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Dexin Shi3 , Ren Liu4 and Junhua Sun5

Abstract

Computing confidence intervals around generalizability coefficients has long been a
challenging task in generalizability theory. This is a serious practical problem because
generalizability coefficients are often computed from designs where some facets have
small sample sizes, and researchers have little guide regarding the trustworthiness of the
coefficients. As generalizability theory can be framed to a linear mixed-effect model
(LMM), bootstrap and simulation techniques from LMM paradigm can be used to con-
struct the confidence intervals. The purpose of this research is to examine four different
LMM-based methods for computing the confidence intervals that have been proposed
and to determine their accuracy under six simulated conditions based on the type of
test scores (normal, dichotomous, and polytomous data) and data measurement design
(p 3 i 3 r and p3 [i:r]). A bootstrap technique called ‘‘parametric methods with spheri-
cal random effects’’ consistently produced more accurate confidence intervals than the
three other LMM-based methods. Furthermore, the selected technique was compared
with model-based approach to investigate the performance at the levels of variance
components via the second simulation study, where the numbers of examines, raters,
and items were varied. We conclude with the recommendation generalizability coeffi-
cients, the confidence interval should accompany the point estimate.
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Introduction

Generalizability theory (G-theory) provides a conceptual framework and statistical

procedures for evaluating the reliability of behavioral measurements such as test

scores, performance evaluations, and survey ratings (Cronbach et al., 1963). A key

feature of G-theory is that it allows the researcher to quantify the contribution of dif-

ferent sources of variance to overall measurement error. In assessment situations,

common sources of variance include facets such as the particular sample of test ques-

tions the examinee responds to, the raters who evaluated those questions, the types of

rating scales that were used, and the particular occasion under which the observations

were obtained (Brennan, 2001; Shavelson & Webb, 1981). G-theory relies on analy-

sis of variance techniques to partition test scores into the sources of variance that

contribute to those scores. Variance components are estimated for each facet and are

used as the basis for constructing indices of measurement error and score reliability.

Once researchers understand sources of measurement error, they can make informed

decisions to fine tune their measurement procedures (e.g., increase the number of test

questions; decrease the number of raters).

One of the more common indices in G-theory is the generalizability coefficient,

designated as rho-square (r2). Under certain conditions (e.g., a group of students

responding to a sample of test questions), the generalizability index is analogous to

Cronbach’s coefficient alpha (Brennan, 2001; Shavelson & Webb, 1981) and is often

interpreted as a fixed-point estimate. However, in the absence of confidence intervals

(CIs), a point estimate of generalizability coefficient can be misleading. To illustrate,

in the field of medical education, a type of performance test known as an objective

structured clinical examinations (OSCEs) is often used for evaluating medical stu-

dents’ readiness for practice. G-theory is typically used to evaluate the quality of rat-

ings from an OSCE, and the generalizability coefficient is the primary evidence for

either accepting or modifying the exam administration procedures. If the point esti-

mate of the generalizability coefficient is 0.85 where the 95% CI spans from 0.65 to

0.90, the decision makers may not be satisfied with the current procedures, assuming

the minimum acceptable value is 0.70. Therefore, knowing CIs around a generaliz-

ability coefficient is practically beneficial for well-grounded evaluations.

Researchers have proposed methods for estimating CIs (or standard errors) of the

variance components and generalizability coefficients obtained in G-theory

(Brennan, 2006; Feldt, 1965). These methods can be classified as either model-based

or empirically based. Model-based methods assume that scores are randomly, inde-

pendently, and normally distributed (iid), while resampling relies on bootstrap or

simulation techniques (Brennan, 2006, 2007; Brennan et al., 1987; Gao & Brennan,

2001; Moore, 2010; Othman, 1995; Tong & Brennan, 2006, 2007). The former
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requires complex mathematical deriving and, so far, have been developed only for

straightforward measurement designs (e.g., p 3 i) but not for nested designs, for

example (p3 [i:r]; Almehrizi, 2020). Although the latter methods are straighforward

to implement, selecting different bootstrap or simulation techniques as well as tuning

their corresponding configurations (e.g., the facet sampled; number or sizes of the

samples) often result in inconsistent results that can be challenging to reconcile. For

instance, Tong and Brennan (2007) show that bootstrapping from person and item

perspectives produce large discrepancies in CIs.

The purpose of the present study is to evaluate the effectiveness of various resam-

pling methods for estimating standard errors and CIs in generalizability theory. We

focus on resampling methods because they are likely to be accessible researchers and

users, and are applicable to a broad range of measurement designs. This study builds

on the work of Tong and Brennan (2007) by adapting new approaches from linear

mixed-effect model (LMM) paradigm, such that the performance of the correspond-

ing CIs can be investigated.

The resampling methods are based on a two-step cycle where the ‘‘resampling’’

strategy is followed with the step of ‘‘estimating’’ models. For example, a new data

set sampled (i.e., bootstrapped) from the original data set is fed into a G-theory

model, and model parameter estimates, as well as relevant statistics calculated from

the estimates, are recorded and aggregated. This iterative, two-stage process contin-

ues until a vector of the statistic of interest is formed. There are multiple computa-

tional algorithms for estimating variance components from G-theory. The more

common methods include: analysis of variance using expected mean square (EMS)

equations (Cornfield & Tukey, 1956); Henderson’s Method 1 and Method 3

(Henderson, 1953); minimum norm quadratic unbiased estimation (Rao, 1970). More

recent approaches rely on maximum likelihood (ML) estimation, including full infor-

mation ML for handling missing data and unbalanced designs, as well as restricted

maximum likelihood (REML) within a LMM framework. LMMs, also known as a

hierarchical linear models or as multilevel modeling, subsumes a class of statistical

models specified for analyzing designs with clustering or nested structures

(Raudenbush & Bryk, 2002) well suited for many complex measurement designs.

Modeling in G-theory can be viewed as an instance of building an LMM according

to a G-theory design (Brennan, 1992). Jiang (2018) adopted a software package

called lme4 (Bates et al., 2015), a library specifically for analyzing LMMs in the R

program (R Core Team, 2021) to handle variance component estimation in G-theory;

similar works can be found in Huebner and Lucht (2019). The present article follows

Jiang’s (2018) approach to variance component estimation, and uses bootstrap and

simulation techniques from LMM paradigm to construct CIs around generalizability

coefficients.

The bootstrap and simulation techniques from LMM paradigm are not identical to

the traditional resampling strategy. Instead of resampling from the original responses,

many LMM bootstrap and simulation techniques first estimate the model, and then

use the model to generate new data sets that are further fed to the same model. At

Jiang et al. 707



each iteration, feeding models with fresh data points produces a set of new parameter

estimates. As a set of the parameter estimates can be used to obtain a generalizability

coefficient, M sets of the parameters estimates can produce M generalizability coeffi-

cients for constructing CIs.

In this article, four mainstream LMM-based techniques are selected for evaluation:

(1) parametric bootstrap (PB), (2) semiparametric bootstrap (SPB), (3) nonparametric

bootstrap (NPB), and (4) posterior simulation (PS). To demonstrate the differences

among the techniques, it is necessary to define the terms of LLMs. If Y is a response

column matrix with n rows (i.e., a vector), an LLM can be expressed as:

Y = Xb + Zb + ε, where b;N 0, Gð Þ and ε;N 0, Rð Þ

where X is an n by k covariate matrix (where k is the number of fixed effects), Z is an

n by m random-effect matrix (m is the number of random effects), G is the variance–

covariance matrix of the random effects of dimension m by m, and finally, R is the

variance–covariance matrix of the errors, which in many situations is assumed to be

iid (i.e., R = s2I where I is an identity matrix). b is the fixed-effects vector and b is

the random-effects vector.

1. PB: (1) Fit the original LMM to the data to obtain the b̂ , Ĝ, and R̂. (2)

Generate the bootstrap samples via the fitted model Y� = Xb̂ + Zb̂
�

+ ε̂�,

where b̂
�

and ε̂� are generated from N 0, Ĝ
� �

and N 0, R̂
� �

, respectively. (3)

Fit the original LMM to the bootstrap data and obtain b̂
�
, Ĝ
�
, and R̂

�
. (4)

Repeat Steps 1 to 3.

2. SPB: (1) Fit the original LMM to the data to obtain the b̂, Ĝ, and R̂. (2)

Obtain residuals via ε̂ = Y� Xb̂. (3) Draw a sample size of m with replace-

ment from these residuals and denote them by ε̂�. (4) Construct the bootstrap

data set using the fitted model Y� = Xb̂ + ε̂�. (5) Fit the LMM to the boot-

strap data and obtain b̂
�
, Ĝ
�
, and R̂

�
. (6) Repeat Steps 1 to 5.

3. NPB: (1) Match y and X to form new sets of (y, X). (2) Draw a sample of

size m with replacement from the m pairs and denote them by (Y�, X�). (3)

Fit the original LMM to the bootstrap data and obtain b̂
�
, Ĝ
�
, and R̂

�
. (4)

Repeat Steps 1 to 3.

4. PS: (1) Fit the original LMM to the data to obtain the b̂ , Ĝ, and R̂. (2)

Simulate s� = ŝ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� kð Þ=v

p
, where v is a random draw from the x2 distri-

bution with n2k degrees of freedom. (3) Given the random draw of s, simu-

late b̂
�

from a multivariate normal distribution with mean b̂ and s�
2

I . (4)

Simulate Ĝ
�

with a similar fashion and repeat all steps.

To summarize without the mathematical terms, PB utilizes the initial LMM to

generate new data points that are further used to construct models, such that multiple
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sets of parameter estimates for each effect can be obtained. SPB is akin to PB except

that the data generation process does not rely on the initial LMM but rather on a

fixed-effect model rebuilt from the LMM’s residuals. NPB draws rows from the orig-

inal data sets to form a new data set, estimate a new model with the data set, and

repeat the process. PS derives posterior distributions for each parameter and samples

from the distributions to form sets of parameter estimates. More details regarding PB

to PS can be found in Davison and and Hinkley (1997), Gelman and Hill (2006), as

well as Shang and Cavanaugh (2008).

Method

This study consists of two simulation studies, while the first one investigates CIs at

the level of generalizability coefficient and the second one further examines CIs at

the variance component level with references. The first one follows the general

design of the simulation study conducted by Tong and Brennan (2007). The data

generation process was completed [or conducted, or executed] for normal, dichoto-

mous, and polytomous responses. The sample sizes were set to np = 100, ni = 20,

and nr = 2 where the subscripts p, i, and r represented the facets of persons, items,

and raters, respectively. Two commonly seen designs, p 3 i 3 r and p3 [i:r], were

adopted. The former is a fully crossed data collection design where all examinees

respond to all 20 items, which are then rated the same two raters. The latter is a

nested design in which some items are nested within raters.

For normal data, responses for the p 3 i 3 r design were generated on the basis

of Equations 1 and 2. Equation 1 shows that an observed score, Ypri, for person p on

item i rated by rater r is made of the grand mean m, person effect vp, item effect vi,

rater effect vr, interaction terms of any two random effects, and error effect εpi.

Correspondingly, the relevant variance components are outlined in Equation 2. All s

s are dispersion parameters from independent and identically distributed (iid) normal

shapes whose central locations are all 0, for example, vp;Nð0, s2
pÞ, vi;Nð0, s2

i Þ,
and εpi;Nð0, s2

pi:eÞ.

Ypri = m + vp + vi + vr + vpi + vir + vpr + εpri; ð1Þ

s Yð Þ2pri = s2
p + s2

i + s2
r + s2

pi + s2
ir + s2

pr + s2
pri:e: ð2Þ

Similarly, observed scores and variances for the p3 [i:r] design were generated using

Equations 3 and 4.

Ypir = m + vp + vr + vi:r + vpr + εpi:r, ð3Þ

s Yð Þ2pir = s2
p + s2

r + s2
i:r + s2

pr + s2
pi:r: ð4Þ

For dichotomous data, Equations 1 to 4 were again used for the two designs,

respectively. If the simulated score exceeded 1, a response of 1 was assigned;
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otherwise, a response of 0 was assigned to create dichotomous responses. As the para-

meter values for variance components for dichotomous data were not readily avail-

able in the simulation process, 5000 data sets were produced and their s2 estimates

were recorded and averaged to serve as the true parameter values.

For polytomous data, the normal distributions in Equations 2 and 4 were replaced

by binominal distributions. To illustrate, v;B a, bð Þ can sample a binomial value for

a trials with the probability of success being b. The distributional settings in Gao and

Brennan (2001) as well as Lane et al. (1996) were used for the p 3 i 3 r and the

p 3 [i:r] designs, respectively. That is, in the p 3 i 3 r design, B(2, 0.7966), B(1,

0.8570), B(1, 0.98785), B(2, 0.7313), B(1, 0.98579), B(1, 0.9975), and B(2, 0.8025)

were specified for person, item, rater, person and item interaction, person and rater

interaction, rater and item interaction, and error effects, respectively. On the other

hand, in the p3 [i:r] design, B(1, 0.713), B(1, 0.843), B(2, 0.713), B(1, 0.930), and

B(5, 0.6300) were specified for person, rater, item (nested within raters), person and

rater interaction, and error effects, respectively. The scores ranged from 0 to 10 for

each item in both designs. The true parameter values for s2 were obtained from the

way identical to that of for dichotomous data. The true parameters used to generate

data sets are listed in Table 1.

After obtaining true parameter values of variance components by either directly

copying from the original values or averaging the simulated values, the true general-

izability coefficient can be calculated using Equations 5 to 7. Note that s2
Ds for two

designs were named to s2
DCross and s2

DNest, and the generalizability coefficient Er2
D

corresponds to absolute error, instead of relative error.1

Er2
D =

s2
p

s2
p + s2

D

; ð5Þ

Table 1. True Parameters for the Simulation Study.

p 3 i 3 r p 3 [i:r]

Normal Dichotomou Polytomous Normal Dichotomou Polytomous

s2
p

16.0000 0.0109 0.3241 s2
p

16.0000 0.0108 0.2046

s2
i

4.0000 0.0028 0.1270 s2
i:r

7.0000 0.0048 0.4093

s2
r

1.0000 0.0007 0.0120 s2
r

1.0000 0.0006 0.1324

s2
pi

64.0000 0.0449 0.3930 Na / / /

s2
ir

3.0000 0.0021 0.0025 Na / / /

s2
pr

2.0000 0.0014 0.0140 s2
pr

2.0000 0.0014 0.0651

s2
pri:e

144.0000 0.1873 0.3170 s2
pi:r:e

208.000 0.2323 1.1655

s2
D

8.5750 0.0081 0.0470 s2
D

6.8750 0.0070 0.1381

Er2
D

0.6511 0.5737 0.8733 Er2
D

0.6995 0.6067 0.5970

Note. Na = not applicable.
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s2
DCross =

s2
i

ni

+
s2

r

nr

+
s2

pi

ni

+
s2

pr

nr

+
s2

ir

nrni

+
s2

pri:e

nrni

, ð6Þ

s2
DNest =

s2
r

nr

+
s2

i:r

nrni

+
s2

pr

nr

+
s2

pi:r:e

nrni

: ð7Þ

Each of the p 3 i 3 r and the p 3 [i:r] designs involved 1,000 replications. That

said, 1,000 arrays of size 100 3 20 3 2 were generated. For each of the bootstrap

techniques, 500 bootstrapping samples were drawn within each of the 1,000 replica-

tions. Within each replication, a 95% CI was constructed and the true generalizability

coefficient was investigated to see if it was covered within that CI. The primary out-

come measure is the coverage rate, which is defined as the proportion of replications

that a CI contains the true generalizability coefficient. A secondary outcome is the

mean standard deviation of the generated generalizability coefficients from the

resampling techniques (i.e., the average dispersion of the resampled statistics).

The second simulation study (1) varies the facet levels of a fully crossed design to

create different conditions, (2) utilizes the best technique from the four candidates,

(3) calculates the coverage rate as the first simulation study yields, and (4) compares

its variance component estimates with a model-based approach based on

Satterthwaite’s solution (Smith, 1982). Specifically, the sample sizes were set to np =

[50, 200, 500], ni = [5, 15, 30], and nr = [3,5]; these levels were set to be fully

crossed, resulting in 18 conditions in total. Only the coverage rate was used to mea-

sure the outcome for the comparative purposes.

Results

Table 2 contains the coverage rates of the first simulation study. To illustrate, the first

cell in the table (0.9516) indicates that for continuous (normal) data, the true

Table 2. Coverage Rates of the Simulated Confidence Intervals (CIs) for Each Simulated
Condition.

Method for computing CIs

Design Type of scale PB SPB NPB PS

p3i3r Continuous 0.9516 0.6150 0.2567 0.0533
Dichotomous 0.9522 0.8239 0.6090 0.0418
Polytomous 0.9164 0.1900 0.0650 0.0475

p3 [i:r] Continuous 0.9577 0.8263 0.8592 0.4601
Dichotomous 0.9615 0.8308 0.8231 0.3308
Polytomous 0.8101 0.3038 0.2753 0.3734

Note. PB = parametric bootstrap; SPB = semiparametric bootstrap; NPB = nonparametric bootstrap, PS

= posterior simulation.
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generalizability coefficient for the p 3 i 3 r design was covered by the CIs produced

by PB about 95% of the time. It is apparent from Table 2 that PB outperformed the

other three methods in all conditions. However, for polytomous response data, the

coverage rates for PB dropped, particularly for the p3 [i:r] design where coverage

rates fell to about 81%. However, all methods performed less well with polytomous

data, with huge decrements for methods SPB, NPB, and PS. In general, neither SPB,

NPB, or PS was practically trustable as their coverage rates were far below 0.95,

leaving a firm belief that these CIs were either drifted far from the target or spanned

overly narrow ranges.

The average standard deviations are listed in Table 3 showing the variability of the

coefficients resampled by the selected methods. Consistently, generalizability indices

generated by PB spanned a wider range than those of other methods. These findings

support the reasoning that the CIs for methods SPB, NPB, and PS were too narrow

such that the true generalizability coefficient was left out of the range in many repli-

cations. The average standard deviations were larger for the p3 [i:r] design than for

the p 3 i 3 r design.

The complete results of the second simulation study are listed in the appendix. As

PB outperformed other methods, it was used to compared with Satterthwaite’s

approach. In all conditions, the coverage rates yield by PB are slightly higher than

those by Satterthwaite’s approach: The differences across all random effect compo-

nents are less than 0.01. It concludes that, in addition to generating appropriate CIs

for generalizability coefficient, PB can reproduce the accuracy yielded by model-

based approaches at the levels of variance components; this emphasizes the advan-

tages of the proposed approach over model-based approaches: the capacity of pro-

ducing accurate CIs at both levels.

Given the statistics produced by Satterthwaite’s approach and PB are extremely

similar, PB results are used here to describe the variability of the CIs in different

conditions. On average, the coverage rates for s2=[s2
p, s2

i , s2
r , s2

pi, s2
ir, s2

pr, s2
pri:e] are

[0.9447, 0.9028, 0.8192, 0.9460, 0.9159, 0.9293, 0.9476]. The CIs for s2
r are much

Table 3. Mean Standard Deviations of Generalizability Coefficients Across Simulated
Conditions.

Method for computing CIs

Design Type of scale PB SPB NPB PS

p3i3r Continuous 0.0590 0.0326 0.0261 0.0186
Dichotomous 0.0766 0.0559 0.0484 0.0206
Polytomous 0.0127 0.0040 0.0028 0.0046

p3 [i:r] Continuous 0.0923 0.0895 0.0902 0.0320
Dichotomous 0.1293 0.1253 0.1282 0.0346
Polytomous 0.0946 0.0450 0.0430 0.0575

Note. PB = parametric bootstrap; SPB = semiparametric bootstrap; NPB = nonparametric bootstrap, PS

= posterior simulation.
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less than 0.95, indicating that low facet levels (only 3 and 5 raters within the simu-

lated conditions) are detrimental to the CIs estimates. Grouping the independent vari-

ables, Table 4 aggregates the results at person, item, and rater levels. Interesting

findings are outlined as: (1) CIs for s2
p are consistently accurate, even at the condi-

tions of 50 examinees, (2) increasing the number of samples at other facets can be

harmful to the facet with smaller sample sizes (e.g., the decremental tendencies in

the column of s2
r of Table 4), and (3) increasing the number of samples at a targeted

facet can improve CIs’ accuracy of the facet. With the decomposition, it can be seen

that, overall the resampling of PB is reliable at a lower level (i.e., variance compo-

nents) and therefore leads to a trustable CIs for generalizability coefficient.

Discussion

In a simulation of this kind, a coverage rate of 0.95 indicates an ideal approximation of

the 95% CI. In all conditions, PB came closer to 95% than all other methods, while PS

was the least accurate. When data responses were normal or dichotomous, it seems

appropriate to use PB to obtain CIs for the estimated generalizability coefficients for the

two types of designs studied here. Methodologically, PB mimics LMM’s properties to a

maximal degree such that the resampling process is based on a structure consistent with

the original mode. SPB does not integrate the random-effect components when perform-

ing bootstrapping and leaves the part of the information unused. NPB operates bootstrap

techniques from the data side, instead of the modeling perspective; therefore, the unsa-

tisfactory results were consistent with the findings in Tong and Brennan (2007). Finally,

PS simulates parameters directly from posterior distributions, of which the dispersions

seemed to be too conservative compared with other methods.

Most studies that have examined CIs or standard errors within the context of G-

theory have focused on the variance components (e.g., Brennan, 2006, 2007; Tong &

Brennan, 2007; Wiley, 2000), while this article addresses the issue from the level fo

Table 4. Aggregated Results of Confidence Intervals’ Coverage Rates in the Second
Simulation Study.

Components s2
p s2

r s2
i s2

pi s2
pr s2

ir s2
pri:e

p levels
50 0.9362 0.8573 0.9207 0.9420 0.9117 0.9345 0.9478
200 0.9430 0.8187 0.8950 0.9555 0.9340 0.9022 0.9520
500 0.9548 0.7817 0.8930 0.9405 0.9423 0.9112 0.9430

i levels
5 0.9422 0.8685 0.8777 0.9465 0.8828 0.8772 0.9502
15 0.9523 0.8242 0.9062 0.9493 0.9610 0.9355 0.9487
30 0.9395 0.7650 0.9248 0.9422 0.9442 0.9352 0.9440

r levels
3 0.9522 0.7926 0.9063 0.9432 0.9273 0.8983 0.9510
5 0.9371 0.8459 0.8994 0.9488 0.9313 0.9336 0.9442
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actual generalizability coefficients that aare computed from the variance components.

Although there may be some risk in ignoring variance-level CIs, investigating CIs at

the level of generalizability coefficients is desirable. One reason is that CIs for var-

iance components do not directly inform the uncertainty of generalizability coeffi-

cients, as they cannot be converted to one another via simple or closed-form

solutions. In addition, variance components are not by themselves useful for

decision-making purposes, while generalizability coefficients are often interpreted as

direct evidence for decision making. Also, Cronbach’s a—a reliability coefficient

within classical test theory framework—has been extensively studied in terms of its

CIs (e.g., Bonett, 2002; Feldt, 1965; Hakstian & Whalen, 1976; Iacobucci & &

Duhachek, 2003; Koning & Franses, 2003; Maydeu-Olivares et al., 2007), and the

importance of investigating uncertainty applies to generalizability coefficients as

well. Note that the computation of the relative generalizability coefficient in a one-

faceted is essentially the estimation of Cronbach’s a; accordingly, CI estimation

approaches proposed for Cronbach’s a can be applied to the special form of the G-

theory design (see, e.g., Bonett & Wright, 2015; Feldt, 1965; Padilla et al., 2012;

Van Zyl et al., 2000; Yuan et al., 2003).

Although Bayesian methods have been used in G-theory (Jiang & Skorupski,

2018; LoPilato et al., 2015), they were not addressed here for two reasons. First,

Bayesian methods can be highly sensitive to prior distributions, leading a simulation

design less controllable when varying the prior distributions becomes necessary.

Second, Bayesian methods are computationally expensive and less used in practice.

Conclusions

G-theory provides an important framework for evaluating the quality of ratings and

scores in performance testing. Point estimates of generalizability coefficients are not

sufficient because the imprecision of those estimates is unknown to decision makers.

The PB technique illustrated here appears to provide one useful way for evaluating

the trustworthiness of generalizability coefficients, thus allowing decisions about a

test’s design to be made with greater accuracy and confidence.

Appendix. Parameter Recovery Results of the Second Part of the Simulation Study.

Satterthwaite PB Satterthwaite PB Satterthwaite PB

Condition 1 Condition 7 Condition 13

var_p 0.936 0.942 0.958 0.958 0.933 0.933
var_r 0.883 0.889 0.797 0.797 0.848 0.854
var_i 0.883 0.889 0.938 0.943 0.899 0.904
var_pi 0.936 0.942 0.932 0.938 0.944 0.949
var_pr 0.801 0.807 0.938 0.943 0.972 0.978
var_ri 0.918 0.924 0.922 0.922 0.949 0.949
var_e 0.947 0.953 0.943 0.948 0.927 0.927

(continued)
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Appendix. (continued)

Satterthwaite PB Satterthwaite PB Satterthwaite PB

Condition 2 Condition 8 Condition 14

var_p 0.958 0.961 0.911 0.916 0.947 0.953
var_r 0.863 0.867 0.747 0.753 0.837 0.842
var_ 0.849 0.853 0.953 0.958 0.895 0.9
var.pi 0.94 0.944 0.932 0.937 0.958 0.963
var_pr 0.856 0.86 0.963 0.968 0.947 0.953
var_ri 0.811 0.814 0.895 0.9 0.947 0.953
var_e 0.933 0.937 0.942 0.947 0.942 0.947

Condition 3 Condition 9 Condition 15

var_p 0.956 0.959 0.96 0.96 0.949 0.954
var_r 0.857 0.86 0.572 0.585 0.862 0.867
var_i 0.86 0.863 0.902 0.91 0.887 0.892
var_pi 0.939 0.942 0.94 0.94 0.933 0.938
var_pr 0.924 0.927 0.95 0.95 0.938 0.944
var_ri 0.825 0.828 0.925 0.93 0.938 0.944
var_e 0.962 0.965 0.936 0.935 0.938 0.944

Condition 4 Condition 10 Condition 16

var_p 0.946 0.949 0.907 0.917 0.918 0.918
var_r 0.843 0.846 0.907 0.917 0.836 0.841
var_i 0.929 0.931 0.944 0.954 0.897 0.903
var_pi 0.944 0.946 0.954 0.954 0.918 0.923
var_pr 0.944 0.946 0.852 0.852 0.938 0.944
var_n 0.917 0.919 0.935 0.944 0.949 0.949
var_e 0.949 0.951 0.935 0.944 0.959 0.964

Condition 5 Condition 11 Condition 17

var_p 0.952 0.952 0.931 0.931 0.94 0.945
var_r 0.765 0.767 0.839 0.839 0.839 0.844
var_I 0.908 0.91 0.839 0.839 0.905 0.91
var_pi 0.963 0.965 0.954 0.954 0.965 0.97
var_pr 0.978 0.98 0.908 0.908 0.93 0.935
var_n 0.919 0.921 0.879 0.885 0.935 0.94
var_e 0.963 0.965 0.966 0.971 0.94 0.945

Condition 6 Condition 12 Condition 18

var_p 0.969 0.973 0.937 0.943 0.94 0.94
var_r 0.769 0.769 0.833 0.839 0.77 0.77
var_I 0.9 0.9 0.862 0.868 0.923 0.925
var_pi 0.935 0.935 0.943 0.943 0.938 0.945
var_pr 0.962 0.965 0.943 0.943 0.92 0.925
var_n 0.923 0.927 0.868 0.868 0.96 0.97
var_e 0.954 0.958 0.925 0.931 0.92 0.925

Note. PB = parametric bootstrap.
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Note

1. Brennan (2001) defines two classes of reliability indices: generalizability coefficients and

dependability coefficients. Generalizability coefficients involve only relative error var-

iances (s2
d) and are appropriate for norm-referenced test score decisions when rank-

ordering of persons is of primary interest. Dependability coefficients include both relative

and absolute error (s2
D), such as the variance components associated with items and raters.

Dependability coefficients are suitable for domain referenced decisions. This study focused

on absolute error variances as defined in Equations 5, 6, and 7.
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