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Research Article

Maternal circulating miRNAs that predict infant FASD
outcomes influence placental maturation
Alexander M Tseng1, Amanda H Mahnke1 , Alan B Wells2,3, Nihal A Salem1, Andrea M Allan4, Victoria HJ Roberts5,
Natali Newman6, Nicole AR Walter6, Christopher D Kroenke6, Kathleen A Grant6 , Lisa K Akison7, Karen M Moritz7,
Christina D Chambers2,3, Rajesh C Miranda1 , Collaborative Initiative on Fetal Alcohol Spectrum Disorders

Prenatal alcohol exposure (PAE), like other pregnancy compli-
cations, can result in placental insufficiency and fetal growth
restriction, although the linking causal mechanisms are unclear.
We previously identified 11 gestationally elevated maternal cir-
culating miRNAs (HEamiRNAs) that predicted infant growth deficits
following PAE. Here, we investigated whether these HEamiRNAs
contribute to the pathology of PAE, by inhibiting trophoblast
epithelial–mesenchymal transition (EMT), a pathway critical for
placental development. We now report for the first time that PAE
inhibits expression of placental pro-EMT pathway members in
both rodents and primates, and that HEamiRNAs collectively, but
not individually, mediate placental EMT inhibition. HEamiRNAs
collectively, but not individually, also inhibited cell proliferation
and the EMT pathway in cultured trophoblasts, while inducing cell
stress, and following trophoblast syncytialization, aberrant en-
docrine maturation. Moreover, a single intravascular adminis-
tration of the pooled murine-expressed HEamiRNAs, to pregnant
mice, decreased placental and fetal growth and inhibited the
expression of pro-EMT transcripts in the placenta. Our data
suggest that HEamiRNAs collectively interfere with placental de-
velopment, contributing to the pathology of PAE, and perhaps
also, to other causes of fetal growth restriction.

DOI 10.26508/lsa.201800252 | Received 22 November 2018 | Revised 20
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2019

Introduction

Prenatal alcohol exposure (PAE) is common (1, 2, 3). Between 1.1%
and 5% of school children in the United States are conservatively
estimated to have a fetal alcohol spectrum disorder (FASD) (4).
Consequently, FASD, due to PAE, is the single largest cause of

developmental disabilities in the United States and worldwide (5)
and a comorbid factor in a number of other prevalent develop-
mental neurobehavioral disabilities, including attention deficit/
hyperactivity and autism spectrum disorders (6).

PAE can result in decreased body weight, height, and/or head
circumference in infants. Consequently, infant growth deficits are a
cardinal diagnostic feature for fetal alcohol syndrome (7), which
represents the severe end of the FASD continuum. However, al-
though well recognized as a diagnostic feature, the mechanistic
linkage between PAE and growth restriction remains unclear. In
2016, as part of our effort to identify maternal diagnostic biomarkers
of the effect of PAE, we reported that elevated levels of 11 distinct
miRNAs in maternal circulation during the second and third tri-
mesters distinguished infants whowere affected by in utero alcohol
exposure (heavily exposed affected [HEa]) from those who were
apparently unaffected at birth by PAE (heavily exposed unaffected
[HEua]) or those who were unexposed (UE) (8). In that study, we
predicted, based on bioinformatics analyses, that these HEamiRNAs
(MIMAT0004569 [hsa-miR-222-5p], MIMAT0004561 [hsa-miR-187-5p],
MIMAT0000687 [hsa-miR-299-3p], MIMAT0004765 [hsa-miR-491-3p],
MIMAT0004948 [hsa-miR-885-3p], MIMAT0002842 [hsa-miR-518f-3p],
MIMAT0004957 [hsa-miR-760], MIMAT0003880 [hsa-miR-671-5p],
MIMAT0001541 [hsa-miR-449a], MIMAT0000265 [hsa-miR-204-5p],
and MIMAT0002869 [hsa-miR-519a-3p]) could influence signaling
pathways crucial for early development, particularly the epithelial–
mesenchymal transition (EMT) pathway.

Placental development involves maturation of cytotrophoblasts
at the tips of anchoring villi into invasive extravillous trophoblasts,
as well as fusion of cytotrophoblasts into multinucleate, hormone-
producing syncytiotrophoblasts (9). Maturation into extravillous
trophoblasts, which invade the maternal decidua and remodel the
uterine spiral arteries into low-resistance high-flow vessels that
enable optimal perfusion for nutrient and waste exchange, requires
cytotrophoblasts to undergo EMT (10). Impaired placental EMT, as
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well as orchestration of the opposing mesenchymal–epithelial
transition pathway, has been found in conditions resulting from
placental malfunction, primarily preeclampsia (11, 12, 13, 14, 15, 16).
Although there have been no previous studies directly investigating
the effects of PAE on placental EMT, a rodent study demonstrated
that PAE, during a broad developmental window, reduced the
number of invasive trophoblasts within the mesometrial triangle, a
region of the uterine horn directly underlying the decidua (17).
Furthermore, both human and rodent studies have found PAE
disrupts placental morphology and interferes with cytotrophoblast
maturation, as with preeclampsia (18, 19, 20, 21). Disrupted tro-
phoblast maturation, seen in these conditions, is associated with
aberrant expression of placental hormones, primarily human
chorionic gonadotropin (hCG) (22, 23, 24, 25).

Our study is the first to report that PAE interferes with expression
of core placental EMT pathway members. Using rodent and primate
models of gestation, as well as complementary miRNA over-
expression and knockdown studies in vitro, we also provide evidence
that HEamiRNAs, which predict infant growth deficits due to PAE,
collectively but not individually, mediate PAE’s effects on placental
EMT through their effects on cytotrophoblastmaturation and cellular
stress. In a mouse model of pregnancy, a single combined exposure
to the murine-expressed HEamiRNAs resulted in placental EMT in-
hibition and diminished placental and fetal growth. Collectively,
these data suggest that elevated HEamiRNAs may represent an
emergent maternal stress response that triggers fetal growth re-
striction, although subgroups of HEamiRNAs may compete to protect
against the loss of EMT. Moreover, most members of the group of

HEamiRNAs have also been implicated in other placental insufficiency
and growth restriction syndromes, giving rise to the possibility that
growth restriction syndromesmay share common etiologicalmediators.

Results

HEamiRNAs are implicated in placental-associated pathologies

Given our prediction that HEamiRNAs interfere with signaling path-
ways governing fetal and placental development (8), we conducted a
literature review of reports on HEamiRNA levels in gestational pa-
thologies caused by poor placentation (26, 27, 28). Surprisingly,
placental and plasma levels of 8 of 11 HEamiRNAs were significantly
dysregulated in one or more of these gestational pathologies with
expression of themajority of these eight miRNAs altered in both fetal
growth restriction and preeclampsia (Fig 1A) (29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49), both of which are
characterized by poor placental invasion (50, 51, 52, 53, 54, 55, 56).

HEamiRNAs explain variance in infant growth outcomes due to PAE

Given the association of individual HEamiRNAs with gestational
pathologies, we sought to determine if circulating HEamiRNA levels
could explain the variance in sex and gestational age–adjusted
neonatal height, weight, and head circumference in our Ukrainian
birth cohort, which are growth measures sensitive to in utero

Figure 1. HEamiRNAs are placentally enriched and
associated with gestational pathologies.
(A) Venn diagram on number of HEamiRNAs reported to
be associated with different gestational pathologies.
Inset colored circles represent the corresponding sex
and gestational age–adjusted growth parameters these
miRNAs were correlated with. Of the 22 studies queried,
11 (50%) used unbiased screenings for miRNA
expression. (B, C) Heat map of mature HEamiRNA
expression (B) and pri-HEamiRNA expression (C) across
different tissues resulting from secondary analysis of
publicly available RNA-sequencing data. Legend
depicts row-centered Z-score.
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environment (57). We found that eight of the HEamiRNAs each
significantly explained between 7% and 19% of infant variation in
these growth measures (Table 1). Furthermore, seven of these
miRNAs were also associated with fetal growth restriction and
preeclampsia as identified by our literature review (Fig 1A). Inter-
estingly, a multivariate statistical regression model that accounted
for levels of all 11 HEamiRNAs together, explained a far greater
proportion of infant variance, between 24% and 31%, in all three
growth measures than accounting for them individually (Table S1),
suggesting HEamiRNAs collectively account for the variance in infant
growth outcomes.

HEamiRNAs are transcribed preferentially in the placenta

Data extracted from publicly available gene expression profiling
datasets (58) show that HEamiRNAs and their unprocessed pre-
cursor transcripts, HEapri-miRNAs, are enriched in placenta com-
pared with other tissues, suggesting that the placenta itself
transcribes these miRNAs and may be a significant contributory
tissue to maternal circulating HEamiRNAs (Fig 1B and C). Moreover,

because HEamiRNAs are also associated with gestational patholo-
gies caused by poor placental invasion, these HEamiRNAs may also
contribute to the placental response to PAE. We, therefore,
assessed in rodent and primate models, whether PAE could result
in impaired EMT, and if HEamiRNAs could explain the effects of PAE
on placental EMT-associated gene expression.

HEamiRNAs moderate placental EMT impairment in PAE models

EMT, in trophoblasts, is characterized by the disappearance of
epithelial markers such as E-Cadherin and the appearance of
mesenchymal markers such as the intermediate filament, vimentin,
a process that is controlled by the expression of key mesenchymal
determination transcription factors, Snail1 and 2 and TWIST, as
extensively described (10, 14, 15, 59, 60, 61, 62). These five markers
have been used to assess EMT in a variety of model systems, so our
studies used these markers to assess the effects of alcohol and
HEamiRNAs on trophoblast EMT.

In the first analysis, using a murine model of PAE that mimicked
moderate to binge-type alcohol consumption throughout early and

Table 1. HEamiRNAs are significantly correlated with independent measures of infant size.

MIMAT no. miRNA Trimester
Weight Height Head circumference

Sig. R2 ρ Sig. R2 ρ Sig. R2 ρ

MIMAT0004569 hsa-miR-222-5p 2 0.821 1.224 −0.051 0.066 9.572 −0.179 0.8 1.732 −0.104

MIMAT0004561 hsa-miR-187-5p 2 0.462 6.347 0.068 0.17 12.607 −0.074 0.134 10.903 0.103

MIMAT0000687 hsa-miR-299-3p 2 0.552 1.113 0.029 0.069 9.299 −0.203 0.036a 8.65 0.1

MIMAT0004765 hsa-miR-491-3p 2 0.172 3.61 0.112 0.849 2.033 −0.055 0.024a 12.529 0.156

MIMAT0004948 hsa-miR-885-3p 2 0.142 4.227 −0.174 0.044a 7.667 −0.231 0.59 1.36 −0.115

MIMAT0002842 hsa-miR-518f-3p 2 0.246 2.517 0.134 0.918 2.134 −0.118 0.007b 14.561 0.219

MIMAT0004957 hsa-miR-760 2 0.059 6.314 0.195 0.22 4.096 0.079 0.055 10.158 0.195

MIMAT0003880 hsa-miR-671-5p 2 0.123 7.24 0.11 0.578 5.264 −0.031 0.073 10.794 0.107

MIMAT0001541 hsa-miR-449a 2 0.101 11.584 0.104 0.718 5.851 −0.072 0.173 10.036 0.068

MIMAT0000265 hsa-miR-204-5p 2 0.026a 12.377 0.184 0.272 4.973 0 0.131 7.095 0.108

MIMAT0002869 hsa-miR-519a-3p 2 0.034a 7.975 0.153 0.403 6.83 −0.012 0.093 8.181 0.096

MIMAT0004569 hsa-miR-222-5p 3 0.875 0.993 −0.046 0.018a 10.709 −0.196 0.577 4.696 −0.01

MIMAT0004561 hsa-miR-187-5p 3 0.538 2.055 0.049 0.37 2.029 −0.109 0.784 3.697 0.002

MIMAT0000687 hsa-miR-299-3p 3 0.511 0.762 0.005 0.514 1.769 −0.072 0.87 3.786 −0.077

MIMAT0004765 hsa-miR-491-3p 3 0.824 3.165 −0.028 0.2 12.122 −0.121 0.747 4.188 −0.081

MIMAT0004948 hsa-miR-885-3p 3 0.807 0.148 0.029 0.102 4.686 −0.156 0.376 5.009 0.032

MIMAT0002842 hsa-miR-518f-3p 3 0.515 2.099 0.109 0.421 1.715 0.016 0.245 7.917 0.152

MIMAT0004957 hsa-miR-760 3 0.368 1.396 0.141 0.761 0.716 −0.022 0.207 6.052 0.172

MIMAT0003880 hsa-miR-671-5p 3 0.055 8.715 0.155 0.367 3.521 −0.133 0.076 8.196 0.15

MIMAT0001541 hsa-miR-449a 3 0.995 0.085 −0.06 0.982 0.678 −0.151 0.026a 12.022 0.135

MIMAT0000265 hsa-miR-204-5p 3 0.019a 11.872 0.23 0.206 5.589 0.022 0.002b 18.683 0.319

MIMAT0002869 hsa-miR-519a-3p 3 0.391 2.82 0.043 0.302 5.917 −0.151 0.106 9.286 0.118

The correlation of the second and third trimestermaternal plasma HEamiRNA levels with independent measures of infant size. HEamiRNAs and their significantly
correlated sex and gestational age–adjusted growth parameters appear in bold. R2 is expressed as the percentage (×100) of variance explained.
aP < 0.05.
bP < 0.01.
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mid-pregnancy, we fractionated GD14 placenta into three zones:
the cytotrophoblast- and syncytiotrophoblast-rich labyrinth zone,
the glycogen- and spongiotrophoblast-rich junctional zone, and the

decidual zone comprising the endometrial contribution to the
placenta (Fig 2A). Multivariate analysis of variance (MANOVA) for
expression of these five core genes in the EMT pathway within

Figure 2. HEamiRNAsmediate the effect of PAE on EMT
pathway members in mouse and macaque placentas.
(A)Histological image of GD14mouse placenta. Outlined
in red is the labyrinth zone, blue is the junctional zone,
and black is the decidual zone with the scale bar (green)
demarcating 200 μm. Inset is a high-magnification
image of the labyrinth zone with the scale bar (green)
demarcating 50 μm. (B) MANOVA of gene expression of
core EMT pathway members in different regions of the
mouse placenta in control and PAE mice (n = 29
samples). (C) MANCOVA of gene expression of core EMT
pathway members in the mouse placental labyrinth
zone before (Basic Model) and after accounting for the
expression of HEamiRNAs (n = 29 samples). (D) Gross
anatomy photograph of the primary (left) and
secondary (right) lobes of a GD135 macaque placenta.
Outlined in red is an individual cotyledon from the
secondary lobe. Inset is a full thickness hematoxylin
and eosin–stained histological section of a
representative cotyledon with the fetal membranes
outlined in black, villous tissue outlined in red. and
maternal decidua in blue. Ruler is 3 cm and scale bar
(black) is 2 mm. (E)MANCOVA of gene expression of core
EMT pathway members in placental cotyledons of PAE
and control macaques, accounting for the expression of
HEamiRNAs collectively (n = 23 samples). (F)MANCOVA of
gene expression of core EMT pathway members in
macaque placentas after accounting for expression of
HEamiRNAs individually (n = 23 samples).
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placental trophoblasts revealed a significant effect of ethanol ex-
posure on EMT pathway member expression selectively within the
labyrinth zone (Pillai’s trace statistic, F(5,21) = 6.85, P < 0.001, Fig 2B) but
not within the junctional or decidual zones. Post hoc univariate
ANOVA indicated ethanol exposure specifically elevated CDH1
(F(1,25) = 7.452, P = 0.011), which encodes epithelial E-Cadherin, whereas
expression of the pro-mesenchymal transcription factor SNAI1,
which encodes Snail1, was significantly reduced (F(1,25) = 21.022, P =
0.0001). We also observed a significant interaction between fetal sex
and PAE on expression of SNAI2, which encodes Snail2 (F(1,25) = 2.18,
P = 0.047) and a trend towards decreased expression of the terminal

mesenchymal marker VIM (vimentin, F(1,25) = 2.749, P = 0.11), whereas
there was no effect on TWIST expression (Fig 3A–E). Consistent with
our gene expression data, E-Cadherin protein levels were signifi-
cantly elevated in the labyrinth zone of PAE placenta (F(1,24) = 31.63,
P = 0.0005), whereas not in the junctional or decidual zones (Figs 3F
and S1A and B). However, when we controlled for expression of the
eight mouse homologs of HEamiRNAs as a covariate, using multi-
variate analysis of covariance (MANCOVA), ethanol’s effect on EMT
became marginally nonsignificant (Pillai’s trace, F(5,21) = 2.713, P =
0.068) (Fig 2C), suggesting that these miRNAs partially mediate
effects of PAE on EMT pathway members in mice. Interestingly, PAE

Figure 3. PAE interferes with the EMT pathway in mouse and macaque placentas.
(A–E) Expression of CDH1 (A), VIM (B), SNAI1 (C), TWIST (D), and SNAI2 (E) in the placental labyrinth zone of PAE and control mice (n = 5–12 samples per group). (F)
Densitometric quantification of E-Cadherin expression in the labyrinth zone of PAE and control mice as well as representative blot of E-Cadherin expression and total
protein expression (right, n = 5–12 samples per group). (G–J) Expression of CDH1 (G), VIM (H), SNAI2 (I), and TWIST (J) transcripts in PAE and control macaque placental
cotyledons (n = 3–5 samples per group). Results are expressed as the mean ± SEM, LDR = molecular weight ladder; ANOVA: significant main effect of PAE (ƐP < 0.05, ƐƐƐP <
0.001), significant interaction effect (sex by PAE, [†P < 0.05]). For post hoc analysis, ***P < 0.001 by Tukey’s HSD.

MicroRNAs Control the Placental Response to Alcohol Tseng et al. https://doi.org/10.26508/lsa.201800252 vol 2 | no 2 | e201800252 5 of 22

https://doi.org/10.26508/lsa.201800252


limited to the periconceptional period in rats also influenced ex-
pression of EMT core transcripts (Figs S2B and S3A–E).

To determine if PAE’s effects on EMT pathway members in
placenta are broadly conserved throughout mammalian evolution,
we adopted a nonhuman primate (macaque) model of moderate to
binge-type alcohol consumption. Placental tissues were isolated
from GD85, GD110, and GD135 placenta (Fig 2D), which spans the
human equivalent of the mid-second to mid-third trimester (Fig
S2C). There was a significant effect of ethanol exposure on ex-
pression of core EMT mRNA transcripts by MANOVA (Pillai’s trace
statistic, F(4,9) = 4.229 P = 0.045, Fig 3B). Consistent with our findings
in mouse, post hoc univariate ANOVA indicated that in primate
placenta, ethanol exposure significantly increased CDH1 expression
(F(1,12) = 4.866, P = 0.048), whereas VIM expression was significantly
reduced (F(1,12) = 12.782, P = 0.0004), suggesting that, as in the mouse,
PAE also impairs EMT in the primate placenta. Interestingly, there
was no effect on SNAI2 or TWIST expression (Fig 3G–J). As in mice,
accounting for expression of HEamiRNAs together as a covariate
abolished the significant effect of PAE on EMT, although to a greater
degree than mice (Pillai’s trace, F(1,1) = 1.605, P = 0.425, Fig 2E). In-
terestingly, accounting for expression of individual HEamiRNAs did
not explain the effects of PAE on placental EMT, suggesting that
HEamiRNAs act in concert to mediate the effect of PAE on EMT in the
primate placenta (Fig 2F).

Collectively, our data suggest PAE-induced impairment of EMT in the
trophoblastic compartment of placentae is conserved between rodents
and nonhuman primates and that HEamiRNAs, particularly in primates,
may moderate the effect of PAE on placental EMT. Consequently,
subsequent studies focused on the collective role of HEamiRNAs, either
on basal or on alcohol-influenced placental trophoblast growth, in-
vasion, and the maturation of physiological function.

HEamiRNAs impair EMT in a model of human cytotrophoblasts

To investigate whether HEamiRNAs collectively interfere with the
EMT pathway, as suggested by our in vivo data, we examined the
effects of transfecting HEamiRNA mimics and antagomirs into BeWO
cytotrophoblasts (Fig 4A). We initially overexpressed each of the 11
HEamiRNAs individually, to determine whether any of them could
influence the EMT pathway. We did not observe any significant
effects (Fig S4), consistent with our findings in the primate PAE
model that individual miRNAs did not explain the effects of ethanol
on EMT. In contrast, transfection of pooled HEamiRNAs into cyto-
trophoblasts significantly increased CDH1 expression (F(1,36) = 30.08,
P < 0.0001). Interestingly, expression of the pro-mesenchymal
transcription factors TWIST and SNAI1 were also significantly re-
duced, but only in the context of concomitant 320 mg/dl ethanol
treatment, pointing to an interaction effect between HEamiRNAs and
ethanol (F(1,36) = 5.650 and 5.146, respectively, P = 0.023 and P = 0.029,
Fig 4B–E). Consistent with our qPCR data, transfection of HEamiRNAs
also significantly increased E-Cadherin protein expression (F(1,20) =
33.86, P < 0.0001, Fig 4F). We were unable to detect SNAI2 transcript
expression or vimentin protein expression in these cells, consistent
with previous reports (63).

We next sought to determine if more restricted subsets of
HEamiRNAs could recapitulate the effects of HEamiRNAs collectively on
EMT. Thus, we overexpressed hsa-miR-222-5p and hsa-miR-519a-3p,

which are implicated in preeclampsia and fetal growth restriction,
as well as hsa-miR-885-3p, hsa-miR-518f-3p, and hsa-miR-204-5p,
which are implicated in preeclampsia, fetal growth restriction, and
spontaneous abortion or preterm labor (Fig S5A). In contrast to the
collective action for all HEamiRNAs, exposure to each of these pools
resulted in significant decreases in CDH1 expression (F(2,12) = 20.12,
P = 0.0001). The pool including hsa-miR-885-3p, hsa-miR-518f-3p,
and hsa-miR-204-5p also significantly increased Snai1 SNAI1 (F(2,12) =
4.604, P = 0.0328; Dunnett’s post hoc P = 0.0497, Fig S5B–E). These
data suggest that HEamiRNAs include subgroups of miRNAs that
have the potential to partly mitigate the effects of elevating the
entire pool. However, the potential protective effects of these
subgroups are masked by the collective function of the entire group
of HEamiRNAs.

Whereas transfection of HEamiRNA mimics increased CDH1 ex-
pression, transfection of pooled antagomirs to HEamiRNAs significantly
reduced CDH1 expression, only in the context of 320mg/dl ethanol co-
exposure (HEamiRNA × 320 mg/dl EtOH interaction, F(1,36) = 13.51, P =
0.0008; post hoc Tukey’s honest significance difference (HSD),P = 0.005,
Fig 4G). However, expression of TWISTwas also decreased with ethanol
co-exposure, and there was no significant difference in E-Cadherin
protein expression relative to the control (Fig 4H–K). Thus, our data
suggest that increasing HEamiRNA levels impairs EMT pathway mem-
bers in cytotrophoblasts, whereas inhibiting their action has a more
restricted effect on EMT pathway members.

HEamiRNAs impair EMT in a model of human extravillous
trophoblasts

We next investigated the effect of HEamiRNAs on EMT in HTR-8/
SVneo extravillous trophoblast-type cells (Fig 5A). Transfecting
pooled HEamiRNAmimics into extravillous trophoblasts significantly
decreased VIM expression (F(1,36) = 28.43, P < 0.0001). Expression of
pro-mesenchymal transcription factor SNAI2 was also reduced
(F(1,36) = 64.88, P < 0.0001). As with cytotrophoblasts, expression of
SNAI1 and TWIST were reduced only with 320 mg/dl ethanol co-
exposure (HEamiRNA × 320 mg/dl EtOH interaction, F(1,36) = 4.21 and
5.18, P = 0.048 and 0.029, respectively; post hoc Tukey’s HSD, P = 0.027
and P < 0.0001, respectively, Fig 5B–E). Consistent with our qPCR
data, vimentin protein expression was also significantly reduced
(F(1,20) = 9.535, P = 0.006, Fig 5F). Interestingly, there was also a main
effect of alcohol exposure on decreasing vimentin protein ex-
pression (F(1,20) = 7.303, P = 0.014). We were unable to detect ex-
pression of CDH1 transcript, or its E-Cadherin protein product, in
extravillous trophoblasts, consistent with previous reports (63).

In contrast to HEamiRNA mimics, transfecting pooled antagomirs
significantly increased VIM expression (F(1,35) = 42.56, P < 0.0001).
Likewise, antagomir transfection increased expression of SNAI2 in
the context of 320 mg/dl ethanol co-exposure and SNAI1 under
basal conditions (HEamiRNA × 320 mg/dl Etoh interaction, F(1,35) =
10.31 and 4.86, P = 0.01 and P = 0.034, respectively; post hoc Tukey’s
HSD, P < 0.0001, Fig 5G–J). Despite our qPCR data, we did not observe
significant differences in vimentin protein expression between
treatment groups (Fig 5K). Collectively, our data indicate that in-
creased trophoblastic HEamiRNA levels favor an epithelial pheno-
type, whereas inhibiting their action promotes a mesenchymal
phenotype.
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Antagomirs prevent HEamiRNAs’ inhibition of EMT

We next investigated if pretreating cytrophoblasts with pooled HEa-

miRNA antagomirs could prevent inhibition of the EMT pathway
caused by transfecting HEamiRNA mimics. Pretreatment of cyto-
trophoblasts with HEamiRNA antagomirs prevented the elevation in
CDH1 caused by transfection with HEamiRNAmimics (post hoc Tukey’s
HSD, n = 10 samples per group, P = 0.004). Likewise, pre-transfection
with HEamiRNA antagomirs also prevented HEamiRNA mimic–induced
reduction of SNAI1 and VIM expression (post hoc Tukey’s HSD, n = 10
samples per group, P = 0.007 and P < 0.0001, respectively) (Fig 6A–D).

As with cytotrophoblasts, pre-transfection with HEamiRNA anta-
gomirs prevented HEamiRNA mimic–induced reduction of VIM, SNAI1,
and SNAI2 expression in extravillous trophoblasts (post hoc Tukey’s

HSD, n = 10 samples per group, P < 0.0001, Fig 6E–H). Thus, our data
suggest that pretreating cells with HEamiRNA antagomirs prevents
inhibition of EMT pathway members resulting from transfection with
HEamiRNA mimics in cytotrophoblasts and extravillous trophoblasts.

HEamiRNAs impair extravillous trophoblast invasion

Functionally, inhibition of the EMT pathway should reduce tro-
phoblast invasiveness. Thus, we performed a transwell invasion
assay using HTR8 extravillous trophoblasts transfected with
HEamiRNA mimics and antagomirs. Although ethanol exposure by
itself did not impair trophoblast invasion (Fig S6), there was a mar-
ginally significant interaction effect between ethanol exposure and
HEamiRNAmimic transfection (F(1,28) = 3.418, P = 0.075). Thus, a planned

Figure 4. HEamiRNAs interfere with the EMT pathway in BeWO cytotrophoblasts.
(A) Diagram of a placental anchoring villous and maternal decidua with the boxed area denoting cytotrophoblasts. (B–F) Expression of CDH1 (B), VIM (C), TWIST (D),
and SNAI1 (E) transcripts and densitometric quantification of E-Cadherin protein levels (F) in BeWO cytotrophoblasts following HEamiRNA or control miRNA overexpression
with or without concomitant 320 mg/dl ethanol exposure. (G–K) Expression of CDH1 (G), VIM (H), TWIST (I), and SNAI1 transcripts (J) and densitometric quantification
of E-Cadherin protein levels (K) in BeWO cytotrophoblasts following HEamiRNAs or control hairpin inhibitor transfection with or without concomitant 320 mg/dl
ethanol exposure. Results are expressed as the mean ± SEM, LDR = molecular weight ladder, n = 10 samples per group; ANOVA: significant main effect of HEamiRNA
transfection (####P < 0.0001), significant interaction effect (HEamiRNA by 320 mg/dl ethanol, [†P < 0.05, †††P < 0.001]). For post hoc analysis *P < 0.05, **P < 0.01 by Tukey’s HSD.
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comparison indicated that transfection with HEamiRNA mimics
significantly reduced trophoblast invasion in the context of 320mg/
dl ethanol co-exposure, relative to the control mimics (t(14) = 2.762,
P = 0.015), consistent with our data demonstrating HEamiRNAs in-
terfere with the EMT pathway (Fig 7A). Contrastingly, transfecting
HEamiRNA antagomirs increased invasion in the context of 320 mg/
dl ethanol co-exposure, although this effect was only marginally
significant (t(14) = 1.805, P = 0.093, Fig 7B).

HEamiRNAs retard trophoblast cell cycle progression

Given the proliferative nature of cytotrophoblasts and the intimate
relationship between EMT and cell cycle (64, 65), we assessed the

effects of ethanol and HEamiRNAs on BeWOcytotrophoblast cell cycle.
After pulse-labeling the cells with the nucleic acid analog, EdU, for
1-h, we found that individually transfecting six of the HEamiRNA
mimics increased EdU incorporation (unpaired t test, P < 0.05, false
discovery rate [FDR] correction), suggesting an overall increased
rate of DNA synthesis (Fig S7A). Contrastingly, simultaneous
transfection of HEamiRNAs significantly reduced EdU incorporation
(F(1,26) = 59.69, P < 0.0001), mirroring the effects of increasing con-
centrations of ethanol (R2 = 0.304, P = 0.012) (Fig S7B and A).

Consistent with the increased rates of DNA synthesis resulting
from individual HEamiRNA mimic transfection, individual trans-
fection of HEamiRNAs antagomirs generally reduced EdU in-
corporation, although only the antagomir to hsa-miR-760 did so

Figure 5. HEamiRNAs interfere with the EMT pathway in HTR8 extravillous trophoblasts.
(A) Diagram of a placental anchoring villous andmaternal decidua with the boxed area denoting extravillous trophoblasts. (B–F) Expression of SNAI2 (B), VIM (C), TWIST (D),
and SNAI1 transcripts (E) as well as densitometric quantification of vimentin protein levels (F) in HTR8 extravillous trophoblasts following HEamiRNAs or control
miRNA overexpression with or without concomitant 320 mg/dl ethanol exposure. (G–K) Expression of SNAI2 (G), VIM (H), TWIST (I), and SNAI1 transcripts (J) as well as
densitometric quantification of vimentin protein levels (K) in HTR8 extravillous trophoblasts following HEamiRNA or control hairpin inhibitor transfection with or without
concomitant 320 mg/dl ethanol exposure. Results are expressed as the mean ± SEM, LDR = molecular weight ladder, n = 10 samples per group; ANOVA: significant
main effect of HEamiRNA transfection (##P < 0.01, ####P < 0.0001), significant main effect of 320mg/dl ethanol exposure (ƐƐP < 0.01), significant interaction effect (HEamiRNA by
320 mg/dl ethanol (†P < 0.05, ††P < 0.01). For post hoc analysis *P < 0.05, **P < 0.01, ***P < 0.001, and ***P < 0.0001 by Tukey’s HSD.
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significantly (t(110) = 3.059, P = 0.003, FDR correction) (Fig S7A).
Interestingly, simultaneous administration of antagomirs also re-
duced EdU incorporation, as observed with the pooled HEamiRNA
mimics (F(1,26) = 34.83, P = 0.0005, Fig 8B).

To further characterize the coordinated effect of HEamiRNAs on
cytotrophoblast cell cycle, we pulse-labeled the cells with EdU for
1-h and, post-fixation, labeled them with 7AAD to segregate cells
into three groups: G0/G1 (7AADlow, EDU−), S (EDU+), and G2/M
(7AADhigh, EDU−). Both 120 mg/dl and 320 mg/dl ethanol exposures
significantly decreased the proportion of cells in the S-phase,
whereas 320 mg/dl exposure increased the proportion of cells in
the G2/M-phase, consistent with the observed reduction in the rate

of DNA synthesis (Fig S7C). Similar to the effects of ethanol expo-
sure, pooled HEamiRNA mimic administration also significantly
decreased the proportion of cells in the S-phase (F(1,28) = 52.78, P <
0.0001), whereas increasing the proportion of cells the G2/M-phase
(F(1,28) = 8.395, P = 0.007) and exacerbated alcohol’s effects on the
cell cycle (Fig 8C). Interestingly, pooled HEamiRNA antagomir ad-
ministration also reduced the proportion of cells in the S-phase
(F(1,26) = 14.98, P = 0.0007) and increased the proportion of those in
the G2/M-phase (F(1,26) = 12.38, P = 0.002) (Fig 8D).

As with our EMT gene expression data, pretreatment of cyto-
trophoblasts with HEamiRNA antagomirs prevented further re-
duction in the rate of DNA synthesis, or cell cycle retardation, that

Figure 6. Antagomirs prevent HEamiRNA-induced impairment of EMT.
(A–D) Expression of CDH1 (A), VIM (B), TWIST (C), and SNAI1 transcripts (D) following control or HEamiRNA hairpin inhibitor transfection followed by control or
HEamiRNA overexpression in BeWO cytotrophoblasts. (E–H) Expression of CDH1 (E), VIM (F), TWIST (G), and SNAI1 transcripts (H) following control or HEamiRNA antagomir
transfection followed by control or HEamiRNA overexpression in HTR8 extravillous trophoblasts. In subheadings, ‘C’ denotes control miRNA mimic or hairpin,
whereas ‘T’ denotes HEamiRNAmimic or hairpin inhibitor. Results are expressed as themean ± SEM, n = 10 samples per group; ANOVA: significant treatment effect (##P < 0.01,
###P < 0.001, ####P < 0.0001). For post hoc analysis, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by Tukey’s HSD.

Figure 7. HEamiRNAs impair extravillous trophoblast
invasion.
(A, B) Transwell invasion of HTR8 extravillous
trophoblasts following transfection with (A) HEamiRNA
mimics or (B) hairpin inhibitors with or without
concomitant 320 mg/dl ethanol exposure. OD = optical
density; results are expressed as the mean ± SEM; n = 10
samples per group; *P < 0.05 by unpaired t test.
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would result from transfection with pooled HEamiRNA mimics (Fig 9A
and B).

HEamiRNAs have minimal effect on cell survival

We next investigated whether ethanol- and HEamiRNA-induced
changes in cell cycle were related to an increase in cell death.
Only the 320 mg/dl dose of ethanol exposure demonstrated a slight,
but marginally significant effect, of increasing lytic cell death (t(18) =
2.022, P = 0.054), although there was no effect on apoptosis (Fig S8A
and B). However, the changes in cell cycle following transfection of
individual or pooled HEamiRNAmimics were not mirrored by changes
in lytic cell death. Nevertheless, two HEamiRNAs, hsa-miR-671-5p and
hsa-miR-449a, did significantly increase apoptosis (unpaired t test,
P < 0.05, FDR correction) (Fig S8C and D).

Contrastingly, transfection of four HEamiRNA antagomirs in-
dividually, significantly increased lytic cell death (unpaired t test, all
P < 0.05, FDR correction), with the antagomir to hsa-miR-491-3p also
increasing apoptotic cell death (t(14) = 3.383, P = 0.004, FDR

correction, Fig S8C and D). Likewise, transfection of pooled
HEamiRNA antagomirs increased lytic cell death (F(1,36) = 11.40, P =
0.002) but did not cause increased apoptosis (Fig S8E–H). Taken
together, our data suggest that whereas ethanol exposure may in-
crease cytotrophoblast death, increased levels of HEamiRNAs have
minimal effects on cell death, suggesting that their effect on cell cycle
and the EMT pathway is independent of any effect on cell survival.

HEamiRNAs modulate cytotrophoblast differentiation-associated
Ca2+ dynamics

HEamiRNAs’ effects on EMT pathway member expression, coupled
with cell cycle retardation, indicate that HEamiRNAs influence tro-
phoblast maturation. To model HEamiRNAs’ effect on hormone-
producing and calcium-transporting syncytiotrophoblasts (66), we
used a well-established protocol of forskolin-induced syncytializa-
tion of BeWO cytotrophoblasts (67, 68). As expected, forskolin
treatment induced fusion/syncytialization of cytotrophoblasts
resulting in a greater average cell size in the forskolin + HEamiRNA

Figure 8. HEamiRNAs cause cell cycle retardation in trophoblasts.
(A) Degree of EdU incorporation following control and HEamiRNA overexpression. (B) Degree of EdU incorporation following control and HEamiRNA hairpin inhibitor
transfection. (C) Box and whisker plot for the proportion of cells in the G0/G1, S, or G2/M phase of the cell cycle following control and HEamiRNA overexpression. (D) Box and
whisker plot for the proportion of cells in the G0/G1, S, or G2/M phase of the cell cycle following control and HEamiRNA hairpin inhibitor transfection with or without
concomitant 320 mg/dl ethanol exposure. For box and whisker plots, bounds of box demarcate limits of the first and third quartile, the line in middle is the median, and
whiskers represent the range of data. Representative flow cytometry experiment images are shown on the right. n = 10 samples per group; ANOVA: significant main effect of
HEamiRNA transfection (##P < 0.01, ###P < 0.001, and ####P < 0.0001).
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mimics group (F(1,386) = 4.386, P = 0.037). This suggests that the in-
hibition of EMT by these miRNAs may result in preferential syncy-
tialization instead of differentiation to extravillous trophoblasts (Fig

S9A). Ethanol and forskolin treatment both increased baseline cal-
cium levels, as indicated by the change in fluo-4 fluorescence
(F(1,426) = 5.593 and 3.665, respectively, P < 0.0001, Figs 10A and S9B–D).

Figure 10. HEamiRNAs modulate differentiation-associated Ca2+ dynamics but have minimal effect on the cellular energetics profile.
(A) Time-lapse confocal images of BeWO cytotrophoblasts loaded with fluo-4 Ca2+ indicator dye under indicated treatment conditions. The arrowhead indicates a
fused, multinuclear cell, scale bar (white) is 50 μm. (B) Box and whisker plot of intracellular calcium levels following acute ATP administration in BeWO cytotrophoblasts
with control and HEamiRNA overexpression with or without concomitant 320 mg/dl ethanol exposure. Bounds of box demarcate limits of the first and third quartile,
the line in middle is the median, and whiskers represent the range of data. (C) Box and whisker plot of intracellular calcium levels following acute ATP administration
in BeWO cytotrophoblasts with control and HEamiRNA overexpression with or without 20 μM forskolin treatment. (D–G) Baseline OCR (D), baseline ECAR (E), stressed
OCR (F), and stressed ECAR (G) in BeWO cytotrophoblasts with control and HEamiRNA overexpression with or without concomitant 320 mg/dl ethanol exposure.
Metabolic stress was induced by treatment with 1 μM oligomycin and 0.125 μM (FCCP). Results are expressed as the mean ± SEM. n = 10 samples per group; ANOVA:
significant main effect of 320 mg/dl ethanol exposure (ƐP < 0.05, ƐƐƐP < 0.001), significant interaction effect (HEamiRNA by 320 mg/dl ethanol [†P < 0.05, ††P < 0.01, and
††††P < 0.0001]). For post hoc analysis, *P < 0.05, **P < 0.01, ***P < 0.001, and ***P < 0.0001 by Tukey’s HSD.

Figure 9. Antagomirs prevent HEamiRNA-induced cell cycle retardation.
(A) Degree of EdU incorporation following control or HEamiRNA hairpin inhibitor transfection followed by control or HEamiRNA overexpression in BeWO cytotrophoblasts.
Results are expressed as the mean ± SEM. (B) Box and whisker plot for the proportion of cells in the G0/G1, S, or G2/M phase of the cell cycle following control or
HEamiRNA hairpin inhibitor transfection followed by control or HEamiRNA overexpression in BeWO cytotrophoblasts. Bounds of box demarcate limits of the first and third
quartile, the line in middle is the median, and whiskers represent the range of data. Representative flow cytometry experiment images are shown on the right. In
subheadings, ‘C’ denotes control miRNA mimic or hairpin, whereas ‘T’ denotes HEamiRNA mimic or hairpin inhibitor. n = 5 samples per group; ANOVA: significant treatment
effect (###P < 0.001). For post hoc analysis, **P < 0.01 by Tukey’s HSD.
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The effect of ethanol on baseline calcium was abrogated by
HEamiRNAs, whereas HEamiRNAs + forskolin was not signifi-
cantly different to forskolin alone, indicating that forskolin
and HEamiRNAs may be affecting similar calcium pathways. The
conversion of cytrophoblasts to syncytiotrophoblasts is accom-
panied by an increase in endoplasmic reticulum, which could in-
crease calcium-buffering capabilities in response to ethanol stress
on the cells; thus, HEamiRNA-induced syncytialization pathways
may be protective against ethanol stress.

Adaptations to cellular stress can also be seen in alterations to
cellular energetics in response to ethanol, as ethanol-exposed
BeWO cells showed decreased baseline and stressed oxygen
consumption rates (OCR) (F(1,28) = 15.55 and 16.91, P = 0.0005 and
0.0003, respectively) and increased extracellular acidification rates

(ECAR) (F(1,28) = 4.868, P = 0.036). However, HEamiRNAs had minimal
effects on metabolic activity (Fig 10D–G).

Extracellular ATP has been shown to inhibit trophoblast migra-
tion (69) and can directly stimulate increased intracellular calcium
elevations through purinergic receptors ubiquitously present on
trophoblasts (70). Both HEamiRNA and ethanol administration sig-
nificantly increased intracellular calcium in response to acute ATP
administration (F(1,426) = 10.34 and F(1,386) = 16.30, P = 0.001 and P <
0.0001, respectively) (Fig 10B). This may be indicative of a lack of
down-regulation of purinergic receptors required in trophoblast
migration as part of the interrupted EMT pathway. Forskolin-induced
maturation decreased calcium response to ATP (F(1,386) = 50.72, P <
0.0001) (Fig 10C) and prevented the HEamiRNA-induced increase in
ATP response. These data agree with previous studies showing

Figure 11. HEamiRNAs promote syncytialization dependent hCG production.
(A) Diagram of a placental anchoring villous and maternal decidua with the boxed area denoting syncytiotrophoblasts. (B–F) Expression of CGA (B), CGB (C), IGF2 (D), and
CDH1 transcripts (E) and densitometric quantification of E-Cadherin protein levels (F) in BeWO cytotrophoblasts following HEamiRNAs or control miRNA overexpression
with or without 20 μM forskolin treatment. (G–K) Expression of CGA (G), CGB (H), IGF2 (I), and CDH1 transcripts (J) and densitometric quantification of E-Cadherin
protein levels (K) in BeWO cytotrophoblasts following HEamiRNAs or control hairpin inhibitor transfection with or without 20 μM forskolin treatment. Results are expressed
as themean ± SEM, LDR =molecular weight ladder, n = 10 samples per group; ANOVA: significant main effect of HEamiRNA transfection (####P < 0.0001), significant interaction
effect (HEamiRNA by forskolin, [†P < 0.05]). For post hoc analysis, *P < 0.05, **P < 0.01 by Tukey’s HSD.
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increased nuclear trafficking of ionotropic receptor P2X7 and more
localized P2X4 expression over placental development, which may
decrease the overall calcium influx in response to ATP (71).

HEamiRNAs promote syncytialization-dependent hormone
production

Transfection of HEamiRNA mimics did not change CGA (encodes
Chorionic gonatropin alpha), CGB (encodes Chorionic gonadop-
tropin beta), or IGF2 (encodes Insulin-like growth factor 2) tran-
script expression relative to the control in non-syncytialized
trophoblasts. However, following forskolin-induced syncytializa-
tion of BeWO cytotrophoblasts (Fig 11A), HEamiRNA mimics sig-
nificantly increased expression of CGA and CGB (post hoc Tukey’s
HSD, n = 10 samples per group, P = 0.001 and 0.005, respectively).
Consistent with our previous results, HEamiRNA mimics also in-
creased CDH1 expression in both cytotrophoblasts and syncy-
tiotrophoblasts (F(1,20) = 5.286, P = 0.032); there was also a main
effect of syncytialization on CDH1 expression, as has been pre-
viously reported (F(1,36) = 3.391, P = 0.034, Fig 11B–E). Likewise,
HEamiRNAs increased E-Cadherin protein expression (F(1,20) = 5.286,
P = 0.032), whereas forskolin decreased it (F(1,20) = 10.24, P = 0.005)
(Fig 11F). On the other hand, there was no effect of HEamiRNA
antagomirs on CGA and CGB expression, although we did observe
a decrease in IGF2 transcript expression, following syncytializa-
tion, relative to controls (post hoc Tukey’s HSD, n = 10 samples per
group, P = 0.001) (Fig 11G–J).

Given that HEamiRNAs promote syncytialization-dependent
hormone production, we next investigated maternal plasma
levels of intact hCG in our Ukraine birth cohort. Plasma hCG levels
were nonsignificantly increased in the second trimester of HEa
group mothers relative to their UE counterparts, consistent with
previous studies (72). During the third trimester, however, hCG
levels remained significantly elevated in HEa group mothers
compared with the UE group (median test, n = 23 samples in HEa

group and n = 22 for HEua and UE groups, P = 0.03) (Fig 12).
Furthermore, there was no significant difference of gestational
age at blood draw between the different groups indicating the
increased level of hCG in the HEa group was not confounded by
gestational age at which blood was sampled (Fig S10) (73). In-
terestingly, both alcohol and hCG levels were negatively associ-
ated with gestational age at delivery (GAD), with a significant
interaction between periconceptional alcohol exposure and hCG
levels on GAD (Table S2). Taken together, our data suggest
HEamiRNAs may contribute to PAE-dependent increases in hCG
levels during pregnancy.

HEamiRNAs reduce fetal growth

To investigate the functional consequences of elevated circulating
HEamiRNA levels, we administered miRNA mimics for the eight-
mouse homolog HEamiRNAs, or a negative control mimic, through
tail vein injection to pregnant mouse dams on GD10. On GD18,
growth parameters of male and female fetuses were assessed
separately, and data from all same-sex fetuses from a single
pregnancy were averaged into one data point. Dams-administered
HEamiRNA mimics produced smaller fetuses than those adminis-
tered control mimics, according to all collected measures of fetal
size: fetal weight (F(1,17) = 9.92, P = 0.006), crown-rump length (F(1,17) =
9.89, P = 0.006), snout-occipital distance (F(1,17) = 9.09, P = 0.008), and
biparietal diameter (F(1,17) = 5.99, P = 0.026) (Fig 13B–E). Interestingly,
placental weights were also significantly reduced in mice treated
with HEamiRNA mimics (F(1,17) = 6.92, P = 0.018) (Fig 13F).

Following tail vein administration of two human-specific sen-
tinel miRNAs, miR-518f-3p and miR-519a-3p, we found a high bio-
distribution of both miRNAs in the placenta, comparable with levels
seen in the liver and spleen (Fig S11A and B). Thus, to determine
whether HEamiRNA’s effects on fetal growth could result from their
actions on the placenta, we quantified the placental expression of
core EMT members in the GD18 placentas of control and HEamiRNA
fetuses. HEamiRNA administration significantly reduced expression
of mesenchymal-associated transcript VIM (F(1,14) = 14.23, P = 0.002)
and SNAI2 (F(1,14) = 5.99, P = 0.028) with a significant sex by HEamiRNA
interaction effect on SNAI1 (F(1,66) = 5.55, P = 0.034) and CDH1 (F(1,14) =
6.01, P = 0.028) (Fig 14A–E). Interestingly, and in line with our in vitro
findings whereby HEamiRNAs promoted syncytialization-dependent
cell fusion and hCG production, HEamiRNA administration signifi-
cantly increased expression of the mRNA transcript for SynB, a gene
that is important for syncytiotrophoblast maturation (F(1,66) = 4.11,
P = 0.047) (Fig 14F).

Discussion

We previously reported that gestational elevation of 11 maternal
plasma miRNAs predicted which PAE infants would exhibit adverse
outcomes at birth (8). These HEamiRNAs were elevated throughout
mid and late-pregnancy, encompassing critical periods for fetal
development, and were predicted to target the EMT pathway (8). In
this study, we tested this prediction by adopting rodent and ma-
caque gestational moderate alcohol self-administration para-
digms. Despite differences in their placental anatomy (74, 75, 76, 77),

Figure 12. PAE elevates third trimester maternal hCG.
Box and whisker plot of the second and third trimester maternal hCG levels in UE,
HEua, and HEa group mothers of our Ukrainian birth cohort. Bounds of box
demarcate limits of the first and third quartile, the line in middle is the median,
and whiskers represent the range of data. Results are expressed as the mean ±
SEM, n = 22–23 samples per group; *P = 0.03 (Mood’s median test, χ2 = 7.043, df = 2).
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we are the first to report that PAE impairs placental EMT across
species, indicating a conserved effect of PAE on placental devel-
opment. In addition, we found that HEamiRNAs collectively, but not
individually, mediated the effects of PAE on core EMT pathway
members and that, together, they inhibited EMT in human tro-
phoblast culture models. Although we assessed the effects of
HEamiRNAs on core EMT components (10, 14, 15, 59, 60, 61, 62),
analysis of their 39 UTRs indicates that these are unlikely to be the
direct targets of HEamiRNA action. Additional studies will be needed
to dissect out the signaling networks that connect HEamiRNAs to the
assessed EMT components.

Interestingly, HEamiRNAs also promoted syncytialization (forskolin)-
dependent hCG expression, mirroring the elevation of third trimester

maternal hCG levels in the PAE group within our clinical cohort. This
late-gestation elevation of hCG levels may serve as a compensatory
mechanism to prevent the preterm birth associated with PAE, as hCG
during late gestation is hypothesized to promote uterine myometrial
quiescence (78, 79). In support of this hypothesis, we found significant
negative associations between both hCG levels and alcohol con-
sumption with GAD. Furthermore, there was a significant interaction
between periconceptional alcohol exposure and hCG levels, with
higher hCG levels corresponding to a smaller effect of alcohol ex-
posure at conception on GAD, indicating that hCGmoderates the effect
of alcohol on age at delivery (Table S2).

Since HEamiRNAs collectively prevented trophoblast EMT, we
hypothesized that, as a functional consequence, these maternal

Figure 13. HEamiRNAs restrict fetal growth.
(A) Schematic for measures of crown rump length (CRL),
biparietal diameter (BPD), and snout-occipital distance
(SOD). (B–F) Fetal weight (B), crown-rump length (C),
biparietal diameter (D), snout-occipital distance (E), and
placental weight (F) at GD18 following administration of
control (Ctrl) and HEamiRNA mimics to pregnant C57/Bl6
dams on GD10. Dots represent medianmeasures of fetal
size and placental weights from male and female
offspring in independent litters. There were no
significant differences in litter sizes (Ctrl: 8.2 and
HEamiRNAs: 8.5) or sex ratios (Ctrl: 0.86 and HEamiRNAs:
1.21) between treatment conditions (P > 0.5 for all
measures). Results are expressed as the mean ± SEM,
n = 5–6 separate litters per treatment condition; ANOVA:
significant main effect of HEamiRNA administration (#P <
0.05 and ##P < 0.01).

Figure 14. HEamiRNAs interfere with EMT in the
placenta.
(A–F) Expression of CDH1 (A), VIM (B), TWIST (C), SNAI1 (D),
and SNAI2 (E) and SynB transcripts (F) in GD18 placenta
following administration of control (Ctrl) and HEamiRNA
mimics to pregnant C57/Bl6 dams on GD10. Dots
represent median expression values of male and
female offspring in independent litters. Results are
expressed as the mean ± SEM, n = 5–6 separate litters
per treatment condition, ANOVA: significant main effect
of HEamiRNA administration (#P < 0.05, ##P < 0.01),
significant interaction effect (fetal sex by HEamiRNA
administration, [†P < 0.05]). For post hoc analysis, *P <
0.05 by Tukey’s HSD.
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miRNAs would also inhibit fetal growth. When we delivered 8 of the
11 HEamiRNAs known to be present in mouse, to pregnant dams
during the period of placental branching morphogenesis and
endometrial invasion, and when EMT is particularly active, we found
that HEamiRNAs reduced fetal growth. Importantly, ethanol expo-
sure during this period has also been shown to result in fetal
growth deficits and dysmorphia in rodent PAE models (80, 81),
suggesting that maternal miRNA-mediated deficits in trophoblast
invasion may mediate some of the effects of PAE on fetal growth. In
support of this, we found placentas from the HEamiRNA-treated
group had impaired expression of core EMT pathway members. This
disruption of placental EMT may also have implications for pla-
cental vascular dynamics, as we have also previously observed in
mouse models (82). The nonhuman primate tissue analyzed here
was also derived from animals that were characterized in vivo using
MRI and ultrasound imaging, which demonstrated that maternal
blood supply to the placenta was lower in ethanol-exposed animals
compared with controls and that oxygen availability to the fetal
vasculature was reduced (83).

HEamiRNAs may mediate other pregnancy-associated patholo-
gies, aside from PAE. We identified numerous studies that reported
increased circulating and placental levels of at least 8 of 11
HEamiRNAs in gestational pathologies arising from placental dys-
function. For example, elevated levels of one HEamiRNA, miR-519a-3p,
a member of the placentally expressed C19MC family cluster, was
reported in the placentae of patients with preeclampsia, recurrent
spontaneous abortion, and intrauterine growth restriction (29, 30, 45,
46). Interestingly, collective overexpression of the 59 C19MC miRNAs
inhibits trophoblast migration, explaining their enrichment in the
non-migratory villous trophoblasts and suggests their down-
regulation is necessary for maturation into invasive extravillous
trophoblasts (84). Thus, a greater understanding of the placental
roles of HEamiRNAs may also help disentangle the etiology of other
pregnancy complications. We also observed that overexpression of
more restricted subsets of HEamiRNAs associated with preeclampsia,
fetal growth restriction, and spontaneous abortion or preterm labor
also partly promoted EMT transcript signatures, contrasting with the
collective inhibitory action of HEamiRNAs as a whole. Thus, elevation
of some subsets of HEamiRNAs may constitute a compensatory
mechanism aimed at minimizing placental pathologies, although
their potential protective effects are masked by the collective ele-
vation of HEamiRNAs.

Although we did not investigate the effects of PAE on EMT in
nonplacental organs, it is likely that PAE broadly disrupts EMT in
multiple fetal compartments. Developmental ethanol exposure has
been shown to inhibit the EMT-dependent migration of neural crest
progenitors involved in craniofacial development, explaining the
facial dysmorphology seen in fetal alcohol syndrome and FASDs
(85, 86). Outside of its effects on the neural crest, PAE is significantly
associated with various congenital heart defects, including both
septal defects and valvular malformations (87, 88, 89, 90). Given that
development of heart depends on EMT within the endocardial
cushions (91, 92), disruption of endocardial EMT could explain both
the valvular and septal malformation associated with PAE.

Collectively, our data on HEamiRNAs suggest miRNA-based in-
terventions couldminimize or reverse developmental effects of PAE
and other placental-related pathologies. miRNA-based therapeutic

approaches have been advanced for other disease conditions (93,
94). However, our data also suggest the effects of combinations of
miRNAs are not a sum of their individual effects. Functional synergy
between clusters of co-regulated miRNAs may be a common fea-
ture in development and disease. For instance, in 2007, we pre-
sented early evidence that ethanol exposure reduced miR-335, -21,
and -153 in neural progenitors and that coordinate reduction in
thesemiRNAs yielded net resistance to apoptosis following ethanol
exposure (95). In that study, we also showed that coordinate
knockdown of these threemiRNAs was required to inducemRNA for
Jagged-1, a ligand for the Notch cell signaling pathway, an outcome
that was not recapitulated by knocking down each miRNA in-
dividually (95). More recently, combined administration of miR-21
and miR-146a has been shown to be more effective in preserving
cardiac function following myocardial infarction than administra-
tion of either of these miRNAs alone (96). Although miRNA synergy
has not been explored in detail, these data show that new biology
may emerge with admixtures of miRNAs and that therapeutic in-
terventions may require the use of such miRNA admixtures rather
than single miRNA molecules, as have been used in clinical studies
to date.

In conclusion, we have observed that a set of 11 miRNAs, pre-
dictive of adverse infant outcomes following PAE, collectively
mediate the effects of alcohol on the placenta. Specifically, ele-
vated levels of these miRNAs together, but not individually, pro-
mote an aberrant maturational phenotype in trophoblasts by
inhibiting core members of the EMT pathway and promoting cell
stress and syncytialization-dependent hormone production. Al-
though extensive research has established circulating miRNAs as
biomarkers of disease, our study is one of the first to show how
these miRNAs explain and control the disease process themselves.
Functionally, we find that these miRNAs are clinically correlated
with measures of fetal development and directly cause intrauterine
growth restriction when administered in vivo. Our work suggests
that a greater understanding for the role of HEamiRNAs during
development, and their role in coordinating the EMT pathway in the
placenta and other developing tissues, will benefit the un-
derstanding of FASDs and other gestational pathologies and po-
tentially lead to effective avenues for intervention.

Materials and Methods

Mouse model of PAE

C57/BL6J mice (The Jackson Laboratory) were housed under reverse
12-h dark/12-h light cycle (lights off at 08:00 h). PAE was performed
using a previously described limited access paradigm of maternal
drinking (97, 98). Briefly, 60-d-old female mice were subjected to a
ramp-up period with 0.066% saccharin containing 0% ethanol (2 d),
5% ethanol (2 d), and finally 10% ethanol for 4–h daily from 10:00 to
14:00 beginning 2 wk before pregnancy, continuing through ges-
tation (Fig S2A). Female mice offered 0.066% saccharin without
ethanol during the same time period throughout pregnancy served
as controls. Tissue from the labyrinth, junctional, and decidual zone
of male and female gestational day 14 (GD14) placentae were
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microdissected, snap-frozen in liquid nitrogen, and stored at −80°C
preceding RNA and protein isolation.

Mouse model for HEamiRNA overexpression

For systemic administration of miRNAs, previously nulliparous
C57/BL6NHsd dams (Envigo) were tail vein–injected on GD10 with
either 50 μg of miRNA miRVana mimic negative control (Cat No.
4464061; Thermo Fisher Scientific) or pooled HEamiRNA miRVana
mimics in In-vivo RNA-LANCEr II (3410-01; Bioo Scientific), according
to the manufacturer’s instructions. The 50 μg of pooled HEamiRNA
mimics consisted of equimolar quantities of mmu-miR-222-5p,
mmu-miR-187-5p, mmu-miR-299a, mmu-miR-491-3p, miR-760-3p,
mmu-miR-671-3p, mmu-miR-449a-5p, and mmu-miR-204-5p mimics.
For biodistribution studies, 50 μg of pooled equimolar quantities
of hsa-miR-519a-3p and hsa-miR-518f-3p mimics were injected via
tail vein. These human miRNAs were selected because no mouse
homologs are known to exist and consequently, estimates for
organ distribution of exogenous miRNAs in the mouse are unlikely
to be contaminated by the expression of endogenous murine
miRNAs. GD10 is a time point near the beginning of the devel-
opmental period of branching morphogenesis, immediately fol-
lowing chorioallantoic attachment, during which the placenta
invades the maternal endometrium (99). At GD18, pregnancies
were terminated with subsequent quantification of fetal weight,
crown-rump length, snout-occipital distance, biparietal diameter,
and placental weight (Fig 13A). Subsequently, tissue was snap-
frozen in liquid nitrogen and stored at −80°C preceding RNA
isolation.

Rat model of PAE

Outbred nulliparous Sprague Dawley rats were housed under a 12-h
light/12-hour dark cycle. PAE in Sprague Dawley was conducted
according to our previously published exposure paradigm (20, 100).
Briefly, dams were given a liquid diet containing either 0% or 12.5%
ethanol (vol/vol) from 4 d before mating until GD4 (Fig S2B). Dams
had ad libitum access to the liquid diet 21 h daily and consumed
equivalent calories. Water was offered during the remaining 3 h of
the day. On GD5, liquid diets were removed and replaced with
standard laboratory chow. On GD20, the placentas were immedi-
ately separated into the labyrinth and junctional zone, snap-frozen
in liquid nitrogen and stored at −80°C preceding RNA isolation.

Nonhuman primate model of PAE

As previously described in detail (83), adult female rhesus macaques
were trained to orally self-administer either 1.5 g/kg/d of 4% ethanol
solution (equivalent to six drinks/d) or an isocaloric control fluid
before time-mated breeding. Each pregnant animal continued
ethanol exposure until gestational day 60 (GD60, term gestation is
168 d in the rhesus macaque) (101). Pregnancies were terminated by
cesarean section delivery at three different time points; GD85, GD110,
or GD135 (Fig S2C). Themacaque placenta is typically bilobed with the
umbilical cord insertion in the primary lobe and bridging vessels
supplying the fetal side vasculature to the secondary lobe (Fig 2D
showing gross placenta anatomy) (102). Full thickness tissue biopsies

(maternal decidua to fetal membranes) were taken from both the
primary and secondary lobes of the placenta (Fig 2E showing H&E
section of placenta). Sampleswere immediately snap-frozen in liquid
nitrogen and stored at −80°C preceding RNA isolation.

Cell culture trophoblast models

BeWO human cytotrophoblastic choriocarcinoma cells and HTR-
8/SVneo extravillous cells were sourced from ATCC (Cat No. CCL-98
and CRL-3271, respectively). BeWO cells were maintained in HAM’s
F12 media containing penicillin (100 U/ml), streptomycin (100 μg/ml),
and 10% vol/vol FCS at 37°C and 5% CO2. HTR8 cells were maintained
in RPMI-1640 media with 5% vol/vol FCS, under otherwise identical
conditions. Culture medium was replenished every 2 d and cells
subcultured every 4–5 d.

BeWO cells were treated with 20 μM forskolin to induce syncyti-
alization, as previously described (103, 104). BeWO and HTR8 cells were
also subjected to four separate ethanol treatment conditions: 0mg/dl,
60mg/dl (13mM), 120mg/dl (26mM), or 320mg/dl (70mM). To achieve
HEamiRNA overexpression and inhibition, Dharmacon miRIDIAN miRNA
mimics and hairpin inhibitors (25 nM), or control mimic (Cat No. CN-
001000-01-05; Dharmacon) and hairpin inhibitor (Cat No. CN-001000-
01-05; Dharmacon) (25 nm), were transfected into subconfluent BeWO
and HTR8 cells using RNAiMAX lipofection reagent (Cat No. 13778;
Thermo Fisher Scientific).

Cell cycle analysis

At 48 h post transfection, BeWO cells were pulsed with 10 μMEdU for
1 h. The cells were immediately harvested, and cell cycle analysis
was performed with the Click-iT EdU Alexa Fluor 488 Flow Cytometry
Assay kit (Cat No. C10420; Thermo Fisher Scientific), in conjunction
with 7-amino-actinomycin D (Cat No. 00-6993-50; Thermo Fisher
Scientific), according to the manufacturer’s instructions, using the
Beckman Coulter Gallios 2/5/3 flow cytometer. Data were analyzed
using Kaluza software (Beckman Coulter).

Cell death analysis

BeWO cell culture was harvested 48 h post transfection. Media was
subjected to lactate dehydrogenase (LDH) detection using the
Pierce LDH Cytotoxicity Assay kit (Cat No. 88953; Thermo Fisher
Scientific), according to the manufacturer’s instructions, for lytic
cell death quantification. The Promega Caspase-Glo 3/7 Assay
system (Cat No. G8091; Promega) was used to quantify apoptotic cell
death.

Invasion assay

At 24 h post-transfection and/or ethanol exposure, HTR8 cells were
serum-starved for an additional 18 h. Subsequently, HTR8 cells
were seeded onto transwell permeable supports precoated with
300 μg/ml Matrigel (Cat No. 354248; Corning). After 24 h, cells
remaining in the apical chamber were removed with a cotton swab.
Cells that invaded into the basal chamber were incubated with
1.2 mM 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) for 3 h, and the precipitate solubilized with 10% SDS in
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0.01 N HCl. Absorbance intensities were read at 570 nm in a Tecan
Infinite 200 plate reader.

Metabolic flux analysis and calcium imaging

BeWO cells (10,000/well) were plated into Seahorse XF96 Cell
Culture Microplates (Cat No. 103275-100; Agilent Biotechnology). The
OCR, a measure of mitochondrial respiration, and ECAR, a measure
of glycolysis, weremeasured using the Seahorse XFe96 flux analyzer
(Seahorse Bioscience). At the time of assay, the cell culture medium
was replaced with the appropriate prewarmed Seahorse XF Base
Medium (Cat No. 102353-100; Agilent Biotechnology). OCR and ECAR
parameters were measured using the Seahorse XFp Cell Energy
Phenotype Test kit (Cat No. 103275-100; Agilent Biotechnology).
Metabolic stress was induced by simultaneous treatment with 1 μm
oligomycin and 0.125 μM carbonyl cyanide p-[trifluoromethoxy]-
phenyl-hydrazone (FCCP).

BeWO cells were also plated onto glass coverslips in 24-well
plates at a density of 30,000 cells/well. After exposure to ethanol
and/or forskolin in culture, the cells were prepared for calcium
imaging. After replacement of the culture media with external
imaging media (154 mM NaCl, 5 mM KCl, 2 mM CaCl2, 0.5 mM MgCl2,
5 mM glucose, and 10 mM Hepes, pH 7.4), the cells were loaded for
35 min at 37°C with the calcium indicator dye fluo-4 AM (Cat No.
F14201; Thermo Fisher Scientific), at a final concentration of 5 μM
fluo-4 AM in 0.1% DMSO. After incubation, the cells were washed
to remove remaining extracellular fluo-4 and imaged at 40×
using confocal microscopy (FV1200-equipped BX61WI microscope;
Olympus Corporation). Time-lapse images were acquired at a
frequency of 0.5 Hz. Individual cells were manually outlined, and
area and mean fluorescence intensity were obtained for each cell
(FIJI image processing package) (105). To determine the functional
calcium range of each cell, at the end of imaging, the cells were
exposed to 5 μM ionomycin and 10 mM EGTA (0 mM external Ca2+,
Frange = Fionomycin − FEGTA). Baseline fluorescence was determined by
averaging the lowest five consecutive fluorescence values during
the initial 5 min (Fbaseline), which was then expressed as a per-
centage of Frange (ΔFbaseline = (Fbaseline − FEGTA)/Frange × 100). Maximal
intracellular calcium response to 100 μM ATP was determined by
averaging the highest three consecutive fluorescence values during
ATP application (FATP) and determining the amount of fluorescence
as a percentage of Frange (ΔFATP = (FATP − FEGTA)/Frange × 100).

Quantitative reverse transcriptase–polymerase chain reaction
analysis

Total RNA was extracted from tissue, as well as BeWO and HTR8
cells, using the miRNeasy Mini kit (Cat No. 217004; QIAGEN). For
miRNA qPCR assays, cDNA was synthesized from 200 ng of total RNA
using the miRCURY LNA Universal RT cDNA synthesis kit (Cat No.
203301; Exiqon/Cat No. 339340; QIAGEN), and expression was
assessed using miRCURY LNA SYBR Green (Cat No. 203401; Exiqon/
Cat No. 339345; QIAGEN). For mRNA qPCR assays, cDNA was syn-
thesized from 500 ng of total RNA using the qScript cDNA Synthesis kit
(Cat No. 95047; Quanta/QIAGEN). Gene expression analysis was

performed using PerfeCTa SYBR Green FastMix (Cat No. 95073;
Quanta) on the ViiA 7 Real-Time PCR System (Thermo Fisher Sci-
entific). The data presented correspond to themean 2−ΔΔCt after being
normalized to the geometric mean of β-actin, hypoxanthine-guanine
phosphoribosyltransferase 1 (HPRT1), and 18s rRNA. Expression data
for miRNA was normalized to the geometric mean of miR-25-3p, miR-
574-3p, miR-30b-5p, miR-652-3p, and miR-15b-5p. For each primer
pair, thermal stability curves were assessed for evidence of a single
amplicon, and the length of each amplicon was verified using
agarose gel electrophoresis. A list of primers and their sequences is
presented in Table S3.

Western immunoblotting analysis

Protein was extracted using 1× RIPA lysis buffer (MilliporeSigma)
supplemented with Halt Protease Inhibitor Cocktail (Thermo Fisher
Scientific). Tissue was homogenized using the Branson Sonifier 150.
Protein concentration was determined using Pierce BCA protein
assay kit (Thermo Fisher Scientific), and 30 μg of protein was loaded
onto a 4%–12% Bis-Tris (Cat No. NPO323BOX; Invitrogen/Thermo
Fisher Scientific), size-fractionated at 200 V for 35 min, and
transferred to a PVDF membrane using the iBlot transfer system
(Invitrogen/Thermo Fisher Scientific). Blots with protein from
cultured cells were blocked with 5% nonfat dry milk in tris-buffered
saline containing Tween-20 (TTBS) for 1 h and incubated overnight
with primary antibody. The blot was then washed and incubated with
an HRP-conjugated goat anti-rabbit or anti-mouse IgG (Invitrogen) at
dilution 1:1,000 for 1-h, then developed using PerkinElmer Western
Lightning Plus Chemi ECL (PerkinElmer) and visualized using a CCD
camera (Fluorchem Q, Alpha Innotech). Blots with protein from
homogenized tissue were dried overnight, rehydrated in methanol,
stained with REVERT Total Protein Stain, and developed with the
Odyssey CLx Imaging System (LI-COR). Blots were then blocked
with Odyssey Blocking Buffer (TBS) for 1 h and incubated over-
night with primary antibody. The blot was then washed and in-
cubated with IRDye 800CW secondary antibody (Cat No. 925-32210;
LI-COR). The following antibodies were used: β-Actin HRP
(Cat No. sc-47778; Santa Cruz Biotechnology); Goat anti-Mouse
IgG (H+L) Secondary Antibody, HRP (Cat No. 62-6520; Thermo
Fisher Scientific); Goat anti-Rabbit IgG (H+L) Secondary Antibody,
HRP (Cat No. 65-6120; Thermo Fisher Scientific); purified Mouse
Anti-E-Cadherin (Cat No. 610181; BD Biosciences); and Rabbit anti-
vimentin antibody (EPR3776) (Cat No. ab 924647; Abcam). Protein
levels were quantified using the densitometric analysis package in
FIJI image processing software (105).

ELISA

The second and third trimester maternal plasma samples were
collected as part of a longitudinal cohort study conducted in two
regions of Western Ukraine as part of the Collaborative Initiative on
FASDs (CIFASD.org) between the years 2006 and 2011, as previously
reported (8). Plasma, at a 1:1,000 dilution, was subjected to hCG
detection using Abcam’s intact human hCG ELISA kit (Cat no.
ab100533) following the manufacturer’s protocol.
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Literature review

We conducted a literature review for HEamiRNAs and their asso-
ciated gestational pathology using the National Institute of Health’s
PubMed search interface. For each miRNA, the following search
parameters were used:

½miRX OR miR X OR miRNA X OR miRNAX or miRNX�
AND MeSH Term

where X represents the miRNA of interest and automatic term
expansion was enabled. The following MeSH terms, and related
search terms (in brackets), were used: Fetal Growth Retardation
(Intrauterine Growth Retardation, IUGR, Intrauterine Growth Re-
striction, Low Birth Weight, LBW, Small For Gestational Age, SGA),
Premature Birth (Preterm Birth, Preterm Birth, Preterm Infant,
Premature Infant, Preterm Labor, Premature Labor), Spontaneous
Abortion (Early Pregnancy Loss, Miscarriage, Abortion, Tubal
Abortion, Aborted Fetus), Pre-Eclampsia (Pre Eclampsia, Pre-
eclampsia, Pregnancy Toxemia, Gestational Hypertension, Maternal
Hypertension), and Maternal Exposure (Environmental Exposure,
Prenatal Exposure). Returned articles were subsequently assessed
for relevance.

Secondary analysis of RNA sequencing data

Expression levels of HEamiRNAs in tissues were determined using
the Human miRNA Expression Database and the miRmine Human
miRNA expression database (58, 106). For expression analysis of
HEamiRNA pri-miRNAs, RNA sequencing data were used from NCBI’s
sequence read archive (https://www.ncbi.nlm.nih.gov/sra). The
accession numbers for the sequence files are uterus (SRR1957209),
thyroid (SRR1957207), thymus (SRR1957206), stomach (SRR1957205),
spleen (SRR1957203), small intestine (SRR1957202), skeletal muscle
(SRR1957201), salivary gland (SRR1957200), placenta (SRR1957197),
lung (SRR1957195), liver (SRR1957193), kidney (SRR1957192), heart
(SRR1957191), whole brain (SRR1957183), adrenal gland (SRR1957124),
bone marrow (ERR315396), colon (ERR315484), adipose tissue
(ERR315332), and pancreas (ERR315479). Deep sequencing analysis
was conducted using the Galaxy version 15.07 user interface
according to the bioinformatics pipeline outlined in Fig S12.

Statistical analyses

Linear regression models were used to estimate associations
between infant growth measures and miRNA expression levels,
gestational age at blood draw, the interaction between subject-
centered miRNA expression level and gestational age at blood
draw, and child sex. Spearman correlations between infant
growth measures and subject-centered miRNA expression levels
were also calculated. Linear regression models were also used to
estimate the associations between gestational at birth and log-
transformed hCG levels, ethanol intake, the interaction between
log-transformed hCG levels and ethanol intake, gestational at
blood draw, and child sex. Statistical analysis and graphs were

generated with GraphPad Prism 6 software (GraphPad Software,
Inc), SPSS v24, or R version 3.3.1. Results are expressed as the
mean ± SEM or alternatively as box and whisker plots with the
bounds of the box demarcating limits of first and third quartile, a
median line in the center of the box, and whiskers representing
the total range of data. The overall group effect was analyzed for
significance using one-way MANOVA, one-way or two-way ANOVA
with Tukey’s HSD or Dunnett’s multiple comparisons post hoc
testing when appropriate (i.e., following a significant group ef-
fect in one-way ANOVA or given a significant interaction effect
between experimental conditions in two-way ANOVA), to correct
for a family-wise error rate. A two-tailed t test was used for
planned comparisons. For experiments characterizing the in-
dividual effects of HEamiRNAs against the control miRNA or
antagomirs, individual two-tailed t test with 5% FDR correction
was applied to account for multiple comparisons. All statistical
tests, sample sizes, and post hoc analysis are appropriately
reported in the results section. A value of P < 0.05 was considered
statistically significant and a value of 0.1 < P < 0.05 was con-
sidered marginally significant.

Study approval

Human study protocols were approved by the institutional review
boards at the Lviv National Medical University, Ukraine, and the
University of California San Diego as well as Texas A&M University in
the United States. Research was conducted according to the prin-
ciples expressed in the Declaration of Helsinki with written informed
consent received from participants before inclusion in the study. All
rodent experiments were performed in accordance with protocols
approved by the University of New Mexico Institutional Animal Care
and Use Committee (IACUC), the Texas A&MUniversity IACUC, and the
University of Queensland Animal Ethics Committees. All procedures
involving nonhuman primate research subjects were approved by
the IACUC of the Oregon National Primate Research Center (ONPRC),
and guidelines for humane animal care were followed. The ONPRC
abides by the Animal Welfare Act and Regulations enforced by the US
Department of Agriculture.
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