
UC Santa Cruz
Activity Descriptions

Title
An Inquiry Approach to Teaching Sustainable Software Development with Collaborative
Version Control

Permalink
https://escholarship.org/uc/item/6fv1s464

Authors
Frisbie, Rachel LS
Grete, Philipp
Glines, Forrest W

Publication Date
2022-09-18

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6fv1s464
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

https://escholarship.org/uc/item/6fv1s464

pp. 249–260 in S. Seagroves, A. Barnes, A.J. Metevier, J. Porter, & L. Hunter (Eds.),

Leaders in effective and inclusive STEM: Twenty years of the Institute for Scientist &

Engineer Educators. UC Santa Cruz: Institute for Scientist & Engineer Educators.

https://escholarship.org/uc/isee_pdp20yr

© 2022 the authors, published open-access by ISEE with a CC BY license 249

An Inquiry Approach to Teaching
Sustainable Software Development with
Collaborative Version Control

Rachel L.S. Frisbie*1, Philipp Grete2,3, and Forrest W. Glines1,3

1 Department of Computational Mathematics, Science & Engineering, Michigan State University,

East Lansing, MI, USA
2 Hamburg Observatory, University of Hamburg, Hamburg, Germany
3 Department of Physics & Astronomy, Michigan State University, East Lansing, MI, USA
* Corresponding author, salmonra@msu.edu

Abstract

Software development is becoming increasingly ubiquitous in STEM disciplines resulting in the

need for education in associated computational skills. To address this need, we designed a "Sus-

tainable Software Development with Collaborative Version Control" workshop in the 2019 Institute

for Scientist & Engineer Educators (ISEE) Professional Development Program (PDP). We describe

here the development process and following delivery of the workshop. In particular, we explored

how to apply an inquiry approach to learning computational skills. By design, PDP activities inter-

twine content and “cognitive STEM practices,” and teasing apart content and practice is important

for STEM education. We encountered challenges with this task because our content — exploring

software sustainability with collaborative version control — is much like a practice in itself. We

designed our workshop to introduce the critical skill of sustainable software development using

collaborative version control systems with an inquiry approach rather than the more typically used,

strictly technical approach. We emphasize the authentic, broadly applicable nature of the workshop

in which learners jointly design, test, and discuss their own increasingly complex development

workflows. The development process for our workshop may be useful for educators who want to

introduce software practices to learners from many disparate STEM disciplines that leverage com-

putational methods and require software development to approach research questions.

Keywords: activity design, git, inquiry, version control, software development

1. Introduction

The ultimate goal of our workshop was to help

learners learn concepts that would enable sustaina-

ble development of scientific software. As compu-

ting resources become more intrinsic to scientific

research, more scientists are developing software to

enable their research. These software projects may

range from small scripts used to analyze experi-

mental data, to specialized software used to control

instrumentation, to large simulation codes used to

model physical systems. Development of scientific

https://escholarship.org/uc/item/6fv1s464
https://escholarship.org/uc/isee_pdp20yr
https://creativecommons.org/licenses/by/4.0/
mailto:salmonra@msu.edu

Frisbie, Grete, & Glines

250

software may be carried out by groups as small as a

single scientist or engineer, to mentor-mentee pairs,

to research groups under a principal investigator, to

large collaborations spread across institutions in ac-

ademia, government, and industry. In any of these

cases, software sustainability practices — including

but not limited to — tracking and communicating

bugs and desired features, tracking and managing

changes to the software, and assigning and delegat-

ing roles and responsibilities to software developers

and users — are majorly beneficial to the reliability,

accuracy, and maintainability of scientific software

(Nangia et al 2017, Queiroz et al. 2017). Unfortu-

nately, said development practices are not yet

widely implemented in scientific software develop-

ment, hence our motivation to train upcoming sci-

entists and engineers in sustainable software prac-

tices.

Development workflows that enact said practices

are usually facilitated by internet hosting sites for

version control systems, software that enables the

tracking and management of the source code for

software. At the time of writing, the most popular

version control system is “git”, with github.com

and gitlab.com being popular online services that,

along with hosting the source code for projects

managed with git, enable essential discussion and

collaboration of code changes.

At the heart of such a software project is the source

code repository, or “repo,” which is the collection

of all source code and the history of changes to the

source code. Development of the source code may

persist along different routes known as “branches.”

For example, there may be a “stable” branch of the

repo that has been thoroughly tested and an “exper-

imental” branch of the repo where new less tested

features are under development. Changes to the

code are added to branches in a “commit.” A com-

mit refers to a set of changes to one or many files

within the source tree of the repository, effectively

also specifying a snapshot of the source code. Com-

mits from different branches can be combined via a

“merge”. Creating and managing branches and

commits as well as merging branches can be ac-

complished locally on a developer’s computer ei-

ther via the command line or graphical tools or via

interfaces provided by the internet hosting sites

such as gitlab.com. Additionally, the internet host-

ing sites usually provide discussion boards to make

comments on code changes, document bugs, re-

quest new features, and any other discussion of the

code. Branch mergers are typically accomplished

and discussed in “merge requests” on GitLab (or

equivalently “pull requests” on GitHub). “Issues”

enable further discussion, providing a tool to docu-

ment and discuss bugs in the source code, request

new features, and make other discussions about the

repo. These tools within git and the internet hosting

sites enable workflows incorporating sustainable

software practices.

Abundant literature supports the claim that learning

to program can be difficult, and exploring new ways

to teach computational concepts can help improve

learners’ understanding (e.g. Guzdial 2010, 2013,

Hazzan et al. 2011, Sorva 2012, Porter et al. 2013).

Exploring topics with an Inquiry framework, as in

the PDP, can increase learner understanding

(Metevier et al. 2022a, 2022b) and help learners

build their identities as scientists (Carlone & John-

son 2007). We sought out to design our workshop

within the PDP in part to address the need for a

more effective way to teach sustainable software

practices to early-stage programmers.

2. Workshop overview

2.1 Venue and learners

We developed our workshop, Sustainable Software

Development, as part of the 2019 PDP. We designed

the workshop for learners from the 2019 Michigan

State University (MSU) Advanced Computational

Research Experience (ACRES) and the 2019 MSU

Physics and Astronomy Research Experience for

Undergraduates (REU). An REU Site consists of a

group of ten or so undergraduates who work in the

research programs of the host institution. REU sites

 Teaching Sustainable Software Development using Inquiry

 251

are encouraged to involve students from historically

marginalized groups. Each student is associated

with a specific research project, where they work

closely with the faculty and other researchers

(https://www.nsf.gov/crssprgm/reu/). These learn-

ers had significant variation in prior knowledge

about computation; consequently, we designed our

workshop with that in mind. We chose to have

learners engage with Gitlab, a web-based git plat-

form, and basic text-based documents to avoid po-

tential software issues and eliminate the need for

prerequisite knowledge of the terminal, a specific

programming language, and git to be able to engage

in the workshop. We ran the workshop twice, first

with the group of ACRES students and second with

the group of Physics and Astronomy REU students.

Our workshop spanned three hours and was split

into two sessions with a lunch break in between for

both venues. In 2020 and 2021, we adapted this

workshop to be run virtually with both REU pro-

grams and retained the basic structure from 2019.

Our primary goal for the workshop was to introduce

the concepts of sustainable software development

using git as a tool. In our experiences, git is typi-

cally presented as a list of commands to be used

from the terminal while discussion of workflow

structure and cases of practical and real-world use

is minimal. We set out to create an opportunity for

learners to discover for themselves how to develop

an effective workflow and then learn the git tools

necessary to maintain that workflow. We believed

that many of the learners, particularly those in the

program who were going to be engaged in compu-

tationally intensive research projects, would benefit

greatly from understanding the purpose of sustain-

able software development along with the tools

necessary to engage with it.

2.2 Activity overview

In Table 1, we share the structure of our activity. We

began with a short lecture to introduce the idea of

sustainable software development and provide ex-

amples of various ways that facilitators engage with

collaborations and developing software. After-

wards, we transitioned to a “Raising Questions”

prompt, dividing learners into small groups de-

signed to elicit thoughts and questions about what

sustainable software development might look like

and emphasizing how it might look different for

communities of various sizes. We defined four in-

ternal, i.e., unknown to the learners, categories of

questions based on the workshop content: issues,

roles, code changes, and miscellaneous. As the

learners came up with questions, we collected and

sorted them into the categories. We then led a dis-

cussion for the learners to determine their own

names for the categories. In general, the names they

determined matched our categorization.

The first portion of the workshop had learners ad-

dress the following prompt in small groups: “Create

a project repository. Experiment with branches and

pull requests and think about how they fit within a

scientific software development workflow for a stu-

dent-advisor collaboration.” We emphasized begin-

ning with a student-advisor collaboration because

that would be authentic to the learners’ REU activ-

ities and because it generally requires the simplest

workflow. During this time, we presented an addi-

tional prompt with facilitation to discuss the git

tools (branches, merge requests, and issues) needed

to enable such a workflow. We ended this portion of

the workshop by having the learners form new

groups (sometimes referred to as a “jigsaw”) and

share what their groups thought about with respect

to different software communities and the git tools.

The second main portion of the workshop built on

the exploration from the first portion. Learners were

asked the following prompt in their small groups:

“Write a software development workflow docu-

ment on the repository. Test all aspects of your

workflow with examples of your choice.” The

learners were encouraged to think about larger and

https://www.nsf.gov/crssprgm/reu/

Frisbie, Grete, & Glines

252

Table 1: Activity Overview. This table outlines the flow of our activity, including time spent on each portion and

the accompanying facilitation prompts.

Section Time
Participant

Structure
Prompt given to learners that drives this component

Introduction 10 min
‘Mini

lecture’

Brief intro to the importance of (collaborative) software

development with an emphasis on linking to real world

examples in different areas.

Raising

questions

20 min

total
Small groups

(3-4)

Prompt: Broadly think about collaborative software development

from small to large projects. Write down questions, concerns, or

general topics of interest pertaining to challenges and processes

in different collaborative software development environments.

15 min

Additional facilitation or prompt: State that students should

consider questions about small to large communities like those

they might contribute to over their summer research program.

Facilitators roam the room, take questions as they write them,

and sort them into our 4 categories (issues, roles, code changes,

misc.).

Pin up questions on the board (without category titles yet) as

they are raised.

5 min
Full class

discussion
Discuss as a class what we might name each category (besides

misc.)

Investigations

60 min
Small groups

(3-4)

Gave a brief primer on the git commands needed to carry out

Prompt 1 and Prompt 2.

Prompt 1: Create a project repository. Experiment with branches

and pull requests and think about how they fit within a scientific

software development workflow for a student/advisor

collaboration.

Prompt 2: Explore making and managing issues on GitLab and

how they relate to branches and pull requests. Consider how

using issues is useful in a scientific software development

workflow within a moderate size collaborative development

group.

Additional facilitation prompt: Consider what roles and

responsibilities developers and scientists have in a large software

development community. In what different ways does the

community interact with the repository (i.e. branches, pull

requests, etc.)? What responsibilities may be assigned to which

groups?

15 min
New small

groups (3-4)

Prompt: Share what you learned about how branches, pull

requests, and issues fit into a workflow for different scientific

software development groups and communities.

40 min
Original

small groups

(3-4)

Additional facilitation prompt: Write a software development

workflow document on the repository. Test all aspects of your

workflow with examples of your choice.

Announce that preparation of the culminating assessment task

will follow.

 Teaching Sustainable Software Development using Inquiry

 253

more complex collaborations and to test their work-

flows as they developed them. They then engaged

in a second jigsaw to describe their workflows to

their peers. Finally, we presented a short synthesis

lecture where we returned to the questions they

raised at the beginning of the workshop and con-

nected them to the key points of a successful work-

flow.

2.3 Assessment strategy

To assess the learning outcomes of our workshop,

we used multiple strategies. We emphasized jig-

saws to ensure that all learners were able to form a

level of confidence in their knowledge and so facil-

itators could gauge the learners’ progress. Because

the learners were engaging with online git reposito-

ries throughout the workshop, we were also able to

view their explorations through their git reposito-

ries as they happened, as well as after the workshop.

The main artifact from the workshop was the soft-

ware development workflow that each group cre-

ated and tested in the second half of the workshop.

We assessed those workflows in the jigsaws and in

written form against our rubric for content objec-

tives (see Table 2).

3. Activity development

3.1 Learning outcomes

When version control with git is introduced, it is of-

ten presented as a list of very particular commands

to be executed from the terminal without much mo-

tivation for its usage. To better teach the concepts

of sustainable software development, we used an

inquiry learning approach to facilitate deeper un-

derstanding and make using git more approachable

for all learners. Additionally, we used GitLab due to

its availability, although GitLab is just one of many

hosting sites for version control. We wanted learn-

ers to leave our workshop empowered to use any

version control tool.

We determined that the main components of a ro-

bust software development workflow are issue/bug

management, making code changes, and role man-

agement. Our rubric (shown in Table 2) shows how

we assessed how well those components were in-

corporated into their workflows. For issues/bug

management, learners should ideally include a pro-

cess to report issues/bugs, guidelines for creating

issues to give sufficient detail to fully describe a

problem, make a plan for determining responsibil-

ity for addressing a given issue, and develop a

scheme for prioritizing and fixing the issues. For

making code changes,

Section Time
Participant

Structure
Prompt given to learners that drives this component

Culminating

assessment

task

30 min =

10 min

(prepare) +

5 min

(transition)

+ 15 min

(jigsaw)

Jigsaw

(3 groups for

three

facilitators)

Prepare to describe to learners outside of your group your

workflow and justify how its design supports a large

collaborative software development community.

Facilitation prompts: What are the key elements of your

workflow and which challenges of (collaborative) software

development did you address with it? Did you encounter any

problems in executing your workflow? Did you

observe/experience anything else you’d like to share?

Synthesis 5 min
‘mini-

lecture’
Closing remarks including a link back to the motivation.

Frisbie, Grete, & Glines

254

Table 2: Assessment Rubric. This table details the rubric we used to measure the learners’ understanding of the

components of our workshop.

Dimensions:
Components or

“knowledge

statements”

M
evidence needed to

make a judgment

is missing

0
evidence that learner has

misunderstanding or

incomplete understanding

1
evidence that learner has

sufficient understanding

Issue/bug-

management

No guidelines

given for reporting

problems

Guidelines to report

problems are

minimal/incomplete

Bugs are only fixed in

private branches

Not enough information to

communicate issues (Such

information could be

reproducibility for bugs or

motivation for feature

requests)

There is a process to report

issues/bugs

Issues fully describe the

problem (ideally include

minimal working examples /

also “full” information is

flexible)

Someone is responsible for an

issue

Prioritization

Making code

changes
Workflow does

not address

guidelines for

making code

changes robustly

Learners make code

changes directly on the

main branch

Process to test code is

minimal

Merge without approval

Code changes are not

described in detail

Learners create a workflow that,

e.g., includes

Making an own branch/fork

with a descriptive name

Make all changes locally

Testing the code

Submit a merge request (incl.

documentation)

Follow up on comments

Merge request need approval

Merge actually happens

Role

management
Roles are not

defined and/or

assigned

Roles are given but

permissions not clearly

defined

Some project members have

too much or too little

responsibility for the code

All developers have access

to the main branch

Roles are clearly defined, e.g.,

developers, maintainers, users

Roles are clearly communicated

All aspects of the software

development are

assigned/linked to roles and

there’s at least one person per

role

 Teaching Sustainable Software Development using Inquiry

 255

learners should ideally include guidelines for giving

descriptive names for branches/forks, a process for

making changes locally first, a process for testing

code throughout development, a process for sub-

mitting a merge request (including documentation),

a process for following up on any comments, and

developing a plan for approving and implementing

merges. For role management, learners should

clearly define and communicate the roles of the

community, have all aspects of the workflow as-

signed and/or linked to roles, and ensure all roles

are filled.

In addition to our main components, we also in-

cluded two additional dimensions in our rubric:

First, for the implementation of a STEM practice —

as defined within the PDP (Metevier et al. 2022a,

2022b) — we had learners design a solution within

requirements. Their workflows needed to facilitate

sustainable software development in a straightfor-

ward way. We desired for learners to design a work-

flow that suited their community, had a plan for

each major component, and included reasoning for

the choices they made. Second, we added an addi-

tional dimension that the design process itself was

collaborative — making the process itself more au-

thentic. As the learners developed and tested their

workflows, they themselves engaged in an example

of sustainable software development and collabora-

tion. Learners needed to work together to determine

their final workflow and to include justification for

their decisions.

3.2 Content development highlights

When developing our workshop within the PDP, we

focused on designing an inclusive workshop that

would help learners build their STEM identities.

Because REU programs often introduce undergrad-

uates to practicing scientific research, we wanted to

create a workshop that would be inclusive to all ex-

perience levels. Our workshop design used text files

instead of code to avoid prerequisite knowledge of

a programming language. We also used the browser

version of GitLab rather than command line git to

include learners who may not be familiar with using

the command line.

Sustainable software development requires collab-

oration, so we designed our workshop to have

learners collaborate with each other while develop-

ing their workflows. This provided an opportunity

for learners to see the value in sustainable software

development as they participated in the workshop.

We began our workshop by introducing the variety

of connections with software development we have

in our own work to emphasize how sustainable soft-

ware development applies in practice and connect

with our learners. Then, we had the learners engage

in a raising questions activity to introduce the cen-

tral ideas of sustainable software development.

During the synthesis portion of the activity, we re-

turned to the questions that were brought up in the

raising questions portion and connected them to the

concepts they explored. Our goal with this design

element was to provide an opportunity for the learn-

ers to connect what they learned to their own

thoughts and experiences with collaboratively de-

veloping a software workflow. Furthermore, em-

phasizing the value of the learners’ questions and

their contributions to the learning process provided

an opportunity to build ownership of the material

(Metevier et al. 2022a, 2022b).

In our design, we included several components with

the goal of having our learners build a STEM iden-

tity. By implementing periodic jigsaw discussions,

we were able to have learners build confidence and

independence in the material as the workshop pro-

gressed. We were also able to assess their progress

throughout the workshop which allowed additional

facilitation. With our synthesis lecture, we provided

recognition of the work they did and connected

their work to real-life examples, both from the fa-

cilitators’ experiences and the experiences of the

learners. Because our workshop was designed to fa-

cilitate the use of sustainable software development

in their summer projects, we connected the work-

shop content to potential implementations in their

Frisbie, Grete, & Glines

256

projects. Our text-based exploration of git also pre-

pared learners to use git for other things beyond

code development such as for paper writing, lab

notebooks, and documentation.

3.3 Pivot to virtual in 2020 and 2021

In 2020 (and 2021) the COVID19 pandemic pre-

vented in-person REU programs at MSU. Given

that all REU projects were conducted remotely, the

virtual nature of students’ projects made using sus-

tainable software development — especially with

centralized, collaborative version control sys-

tems — became even more important. Therefore,

we adjusted the workshop so that we could deliver

it in a virtual format via Zoom (an online video con-

ferencing software). Our main goal for the virtual

format was to keep all the essential components we

originally designed in place and limit the changes

to technical aspects.

In particular, we employed the breakout room capa-

bility of Zoom to reflect the original work in small

groups. As facilitators, we moved between rooms to

listen to conversations and facilitate where neces-

sary, similar to moving between group desks in the

in-person format.

For the raising questions component, we employed

virtual whiteboards (technically a Google Doc) that

allowed all learners to add their questions and ideas

simultaneously to a shared space. Again, this com-

ponent reflected the original collection of questions

in the in-person format and allowed us to collect

and sort in the background.

A major change pertained to the technical compo-

nents of the workshop, such as creating a repository,

sharing it with other learners, or evaluating/trying

the designed workflow. Here, we reused selected

submodules of the Software Carpentry Git work-

shop (Wilson 2006, 2013). These submodules al-

ready contained detailed instructions that allowed

each learner to progress at their own pace. We lev-

eraged those existing technical instructions and fa-

cilitated joint problem-solving and discussions in

small groups in breakout rooms. Therefore, we

could focus on our content goals around collabora-

tive software development rather than technical as-

pects.

Finally, the resulting artifacts were the same as for

the in-person workshop. We were able to evaluate

the outcomes by examining the repositories created

by the learners during the workshop.

3.4 Discussion of learner outcomes
and artifacts

Our content goals were for learners to understand

issues/bug management, how to make code

changes, and how to manage roles when developing

code within large and small software development

communities. Learners with less prior coding expe-

rience struggled to envision how to handle bugs and

code changes, but all learners were able to grasp the

idea of roles and how they could be applied. Inter-

estingly, learners with more prior coding experi-

ence seemingly thought more deeply about is-

sues/bug management and making code changes

but needed varying degrees of facilitation to begin

considering roles within a development community.

Learners did a good job developing a workflow but

struggled to determine how to test their workflows,

although this was likely due to limited time. Some

groups were able to test their workflows, but most

ran out of time.

We assessed their understanding by applying our

rubric to the document each group made to describe

their workflow and to their corresponding reposito-

ries. We were able to informally assess understand-

ing through a jigsaw discussion where each learner

described their group's workflow. Learners were

given a score of 1 if they showed sufficient under-

standing, 0 if they showed incomplete understand-

ing, and M if the content was missing. We did not

have any learners where the content was missing,

but there were some instances where learners didn’t

fully address some of the content goals.

This activity was interesting to lead since we taught

the workshop twice, and in one class, everyone had

prior coding experience while in the other class,

 Teaching Sustainable Software Development using Inquiry

 257

few learners had prior experience. The coding ex-

perience of these groups, given the physics versus

computational focuses of their respective REU pro-

grams, were also opposite of what we had expected

before leading the workshop. Based on our assess-

ment, we believe that an additional ~60 minutes

would have been helpful to ensure that all groups

would be able to explore testing their workflows.

Overall, however, our activity worked to get the

learners to understand our concepts. We believe our

approach of emphasizing the process of sustainable

software development instead of the specific com-

mands and jargon used in version control worked

well.

The STEM practice goals we incorporated into our

activity were to design a solution within require-

ments and to experience a collaborative design pro-

cess. This former process is authentic to STEM be-

cause we often develop codes or devices that carry

out a desired purpose within certain constraints. We

assessed the practice with our STEM practice rubric

by looking at their repositories and gauging their fa-

miliarity with the concepts during the Culminating

Assessment Task (CAT) jigsaw. Learners struggled

with the idea of determining the requirements for

their project, but they did well at realizing that there

is more than one solution and were able to develop

solutions that fit requirements. When struggles with

determining the requirements arose, we facilitated

discussion within the groups primarily using the ad-

ditional facilitation prompt from the Investigations

section in Table 1. The prompt asks the learners to

consider the ways in which one might interact with

the workflow and what their roles might be. We also

encouraged them to think about some of the chal-

lenges that may arise if there are not sufficient

guidelines for a workflow.

Overall, learners worked well with each other to

come up with a final solution for their group. In

general, the learners were able to work together to

form a final workflow document that everyone in

their group agreed on. We were able to facilitate this

process in part by our instructional design where we

emphasized that the design of a software develop-

ment workflow is inherently collaborative and an

authentic practice in a software community. In one

case, a group created their own framework (mod-

eled after the US government) and assigned people

themed roles. They not only created a set of norms

that would work for a software community, but

were also creative in their solution.

3.5 Lessons learned

During the development of this workshop, we ex-

plored new realms in applying the PDP framework

to teach computational concepts. We successfully

implemented an inquiry approach and created a

successful workshop. In particular, the inclusive de-

sign was ideal for our venue since it allowed learn-

ers to begin building an identity as participants in a

software community, regardless of their prior expe-

rience with version control. Because active learning

results in better retention of concepts (Hake 1998)

it is our hope that our approach can result in a better

understanding of how to train scientists in practic-

ing sustainable software development.

4. Conclusion

In developing this workshop through the PDP, we

applied inquiry learning and backward design to

teach computational concepts and tools. Further-

more, we improved on the way that sustainable

software development is introduced to learners.

Since sustainable software development can be

done effectively with a variety of tools, we empha-

sized the concepts (issues/bugs, making code

changes, and role management) instead of solely

presenting the tools (git) to implement these con-

cepts. By having learners interact primarily with the

web browser version of GitLab, we facilitated un-

derstanding the concepts prior to the learners gain-

ing proficiency in tool usage. After participating in

the workshop, learners should be able to apply sus-

tainable software development practices to their

own projects, expanding on their knowledge of git

if necessary.

Frisbie, Grete, & Glines

258

The workshop described here was developed as a

three-hour workshop. But in principle, this ap-

proach could be effectively implemented in a class-

room setting as well. The process of working col-

laboratively in small groups to create a workflow is

an authentic experience both in developing soft-

ware and working with a software community.

Some of the learners that participated in the work-

shop were not directly involved in computationally

intensive research projects, so the workshop was

less immediately applicable to them. However, the

ubiquity of writing code in STEM fields and be-

yond makes engaging in this workshop a worth-

while professional development opportunity for

learners.

Acknowledgements

We thank the MSU Department of Physics & As-

tronomy, MSU Department of Computational

Mathematics, Science, and Engineering, and ISEE

who funded our 2019 PDP participation. The PDP

was a national program led by the UC Santa Cruz

Institute for Scientist & Engineer Educators. The

PDP was originally developed by the Center for

Adaptive Optics with funding from the National

Science Foundation (NSF) (PI: J. Nelson:

AST#9876783), and was further developed with

funding from the NSF (PI: L. Hunter:

AST#0836053, DUE#0816754, DUE#1226140,

AST#1347767, AST#1643390, AST#1743117)

and University of California, Santa Cruz through

funding to ISEE.

References

Better Scientific Software (BSSw). (2022). Re-

trieved from https://bssw.io/

Carlone, H.B., & Johnson, A. (2007). Understand-

ing the science experiences of successful

women of color: Science identity as an ana-

lytic lens. Journal of Research in Science

Teaching. 44, 1187-1218.

https://doi.org/10.1002/tea.20237

Guzdial, M. (2010). Why is it so hard to learn to

program? In A. Oram & G. Wilson (Eds.),

Making Software: What Really Works, and

Why We Believe It (pp. 111–124). Sebastopol,

California: O’Reilly Media, Incorporated.

Guzdial, M. (2013). Exploring hypotheses about

media computation. In Proceedings of the

Ninth Annual International ACM Conference

on International Computing Education Re-

search (ICER’13), Association for Computer

Machinery, New York, NY, 19–26.

https://doi.org/10.1145/2493394.2493397

Hake, R. (1998). Interactive-engagement versus

traditional methods: A six-thousand-student

survey of mechanics test data for introductory

physics courses. American Journal of Physics,

66, 64-74. https://doi.org/10.1119/1.18809

Hazzan, O., Lapidot, T., & Ragonis, N. (2011).

Guide to teaching computer science: An activ-

ity-based approach (First edition). London,

England: Springer.

https://doi.org/10.1007/978-0-85729-443-2

Metevier, A. J., Hunter, L., Seagroves, S., Kluger-

Bell, B., McConnell, N. J., & Palomino, R.

(2022). ISEE’s inquiry framework. In ISEE

professional development resources for teach-

ing STEM. UC Santa Cruz: Institute for Scien-

tist & Engineer Educators. https://escholar-

ship.org/uc/item/9q09z7j5

Metevier, A. J., Hunter, L., Seagroves, S., Kluger-

Bell, B., Quan, T. K., Barnes, A., McConnell,

N. J., & Palomino, R. (2022). ISEE’s frame-

work of six elements to guide the design,

teaching, and assessment of authentic and in-

clusive STEM learning experiences. In S.

Seagroves, A. Barnes, A. J. Metevier, J. Porter,

& L. Hunter (Eds.), Leaders in effective and

inclusive STEM: Twenty years of the Institute

for Scientist & Engineer Educators (pp. 1–22).

UC Santa Cruz: Institute for Scientist & Engi-

neer Educators. https://escholar-

ship.org/uc/item/9cx4k9jb

Nangia, U., & Katz, D. S. (2017). Track 1 paper:

Surveying the U.S. National Postdoctoral As-

sociation regarding software use and training

in research (Version 3). figshare.

https://doi.org/10.6084/m9.figshare.5328442.v

3

https://bssw.io/
https://doi.org/10.1002/tea.20237
https://doi.org/10.1002/tea.20237
https://doi.org/10.1002/tea.20237
https://doi.org/10.1145/2493394.2493397
https://doi.org/10.1119/1.18809
https://doi.org/10.1007/978-0-85729-443-2
https://escholarship.org/uc/item/9q09z7j5
https://escholarship.org/uc/item/9q09z7j5
https://escholarship.org/uc/item/9cx4k9jb
https://escholarship.org/uc/item/9cx4k9jb
https://doi.org/10.6084/m9.figshare.5328442.v3
https://doi.org/10.6084/m9.figshare.5328442.v3

 Teaching Sustainable Software Development using Inquiry

 259

Porter, L., Guzdial, M., McDowell, C., & Simon,

B. (2013). Success in introductory program-

ming: What works? Communications of the

ACM, 56(8).

https://doi.org/10.1145/2492007.2492020

Queiroz, F., Silva, R., Miller, J., Brockhauser, S.,

& Fangohr, H. (2017). Track 1 paper: Good

usability practices in scientific software devel-

opment (Version 3). figshare.

https://doi.org/10.6084/m9.figshare.5331814.v

3

Sorva, J. (2012). Visual program simulation in in-

troductory programming education (Doctoral

thesis, Aalto University, Espoo, Finland). Re-

trieved from https://aaltodoc.aalto.fi/han-

dle/123456789/3534

Wilson, G. (2006). Software carpentry: Getting

scientists to write better code by making them

more productive. In Computing in Science &

Engineering, 8(6), 66-69, Nov.-Dec. 2006.

https://doi.org/10.1109/MCSE.2006.122

Wilson, G. (2013). Software carpentry: Lessons

learned. arXiv:1307.5448.

https://arxiv.org/abs/1307.5448

https://doi.org/10.1145/2492007.2492020
https://doi.org/10.6084/m9.figshare.5331814.v3
https://doi.org/10.6084/m9.figshare.5331814.v3
https://aaltodoc.aalto.fi/handle/123456789/3534
https://aaltodoc.aalto.fi/handle/123456789/3534
https://doi.org/10.1109/MCSE.2006.122
https://arxiv.org/abs/1307.5448

Frisbie, Grete, & Glines

260

	Abstract
	1. Introduction
	2. Workshop overview
	2.1 Venue and learners
	2.2 Activity overview
	2.3 Assessment strategy

	3. Activity development
	3.1 Learning outcomes
	3.2 Content development highlights
	3.3 Pivot to virtual in 2020 and 2021
	3.4 Discussion of learner outcomes and artifacts
	3.5 Lessons learned

	4. Conclusion
	Acknowledgements
	References

