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Abstract

Urban greenhouse gas emissions from mobile and biogenic sources: An assessment using a
high-density sensor network

by

Jinsol Kim

Doctor of Philosophy in Earth and Planetary Science

University of California, Berkeley

Professor Ronald C. Cohen, Chair

The world’s cities account for up to 70 % of global carbon dioxide (CO2) emissions, while
covering less than 2 % of the Earth’s surface. Achieving global goals of keeping temperature
increases below 2°C requires dramatic reductions in emissions. In keeping with this goal,
cities around the world are implementing strategies to reduce carbon dioxide emissions. To
support this effort, observations and analyses that assess attribution of emission reductions
to specific mitigation strategies are needed. However, monitoring and attributing carbon
dioxide emissions in cities are challenging since numerous emission sources are densely pre-
sented in cities with complex topography and turbulent mixing.

In this dissertation, I present a novel approach to understanding urban carbon dioxide and
to attribute emissions to specific source sectors using a near-surface, high-density urban
monitoring network. The Berkeley Environmental Air-quality and CO2 Observation Net-
work (BEACO2N) includes ∼70 nodes in the San Francisco Bay Area distributed at ∼2 km
horizontal spacing. I show that the relationship between CO2 concentration and highway
traffic flow is coherent throughout the network. Using a Gaussian plume model to represent
the dispersion from the highways, I show that the observations constrain the decrease in
emission rate per vehicle from 2017 to 2019. Increased fuel efficiency and electrification of
the vehicle fleet are among the primary tools in California’s greenhouse gas reduction plan
and this assessment suggest these plans are on track. Second, I leverage the Gaussian plume
model to determine biogenic uptake of CO2 in the region. I find promising estimates of bio-
genic emissions that is comparable to the daily and seasonal estimates based on SIF. Finally,
I describe the implementation and evaluation of other trace gas sensors (O3, CO, NO, and
NO2) for source attribution. I demonstrate the use of the relationship between trace gases
that are co-emitted from combustion to characterize various emission sources.
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Chapter 1

Introduction

1.1 Motivation and strategies for urban carbon

dioxide monitoring

Carbon dioxide (CO2) is the greenhouse gas (GHG) with the largest contribution to anthro-
pogenic radiative forcing. Consequently, reducing CO2 emissions is a prime focus for policy
aimed at slowing the pace and limiting the ultimate extent of climate change. Anthropogenic
emissions have increased CO2 from 280 ppm in preindustrial times to greater than 400 ppm
in the present. There are many ways of looking at controlling CO2 emissions. Since more
than 50 % of the global population lives in urban areas today and the urban population is
likely to reach 70 % by 2050, management of CO2 necessarily must focus on emissions that
result from cities. The world’s cities account for up to 70 % of global energy-related CO2

emissions, while occupying less than 2 % of the Earth’s surface area (Change et al., 2014).
Cities around the world have started implementing mitigation strategies to reduce the CO2

emissions and collaborating with each other in organizations such as the C40 Cities Climate
Leadership Group (https://www.c40.org/) and the Global Covenant of Mayors for Climate
and Energy (https://www.globalcovenantofmayors.org/). Cities will manage their emissions
both by reducing the emissions that occur directly within their jurisdiction and by reduc-
ing the CO2 emissions they implicitly cause to occur elsewhere by consuming energy, food
and material goods. To support urban efforts to reduce emissions within their jurisdictional
boundaries, CO2 monitoring systems are envisioned that can provide direct feedback on the
efficacy of policy choices guiding cities toward the most effective CO2 reduction strategies.

One can begin to understand CO2 emissions using an activity-based approach to make an
estimate of emissions. To do this, source-specific emission factors and the measurements of
activities are collected, and the locations of the activities are specified. For example, the
mass of CO2 per mile driven multiplied by the number of miles driven on a specific highway.
Uncertainties in activity-based CO2 emission “inventories” depend on the completeness of
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the conceptual model framework and the accuracy of the underlying data and methods
used to estimate emissions factors and activity for which direct measures are not available.
Source-specific emission factors vary depending on the technology used including engine and
post-combustion controls such as catalytic convertors. Activity data used to create these
inventories are reported at either national scales or at the scale of smaller jurisdictions that
require additional processing such as downscaling. Producing an urban scale CO2 inventory
with hourly resolution and spatial resolution of 1 km or better is thus an extremely labor-
intensive process. High spatial resolution activity-based CO2 inventories have been produced
for the cities of Indianapolis, Indiana (Gurney et al., 2012), Paris, France (Bréon et al., 2015),
Salt Lake City, Utah (Patarasuk et al., 2016), Los Angeles, California (Gurney et al., 2019),
San Francisco Bay Area, California (Turner et al., 2016), and the northeastern region of
the United States (Gately and Hutyra, 2017). Recently, a 1 km scale national inventory has
been released for cities in the United States (Gurney et al., 2020). It remains to be seen if
this national inventory is as effective as inventories that are tailored with local knowledge
for specific cities.

A complementary approach to understanding emissions is inferring emissions from CO2 mea-
surements. Both in situ and remote sensing techniques have been used in this manner. In
most cases, observations and a prior inventory such as described above are fused together
to yield an improved estimate for an inventory. Methods for fusing the observations include
Bayesian inversion, 4-D variational methods and ensemble Kalman filter data assimilation.
These approaches all require that a numerical weather model be coupled to emission model
with sufficient resolution to resolve variances in the observations.

Spaced-based remote sensing includes the GOSAT, OCO-2 and OCO-3 instruments (Crisp,
2008; Kuze et al., 2009; Eldering et al., 2019). Observations from these instruments were
initially used to improve understanding of the global CO2 cycle (e.g., Chevallier et al., 2007;
Liu et al., 2014). More recent attention has turned to the use of these measurements for
more localized studies (e.g., Bovensmann et al., 2010; Hedelius et al., 2017, 2018; Kort et al.,
2012; Nassar et al., 2017) such as urban enhancements.

Following on the success of the global TCCON network of high resolution sun-tracking col-
umn CO2 observations from the surface, the potential of lower resolution and thus smaller,
less expensive and more portable Fourier transform infrared (FTIR) measurements of CO2

has been developed (e.g., Hedelius et al., 2016; Viatte et al., 2017). These FTIR spectrome-
ters have been deployed for short-term and long-term applications with the sensors analyzed
at an upwind site and then a downwind site where the difference in the observed column
is interpreted as the accumulation along the path from one to the other. In Los Angeles,
California, a novel approach of ground-based Fourier Transform Spectrometer (FTS) that
points downwards at 29 different points and provides column measurements along the optical
path has been installed (Wong et al., 2015).
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Networks of in situ CO2 instruments have been installed in a number of cities with an eye
toward a comprehensive observing and modeling system for assessing CO2 emissions and
trends in the emissions over time. Instrumented cities include Salt Lake City, Utah (Pataki
et al., 2005; McKain et al., 2012; Mitchell et al., 2018b), Boston, Massachusetts (Mckain
et al., 2015; Sargent et al., 2018), Indianapolis, Indiana (Turnbull et al., 2015; Lauvaux
et al., 2016), the San Francisco Bay Area (Shusterman et al., 2016), Los Angeles, California
(Verhulst et al., 2017), Baltimore-Washington D.C. (Lopez-Coto et al., 2017), Paris, France
(Bréon et al., 2015), Rotterdam, Netherlands (Super et al., 2017b,a). Low-cost CO2 sensors
have also been deployed nationally in Switzerland (Müller et al., 2020).

While the optimal strategy for refining emissions by combining observations with a prior
inventory and a chemical transport model is not known, some design principles have emerged.
First, the sensitivity of the observations to emissions decays approximately exponentially
with distance, thus an increased number of sites spread across the domain of interest generally
reduces the uncertainty of estimated emissions (Kort et al., 2013; Staufer et al., 2016; Turner
et al., 2016). The cost of instrumentation, along with the labor to maintain instruments and
their calibration, has until recently guided most researchers to focus on a modest number of
state-of-the-art instruments. The most extensive urban deployments using 0.1 ppm accuracy
instruments have ∼15 sites and spacing of order 10 s of km between sites. Recent research
has adapted commercially available CO2 sensors for dense networks with the idea that larger
numbers of sensors can capture more of the variation in the atmosphere and that taken
as a whole a network of lower cost sensors can provide more accurate constraints on an
inverse model than the equivalent capital investment in state-of-the-art measurements. This
trade-off between the quality and the quantity of the observations has been investigated by
several studies showing that the benefit of higher density exceeds the lower precision of the
observations (Lopez-Coto et al., 2017; Turner et al., 2016; Wu et al., 2018).

An advantage of high-density observing systems is their potential to resolve emissions from
specific sectors, while previous observational strategies have been more focused on whole-city
CO2 emissions than on sector-by-sector analyses. Turner et al. (2016) showed with a series
of observing system simulations that a dense network can resolve localized emissions such as
highway emissions. Shusterman et al. (2018) showed that observations from a low-cost, high-
density sensor network can provide explicit sensitivity to mobile emissions as the observed
CO2 at every site has a term that is linearly correlated with the total number of vehicles on
the roads. Aggregating these observations is expected to allow isolating the transportation
sector with sufficient precision to infer annual trends.
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1.2 The Berkeley Environmental Air-quality and CO2

Observation Network

The Berkeley Environmental Air-quality & CO2 Observation Network (BEACO2N) is a
high-density (∼2 km) urban measurement network that began operation in 2013. The cur-
rent network includes about 75 nodes in San Francisco Bay Area, 20 nodes in Houston and
10 nodes in New York, distributed at approximately 2 km horizontal spacing. Most of the
nodes are deployed on the roofs of schools and museums. Each node is comprised of Vaisala
CarboCap GMP343 non-dispersive infrared sensor for CO2; a Shinyei PPD42NS nephelomet-
ric particulate matter sensor; a suite of Alphasense B4 electrochemical sensors for CO, NO,
NO2 and O3; meteorological sensors for in-node pressure, temperature, dew point temper-
ature and relative humidity. Data collected every 5−10 s are transmitted via direct on-site
Ethernet connection or local Wi-Fi network to a central server, where the data is made
publicly available in near-real time (http://beacon.berkeley.edu/). A detailed description of
the design and deployment of BEACO2N can be found in Shusterman et al. (2016).

Observations from the distributed network are supplemented by observations from a “su-
persite” at the Richmond field Station that includes a Picarro G2401 cavity ring-down
spectroscopy analyzer measuring CO2, CH4, CO, and H2O; a TSI Optical Particle Sizer
3330 for particulate matter; a Thermo Fisher Scientific 42i-TL NOX analyzer for NO and
NO2; a Teledyne 703E photometric instrument for O3; a Pandora spectrometer system for
total column O3 and NO2; a Lufft CHM 15k ceilometer for cloud and aerosol layer height;
and various instruments for meteorological measurements (i.e., a Vaisala WXT520 weather
transmitter, a Campbell Scientific CS500 temperature and relative humidity probe, and a
Davis 6450 solar radiation sensor).

The CO2 measurements are calibrated post hoc to yield a bias-corrected dry-air mole fraction.
The raw CO2 concentrations are averaged to 1 min means and subsequently converted to
dry-air mole fraction using site-specific meteorological observations and the ideal gas law. A
combination of gradual temporal drift and constant biases or offsets from the true value result
in systematic uncertainty for a long-term field deployment that needs to be accounted. This
systematic uncertainty is accounted for by reference to the supersite. The data processed
through this procedure are estimated to have a precision of ±4 ppm at 1 min resolution
and ±0.5 ppm at hourly resolution. The details of the calibration and evaluation of the
CO2 sensor are presented in Shusterman et al. (2016). Updates to account for temperature
dependent sensor response have been made and applied to the data used in this dissertation
(Delaria, Kim et al., in preparation).
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1.3 Research objectives and approach

In this dissertation, my goals are to understand urban carbon dioxide and attribute emissions
to specific source sectors. I use a newly developed observing tool, the BEACO2N high-density
sensor network, and develop methodologies for application of sensor networks to advancing
our understanding of source specific urban emissions.

In Chapter 2, I introduce a novel technique for quantifying traffic emissions. I show that the
relationship between CO2 concentration and highway traffic flow is coherent throughout the
network, and that the influence follows a quantitative relationship consistent with Gaussian
dispersion: Near highway sites respond strongly to the highway and distant ones less so. The
relationships between CO2 concentration and highway traffic flow at each site are collectively
used to infer the average emission rate per vehicle. I compare the three consecutive years
of emission rates for the average vehicle and assess prospects for observations to precisely
establish rates of decrease from the purchase of more fuel efficient vehicles and to compare
that to the goals of California’s greenhouse gas reduction plan of ∼3 % yr−1 increases in fuel
efficiency.

In Chapter 3, I extend this idea to the determination of biogenic uptake of CO2 in the region.
I develop a unique approach to deriving a biogenic CO2 term. The idea is to attribute the
difference between the observed CO2 enhancement over the background and the mobile term
to the biosphere. The biogenic flux is interpreted as the time derivative of this residual
term. Comparison of this inference of biogenic emissions with daily and seasonal estimates
based on Solar-Induced chlorophyll Fluorescence (SIF) indicate the method is promising.
The chapter concludes with discussion of additional research needed to more fully evaluate
this approach.

In Chapter 4, I demonstrate the feasibility of using the relationship between trace gases
that are co-emitted from combustion to characterize various emission sources. I describe
the implementation and evaluation of electrochemical trace gas sensors (O3, CO, NO, and
NO2) in BEACO2N nodes. Using well-known characteristics of urban air quality and local
emissions, I develop a calibration technique that produces observations that can be used in
concert with CO2 to attribute emissions to specific source sectors. Finally, I present the
use of the relationship CO2 and other trace gases to identify the type of emissions and the
pattern of specific emissions over space and time.
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Chapter 2

Detecting urban CO2 emissions and
trends from the transportation sector

2.1 Introduction

In 2006, California passed Assembly Bill 32 (AB 32), the Global Warming Solutions Act
which requires California to reduce its greenhouse gas (GHG) emissions by 40 % from 1990
levels by 2030. Transportation GHG emissions are the largest single category, representing
40 % of the California total. Transportation emissions were 170 MMTCO2e in 2017 (Cali-
fornia Air Resources Board, 2017a,b). A steady 3 % yr−1 decrease will yield the state’s goal
of 103-111 MMTCO2e in the transportation sector by 2030.

In the San Francisco Bay Area, transportation is the largest single source of GHG emissions,
again 40 % of the total. The Bay Area Air Quality Management District (BAAQMD) has
planned to reduce transportation GHG emissions by a combination of a transition to low
and zero emission vehicles, increased reliance on mass transit systems and a reduction of
vehicle miles traveled (Bay Area Air Quality Management District, 2017). Vehicle miles
traveled (VMT) in 2018 were similar to 2017 (PeMS; http://pems.dot.ca.gov) in the Bay
Area. Given the small change in VMT, it seems likely that most of the reduction in vehicle
GHG emissions will need to be the result of a decrease in emissions per mile traveled.

Understanding whether these plans are on track will be assessed through a number of eco-
nomic indicators, such as sales of zero emission vehicles, and sales of gasoline and diesel
fuel. In addition, measurements of exhaust plumes can be used in the laboratory using
a dynamometer to simulate various driving conditions or in field providing practical emis-
sions of on-road vehicles. On-road approaches include the use of instrumented vans that
chase individual vehicles, and a roadside remote-sensing measurements and highway tunnel
measurements that provide exhaust emissions for a large sample of vehicles drive by (e.g.,
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Dallmann et al., 2013; Bishop et al., 2013; Park et al., 2016; Haugen et al., 2018).

In the last decade, a number of projects have emerged that aim to quantify aspects of ur-
ban CO2 emissions. Projects observing CO2 in the cities of Indianapolis, Paris, Boston, Salt
Lake City, Los Angeles, Baltimore-Washington D.C represent a range of different approaches
(Bréon et al., 2015; Lopez-Coto et al., 2017; Mitchell et al., 2018a; Turnbull et al., 2015; Ver-
hulst et al., 2017). Most of these measurements include high accuracy and precision in situ,
aircraft and column observations supplementing constrain to activity-based emission inven-
tory. These approaches’ focus on city-wide total emissions has led to monitoring strategies
that minimize the local signals, thus discarding information from each source/sector.

Instead of total emissions from a city, a densely spaced, lower cost sensor network has been
implemented in the San Francisco Bay Area to provide a detailed 1 km map of emissions using
formal inversion methods and independently to develop strategies for resolving source/sector
specific emissions. Here we describe a novel approach to using dense network observations in a
combined analysis to extract the emissions of vehicles from the highways that influence the air
in the region sampled by the network. We use observations from the Berkeley Environmental
Air quality and CO2 Observation Network, BEACO2N (Shusterman et al., 2016; Kim et al.,
2018) to constrain vehicle emissions during the years 2017−2019.

In a first analysis of BEACO2N’s direct constraints on vehicle related emissions, Shusterman
et al. (2018) demonstrated that the CO2 measurements at each site in the network could be
represented by a multiple linear regression with terms that represent local meteorology and
a term that is linearly related to the flow of traffic on the nearest highway road segment.
The 1σ uncertainty of the proportionality constant relating vehicle flow to CO2 was found to
range from 11−30 % at different sites. Leveraging these multiple independent measurements
of the response of the atmosphere to the flow of highway traffic in a combined analysis that
would gain a square root N advantage was suggested as a route to a higher precision. Simply
averaging the different correlation slopes was not an obvious route to producing a more
accurate estimate as the slopes are high for sites near the highways and low for sites far from
the highways. At the time, no other specific ideas for how to achieve a combined analysis
were proposed. If the square root N advantage could be achieved, detection of year over
year trends as small as the 3 %, which we infer as the state’s target for annual decreases in
vehicle emissions should be achievable. For example, 25 sites combined would give a 5-fold
improvement in precision, yielding an uncertainty of ∼2−6 %.

Here, we propose and evaluate a new approach to integrating all of the network’s obser-
vations. Our idea builds on a physical model that appropriately recognizes that emission
related enhancements are large near a source and decay into a background with distance from
that source. We interpret the network’s observations by constraining the CO2 enhancement
to follow a Gaussian plume model. While Gaussian plume models have been used to interpret
atmospheric dispersion near sources and to infer emission rates directly from observations
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Table 2.1: List of site geo-coordinates, height above sea level, relevant traffic monitor IDs,
and approximate distances from a highway for 2017 and 2018 Summer, 2018 and 2019 Spring.
These periods are when LAN has good data coverage.

Site Lat. Long. Height above Traffic Distance from
code (◦N) (◦E) sea level (m) monitor IDs highway (m)

BELb,c 37.775 -122.167 88 400492, 400549 210
BODc,d 37.753 -122.155 82 401857, 401858 300
COLa,c 38.002 -122.289 10 400301, 400660 500
CPSb,c,d 37.848 -122.240 93 402202, 402480 220
CRPd 37.986 -122.308 87 400465, 400838 560
EBMa,c,d 37.815 -122.282 4 400093, 400765 1150

400075, 400815 1360
ELRd 37.982 -122.273 38 401230, 401269 1880
ELSb,c 37.974 -122.275 129 401230, 401269 2740
FTKa,c,d 37.737 -122.174 10 400134, 400955 1350
HRSa,b,c 37.809 -122.205 115 402104, 402105 700
LAN 37.794 -122.263 4 400835, 408138 40
LCCa,d 37.736 -122.196 4 400740, 400955 220
MADa 37.928 -122.299 207 400819, 401558 1850
OHSb,c,d 37.804 -122.237 48 400261, 401017 160
PTLa,c 37.920 -122.306 41 400819, 401558 970
SHLa,c,d 37.967 -122.298 39 401197, 401243 2030
STWa 37.990 -122.291 59 401230, 401269 500

a Sites with data available in summer 2017. b Sites with data available in summer 2018.
c Sites with data available in spring 2018. d Sites with data available in spring 2019.

previously (e.g., Choi et al., 2014; Waxman et al., 2019; Varon et al., 2018; Nassar et al.,
2017), they have not to our knowledge been used to interpret observations in the context of
a sensor network. In this chapter, I explore trends between 2017 and 2019 using the method
and make recommendations for further research and refinement of its application.

2.2 Measurements

We use BEACO2N observations from the Spring of 2017 and 2018 and the Summer of 2018
and 2019 (see Fig. 2.1 and Table 2.1). These periods coincide with times when there
is good data coverage at the Laney College site (LAN) which is located within 50 m of
the highway and is thus especially sensitive to vehicle emissions. Additional details of the
design, deployment and evaluation of BEACO2N can be found in Section 1.2. Over the
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Figure 2.1: Map of San Francisco Bay Area showing BEACO2N node locations (black) and
RFS supersite location (red). Nodes used in this study are labeled. Map data ©2019 Google.
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Figure 2.2: Timeseries of CO2 at the sites available in each season.

years, sites have been added and removed from the network. The network began with ∼10
nodes in Alameda county in 2013 has expanded to ∼75 locations in four counties including
Alameda, Contra Costa, San Francisco, and Solano. The raw 5 s CO2 concentration at
each node was processed into calibrated, bias-corrected, dry-air mole fractions using in-node
temperature, pressure and RH observations and in-network reference measurements, and
averaged to hourly means. We estimate the uncertainty in the hourly means to be ±0.5 ppm
(Shusterman et al., 2016, 2018).

The time series of CO2 for all the sites used for this analysis are shown in Fig. 2.2. We focus
on the portion of the network in and near Oakland and Richmond, CA. Data availability is
high and uniform for longer periods immediately following major maintenance of the network
in 2017 Summer, 2018 Spring and Summer and 2019 Spring. 17 distinct sites are used in
this analysis. There are 10 used in Spring 2017, 6 in Spring 2018, 12 in Summer 2018 and
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Figure 2.3: Timeseries of vehicle flow rate collected from the monitors to the relevant
BEACO2N site.

10 in Summer 2019. Different sites are available in each time period. The Laney college site
is the only site that is available in all 4 time periods.

Traffic counts are available through the Caltrans Performance Measurement System (PeMS;
http://pems.dot.ca.gov), operated by the California Department of Transportation. Hourly
vehicle flow data (in vehicles per hour) and vehicle speed data (in miles per hour) are collected
from the monitors at any highway located upwind and closest to the relevant BEACO2N site
and summed across all lanes and directions. Only the data with >50 % directly observed,
in contrast to modeled, was used. To achieve a complete data set, in some cases monitors
upstream or downstream of the desired one was used. The specific monitor IDs used in the
analysis are provided in Table 2.1.
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Fig. 2.3 shows the time series of vehicle flow rate. Increased traffic is observed during day-
time. This diel pattern is superimposed on a weekly pattern showing higher flow rate on
weekdays and lower on weekends. Site specific deviations caused by accidents or construc-
tion as well as domain wide deviation from routine patterns such as lower traffic flow on
Independence Day is also detected.

The lowest values of the observed CO2 concentrations reflect seasonal variation of the global
background with higher values in spring and lower values in summer. Short-term synoptic
scale variations, daily variations associated with planetary boundary layer and day-to-day
variability caused by local emissions is superimposed on this background. The diel profile of
the network-wide CO2 signal, vehicle flow rate, and PBLH are shown in Fig 2.4. PBLH are
taken from the 0.125◦ by 0.125◦ resolution ECMWF ERA-Interim model (Dee et al., 2011,
http://apps.ecmwf.int/datasets). We see an increase in the CO2 signal beginning around
04:00 local time (LT), followed by a decrease and then a midday minima. Another increase
is observed in early to late evening. This diurnal cycle corresponds well with patterns in
traffic emissions superimposed on diel fluctuations in PBLH. Elevated concentrations at night
are due to the shallow PBLH and significant enhancements during the morning correspond to
the combined effect of shallow PBLH and increased emissions from rush hour traffic. Lower
concentrations at midday reflect deeper vertical mixing as PBLH increases after the sunrise.

2.3 Gaussian plume model and emission rate

A Gaussian plume flowing from an infinite line source along the y axis (a highway) with the
total reflection at the surface is expressed as

C(x, z) =
Q√

2π σz(x)U

[
exp

(
− z +H2

2σz2(x)

)
+ exp

(
− z −H

2

2σz2(x)

)]
(2.1)

where C [kgCO2 m−3] is the concentration enhancement at the location x, z downwind
of the line source, Q [kgCO2 m−1 s−1] is an emission rate, U [m s−1] is the wind speed
assuming a steady wind oriented along the x axis (perpendicular to the highway), measured
from our RFS supersite observation. H [m] is the height of the emission source, and the
dispersion parameter σz [m] is the standard deviation of the concentration distributed in
z direction. Here, we approximate highways in San Francisco Bay Area as infinite line
sources on the ground (H=0) and all measurement sites are at the same height (z=0). We
treat the BEACO2N sites as if they lie along the x axis (parallel to the wind direction and
perpendicular to the line source) to simplify the analysis.

The emission rate Q of the highway line source can be expressed as a product of the emission
rate of the average vehicle q [kgCO2 m−1 per vehicle] and the flow rate of vehicles (VPS, in
vehicles per second):

Q = q × VPS (2.2)
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Figure 2.4: Hourly median values of the network-wide (a) CO2 signals, (b) flow rate from
the closest highway, and (c) PBLH. Whiskers indicate standard error of the median.
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Applying all the assumptions above and rearranging the emission of the average vehicle q
divided by the Gaussian dispersion parameter σz simplifies to

q

σz(x)
=

√
2π

2

C(x) · U
VPS

(2.3)

Here, C(x) is the local enhancement of CO2 due to vehicles traveling on the highway. We
define this enhancement as the total enhancement of CO2 at each location above a single
network wide background. The background is defined as the 3-day running mean of the
lowest 5th percentile of BEACO2N observations at all nodes in the network. Since the
emission rate of a vehicle q can vary for different traffic conditions, we focus here on the
most common mode of traffic, with average vehicle speed faster than 50 mph and exclude
times when vehicle speeds are slower than that. For the sites with multiple highways nearby,
flow rates from all the highways are integrated assuming a single highway at the distance of
average distance from all the highways (see Table 2.1).

Our goal is to derive a self-consistent q that represents the average vehicle on the highways.
To do so, we need to estimate the Gaussian dispersion, σz. We apply Briggs’ formula
which is typically used for the dispersion parameterization. The formula differs for rural
and urban conditions and with the Pasquill-Gifford stability. Several formulas were tested
and no significant difference in the derived q was observed between the stability classes. We
adopt the Briggs’ formula for urban area at E-F stability (Eq. 2.4) which has the adjustable
parameters alpha and beta.

q

σz(x)
=
q

α

√
1 + βx

x
(2.4)

The dispersion parameter σz(x) and thus the associated parameters alpha and beta varies
with atmospheric conditions, including wind speed, radiation, cloud cover and planetary
boundary layer height (PBLH). We assume beta does not vary with these parameters and
focus on variations in alpha. Beta is fixed to 0.0015 which is the value Briggs suggests.

q/α =

√
2π

2

C(x) · U · x√
1+βx

VPS
(2.5)

Wind speed appears explicitly in equation 2.5. We focus on the other parameter that is
the main driver of observed variation, the PBLH. Estimates of PBLH, are taken from the
ECMWF ERA-Interim model (Dee et al., 2011, http://apps.ecmwf.int/datasets). We per-
form a separate analysis at distinct values of PBLH. Dividing the modeled PBLH into 20
quantiles, we assess q/α for each of the PBLH bins using all the sites collectively. The ab-
solute value of α is not well constrained. To assess trends, we compare q/α from the same
season and at the same PBLH in different years, assuming alpha is not varying from year to
year under similar meteorological conditions.



CHAPTER 2. URBAN GHG EMISSIONS FROM MOBILE SOURCES 15

0 1 2 3 4
Veh. flow rate (veh/s)

-100

0

100

200

300

400

C
O

2 
en

h 
• U

 (p
pm

 m
/s

)

LAN

Figure 2.5: CO2 enhancement multiplied by wind speed at LAN shown as a function of
nearby highway vehicle flow rate. 2018 Spring data with PBLH between 100 and 250 m
are shown. Black points indicate the median values in each 0.5 vehicles s−1 traffic count
increment and yellow points indicate outliers defined as 2 standard deviation away from the
medians.

2.4 Results and discussion

Figure 2.5 shows the product of the CO2 enhancement and wind speed (the numerator in
Eq. 2.3) vs vehicle flow rate (the denominator in Eq. 2.3) for observations from the Laney
College site for PBLH between 100 and 250 m. The slope of the linear regression representing
the correlation of these terms at a single location is proportional to q/σz(x). After removing
outliers (shown in yellow), the R-squared for a fit to this data is 0.39. A bootstrap method
combined with York regression is used to calculate estimates of the slope (q/σz(x)) for each
site located at various distances from the highway.

Values of q/σz(x) for CO2 enhancements observed in Spring 2017 and 2018 and summer 2018
and 2019 derived in this manner are shown as a function of distance from the nearest highway
in Fig. 2.6. The decrease from large values to near background values occurs within the
first 250 m. The functional behavior for a Gaussian plume with q/α=3400 (in 10−6 kgCO2

m−1 per vehicle) and β=0.0015 is shown in the top panel of figure 2.6. This function is
approximately 70 at x = 50 m, 10 at 500 m and 3 at 2500 m.

The interpretation of every site as responding to a Gaussian plume originating at the highway
assumes that the wind is nominally perpendicular to the highway and the sites are downwind.
With this in mind, we see that the sites BAM and SFG (indicated in red in Figure 2.6) which
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Figure 2.6: Decay of CO2 signal from highway for PBLH between 100 and 250 m. The
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interval. The confidence intervals were measured by using bootstrap resampling.
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Figure 2.7: q/α for each PBLH quantiles between 2017 and 2019. Error bar represents the
standard error of the linear regression performed.

are typically upwind of the highway have q/σz(x) that is systematically lower than the sites
at a similar distance from the highway and thus fall below the predicted Gaussian curve.
These sites behave more as if they are far down wind sites than ones close to the highway.
This is expected for sites that are predominantly upwind of the nearest highway. We exclude
these sites from further analysis. To synthesize observations from all of the sites, we multiply
C(x) by x/

√
1 + βx and perform linear regression between C(x) · U scaled with x/

√
1 + βx

(the numerator in Eq. 2.5) and vehicle flow rate (the denominator in Eq. 2.5) using data
collected from all the sites to calculate q/α for each PBLH quantile. This approach gives
more weight to the sites close to the highway which have lower uncertainty in q/σz(x).

The derived quantity q/α varies strongly with PBLH as shown in Fig. 2.7. If we assume q is
invariant with PBLH, then this variation is due to variation in alpha. The largest systematic
variation is at low PBLH where the analysis implies small alpha. Larger uncertainty is
observed at high PBLH due to relatively fewer data points resulting in wider range bins
which are sized to have equal numbers of observations.

While q/α shows an anticorrelation with the PBLH, the relationship is not a clear exponential
function (r2=0.36). By including both PBLH (h) and wind speed (U), the variations in q/α
are better explained (r2=0.56). Wind speed appears in the numerator of both Eq. 2.6 and
Eq. 2.5. Thus, the variation with PBLH is the primary phenomenon needed that must drive
corresponding variations in alpha or beta. However, it seems to better resolve the variability
of CO2 in San Francisco Bay Area.

q/α =
(
1075e−0.0032h + 221

)
× U (2.6)
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Figure 2.8: Representative 2 week of observed total CO2 enhancement and modeled traffic
CO2 enhancement at LAN (top), and hourly median values at LAN, CPS, and HRS (bottom).

Combining all of these ideas, we have an equation predicting the CO2 enhancement caused
by mobile sources at any location in the network as a function of VPS, distance from the
highway (x), wind speed (U) and PBLH:

C(x, t) =
2√
2π

q
√

1 + βx

αx · U
VPS (2.7)

Figure 2.8 shows the observed total CO2 enhancement and modeled traffic CO2 enhancement
at three sites that are 40, 220, and 700 m from the highway. At the site closest to the highway,
modeled CO2 captures the diel variation of observed CO2 indicating that the mobile emissions
are the dominant source. At sites further away, while the morning rush hour enhancements
are captured in the modeled CO2, nighttime values are lower, and daytime values are higher
than the observed CO2. This indicates the influence of other emission sources, such as
biosphere, at the sites far from the highway, a signal which will be discussed in chapter 3.

The core result of this analysis is an emission rate per vehicle that is scaled by alpha (q/α)
having the uncertainty in the range 3−35 %. For PBLH between 50 and 200 m, q/α is found
to be 2880−3380 10−6 kgCO2 m−1 per vehicle in 2018. For alpha = 0.08, the value provided
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Figure 2.9: Comparison of the values of q/α between 2017 and 2018 (left), and 2018 and
2019 (right). The individual points are comparing q/α for each PBLH quantile shown in
Fig. 2.7.

by Briggs’ formula for urban area at E-F stability, q is estimated to be 371.05−435.05 (gCO2

mile−1 per vehicle). This is similar to the mobile emission rate estimated from California
Air Resources Board EMFAC2011 model (https://arb.ca.gov/emfac/emissions-inventory) of
389.46 gCO2 mile−1 per vehicle during 2018.

Assuming a specific value for α is not necessary for evaluation of trends if we assume it does
not change from year to year. Figure 2.9 compares values of q/α from different pairs of
years. The individual points are comparing q/α for each PBLH quantile shown in Fig. 2.7.
The fitted line represents the year to year trend. The resulting trend is too large compared
to the expected magnitude ∼3−5 % yr−1.

As we consider the best method for evaluating emission trends, it is useful to compare the
results of this manuscript to the analysis of Shusterman et al. (2018) who found precision of
the linear coefficient describing the relationship of vehicle flow to CO2 at BEACO2N nodes
in the range ∼10−30 %. Here we have numbers of sites in the range 6−12 in each year. If a
simple square root N scaling in precision was appropriate, we would expect to have precision
in the relationships developed in this paper that are 2−3 times better, putting them in the
range 3−15 %. We do find this overall improvement at an individual PBLH. However, when
we use all of the PBLH values we do not find consistency and the overall uncertainty in a
comparison of two consecutive years rises to ∼10 %. This indicates that there is a systematic
bias that needs to be identified.
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Figure 2.10: q/α estimated for 2018. Top panel is showing estimations using LAN, middle
panel is using all available sites, and bottom panel is using all the sites except LAN.

Several distinct factors are at play in these overall uncertainty estimates. First, the use
of two different wind speed measurements, NOAA measurements from the Port of Oakland
International Airport (http://www.ncdc.noaa.gov/isd/) for 2017 and our more frequent mea-
surements at RFS in 2018 and 2019 introduces a potential bias. Second, the Laney college
site which is within 40 m of the highway has an out-sized influence on the analysis, one that
would be mitigated with larger numbers of sites included in the analysis or adding other
near highway locations to the network. In periods where there is comparatively less LAN
data, especially in 2019, the uncertainty in the derived emission rate is much larger than
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the other years analyzed (see Fig. 2.7). The latter factor is exhibited in Figure 2.10 where
the estimated emission rate using LAN alone (top panel), is compared to the emission rate
estimated using all the sites (middle panel), and all the sites except LAN (bottom panel).
The uncertainty of the estimated emission rate using LAN alone is nearly identical to the
estimation using all the sites.

The use of a Gaussian plume model is associated with several assumptions that contribute
to our uncertainty in estimation of emission rate. The Gaussian plume formula is calculating
the steady-state concentration. We assume the emission rate is constant within an hour and
that steady-state concentrations are reflected in our hourly measurements. We assume the
wind speed is constant and unidirectional and treat the BEACO2N sites as if they lie along
the wind flow. Errors in observed and model variables, the influence of other local emissions
and the assumption listed above introduces uncertainty in the estimation of emission rate.
We define and remove outliers in the process of calculating q/σz(x) for each site (see Fig. 2.5)
to reduce the uncertainty. The dispersion parameter σz(x) and the associated parameters
alpha and beta varies with atmospheric conditions (see Eq. 2.4). We assume beta does not
vary and alpha varies with PBLH. This parameterization also contributes to the uncertainty
in derived quantities.

While there is much promise in this approach, it is not yet sufficient to meet our goal of
detecting trends of order 3 % yr−1 in vehicle emissions. To reduce the uncertainty enabling
to track even smaller reduction in the emission rate per vehicles, I recommend the following
additional steps: use more sites in the analysis, especially more sites close to the highways, use
longer time periods of the analysis, develop a more explicit analysis of the role of PBLH, use
wind direction data more explicitly to account for the true distance and upwind/downwind
status of each site relative to its highway line source and perhaps also self consistently remove
the influence of other sources. As figure 2.8 shows, the influence of other sources is large
compared to the traffic influence at the downwind sites likely adding considerable noise to
the determination of the traffic related emissions. Another approach would be to combine
the constraints from CO and CO2. As emission factors of CO and CO2 varies for different
sources, it should be a powerful additional constraint.

2.5 Conclusions

We have presented and evaluated a conceptual model based on Gaussian plumes to detect
year to year trends in CO2 emission rates by vehicles on highways. We take advantage of CO2

measurements from a high-density urban monitoring network by leveraging a large number
of sites at a range of distances from highway sources. The precision of fits to individual sites
presented by Shusterman et al. (2018) was 11−30 %. Here we find we are able to produce a
precision of order 10 % yr−1. This level of precision for the emission factor for a single sector
of emissions has not yet been demonstrated in any other previous studies.
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While the analysis does not yet meet our goal of measuring year over year change with a
precision of 3 % yr−1, there are many promising features of the approach that suggest with
further refinement it will achieve that goal. To achieve this goal, first, more sites near the
source as well as more sites overall in the analysis and longer time periods of the analysis are
recommended. Second, a more explicit approach to account for vertical mixing, advection
along the wind relative to its highway line source would improve the precision. Last, self
consistently removing the influence of other sources by leveraging an additional tracer, such
as CO that can provide unique signature for each different source, would achieve even greater
confidence.
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Chapter 3

Contribution of biogenic sources to
urban CO2 variation

3.1 Introduction

While CO2 emissions in cities are primarily associated with fossil fuel combustion, even in
the densest cities CO2 variations are also affected by biological activity. Recent analyses of
urban CO2 suggest that biogenic emissions and uptake are comparable to fossil fuel fluxes,
especially during the growing season. By incorporating atmospheric transport models and
biospheric models, Sargent et al. (2018) and Vogel et al. (2019) have shown that for Boston
and Paris biogenic uptake is a major influence on daily CO2 variations. Lauvaux et al. (2020)
has shown that biogenic uptake is the dominant feature of the CO2 budget in Indianapolis
and that the urban fossil fuel signal can be accurately determined if this biogenic background
is adequately characterized.

Observational methods for separating the role of biogenic and anthropogenic CO2 emissions
often rely on radiocarbon using the fact that fossil fuels are completely depleted in 14C. Mea-
surements of 14C, provided at time scales of weekly to monthly, allows quantifying seasonal
variations in biogenic and fossil contributions (e.g., Djuricin et al., 2010; Miller et al., 2012;
Pataki et al., 2003). Another approach uses the correlation of CO2 with the incomplete
combustion product carbon monoxide (CO) that can be measured continuously. However,
initial studies suggest this approach is not as effective because of variance in the CO/CO2

ratio (e.g., Djuricin et al., 2010; Newman et al., 2013; Turnbull et al., 2006). These prior
analyses are limited to quantifying relative contribution to observed CO2 variations.

Previous studies have used urban monitoring networks that typically consist of 2-15 high-
quality instruments attempting to constrain domain-wide emissions (Bréon et al., 2015;
Lopez-Coto et al., 2017; Mitchell et al., 2018a; Turnbull et al., 2015; Verhulst et al., 2017).
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These networks focus on the biosphere as an external control on the background CO2 and
not as an integral part of the net urban CO2 flux. Here we describe a novel approach to using
dense observation network to derive biogenic emissions. Understanding processes affecting
urban biogenic activities will lead to a better understanding of the net urban CO2 flux.

We propose and present an initial evaluation of a method that enables characterizing daily
variation in biogenic emissions within the boundaries of a dense urban network. The idea
is unique. We begin with a characterization of the diel pattern of the CO2 enhancement at
each site in the BEACO2N network. Then we assess the anthropogenic CO2 attributable to
traffic emissions at each site, decomposing the observed CO2 enhancement into a traffic and a
biogenic term, assuming that other CO2 sources are negligible. We evaluate the contribution
of the biosphere to CO2 fluxes in the BEACO2N domain and describe their variation on
daily and seasonal scales. We are not aware of any other analysis of CO2 concentrations that
is capable of identifying seasonal variations in biospheric uptake within the urban domain
without application of a land-use or other biospheric model. The ability we develop here
to describe biogenic CO2 emissions and uptake on a fine spatial and temporal scale using
a high-density sensor network will enhance our understanding of processes affecting urban
biogenic fluxes.

3.2 Methodology

3.2.1 Observations from the Berkeley Environmental Air-quality
and CO2 observation Network

We use San Francisco Bay Area CO2 observations from BEACO2N during the spring and
summer of 2018 (see Fig. 3.1 and Table 3.1). A detailed description of design, deployment
and evaluation of BEACO2N can be found in Section 1.2. Briefly, about 75 nodes are
densely distributed in the area at approximately 2 km horizontal spacing. Collected raw
CO2 measurements are processed into dry-air mole fractions, corrected for systematic bias
as described in Sect. 1.2, and averaged to hourly means. A time series of six representative
sites for the full period from March to September 2018 is shown in Fig. 3.2 along with two
examples of one week of observations at these six sites taken from March and June. The
short-term variability caused by local and regional emissions is superimposed on day-to-day
synoptic scale variations and a seasonal variation that follows the trend of global background
with a maximum in May and minimum in September.

3.2.2 Gaussian plume model and dispersion

The Gaussian plume model for an infinite line source has been discussed in Chapter 2.
Briefly, assuming highways in San Francisco Bay Area are an infinite line source (along the
y axis) on the ground, and all the site are on the ground along the wind direction (following
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Figure 3.1: Map of San Francisco Bay Area showing BEACO2N node locations in black.
Nodes used in this study are labeled. Map data ©2019 Google.
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Table 3.1: List of site geo-coordinates, height above sea level, relevant traffic monitor IDs,
and approximate distances from a highway for spring and summer of 2018.

Site Lat. Long. Height above Traffic Distance from
code (◦N) (◦E) sea level (m) monitor IDs highway (m)

BEL 37.775 -122.167 88 400492, 400549 210
BODa 37.753 -122.155 82 401857, 401858 300
COLb 38.002 -122.289 10 400301, 400660 500
CPS 37.848 -122.240 93 402202, 402480 220
EBMa 37.815 -122.282 4 400093, 400765 1150

400075, 400815 1360
ELS 37.974 -122.275 129 401230, 401269 2740
FTKa 37.737 -122.174 10 400134, 400955 1350
HRS 37.809 -122.205 115 402104, 402105 700
LAN 37.794 -122.263 4 400835, 408138 40
OHS 37.804 -122.237 48 400261, 401017 160
PTLa 37.920 -122.306 41 400819, 401558 970
SHLa 37.967 -122.298 39 401197, 401243 2030

a Sites with data available in spring 2018 only. b Sites with data available in summer 2018 only.

x axis and perpendicular to the line source), the Gaussian plume equation can be expressed
as

C(x, t) =
2√
2π

q
√

1 + βx

αx · U
VPS (3.1)

In Chapter 2, we detail how we apply this approximation to the BEACO2N data to derive
q/α from Gaussian plume analysis using 12 available sites collectively:

q/α =

√
2π

2

C(x) · U
VPS

x√
1 + βx

(3.2)

C [kgCO2 m−3] is the concentration enhancement at the location x, U [m s−1] is the wind
speed assuming a steady wind oriented along the x axis (perpendicular to the highway),
measured from our RFS supersite observation, and VPS is the flow rate of vehicles [vehicles
per second]. q [kgCO2 m−1 per vehicle] is emission rate of the average vehicle, and alpha
and beta are dimensionless dispersion coefficients.

The dispersion parameter σz and the associated parameters alpha and beta are a function
that varies with different atmospheric conditions. We find the two most important terms
are wind speed and the planetary boundary layer height (PBLH) and parameterize it with
the two terms:

q/α =
(
1075e−0.0032h + 221

)
× U (3.3)
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Figure 3.2: Time series at six representative sites from March to September (top). 1 week-
long time series in Spring (middle) and in Summer (bottom). Hourly CO2 measurements
are demonstrated.

Here, h is boundary layer height (in m), U is wind speed (in m s−1), and average CO2

emission per vehicle q is a fixed constant. Mobile CO2 enhancement can be predicted using
Eq. (3.1 and 3.3) as shown in Chapter 2.

3.2.3 Estimating mobile and biogenic emission fluxes

The CO2 emission inventory for the region is estimated to have 3 large terms. The mobile
source term and the biosphere are known to have large daily variations that are out of
phase. Industrial sources are assumed to be constant in time, and home heating and other
anthropogenic sources are assumed to be small. Figure 3.3 shows predictions from the
inventory developed by Turner et al. (2016, 2020a). In this inventory, more than 80 % of the
emissions that are not vehicular or biogenic are industrial point sources. The 10 highest point
source emitters account for more than 70 % of the emissions and 3 of them are located in the
BEACO2N domain. These are refineries that are thought to operate 24/7 with no diurnal
variation in their emissions. In this analysis, we assume signals from these point sources
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(a)

(b)

Figure 3.3: Representative week-long time series of Bay Area CO2 emission inventory for (a)
Spring and (b) Summer.

are detected only occasionally since the plume of an industrial point source is expected to
be narrow, inferred from the empirically derived range of the dispersion parameter σy and
σz. With this assumption, we decompose observed CO2 enhancement above the background
into a biogenic emission and a mobile source emission term.

For each hour, at each site, we use the measured vehicle flow at the nearest highway segment
from the Caltrans Performance Measurement System (PeMS; http://pems.dot.ca.gov), the
measured wind speed from our RFS supersite observation, and Gaussian dispersion parame-
ter σz defined in Chapter 2. With these parameters, we calculate the CO2 enhancement due
to mobile emissions at each site in the network using Eq. 3.1.

After subtracting the vehicle CO2, we attribute the residual to biogenic signal and derive the
time derivative of this biogenic term. This time derivative term represents overall emission
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Figure 3.4: (a) q/α · U for each PBLH quantile. Fitting line of Eq. 3.2 is shown in red line.
(b) Diel pattern of q/α.

detected in a representative grid, which is shown to be approximately 2 km in the BEACO2N
domain (Shusterman et al., 2018). Overall emissions include not only local sources, but also
regional sources that are transported and detected at the measurement site. Assuming that
BEACO2N nodes are deployed in every grid of the whole domain, the sum of the time
derivative of the biogenic term from each grid point gives the total emissions over the region
of influence. By dividing this time derivative term in kg m−3 s−1 with boundary layer height,
we obtain emission flux in kg m−2 s−1 over the region of the BEACO2N footprint.

3.3 Results and discussion

3.3.1 The diel cycle of mobile and biogenic CO2 signals

As a summary of Chapter 2, here we show the relationship between q/α · U and PBLH
in Fig. 3.4a. This implies that sigma is a strong function of PBLH. The red line in Fig.
3.4a indicated the parameterized q/α and Fig. 3.4b demonstrates the median diel cycles of
modeled q/α predicted from PBLH and wind speed. q/α is higher at night corresponding
to stable conditions and low wind speeds. q/α is lower during the day reflecting unstable
conditions and higher wind speeds. Urban turbulent mixing at nighttime is found to be 2/3
of daytime in San Francisco Bay Area. This relationship between turbulent mixing and time
of day deserves further research to assess how accurately it is reflected in the inferred CO2

emissions.
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Figure 3.5: Diel cycle of (a) CO2 enhancement, (b) vehicle flow rate, (c) predicted mobile
CO2 enhancement, and (d) biogenic CO2 enhancement at six representative sites.

Observed median diel cycles are shown in Fig. 3.5. In general, we see a typical diel cycle
of CO2 revealing higher concentration at night corresponding to emissions into a shallow
nocturnal boundary layer (lower α) and lower concentrations during the day reflecting deep
mixing layer (higher α), even though emissions are larger during the day. These indicate
that understanding the diel cycle of mixing dynamics is crucial to understanding the diel
variations in observed CO2 from an in-situ measurements. Additional tracers, such as 222Rn
that are consistently emitted without a short-term scale variation, to track the dynamics
of mixing would offer opportunities to better understand the urban boundary layer and its
effects on observed CO2.
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Figure 3.6: Diel pattern of (a) estimated mobile CO2 flux and (b) biogenic CO2 flux.

Using the predicted q/α (see Fig. 3.4) and the measured vehicle flow rate (see Fig. 3.5b),
we calculate the CO2 enhancement due to mobile emissions at each site in the network using
Eq. 3.1. The diel cycle of mobile CO2 enhancement predicted using the Eq. 3.1 and 3.3 is
shown in Fig. 3.5c. Mobile CO2 signals at LAN is elevated compared to the other sites due
to its proximity to the highway (40m). The magnitude of the mobile CO2 signals indicates
each site’s distance to the highway. The residual CO2 enhancement is shown in Fig. 3.5d. In
general, positive enhancement is observed at nighttime and negative enhancement at daytime
representing biogenic CO2 signals. At LAN, overestimation of mobile CO2 enhancement at
nighttime and underestimation at daytime results in an opposite pattern in the residual
enhancement.

3.3.2 Contribution of mobile and biogenic emissions

In this section we describe the inferred biogenic emissions from the BEACO2N network and
compare the inferred emissions to expectations and to other observations. The diel pattern
of the derived mobile CO2 fluxes for the six example BEACO2N nodes is shown in Fig. 3.6a.
CO2 is emitted more during the daytime compared to the nighttime and some of the sites
show peaks in the morning and evening rush hours corresponding well with the observed
vehicle flow rate pattern (see Fig. 3.3b).

Fig. 3.6b shows the estimated CO2 fluxes from the biosphere for these same six nodes. The
biogenic fluxes are negative near local noon, which represents the peak of photosynthesis.
While BEL and HRS have strong negative fluxes around noon, CPS and ELS show weaker
fluxes that do not peak at noon. These differences represent the spatial heterogeneity that
is the main objective of our dense sensor network, BEACO2N. We believe they record local
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Figure 3.7: Comparison of estimated GPP with GPP estimated from SIF data at each site.
BEACO2N-based GPP was calculated for time between 13:00 and 14:00 PST, similar to the
TROPOMI overpass time at 13:30, and smoothed with a moving 14-day window, same as
the SIF data. SIF-based GPP was estimated using the linear relationship reported by Turner
et al. (2020b) and averaged over the San Francisco Bay Area.

differences in biogenic emissions. Further analysis with sites that are distributed across a
broader domain, including sites that are near and far from local biospheric influence, will
provide additional insight into the biogenic processes influencing spatially variant urban CO2.
The biogenic fluxes are near zero in the period from midnight to 6AM and in the afternoon
at half of the sites. However, three of the sites exhibit large positive fluxes. We speculate
that these results are from an underestimate of the vehicle flux at a time of rapid change
in the PBLH (see Fig. 3.5c and 3.6a) caused by the systematic bias in vehicle flow rate
and parameterized mixing dynamics using PBLH. But they might also be due to breakdown
of other assumptions such as our assumption that other area sources (e.g., driving on city
streets, home heating and human respiration) are negligible.
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Net ecosystem exchange (NEE; CO2 fluxes) can be separated into gross primary productivity
(GPP; CO2 uptake) and total ecosystem respiration (R; CO2 release). The CO2 flux at
night is equivalent to R which is expected to be 15−20 % of the CO2 flux near local noon
(Turner et al., 2020a). CO2 flux near local noon is the sum of GPP and R which is shown
to be 0.2−0.3 (10−6 kg m−2 s−1) in fig 3.6b, inferring R to be in the range of 0.03−0.06
(10−6 kg m−2 s−1). If this assumption of 10 % R is correct, the BEACO2N estimates of CO2

fluxes are approximately equal to GPP. Fig 3.7 compares the estimated biogenic uptake at six
sites, where data is available in both spring and summer, to the regional average estimate
of biogenic CO2 uptake based on the TROPOMI Solar-Induced chlorophyll Fluorescence
(SIF) data that has been shown to have linear relationship with GPP (Turner et al., 2020b).
BEACO2N-based GPP was calculated for time between 13:00 and 14:00 PST, similar to the
TROPOMI overpass time at 13:30, and smoothed with a moving 14-day window, to match
the SIF data. We find a strong correlation between GPP estimated from BEACO2N and
SIF with slopes in the range 0.43−1.20 and r2 = 0.5−0.6 except for the Laney site where
the r2 is ∼0.3. We use root mean square error of the linear regression which is due to the
combined random errors in the SIF and BEACO2N based measures of biogenic flux and the
estimated noise of the SIF retrieval of GPP of 0.07 (10−6 kg m−2 s−1), to derive an estimate
of the 1σ uncertainty in the BEACO2N-based GPP of 0.1 (10−6 kg m−2 s−1).

Fig 3.8a show the average of network-wide, estimated biogenic emissions at 13:30 PST. Site
LAN, which has large uncertainty in estimated biogenic emissions, has been excluded. Some
of the seasonal variability in the BEACO2N biogenic CO2 estimate is remarkably similar to
the variability inferred from the SIF. For example, both decrease from mid-April to mid-May
and again during July. This correspondence is suggestive that the methods developed in this
Chapter are capturing some of the key elements of regional biogenic emissions. In spring,
higher variability is observed compared to summer. This variability pattern can be explained
by the higher variations in PBLH and wind speed in spring and nearly constant pattern in
summer as we use these two variables to parameterize the mixing behavior.

Fig 3.8 compares the estimated mobile and biogenic emissions. The emission rate of vehicle
CO2 is about 0.75 (10−6 kg m−2 s−1) in March and 0.60 (10−6 kg m−2 s−1) in August. The
correspondence between this estimate of emissions from mobile sources and the vehicle flow
rate drifts by about 5 % over the 6 months shown (lower at the end of the record). The
estimated flux into the biosphere begins at 0.5 (10−6 kg m−2 s−1) in March, a value equal to
2/3 of the vehicle emission rate. It decreases to about 0.15 (10−6 kg m−2 s−1) which is ∼25 %
of the vehicle emissions in August.

BEACO2N observations start in 2013 providing a long-term record of CO2 in the region.
Future analysis of these long-term CO2 observations will evaluate the feasibility to capture
the interannual trends in biogenic emissions. For example, 2018/19 winter season was wet
compared to 2017/18 and 2019/20. The difference in biogenic activity caused by this pattern
should affect the BEACO2N observations. High-density observation tool, BEACO2N, should
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Figure 3.8: (a) Spatial average of estimated GPP and regional average of GPP estimated
from SIF data. (b) Spatial average of mobile CO2 flux and the flow rate. Mobile and biogenic
fluxes are average of data between 13:00 and 14:00 PST and smoothed with a moving 14-day
window. (c) Daily maximum PBLH from the ERA-Interim Reanalysis and daily average
wind speed measured at BEACO2N supersite.

also resolve the spatial pattern of urban biogenic fluxes providing better understanding of
where the flux is coming from. Instead of considering biogenic flux as an external control
on background CO2, urban biogenic activity within the city limits can be assessed directly
using this method.

3.4 Conclusions

We have presented a novel approach to deriving biogenic emissions rates from a newly de-
veloped observing tool, the BEACO2N dense network. The method produces regional scale
fluxes directly from the ambient CO2 measurements enabling to study the effect of biogenic
activities on urban CO2 variation without the use of biospheric or chemical transport mod-
els. A high degree of correspondence to CO2 uptake inferred from SIF is observed. This
comparison lends confidence to the approach and suggests further development and evalua-
tion of the method to detect finer time scales of daily to longer time scales of inter-annual
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variability will be a productive line of research. The ability we develop here to describe
biogenic CO2 emissions and uptake on a fine spatial and temporal scale using a high-density
sensor network will enhance our understanding of processes affecting urban biogenic fluxes.
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Chapter 4

Characterizing urban emission sources
using relationships between
co-emitted trace gases

Adapted from J. Kim, A. A. Shusterman, K. J. Lieschke, C. Newman, R. C. Cohen (2018),
“The BErkeley Atmospheric CO2 Observation Network: Field Calibration and Evaluation
of Low-cost Air Quality Sensors”, Atmospheric Measurement Techniques, Vol.11, Issue.4,
pp.1937-1946, doi: 10.5194/amt-11-1937-2018.

4.1 Introduction

CO2 emissions from fossil fuel combustion are the main source of the postindustrial increase
in atmospheric CO2 concentration and urban areas account for up to 70% of global energy-
related CO2 emissions (Change et al., 2014). Cities around the world have already started
implementing mitigation strategies to reduce fossil fuel CO2 emissions. At the same time,
emissions of gases and particles that contribute to poor air quality are often associated with
combustion of fossil fuels. Treating these emissions and other measurements as additional
atmospheric tracers is useful for separately quantifying distinct the emission sources (e.g.,
Miller et al., 2012; Nathan et al., 2018; Turnbull et al., 2011).

For example, radiocarbon (14C) is useful to distinguish fossil fuel CO2 sources from biogenic
and other CO2 sources. However, 14C cannot further partition fossil fuel emissions into
source sectors. Some studies have suggested using other tracers together with 14C to get
source information (e.g., Djuricin et al., 2010; Newman et al., 2016). The stable isotope 13C
can be used to separate emissions from gasoline and natural gas (Pataki et al., 2003, 2006).
These isotope methods require sample collection, preparation and analysis which limits the
number of measurements. In contrast, carbon monoxide (CO) is a widely used tracer that
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can be measured continuously (e.g., Djuricin et al., 2010; Newman et al., 2013; Turnbull
et al., 2006). CO is co-emitted with CO2 during incomplete combustion and the ratio varies
depending on the carbon content of the fuel and combustion conditions.

Conventional approaches to monitoring trace gases rely on a limited number of relatively
high cost instruments that lack the spatial resolution needed to characterize specific emis-
sion activities at neighborhood scales. To resolve individual emission sources, much higher
spatial resolution is needed. One approach to obtaining finer spatial resolution observations
is passive sampling, which has been implemented using inexpensive sampling devices that
can be later analyzed in bulk. Passive samplers do not require electrical power to function
properly and are collected and analyzed one to two weeks after deployment. Such protocols
provide high spatial resolution but also have significant drawbacks. Spatial resolution is
gained at the expense of temporal resolution, and analysis after collection of the samplers is
time consuming, thus passive sampling has typically been used only in short duration exper-
iments (e.g., Krupa and Legge, 2000; Cox, 2003). Furthermore, as a result of boundary layer
dynamics, passive sampling in urban areas is likely dominated by the high concentrations
found at night and relatively insensitive to daytime variability.

Recent developments in low-cost sensors for trace gases and particulate matter, as well as
advances in software and hardware enabling low-cost data communication, have made high-
density, high time resolution monitoring possible for trace gases. Devices and networks
of devices are emerging that are low cost, report at a time resolution of seconds, and are
capable of long-term deployment, providing potential for improvement over the two major
weaknesses of passive sampling. Examples include metal oxide sensors used to measure O3,
CO, NO2, and total VOCs (e.g., Williams et al., 2013; Bart et al., 2014; Piedrahita et al.,
2014; Moltchanov et al., 2015; Sadighi et al., 2018), and electrochemical sensors used to
measure CO, NO, NO2, O3, and SO2 (e.g., Mead et al., 2013; Sun et al., 2015; Jiao et al.,
2016; Hagan et al., 2018; Jerrett et al., 2017; Mueller et al., 2017). These different low-cost
sensor systems have been evaluated and compared (e.g., Borrego et al., 2016; Papapostolou
et al., 2017).

Here we propose monitoring other trace gases as well as CO2 at high spatial resolution to
characterize individual emission sources. The Berkeley Environmental Air-quality & CO2

Observation Network (BEACO2N) is a low-cost, high-density greenhouse gas (CO2) and air
quality (CO, NO, NO2, O3, and particulate matter) monitoring network. Other trace gases
are measured not only for air quality monitoring, but also for attributing urban emission
sources. BEACO2N consists of approximately 70 “nodes,” deployed with approximately 2 km
horizontal spacing in San Francisco Bay Area, California (see Fig 4.1). This high spatial
resolution monitoring is achieved by using a suite of low-cost trace gas sensors.

We begin by describing laboratory experiments and in-field comparisons to co-located ref-
erence instruments that give an initial characterization of the sensors and provide insight
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30 km 

10 km 

Figure 4.1: Map of San Francisco Bay Area showing current BEACO2N node sites (red),
BAAQMD reference sites with O3 measurements (blue), and the BAAQMD Bodega Bay
regional greenhouse gas background site (orange). The sites plotted in Fig 4.7 are marked
in yellow on the detailed panel.

into the effects of temperature, humidity, and cross-sensitivity to non-target analytes. Then
we describe an in-situ calibration strategy that accounts for this challenge without investing
considerable time and labor. Finally, we evaluate the air quality monitoring network against
regulatory quality measurements and provide examples of using relationships between co-
emitted trace gases to characterize urban emission sources.

4.2 Instrument Description

Details of the node design and deployment are described in Shusterman et al. (2016). Briefly,
each BEACO2N node contains a Vaisala CarboCap GMP343 non-dispersive infrared sensor
for CO2, a Shinyei PPD42NS nephelometric particulate matter sensor, and a suite of Al-
phasense electrochemical sensors: CO-B4, NO-B4, either NO2-B42F or NO2-B43F, and ei-
ther Ox-B421 or Ox-B431. All sensors are assembled into compact, weatherproof enclosures
as shown in Fig. 4.2. Two 30 mm fans are located on either side of the enclosure to facilitate
airflow through the node. A Raspberry Pi microprocessor collects data via a serial-to-USB
converter for CO2 and an Adafruit Metro Mini microcontroller for all other sensors. Then,
data collected every 5 or 10 s is transmitted to a central server using a direct on-site Ethernet
connection or a local Wi-Fi network.

The Alphasense B4 electrochemical gas sensing series that we use employs a four-electrode
approach. The electrodes are embedded in an electrolyte solution separated from the atmo-
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(a) (b) 

Figure 4.2: (a) Current BEACO2N node design and (b) a photo of a node deployed.

sphere by a semi-permeable membrane. The gas of interest diffuses through the membrane
into the electrolyte where it contacts a “working” electrode, and is either oxidized (in the
case of NO and CO) or reduced (NO2 and O3). The potential at the working electrode
is maintained at a constant value with respect to a “reference” electrode. Electric charge
produced at the working electrode is balanced by the complementary redox reaction at a
“counter” electrode, generating an electric current. The sensor also contains an “auxiliary”
electrode, which shares the working electrode’s catalyst structure, but is isolated from the
ambient environment, accounting for fluctuations in the background current associated with
other processes at the electrode and electrolyte. Subtracting the auxiliary current from the
working current gives a corrected current dependent on the gas concentration.

The working and auxiliary currents detected by the sensors are converted to working and
auxiliary voltages using amplifiers in the Individual Sensor Boards (ISBs) provided by Al-
phasense. Over the mixing ratio range of interest, the sensors’ responses to the gases of
interest are approximately linear. We derive mixing ratios from the observed voltages by
subtracting an offset and then scaling by a constant (Eq. 4.1-4.4):

COambient = (VCO − zeroCO)/kCO (4.1)

NOambient = (VNO − zeroNO)/kNO (4.2)

NO2ambient = (VNO2 − zeroNO2)/kNO2 − (rNO−NO2 × NOambient) (4.3a)

NO2ambient = (VNO2 − zeroNO2)/kNO2 + (rCO2−NO2 × CO2ambient) (4.3b)

O3ambient = (VO3 − zeroO3)/kO3 − (rNO2−O3 × NO2ambient) (4.4)

Here, CO, NO, NO2, and O3 with the subscript “ambient” refer to the gas mixing ratios
(ppb) in air; VCO, VNO, VNO2 and VO3 are the signals (mV) measured by each sensor, which is
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the voltage of the auxiliary electrode subtracted from the voltage of the working electrode;
zeroCO, zeroNO, zeroNO2 , and zeroO3 indicates the voltage measured in the absence of
analyte; and kCO, kNO, kNO2 and kO3 represent the linear sensitivity factor that converts
mV to ppb. Additional terms corresponding to the cross-sensitivities of the NO2 and O3

sensors appear in Eq. 4.3a, 4.3b, and 4.4, where rNO−NO2 is the cross-sensitivity of the NO2-
B42F sensor to NO gas, rCO2−NO2 is the cross-sensitivity of the NO2-B43F sensor to CO2

gas, and rNO2−O3 is the cross-sensitivity of both the O3-B421 and O3-B431 sensors to NO2

gas.

There are a total of 8 sensitivities and zero offsets, as well as 2 cross-sensitivity terms. All
of these may also vary with time, temperature, and humidity. Thus we need a calibration
strategy that constrains 10 parameters in a single instant as well as the variation of those 10
parameters in response to the environmental variables and time. We begin by characterizing
the sensors in both laboratory and outdoor environments.

We evaluate BEACO2N in terms of four factors: drift, noise, cross-sensitivity, and temper-
ature dependence. The humidity dependence is included in the temperature dependence,
as there is no evidence for independent humidity dependence and relative humidity exhibits
an anti-correlation with temperature in the field. In the laboratory, a range of mixing ra-
tios of target gases were delivered to a chamber containing the full suite of four Alphasense
B4 sensors: CO, NO, NO2, and O3. Zero air was supplied by a Sabio 1001 Compressed
Zero Air Source and blended with calibration gases using a ThermoScientific 146i Multi-Gas
Calibrator.

Noise – Alphasense reports 2σ noise of ±4, ±1, ±12, and ±15 ppb for CO, NO, NO2, and
O3, respectively over concentrations from 0 to 200 ppb at time resolution of a second. In our
laboratory, noise (±2σ) was measured for ambient ppb levels with 10 s time resolution and
was seen to be ±10ppb for CO, ±3ppb for NO, ±6ppb for NO2 (NO2-B42F and NO2-B43F),
and ±12ppb for O3 (O3-B421 and O3-B431).

Cross-Sensitivity – We measured the cross-sensitivity of all 4 of the trace gas sensors to the
non-target gases. The NO2 sensors and O3 sensors were the only ones to exhibit sensitivity
to other species. The O3 sensor (O3-B421 and O3-B431) demonstrated 100% sensitivity to
NO2. This sensor is now being marketed by Alphasense as an odd oxygen (Ox ≡ O3 + NO2)
sensor. In addition, the NO2-B42F sensor was found to possess a significant NO sensitivity
(130%) that exceeds the cross-sensitivity specified in the Alphasense documentation (<5%).
The NO2-B43F sensor was found to have 0.002% sensitivity to CO2 gas, which is in the
range of the cross-sensitivity specified in the Alphasense documentation (<0.1%). However,
given that typical ambient CO2 concentrations are four orders of magnitude larger than NO2

concentrations, this relatively small cross-sensitivity to CO2 gas manifests as a significant
interference in the NO2 sensors. These cross-sensitivities are represented in Eq. 4.3 and Eq.
4.4.
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(a) (b) 

Figure 4.3: Representative temperature dependent sensitivities (a) and zero offsets (b) of the
Alphasense electrochemical sensors calculated by comparing hourly averaged measurements
from Laney College BEACO2N node to measurements from a co-located reference instrument
during February to April 2016.

Temperature Dependence – Electrochemical sensors are known to have temperature depen-
dent sensitivities and zero offsets. Alphasense reports sensitivities and zero offsets for a
temperature range between −30°C and 50°C. The sensitivities in their data sheets vary with
temperature by +0.1 to +0.3% K−1 (referenced to sensitivity at 20°C) and the zero offsets
are indicated to vary little except at high temperatures. We observed similar, but slightly
larger variations via in situ comparison to co-located reference instruments. We observed
temperature dependence in the sensitivities of +0.3 to +5% K−1 and no variation in the zero
offset of the CO, NO2, and O3 sensors from 10°C to 24°C (Fig. 4.3). However, the zero offset
of the NO sensor exhibited a strong temperature dependence of 0.34 mV K−1.

Drift – Two laboratory calibrations were performed roughly 10 weeks apart and the zero
offsets and sensitivities are shown in Table 4.1. Over the 10-week interval, zero drift was
equivalent to −15.9, −2.3, +15.8, and −12.7 ppb for CO, NO, NO2, and O3, respectively.
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Table 4.1: Zero offsets and sensitivities of a representative quartet of Alphasense B4 elec-
trochemical sensors derived via comparison to delivered reference gases during two separate
laboratory calibration separated by an approximately 10-week interlude.

May August

O3 Zero offset (mV) −34.6417 −42.7629
Sensitivity (mV ppb−1) 0.6404 0.2997

CO Zero offset (mV) 108.9770 89.5812
Sensitivity (mV ppb−1) 1.2192 1.0301

NO Zero offset (mV) −14.2030 −17.7801
Sensitivity (mV ppb−1) 1.5758 1.2972

NO2 Zero offset (mV) −13.7159 −6.0649
Sensitivity (mV ppb−1) 0.4842 0.3843

Alphasense reports the stability over time for the zero offset to be < ±100, 0 to 50, 0 to 20,
and 0 to 20 ppb yr−1 for these sensors, respectively; over this 10 week interval, the observed
zero drift was within the range of these specifications. However, it is a large fraction of
the annual drift specification and further experiments would be warranted to test whether
the zero measured is stable over a full year within the specified tolerances. The drift in the
sensitivity (in % of kx) was −15.9, −17.7, −20.6, and −53.2 %. Alphasense reports <10, 0 to
−20, −20 to −40, and < −20 to −40 % yr−1 for CO, NO, NO2, and O3 calibration factors,
respectively. We find that drift for the CO and O3 sensitivities exceeded the manufacturer
specifications, but that the NO and NO2 sensitivity drifts were within the specified tolerances.

4.3 Model for Field Calibration

Here, we propose a model for field calibration that leverages (1) useful cross-sensitivities, (2)
chemical conservation equations, (3) knowledge of the global and/or regional background
of pollutants, and (4) assumptions based on well-known characteristics of urban air quality
and local emissions. The result is a calibration procedure for the drift and temperature
dependencies of the 10 calibration parameters that does not require co-location with a ref-
erence instrument or prior laboratory experiments for each sensor. The first constraint we
apply is the O3 sensors’ cross-sensitivity to NO2. Laboratory measurements indicate that
this cross-sensitivity is 100 % and we fix it at that value.
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4.3.1 Regional ozone uniformity to calibrate the NO2 and O3

sensors’ sensitivities

The NO, NO2, and O3 sensitivity can be derived from observations with higher quality
instruments at nearby locations. Ozone is a secondary pollutant with small local scale varia-
tion, except in the very near field of NO emissions. The Bay Area Air Quality Management
District (BAAQMD) maintains four TECO 49i ozone analyzers within the BEACO2N study
area (see Fig. 4.1). We choose the closest site among these four regulatory monitoring sites
to provide O3ambient as a constraint for multiple linear regression of Eq. 4.5 (derived from Eq.
4.2-4.4). Different BEACO2N nodes are thus referenced to different reference instruments.

O3ambient =
VO3

kO3

− VNO2

kNO2

+ rNO−NO2

VNO

kNO

− offset (4.5)

Here, offset is a combination of the zero offsets of the NO, NO2, and O3 sensors, all of which
can be constrained as detailed in Sect. 3.2 below. The sensitivity of the O3 and NO2 sensors
(kO3 and kNO2), and relationship between the NO-NO2 cross-sensitivity and the sensitivity
of the NO sensor (rNO−NO2/kNO) are obtained by multiple linear regression of Eq. 4.5.

4.3.2 Use of co-emitted gases in plumes to calibrate the CO and
NO sensors’ sensitivity

The CO and NO sensor cannot be constrained by cross sensitivity to the other gases. Instead,
we constrain the sensitivity by insisting that the median emission factor of CO (or NO) per
unit CO2 corresponds to median values reported for the U.S. vehicle fleet. We express the
emission factor (EFX , ppb ppm−1) of gas X, which is CO or NO, as in Eq. 4.6:

EFX =
∆Xambient

∆CO2ambient

=
1

kX

∆VX
∆CO2ambient

(4.6)

Our measurements of the concentration of CO2 are described in Shusterman et al. (2016)
and values for EFCO and EFNOx are reported in Dallmann et al. (2013, see Table 4.2). We
constrain the sensitivity of the CO and NO sensors in the network such that the median
∆X/∆CO2 of the plumes are equal to emission factors characteristic of the average vehicle
fleet. The NO sensors’ sensitivity is constrained by the emission factor of NOx, estimating
the upper limit of NO concentration.

Figure 4.4 shows an example of a measured plume and the derived ∆CO/∆CO2 ratio. We
identify plumes as the local maximum found in a 10 min moving window, starting and ending
at the local minima. Each plume is a few minutes in duration, representing an emission ratio
averaged over several vehicles. Since diesel trucks have an order of magnitude higher NOx

emission factors compared to gasoline vehicles, the percentage of truck traffic near each site
affects the median emission factors. The median freeway truck ratio varies little across the
BEACO2N network, however, regions with a larger range of median truck ratios will have
larger uncertainties or require a calibration approach that accounts for this variation.
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Table 4.2: Reported emission factors of diesel and gasoline vehicles (Dallmann et al., 2011,
2012, 2013). Emissions from medium-duty and heavy-duty diesel trucks, which account for
<1% of all vehicles, were removed to give the value for light-duty gasoline vehicles.

Vehicle type CO emission factor NOx emission factor
(g kg fuel−1) (g kg fuel−1)

Heavy-duty diesel trucks 8.0 ± 1.2 28.0 ± 1.5
Light-duty gasoline vehicles 14.3 ± 0.7 1.90 ± 0.08
99% gasoline vehicles, 1% diesel trucks 14.2 ± 0.7 2.29 ± 0.12

slope=9.7 

Figure 4.4: Example of CO plume identification and regression against CO2 to find the CO
emission factor using raw, 10 s data. The derived CO emission ratio (CO/CO2) for this
example is 9.7 ppb ppm−1.

4.3.3 Use of chemical conservation equations near emissions to
calibrate the NO, NO2 and O3 sensors’ zero offsets

We are able to constrain the zero offsets of NO, NO2 and O3 sensors by taking advantage of
proximity to local emission sources and the following chemical conservation equations.

NO + O3 → NO2 + O2 (R1)

NO2 + hv → NO + O (R2)

O + O2 + M→ O3 + M (R3)

These three reactions result in a steady-state relationship among the nitrogen oxides (Ox ≡
O3 + NO2) and ozone. At nighttime, reaction (R2) does not occur due to the absence of
sunlight. In the absence of emissions, the NO concentration goes to zero on nights with
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Figure 4.5: Representative month of 1 min averaged NO and O3 measurements taken between
00:00 and 03:00; plumes excluded.

sufficient O3. Conversely, near strong emission sources, NO is found in excess of ozone and
the O3 concentration goes to zero (see Fig. 4.5). Using this logic, we identify times between
00:00 to 03:00 when there is zero NO or O3 to define the zero offsets of the NO and O3

sensors, using 1 min averaged data with plumes excluded (see Sect. 4.3.2 for details of the
plume identification procedure).

The NO2 offset can be determined using the pseudo-steady state (PSS) approximation. We
estimate the NO2 concentration through Eq. 4.7:

jNO2 [NO2] = kNO-O3 [NO] [O3] (4.7)

Here, jNO2 (in units of s−1) is the photolysis rate constant for reaction (R2) and kNO-O3

(in units of cm3 molecule−1 s−1) is the rate constant for reaction R1. [X] expresses the
concentration of gas X in units of molecules cm−3. We use sensitivity corrected (see Section
4.3.1 and 4.3.2), 1 min average NO and O3 concentrations measured from 12:00 to 15:00, and
select data with a time derivative of O3 near zero to insure that the measurements reflect
air that has achieved steady state. The NO2 concentration at PSS is derived using Eq. 4.7
and the NO2 offset is chosen to insure the calculated and observed NO2 are equal. NO2 is
also produced through the reaction of HO2/RO2 with NO, but this is omitted from the right
hand side of Eq. 4.7, resulting in a lower bound of the true NO2 concentration. Estimated
NO2 is therefore low by about 5 % in winter and as much as 30 % in summer. If higher
accuracy is needed, the reaction of HO2/RO2 with NO could be considered to reduce this
bias.
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4.3.4 Use of global background to calibrate the CO sensors’ zero
offset

To infer the zero offset of the CO sensor, we follow the procedure outlined in Shusterman
et al. (2016) for CO2 sensors. We assume the signal measured at a given site is decomposed
as in Eq. 4.8:

[CO]ambient = [CO]background + [CO]local + offset (4.8)

The measurement of the pollutant CO ([CO]ambient) is the sum of regional and local signals
([CO]background and [CO]local, respectively), as well as some offset from the true concentration
(offset). Assuming the monthly minimum concentration measured at a given site represents
[CO]background, this background signal is compared to that measured at a “supersite” of
reference instruments located within the network domain, allowing the offset to be derived.
We also assume that when [CO]ambient, as well as [CO]local, is minimum in each day, the
concentration measured at a given site has a constant deviation from the background signal.
This is a reasonable assumption for the BEACO2N domain as the dominant wind pattern
frequently brings unpolluted air from the Pacific Ocean.

4.3.5 Temperature dependence and temporal drift

In order to account for the temperature and time dependence of calibration parameters, we
apply the calibration process described in Sect. 4.3.1 through 4.3.4 for temperature incre-
ments of 1°C within a 3-month running window. Then, we are able to define a temperature
dependent sensitivity and zero offset, which is used to convert the measured voltages to
mixing ratios. In this way, we can also evaluate temporal drift with monthly resolution.
The calibration procedure can be repeated for shorter time intervals if wider temperature
windows are used.

4.4 Evaluation with reference observation

We evaluate the efficacy of our calibration method using a BEACO2N node co-located with
reference instruments at the Laney College monitoring site maintained by the Bay Area Air
Quality Management District (BAAQMD). Here we consider data collected from February to
April 2016, calibrate it according to the procedure described above (following Sect. 4.3.1 to
4.3.5), and compare it against the BAAQMD data. Reference data is collected by a TECO
48i CO analyzer and a TECO 42i NOx analyzer. Ozone data from the “Oakland West”
location, the closest ozone-monitoring site maintained by BAAQMD, was used for multiple
linear regression of Eq. 4.5. The zero offset for CO was calculated using BAAQMD data
from the Bodega Bay background site (see Fig. 4.1; Guha et al., 2016) as local “supersite”
data was unavailable during this period. A background site closer to the network would
likely improve our ability to constrain the CO zero offset; a reference instrument for that
purpose was installed in summer 2017.
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Table 4.3: Mean absolute error of comparison between regional O3 and hourly averaged
BEACO2N O3 measurements derived from multiple linear regression models of increasing
complexity between February and April 2016.

Regression Models Mean absolute
error (ppb)

O3true =
VO3

kO3
− offset Linearity of observed volt-

ages and gas concentration
14.4063

O3true =
VO3

kO3
− VNO2

kNO2
− offset O3 sensor’s cross-sensitivity

correction
10.6795

O3true =
VO3

kO3
− VNO2

kNO2
+ rNO−NO2

VNO

kNO
− offset NO2 and O3 sensor’s cross-

sensitivity correction
8.8172

O3true =
VO3

kO3
− VNO2

kNO2
+ rNO−NO2

VNO

kNO
− offset Adding temperature correc-

tion
8.1360

In our calibration procedure, the cross-sensitivities and temperature dependence are cor-
rected for better accuracy. Table 4.3 shows the reduction in mean absolute error (MAE)
that results when cross-sensitivity and temperature dependence issues are considered during
multiple linear regression of Eq. 4.5. Here, MAE is calculated after conducting the sensi-
tivity correction explained in Section 4.3.1, but before the offset correction in Section 4.3.3.
Fully calibrated, hourly averaged BEACO2N sensor data is compared to reference data in
Fig. 4.6. For NO, NO2, O3, and CO the mixing ratio measured agrees reasonably well with
the reference instrument with correlation coefficients of 0.88, 0.61, 0.69, and 0.74 and MAE
of 3.63, 4.12, 5.04, and 54.93 ppb, respectively. The noise (±2σ) in the differences between
the calibrated hourly BEACO2N data and reference data is 9.74 ppb for NO, 9.97 ppb for
NO2, 13.04 ppb for O3, and 116.23 ppb for CO. These noise values are dominated by the
Alphasense noise except in the case of CO, where noise is evenly split between the low-cost
electrochemical sensors and the reference instruments.

4.5 Examples of Source Attribution using emission

ratios

Figure 4.7 shows a week-long time series of fully calibrated air quality data from four
BEACO2N sites in 2017 (see Fig. 4.1). BEACO2N nodes capture the short-term variability
associated with local emissions, superimposed on the diurnal variation caused by mixing and
changes in the height of the boundary layer. Large mixing ratios of NO, NO2, and O3 are
observed at the Hercules and Ohlone sites, likely representing strong NOx emissions from
an oil refinery nearby. The spatial variability of trace gases observed at these 4 BEACO2N
sites provides a more diverse perspective on emissions compared to that provided by the one
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(a) (b) 

(c) (d) 

Figure 4.6: Time series (top), direct comparison (bottom left), and histogram (bottom right)
of hourly averaged (a) NO, (b) NO2, (c) O3, (d) CO mixing ratios from a representative week
of calibrated BEACO2N and BAAQMD reference data. Black line in left plot on the left
indicates the 1:1 line.

regulatory monitoring site in the vicinity.

The most widely used emission ratios, CO/CO2 ratio, was investigated to show the feasibility
of using the relationship between trace gases. Figure 4.8 shows the emission ratios of CO and
CO2 observed from a BEACO2N node located 220 m away from the highway (LCC; see Fig.
4.9). The slope that represents CO/CO2 ratio varies from 4.0 to 7.5 ppb/ppm depending on
the time of day. The ratio is lower at early morning closer to the reported CO/CO2 ratio of
diesel trucks, and higher at late evening closer to the reported CO/CO2 ratio of gasoline cars.
From this we can infer that the ratio of trucks on the highway is higher at early morning
compared to late evening. Indeed, the diel cycle of truck ratio reflects the same pattern.
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Figure 4.7: Time series of fully calibrated 5 min averaged BEACO2N data from a representa-
tive week at 4 sites deployed in 2017. Observations from the Hercules, Ohlone, Washington,
and Madera sites are plotted in red, green, orange, and blue, respectively. Particulate matter
is converted to units of mass concentration according to Holstius et al. (2014).
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Figure 4.8: Relationship between observed COXS and CO2XS (left) and median diel cycle of
observed truck ratio (right; http://pems.dot.ca.gov/) at LCC. COXS and CO2XS are back-
ground concentrations subtracted from CO and CO2. Black lines on the left plot indicate
reported CO/CO2 ratio of diesel trucks (bottom) and gasoline cars (top).

Figure 4.9 demonstrates the emission ratios of CO and CO2 observed from 5 different
BEACO2N sites in September and October 2017. Most of the measurements fits between
the two lines representing reported CO/CO2 ratio of diesel trucks and gasoline cars (see
Table 4.2). This reveals that the majority of local emission sources are transportation at
all 5 sites. However, 2 sites in Contra Costa county (COL and PER) and 1 site in San
Francisco county (EXE) show observations with high CO/CO2 ratio. The period when this
high CO/CO2 ratio was measured overlap with the dates that (1) smoke from the Nevada
and Butte county wildfires, and northern California and Oregon wildfires moving into the
Bay Area was reported (from August 31, 2017 to September 4, 2017), and (2) the Napa and
Sonoma county wildfires was ongoing (from October 8, 2017 to October 31, 2017). The use of
CO/CO2 ratio together with a high-density monitoring network provides the spatial pattern
of areas affected by wildfire emissions. Smokes from the wildfires came down following the
coast, not affecting more inland regions.

4.6 Conclusions

We have described the characteristics and implementation of the low-cost trace gas sensors for
a high-density monitoring network. We demonstrate a low-cost, in-field calibration method
that allows continuous measurements and quantitative analysis of it. The Alphasense B4
electrochemical gas sensors are able to detect typical diurnal cycles in gas concentrations
as well as short-term changes corresponding to chemical reactions and local emissions. The
calibrated dataset demonstrates the pattern of specific emissions over time and space using
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Figure 4.9: Map of 5 representative BEACO2N sites (top left) and relationship between
observed COXS and CO2XS at each site. COXS and CO2XS are background concentrations
subtracted from CO and CO2. Black lines in each plot indicate reported CO/CO2 ratio of
diesel trucks (bottom) and gasoline cars (top).

the relationship between co-emitted trace gases. Through this work, we can realize the
promise of low-cost, high-density sensor networks associated with the emission ratio method
as a viable approach to monitor individual emission sectors. Future work is needed to
construct quantitative interpretation of emission patterns from the observations.
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Chapter 5

Conclusions

In order to reduce greenhouse gas emissions in cities, accurate knowledge of each city’s
greenhouse gas emission budget, including the location and sectoral contributions of each
source, is required. High-density monitoring networks provide a powerful tool to attribute
emissions to specific source sectors as they preserve signals from local sources.

In this dissertation, I have developed methodologies to constrain emissions from specific sec-
tors using a low-cost, high-density sensor network: the Berkeley Environmental Air-quality
& CO2 Observation Network (BEACO2N). In Chapter 2, I demonstrated a novel approach
to using dense network observations combined with Gaussian plume models to estimate the
average emission rate per vehicle instead of the city-wide total emissions. Multiple sites
are collectively analyzed to achieve reduced uncertainty from Shusterman et al. (2018). I
demonstrate a path to achieving the accuracy needed to detect interannual variability in
mobile emissions. For example, better understanding of the mixing dynamics and a more
explicit approach to account for the variation in urban CO2 will improve the method.

In Chapter 3, I extended this model to evaluate biogenic emission and uptake of CO2 which is
unique in its capability to identify biogenic fluxes without using a land-use or other biospheric
model. This method produces regional scale fluxes from the ambient CO2 measurements that
correspondence to seasonal variation of CO2 uptake measured from space. The ability to
derive biogenic CO2 emissions and uptake on a fine spatial and temporal scale using a high-
density sensor network will enhance our understanding of processes affecting urban biogenic
fluxes.

In Chapter 4, I demonstrate the feasibility of utilizing the relationships between trace gases
that are co-emitted from combustion to characterize the relative fluxes from various emission
sources. I describe a unique approach to calibration of electrochemical sensors in a newly
developed observing tool, the BEACO2N high-density sensor network, that does not require
laboratory experiments or co-location with a reference instrument. Sensors are calibration
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in field taking advantage of the prior knowledge about urban air quality and local emissions.
Calibrated trace gas measurements can be used to quantify source specific emissions with
reduces uncertainty.

In this thesis, I describe significant progress on assessment of urban greenhouse gas emissions
from mobile and biogenic emissions using the BEACO2N high-density sensor network. One
important area of future research are emissions from industrial point sources, which are one of
the 3 major sources in San Francisco Bay Area. It is expected that the comprehensive spatial
coverage of the BEACO2N network will capture the narrow plumes evolving from the point
source enabling quantification of their emissions. Another direction for future research should
be to take advantage of the additional measurements (CO, NO, NO2, O3, and particulate
matter) collected by BEACO2N. These additional tracers offer the opportunity for source
attribution and quantification of the relative contribution even without the use of activity
data. It can also provide additional constraints on emissions estimated from the Gaussian
plume model to achieve even greater accuracy.

These ideas focus on a single city. A second research theme for future work should be an
inter-city comparison. Additional BEACO2N sites have already been established in sec-
ondary locations in Houston and New York City. Los Angeles and Scotland are the intended
next locations with deployments expected in early 2021. Understanding the similarities and
differences across the cities using a common observation system will be an exciting advance.
For example, Houston has a shipping port and a large chemical industry to the southeast
and the urban population resides predominantly to the west and north. Much of the re-
gion is low-rise buildings. In contrast, the density of skyscrapers in New York City creates
large street canyon effects and locations for sensor deployments to assess emissions are likely
affected by the associated complex circulations and transport dynamics.

Finally, future work should leverage atmospheric transport models together with long-term
BEACO2N observations at high temporal and spatial resolution to resolve the highly variable
spatiotemporal patterns of the greenhouse gas emissions. An atmospheric modeling frame-
work used with multi-species inversion will attribute the sources with high fidelity, and the
framework used with an urban scale CO2 inventory will further provide insights on physical
processes governing urban CO2.
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