for the system. Because the inertia forces are linear in acceleration, the
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damping forces are linear in velocity and the static forces are linear in displacement (for
linear systems), the external load required for equilibrium is obviously a complex function
of displacement, velocity and acceleration. These observations indicate that the energy

integrals as expressed above are, in general, quite difficult to evaluate.

As discussed in [2], step-by-step integration schemes do not, in general, satisfy energy
balance, even for linear systems. However, for integration schemes which satisfy equili-
brium at discrete time intervals, "pseudowork” expressions can be developed as approxima-
tions to the actual energy quantities. The incremental "pseudowork” or energy approxima-
tions are expressed in the general form:

AE = [AU]TR,,. = RI AU (B.5)
where R,,. is a defined by the average values of R at the beginning and end of the time

step:

Rave = % (Ry + Rerad (B.6)

The "pseudowork” terms represent trapezoidal approximations to the area under the force-

displacement curves for each component of the various R and U vectors. The evolution of

the energy distribution in the finite element model is the approximated by the summation
of the incremental "pseudowork” terms over all of the time steps:

E =2 AE (B.7)

It should be noted that for numerical integration using small time steps, the "pseudowork"”

equations provide reasonable approximations to the actual energy balance equations.

An Fortran subroutine, ENERGY has been developed to compute the time history of
the "pseudowork” approximations of the earthquake energy balance of soil profiles modeled

as one-dimensional shear beam systems.
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APPENDIX C

WAVES USER MANUAL

WAVES is a special purpose computer program for computing the dynamic charac-
teristics and seismic response of horizontally layered soil deposits. The soil site is discre-
tized into a finite element mesh of one-dimensional shear elements. The system is
represented dynamically by a viscously damped, lumped mass system, as developed in Sec-
tion 2.2. A collection of 20 earthquake records (Table C.1) accompany the program in
earthquake library files and are available for use as base motion input to the soil profile
model. Other ground motions can be used, provided that they are stored in a file labeled
EQDATA using a standard format; a two line description of the motion followed by
equally spaced acceleration values in a Fortran format of 8F9.5.

WAVES uses the CALSAP [74] free-field subroutines to obtain the input required to
define the soil profile and activate various numerical solution strategies. Within the
WAVES data file, "separator lines" are used to subdivide the data into logical groups or
blocks. The data groups can be in any order with each group terminated with one or more
blank lines. Data is defined using the following separators (which must begin in the first
column of an input line);

1) CONTROL used to define the analysis control information
2)  SITE used to define the one-dimensional soil profile

3) OUTPUT used to specify the required output information
4) SPEC used to specify the required spectral output

All lines of data are entered in the following free-field form:
A=Al,A2,A3--- B=B1,B2,B3---

where the input data is designated by Ai or Bi. Numerical data lists must be separated by
a single comma or by one or more blanks. A data list of the form A=A1,A2,A3--- can be
in any order or location on the line. A colon ":" indicates the end of information on a
line. Information entered to the right of the colon is ignored by the program; therefore, it
can be used to provide descriptive information (units, for example) within the data file. A
semi-colon ";" in column 1 of any line will cause the line to be ignored by the program,
allowing users to insert additional comments describing the input. A backslash "\" at the
end of a line indicates that the next line is interpreted as a continuation of the previous
~ line. This option allows a maximum of 160 characters to be entered as one line of data.
Simple arithmetic statements are possible when entering floating point real numbers; the
statement C=10+20/5-2 is evaluated as C=((10+20)/5)-2). It should also be noted that
real numbers do not require decimal points and E formats with + or - exponents are

accepted.
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The input data required after each of the separator lines is described in the following
sections. Program execution is accomplished by typing "WAVES" at which point the input
and output file names are requested.

C.1. Analysis Control Information

The lines of data which follow the CONTROL separator define the mode of execution and
provide additional information required to define the model and the analysis. A block of
CONTROL data is illustrated below;

CONTROL
MODEX="? TITLE="?
NL=? M=?N=? NEQ=? GRAV=? DUR=? DTEQ=? DTINT="? ----

The first line of data following the CONTROL separator defines the mode of execution
MODEX, and the problem description TITLE (which can have a maximum of 50 charac-
ters). The following modes of execution are available:

MODEX = 1 Eigenproblem solution implementing inverse‘- iteration with Gram-
Schmidt orthogonalization.

MODEX = 2 Linear earthquake response analysis using the TSTEPS subroutine
described in Table 2.1.

MODEX = 3 [Equivalent linear iterative earthquake response analysis using the
ITERAT subroutine described in Table 2.2.

MODEX = 4 Nonlinear earthquake response analysis with a constant integration time

step using the subroutine WALK described in Table 2.3.

MODEX = 5 Nonlinear earthquake response analysis with a variable integration time
step using the subroutine AUTO described in Table 2.4.

The second line after CONTROL separator defines the additional problem control infor-
mation required to conduct the analysis. The data required depends on the mode of exe-
cution MODEX as follows;

If MODEX = 1 (Eigenproblem Solution);

NL=? NMODES=? MAXI=? GRAV=? TOLF="?

where;

NL = Number of layer elements in site model
NMODES = Number of modes to extract (default=NL)
MAXI = Maximum number of iterations (default=20)

GRAV =  Acceleration due to gravity (default=32.2 ft/sec?)
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TOLF = Convergence tolerance (in- %) between the frequencies from subsequent
iterations (default=0.1)
If MODEX = 2 (Linear Earthquake Response Analysis);

NL=? M=? N=? IE=? NEQ=? GRAV=? DUR=? DTEQ=? DTINT=? AFACT="?\
GAMMA="? BETA=? THETA="?

where;
NL = Number of layer elements in site model
M= Damping index (default=1);

1 Equivalent Modal Damping

2 Damping with control in modes 1 and N
N = Second control mode (nonzero only if M = 2)
IE = Energy balance computation index (default=0);

0 Skip energy balance computations

1 Energy balance history printed to file ENERGY.OUT
NEQ = Earthquake index (default=0);

0 Earthquake read from file

1-20 Earthquake read from earthquake library file
GRAV =  Acceleration due to gravity (default=32.2 ft/sec?)
DUR = Duration of earthquake input (Note - DUR/DTEQ acceleration values will

be read from the earthquake record specified by NEQ)

DTEQ = Time step of earthquake data (Note - the frequency content of the original
earthquake record can be modified by setting DTEQ to a value other than
the actual time step)

DTINT =  Integration time step (Note - DTINT must be selected such that
DTEQ/DTINT is an integer value)

AFACT = Scale factor for input acceleration data (default=1.0)
GAMMA = Newmark-Wilson integration constant, vy (default=0.5)
BETA = Newmark-Wilson integration constant, 8 (default=0.25)
THETA = Newmark-Wilson integration constant, 8 (default=1.0)

If MODEX = 3 (Equivalent Linear Iterative Earthquake Analysis);

NL=? M=? N=? IE=? NEQ=? MAXI=? NVC=? NVS=? GRAV=? DUR=?)\
DTEQ=? DTINT=? AFACT=? GAMMA=? BETA=? THETA=? EFACT=? \
ERR=?

where;



NVC
NVS
GRAV
DUR

DTEQ =

DTINT

AFACT =
GAMMA =
BETA =
THETA =
EFACT =
ERR

If MODEX =
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Number of layer elements in site model
Damping index (default=1);

1 Equivalent Modal Damping

2 Damping with control in modes 1 and N
Second control mode (nonzero only if M = 2)
Energy balance computation index (default=0);

0 Skip energy balance computations

1 Energy balance history printed to file ENERGY.OUT
Earthquake index (default=0);

0  Earthquake read from file EQDATA

1-20 Earthquake read from earthquake library file
Maximum number of analysis iterations (default=>5)
Number of strain points to define clay dynamic property curves
Number of strain points to define sand dynamic property curves
Acceleration due to gravity (default=32.2 f/sec?)

Duration of earthquake input (Note - DUR/DTEQ acceleration values will
be read from the earthquake record specified by NEQ)

Time step of earthquake data (Note - the frequency content of the original
earthquake record can be modified by setting DTEQ to a value other than
the actual time step)

Integration time step (Note - DTINT must be selected such that
DTEQ/DTINT is an integer value)

Scale factor for input acceleration data (default=1.0)
Newmark-Wilson integration constant, vy (default=0.5)
Newmark-Wilson integration constant, B (default=0.25)
Newmark-Wilson integration constant, 6 (default=1.0)
Effective strain factor, y (default=0.65)

Convergence tolerance (in %) for dynamic soil properties. A solution is
converged when the difference between the current dynamic properties and
the strain compatible dynamic properties for each level are below this level
(default=5.0)

4 (Nonlinear Earthquake Analysis, constant time step);

NL=? M=? N=? IE=? NEQ=? NUNL=? GRAV=? DUR=? DTEQ=? DTINT=? \
TOLE=? AFACT="?

where;



NUNL

GRAV
DUR

DTEQ =

DTINT

TOLE =

AFACT =
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Number of layer elements in site model
Damping index (default=1);

1 Equivalent Modal Damping ‘

2 Damping with control in modes 1 and N
Second control mode (nonzero only if M = 2)
Energy balance computation index (default=0);

0 Skip energy balance computations

1 Energy balance history printed to file ENERGY.OUT
Earthquake index (default=0);

0 Earthquake read from file EQDATA
1-20 Earthquake read from earthquake library file

Maximum number of unloadings in Ramberg-Osgood soil elements
(default=20) (Note - Because the unloading function of the Ramberg-
Osgood model (see Appendix A) requires the current unloading coordinates,
an array of NUNL of these values is stored in order to properly model hys-
teretic memory. If NUNL is exceeded, a warning is printed by the . pro-
gram).

Acceleration due to gravity (default=32.2 ft/sec?)

Duration of earthquake input (Note - DUR/DTEQ acceleration values will

" be read from the earthquake record specified by NEQ)

Time step of earthquake data (Note - the frequency content of the original
earthquake record can be modified by setting DTEQ to a value other than
the actual time step)

Integration time step (Note - DTINT must be selected such that
DTEQ/DTINT is an integer value)

Equilibrium tolerance (Note - TOLE x (total weight of site model) is com-
pared to the absolute sum of the unbalance vector computed using Equation
2.37) (default=0.001)

Scale factor for input acceleration data (default=1.0)

If MODEX = § (Nonlinear Earthquake Analysis, variable time step);

NL=? M=? N=? [E=? NEQ=? NUNL=? NMAX=? GRAV=? DUR=? DTEQ="7? \
TOLE=? TOLA=? AFACT="?

where;

NL =

Number of layer elements in site model



NMAX =

GRAV
DUR

DTEQ =

DTINT =

TOLE

TOLA =

AFACT =
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Damping index (default=1);

1 Equivalent Modal Damping

2 Damping with control in modes 1 and N
Second control mode (nonzero only if M = 2)
Energy balance computation index (default=0);

0 Skip energy balance computations

1 Energy balance history printed to file ENERGY.OUT
Earthquake index (default=0);

0 Earthquake read from file EQDATA
1-20 Earthquake read from earthquake library file

Maximum number of unloadings in Ramberg-Osgood soil elements
(default=20) (Note - Because the unloading function of the Ramberg-
Osgood model (see Appendix A) requires the current unloading coordinates,
an array of NUNL of these values is stored in order to properly model hys-
teretic memory. If NUNL is exceeded, a warning is printed by the pro-
gram).

Maximum number of steps with a given time step before time step is
increased (default=4)

Acceleration due to gravity (default=32.2 ft/sec?)

Duration of earthquake input (Note - DUR/DTEQ acceleration values will
be read from the earthquake record specified by NEQ)

Time step of earthquake data (Note - the frequency content of the original
earthquake record can be modified by setting DTEQ to a value other than
the actual time step)

Integration time step (Note - DTINT must be selected such that
DTEQ/DTINT is an integer value)

Equilibrium tolerance (Note - TOLE x (total weight of site model) is com-

pared to the absolute sum of the unbalance vector computed using Equation
2.37) (default=0.001)

Accuracy tolerance (Note - TOLA x (total weight of site model) is compared
to the maximum norm of the mean equilibrium error vector computed using
Equation 2.40) (default=0.0001)

Scale factor for input acceleration data (default=1.0)

C.2. Site Information

The data which follows the SITE separator defines the site by specifying the geometry of
the soil profile model and the dynamic properties of the soil layer elements. The site
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information block depends on MODEX as follows;
If MODEX = 1 or 2;

SITE

SITEHED="?

L=1H=? G=?ZETA=? GAM="?

L=2 H=? G=7? ZETA=? GAM="?

(one line, in any order, for each layer element)

where;

L= Layer number (top layer=1, bottom layer=NL)

H = Thickness of soil layer element

GAM = Unit weight of soil layer element

G = Elastic shear modulus of soil layer element

ZETA = Elastic damping ratio of soil layer element (in %) required only if
MODEX=2)

If MODEX = 3;

SITE

SITEHED="?

LW=? WWAT=? CEP="?

L=1H=7? G=?ZETA=? GAM=? FACTG=? FACTZ=? LTYPE="?
L=2 H=7 G=?ZETA=? GAM=? FACTG=? FACTZ=? LTYPE="?
(one line, in any order, for each layer element)

CLAY
CLAYE=E,,E,,....Envc
CLAYG=G,Gs,...,Gnve
CLAYZ=Z,,Z,,...,Znvc

SAND
SANDE=E_,E,,....Exvs
SANDG= Gl,Gz,...,Gst
SANDZ= Zl,&,...,Zst

where;

LW = Number of ﬁrst submerged layer (default= base)
WWAT =  Unit weight of water (default=0.0624 kips/ft>)
CEP = Coefficient of lateral earth pressure (default=0.45)
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Layer number (top layer=1, bottom layer=NL)
Thickness of soil layer element

Unit weight of soil layer element

Elastic shear modulus of soil layer element
Elastic damping ratio of soil layer element (in %)

Shear modulus scale factor for soil layer (Note - For clay layers, the discrete
strain dependent shear modulus curve is obtained from the relationship:

G(i) = FACTG x CLAYG()

For sand layers, the discrete strain dependent shear modulus curve is
obtained from the relationship developed in [62]:

G(i) = FACTG x SANDG(i) X (1000 x SMEAN)2

where SMEAN is the effective mean principal stress. WAVES includes the
principal stress effect automatically, hence FACTG need only include a rela-
tive density correction).

Damping ratio scale factor for soil layer (Note - The discrete strain depen-
dent damping ratio is obtained by scaling the appropriate damping curve
(CLAYZ or SANDZ) by the factor FACTZ).
Layer type;
1 Clay
10  Clay (dynamic properties not updated with iteration)
2  Sand

20 Sand (dynamic properties not updated with iteration)

If NVC > 0, a CLAY separator line must be followed by three lines of data used to
specify the strain dependent property curves for clay (Omit if NVC=0). As indicated
above, the strain dependent clay curves are stored in the vectors CLAYE, CLAYG and
CLAYZ where;

E; = the NVC effective strain coordinates (in %)

G; = the shear moduli corresponding to the NVC effective strains

Z; = the damping ratios (in %) corresponding to the NVC effective strains

If NVS > 0, a SAND separator line must be followed by three lines of data used to specify
the strain dependent property curves for sand (Omit if NVS=0). As indicated above, the
strain depeqdent sand curves are stored in the vectors SANDE, SANDG and SANDZ

where;
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E; = the NVS effective strain coordinates (in %)
G; = the shear moduli corresponding to the N'VS effective strains
Z; = the damping ratios (in %) corresponding to the NVS effective strains

If MODEX = 4 or 5;

SITE

SITEHED="?

L=1H=?ZETA=7? GAM=?DC=?FC=? A=? GAMMA="?
L=2 H=? ZETA=? GAM=?DC=?FC=? A=? GAMMA="?
(one line, in any order, for each layer element)

where;

L= Layer number (top layer=1, bottom layer=NL)

H= Thickness of soil layer element

GAM = Unit weight of soil layer element

ZETA = Elastic damping ratio of soil layer element

DC = Control shear strain (in %) for Ramberg-Osgood constitutive model (see
Appendix A)

FC = Control shear stress for Ramberg-Osgood constitutive model (see Appendix
A)

A= Ramberg-Osgood control parameter, o (see Appendix A)

GAMMA = Ramberg-Osgood control parameter, vy (see Appendix A)

C.3. Output Control Information

The data which follows the OUTPUT separator defines the output control variables.
Response histories and their maxima can be requested for any of the layers in the site
model. The response histories are printed columnwise to various output files for plotting or
postprocessing. The first column of a history file contains the time value while the remain-
ing columns contain the corresponding response values for the layers of interest. The fol-
lowing quantities can be requested; relative displacement, relative velocity, total accelera-
tion, stress, strain, as well as base displacement, velocity and acceleration and integration
time step (if MODEX = 5). A block of OUTPUT information is illustrated as follows;

OUTPUT

NDIS=? NVEL=? NACC=? NSPEC=? NHYS=? IBASE=? IDT=?

LAYD=L,,..Lyps LAYV=Lj,.Lyve LAYA=Ly,..Lxacc LAYS=Ly,...Lnspec \
LAYH=L,..,.Lngys
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The first line after the OUTPUT separator defines the number of layers for which various
output quantities are requested and the second line after the OUTPUT separator defines
the specific layers (LAYi for i=D,V,A,S,H) for which the (displacement, velocity,
acceleration, spectral or hysteretic, respectively) response quantities are requested. The
output control variables are defined as follows;

NDIS = Number of layers for which displacement response is requested (displacement
histories printed column-wise to file DIS.OUT)

NVEL = Number of layers for which velocity response is requested (velocity histories
printed column-wise to file VEL.OUT)

NACC = Number of layers for which acceleration response is requested (acceleration
histories printed column-wise to file ACC.OUT)

NSPEC =  Number of layers for which spectral calculations are requested (output files
specified in spectral analysis section)

NHYS = Number of layers for which hysteretic response is requested (applicable if
MODEX = 4 or 5, stress and strain histories printed column-wise to file
HYS.OUT)

IBASE =  Base output (displacement, velocity and acceleration histories) flag;

0 Base output not requested
1 Base output printed column-wise to file BASE.OUT
IDT

]

Time step output flag (only applicable if MODEX = 5);

0 Time step history not requested

1 Time step history printed to file DT.OUT
Ly,....Lnpis  are the NDIS layers for which the displacement response is requested
L,,...,.LnvgeL are the NVEL layers for which the velocity response is requested
L;,...,Lnacc are the NACC layers for which the acceleration response is requested

Li,...,Lnspec are the NSPEC layers for which spectral computations are requested (Note -
a layer can be specified more than once if spectral computations at different
damping ratios are required)

Ly,....Lngys are the NHYS layers for which the hysteretic response is requested

C.4. Spectral Analysis Information (Omit if NSPEC = 0)

Response spectrum analysis can be perforined on the total acceleration response of any of
the layers in the soil profile model. The computations are performed using an extremely
efficient algorithm described in [7]. The spectral output files contain a column of spectral
periods and additional columns containing the requested spectral coordinates. A block of
SPEC information is illustrated as follows;
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SPEC

M=? T=T,,T;,T3 C=? SPECOUT="?
M=?T=T,,T,, T3 C=? SPECOUT=?
(one line for each of the NSPEC layers)

The data following the SPEC separator provides information required to generate the vari-
ous response spectra for each of the NSPEC layers. The variables are described as;

M= Spectral ordinate index;
1 True relative displacement (TRD)
True relative velocity (TRV)
True absolute acceleration (TAA)
Pseudo-Velocity (PsV)
Pseudo-Acceleration (PsA)
TRD, TRV, TAA
TRD, PsV, PsA
8 TRD, TRV, TAA, PsV, PsA
T, = First period value in response spectrum (default=0.05 sec)

St B e NV T~ VS I )

Ty = Last period value in response spectrum (default=4.0 sec)

T3 = Period increment between T; and T, (default=0.05 sec)

C= Damping ratio (in %) for spectral computations (default=0.0)
SPECOUT = Output file name for spectra computed for this layer (up to 13 characters)
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Earthquake Time Number of

EQN Date Location Component PGA of PGA  Points At

1 29/71 Castaic N21E 0.315g  2.6s 3089 0.02s
2 29171 Castaic N69W 0.270g  1.9s 3094 0.02s
3 5/18/40  Hl Centro SO0E 0.348g 2.12s 2688 0.02s
4 5/18/40  Hl Centro S90OW 0214g 11.44s 2674 0.02s
5 3/2/57 Golden Gate  NIOE 0.083g 1.34s 1994 0.02s
6 3/2/57 Golden Gate  S80W 0.105g 1.44s 1994 0.02s
7 2/9/71 Pacoima Dam  S16E 1.170g  7.74s 2024 0.02s
8 2971 Pacoima Dam  S74W 1.075g  8.5s 2086 0.02s
9 6/27/66  Parkfield N65W 0.270g 4.0s 1518 0.02s
10 6/27/66  Parkfield S25W 0347g 4.3s 1520 0.02s
11 7/21/52  Taft N21E 0.156g 9.1s 2719 0.02s
12 7/21/52  Taft S69E 0.179¢ 3.7s 2720 0.02s
13 9/19/85 CUMV S9OW 0.040g  15.5s 3000 0.02s
14 9/19/85 CUMV SOO0E 0.039g 17.9s 3000 0.02s
15 9/19/85 SCT S9OW 0.172g  58.08s 8956 0.02s
16 9/19/85 SCT SOCE 0.100g  54.14s 9000 0.02s
17 9/19/85  Tacubaya S9OW 0.034g 55.23s 5000 0.03s
18 9/19/85  Tacubaya SO0E 0.035g  38.58s 5207 0.03s
19 9/19/85  Viveros S9OW 0.043g 17.48s 6000 0.01s
20 9/19/85  Viveros SO0E 0.045g 23.65s 6000 0.01s
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APPENDIX D

VIBRATION SHAPES FOR NONLINEAR SDOF RESPONSE ANALYSIS

The primary requirement for estimating the dynamic response of a MDOF structural
system using a SDOF representation is that the vibration of the structure can be represented
using one vibration shape. For linear systems, sufficient accuracy can often be obtained |
using the fundamental mode shape or Ritz vector of the structure to estimate the MDOF
response. The first Ritz vector provides a successful representation of the structural
response because it takes into account the spatial distribution of the dynamic loading [37].
The concept of capturing the spatial distribution of the dynamic loading can be extended
to the solution of nonlinear problems with the physical reasoning that up to the point of
collapse, the dynamic forces acting on a structure must be balanced by the internal struc-
tural resistance. Therefore, the shapes used for SDOF analysis are typically obtained from
inelastic MDOF analyses in which the assumed distribution of the dynamic loading is
applied statically.

The motivation for using a SDOF representation of a MDOF system is that the solu-
tion of a SDOF system can be obtained with a fraction of the computational effort required
for a MDOF system. Thus SDOF procedures provide a rapid and inexpensive analysis tool
which can reduce (or eliminate) the number of MDOF dynamic analyses reqqired for the
evaluation of structural response. It is important to note that because SDOF'modeling
methods are simple and approximate, the static methods used to obtain the equivalent
SDOF properties should not be unduly complicated. In some cases, the use of more
sophisticated static analysis procedures which result in more realistic and accurate SDOF

representations may be justified.

Several methods can be used to estimate the structural vibration shape and charac-
teristics of the structural resistance. The method implemented depends largely on how
much is known about the structure and the earthquake loading. The simplest methods

may be useful for obtaining estimates of the structural response demands in the initial
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design stages while more sophisticated procedures may be applicable as the design

progresses. Several methods are presented below.

Mechanism Method

This simple method requires a basic knowledge of the structural dimensions, element
strengths and the approximate mass distribution and fundamental vibration period. The

SDOF properties are obtained as follows;

1) Assume a lateral force distribution (a triangular distribution is commonly assumed for

seismic loading).
2)  Use the mechanism method of analysis [46] to obtain;
a) the appropriate mechanism for use as an estimate of the vibration shape @
b) the ultimate lateral load (or base moment)
3) A bilinear approximation to the structural resistance can be established by;

a) using the estimates of the elastic vibration period and the structural mass to com-

pute the elastic stiffness
b) computing the lateral displacement (or rotation) level associated with the ultimate

force (or base moment) based on the assumed elastic stiffness

c) estimating the secondary stiffness based on judgement and/or some knowledge

about the strain hardening ratios in the structural elements

Q-Model Method [56]

The Q-Model method was developed for the earthquake response of reinforced concrete
structures. It is a simple method for establishing the approximate vibration shape and
structural resistance characteristics based on inelastic static analyses. The method is out-

lined as follows;

1) Apply a monotonically increasing triangular lateral force distribution to the MDOF

structure to the point of effective structural collapse. This portion of the analysis
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results in relationships between base moment and lateral displacements of the story

levels.

2) The initial loading base moment versus lateral displacement curve is idealized as a

bilinear function using the following graphical procedure;
a) a tangent to the initial loading portion of the curve is drawn

b) from the horizontal axis, at points corresponding to lateral displacements of 0.2%
and 0.3% of the equivalent height, two lines are drawn parallel to the initial load-
ing tangent

c) the yield point of the bilinear system is assumed to be between the intersections of

these lines with the calculated curve

d) the secondary stiffness is established by joining the yield point to a point on the

calculated curve at an abscissa of five times the abscissa of the yield point

One uncertainty associated with the Q-Model method is the use of a triangular force distri-
bution. The actual distribution of the seismic inertia forces depends on the absolute
acceleration. Hence the actual inertia force distribution can be better represented using
some combination of triangular (relative) and rectangular (rigid body) inertia force pat-
terns. It is important to note that the sequence of plastic hinge formation, the collapse
mechanism, and the ultimate load level obtained using triangular and rectangular lateral

force patterns can be significantly different.

The Iterative Shape Improvement Method

As previously discussed, the concept of capturing the spatial distribution of the dynamic
loading can be extended to the solution of nonlinear problems by physical reasoning that
up to the point of collapse, the dynamic forces acting on the structure must be balanced by
the internal resistance of the structure. Assuming that inertial forces due to ground motion
can be applied as equivalent static loa.lds on the structure, and that the structural responds

harmonically in one vibration shape, results in the following system of equilibrium equa-
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tions:
where Rg is the restoring force vector and R; (= Mﬁ) is the inertia force vector. Since the
response of the system is assumed to be harmonic, the vector of structural accelerations is

proportional to the vector of structural displacements:

U=2\U - (D.2)
and hence, for undamped linear elastic systems, the equilibrium equations reduce exactly
to the eigenproblem;

MAU=KU (D.3)
The problem is somewhat more complicated for nonlinear structural systems since the struc-
tural resistance is a nonlinear function of the structural displacements, Rg (=Rg(U)), and
changes in the deflected shape directly influence the idealized distribution of inertial

forces, R = M AU. A procedure to obtain the vibration shape, which is based on iterative

nonlinear static analyses, is outlined as follows:

1)  An estimate of the distribution of lateral ‘inertial forces is obtained by premultiplying
an arbitrary (triangular, rectangular or other) assumed shape pattern ®,, by the
lumped mass matrix of the MDOF structure:

R; = M, - (D4)

2)  The inertial force pattern is applied as a monotonically increasing static force vector
to an MDOF structural model which accounts for nonlinear material behavior and
P-A effects. Loading is initiated with the structure in the undeformed equilibrium
configuration: |

Rs(U) = Ry (D.5)

3) The load amplitude is increased and equilibrium is maintained to the point of effec-
tive structural collapse which is defined as the mechanism condition or the point of
geometric instability. If estimates of the displacement demands are available (from

spectra or other means), the analyses can be conducted up to the estimated displace-
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5)

6)

7
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ment levels.

The shape corresponding to effective collapse ®;, is obtained and is assumed to be an

improved vibration shape.
The improved shape ®;, is then premultiplied by the lumped mass matrix to obtain
an improved estimate of the inertial force distribution:

R, = M®; (D)
Steps 2 through 5 are repeated until the shape at effective collapse is unchanged by

additional iteration, i.e., the solution has converged.

The converged shape is denoted as @ and the equilibrium path (base moment versus
lateral deflection of story levels) from the final nonlinear analysis is approximated

using a bilinear function.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



