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Abstract—In-network computing is a growing area of research
where computations are more tightly integrated with the net-
working substrate and placed dynamically within the network
at appropriate locations. However, this yield new issues in the
domain of measurements and networking: it adds a dimension
in the measurement domain, namely that of the computation
for some tasks. We discuss MECANO, an architecture that
integrates application measurement with network measurement
to optimize the placement of workloads in the network. We have
implemented an initial proof of concept of this architecture and
validated its performance in our testbed. In particular, keeping
track at the network layer of the location of running instances
of a specific function can significantly speed up the completion
time for a specific client request.

I. INTRODUCTION

Computation is being integrated with the networking sub-
strate [20]. The traditional model has evolved from computa-
tion happening on a single server, to the data center, and now
to being distributed at the edge. An application is no longer
running on a stand-alone dedicated server, but in a virtual
machine or a container that can be placed on any eligible node,
and moved based upon some of the application requirements.

In particular, virtualization allows software to decouple the
application from a dedicated server, and the joint optimization
of the networking and workload placement is now feasible.
This trend has been embraced by operators with the advent
of Network Function Virtualization (NFV), which enables
locating network functions where needed, and scaling up
and down the amount of resources allocated to a specific
application.

This shift requires a similar shift in the way network
monitoring and measurement are implemented. Indeed, an
approach that focuses exclusively on the network would yield
valuable information, but would view only be the tip of the
iceberg.

We contend that, as a consequence of the integration of
networking and computing, network measurements should
extend into the application layer as well. The performance of
the network depends on the joint optimization of the function
placement with the underlying network fabric, and similarly

the measurement infrastructure should align itself with this
joint optimization.

The key contribution of this paper is to discuss the joint
monitoring of network and application functions, as this
convergence is required by the tighter integration of the
two layers. We show how some basic measurements at the
application layer can be leveraged to optimize the service of
clients’ requests in a manner that satisfies both the application
requirements and the optimization of the network resources.

We present MECANO (for MEasurement of Compute And
Network Operations), a monitoring layer that measures both
network performance and application-layer events. MECANO
is a first step in the direction of integrated measurements of
networking and computing. MECANO is implemented on top
of the Sapphire [28] architecture, so as to demonstrate the
feasibility of our proposal.

The rest of this paper is organized as follows: Section II
motivates the need for our architecture and discusses related
work. Section III describes the design of MECANO, and Sec-
tion IV presents the details of its implementation. Section V
evaluates the performance of MECANO to show the benefit
of joint network and application monitoring using a testbed.
Finally, Section VI concludes the paper.

II. MOTIVATION AND RELATED WORK

A. Related Work

The performance of a service that can be instantiated on
demand at multiple distributed locations clearly depends on
the underlying network. However, it also depends on the
availability of this service at the chosen location, in the sense
that: (a) the actual code for the VM/container/microservice
may have to be fetched to run at this specific place, and (b)
the service can be in different states of readiness as in most
high availability systems. If the service is in a cold state at
a node, then although the binaries for the service exist at the
node, the service has to be installed and configured to run. If
the service is in a warm state at a node, then the service is
installed but not running. Lastly, if the service is running and
available at a node, it is said to be in a hot state.



The proper allocation of the workload to compute servers
distributed over a network is required to maximize the per-
formance of the network. Clients are typically placed at the
edge and may require applications that are delay-sensitive
and require an optimized placement of the function to per-
form properly. If the application imposes stringent latency
requirements, then the mechanism assigning the workload to
a location should be aware of both the network performance
and the availability of the function.

There has been considerable effort to integrate network-
ing and computing in the research literature. Networking
research [22] has considered some of the aspects to enable
this joint integration.

Programmability in the network is being supported by
such protocols as P4 [7]. The P4 framework provides pro-
grammability to switches in the network, but is restricted to
computations that are achievable via a match-action switch
architecture. This builds upon the work by Song [23], which
introduced protocol-oblivious forwarding (PoF). One impor-
tant use case for P4 is that of network telemetry, as it pertains
to measurements.

Wang et al. [25] provide a survey of mobile edge network-
ing research. They classify edge networks into roughly four
categories and consider the issues of computation offloading
and caching in each categiry. The four categories they consider
are mobile cloud computing [15], mobile edge computing [5],
[8], [12], fog computing [6], [10], and cloudlet [21]).

Roberts [19] gives a comprehensive overview of serverless
computing, whch instantiates function on demand, albeit pri-
marily stateless functions. He describes serverless-computing
working mechanisms, advantages, drawbacks, and future di-
rections.

Freedman et al. [9] propose an architecture that supports
flow-based anycasting to services and allows for these ser-
vices to be mobile. The work on SERVAL [17] similarly
exposes a new Service Access Layer (SAL) that sits above
an unmodified network layer. This enables applications to
communicate directly on service names. Service Oriented
Networking [11] provides the mechanisms required to deploy
a replicated service instance in the network and to route client
requests to the closest instance in an efficient manner.

Tschudin and Sifalakis [24] introduce Named-Function
Networking (NFN), an extension of Named-Data Newtork-
ing [14] that supports invocation of function by name. NFN
uses the lambda-calculus syntax to express functions, and their
input parameters. The lambda-calculus framework provides
the required expressivity to include a wide range of potential
functions. Krol et al. [16] use unikernels to deploy Named
Functions as a Service.

Delay-sensitive applications include video [27] or AR/VR,
for which MECANO could be a tool for better network
support [13], [26].

MECANO is related to this previous work. However,
none of the prior approaches we have mentioned provides
a comprehensive framework to support the joint optimization

of networking and computing, and in particular to explicitly
make function awareness a measurement objective.

B. Architectural Considerations

1) Adding Function Awareness:
To support the use case for an integrated in-network comput-
ing, we need an integrated measurement plane as well. We
suggest the introduction of monitoring modules that interact
with the network layer to provide some function awareness.

The function monitoring can be very simple or more
complex. In the most basic sense, the network could be aware
that a specific function can be executed at a specific location.
For instance, the monitoring would be aware that a function
is located at a given host, or that is has migrated or been
duplicated to another host. This is a simple binary answer to
the question of the availability of a function at a specific node.

With the proper hooks from the server onto the network,
this could be enhanced with some characterization of this
availability, for instance that the function is active, or in warm
stand-by, or only that the ”cold” code is there to be loaded if
needed.

In the most advanced sense, the network would be able
to monitor the network performance combined with, say,
the completion time of the function, providing a combined
measure of the performance.

Here, we focus on the basic approach as a motivating
example for a joint network and function measurement layer.

2) In-network, or application layer measurement and mon-
itoring?:
Mechanisms already exist to deploy microservices on demand
in the data center. Amazon Lambda [1] is an example of
instantiating some services on demand. Service meshes [4]
such as Istio [3] or Envoy [2] provide some of the features of
such network-compute integration, but are generally agnostic
of the underlying network. The network they consider is the
data center where they are located. The network performance
is typically predictable, and the measurement plane can focus
on application provisioning.

At the other end of the spectrum, network protocols have
been enhanced with service awareness to support service-
centric networking. SCAFFOLD [9] proposed an architecture
that supports flow-based anycast to services, and allowed these
services to be mobile. SERVAL [17] similarly exposes a new
service sccess layer (SAL) that sits above an unmodified net-
work layer. This enables applications to communicate directly
on service names. Named Function as a Service (NFaaS) [16]
is a framework that extends the Named Data Networking ar-
chitecture to support in-network function execution. Similarly,
Named-Function Networking (NFN) [24] is an extension of
Named-Data Newtorking that supports invocation of function
by name. These approaches add service awareness onto a
network stack.

The latter approaches would require to bring some applica-
tion awareness onto the network, for routing purposes in an
immediate step, but also for measurement and monitoring so
that the network can deliver on its objectives.



III. MECANO
We propose MECANO to provide a joint network and

function measurement mechanism; namely MECANO needs
to provide network and function awareness in order to deliver
a joint optimization of the network and compute layers.

A. Overview

MECANO is designed as an instrumentation mechanism
to expose to the function allocation mechanism a view of
the network that includes some function information. In our
first iteration of MECANO, we provide only an availability
indication. This can be enhanced with more features in
subsequent iterations.

Figure 1 shows the functional components of the MECANO
framework. The next subsections describe the functional el-
ements in more detail, namely the controller, the monitoring
agent and the node architecture.
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Fig. 1: Functional elements of MECANO

B. Controller

MECANO relies on the existence of a distributed controller
that allocates resources for a client request. Here we assume a
hierarchical controller architecture: Edge controllers manage
the resource and the objects located at a specific edge cluster.
These edge controllers may register with one or more cloud
controllers. A lightweight protocol synchronizes the edge
controller with the cloud controller(s), and specifies what
resources are available in the cloud to the edge controller.
This is similar to the control plane that any monitoring
infrastructure would have to update.

Clients register with the controller located at the edge node.
Edge controller discovery can be achieved using a variety of
mechanisms that we do not discuss here.

To keep allocation of resources manageable, we constrain
it to the edge controller being able to forward service requests
to the cloud controller. This allows the system to reduce the
amount of information to transmit between edge and cloud
controllers.

The edge controller performs the authentication of the
clients (through any available mechanism) and ensures that
the functions requested by the client are consistent with the
access control and other applicable policies.

The controller tracks the location of the workloads. The
edge controllers track the location and properties of all
the workloads that were issued by one of its clients; the
cloud controllers track the workloads that their own clients
requested and the objects instantiated by their dependent edge
controllers within the cloud cluster.

C. Monitoring Agent

The controller is enhanced with a network and function
monitoring agent. This is the core of the measurement in-
frastructure. This agent probes the network between edge
controllers that are adjacent, and between the edge controllers
and the cloud controllers that they are dependent of. This is
performed via a combination of active probing and passive
monitoring of messages sent among these controllers. The
probing period is a parameter. In our implementation, we vary
this parameter and find that 3 seconds is a good trade-off
between frequency and accuracy.

The monitoring agent listens for requests for specific func-
tions, and keeps track of which function is being run at the
execution node. It can then report to the controller (edge or
cloud) what functions are available at the node.

D. Node Architecture

Each node in MECANO support a kernel server (KS)
that includes a network and function monitoring agent. This
is true not only for the controller, but for the client edge,
the execution nodes and some forwarding nodes in between.
This agent periodically relays the network conditions to the
controller that it is associated with, as well as the availability
of functions (where each function is associated with a unique
ID).

IV. IMPLEMENTATION

Sapphire [28] is a distributed programming platform that
makes it easy to program mobile and cloud applications.
Sapphires key design feature is its distributed runtime system,
which supports a flexible and extensible deployment layer
for solving complex distributed systems tasks, such as fault-
tolerance, code-offloading, and caching. Sapphire is an open
source project and is available on GitHub. However, Sapphire
has no network awareness, and the controller only keeps
tracks of actual workloads, not of the location of the exe-
cutables/VM/containers. We implemented a proof of concept
of MECANO as an extension of the Sapphire code base.
We have built network monitoring agents that report network
conditions as well a function availability.

We also implemented a few specific functions to test our
approach, including a face recognition application and some
HTTP server applications in addition to leveraging existing
applications built for Sapphire. Sapphire is designed so that
application developers need to specify the application logic
and the deployment logic in a separate but structured way.
By providing deployment abstractions, Sapphire hides from
the application developer the mechanisms to distribute the
components of the application. This is attractive, as we can



leverage these mechanisms to integrate the placement of the
application components within the network.

In particular, Sapphire allows application developers to
wrap their function into Sapphire Objects (SO). These SOs
are then associated with a deployment manager that specifies
how the function can be distributed in the network. Sapphire
provides a library of deployment managers that have differ-
ent characteristics to support application-specific deployment
needs. Deployment managers can specify where to deploy the
SOs, what type of reliability to provide, where to cache the
data, what consistency level is required, and other deployment
aspects.

Functions are implemented in JVM or in containers using
the GraalVM framework. This allows for ease of application
development and for code reuse over multiple platforms.

Upon receiving a request for a service, the edge controller
performs an optimization step to decide where to allocate the
service. It makes this optimization based upon the knowledge
of the availability of function provided by the MECANO
monitoring infrastructure.

Using the network-condition information and the awareness
of the function location allows the controller to allocate the
service to the appropriate kernel server.

Periodic monitoring of the kernel servers may trigger a
service migration to improve performance, based upon net-
work condition, and the potential availability of a better suited
execution node for the workload.

MECANO tracks what functions are available locally and
in adjacent clusters. Functions can be in one of several states:
non-existent (which means the function is not available locally
and would need to be downloaded and instantiated), cold (as
in binary code that is stored but not loaded), or warm (for
the active functions). The controller uses this information for
delay sensitive application, potentially forwarding requests to
warm instances rather than cold or non-existent.

Each supported node in Sapphire must provide a deploy-
ment kernel that tracks, addresses, and potentially migrates
the SOs. Calls from one SO to another are routed by the
deployment kernel.

Sapphire also provides a centralized coordinator, denoted
here as the Object Management System (OMS). An object
that requires global coordination registers with the OMS, and
hence Sapphire knows where all objects are located and how
to connect them. Without proper care, such coordinator could
become a scalability bottleneck, as we will discuss below.

We created network-monitoring agents and function-
monitoring agents. The OMS is periodically updated by these
monitoring functions about the network performance and the
availability of the functions. When a client requests a function,
the OMS can therefore make an allocation decision that is a
joint optimization.

V. EVALUATION

We evaluated MECANO under different scenarios to vali-
date the benefit of the proposed approach using our Sapphire-
based implementation.

We consider a basic topology that consists of two edge
clusters, and a cloud network. The clients connect to the
network via the edge clusters.

Our evaluation scenario (see Fig. 2) demonstrates the ben-
efit of having the ability to optimize the workload placement
based upon the availability of the specific function at a
node. In this scenario, several clients using latency sensitive
applications connect to an access network, which in turn
connects to a set of edge kernel servers and a set of cloud
kernel servers. A latency-sensitive application here means that
the client specifies in its request that the controller should
return the result as fast as possible.
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Fig. 2: MECANO Evaluation Testbed

The model of this workload is based on the HTTP dis-
tribution of requests indicated by Pries and Tran-Gia [18]
with a slight modification to increase network load for our
evaluation. Initially, none of the kernel servers have the server
code locally. The code modules are retrieved from a function
repository (HTTP) server in the cloud. The topology we
consider consists of one edge with ten kernel servers, and an
HTTP server located at the cloud. To simulate a real network
scenario in our evaluation, we used fixed latencies between
clients, edge, and cloud, where latency between clients and
cloud is higher than client to edge.

  Client requests

Oblivious MECANO

Fig. 3: Performance with awareness of code location



Without MECANO, the tasks are allocated with a round-
robin policy. With MECANO, the tasks are assigned pref-
erentially to the kernel servers that have executed the given
application in the recent past. This is done by keeping track of
which functions were deployed by each server. For this sce-
nario, we considered ten clients requesting a latency-sensitive
application. Figure 3 shows the service-access latency, defined
as the time that elapses before a service is responsive after
a client request for service creation is made. As the figure
shows, MECANO outperformed the vanilla cases for all ten
clients, becaue MECANO tries to reuse kernel servers that
are ”warm,” namely with the code downloaded and ready to
execute.

Fig. 4: Function Awareness: Latency

Fig. 5: Function Awareness: CDF

Next, we considered 100 clients requesting to deploy a
latency-sensitive application. In this evaluation, the controller
takes into account the observed network latency from similar
clients to similar servers and the availability of the requested
function. As we mentioned earlier, the monitoring agent
in MECANO keeps track of the kernel servers that have
executed the given application in the recent past, and tasks are
primarily allocated to these servers. Also, they also measure
the service access latency (as defined above) and report this
to the controller to help optimize function placement in the
network. As seen in Figure 4, MECANO outperforms the case
where function placement and service access latency were not

taken into consideration. This is because MECANO tries to
reuse kernel servers that are ”warm,” namely with the code
downloaded and ready to execute. This can also be seen in
Figure 5, which shows the empirical CDF. As shown, 75% of
the function requests for all clients were satisfied in less than
150ms, whereas in the other case only 30% of the client’s
requests were satisfied within 150ms.

Our evaluations show a major benefit in just knowing
where functions have been deployed, and feeding that in-
formation back to a controller. However, the granularity of
the information shared with the controller could be much
finer: application statistics could be measured, such as the
distribution of the completion times in a given context.

VI. CONCLUSIONS

We have presented MECANO, a framework for MEasure-
ment of Compute And Network Operations. We have argued
that the measurement operations in the network must become
more and more integrated with the applications, in particular
since containerization, virtualization and microservices allow
services to be quickly migrated and jointly optimized with
the underlying network. We have presented an architecture
for monitoring the network performance as well as the avail-
ability of specific functions at given execution nodes, using
distributed network- and function-monitoring agents.

We have implemented parts of MECANO leveraging the
features of Sapphire [28], an existing distributed program-
ming framework. Our evaluation results on an actual system
clearly show the major benefits of a joint network-and-
compute optimization. In particular, or results show that using
knowledge of which functions are in hot standby results in a
significant reduction in the time needed to complete executing
the applications.
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