
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
On the Effectiveness of Heterogeneous-ISA Program State Relocation against Return-
Oriented Programming

Permalink
https://escholarship.org/uc/item/6ft468z6

Author
Shamasunder, Sriskanda

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6ft468z6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

On the Effectiveness of Heterogeneous-ISA Program State Relocation against
Return-Oriented Programming

A thesis submitted in partial satisfaction of the
requirements for the degree of Master of Science

in

Computer Science

by

Sriskanda Shamasunder

Committee in charge:

Professor Dean Tullsen, Chair
Professor Michael Taylor
Professor Stefan Savage

2015

Copyright

Sriskanda Shamasunder, 2015

All rights reserved.

The Thesis of Sriskanda Shamasunder is approved and is acceptable in

quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2015

iii

DEDICATION

Dedicated to my parents,
Rajeshwari and Shamasunder,

for my life.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita . x

Abstract of the Thesis . xi

Chapter 1 Introduction . 1

Chapter 2 Overview . 4
2.1 Potential of Heterogeneous Chip Multiprocessors 5
2.2 Randomizing Program State . 5
2.3 Putting it all together . 6

Chapter 3 Background and Related Work . 8
3.1 Code Reuse Attacks . 8

3.1.1 Return-to-libc . 9
3.1.2 Return-oriented Programming . 9

3.2 Defenses against Code Reuse Attacks . 11
3.2.1 Control Flow Integrity . 11
3.2.2 Randomization . 11

3.3 Heterogeneous Chip Multiprocessors . 13

Chapter 4 Heterogeneous-ISA Program State Relocation 15
4.1 Instruction Set Randomization . 16
4.2 Program State Relocation . 17
4.3 Heterogeneous-ISA PSR. 18

Chapter 5 Design and Implementation . 21
5.1 Program State Relocation . 21

5.1.1 Addressing Mode Transformation . 21
5.1.2 Procedure Call Transformation . 22
5.1.3 Indirect Control Transfer . 22

5.2 PSR-aware Execution Migration . 23

v

5.3 Execution Scenarios . 24
5.3.1 Stack Unwinding . 24
5.3.2 ROP attack . 25
5.3.3 Crash/Reboot scenarios . 25

Chapter 6 Threat Model . 27
6.1 Complete Disclosure . 27
6.2 Just-in-time Code Reuse . 27
6.3 Brute Force Attacks . 28
6.4 JIT-Spraying . 28

Chapter 7 Evaluating Effectiveness . 29
7.1 Classic ROP Attack . 31
7.2 Brute Force Attacks . 31
7.3 Just-In-Time Code Reuse . 34

Chapter 8 Methodology . 36
8.1 Gadget Discovery and Entropy . 36
8.2 Simulating Brute Force . 37
8.3 Simulating JIT-ROP . 38
8.4 Correctness . 39
8.5 Experimental setup . 40

Chapter 9 Results . 41
9.1 Classic ROP Attacks . 41
9.2 Brute Force Attacks . 41
9.3 Just-In-Time Code Reuse Attacks . 43
9.4 Heterogeneous-ISA attacks. 46

Chapter 10 Conclusion . 47

Bibliography . 49

vi

LIST OF FIGURES

Figure 3.1. Return-oriented Programming . 10

Figure 4.1. Program State Relocation Architecture . 17

Figure 4.2. Heterogeneous-ISA Program State Relocation Architecture 19

Figure 7.1. Attack Surface of a Victim Program . 30

Figure 9.1. Classic ROP Attack Surface Reduction . 42

Figure 9.2. Brute Force Attack Surface Reduction . 42

Figure 9.3. JIT-ROP Attack Surface Reduction on (a) Single-ISA PSR, and (b)
Heterogeneous-ISA PSR . 44

Figure 9.4. Percentage of Migration-Safe Basic Blocks 44

Figure 9.5. Brute Forcing JIT-ROP on a Heterogeneous-ISA CMP 45

vii

LIST OF TABLES

Table 7.1. Attack Surface: Symbols and Definitions . 30

Table 8.1. Benchmarks along with description . 40

Table 9.1. Inferences from Brute Force Simulation . 43

viii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude for the help and support they have

provided throughout my graduate studies to the following people:

Professor Dean Tullsen, for his support as the chair of my committee, for his

guidance and advice throughout my graduate studies as my graduate adviser, and for

giving me the privilege of working with him for two years.

Ashish Venkat, for his invaluable help over the last two years as my mentor.

Without his guidance I would not have not known where to start or how to finish.

Sam and Andreas, for being such welcoming and entertaining lab mates.

And most importantly, Pooja Suri, for being my pillar of support and standing by

me through thick and thin over the course of my graduate studies. I couldn’t have done it

without you.

Chapters 3, 4, 5, 6, 7, and 9 are in part currently being prepared for submission

for publication of the material. Venkat, Ashish; Shamasunder, Sriskanda; Tullsen, Dean;

Shacham, Hovav. The thesis author was one of the primary investigators and co-author

of this material.

ix

VITA

2006–2010 Bachelor of Engineering in Computer Science, Sir M Visvesvaraya Institute
of Technology, Bangalore

2008–2010 Environment Specialist, Intel Technologies India Pvt Ltd, Bangalore

2010–2013 Senior Member Technical, D. E. Shaw & Co, Hyderabad

2014 Production Engineer Intern, Facebook Ltd., Menlo Park

2014–2015 Teaching Assistant, University of California, San Diego

2014–2015 Research Assistant, University of California, San Diego

2015 Master of Science in Computer Science, University of California, San
Diego

FIELDS OF STUDY

Studies in Computer Architecture
Professor Dean Tullsen, University of California, San Diego

x

ABSTRACT OF THE THESIS

On the Effectiveness of Heterogeneous-ISA Program State Relocation against
Return-Oriented Programming

by

Sriskanda Shamasunder

Master of Science in Computer Science

University of California, San Diego, 2015

Professor Dean Tullsen, Chair

As computer software grow larger in size and complexity, there is an ever increas-

ing concern over security. In an age where software controls almost everything, from

the cars we drive to the airplanes we fly in, this concern is valid now more than ever.

Attackers are evolving new ways to exploit vulnerabilities in software everyday, while

the computer security community struggles to keep up. One of the most prominent of

these attack methods is code reuse attacks - specifically return-oriented programming

and its variants.

Traditionally, defense techniques have mostly either been at the hardware level

xi

or in the software layer. While these defenses have their own strengths and weaknesses,

a layer of abstraction that has mostly been unexplored is the architecture. Computer

architecture lies at the boundary of hardware and software, where we can harness the

strengths of both layers. This work explores the potential security benefit that we can

extract from decoupling the architectural state that the system presents to the software,

from the micro-architectural state it maintains in hardware.

Recent research has shown the potential for heterogeneous-ISA chip multiproces-

sors to provide both performance and energy benefits. We propose Heterogeneous-ISA

Program State Relocation, an architecture based on heterogeneous-ISA computing that

randomizes the ISA a program executes on, and couple that with a defense mechanism

that dynamically randomizes the program state. We describe the proposed architecture,

our implementation of it, and perform a thorough evaluation of its potential as an effective

defense technique.

xii

Chapter 1

Introduction

Computers and software have become ubiquitous in almost every aspect of our

lives. We have computer systems that control space shuttles and satellites, and software

on our phones that control our homes. But one thing for sure is that we are still a long

way from proclaiming that our systems and software are completely secure from attacks,

either from attackers with a malicious intent, or from governments that are increasingly

inquisitive. While there have been several attempts at building better tools and developing

better processes to avoid introducing bugs in software that lead to vulnerabilities, the

vast majority of the code executed today was still written decades ago [44]. This has left

the security of our software in the hands of two kinds of people, one trying to find newer

and more cunning ways to attack and exploit these vulnerabilities, and the other trying

to stop these attackers by building stronger defenses to patch these vulnerabilities and

secure our software.

Code reuse attacks exploit vulnerabilities in software to hijack control flow and

execute arbitrary code as directed by the attacker to perform malicious computation.

While there have been several techniques propounded to defend against these attacks,

both software and hardware based, they all come with their own caveats of either heavy

performance degradation or daunting complexity.

The unique position of computer architects as the designers of the interface

1

2

between hardware software puts them in a position to leverage both hardware and software

to address the issue of security. By decoupling the state of the system as observed by

an attacker, or even the program itself, and the actual micro-architectural state of the

executing process, we can insulate software from causing unintended external effects

or from being affected by them. This decoupling of architecture and micro-architecture

forms the theme for this thesis where we present and evaluate an architectural defense

technique to defend against code reuse attacks.

One of the main challenges in developing a new defense technique is validating

its effectiveness. The lack of standard metrics that define what constitutes a good defense

makes it difficult to quantify the security benefits obtained from a defense mechanism.

This is especially true in the case of a randomization based defense since theoretical

proofs cannot accurately capture the effects of a practical implementation. Experimen-

tally evaluating a defense against only a handful of known attacks is insufficient to deem

its capacity to prevent new ones, but at the same time simulating all possible scenarios

quickly becomes intractable. In this work we focus on metrics that can effectively repre-

sent the vulnerability of a system and develop methods to make exhaustive experimental

evaluation computationally feasible.

We present Heterogeneous-ISA Program State Relocation, a defense technique

that randomizes the program state and underlying ISA in ways that allow legitimate

execution to run undeterred but make it next to impossible for an attacker to perform

malicious computation that deviates from the intended control flow of the program.

Heterogeneous-ISA Program State Relocation as a secure architecture is a joint work with

Ashish Venkat where we propose the underlying architecture, describe its implementation,

and evaluate its effectiveness.

The thesis consists of two main sections: The first half of the thesis (Chapters 4

and 5) is joint work that is presented to provide the reader with requisite background on

3

Heterogeneous-ISA Program State Relocation. The second half (Chapters 7, 8 and 9)

presents the contribution of this work - the evaluation of the proposed architecture for its

effectiveness as a defense technique.

Chapter 2

Overview

Code reuse attacks such as return-oriented programming (ROP) [48, 51] are a

class of exploits that have become an attacker’s weapon of choice against today’s systems.

After nearly a decade, security researchers are yet to find a way to stop these attacks

completely. The strength of code reuse attacks lies in the fact that they recycle the victim

program’s code to piece together malicious code. This makes it difficult for conventional

attack detection/prevention mechanisms to distinguish malicious computation from

legitimate execution.

There have been several defenses proposed in literature against ROP, and some

even commercially deployed [10], but almost all of them have failed to provide a com-

prehensive defense either because of prohibitively high performance costs, impractical

complexity or the inability to keep up with rapidly evolving attackers. For example,

Control Flow Integrity (CFI) [9, 40, 8, 55] based techniques, as comprehensive as they

are, have a high overhead in terms of performance and source code information required

to implement them. Some randomization based techniques such as Address Space Layout

Randomization (ASLR) [57] have been shown to be ineffective against an attacker with

the time and resources to brute force it [52]. Most other compile-time or load-time

randomization techniques have been undermined by a new variant of ROP called Just-in-

Time Code Reuse (JIT-ROP) [54] attacks. What then is needed is a defense mechanism

4

5

that is baked into the architecture of the machine itself and is capable of protecting a

system against code reuse attacks with minimal impact on performance.

2.1 Potential of Heterogeneous Chip Multiprocessors

Heterogeneous chip multiprocessors employ CPU cores of different organization

or size that offer varying degrees of micro-architectural complexity [34, 7, 27, 28]

and/or core specialization [4, 5, 6, 38]. Owing to their high performance and execution

efficiency, these architectures have been showcased, for example, as promising candidates

towards achieving energy proportionality in large data-centers [13, 36, 58]. While early

work on on-chip heterogeneity[33, 32] restricted cores to implement a single instruction

set architecture (ISA), recent findings [25, 59] indicate that a heterogeneous-ISA chip

multiprocessor (CMP) is not only a viable option, but has greater potential both in terms

of performance and energy efficiency.

A heterogeneous-ISA CMP synergistically complements architectural hetero-

geneity with micro-architectural heterogeneity, and allows an application to dynamically

identify the ISA of its preference and migrate execution at any given point of time.

By migrating execution not just when it is beneficial for performance, but also when

there is the threat of an attack, heterogeneous-ISA computing can effectively remove

one of the last underlying assumptions of an attacker - the ISA. In this work, we lever-

age this architecture to demonstrate significant new security benefits, and in particular,

showcase its ability to defend against an evasive class of buffer overflow exploits called

Return-oriented Programming [48, 51].

2.2 Randomizing Program State

Every program, even a return-oriented program, requires a certain amount of

program state in the form of registers and memory locations to perform meaningful

6

computation. Randomization techniques have until now primarily targeted the location

and form of program code in order to thwart code reuse attacks. One aspect of a program’s

execution that is presumed by attackers to be guaranteed, is the program state.

This program state can be leveraged as a potential source of security by random-

izing the it in such a way that legitimate execution can continue unhindered, but any

malicious computation that deviates from the expected control flow most likely fails.

We employ a dynamic binary translator (DBT) to transform program code on-the-fly

and relocate program state into random, attacker-unknown locations. The use of a DBT

ensures that every piece of code executed, either from the program or from a dynamically

linked library, is randomized and hence leaves no room for vulnerabilities.

2.3 Putting it all together

Heterogeneous-ISA Program State Relocation (PSR) is an architecture that we

propose as a solution to this problem. The architecture incorporates two strong orthogo-

nal defense techniques - Instruction Set Randomization and Program State Relocation.

Instruction Set Randomization probabilistically migrates an executing process between

cores of different ISAs, and Program State Relocation randomizes the program state at a

run-time, thereby rendering the attacker’s knowledge of the victim’s binary obsolete.

The two most important concerns regarding any defense technique are its im-

pact on performance, and its effectiveness at defending against attacks. Any defense

mechanism that adversely impinges on the performance of the system, be it in execution

time, demand for resources, or in usability, is deemed impractical in a world that values

performance over security. At the same time, a lightweight defense mechanism that

covers only a subset of attacks is ineffective. Therefore it is imperative for any proposed

defense techniques to be thoroughly evaluated against these two metrics.

The scope of this work is to understand what constitutes an effective defense,

7

define metrics to measure effectiveness in a tangible manner, and finally evaluate

Heterogeneous-ISA Program State Relocation. To this end, we evaluate our proposed

architecture against a slew of attack techniques such as classic ROP, brute forced ROP

and Just-In-Time ROP attacks. Since it is non-trivial to quantify the effectiveness of a

defense technique, especially one based heavily on randomization to such a degree, we

define a set of metrics that best represent the vulnerability of a system without and in the

presence of Heterogeneous-ISA PSR. We conduct a series of experiments to measure its

effectiveness on synthetic benchmarks and present our findings.

The thesis is organized as follows: Chapter 3 provides the necessary background

on return-oriented programming, current defenses against ROP, and heterogeneous chip

multiprocessing. Chapter 4 describes the proposed architecture of Heterogeneous-ISA

PSR while Chapter 5 presents a brief discussion of its implementation. Chapter 6

describes the threat model we assume in our study. Chapter 7 describes the metrics

and models used for evaluating PSR. Chapter 8 describes the methodology used in

conducting the experiments. Chapter 9 presents the results from our experiments and

discusses inferences from them. Chapter 10 concludes the work with a note on future

work.

Chapter 3

Background and Related Work

3.1 Code Reuse Attacks

Buffer overflows are one of the most common exploits in software even today.

Buffer overflow exploits are made possible by vulnerabilities in software that result

from buggy code that fails to perform the appropriate bounds checking. Attackers

have exploited these vulnerabilities for decades to abuse systems and software, but the

frequency, complexity and ingenuity of these attacks has been ever increasing.

The first buffer overflow exploits such as Stack Smashing [42] overwrote the

return address on the stack to divert control flow to attacker injected code, also on the

stack. Several defense techniques were proposed to mitigate such attacks, both software-

based [11, 21] and hardware-based [39, 43]. One of the most prevalent mitigation

techniques is W ⊕X , which essentially marks code pages as either writable or executable,

but never both. This has been deployed widely on both Windows, as Data Execution

Prevention (DEP) [10], and on Linux through the PaX patch [56], using the NX bit

supported by most modern CPUs. While this deterred code injection attacks, it led to the

evolution of a whole new breed of attacks based on code re-use instead.

8

9

3.1.1 Return-to-libc

Code reuse attacks exploit vulnerabilities in systems to reroute control flow into

existing code rather than injected code with the intent of performing malicious compu-

tation. Return-to-libc was one of the first techniques that did so by redirecting control

flow to libc functions, supplying them with carefully crafted attacker supplied arguments.

While such an attack can be used to bypass W ⊕X , the spectrum of computation that the

attacker can perform is still limited by the functions available in libc. What the attackers

required was a way to perform arbitrary computation.

3.1.2 Return-oriented Programming

This led to the evolution of Return-oriented Programming (ROP) [52, 51]. Return-

oriented programming bridges the gap between return-to-libc and code injection by

reusing snippets of code from the victim program to stitch together exploits that per-

form arbitrary execution. These snippets of code, called gadgets, comprise any set of

instructions that end with a return. The attacker uses many such gadgets, each performing

a small computation, to put together a malicious exploit. Given a sufficiently large

code base, it has been proven that these gadgets can be used to perform any form of

computation, in other words, return-oriented programming has been proven to be Turing

complete [48].

Return-oriented programming hinges on the attacker being able to control both

the instruction pointer and the stack pointer, the instruction pointer to direct control flow

to the first gadget and then subsequently use the stack pointer to direct control flow to

the next gadget in the chain. In this sense, the attacker uses the stack pointer as the

instruction pointer during the execution of the exploit. Some forms of the attack also

inject the payload on to the heap instead of the stack and modify the stack pointer itself.

There have also been variants of return-oriented programming proposed that do away

10

pop %eax

pop %ecx

xor %edx, %edx

mov %ebx, 4(%esp)

int $0x80

Dynamic Execution StreamBuffer Overflowed Stack

0xb

sh

pop %eax

ret

pop %ecx

ret

xor %edx,%edx

ret

mov %ebx, 4(%esp)

ret

int $0x80

sh
S

ta
ck

 g
ro

w
th

Figure 3.1. Return-oriented Programming

with the requirement of gadgets to end with a ret. Jump-oriented programming [19] uses

indirect jumps in place of returns to subvert control flow, with the help of a ”dispatcher

gadget” that is responsible for executing a chain of gadgets. While the original form

of return-oriented programming was proposed on x86 machines, since the unaligned

instruction memory access on x86 made it easier to find gadgets, ROP has been shown

to be equally effective on ARM as well [31]. Figure 3.1 depicts the workings of a

return-oriented programming based exploit.

One of the challenges in constructing a ROP exploit is in finding the right set of

gadgets in a given binary, and constructing a precise payload that makes use of these

gadgets. While the initial ROP exploits were constructed by hand, several automatic

ROP payload compilers have been introduced since then [50, 3, 2]. These automated

tools drastically speed up the process of gadget discovery, making ROP one of the most

damaging attack methods available today.

11

3.2 Defenses against Code Reuse Attacks

There have been several defense techniques that have proposed in literature

to mitigate ROP, and some have even been commercially deployed. These defense

techniques can broadly be classified into two categories:

3.2.1 Control Flow Integrity

The success of code reuse attacks is limited by their ability to subvert the control

flow of a running program to arbitrary locations in memory. Abadi, et al. [9, 8] first

formalized the idea of CFI - to constrain the execution of a program to its predetermined

control flow graph (CFG) by instrumenting the program to perform checks before every

indirect jump. While this technique claims to completely eliminate arbitrary control flow

transfers, it suffers from a prohibitively high performance cost of as much as 45%.

Since then, a number of defenses have been proposed that attempt to provide

the security of CFI while lowering the performance overhead. Compact Control Flow

Integrity (CCFIR) [55], Branch Regulation [30], and Opaque CFI [40] are some defense

techniques that fall under this category.

kBouncer [45], ROPGuard [26], and ROPecker [20] represent more coarse

grained CFI techniques that enforce a subset of CFI constraints, such as restricting

the target of return instructions to call preceded instructions (ROPGuard), or detecting

any deviations by analyzing recently taken branches for signatures of a ROP attack

(ROPecker and kBouncer). Relaxing constraints, while good for performance, can also

reduce the effectiveness of these techniques, as demonstrated by Davi, et al [23].

3.2.2 Randomization

Classic code reuse attacks also depend heavily on knowledge of the executing

program’s code layout and location of useful gadgets. The second class of defense

12

techniques attempt to nullify this knowledge of the attacker by either randomizing the

location of gadgets or transforming them to render them useless.

Address Space Layout Randomization(ASLR) introduced by PaX [57], random-

izes three key areas of a program’s address space (a) the main executable region (code,

data, bss, and brk() controlled heap), (b) mmap() managed memory (libraries, thread

local storage and all other memory mapped data), and (c) the user stack. Each region is

loaded at a different randomized offset during program startup. But this granularity of

randomization has been demonstrated to be insufficient against brute force attacks [52].

Since then a number of techniques have attempted to increase the entropy by reducing

the granularity of randomization. Binary Stirring [60], Instruction Location Randomiza-

tion [29], and Code Shredding [53] represent a class of defenses that aim to reduce the

granularity, from basic blocks, to instructions, to bytes. G-Free [41], and In-Place Code

Randomization [46] perform load-time transformations on the code to either eliminate

gadgets or replace them with equivalent instructions that break gadgets.

While the entropy provided by these techniques against ROP attacks is compelling,

they are prone to attacks such as JIT-ROP [54] that bypass load-time randomization. JIT-

ROP is an attack technique where an attacker exploits a memory inference vulnerability

repeatedly to scan the memory image of a process in execution, discover code pages and

reconstruct them, find gadgets in them and compile an exploit payload from them, all in

run-time.

Isomeron [24] harnesses software diversity and probabilistic execution by loading

two versions of the program, one original and one diversified, into the address space of the

program and randomly switching between the two at every function call. Our work differs

from Isomeron in that we diversify code within and across the ISA, thus randomizing the

architecture itself. We also perform run-time program state randomization as opposed

to load-time, which provides us with a unique opportunity to thwart repeated attacks

13

by re-randomizing between attempts. Further, a combination of the two allows our

architecture to exhibit a high degree of entropy against even very short-chain exploits.

3.3 Heterogeneous Chip Multiprocessors

The benefits of heterogeneous chip multiprocessors for power and energy effi-

ciency have been demonstrated by Kumar, et al. [33, 32], especially when coupled with

an effective scheduling policy [22]. Architectures such as ARM’s big.LITTLE processor

[27] and NVidia’s Kal-El processor [7] have since proved their commercial viability. But

these architectures restrict themselves to a single ISA to allow rapid migration of threads

between cores dynamically, without any transformation.

Heterogeneous-ISA CMPs further explore architectural heterogeneity by using

cores that belong to multiple ISAs. The current breed of heterogeneous-ISA CMPs,

mostly FPGAs, GPUs, accelerators and MPSoCs [47, 6, 17], are very specialized and

lack a common address space that allows dynamic execution migration. DeVuyst, et

al. [25] laid the first foundations for general purpose heterogeneous-ISA CMPs by

showing that migration cost could be reduced by an order of magnitude by utilizing

shared memory in place of memory transfer. Venkat and Tullsen [59] conduct a design

space exploration to find the the optimal heterogeneous-ISA CMP for general purpose

mixed workloads and demonstrate that such an architecture provides both performance

and energy gains for a wide range of applications. These architectures require support

from compatible operating systems [12, 35] and memory consistency frameworks [37].

Commercial architectures have also since made a move towards exploring heterogeneous

processors (CPU-GPU) for their power efficiency by improving programmability and

portability [1].

Chapter 3, in part is currently being prepared for submission for publication of

the material. Venkat, Ashish; Shamasunder, Sriskanda; Tullsen, Dean; Shacham, Hovav.

14

The thesis author was one of the primary investigators and co-author of this material.

Chapter 4

Heterogeneous-ISA Program State Re-
location

The success of a ROP attack relies on the attacker’s ability to know the state of

an executing program and modify it. Randomization based defenses attempt to make the

attacker’s job harder, if not impossible, by increasing the entropy of a system (the number

of randomizable states). In our work on Heterogeneous-ISA Program State Relocation we

leverage the power of Heterogeneous-ISA execution and a new randomization technique

dubbed Program State Relocation to push the entropy higher than ever by decoupling a

program’s execution from the underlying micro-architecture.

Architects have demonstrated both the viability and efficiency advantages of a

heterogeneous-ISA CMP. These architectures maximize efficiency by allowing dynamic

task migration between cores executing different ISAs, possibly between different ap-

plication phases, or reacting to the changing operating conditions of the processor (e.g.,

thermal emergency). In this chapter, we discuss strategies to harness and re-purpose these

techniques as a security defense for ROP.

15

16

4.1 Instruction Set Randomization

From a security standpoint, heterogeneous-ISA CMPs have two major advantages.

First, ROP attacks are highly target-ISA dependent. An application that migrates between

multiple heterogeneous-ISA cores executes instructions from different instruction sets.

If a migration is forced upon execution of every ROP gadget, a successful attack would

involve chaining gadgets from different ISAs, and yet produce a meaningful result

(e.g., spawn a shell). Furthermore, if we make migration probabilistic, we remove the

most fundamental assumption of the attacker – knowledge of what ISA the gadget will

execute on. The second advantage is that execution migration in a heterogeneous-ISA

CMP requires stack transformation. This especially constrains ROP gadgets to save all

intermediate state in locations that are immune to run-time stack transformation (e.g.,

heap memory), thereby significantly reducing the attack surface.

Several fine-grained randomization techniques proposed in prior work have been

shown to be broken by a malicious attack called just-in-time return-oriented programming

(JIT-ROP) [54] that exploits a single leaked memory disclosure to reconstruct the entire

memory image of the process, and thereby bypass all randomization. Instruction Set

Randomization in a heterogeneous-ISA CMP, however, severely inhibits JIT-ROP. This

is because the decision to migrate execution to a different ISA is made probabilistically

at run-time, thereby limiting an attacker’s ability to chain gadgets reliably.

While randomization across heterogeneous-ISAs systematically removes the

knowledge of what architecture the attacker is executing on, in the next section, we show

how randomization within an ISA could further extend the effectiveness of our technique.

17

Program Binary

BB#2

Live Regs: %ebx : a | %edx : b

Callee Save: [SP+3156] : %ret

Arguments: [SP+4768] : arg1

Fixed Stack Slots: [SP+1072] : a

Relocatables : [SP+1072] : a

Extended Symbol Table

Code Section

Randomizer

Disassembler

Code Cache

Relocation Map

Randomize

Calling

Convention

Register

Reallocation
Stack Slot

Coloring

Code Cache Miss Handler

Performance

Optimizer

Dynamic Binary Translator

Translation Engine

H/W Return Address Table

CPU

Processor

I-Cache

D-Cache

Registers:

ebx -> [esp+0x80c]

edx -> eax

Stack Objects:

%RET -> [esp + 0xc58]

Function-Level Relocation Map

1

2

3 4

5

6

7

BB#1:

mov 0x30(%esp), %esi

ret

BB#2:

or %dl, %bl

ret

BB#3:

add %eax, 0x48

call *(%eax)

or %al, 0x80c (%esp)

add $c54, %esp

ret

Source Address Target Address

0x1001beef 0x08048abc

Figure 4.1. Program State Relocation Architecture

4.2 Program State Relocation

Program State Relocation (PSR) comprises a set of dynamic binary code transfor-

mations that can be easily deployed in any JIT-based system. The major goal of program

state relocation is to shuffle program state (registers and memory) such that it is always

found at the expected location during legitimate execution, but it is highly unlikely to be

found by a ROP gadget that strays away from the legitimate control flow path.

As shown in Figure 4.1, the PSR runtime operates in a classic just-in-time

dynamic translation mode, processing one basic block at a time. For each basic block in

translation, it gathers information about the parent function, which is available from static

analysis. Irrespective of the point of entry, the PSR runtime constructs a relocation map

for every function, if it is being entered for the first time. The relocation map specifies

the randomized calling conventions to be followed while calling the function, along with

a set of randomized register allocation and stack slot coloring rules to be followed within

that function.

18

As with classic DBT, translation is performed until an indirect or conditional

jump is reached, at which point control is transferred to the translated code in the

code cache. If a translation for the jump target is not available (a code cache miss),

necessary transformations are applied as described above, and control is relinquished to

the translated code. To ensure the code cache does not get compromised, we mandate

that all return addresses stored on the stack point to original source code instead of the

translated version. Furthermore, we make minor changes to the call and return instructions

(macro-ops) to perform an extra cycle look-up in a hardware-maintained Return Address

Table (RAT), in order to translate the source-level address to its corresponding translated

version before making the actual control transfer.

The effect of program state relocation is that an object previously found in a

register may be relocated to a different register or a random location on the stack, and

vice-versa. Due to the sheer number of stack locations available to use for relocating an

object, the number of possible dynamic code transformations (entropy) explodes, thereby

rendering classic brute force attacks such as Blind-ROP [15] practically impossible on

a system implementing PSR. Moreover, since the transformations happen at run-time

rather than load-time, a PSR system will always re-randomize upon a crash or reboot,

further strengthening its effectiveness.

4.3 Heterogeneous-ISA PSR

Instruction Set Randomization and Program State Relocation each represent

strong defenses independently. However, we find that there is significant synergy between

the two techniques, and one technique only amplifies the effectiveness of the other.

Therefore, we combine them into one solid defense called “Heterogeneous-ISA Program

State Relocation”. Figure 4.2 shows the high level architecture of Heterogeneous-ISA

PSR.

19

Figure 4.2. Heterogeneous-ISA Program State Relocation Architecture

The defense leverages a heterogeneous-ISA CMP composed of a low-power

ARM core and a high-performance x86 core, that each run a virtual machine capable of

performing program state relocation. To continue to reap the full performance/energy

benefits of the heterogeneous-ISA CMP, we perform task migration only when an ap-

plication phase change demands migration to a different ISA. Additionally, we perform

non-deterministic execution migration between the two ISAs only when the PSR runtime

detects a possible attempt to compromise security.

In our evaluation, we find that a code cache miss resulting from an indirect control

transfer (including returns) is one of the key characteristics of a possible security breach.

A code cache miss could result from one of two scenarios. In the legitimate execution

scenario, the jump target is valid, but has not been translated yet (compulsory miss), or

a translation for it was previously evicted from the code cache (capacity miss). In an

attack scenario, the jump target points to a ROP gadget, and therefore a mapping does not

exist in the PSR data structures. The PSR virtual machines make no effort to distinguish

between the two scenarios. They instead migrate execution to a different ISA (with some

probability) on every indirect control transfer that misses the code cache.

Like any JIT system with a sufficiently large code cache, one would expect code

20

cache misses to be infrequent once the application reaches a steady state in execution.

Therefore, legitimate execution should experience no meaningful degradation in steady

state performance. Furthermore, we perform multiple translations, one for each ISA,

when an indirect control transfer results in a compulsory miss, further reducing miss

events. This implies that, in steady state, an application will continue to execute on the

ISA of its preference, because a translation for the jump target is found in either ISA.

In theory, an attacker could avoid migrating to a different ISA by using gadgets

that are already translated indirect jump targets or function call sites, for which the

PSR virtual machines already have a mapping in their internal data structures. In our

evaluation, we find that the number of such gadgets is insufficient even for the simplest

execve exploit.

Chapter 4, in part is currently being prepared for submission for publication of

the material. Venkat, Ashish; Shamasunder, Sriskanda; Tullsen, Dean; Shacham, Hovav.

The thesis author was one of the primary investigators and co-author of this material.

Chapter 5

Design and Implementation

In this chapter, we present the design and implementation details of Program

State Relocation and discuss how our system behaves under different execution scenarios.

5.1 Program State Relocation

Program State Relocation is a set of transformations that relocate program state

(registers and stack objects) within the same ISA. In our implementation, these trans-

formations essentially randomize calling conventions, register allocation, and stack slot

coloring. While most of these transformations can be accomplished by a mere change in

the addressing mode, some transformations (e.g., procedure call/return) are slightly more

involved and might require insertion of a small number of move instructions.

5.1.1 Addressing Mode Transformation

Each instruction in a basic block is modified to access its source and destination

operands at their new locations, as specified by the function’s relocation map. In most

cases, this transformation is rather trivial and involves mere changing of addressing

modes. If the ISA does not expose a certain addressing mode, the PSR virtual machine

emulates it using additional instructions and register temporaries. For example, owing to

the variety of addressing modes in x86, we use additional instructions only when more

21

22

than one operand of an instruction is relocated to memory.

5.1.2 Procedure Call Transformation

The PSR virtual machine instruments all procedure call and system call instruc-

tions to perform argument relocation and register spill/restore as specified by the callee’s

relocation map and the target ABI, respectively. As an optimization, the PSR virtual

machine eliminates any redundant caller/callee register save and restore instructions.

Furthermore, the virtual machine allocates 2 to 16 pages of randomization space on the

stack in addition to the space already used by the callee’s locals, temporaries, and spills,

effectively providing 13 to 16 bits of entropy for every register or memory access. Note

that return addresses are also relocated to random offsets, and therefore even a nop gadget

that just performs a return incurs an entropy of at least 13 bits.

One of the biggest challenges with procedure call transformation is to preserve

the live-ins and live-outs across function call sites, and correctly compute the caller/callee

saves upon every function invocation. We take advantage of a single basic block look-

ahead liveness analysis to accurately compute this information, and incorporate them into

the randomized calling convention. A major source of ROP gadgets include the callee

restore sequence that pops a bunch of callee save registers before returning back to the

caller. To circumvent this, we perform a randomized scatter of callee saves (spray callee

saves to random locations on the stack) at the function call site, and a randomized gather

after return.

5.1.3 Indirect Control Transfer

Like any DBT system, the PSR virtual machine traps all indirect jumps into the

translator. This implies there exist absolutely no indirect jumps translated into the code

cache. As a software fault isolation measure, we terminate the process in case we find

23

an indirect jump target within the code cache’s address range. Similarly, we disallow

pointers to the code cache to exist as function pointers or return addresses on the stack.

We handle function pointers in the same way as indirect jumps.

For function returns however, we always push the source return address on the

stack, and take advantage of a hardware TLB-like structure called the return address table

(RAT) that contains a mapping from source address (address of the function call site in

the native binary) to target address (address of the function call site in the code cache).

The call macro-op in the processor is modified to update the RAT with the right mapping,

while the return macro-op is modified to perform return address translation as an extra

step with a 1-cycle penalty. Upon a RAT miss, we conclude that there was a code cache

miss and trap into the translator, for re-translation of that basic block.

5.2 PSR-aware Execution Migration

Our migration policy allows execution migration across heterogeneous ISAs in

two specific scenarios. First, we migrate execution whenever an application’s phase

changes or the processor’s current operating condition demands migration to another

core. This is essential because it preserves the performance and energy advantages of

a heterogeneous-ISA CMP. On the other hand, we also migrate execution, although

probabilistically, when the PSR virtual machine suspects a security breach (specifically,

when an indirect control transfer results in a code cache miss).

Prior work on heterogeneous-ISA execution migration suggests that we can be

migration-safe at only 45% of the basic blocks [59]. To support instantaneous migration,

they employ dynamic binary translation until a point of execution is reached, where the

stack can be safely transformed. This implies that a ROP exploit that is composed entirely

out of the remaining 55% of the basic blocks could completely bypass instruction set

randomization.

24

To circumvent this, we re-purpose the original multi-ISA compilation infrastruc-

ture to support an on-demand execution migration. In essence, we transform only those

objects on the stack that are absolutely necessary for executing instructions until the next

control transfer (jump, call or return), and revert back to the original ISA to execute the

next basic block. By doing so, we manage to be migration-safe for as much as 88% of

the time. Furthermore, we completely avoid jumps to unintentional gadgets upon a code

cache miss. We do this by taking advantage of an attack detection unit that disassembles

from the last seen nearest address (or function boundary) to the program counter, up until

the program counter itself. This is a minor change to the PSR virtual machine, which

already does sophisticated liveness analysis.

Finally, we ensure that our migration strategy is PSR-aware, which means we not

only transform an object from one ISA-form to another, but we fetch the object from its

randomized location on one ISA and move it to its new randomized location on the other

ISA.

5.3 Execution Scenarios

Legitimate execution. In a legitimate execution scenario, the procedure call

transformation ensures that functions are always presented with relocated arguments.

Furthermore, basic blocks are also presented with relocated live-ins since execution starts

at the intended entry point of the function, thereby preserving the integrity of legitimate

program execution.

5.3.1 Stack Unwinding

Libraries such as libunwind rely on compiler generated stack frame layout infor-

mation to unwind the stack in exceptional scenarios such as setjmp and longjmp, and

C++ exceptions. PSR seamlessly works with setjmp and longjmp due to the temporary

25

register spill/restore, performed as a part of the procedure call transformation.

However, C++ exceptions and other debugger routines unwind the stack frame-

by-frame, inspecting stack objects at each frame, until the unwind target is reached.

Performing PSR on such routines might lead to inconsistent program state. To prevent

such inconsistencies, the PSR virtual machine instruments these unwind routines to use

the same relocation map as the function that owns the frame being processed. This

guarantees that frame objects are always accessed from their appropriate relocated

addresses, irrespective of the control flow.

Furthermore, we force migration (and thus stack transformation) in the rare event

when a longjmp is taken, but the corresponding setjmp was performed on a different ISA.

5.3.2 ROP attack

In the event of a ROP attack, the buffer overflow itself happens at a relocated

stack address. Therefore, there is no guarantee that the return address is overwritten with

the gadget address. In case the attacker manages to successfully overwrite the return

address, she will find that the gadget at that address fails to work as intended. This is

because the PSR virtual machine dynamically transforms every instruction in that gadget

to access data from their randomized locations. Note that this is not just true for ROP

attacks, but hold for jump-oriented programming, v-table hijack, and other variants. PSR

inherently defeats return-into-libc because of the randomized calling conventions.

5.3.3 Crash/Reboot scenarios

To guarantee high quality of service and robustness, most servers re-spawn worker

threads upon a crash or a reboot. Several brute force attacks such as Blind-ROP exploit

this property of servers to mount repeated attacks until they become compromised. These

attacks typically bank on using information leaked in a previous attempt, in order to

26

reduce the overall time-to-attack. This is possible because a process randomized at

load-time typically does not get re-randomized every time it spawns a thread. However,

a PSR virtual machine performs randomization at run-time, which means we have the

ability to re-randomize upon re-spawn. Note that this extends to the PSR virtual machines

on both ISAs. Therefore, each time a worker thread re-spawns, the attacker is presented

with a re-randomized version of the code cache on both ISAs.

Chapter 5, in part is currently being prepared for submission for publication of

the material. Venkat, Ashish; Shamasunder, Sriskanda; Tullsen, Dean; Shacham, Hovav.

The thesis author was one of the primary investigators and co-author of this material.

Chapter 6

Threat Model

To evaluate the effectiveness of our defense, we make several conservative as-

sumptions about our threat model.

6.1 Complete Disclosure

We assume that the attacker has full knowledge of the inner workings of our

defense mechanisms. We also assume that the attacker has unfettered access to the binary,

source code, and complete control flow graph of the program in execution. Consequently,

the attacker has a complete list of all potential ROP/JOP gadgets in the binary, and is

capable of mounting attacks ranging from classic ROP [51] to just-in-time code reuse

(JIT-ROP) [54] attacks.

6.2 Just-in-time Code Reuse

We assume that the attacker has the ability to snoop into a program’s memory

in order to bypass address space and fine-grained code randomization. To this end,

we assume the program in execution exhibits one or more vulnerabilities that allow an

attacker to (a) write to memory (by means of a stack/heap based overflow), and (b) read

an arbitrary number of bytes from any memory location, using a single leaked memory

27

28

disclosure.

6.3 Brute Force Attacks

We also assume that the system is susceptible to brute force attacks such as

Blind-ROP [15]. To this end, we model a system as described by Shacham, et al. [52]

that assumes a program executing as a child thread, whose parent re-spawns it upon on a

crash. We do not assume any defense mechanism that monitors the frequency of such an

event to detect ROP attacks. We instead use it as a metric to demonstrate the effectiveness

of PSR against brute force.

6.4 JIT-Spraying

JIT-spraying techniques exploit the just-in-time compilation functionality to

generate predictable chunks of exploit code in the text section, using carefully crafted

JavaScript or ActionScript called GaJITS [49]. We find that PSR implicitly defeats such

attacks because GaJITS undergo significant mangling when subjected to program state

relocation.

Although we assume non-executable memory, we take no extra steps to prevent

JIT Spraying attacks [16] that exploit the nature of JIT compilation to inject executable

code as data. We assume that the program is susceptible to such attacks, but find that

PSR implicitly defeats them due to its nature of run-time randomization, rather than at

load time.

Chapter 6, in part is currently being prepared for submission for publication of

the material. Venkat, Ashish; Shamasunder, Sriskanda; Tullsen, Dean; Shacham, Hovav.

The thesis author was one of the primary investigators and co-author of this material.

Chapter 7

Evaluating Effectiveness

Heterogeneous-ISA Program State Relocation, at the heart of it, is a randomiza-

tion based defense. A key metric of randomization based defenses in entropy [52], or,

the amount of randomness it introduces into the system. Therefore it is quintessential to

evaluate PSR for the entropy it provides. Entropy, though, is a theoretical estimate and

only represents the potential of a defense technique in resisting attacks. A true test of

any defense mechanism is its ability to thwart real attacks, ranging from simple ones like

classic ROP to more sophisticated ones like JIT-ROP.

The biggest challenge in evaluating a complex system like PSR is that the sheer

number of randomizable states that it offers can often make even simple experiments

practically infeasible. For example, the average number of randomizable states for each

register/stack location under PSR is 213. Evaluating it against only a handful of popular

exploits is more practical but is hardly a guarantee of its effectiveness. What then we

need is a metric that models the vulnerability of a system to attacks realistically, and

measure how PSR can make the system less vulnerable.

An important characteristic of any attack is that it requires the victim program

to expose a reasonable attack surface to exploit. In the context of ROP, the attack

surface is represented by the number of gadgets available in a program that facilitate

the construction of a successful exploit. The goal of every randomization defense is to

29

30

Table 7.1. Attack Surface: Symbols and Definitions

Symbol Definition
GROP Size of the attack surface for a classic

ROP attack.
Gmod Number of gadgets modified by PSR.
Gnew Number of gadgets introduced by PSR.
GJIT−ROP Size of the attack surface for a

JIT-ROP attack.
GJIT−ISA Size of the attack surface for a

JIT-ROP attack in Heterogeneous-ISA PSR.

Figure 7.1. Attack Surface of a Victim Program

reduce the attack surface (both in terms of availability and functionality), in order to

limit the attacker’s ability to construct meaningful exploits. Therefore, we use the attack

surface of victim programs as a measure of its vulnerability, and measure how PSR can

reduce this attack surface. Note that the sample space of possible exploits for a given

attack surface can be considerably smaller or even non-existent, therefore we believe the

attack surface is a conservative estimate of a program’s vulnerability to ROP.

Figure 7.1 represents a victim program’s attack surface for different types of

attacks while running on our architecture. Table 7.1 introduces a list of symbols and their

definitions that we use to represent key elements of an attack surface through the rest of

this section.

Since every exploit requires some program state in the form of either registers or

31

stack objects, we designate any gadget that successfully populates a register with attacker

intended value as viable. We evaluate every gadget for its viability on a system, without

and with PSR, to measure the attack surface for three major classes of attacks: (a) classic

ROP, (b) brute-force, and (c) JIT-ROP.

7.1 Classic ROP Attack

Classic ROP attacks involve using the set of gadgets discovered from analysing

the binary to construct an exploit. Under this form of attack the attacker is either unaware

of any underlying randomization that has been performed or is unable to bypass it.

Under PSR we expect a majority of the initially discovered viable set of gadgets to be

transformed. Gmod represents these gadgets that have been modified by PSR and hence

rendered useless for classic ROP. Since PSR is a randomization scheme, there is always

a chance that some gadgets remain in their original form. GROP represents this set of

gadgets that remain untouched and viable for attackers.

7.2 Brute Force Attacks

As illustrated in Figure 7.1, PSR modifies a majority of the gadgets that were

previously available for ROP. These gadgets (Gmod), by virtue of PSR’s transformations,

have either been modified in a way that they no longer perform the attacker intended

action, or have been completely eliminated. The former of these is a viable candidate for

a brute force attack since it performs useful computation, just not what an attacker expects

it to. Also viable for a brute force attack is any gadget introduced by the randomization

itself, denoted by Gnew in our discussion. This is true of almost every fine-grained

randomization technique that breaks gadgets by relocating them or transforming them.

The attack surface for brute force comprises every gadget available in the program,

since there is no way to ascertain which ones will transform to be viable gadgets. Note

32

that the set of viable gadgets for brute force includes GROP, Gmod (transformed gadgets

only), and Gnew. We can expect that a sizeable portion of all gadgets are viable for

brute-force, and therefore require thorough evaluation. Although some existing ROP

defenses dismiss brute force as impossible assuming that an operating system would

detect multiple crashes, or that the user would not re-run a crashing application, it has

been proven that brute force remains a viable option if the application is vulnerable to

repeated attacks [15, 52].

Algorithm 1. Brute Force Simulation

1: G = {g1, g2 ... gn} /* Set of n available gadgets. */
2: R = {r1, r2 ... rm} /* Set of m registers to load. */
3: P = /0 /* Set of successfully populated registers. */
4: X = () /* List of chosen gadgets for the attack. */
5: Y = () /* List of return address locations for chosen gadgets. */
6: A(g) is the randomized return address for gadget g

7: for all i = 1 to m do
8: ri is the register to populate
9: find g j in G s.t. g j populates register ri,

does not clobber any register s in P, and
A(g j) = min

k=1...n
A(gk)

10: P = P + {ri}
11: X = X + {j}
12: Y = Y + {A(g j)}
13: end for

14: Let B be the number of attempts to populate all registers, then
for an average frame size of f

15: B = Y [0] + f .X [0] + n f .Y [1] + n f 2.X [1] + ... + n3 f 4.X [3]

To evaluate the system against brute force attacks while keeping the experiment

tractable, we analyze each gadget to gather data about every perturbation it produces on

the state of the program, at a randomly chosen point in its execution. We then simulate a

brute force attack by running this data through Algorithm 1. Cheng, et al. [20] showed

33

that the shortest aligned gadget chain generated by gadget compilers such as Q [50] is

17, but to establish the effectiveness of PSR, we consider a much smaller four-gadget

shellcode exploit that performs the system call execve(), which in theory should be

easier to brute force by several orders of magnitude. Although the run-time nature

of PSR transformations involve re-randomization upon crash, to keep the experiment

tractable, we make the conservative assumption that a failed attempt does not result in

re-randomization, and thereby tip the scales in the attacker’s favor.

Algorithm 1 simulates a brute force attack to populate the four registers (eax,

ebx, ecx, and edx) necessary to perform the execve() system call with attacker provided

values on the stack. On a system protected by PSR, all program state (registers and stack

objects, including the return address) is relocated to a random register or a stack location.

Therefore, such an attack should brute force three independent variables in the system:

(a) the gadget to execute, (b) relative position(s) of data on the stack, as required by the

gadget, and (c) relative position of the return address on the stack, required to chain

the next gadget. The attacker should brute force the gadget itself, because it is difficult

to determine the potential viability of a gadget that will inevitably be subject to PSR.

Therefore, we brute force every gadget discovered by the Galileo algorithm. The data for

each gadget (the value to load into a register) and the return address, both share the same

stack frame. In an unsecured system their locations can be easily determined, but with

PSR, they can lie anywhere within a stack frame.

To maximize the success of a gadget, we spray the data for the gadget on the

entire stack frame and brute force the location of the return address within the frame.

We model our attack to populate one register at a time, in order to spray an entire stack

frame with the data for one register, thereby increasing its chances of being read by a

gadget. Since we assume the attacker has insight into the inner workings of PSR, we

assume a frame size of 8KB, at which PSR provides substantial security benefits at an

34

acceptable degradation in performance. In our algorithm, we also account for register

and stack clobbering to ensure that a gadget does not destroy previously established state.

The algorithm stops searching for more viable gadgets as soon it finds a four-gadget

shellcode exploit.

It is worth noting that our method of simulating brute force loosely resembles the

Blind-ROP algorithm [15] that finds viable gadgets when an attacker has no knowledge of

the binary or source code. The key difference is that Blind-ROP relies on the target binary

respecting traditional calling conventions and stack layout, whereas in a PSR-protected

system, we can make no such assumptions. Therefore, a Blind-ROP attack on a system

secured with PSR essentially translates to a version of our brute force attack and will

require a similar number of attempts to succeed.

7.3 Just-In-Time Code Reuse

In most randomization techniques, the program code is rewritten at load-time

to eliminate or modify gadgets. They attempt to reduce the attack surface by hiding

the randomized version of the code from the attacker. But in the presence of a memory

disclosure vulnerability, the entire memory image of a process is now accessible to

the attacker, including the randomized code, thereby providing JIT-ROP with an attack

surface similar in size to that of classic ROP.

Program State Relocation on the other hand randomizes code at run-time, rather

than at load-time, using dynamic binary translation. Owing to the just-in-time nature of

PSR, only the steady state program code that has already been randomized by PSR, and

is present in the code cache, remains vulnerable to JIT-ROP. To quantify this vulnerability

we measure the attack surface for a JIT-ROP attack, GJIT−ROP, by identifying the set

of viable gadgets that lie within the code cache. It is important to note that this only

represents the attack surface on a single-ISA machine.

35

In the proposed heteroegeneous-ISA architecture, the PSR virtual machine mi-

grates execution across ISAs for every indirect control transfer (including returns) that

misses the code cache. Therefore, to measure the true attack surface for a JIT-ROP attack

under this architecture we only need to account for those gadgets that are viable, present

in the code cache, and are preceded by a call instruction, therefore representing a valid

return target.

Chapter 9, in part is currently being prepared for submission for publication of

the material. Venkat, Ashish; Shamasunder, Sriskanda; Tullsen, Dean; Shacham, Hovav.

The thesis author was one of the primary investigators and co-author of this material.

Chapter 8

Methodology

Evaluating PSR against the metrics defined in chapter 7 requires the use of several

tools and techniques, including some that we developed for this sole purpose. In this

section we describe the experimental methodology used, along with a description of the

tools used to facilitate it.

8.1 Gadget Discovery and Entropy

We use the ‘Galileo’ algorithm described by Shacham, et al. [51] to mine each

benchmark for every possible instruction sequence that ends with a return instruction.

The algorithm searches for gadgets in a program’s binary by finding return instructions

(ret in x86) and working its way backwards byte by byte to build a trie of all possible

instructions leading up to it. This way we not only capture all instruction sequences in

the source binary ending with a return but also unintentional instruction sequences that

are an artifact of x86’s unaligned instruction access and variable length instructions.

Measuring entropy turns out to be more challenging since there is no universal

definition of entropy for randomization techniques. Entropy is often described as the

amount of randomness a mechanism introduces into the system. For example, the entropy

for Address Space Layout Randomization (ASLR) [57] is defined as the number of

possible locations to which each gadget can be relocated by randomizing the address of

36

37

each program section in its address space. On a 32-bit machine, ASLR can relocate a

section to 232 possible locations, therefore it is said to provide 32 bits of entropy.

Since PSR randomizes program state, the location of registers and stack slots,

we define the entropy for a gadget under PSR as the number of possible states that all

the program variables in the gadget can occupy. That is, the sum total of all possible

locations that each register and stack slot can be relocated to. The entropy of a gadget is

calculated as:

Eg = (Num Regsg +1)∗ log2Frame Size

where Num Regsg is the number of unique registers accessed by the gadget

(including stack pointer for instructions that operate on the stack), and Frame Size is the

frame size of the function where the gadget resides. Num Regsg is incremented by 1 to

account for the randomized return address location on the stack, since every gadget ends

in a ret.

Since this number depends on the number of registers and stack slots used by

each gadget and since each program contains different types of gadgets, the entropy

varies based on the program. We calculate the entropy of a program as the average of the

entropies of all its gadgets.

8.2 Simulating Brute Force

As described in chapter 7, in order to make experiments such as brute force

tractable we analyse the gadgets individually, offline. To replicate the conditions of

a program in execution we use a snapshot (or checkpoint) of each benchmark after

executing 1 billion instructions. We skip the first billion instructions in order to avoid

any initialization code and correctly model steady state behavior.

38

We use a modified version of the PSR binary translator that restores program state

from this checkpoint, and analyses each gadget. Before executing a gadget we perform

certain steps to recreate an attack environment. In order to simulate an intelligent attacker

we pre-populate the entire stack frame (8KB in our tests) with a magic word that we

intend to populate the registers with. We also record the state of each register and the

current stack frame along with two adjacent stack frames. The DBT then executes the

gadget until either completion (return) or failure, and in either case, traps back to the

binary translator. In some cases a gadget may cause a catastrophic failure and crash the

translator. We treat these like any other failed gadgets. After execution, we once again

record the state of all gadgets and the few stack frames under observation. This allows us

to not only identify which registers a gadget successfully populates, but also ones that it

clobbers. We then check for any differences to identify the changes to program state from

a gadget’s execution. We also note the randomized return address and the randomized

stack frame size for each gadget.

We analyse each gadget in a benchmark individually and build a database of all

perturbations caused by them. We then run algorithm 1 defined in chapter 7 over this raw

data using a perl script that calculates the number of attempts required to successfully

populate all 4 registers required for a shellcode exploit, taking the following factors into

account: 1) The position of the gadget in our list of gadgets, 2) Registers populated

with the value from the stack, 3) Registers clobbered, 4) Stack slots clobbered, and 5)

Location of return address on the stack frame.

8.3 Simulating JIT-ROP

As described in chapter 7, JIT-ROP attacks under PSR are limited to the gadgets

available in the code cache of the binary translator. In order to identify the set of viable

gadgets in the code cache, we first need to identify the gadgets in the code cache.

39

Once again we use a gem5 checkpoint of of each benchmark after executing 1

billion instructions. We analyse the checkpoint to identify all the instructions that have

been placed in the code cache by the translator at this point in time. We then compare

this list to the list of viable gadgets we constructed by analysing each gadget as described

in the previous section. We note this subset of gadgets as the set of gadgets that are

useful for a JIT-ROP attack. Further we use an object dump of the binary to identify all

call preceded instructions and compare this with the previous list to generate a list of all

gadgets that are successful under heterogeneous-ISA PSR.

8.4 Correctness

Software verification is a major challenge for any code randomization defense,

and more so for heterogeneous-ISA PSR because it not only randomizes a program’s

architectural state, but randomizes the architecture itself. To ensure we preserve the

semantics of a program at all times, we perform two types of sanity checks.

First, we periodically examine the register and stack contents of a randomized

program in execution, and compare it against the unrandomized version, accounting

for relocation of variables and stack locations. Our test infrastructure has the ability

to tune the frequency of this sanity check at the function, basic block, and instruction

levels. Second, we ensure that the migration runtime has appropriately transformed the

program’s architectural state by comparing it against a checkpoint of the same program

that has been executing on the migrated-to ISA from the time of its instantiation. We

do so by leveraging the gem5 [14] architectural simulator to generate checkpoints that

capture the dynamic execution state of a program for each ISA. Through these checks,

we have verified that the program state is as expected in each of the checkpoints we use

for our experiments, for all of the benchmarks.

40

8.5 Experimental setup

Table 8.1. Benchmarks along with description

Benchmark Description

bzip2 Compression
gobmk Artificial Intelligence: go
hmmer Search Gene Sequence
lbm Fluid Dynamics
libquantum Physics: Quantum Computing
mcf Combinatorial Optimization
milc Physics: Quantum Chromodynamics
sphinx3 Speech recognition

We use the SPEC CPU2006 integer and floating-point C benchmarks to evaluate

the proposed defense. We exclude gcc and sjeng from this set because they perform

dynamic memory allocation on the stack either using the alloca library function, or

by passing variable-length array parameters. While our multi-ISA compilation and

runtime infrastructure is capable of working with variable-size stack frames, our current

PSR implementation does not support this feature yet. All benchmarks are compiled

using an LLVM-based multi-ISA compiler at the -O3 optimization level. To model a

heterogeneous-ISA CMP, we use the gem5 [14] architectural simulator. The processor

model of the ARM core is based on the low-power Cortex A-15, while the x86 core is

modeled after the high performance Core-i7. Table 8.1 describes the set of benchmarks

used in our experiments.

Chapter 9

Results

This chapter discusses the results of our experiments to evaluate the effectiveness

of PSR as a defense technique and our inferences from the same.

9.1 Classic ROP Attacks

Figure 9.1 shows the extent to which PSR reduces the attack surface for classic

ROP-style attacks, including return-into-libc, jump-oriented programming, and v-table

hijack. We observe that the sheer amount of randomization that each gadget undergoes

guarantees that only an insignificant portion of the attack surface remains unaltered.

In particular, PSR reduces the attack surface of classic ROP (GROP) by an average of

98.51%. We note that although the remaining 1.49% is unmodified by PSR, the attacker

has no way of determining which gadgets they are, thereby rendering classic ROP attacks

infeasible.

9.2 Brute Force Attacks

Table 9.1 shows the results of our brute force simulation. We observe that PSR

successfully renders brute force attacks computationally infeasible, by a considerably

large margin. We find that, on an average, a gadget has between six and seven ran-

41

42

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

!
"
#
$
%
&'
(
)'
*
+
,
-
%
./
'

'0
12
'.
3
(
"
/+
2
,
/4
'

()*+,-*"./*0-12" 345)*+,-*"./*0-12"

Figure 9.1. Classic ROP Attack Surface Reduction

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

!
"
#
$
%
&'
(
)'
*
+
,
-
%
./
'

'0
12
'.
3
(
"
/+
2
,
/4
'

()*+*,-./0"1-02/.3" 4*-5)/"1-02/.3"

Figure 9.2. Brute Force Attack Surface Reduction

domizable parameters which could potentially include registers, stack objects, and at

least one address on the stack to place the (return) address of the next gadget. In our

configuration of 8KB sized stack frames, each parameter has 213 randomizable states,

resulting in an average entropy of 87 bits per gadget. Even if a vulnerability allowed an

indefinite number of attempts, with each attempt only taking a nanosecond, we find that

it is computationally infeasible to perform such a brute force attack with state-of-the-art

computing infrastructure. In fact, such an attack would remain computationally infeasible

on future processors targeted at exascale computing.

43

Table 9.1. Inferences from Brute Force Simulation

Benchmark Randomizable Entropy Number of
Params (avg) Attempts

bzip2 6.76 88 2.34 x 1033

gobmk 6.53 85 2.87 x 1034

hmmer 6.69 87 1.16 x 1034

lbm 6.92 90 3.90 x 1034

libquantum 6.76 88 6.45 x 1033

mcf 6.69 87 1.71 x 1034

milc 6.46 84 2.92 x 1034

sphinx3 6.92 90 8.68 x 1033

9.3 Just-In-Time Code Reuse Attacks

We find that GJIT−ROP, the number of gadgets already randomized by PSR,

accounts for only 1.18% of all classic ROP gadgets and 1.64% of those viable for brute

force, thereby severely constraining the attack surface. Figure 7.1 shows this reduction

in attack surface for JIT-ROP. Note that a majority of gadgets are now undiscoverable,

since they lie outside the code cache.

Although the attack surface has been considerably reduced, the gadgets that

comprise GJIT−ROP could potentially be enough to mount a JIT-ROP attack, although

a weak one. Recall from Chapter 3 that the PSR virtual machines suspect a security

violation when an indirect control transfer (including returns) misses the code cache, and

subsequently migrate execution to a different ISA, albeit probabilistically. Note that the

PSR virtual machine can find in its internal structures only those indirect jump targets and

function call sites that have been translated so far, and will result in a code cache miss for

all others. Any viable gadget for JIT-ROP must avoid migration to a different ISA, and

therefore begin at an already translated indirect jump or function call site. This imposes

serious limitations on the JIT-ROP attack surface that has already been weakened by PSR.

Figure 7.1 represents this as GJIT−ISA, the true size of the attack surface for a JIT-ROP

attack on heterogeneous-ISA PSR.

44

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

!"
#
$%
&
'
()
*
+
,
-
(.
/
0
1+
,
2
(

)*+,+-./01#2.130/4# 5+.6*0#2.130/4#

Figure 9.3. JIT-ROP Attack Surface Reduction on (a) Single-ISA PSR, and (b)
Heterogeneous-ISA PSR

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

!
"#
$%
&
'
(
)*
%
+,
-.
%
*"
/-
.
0'
/1
*-

)'&#*+#,-.# ,-.#*+#)'&#

Figure 9.4. Percentage of Migration-Safe Basic Blocks

Figure 9.3 shows the reduction in attack surface for each benchmark under both

single-ISA and heterogeneous-ISA PSR. We find that only 8.87% of GJIT−ROP, or 0.09%

of all ROP gadgets qualify as viable for GJIT−ISA. Furthermore, as shown in Figure 9.4,

we note that our infrastructure is capable of being migration-safe on an average of 78%

of the time, in either direction. This implies that gadgets in the remaining 22% of

the basic blocks are still viable candidates for JIT-ROP. However, we find that these

remaining gadgets are insufficient to even construct a four-gadget shellcode exploit, let

alone complex exploits.

45

1

2

4

8

16

32

64

128

256

512

1 2 3 4 5 6 7 8 9 10 11 12

Length of Exploit

En
tro

py

PSR No PSR

Figure 9.5. Brute Forcing JIT-ROP on a Heterogeneous-ISA CMP

To further explore the synergy between program state relocation and instruction

set randomization, we analyze a brute force JIT-ROP attack on two distinct systems

that both implement heterogeneous-ISA execution migration. On the first system, we

randomly choose to migrate between heterogeneous ISAs upon execution of every return

or indirect jump instruction (irrespective of a code cache miss). On the second, we

enforce PSR along with heterogeneous-ISA migration, in which case we randomly

migrate between heterogeneous ISAs only when an indirect control transfer misses the

code cache.

Figure 9.5 shows the results of this experiment. We make two important observa-

tions. First, brute forcing both systems becomes exponentially harder as the length of

the gadget chain increases, restricting the attacker’s ability to construct complex exploits.

Second, the just-in-time nature of PSR inherently enables re-randomization upon a crash.

Therefore, the attacker is always presented with a re-randomized version of the code

cache on both ISAs, for every brute force attempt. This significantly boosts the entropy

of the system that implements heterogeneous-ISA program state relocation.

46

9.4 Heterogeneous-ISA attacks.

By removing the assumption of the underlying ISA, heterogeneous-ISA execution

forces an attacker to explore attacks that are either architecture independent, or can predict

which architecture the program is currently running on. Cha, et al. [18] show that it

is possible to compile Platform Independent Programs (PIP) that can run on multiple

ISAs. PIP uses ’gadgets’ that encode a ’header’ and separate instruction sequences for

each ISA. The header contains an architecture agnostic bitstring that diverts control to

instructions of the right ISA. Traditionally, PIP requires code injection or JIT-spraying.

Code injection is prevented by the W ⊕ X protection implemented in most modern

processors. We implicitly defeat JIT-spraying because all JIT-compiled code including

JIT-sprayed gadgets undergo program state relocation.

An attacker who is aware of heterogeneous-ISA PSR could hypothetically con-

struct more tailored attacks that interleave gadgets from both ISAs. For example, one

could craft an exploit that alternates gadgets between x86 and ARM, such that the ARM

gadgets are all nops that end with an indirect jump to force execution back to x86 while

not clobbering already established state. While such an attack does not guarantee success,

it could improve an attacker’s chances. We have been unable to identify any systematic

way to construct such exploits with a practical chance of success.

Chapter 9, in part is currently being prepared for submission for publication of

the material. Venkat, Ashish; Shamasunder, Sriskanda; Tullsen, Dean; Shacham, Hovav.

The thesis author was one of the primary investigators and co-author of this material.

Chapter 10

Conclusion

As computers become ubiquitous in every aspect of our lives, computer security

becomes equally important. Attacks on computers have gotten progressively evasive and

malicious, and one of the most prominent among them is return-oriented programming

(ROP). While many defense mechanisms have been proposed and some even commer-

cially distributed, none can comprehensively address the threat that ROP and its several

variants pose.

In this work we have leveraged the power of heterogeneous-ISA computing

and a novel randomization technique named program state relocation to propose a new

architecture dubbed Heterogeneous-ISA Program State Relocation that shows promise

in mitigating ROP to a large extent. Through our experiments and analysis we have

demonstrated that this architecture can serve as an effective defense against ROP, brute

forced ROP, and Just-In-Time ROP. Heterogeneous-ISA attacks are a new breed of attacks

that could potentially threaten this architecture but the possibility and practicality of

mounting such an attack is yet to be explored.

We have shown how metrics such as attack surface area and entropy can be

used to quantify the vulnerability of a system and the strength of a defense technique,

respectively. We have also presented a technique to approximate the effects of an attack

on a system, and use this information to perform exhaustive experimental evaluation of

47

48

randomization based defense mechanisms in a tangible manner.

In conclusion, we want to draw attention to the fact that architectural defenses

can be very powerful, if harnessed effectively. Through Heterogeneous-ISA Program

State Relocation, we have shown that by decoupling the architectural state with the

micro-architectural state, we can extract significant security benefits that are unique to

this abstraction of computing.

Bibliography

[1] HSA: A New Architecture for Heterogeneous
Computing. http://amd-dev.wpengine.netdna-
cdn.com/wordpress/media/2012/10/HSA TIRIAS Whitepaper Final 1-28-14.pdf.

[2] Ropper. https://scoding.de/ropper/.

[3] Ropshell. http://ropshell.com.

[4] 2nd Generation Intel Core vPro Processor Family. Technical report, Intel, 2008.

[5] The future is fusion: The Industry-Changing Impact of Accelerated Computing.
Technical report, AMD, 2008.

[6] The Benefits of Multiple CPU Cores in Mobile Devices. Technical report, NVidia,
2010.

[7] Variable SMP - A Multi-Core CPU Architecture for Low Power and High Perfor-
mance. Technical report, NVidia, 2011.

[8] M Abadi, M Budiu, U Erlingsson, and J Ligatti. Control-flow integrity. Proceedings
of the 12th ACM . . . , 2005.

[9] M Abadi, M Budiu, Ú Erlingsson, and J Ligatti. Control-flow integrity principles,
implementations, and applications. ACM Transactions on . . . , 2009.

[10] S Andersen and V Abella. Data Execution Prevention. Changes to Functionality in
Microsoft Windows XP Service Pack 2, Part 3: Memory Protection Technologies.
2004.

[11] A Baratloo, N Singh, and TK Tsai. Transparent Run-Time Defense Against Stack-
Smashing Attacks. USENIX Annual Technical . . . , 2000.

[12] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jelesnianski, Akshay
Ravichandran, Cagil Kendir, Alastair Murray, and Binoy Ravindran. Popcorn:
Bridging the Programmability Gap in heterogeneous-ISA Platforms. In Proceedings
of the Tenth European Conference on Computer Systems, EuroSys ’15, 2015.

49

50

[13] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.
IEEE computer, 2007.

[14] N Binkert, B Beckmann, and G Black. The gem5 simulator. ACM SIGARCH . . . ,
2011.

[15] A Bittau and A Belay. Hacking blind. Security and Privacy . . . , 2014.

[16] D Blazakis. Interpreter exploitation: Pointer inference and JIT spraying. BlackHat
DC, 2010.

[17] D Bouthaina, M Baklouti, S Niar, and M AID. Shared hardware accelerator
architectures for heterogeneous MPSoCs. In Reconfigurable and Communication-
Centric Systems-on-Chip (ReCoSoC), 2013 8th International Workshop on, July
2013.

[18] SK Cha, B Pak, D Brumley, and RJ Lipton. Platform-independent programs. . . . of
the 17th ACM conference on . . . , 2010.

[19] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. Return-oriented programming without
returns. In Proceedings of the 17th ACM conference on Computer and communi-
cations security - CCS ’10, page 559, New York, New York, USA, October 2010.
ACM Press.

[20] Y Cheng, Z Zhou, and M Yu. ROPecker: A generic and practical approach for
defending against ROP attacks. . . . on Network and . . . , 2014.

[21] C Cowan, C Pu, D Maier, and J Walpole. StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks. Usenix Security, 1998.

[22] K Van Craeynest and A Jaleel. Scheduling heterogeneous multi-cores through
performance impact estimation (PIE). ACM SIGARCH . . . , 2012.

[23] L Davi and D Lehmann. Stitching the gadgets: On the ineffectiveness of coarse-
grained control-flow integrity protection. USENIX Security . . . , 2014.

[24] L Davi and C Liebchen. Isomeron: Code randomization resilient to (just-in-time)
return-oriented programming. . . . Systems Security . . . , 2015.

[25] M DeVuyst, A Venkat, and DM Tullsen. Execution migration in a heterogeneous-
ISA chip multiprocessor. ACM SIGARCH Computer . . . , 2012.

[26] I Fratrić. ROPGuard: Runtime prevention of return-oriented programming attacks.
2012.

51

[27] P Greenhalgh. Big. little processing with arm cortex-a15 & cortex-a7. ARM White
paper, 2011.

[28] MD Hill and MR Marty. Amdahl’s law in the multicore era. Computer, 2008.

[29] J Hiser, A Nguyen-Tuong, and M Co. ILR: Where’d My Gadgets Go? Security
and Privacy . . . , 2012.

[30] M Kayaalp and M Ozsoy. Branch regulation: Low-overhead protection from code
reuse attacks. . . . (ISCA), 2012 39th . . . , 2012.

[31] T Kornau. Return oriented programming for the ARM architecture. Master’s thesis,
Ruhr-Universitat Bochum, 2010.

[32] R Kumar and KI Farkas. Single-ISA heterogeneous multi-core architectures: The
potential for processor power reduction. . . . , 2003. MICRO-36. . . . , 2003.

[33] R Kumar and DM Tullsen. Single-ISA heterogeneous multi-core architectures for
multithreaded workload performance. . . . Computer Architecture . . . , 2004.

[34] Rakesh Kumar, Dean M Tullsen, N P Jouppi, and P Ranganathan. Heterogeneous
chip multiprocessors. Computer, 38(11), 2005.

[35] T Li, P Brett, and R Knauerhase. Operating system support for overlapping-ISA
heterogeneous multi-core architectures. . . . (HPCA), 2010 IEEE . . . , 2010.

[36] D Lo, L Cheng, and R Govindaraju. Towards energy proportionality for large-scale
latency-critical workloads. Proceeding of the 41st . . . , 2014.

[37] Daniel Lustig, Caroline Trippel, Michael Pellauer, and Margaret Martonosi. Ar-
MOR: Defending Against Memory Consistency Model Mismatches in Heteroge-
neous Architectures. In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd
International Symposium on. IEEE, 2015.

[38] TR Maeurer and D Shippy. Introduction to the cell multiprocessor. IBM journal of
Research and . . . , 2005.

[39] JP McGregor and DK Karig. A processor architecture defense against buffer
overflow attacks. . . . Research and Education . . . , 2003.

[40] V Mohan, P Larsen, and S Brunthaler. Opaque control-flow integrity. Symposium
on Network . . . , 2015.

[41] K Onarlioglu, L Bilge, and A Lanzi. G-Free: defeating return-oriented programming
through gadget-less binaries. Proceedings of the 26th . . . , 2010.

[42] A One. Smashing the stack for fun and profit. Phrack magazine, 1996.

52

[43] H Ozdoganoglu. SmashGuard: A hardware solution to prevent security attacks on
the function return address. Computers, IEEE . . . , 2006.

[44] A Ozment and SE Schechter. Milk or wine: does software security improve with
age? Usenix Security, 2006.

[45] V Pappas. kBouncer: Efficient and transparent ROP mitigation. 2012.

[46] V Pappas. Smashing the gadgets: Hindering return-oriented programming using
in-place code randomization. Security and Privacy (SP . . . , 2012.

[47] A Putnam and AM Caulfield. A reconfigurable fabric for accelerating large-scale
datacenter services. . . . Architecture (ISCA), . . . , 2014.

[48] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-Oriented
Programming. ACM Transactions on Information and System Security, 15(1):1–34,
March 2012.

[49] C Rohlf and Y Ivnitskiy. Attacking clientside jit compilers. Black Hat USA, 2011.

[50] EJ Schwartz, T Avgerinos, and D Brumley. Q: Exploit Hardening Made Easy.
USENIX Security . . . , 2011.

[51] Hovav Shacham. The geometry of innocent flesh on the bone. In Proceedings of
the 14th ACM conference on Computer and communications security - CCS ’07,
page 552, New York, New York, USA, October 2007. ACM Press.

[52] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and
Dan Boneh. On the effectiveness of address-space randomization. In Proceedings
of the 11th ACM conference on Computer and communications security - CCS ’04,
page 298, New York, New York, USA, October 2004. ACM Press.

[53] E Shioji, Y Kawakoya, M Iwamura, and T Hariu. Code shredding: byte-granular
randomization of program layout for detecting code-reuse attacks. Proceedings of
the 28th . . . , 2012.

[54] KZ Snow and F Monrose. Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization. Security and Privacy . . . , 2013.

[55] L. Szekeres, S. McCamant, and Dawn Song. Practical Control Flow Integrity and
Randomization for Binary Executables. In 2013 IEEE Symposium on Security and
Privacy, pages 559–573. IEEE, May 2013.

[56] PaX Team. PaX. http://pax.grsecurity.net.

[57] PaX Team. PaX address space layout randomization (ASLR). 2003.

53

[58] G Varsamopoulos. Trends and effects of energy proportionality on server provision-
ing in data centers. . . . Computing (HiPC), 2010 . . . , 2010.

[59] A Venkat and DM Tullsen. Harnessing ISA diversity: design of a heterogeneous-
ISA chip multiprocessor. Computer Architecture (ISCA), 2014 . . . , 2014.

[60] R Wartell, V Mohan, KW Hamlen, and Z Lin. Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. . . . of the 2012 ACM conference on
. . . , 2012.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Thesis
	Introduction
	Overview
	Potential of Heterogeneous Chip Multiprocessors
	Randomizing Program State
	Putting it all together

	Background and Related Work
	Code Reuse Attacks
	Return-to-libc
	Return-oriented Programming

	Defenses against Code Reuse Attacks
	Control Flow Integrity
	Randomization

	Heterogeneous Chip Multiprocessors

	Heterogeneous-ISA Program State Relocation
	Instruction Set Randomization
	Program State Relocation
	Heterogeneous-ISA PSR

	Design and Implementation
	Program State Relocation
	Addressing Mode Transformation
	Procedure Call Transformation
	Indirect Control Transfer

	PSR-aware Execution Migration
	Execution Scenarios
	Stack Unwinding
	ROP attack
	Crash/Reboot scenarios

	Threat Model
	Complete Disclosure
	Just-in-time Code Reuse
	Brute Force Attacks
	JIT-Spraying

	Evaluating Effectiveness
	Classic ROP Attack
	Brute Force Attacks
	Just-In-Time Code Reuse

	Methodology
	Gadget Discovery and Entropy
	Simulating Brute Force
	Simulating JIT-ROP
	Correctness
	Experimental setup

	Results
	Classic ROP Attacks
	Brute Force Attacks
	Just-In-Time Code Reuse Attacks
	Heterogeneous-ISA attacks.

	Conclusion
	Bibliography

