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Abstract

Statistical Inference under the Multispecies Coalescent: Methods and Theory

by

Geno A. Guerra

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Rasmus Nielsen, Chair

The rising availability of genome-scale data for a large number of species has
allowed for more in-depth studies of the genetics between species using increasingly
sophisticated methods. The accumulation of pairwise differences between individ-
uals are indicative of how diverged they are in time. The multi-species coalescent
(MSC) has been the most popular framework with which to model the dynamics of
the coalescent process in the presence of species barriers, such as a tree structure.
Modelling using the MSC in the presence of increasing amounts of data (loci and
species) while maintaining feasible computational times is the main focus of many
emerging methods.

In this dissertation, I explore the use of the MSC in 3 different ways, using classical
and novel statistical analysis to provide insight into species divergence parameters. I
begin by constructing a novel statistical method for inferring species tree divergence
times and population size parameters for any given tree topology from sequence data.
The program COAL-PHYRE, presented here, makes use of the MSC marginally
between individuals, as I demonstrate that pairwise information within the MSC is
sufficient to learn times and population sizes on a tree. My focus then shifts to the
derivation of the covariance between pairs of coalescence times and its application
to studying average pairwise differences and the commonly used statistic, FST. I
confirm that estimates of FST are biased, and quantify the effect of not accounting
for this bias in different applications. I conclude by continuing to study the covariance
between coalescence times and its use in inferring species tree topologies. I define
a metric based on these statistics which, when paired with the minimum spanning
tree algorithm, provides estimates of species tree topologies. I provide partial proofs
of statistical consistency of the approach.
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Chapter 1

Introduction

The diversity of all walks of life we see today on earth is due to the process of
evolution over time [5]. This was likely begun with a single common ancestor where
new species were generated through a branching process across millions and billions
of years. The genetic relationship between species is therefore often modelled using
phylogenetic trees. A phylogenetic tree (or phylogeny) traces the evolutionary history
of species through time, with each node on the tree representing a distinct species.
Internal nodes are viewed as species which are the ancestors of all nodes subtending
it. While there may be some semantic difference, we use the terms phylogeny and
species tree interchangeably throughout. Species evolve and split into new species for
many reasons, including adaptation to new environments, and geographic isolation.
At a genetic level, species diverge by evolution through the continual acquisition of
new mutations across the genome.

1.1 Background

Due to the random accumulation of new mutations, comparing the differences in
the DNA sequence data of different species can be used to make estimates of the
divergence patterns in the past. Most notably during meiosis, the process of re-
combination, where aligned homologous chromosomes exchange tracts of their DNA,
allows a single DNA sequence to be a mosaic of genetic histories of one’s ancestors.
Studying different parts of the genome can result in differing estimates of the genetic
history of a set of individuals/species. This evolutionary history of a set of individ-
uals at a particular segment of the genome is known as a gene tree. Gene trees can
differ in topology (ordering of events) from the overall species tree for many rea-
sons, such as migration between species, gene duplication/loss, and most commonly
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through the random population genetic processes.
This genetic process is commonly modelled by the coalescent [20], which models

the likelihood of genealogies within a population. The process models the backwards
in time probability of finding time to a common ancestor when the parent of each
individual is chosen at random from the previous generation. A multi-species ex-
tension, known as the multispecies coalescent (MSC) allows for a local genealogy of
individuals from separate populations to be jointly modelled assuming a species tree
structure. Barring the presence of migration, individuals find a common ancestor
with an individual from another species at some time more ancient than the species
time of divergence.

The random process of finding a common ancestor, or coalescing, can potentially
result in a very recent, or very ancient time to a common ancestor (TMRCA). Under
the MSC, lineages in a single population can fail to coalesce, an event known as
incomplete lineage sorting (ILS). These failures to coalesce in the given time span
can result in gene trees which are incongruent with the species tree topology. Gene
tree discordance due to ILS is a common problem in phylogenetics, and is the main
focus of many researchers (see chapter 2 for references).

Another complicating factor in the estimation of local gene trees is the random
process of mutation. As sequence data is finite, and thus the amount of differing
mutations is also finite, estimating a time to coalescence between lineages comes
with some error. Disentangling gene tree discordance due to mutation from that due
to the MSC is a complicated problem. In chapters 2 and 3, we explore the effects of
estimation error from mutation.

1.2 Outline

As DNA sequencing costs have dropped dramatically in recent years, the availability
of large multi-locus sequences across many species is becoming increasingly more
common. The ability to model these large data sets in efficient ways to estimate
aspects of the unknown evolutionary history of the set of species. In this thesis,
I develop new statistical methods to make estimates of the evolutionary history of
species, and study the effects of estimation error on a set of existing theory, as well
as provide new theory to help quantify the error. While each chapter focuses on
a different problem in phylogenetics, they have the common theme of utilizing the
multispecies coalescent to model gene tree discordance due to ILS. The following
chapters can be succinctly summarized as follows:

• Chapter 2: COAL-PHYRE: A novel, scalable, method which models both ILS
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and mutational variance in sequence data to estimate species divergence times
and population sizes.

• Chapter 3: An exploration of the distribution of pairwise differences between
individuals using the MSC, and its applications to the error in estimates of
FST. This includes new theory on the covariance in coalescence times and in
the covariance of pairwise differences.

• Chapter 4: A fast summary method to estimate species tree topologies using
the covariance between pairwise coalescence times and the minimum spanning
tree algorithm.

Any software developed to accompany each chapter can be found on github, with
links in the respective chapters.
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Chapter 2

A Composite Likelihood Method
for Estimating Species Tree
Parameters from Genomic Data
Using Coalescent Theory

This is joint work with Rasmus Nielsen.

Genome-scale data are increasingly being used for inferences of phylogenetic trees.
When using genomic data from multiple species it is common that different regions
of the genome have local topologies that differ from the species tree. One major
source of this discrepancy is incomplete lineage sorting (ILS) which is well-modeled
using the multi-species coalescent (MSC). Another source of gene tree discrepancies
is estimation errors arising from the randomness of the mutational process during
sequence evolution. There are two major groups of methods for estimating species
tree from whole-genome data: a set of full likelihood methods, which model both
sources of variance, but do not scale to large numbers of independent loci, and a
class of faster approximation methods which do not model the mutational variance.

To bridge the gap between these two classes of methods, we present COAL PHYRE
(COmposite Approximate Likelihood for PHYlogenetic REconstruction), a compos-
ite likelihood based method for inferring population size and divergence time esti-
mates of rooted species trees from aligned gene sequences. COAL PHYRE jointly
models coalescent variation across loci using the MSC and variation in local gene
tree reconstruction within a locus using a normal approximation. To evaluate the
accuracy and speed of the method, we compare the method against BPP, a powerful
MCMC full-likelihood method, as well as ASTRAL, a fast approximate method. We
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show that COAL PHYRE’s divergence time and population size estimates are much
more accurate than ASTRAL, and comparable to those obtained using BPP, with an
order of magnitude decrease in computational time. We also present results on data
from a set of Gibbon species to evaluate the accuracy in topology and parameter
inference on real data, and to illustrate the method’s ability to analyze data sets
which are prohibitively large for MCMC methods.

2.1 Introduction

With the continued rise of modern day sequencing technology, inferences evolutionary
relationships between organisms using multi-gene sequences has become the standard
in the field of phylogenetics. Bifurcating species trees are a common way to represent
these relationships, with branching points representing speciation events in the past.
While a species tree represents the history of these species as a whole, trees in
individual genome segments can have their own, potentially discordant, topology due
to horizontal gene transfer, gene duplication/loss, and/or incomplete lineage sorting
(ILS) [30]. The most ubiquitous of these, ILS, is of particular focus in the field [8], and
can be well-modeled using the multi-species coalescent (MSC) (see e.g., [40]). Many
methods exist to infer the species tree topology of a group of organisms using the
MSC in the presence of ILS, and are shown to be statistically consistent assuming the
gene tree topologies are known without error [23, 32, 29]. This assumption however
is unrealistic, as gene trees typically are estimated from sequence data, with a finite
amount of mutations present. The random process of mutation adds a second layer of
variation among gene trees, and ignoring this can lead to poor method performance
[14, 15, 21]. A class of Bayesian hierarchical methods exist, which jointly model gene
and species tree topologies in a full likelihood framework (e.g. [26, 7, 28, 10, 13, 57]),
and account for both coalescent and mutational variance, but these approaches have
been shown to be computationally intensive and not able to scale to large amounts
of genes or species [27, 31, 47].

Although it has been known for decades that gene trees can differ in topology from
an underlying species tree, a common approach to estimating trees and divergence
times to avoid gene tree estimation error still relies on concatenated “super-matrices”
of gene sequences (where multiple gene alignments are concatenated together to form
one large “super gene”). Under high levels of mutational variation, this concatenation
approach was justified as a way to pool information between highly noisy genes. [50,
25, 12] discuss results showing that concatenation-based approaches are not always
outperformed by more ILS-sensitive methods. In short, concatenation methods seem
to be predictably worse than coalescent based methods under high ILS (when there
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are short branches in the true species tree) and can even give high confidence to
incorrect topologies [43]. Away from these scenarios, concatenation can empirically
perform equal to or better than coalescent based methods. As such, concatenation
is still widely used for inferring phylogenies in many empirical studies.

Divergence time estimates have become an essential addition in phylogenetic
inference, as many studies utilize or require time-calibrated phylogenies, for example
in biogeography, or in modeling of character evolution [4, 41, 38]. In particular,
a challenging problem in phylogenetics is accurately inferring divergence times and
population sizes in the presence of mutational variance. The Bayesian method, BPP
[57] provides highly accurate results under the assumption of a molecular clock and
the Jukes and Cantor model of sequence evolution [18]. However, this method, along
with other Bayesian approaches, is unable to take advantage of the full information
in genomic data sets, and must instead subdivide data into smaller (∼ 100) blocks
of loci to perform inference in reasonable amounts of time.

In this paper, we present a coalescent based method to jointly infer species di-
vergence times and ancient population sizes in the presence of mutational variance/-
gene tree estimation error. For a given topology, or set of k topologies, our method
COAL-PHYRE (COmposite Approximate Likelihood for PHYlogenetic REconstruc-
tion) uses a composite likelihood approach to estimate tree parameters from DNA
sequence data. COAL-PHYRE is able to analyze data with tens of thousands of
genes/loci and multiple individuals in each sampled species. We show that the di-
vergence time and population size estimates of COAL-PHYRE are comparable to
the more time intensive estimates obtained using BPP [57], with at least an order
of magnitude decrease in run time. We also compare to the popular approximate
likelihood method ASTRAL-III [58], to compare the accuracy of our method against
one that does not directly model mutational variance. Lastly, we analyze a data
set of Gibbon species previously analyzed by BPP in [44], and find highly similar
estimated parameters.

We consider a rooted bifurcating species tree S = (S, τ, η) parameterized by
topology S, divergence times τ , and population sizes η. See figure 2.1(a) for an
illustration. Given a recombination-free region of the genome, l, it is expected that
that species tree topology S and the true local gene tree Gl will not always match
due to incomplete lineage sorting (ILS), which is common when branch lengths are
short relative to the effective population sizes. Let ḡl represent an estimated rooted
topology with branch lengths of the local ancestry from the region l. Note that ḡl
need not be bifurcating if the available genetic data is unable to resolve splits in
the tree. This reconstructed gene tree is an estimate of the true local relationship
between individuals, Gl. For any finite amount of information, (number of pairwise
mutational differences on l), there is estimation variance in ḡl. If ḡl was known
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past

present

Species	A:	GTATACG	… TTCTGA
Species	B:	GTATACG	…ATGTGA
Species	C:	CTAATCG	… TTCTGA
Species	D:	CTATTCG	… TTCTGT
Species	E:	CTATTCG	… TTCTGT

Species	A:	TTGTAAC	… GTCACA
Species	B:	TTGTATC	…GTGACA
Species	C:	TTGATAG	… CTCAGA
Species	D:	ATGTTAG	… CTCAGT
Species	E:	ATGTTAG	… CTCTCT

Species	A:	TAGCCCA	… TGCTTC
Species	B:	TAGCCCA	…AGGAAC
Species	C:	TTGGCCT	… TCCAAC
Species	D:	TTCCCCA	… TGCAAC
Species	E:	TTCCGCA	… TGCAAG

…

gene	1: gene	2: gene	k:

(a)

(b)

(c)

(d)

Original	Species	Tree

Estimated	Species	Tree

Figure 2.1: Contribution of coalescent and mutational variance. (a) Orig-
inal bifurcating species tree. (b) K gene trees, each a different realization of a
stochastic lineage sorting process on the original species tree. (c) Sequences created
from the mutational process on each gene tree. (d) Gene trees estimated from the
sequence data, which can differ in topology and branch length from the true gene
trees due to mutational variance.

without error, meaning ḡl = Gl, the MSC can be used to completely model the
variation within and across gene trees, such as in STEM [23]. In reality, however, Gl
cannot be reliably estimated without sampling variance, and accurate estimation of
the species tree from a collection of estimated gene trees requires models accounting
for both the distribution of ḡl given Gl, and Gl given S.

2.2 Methods

Jointly modeling mutation and coalescent variation in a full likelihood framework has
been studied, but is a challenging problem. Unlike the coalescent process, incorporat-
ing a full model of the mutational process requires simulation that is computationally
intensive [14]. Existing approximation methods are unable to separate the effects of
the two sources of variance in their inference procedure, and simulation studies have
been required to test the methods’ accuracy under varying levels of mutational vari-
ance [15]. The authors of ASTRAL [32] studied the effect of mutational variance, and
proposed a data pre-processing weighted statistical binning approach [33, 1] where
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loci with a high “combinability” are used to estimate a single gene tree, and each
gene tree is weighted by the corresponding bin-size used.

Our goal is to incorporate the effect of mutational variance directly into the
likelihood in an interpretable way that is computationally tractable and scalable to
many genes. We propose studying the observed distribution of individual coalescence
times to do this.

We use the approximation that ‘noisy’ coalescence times (coalescence times es-
timated with mutational variation present) are well approximated by a hierarchical
model of the MSC with an added normal distribution to capture both the coalescent
and mutational variance, respectively. When coalescence times are estimated from
sequence data, the layer of noise from gene tree reconstruction error (mutational
variance) effectively smooths out the exponential-like distribution of the MSC, and
the times fit closely to this hierarchical model.

An advantage of this model is that it is straightforward to separate the effects of
the two genetic processes that generate the input data by studying the role of both
the MSC and the normal distribution. A more detailed introduction to the model is
left for later.

Our method takes as input a set of aligned sequence data, and a rooted species
tree topology (or set of topologies), and returns the inferred divergence times and
population sizes which maximize the composite likelihood of pairwise coalescence
times across the inputted loci, along with a likelihood, for each inputted topology.
We assume there is no recombination within a locus, and allow free recombination
between loci, and therefore assume loci are independent. To make use of the MSC,
we assume the sequences have evolved on the gene tree under a molecular clock.
Although not the goal of this paper, mutation rate variation between species can be
incorporated into the gene tree estimation process if the computed gene trees have
time measured in some real-time units as this satisfies the ultrametric property. We
model each estimated pairwise coalescence time at a locus as an independent draw
from a hierarchical MSC-normal distribution. The distribution of true coalescence
times is modeled by the MSC, under a proposed species tree S. Conditional on
those times, the normal distribution is then parameterized using the approximated
mutational variance, derived from properties of the Poisson distribution. Our goal is
to infer a set of divergence times and population sizes that maximize the composite
likelihood of the estimated gene trees.

Mutational variance

As is common in most species tree inference methods ([57, 32, 23] for example),
we assume that genomic data can be divided recombination-free regions, with free
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recombination between them. At any given locus, l, the underlying true gene tree Gl
(including branch lengths) is not known but can be estimated from aligned sequence
data. This estimated gene tree ḡl is a topology with estimated coalescence times.

For a specific time on the estimated tree, we can decompose the estimated time
ḡl(i) into a mixture of two components: the true coalescent time Gl(i), and then
the estimation error resulting from having only a finite number mutations on each
branch εl(i) (see figure 2.1). Mathematically, we can write this as:

ḡl(i) = Gl(i) + εl(i)

We approximate that error εl(i), the difference between the estimated and the (un-
known) true coalescence time, as distributed with mean 0 and variance ξl(i), i.e.,
we assume that an unbiased estimator has been used to estimate ḡl(i). While Gl(i)
can be modeled using the MSC, we use the Poisson distribution of mutations given
a coalescence time to quantify the variance ξl(i), meaning ξl(i) is a function of the
unknown true coalescence time Gl(i).

Under the infinite sites assumption, the number of mutations on a lineage is
Poisson distributed and the variance in the estimate of the coalescence time will also
follow that of a Poisson. In real life applications, the divergence between sequences is
often estimated using finite-sites models. However, even for these models the Poisson
variance might be a reasonable approximation and we will, in any case, evaluate all
estimators presented in this paper using simulations under finite sites models. The
component of the variance in the estimate of the coalescent time contributed by
mutational noise is then

ξl(i) = Var(ḡl(i)|Gl(i)) = Var
(kl(i)
θL |Gl(i)

)
=

Var(kl(i)|Gl(i))
θ2L2

=
θLGl(i)
θ2L2

=
Gl(i)
θL := ωGl(i)

where ω = 1
θL .

While using the variance from the Poisson, we will approximate the sampling dis-
tribution of coalescence time estimates with a normal distribution for computational
convenience. Figure A.1 illustrates examples of distributions of estimated coalescence
times produced under different mutation rates for a fixed locus and true coalescence
time Gl(i), along with the variance approximated under a normal approximation.
Further details for the normal approximation is given below.
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The composite likelihood

The input for the algorithm is K sets of aligned sequences ( ~h1, ..., ~hK), where each
~hj contains M haplotypes from locus j. We assume that the K genes are non-
recombining blocks of the genome, and allow free recombination between genes. We
allow for each locus to be of different length, and allow for missing characters in the
sequences. The rooted gene tree topology, ḡj, of M individuals with branch lengths

is estimated from haplotypes ~hj at locus j from the pairwise number of differences
between the sequences.

We use a composite likelihood by maximizing the product of likelihoods of each
independent gene tree:

L(S|{ḡ1, ..., ḡK}) =
K∏
j=1

f(ḡj|S)

To evaluate the likelihood of an estimated gene tree ḡj, f(ḡj|S), we approximate it
by the composite likelihood obtained as products of the indiviudla likelihood func-
tions. For M individuals in the tree (M ≥ N), we decompose the likelihood into Q
univariate quantities:

f(gj|S) =

Q∏
i=1

PC(ḡj(i)|S)

where Q =
(
M
2

)
is the number of pairs of individuals in the data set. We index

each pair of individuals by a value i, (i ∈ {1, 2, ..., Q}), where ḡj(i) is the estimated
coalescence time of the pair indexed by i on gene tree j. Note that theseQ coalescence
times are not all independent, as there are only M − 1 unique coalescence times on
a tree of M individuals.

We model PC(ḡj(i)|S) with a zero-inflated MSC-normal hierarchical distribution.
Due to the random process of mutation, the frequency of zero coalescence times
needs to be explicitly modeled, as the MSC-normal distribution does not adequately
account for the point mass of zeros.

MSC-Normal distribution

For two individuals, a, b (indexed by i), the divergence time for the species A,B
(a ∈ A, b ∈ B) is denoted by τAB. For a given locus, we observe some estimated
coalescence time ḡj(i) between the pair, based on the reconstructed gene tree at the
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locus. We know (assuming no recombination within the locus) that there is some
underlying, but unknown, true coalescence time Gl(i).

We model the distribution of location-adjusted true coalescence times, Gl(i)−τAB,
using the coalescent with piecewise constant population size history, with population
sizes and times given by SAB. For notation’s sake, we assume the history is a sequence
of R population size- split time pairs {(η0, τ0), . . . , (ηR−1, τR−1)}, where η0 = ηAB and
τ0 = τAB. At each branch on the tree, we can calculate the likelihood of Gj(i) given

the coalescence event occurs within the branch
(
Gj(i) ∈ (τr, τr+1)

)
. To get the

overall likelihood of Gj(i), we sum over all the possible branches.

P (Gj(i) = z,Gj(i) ∈ (τr, τr+1)|S) = P (Gj(i) > τr|S)
1

2ηr
e−

z−τr
2ηr for z ∈ (τr, τr+1)

P (Gj(i) = z|S) =
R−1∑
r=0

P (Gj(i) = z,Gj(i) ∈ (τr, τr+1)|S)

Assuming Gj(i) > τAB, and τ0 = τAB.
Given Gj(i), we view the distribution of ḡj(i) as normally distributed around

mean Gj(i), with variance ωGj(i), as described earlier.

P (ḡj(i) = x|Gj(i) = z, ω) =
1√

2πωz
e−

(x−z)2
2ωz

Combining these distributions, we have

P (ḡj(i) = x,Gj(i) = z|S, ω) =
R−1∑
r=0

P (ḡj(i) = x|Gj(i) = z, ω)

× P (Gj(i) = z,Gj(i) ∈ (τr, τr+1)|S)

=
R−1∑
r=0

P (z > τr|S)
1√

2πωz
e−

(x−z)2
2ωz

1

2ηr
e−

z−τr
2ηr

To get the marginal distribution of estimated coalescence times, we need to inte-
grate over the latent variable, Gj(i), the true coalescence time, which takes values in
(τAB,∞)
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P (ḡj(i) = x|S, ω) =

∫ ∞
τAB

P (ḡj(i) = x,Gj(i) = z|S, ω)dz

=

∫ ∞
τAB

R−1∑
r=0

P (z > τr|S)
1√

2πωz
e−

(x−z)2
2ωz

1

2ηr
e−

z−τr
2ηr dz

=
R−1∑
r=0

P (z > τr|S)

∫ τr+1

τr

1√
2πωz

e−
(x−z)2
2ωz

1

2ηr
e−

z−τr
2ηr dz

=
R−1∑
r=0

P (z > τr|S)
ωΩ(r)

4(ω + ηr)
e
τr
2ηr

×
[
e−xΩ(r)

(
ζ(τr)− ζ(−τr+1)

)
− exΩ(r)

(
ζ(τr)− ζ(τr+1)

)]
Where

Ω(r) =

√
ω + ηr
ω2ηr

ζ(t) = erf
(t ωΩ(r) + x√

2
√
|t|√ω

)
, with ζ(0) = 1

P (z > τr|S) =
r−1∑
l=0

e
−
τl+1−τl

2ηl

erf(q) =
2√
π

∫ ∞
q

e−y
2

dy

Accounting for no observed mutations

In studying sequence data it is common to encounter genes where two or more individ-
uals have identical sequences, especially when genes are short, or the individuals are
of the same species. In constructing a gene tree with no mutations between the two,
this pair of individuals would have an estimated coalescence time of 0. For a given
pair of individuals (indexed by i on the tree), we can calculate P0(ḡj(i) = 0|S, ω),
using the MSC and a Poisson distribution of the mutation process. From the Pois-
son, for a given coalescence time, Gj(i), the probability of observing no mutations on
the branch of length 2Gj(i) is p(ḡj(i) = 0|Gj(i) = z, ω) = e−z/ω.

To obtain the unconditional probability of observing 0 mutations, we need to
integrate over all of the possible values of the underlying (and unknown) true gene
tree coalescence time, Gj(i) ∈ (0,∞):
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P0(ḡj(i) = 0|S, ω) =

∫ ∞
0

p(ḡj(i) = 0|Gj(i) = z, ω)p(Gj(i) = z|S)dz

We break the integral into regions of constant population size, indexed by r ∈
{0, ..., R− 1} and evaluate them separately.

P0(ḡj(i) = 0|S, ω) =
R−1∑
r=0

P (Gj(i) > τr|S)

×
∫ τr+1

τr

P (ḡj(i) = 0|ω,Gj(i) = z)P (Gj(i) = z|S, τr)dz

=
R−1∑
r=0

P (Gj(i) > τr|S)

∫ τr+1

τr

1

2ηr
e−z/ωe−

z−τr
2ηr dz

=
R−1∑
r=0

P (Gj(i) > τr|S)
[ 1

2ηrω + 1

(
e−τr/ω − e−

(τr+1−τr)
2ηr

−τr+1/ω
)]

Where τ0 is the species divergence time for the pair of individuals indexed by i. Cal-
culating the quantity gives us the probability of encountering no mutations between
pair i on gene j given species tree S, gene length L, and scaled mutation parameter
θ. To distinguish this probability from the MSC-Normal distribution also presented
above, we subscript the probability with a zero, P0(ḡj(i) = 0|S, θ,L), and write the
complete likelihood as

PC(ḡj(i) = x|S, ω) =

{
P0(ḡj(i) = 0|S, ω) if x = 0

P (ḡj(i) = x|,S, ω) if x > 0

Likelihood weighting

In the calculation of the composite likelihood, the same information is used in multi-
ple probability calculations. For a given node in a gene tree, let n1 be the number of
individuals on one side of the split, and n2 be the number on the other. The compos-
ite likelihood would then use the information of that node split time n1 × n2 times,
which can become a large number for nodes deep in a gene tree. We apply a weight
to the terms of the likelihood to down-weight this redundant use of information. As
we do not observe the gene trees beforehand, we rely on the species tree topology to
create the weight values. For a pair of individuals, i = (i1, i2), V (i) denotes the split
on the tree such that i1 is on one side of the split, and i2 is on the other. Given V (i),
denote n1(i) and n2(i) to be the number of individuals on each side of the branch,
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such that n1(i)×n2(i) is the number of pairs of individuals who share the same split
at V (i). Define weight

wV (i) =
1

n1(i)n2(i)

such that, for a given split V (i), ∑
j|V (j)=V (i)

wV (j) = 1

where j indicates a pair of individuals (j1, j2) that share the same split event V (i).
We apply this weight to each term in the composite likelihood,

PC(ḡj(i)|S, ω)wV (i)

so that the weight of information applied to each split on the species tree is equivalent.
It should be noted that these weights are only used in parameter inference, as

using weights which depend on the topology can be problematic when comparing
topologies. COAL PHYRE is able to run with and without the weights applied.

Data simulation

To test the effectiveness of parameter inference of COAL-PHYRE, we conduct sim-
ulation studies under varying species tree topologies, divergence times, population
sizes, mutation rates, and data set sizes. We simulate gene trees using ms [16] under
a bifurcating species tree with piece-wise constant population size and no gene flow
or migration after split. For consistency with the assumptions of BPP, we simulate
the mutation process using the Jukes and Cantor mutation model [18] through Seq-
Gen [39] to produce haplotypes under various mutation rates to introduce varying
levels of mutational variance. See Appendix A.2 for more details on the simulations.
Although we use a simple model of evolution with a Jukes and Cantor model, per-
formance using other models will likely be similar as long as gene tree estimation is
done under the same model as used for simulation.

2.3 Simulation Results

5 species asymmetrical tree

We simulate a tree of 5 taxa, with asymmetric topology (5, (4, (1, (3, 2)))), where
species 5 is the outgroup, and 2 individuals sampled per species. The population
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size within a branch is simulated to be constant, but different between branches,
see Appendix section A.2 for exact simulation details. We compare our method,
COAL PHYRE, to BPP [57] and ASTRAL-III [58]. COAL PHYRE and BPP pro-
vides seperate estimates of colaescence times and population sizes, while ASTRAL-III
provides estimates of the coalescence rate of each branch (recall coalescence rate =
branch length/ population size), but is unable to separate the two parameters. To ac-
commodate the comparatively slow run time of the MCMC-based BPP, we simulate
only 100 independent loci for each replicate. It should be noted that COAL PHYRE
can handle much larger sets of genes with only modest increases in run-time. For this
data of 5 species, BPP and COAL PHYRE provide estimates of all 4 split times, as
well as the 9 separate population sizes ( 5 modern-day species and 4 ancestral popu-
lations). ASTRAL provides an estimate of 4 external branch lengths, and 2 internal.
For each method, we provide as input the known species tree, and allow for param-
eter inference under the true topology. Note that BPP and COAL PHYRE take as
input the sequence data directly, but ASTRAL requires gene trees to be provided.
As these simulations use the molecular clock, we use UPGMA to reconstruct gene
trees as input to ASTRAL. We simulate under two different mutation rates, θ = 0.01,
and θ = 0.001 (here θ = 4η0µ where µ is the per generation per base pair mutation
rate), representing both high and low levels of mutation, with each locus chosen to
be 1000 bp long. Under the θ = 0.01 simulation, the the variance in the estimate
of coalescence times is higher than for θ = 0.01 because of the increased mutational
noise.

We simulated 40 separate replicates under the two mutation rates, and used
COAL PHYRE, ASTRAL-III, and BPP to evaluate the accuracy of parameter re-
construction. The results of the estimation from all three methods can be seen in
figure 2.2.

We can see that the performance of ASTRAL deteriorates under the low mutation
rate model, as the method assumes gene trees are estimated without error, which
is violated when the amount of phylogenetic signal in each gene is low. Divergence
time estimates are nearly identical between COAL PHYRE and BPP in the 0.01
mutation rate setting. Under the lower mutation rate, COAL PHYRE tends to have
higher variance and uncertainty as to the true divergence times than BPP. However,
it is, similarly to BPP, approximately unbiased. Population size estimates are again
nearly identical between COAL PHYRE and BPP under the 0.01 mutation rate
setting. For a lower mutation rate (0.001), the two methods are nearly identical in
accuracy for the external population sizes (η1 . . . η5) and COAL PHYRE has more
uncertainty than BPP in estimation of internal population sizes, reflecting the well-
known challenge of disentangling internal branch length from population sizes.

When comparing run times, ASTRAL completed on average in about 1 second per
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Figure 2.2: Full parameter estimation for the fixed species tree topology
(5,(4,(1,(2,3)))). Comparison of parameter estimates between COAL PHYRE, AS-
TRAL and BPP by branch over 40 iterations, using 100 sampled loci each iteration.
The y-axis gives the standardized deviation from the true parameter value. In each
panel, the top plot represents a high mutation rate setting, where mutational vari-
ance is low, and the bottom represents a ×10 lower mutation rate, where mutational
variance is larger. A) A comparison of estimated scaled branch lengths (branch
length divided by population size) for the three methods. Only branches for which
ASTRAL can provide an estimate are included. B) A comparison of divergence
time estimates between COAL PHYRE and BPP. C) A comparison of population
size estimates between COAL PHYRE and BPP.
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replicate, much faster than either COAL PHYRE or BPP, but requires pre-computed
gene trees before running. COAL PHYRE outputs results for each replicate in, on
average, 1 minute whereas BPP required ∼ 10− 20 minutes to converge, both using
a single-core on a standard laptop.

8 species symmetrical tree

Here we simulate a balanced tree topology of 8 species with 2 diploid individuals
sampled per species. We simulate under the assumption of constant population size
within each branch, but population sizes vary among branches [RN: insert reference
to where full details can be found]. Again, we compare COAL PHYRE to BPP [57],
and ASTRAL-III [58]. We simulate 100 independent sequences in each replicate, to
compare against BPP at a reasonable run time. Both COAL PHYRE and BPP can
provide estimates of all 7 divergence times, and 15 population sizes (8 modern day,
and 7 ancestral). ASTRAL only provides estimates for the leaf population branch
lengths, and internal branches which are not directly adjacent to the ancestor of all
species in the tree, (so not branch ”1234” or ”5678”). For BPP and COAL PHYRE
we provide as input the sequence data, the mutation rate, and the known species
tree topology. To use ASTRAL, we provide a file of gene trees, pre-estimated using
UPGMA, as well as the known species tree topology.

We simulate under two different mutation rates θ = 0.01 and θ = 0.001 ( see
above 5 species simulation for discussion on units), with each sequence simulated to
be 1000 bp long (Figure 2.3). Similarly to the 5 species simulation, the branch length
estimates of ASTRAL are biased downwards for the low mutation rate setting. As
both COAL PHYRE and BPP explicitly model the mutational noise, they do not
experience the same bias. BPP and COAL PHYRE demonstrate approximately
the same level of performance at estimating divergence times and population sizes
in the species tree. In particular, both methods provide highly accurate estimates
of the leaf branch population sizes (η1,...η8). On a single-core laptop computer,
COAL PHYRE completed each of the replicates in 3-10 minutes. We were able to
run BPP in approximately 30-60 minutes per replicate. We note that we allow BPP
to complete under the recommended settings.

2.4 Analysis of Gibbon Data

Here we analyze two full-genome data sets from [2] and [51] of four gibbon species:
( Hylobates moloch (Hm), Hylobates pileatus (Hp)), Nomascus leucogenys (N),
Symphalangus syndactylus(S), and Hoolock leuconedys (B). Gibbons (Hylobatidae),
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Figure 2.3: Full parameter estimation for the fixed species tree topology
(((1,2),(3,4)),((5,6),(7,8))). Comparison of the parameter estimation accuracy
between COAL PHYRE (blue) and BPP (orange), and ASTRAL-III (red) using
100 independent genes, across 40 independent replicates. A) A comparison of
estimated scaled branch lengths (branch length divided by population size) for the
three methods. Only branches for which ASTRAL can provide an estimate are
included. B) A comparison of divergence time estimates between COAL PHYRE
and BPP. C) A comparison of population size estimates between COAL PHYRE
and BPP.

close relatives to humans and great apes, are found throughout Southeast Asia’s
tropical forests. A recent study, Shi and Yang, 2017[44] (hereby referred to as SY17)
used the MCMC program, BPP ([57]), along with a suite of other methods, to
attempt to resolve the phylogenetic relationship of these species. The results of the
study show there are two most likely species tree topologies, (H, (N, (B, S))), which
we will call Tree 1, and (N, (H, (B, S))), denoted by Tree 2. The authors also reported
estimates for the population sizes and divergence times on the trees. (Note H= (Hm,
Hp) indicating two subpopulations of the Hylobates species).
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The data

The first data set (Noncoding) consists of 12,413 loci, each of 1,000 bp in length.
The second data set (Coding) consists of 11,323 coding loci, each of 200bp in length.
Within each data set one human haplotype (O) is used as an outgroup. There are a
total of 17 haplotypes at each locus, with two diploid individuals from each Gibbon
population, allowing for the estimation of leaf population sizes. See SY17 for a more
detailed description of the data.

Results

We use COAL PHYRE to analyse each of these data sets to provide a likelihood
for each of the two topologies, and estimates of the divergence times and population
sizes for each tree. To compare with the results of BPP we assume the JC69 [18]
model of mutation. As well, we use mutation rate parameters consistent with the
means of the Gamma priors used in SY17.

Divergence time and population sizes estimates

The parameter values estimated using COAL PHYRE, along with those estimated
using BPP in are presented in Tables 2.1, 2.2, 2.3, 2.4. In each scenario, we found
that COAL PHYRE assigned the highest likelihood (between Tree 1 and Tree 2)
to topology (H, (N, (B, S))), consistent with the findings in SY17. Also, note that
population sizes are not reported for the human out group O, as only one haplotype
was used, and so there is no information to estimate ηO.

Under the most likely topology (Tree 1) our estimates of the parameters are over-
all quite similar between coding and noncoding data sets, providing some evidence
of internal consistency. To verify this, as suggested in SY17, we fit a regression
line, y = bx between the 5 parameter points (each point a pair of τ divergence time
estimates, one from the noncoding dataset, the other from coding) to measure the
internal consistency of the estimates from COAL PHYRE. Our analysis under Tree
1 finds τ(C) = 0.69τ(NC) with r2 = 0.988. This demonstrates that our timing esti-
mates are consistent between the two data sets, and that the mutation rate of the
coding data is about 2/3 the rate of the non coding loci. SY17 found a rate of 0.73
with r2 = 0.985, from their analysis. For the population size estimates (η’s) of the
leaf populations (B, S, N, Hm, Hp) we find η(C) = 0.95η(NC) with a correlation of
r2 = 0.995 compared to r2 = 0.986 from SY17.

We can also compare the correlation between our results and the results from
BPP. Divergence time estimates for the (H(N(B,S))) coding data set show an r2 =
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0.999 between the divergence times estimated between the two methods, with esti-
mates τCOAL PHYRE = 0.81τBPP . For the noncoding data set and tree (H(N(B,S)), we
find an r2 = 0.9988 with τCOAL PHYRE = 0.94τBPP. When comparing the leaf popula-
tion sizes we find, for the coding data set, ηCOAL PHYRE = 1.43ηBPP with r2 = 0.995.
For the noncoding data set we find ηCOAL PHYRE = 0.97ηBPP with r2 = 0.998.

We observe that our parameter estimates overall agree with the results of BPP,
differing mainly in estimation of internal population sizes. The largest discrepancies
occur on the (N(H(B,S)) tree (tree 2), which demonstrates how the two methods
handle fitting parameters to a potentially incorrect topology. We acknowledge that
SY17 observed BPP had mixing issues for such a large data set, and parameter
estimation with short branch lengths can become highly variable. The extremely
high population size estimate (which we write as “inf”) of ηHBS in the noncoding
tree 2 (N(H(B,S))) indicates that COAL PHYRE attempts to model extremely high
ILS in the HBS branch, attempting to fit a zero-probabilty of coalescence in that
branch.

Each of the four tables demonstrates one run of COAL PHYRE, which on a
single core is able to run on average in 10(±5) hours. As reported in SY17, BPP
took approximately 200 hrs for each analysis on a single core using the same data as
COAL PHYRE.

Predicted distribution of estimated coalescence times

Parameters on the species trees are estimated to best match the distribution of esti-
mated coalescence times in the data, according to some likelihood function. In this
section we assess the fit of the predicted distribution of estimated pairwise coalescence
times of the Gibbon data when using the zero inflated MSC-Normal distribution im-
plemented in COAL PHYRE.

For a given set of tree parameters (topology, times and population sizes), we
can study the resulting marginal distributions of estimated times. As we have two
sets of tree parameters for each scenario, one from each method, we can compare
the distributions predicted by each against the distribution of estimated times from
data.

We specifically study the most likely tree topology, Tree 1 (H,(N,(B,S))), param-
eterized by the sets of divergence times and population sizes from Tables 2.1 and 2.2
(see Figures 2.5 and 2.4, respectively). Using the parameter values estimated by both
methods, we can compare the predicted distribution under each set of parameters
against the actual sampled distribution from the estimates across loci, and against
one another to assess a level of ’best fit’ to the data.
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Figure 2.4 shows the distribution of binned estimated pairwise coalescence times
from the data, along with the predicted distributions using the parameters of both
COAL PHYRE and BPP for the noncoding data set under Tree 1. From the plot,
we can see that the predicted distributions between the two methods agree almost
exactly in each panel. Figure 2.5 is the same approach, using the coding dataset.

Across all distributions of estimated coalescence times, it is expected that COAL
PHYRE should fit the data as well or better than the parameters from BPP, as the
parameters inferred by COAL PHYRE are estimated to fit specifically this likelihood.

Each plot also shows the predicted fraction of sequences that have no pairwise
differences, as well as the observed frequency of zeros in the data. Comparing the
parameters from COAL PHYRE and BPP on the accuracy of predicting the fraction
of zeros shows that BPP is slightly more accurate in this respect, on average.

Overall, the parameters inferred by each method fit the shape of the distribution
of estimates well.

Run times

Each of the four tables demonstrates one run of COAL PHYRE, which on a single
core is able to run on average in 10(±5) hours. As reported in SY17, BPP took
approximately 200 hrs for each analysis on a single core using the same data as
COAL PHYRE.

Table 2.1: Table of Gibbon results: (H, (N, (B, S))) coding

Method ηB ηS ηHm ηHp ηN

COAL PHYRE 0.91 1.12 1.22 0.70 1.61
BPP 0.6 0.8 0.9 0.4 1.2

ηBS ηH ηNBS ηHNBS ηOHNBS

COAL PHYRE 11.84 1.97 0.18 3.27 8.41
BPP 26.7 2.1 10.4 1.9 7.8

τBS τH τNBS τHNBS τOHNBS

COAL PHYRE 1.65 0.96 2.11 2.12 10.87
BPP 2.13 0.8 2.7 2.75 11.9
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Table 2.2: Table of Gibbon results: (H, (N, (B, S))) noncoding

Method ηB ηS ηHm ηHp ηN

COAL PHYRE 0.90 1.18 1.21 0.62 1.81
BPP 0.9 1.3 1.3 0.6 1.9

ηBS ηH ηNBS ηHNBS ηOHNBS

COAL PHYRE 175.32 3.83 17.53 2.01 5.1
BPP 6.7 2.5 16.4 2.4 5.5

τBS τH τNBS τHNBS τOHNBS

COAL PHYRE 2.28 1.11 3.98 4.48 15.17
BPP 3.65 1.6 3.75 4.6 15.4

Table 2.3: Table of Gibbon results: (N, (H, (B, S))) coding

Method ηB ηS ηHm ηHp ηN

COAL PHYRE 0.91 1.13 1.27 0.73 1.61
BPP 0.6 0.8 0.8 0.4 1.2

ηBS ηH ηHBS ηHNBS ηOHNBS

COAL PHYRE 3.87 1.43 24.87 3.22 8.43
BPP 22.3 2.0 2.6 1.9 7.8

τBS τH τHBS τHNBS τOHNBS

COAL PHYRE 1.66 1.04 1.82 2.14 10.85
BPP 1.9 1.0 3.0 3.05 11.5

Table 2.4: Table of Gibbon results: (N, (H, (B, S))) noncoding

Method ηB ηS ηHm ηHp ηN

COAL PHYRE 0.9 1.18 1.22 0.62 1.82
BPP 0.9 1.3 1.3 0.6 2.0

ηBS ηH ηHBS ηHNBS ηOHNBS

COAL PHYRE 3.73 112.32 inf 2.00 5.10
BPP 12.5 2.3 14.4 2.5 5.5

τBS τH τHBS τHNBS τOHNBS

COAL PHYRE 2.29 1.12 4.16 4.45 15.17
BPP 3.75 1.6 4.3 4.8 15.25
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2.5 Discussion

Our simulations suggest that COAL PHYRE provides estimates that are comparable
to BPP and much more accurate than estimates obtained using ASTRAL-III. We
observe a strong effect of mutational variance on estimates obtained using ASTRAL
in a low mutation rate setting. We acknowledge work done in [1, 33] which presents
a data pre-processing step to counter the effects of mutational variance for programs
such as ASTRAL which do not directly model it.

For the Gibbon data set, we showed that our method can analyze genomic-sized
data sets with similar performance to BPP, with an order of magnitude decrease
in run times. The composite likelihood approach of only using pairwise coalescence
times implemented and presented here seems to sufficiently capture the relevant
parts of the data needed to infer the tree parameters. COAL PHYRE recovered the
same most likely topology as presented in [44], for both the coding and non coding
datasets. The largest discrepancies between our method and BPP in the analysis of
the gibbon data was in fitting parameters to tree 2, which both methods infer to be
an incorrect topology. We also see that large deviations in parameter estimates, can
have negligible effect on the estimated distribution of estimated coalescence times,
for example ηBS in Table 2.2, and the resulting effect in Figure 2.4.

When studying species tree estimation, it is typical to also study topology re-
construction accuracy. We have found in our simulations that ASTRAL is su-
perior in topology reconstruction, and with the speed of ASTRAL compared to
COAL PHYRE, we do not make claims that our method is the better method for
inferring topologies. The information extracted and used from the data by the two
methods is largely orthogonal; ASTRAL uses purely the topological information
from each estimated gene tree, and discards all information on coalescence times,
whereas COAL PHYRE only uses marginal coalescence times from each gene, and
discards topology information. This lends itself to the idea that the information
used in COAL PHYRE and ASTRAL can be combined or that, at least, be em-
ployed in tandem. For example, it might be possible to use ASTRAL to estimate the
most likely topology (or set of topologies), and then using our method to estimate
parameters of the topologies of interest.

Lastly, none of these methods account for migration/gene flow between species
after divergence, something which is common in most real data sets. Failing to
account for this potential gene flow can affect topology inference as well as drastically
effect divergence time and population size estimation. Accounting for and modeling
potential sources of admixture is a next step for these parameter inference methods.
It is worth noting that a preprint for an extension of BPP implementing the full
MSC with introgression (MSci) has recently been released [11]. Identifying locations
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of admixture and fitting admixture branches to a species tree are left to future work
for COAL PHYRE.

More studies are needed to understand the robustness of the different methods,
for example with regards to substitution models or, and in particular, the effect of re-
combination within a block. Genomic data is not truly composed of free recombining
segments with no internal recombination, which is effectively assumed by all meth-
ods analysed in this paper. To address the problem of recombination within blocks,
a potential approach is to divide blocks into even smaller units, thereby increasing
the amount of mutational variance within each unit, but decreasing the probability
of recombination within the unit. As COAL PHYRE is designed specifically to han-
dle increased variance in estimation, this could be a potential work-around in cases
where recombination might be a challenge.

Software Availability

Along with this manuscript, we provide code (implemented in C++) available for
download which implements the likelihood presented here, named COAL-PHYRE.
The code is implemented in C++ and freely available at https://github.com/

gaguerra/COAL-PHYRE.

https://github.com/gaguerra/COAL-PHYRE
https://github.com/gaguerra/COAL-PHYRE
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Chapter 3

Covariances of Pairwise
Differences on a Multi-Species
Coalescent Tree with Implications
for the Statistical Properties of
Sequenced-based FST Estimators

This is joint work with Rasmus Nielsen.

We here derive the variances and covariances of pairwise coalescence times in a
general phylogenetic model with piecewise constant changes in population size. We
use these expressions to derive the variance in average pairwise differences within and
between groups and to derive approximate expressions for the expectation and bias
of a sequence-based estimator of FST. We show that the commonly used estimator
of FST is generally biased and will consequently lead to biases in standard appli-
cations such as the estimation of effective rates of migration. We also explore the
accuracy of the common log transformation and ratio transformation for linearizing
FST and show that the latter performs better. A freely available software package is
provided, STCov, to calculate mean, variances, and covariances in coalescence times
and pairwise differences, under arbitrary piecewise constant species phylogenies.
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3.1 Introduction

Takahata and Nei [49] derived expressions for the variance in average pairwise nu-
cleotide differences and Nei and Li’s ‘net number of differences’[35] (d). They as-
sumed a Kingman coalescent model [20] of two diverging populations, and an infinite
sites model of mutation [19, 55]. These classical results provided insights into when
the net number of differences can be used as a reliable estimator for species diver-
gence, and the appropriate sampling schemes to combat increased variance. However,
the results relied on the assumption of constant and equal population sizes among
populations and through time. Using the multispecies coalescent (MSC) we extend
these results to arbitrary piecewise constant population size histories along a phy-
logeny. To do so, we present general equations for calculating the covariance of
pairwise coalescence times, for any 2,3 or 4 individuals, arbitrarily chosen within
the phylogeny. We also derive expressions for the expected shared branch length
between sets of lineages. We provide a software package, STCov, for calculating
these quantities. We also use the results to study the sampling distribution of a
statistic measuring FST, [45], and the effects of sampling variance and demographic
changes on various FST-based measurements, and demonstrate potential large bias
when using FST estimated from a small number of segregating sites.

3.2 Average Pairwise Differences

Borrowing notation from Takahata and Nei [49], let dX and dY be the mean num-
ber of nucleotide differences between two (haploid) individuals sampled from within
population X or Y , respectively. Similarly, let dXY be the average number of nu-
cleotide differences between two individuals randomly sampled from populations X
and Y . We can calculate dX , dY , and dXY based on sample sizes of nX and nY from
populations X and Y , respectively, as follows:

dX =
2

nX(nX − 1)

nX−1∑
i=1

nX∑
i′=i+1

ki,i′

dY =
2

nY (nY − 1)

nY −1∑
i=1

nY∑
i′=i+1

kj,j′

dXY =
1

nXnY

nX∑
i=1

nY∑
j=1

ki,j
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Where ki,i′ is the number of pairwise nucleotide differences between individuals i and
i′.

To measure the net number of nucleotide differences between two populations,
Nei and Li’s [35] d is defined as

d = dXY −
1

2
(dX + dY ).

The relationship between differences within and between populations gives an
indication of the degree of population subdivision. d specifically measures the excess
number of substitutions between populations, which quantifies the extent of diver-
gence between populations. These measures of species divergence form the basis
for many evolutionary analyses and are among the most basic and commonly used
inferential tools in modern population genetics.

Understanding the mean, variance, and covariance of these statistics (dX , dY ,
dXY , d) under arbitrary genetic and species tree models is essential for their biological
interpretability, and considerable previous work has been devoted to understanding
their properties. Tajima [48], and Takahata and Nei [49] studied the variance of
average pairwise differences in a panmictic population, and in a split model with
constant population size. In a series of papers, Wakeley studied the variance in
pairwise differences in a general model of population sub-division [52], the average
pairwise differences in a model with migration [53]. He demonstrated the usefulness
of the variance as an estimator of recombination rates [54].

Here we extend this work to the general case of a multispecies split model with
no migration, but arbitrary piecewise constant population size along the phylogeny.
We derive exact expressions for the means, variances and, in particular, covariances
of coalescence times and of average pairwise differences as functions of the mutation
rate, sample size, divergence times, and effective population sizes. In order to do
so, we first derive the covariance of pairwise coalescence times and expected shared
branch length between pairs of lineages, under arbitrary piecewise-constant species
tree demographic models. We then use these results to demonstrate the effects of
various demographic, mutational, and sampling size changes on the distribution of
d, and extend the discussion to the investigate the statistical properties of Slatkin’s
FST estimator [45], and some of its various applications [37, 3, 17].
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3.3 Mean, Variance, and Covariance of Average

Pairwise Differences

In this section, we review previous results for the mean, variance and covariance
of average pairwise nucleotide differences for individuals sampled from two popula-
tions, X and Y , as functions of the individual pairwise difference terms (ki,i′ , ki,j...).
Suppose i, i′, i′′, i′′′ are individuals from population X, and j, j′, j′′, j′′′ are individuals
from population Y . By definition we have:

E(dX) = E(ki,i′)

and likewise for population Y . Suppose i, j are individuals from X, Y respectively,
then:

E(dXY ) = E(ki,j).

Following the derivations in Tajima [48], Takahata and Nei [49], and Wakeley [53],
the variance and covariance of dX , dY , dXY , and d can be written as follows:

Var(dX) =
1

nX(nX − 1)

[
2E(k2

i,i′) + 4(nX − 2)E(ki,i′ki,i′′) + (nX − 2)(nX − 3)

× E(ki,i′ki′′,i′′′)
]
− E(ki,i′)

2

Var(dY ) =
1

nY (nY − 1)

[
2E(k2

j,j′) + 4(nY − 2)E(kj,j′kj,j′′) + (nY − 2)(nY − 3)

× E(kj,j′kj′′,j′′′)
]
− E(kj,j′)

2

Var(dXY ) =
1

nXnY

[
E(k2

i,j) + (nY − 1)E(ki,jki′,j) + (nX − 1)E(ki,jki,j′) + (nX − 1)

× (nY − 1)E(ki,jki′,j′)
]
− E(kij)

2

Var(d) = Var(dXY ) +
1

4

[
Var(dX) + Var(dY ) + 2Cov(dX , dY )

]
− Cov(dXY , dX)

− Cov(dXY , dY )

Lastly, formulas for the covariance of average pairwise difference terms:

Cov(dX , dY ) = Cov(ki,i′ , kj,j′)

with the result due to the fact that the covariance of sums can be decomposed into
the sums of covariances.
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Derived in [49], covariance equations involving the cross population:

Cov(dXY , dX) =
2

nX
E(ki,i′ki,j) +

nX − 2

nX
E(ki,i′ki′′,j)− E(ki,i′)E(kj,j′)

Cov(dXY , dY ) =
2

nY
E(kj,j′ki,j) +

nY − 2

nY
E(kj,j′ki,j′′)− E(ki,i′)E(kj,j′)

These expressions are all functions of the individual pairwise differences. In what
proceeds we demonstrate that these expressions can be generalized as functions of
pairwise coalescence times.

3.4 Pairwise Mutational Differences

In this section, we generalize previous work, [49, 48], by deriving expressions for
the covariance of pairwise differences under arbitrary demographic settings using the
coalescent. Throughout we will assume an infinite sites model [19, 55]. We first
review results on the mean and variance from previous work (e.g., [48], [49],[53]).

Mean and Variance

Recall that for a given coalescence time ti,j between two lineages, i and j, the expected
number of nucleotide differences between the pair is equal to 2µti,j, i.e.

E(ki,j) = 2µE(ti,j).

Under the assumption that mutations can be modelled by a Poisson distribution, it
follows that:

Var(ki,j|ti,j) = E(ki,j|ti,j)
Applying the law of total variance, we see:

σ2
ki,j

= Var(ki,j) = E
(
Var(ki,j|ti,j)

)
+ Var

(
E(ki,j|ti,j)

)
= E(2µti,j) + Var(2µti,j)

= 2µE(ti,j) + 4µ2Var(ti,j)

and we can then get the second moment of the distribution of pairwise nucleotide
differences, E(k2

i,j), from the definition of variance:

E(k2
i,j) = σ2

ki,j
+ E(ki,j)

2 = 2µE(ti,j) + 8µ2E(ti,j)
2
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Covariance

Let i, i′, j, j′ be four individuals from arbitrary populations. Let T be a local coa-
lescent tree relating the four individuals at a non-recombining region of the genome.
Here we show that:

Cov(ki,i′ , kj,j′ |T ) = µti,i′∩j,j′ (3.1)

and consequently, the unconditional quantity,

Cov(ki,i′ , kj,j′) = µE(ti,i′∩j,j′) + 4µ2Cov(ti,i′ , tj,j′) (3.2)

where ti,i′∩j,j′ denotes the amount of branch length on T shared between the branch
connecting pair i, i′ and the branch connecting pair j, j′. Figure 3.1 provides an
illustrative example of this quantity, and the appendix section B.5 provides a more
technical treatment. To prove these results, we start by revisiting the idea that the
mutational process given a branch length follows a Poisson distribution. Given T ,
with coalescence times ti,i′ and tj,j′ from T , we know that

ki,i′|ti,i′ ∼ Poisson(2µti,i′) and kj,j′ |tj,j′ ∼ Poisson(2µtj,j′)

where 2ti,i′ is the amount of total branch length between the two individuals. A
key feature of the Poisson distribution is that the sum of Poisson random variables
also follows a Poisson distribution. To exploit this, let ti,i′∩j,j′ denote the amount
of branch length on T shared by pairs i, i′ and j, j′. The branch length between
i, i′ not shared with pair j, j′ is denoted by ti,i′\j,j′ , with similar notation for pair
j, j′ by swapping labels. We can decompose the branch lengths into the shared and
non-shared segments as:

2ti,i′ = ti,i′∩j,j′ + ti,i′\j,j′ and 2tj,j′ = ti,i′∩j,j′ + tj,j′\i,i′

Notice that ki,i′∩j,j′ |T , ki,i′\j,j′|T , and kj,j′\i,i′ |T are independent Poisson random vari-
ables. Similarly, ki,i′ = ki,i′∩j,j′ + ki,i′\j,j′ and kj,j′ = ki,i′∩j,j′ + kj,j′\i,i′ , where ki,i′∩j,j′ ,
kj,j′\i,i′ and ki,i′\j,j′ are independent of each other conditionally on T .

We can expand Cov(ki,i′ , kj,j′ |T ) as follows:

Cov(ki,i′ , kj,j′|T ) = Cov(ki,i′∩j,j′ + ki,i′\j,j′ , ki,i′∩j,j′ + kj,j′\i,i′|T )

= Var(ki,,i′∩j,j′ |T ) + Cov(ki,i′∩j,j′ , ki,i′\j,j′|T )

+ Cov(ki,i′∩j,j′ , kj,j′\i,i′|T ) + Cov(ki,i′\j,j′ , kj,j′\i,i′ |T )

= Var(ki,i′∩j,j′|T )

= µti,i′∩j,j′



CHAPTER 3. COVARIANCE AND FST 33

a b c d a b c d a bc d a bc d

A

B

C

Possible topologies

↵ 1

↵
2

↵ 3

T1 T2 T3 T4

=

Shared branch length

Expected shared branch length

ta,b\c,d

E(ta,b\c,d) = E(↵1 + ↵2|T3)P (T3) + E(↵3|T4)P (T4)

0 0 ↵1 + ↵2 ↵3

Figure 3.1: (A-C) Explanation of expected shared branch length for 4 unique indi-
viduals. Blue lines indicate the branch length between individuals a and b. Red lines
indicate branch length between c and d. Overlapping blue and red lines (along with
α terms) indicate shared branch length. The 4 tree topologies are representative of
the possible gene tree orderings, but it should be noted that these representative
trees assume a and b are exchangeable, as well as c and d. The expected shared
branch length is a weighted sum of the shared branch lengths across all possible
topology orderings.

The overall result is that the covariance of pairwise differences given the coalescent
tree T is equal to the mutation rate times the shared branch length.

To get the unconditional quantity, Cov(ki,i′ , kj,j′), we apply the law of total co-
variance:

Cov(ki,i′ , kj,j′) = E
(

Cov(ki,i′ , kj,j′ |T )
)

+ Cov
(
E(ki,i′ |T ),E(kj,j′ |T )

)
= E(µti,i′∩j,j′) + Cov(2µti,i′ , 2µtj,j′)

= µE(ti,i′∩j,j′) + 4µ2Cov(ti,i′ , tj,j′)

The case when we have only three unique individuals (ki,i′ , ki,j) has the same
form, by replacing j′ with i in the equations above.

Takahata and Nei [49] have previously derived formulas for the covariance under
constant population size, see Appendix section B.3 which presents their results and
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a comparison to the generalized results presented here.

3.5 Mean, Variance and Covariance in Pairwise

Coalescence Times

We assume species evolution follows a bifurcating species tree S = (S, τ, η), with no
migration. Each branch, i, of S is a parameterized by constant diploid population
size ηi, start time, τi, and end time τp(i), where p(i) is the parent branch of i. Let µ be
the mutation rate (constant across the genome/species) per sequence per generation.
Time is measured in units of generations in the past. We implicitly assume that all
coalescent calculations here are conditioned on a fixed species tree S, although the
tree is not always indicated in the notation for the sake of simplicity.

Mean and Variance in Coalescence Times

Let ti,j be the coalescence time of two individuals, i and j sampled from species
X and Y , respectively respectively. For species tree S, denote the marginal tree
SXY = (τXY , ηXY ) of two species, where τXY represents the set of divergence times
of species ancestral to both X and Y , indexed by (τ1, τ2, ...), where τ1 := DXY , the
divergence time for species X and Y . Similarly, ηXY represents the corresponding
population sizes. Suppose there are V ≥ 1 intervals in SXY .

Under this marginal tree, we can analytically calculate the first two moments of
the distribution of ti,j as:
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E(ti,j|S) =
V∑
k=1

P22(τ1, τk)

∫ τk+1

τk

ti,jP (ti,j|S, τk)dti,j

=
V∑
k=1

P22(τ1, τk)

∫ τk+1

τk

ti,j
2ηk

e
−

(ti,j−τk)
2ηk dti,j

=
V∑
k=1

P22(τ1, τk)
[
− (τk+1 + 2ηk)e

−
τk+1−τk

2ηk + τk + 2ηk
]

E(t2i,j|S) =
V∑
k=1

P22(τ1, τk)

∫ τk+1

τk

t2i,jP (ti,j|S, τk)dti,j

=
V∑
k=1

P22(τ1, τk)

∫ τk+1

τk

t2i,j
2ηk

e
−

(ti,j−τk)
2ηi dti,j

=
V∑
k=1

P22(τ1, τk)
[
− (τ 2

k+1 + 4τk+1ηk + 8η2
k)e
−

(τk+1−τk)
2ηk + τ 2

k + 4τkηk + 8η2
k

]

Where P22(τ1, τk) represents the probability that lineages i and j fail to coalesce in
the time interval (τ1, τk). P22(τ1, τk) is the probability that 2 lineages which enter
the time interval at τ1 (backwards in time) have not coalesced by time τk:

P22(τ1, τk) =
∏

τ1≤τl<τk

e
−

(τl+1−Tl)
2ηl

Note that the mean E(ti,j|S), and variance Var(ti,j|S) = E(t2i,j|S)− E(ti,j|S)2 of
coalescence times under the standard piecewise constant coalescent process are just
a simply weighted sums over coalescence intervals.

Covariance in Pairwise Coalescence Times

The challenge in calculating the covariance terms from a species tree, S, comes
from the combinatorial problem of integrating over all of the possible times and
orderings of the coalescent events along the multi-species tree. The general formula
for covariance in this case is

Cov(ti,i′ , tj,j′|S) = E(ti,i′tj,j′|S)− E(ti,i′ |S)E(tj,j′|S)
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where the last term is simply a product of independent expectations. The first term
on the right hand side of the equation is what we will focus on, in particular we
write:

E(ti,i′tj,j′ |S) =

∫ ∞
Dj,j′

tj,j′P (tj,j′ |S)

∫ ∞
Di,i′

ti,i′P (ti,i′|tj,j′ ,S)dti,i′dtj,j′

where Di,i′ is the species divergence time between individuals i, i′ from S, where
Di,i′ = 0 if i, i′ are of the same species (similarly for Dj,j′). We assume all coalescence
events must be at least as ancient as the species divergence time, (e.g. tj,j′ ≥ Dj,j′),
i.e. we assume no introgression or admixture.

To evaluate this quantity, E(ti,i′tj,j′ |S), we consider 6 separate conditional cases.
Recall for a bifurcating tree of 4 individuals, there are 3 unique coalescence events.
The 6 cases correspond to the possible orderings of coalescence events for this local
tree of 4 individuals, given that we structure the joint likelihood as P (ti,i′|tj,j′ ,S)
×P (tj,j′ |S):

C1. ti,i′ is the first coalescent event.
C2. ti,i′ is the second event, tj,j′ is the third.
C3. ti,i′ = tj,j′ as the third coalescent event.
C4. tj,j′ is the second event, ti,i′ is the third.
C5. tj,j′ is the first event, ti,i′ is the second.
C6. tj,j′ is the first event, ti,i′ is the third.

Here, “first event” implies most recent, and “third” implies most ancient. Condi-
tioning on each of these 6 events, and evaluating each expectation separately, the
expression for the joint expectation becomes:

E(ti,i′tj,j′ |S) =
6∑

k=1

E(ti,i′tj,j′ |S,Ck)P (Ck|S)

In the presence of no population isolation (all individuals from the same species),
but piecewise constant population size history, the set of recursions and integrals is
presented in its entirety in the appendix. This calculation is useful in the instance
that all 4 lineages survive to a common population without having coalesced with
one another, which occurs with some probability in each case.

Introducing a species tree structure on top of the 6 cases increases the number of
cases to consider. There are 5 general possible species tree configurations that can
arise, see figure B.11, located in the appendix. We have derived exact equations and
recursions to evaluate all 6 cases across the 5 general possible tree configurations,
and have implemented them in C++ code which is freely available to use (more
information in the code availability section). From this implementation we are able to
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calculate exact theoretical quantities for these statistics under any piecewise constant
scenario.

3.6 Accuracy of Coalescent Calculations

To demonstrate the accuracy of the coalescent equations above, as implemented in
our software, STCov, we compare the theoretical results against empirical estimates
from gene trees using ms, [16]. We test 2 demographic scenarios for a tree of species
X and Y : ηY = ηX , and ηY = 2ηX , where η represents scaled effective population
size. We assume ηXY = ηX in both scenarios. Let lineages i1, i2, i3 originate in
population X, and lineages j1, j2, j3 originate in Y . We generate 500 independent
gene trees from ms for each demographic scenario (population sizes and divergence
time), and calculate sample mean, variance, and covariance terms. Overall we see
that the theoretical calculations from STCov match simulations (dots) well, while
variation in the empirical estimates can be attributed to a finite sample size.
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Figure 3.2: ηY = ηX. Theoretical results from STCov are plotted in black, with
dots representing empirical estimates from 500 independent local trees.
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Figure 3.3: ηY = 2ηX. Theoretical results from STCov are plotted in black, with
dots representing empirical estimates from 500 independent local trees.

3.7 Accuracy of Pairwise Difference Calculations

In this section we evaluate the accuracy of our results under varying mutation rates,
divergence times and population sizes. We compare our results to simulated data
sets.

We compare 3 population size change models, denoted by ηY = 1ηX , ηY = 2ηX
and ηY = 10ηX , and 3 mutation rates 2µηX = 10, 1, 0.1, for a total of 9 simulation
scenarios. We present 1 of those scenarios here (figure 3.4), and leave the full set
of results to the appendix. While allowing for variance in the empirical estimates
from sample size, coalescent and mutational variation, there is strong agreement
between the theoretical and simulated results. Note that the theoretical quantities
assume an infinite-sites model of mutation, whereas our simulations are performed
assuming a realistic, finite-sites model. We choose to compare this finite-sites model
over simulations using a model of infinite sites to demonstrate the applicability of
the results to the types of data that will be used in practice.
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Figure 3.4: Average Pairwise Coalescent results, 2µηX = 1, ηY = 10ηX. We
compare our theoretical results (black line) with simulated estimated values from
250 independent genes (red dots), nX = nY = 10 sampled individuals.

3.8 Accuracy in Approximating FST

A direct extension of our discussion on the mean and variance of average pairwise
nucleotide differences is to the measurement, FST, for a given species tree, mutation
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rate, and sample size. Slatkin 1991 [45] presented a coalescent-based definition of
FST as a function of the difference in expected time to coalescence:

FST =
E(ti,j)− 1

2

(
E(ti,i′) + E(tj,j′)

)
E(ti,j)

(3.3)

Where i, i′ are from population X, and j, j′ are individuals sampled from population
Y . This definition of FST relies on estimates of average coalescence times, where
average pairwise differences in DNA sequence data are used as the proxy for the
unknown coalescence times. Discussed in [45, 17], for two populations X and Y , FST

can be estimated from sequence data using:

FST ≈
dXY − 1

2
(dX + dY )

dXY

define
= FGST (3.4)

As we have shown above, we can get exact expressions for the expectation, variance
and covariance of these sample average pairwise differences from theory, for a given
mutation parameter µ and sample size. We can use these to study the accuracy of
the FGST estimator to Slatkin’s FST under an arbitrary species tree, S.

To begin, it is important to note that the mean of a ratio is not the ratio of
means, specifically it is the case that:

E(FGST) 6= E(dXY )− 1
2

(
E(dX) + E(dY )

)
E(dXY )

=
2µE(ti,j) + µ

(
E(ti,i′) + E(tj,j′)

)
2µE(ti,j)

= FST

This implies that the estimator FGST is potentially a biased estimator of FST, such
that FST − E(FGST) 6= 0. To study this bias, we need an expression for the mean of
FGST. In general, there is no closed form for the mean of a ratio of dependent random
variables, so we will first simplify our terms, and then approximate the mean and
variance using a Taylor expansion. We can first simplify the expressions for E(FGST):

E(FGST) = E
(dXY − 1

2
(dX + dY )

dXY

)
= 1− 1

2
E
(dX + dY

dXY

)
Var(FGST) = Var

(
1− 1

2

dX + dY
dXY

)
=

1

4
Var
(dX + dY

dXY

)
We are now interested in the mean and variance of the ratio (dX + dY )/dXY . We
can use a second order Taylor expansion of f(A,B) = A

B
around the mean values,

(E(dX) + E(dY ),E(dXY )), to get an approximation to the mean, and a first order
expansion around the means to get an approximation of the variance of the ratio
term:



CHAPTER 3. COVARIANCE AND FST 41

E
(dX + dY

dXY

)
≈ E(dX) + E(dY )

E(dXY )
− Cov(dX + dY , dXY )

E(dXY )2
+

E(dX) + E(dY )

E(dXY )3
Var(dXY )

=
E(dX) + E(dY )

E(dXY )
− 1

E(dXY )2

[
Cov(dX , dXY ) + Cov(dY , dXY )

]
+

E(dX) + E(dY )

E(dXY )3
Var(dXY )

By rearranging terms, observe that E(FGST) is a function of FST, along with other
mean, variance, and covariance terms.

E(FGST) = 1− 1

2
E
(dX + dY

dXY

)
≈ 1

2E(dXY )2

(
Cov(dX , dXY ) + Cov(dY , dXY )− E(dX) + E(dY )

E(dXY )
Var(dXY )

)
(3.5)

+ FEST

Using this, we can get an expression for the bias of E(FGST):

E(FGST)− FST

≈ 1

2E(dXY )2

(
Cov(dX , dXY ) + Cov(dY , dXY )− E(dX) + E(dY )

E(dXY )
Var(dXY )

)
(3.6)
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Similarly, we can get an first-order approximation for the variance of FGST:

Var(FGST) =
1

4
Var
(dX + dY

dXY

)
≈ 1

4

( Var(dX + dY )(
E(dX) + E(dY )

)2 +

(
E(dX) + E(dY )

)2

E(dXY )4
Var(dXY )− 2

E(dX) + E(dY )

E(dXY )3

× Cov(dX + dY , dXY )
)

=
1

4

(
Var(dX) + Var(dY ) + 2Cov(dX , dY )(

E(dX) + E(dY )
)2 +

(
E(dX) + E(dY )

)2

E(dXY )4
Var(dXY )

− 2
E(dX) + E(dY )

E(dXY )3

(
Cov(dX , dXY ) + Cov(dY , dXY )

))

Figure 3.5 shows the accuracy of the two Taylor approximations under a constant
population size model. The approximation for the mean is a good one, however the
first-order approximation to the variance is insufficient for low divergence times, as
it can be seen there are higher order terms involved. From this we decide that we
cannot approximate the variance in FGST well with this method, and do not pursue
this aspect further.

In what follows we will evaluate the bias in the FGST estimator under different
demographic and genetic parameters, using results for the mean of FGST.
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Figure 3.5: FST mean and variance approximation accuracy, 2µηX = 1, ηY =
1ηX. (A) The approximated value to E(FGST) is shown as a black curve as a func-
tion of the divergence time DXY for equal sample sizes nx, ny. (B) The first-order
approximation for the variance Var(FGST) as a function of the divergence time.
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Figure 3.6: FST approximation bias across divergence times. (A,C,E) On the
y axis are values E(FGST) and FST as functions of divergence time DXY . We plot the
true value of FST in red, and approximations E(FGST), for 2 mutation rates. (B,D,E)
The difference between the true FST (red line in adjacent plot) and the expected
sample quantity, to represent the bias in estimation. We simulated assuming equal
sample sizes nX = nY = 10. Each row of plots corresponds to different population
size history as indicated at the top of each. In all figures, dots represent simulated
estimates from 250 independent genes.



CHAPTER 3. COVARIANCE AND FST 44

Results for the Mean and Bias of FG
ST

In this section, we study the effects of varying demographic, and genetic parameters
on the expectation of FGST and consequently its bias as an estimator of FST. First we
start with a discussion on the differences between E(FGST) and FST, both as described
above. Suppose we had access to the true values, we calculate FST only using the
individual expectations of dX , dY , and dXY . We can write:

FST =
E(dXY )− 1

2

(
E(dX) + E(dY )

)
E(dXY )

= 1− 1

2

E(dX) + E(dY )

E(dXY )
= 1− 1

2

E(ti,i′) + E(tj,j′)

E(ti,j)

Immediately we can note that FST is not dependent on nX , nY or the mutation rate,
µ. Instead, it is solely a function of mean coalescence times, and is only variable in
the demographic parameter space. Also, notice the fundamental difference between
E(FGST) and FST is the term

E
(dX + dY

dXY

)
vs.

E(dX) + E(dY )

E(dXY )

It is known that ratio estimators are in general biased. Jensen’s inequality tells us
that for two random variables, A,B ,

E
(A
B

)
≥ E(A)

E(B)

with equality holding when A and B are independent. While dX + dY and dXY
are not independent due to a shared ancestry, this gives a sense of direction of the
bias. As the divergence time between X and Y becomes deeper (more ancient),
we expect dX + dY to become increasingly independent from dXY and E(FGST) to
become increasingly closer to FST. Figure 3.6 demonstrates the relationship between
E(FGST) and FST under varying divergence times DXY , population sizes, and mutation
rates µ. As discussed above, the relative bias of FGST is much less under a deep
divergence model (DXY = 20.0, in units of 2ηX generations) as dX , dY and dXY are
more independent, compared to a more shallow divergence (DXY = 1.0), where we
see in our example FST is 3 times as large as E(FGST|2µηX = 0.1). It is clear that
FGST is a good estimator of FST under very high mutation rates, however, it is biased
downwards for small values of µ, although the bias is reduced for deep divergence
models.
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Bias in the FST estimator for gene flow

The value of FST is often used to estimate levels of gene flow between populations.
Wright [56] first derived the relationship between FST to estimate Nm in an Island
models, where N is the number of individuals in each deme (sub-population), and m
is the fraction of migrants into the deme in each generation. Hudson, Slatkin, and
Maddison [17] use this relationship to estimate Nm using the following expression:

< Nm >F=
1

2

( 1

FST

− 1
)

(3.7)

where FST is an estimate from sequence data, i.e., FGST in our notation. The results of
the simulations done in the paper show estimates using < Nm >F are upward-biased.
There are two potential sources of this bias, the estimator function, < Nm >F , and
the estimate, FGST. The scope of this paper concerns the role of estimator FGST, and
we can study the effect of this estimator compared to using the true value, FST. We
note that we do not intend to estimate or study gene flow in this manuscript, but
simply evaluate the accuracy of the function < Nm >F when an estimate of FST is
used.

To start, we can once again use a Taylor expansion to get an approximation for
the mean of < Nm >F , when using FGST:

E(< Nm >F ) =
1

4
E
( dX + dY
dXY − 1

2
(dX + dY )

)
=

1

4

E(dX) + E(dY )

E(dXY )− 1
2

(
E(dX) + E(dY )

)
×
[

1− Cov(dX + dY , dXY )− 1
2

(
Var(dX) + Var(dY )

)
− Cov(dX , dY )(

E(dX) + E(dY )
)(
E(dXY )− 1

2

(
E(dX)− E(dY )

))
+

Var(dXY ) + 1
4

(
Var(dX) + Var(dY ) + 2Cov(dX , dY )

)(
E(dXY )− 1

2

(
E(dX)− E(dY )

))2

− Cov(dX , dXY ) + Cov(dY , dXY )(
E(dXY )− 1

2

(
E(dX)− E(dY )

))2

]
(3.8)

We can use this expression to study the difference between using the estimator FGST

and the (unknown) true value, FST in the expression for < Nm >F . Figure 3.7 shows
the difference between using FST and FGST in < Nm >F under different mutation
rates, population sizes, and species divergence times. From the figure we see that
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the expectations are, in fact, overestimates. In our figure, 10 individuals are sampled
from each population. We see that when the divergence time DXY is low, the bias
relative to the true value is substantial, resulting in an estimate twice as large as
that would have been obtained using an accurate estimate of FST. For high values
of the mutation rate, µ, this bias decreases rapidly as DXY increases. For a low
mutation rate, 2µηX , a bias of greater than 50% overestimation persists. Even at
high mutation rates, an upwards bias of about approximately 5% exists even at large
divergence time values. Note, however, that we do not see a large difference in the
bias across different population size models. The results here can explain (at least
a portion of) the bias seen in [17], that using an estimate of FST can result in an
artificial increase in the function < Nm >F .
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Figure 3.7: < Nm >F approximation bias across divergence times. (A, C,
E) On the y axis are values < Nm >F as functions of divergence time DXY . We
plot the value of using the true FST in red, and approximations E(< Nm >F |θ),
for mutation rates θ = 10.0 and 1.0, in blue and green, respectively. (B, D, F) The
percent difference between < Nm >F using FST (red line in A) and the expected
sample quantity to represent the bias in estimation. We simulated assuming equal
sample sizes nX = nY = 10, and population size structure as indicated at the top of
each plot. For a fixed sample size, the expected sample quantity tends to overestimate
the ‘true’ value, with the amount of overestimation a function of µ and DXY .
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Accuracy of log transform for linearizing FST

Under a neutral divergence model, FST has also commonly been transformed as a
linear approximation to the population divergence time, DXY . Discussed in [3],
and later in [37], is that given an estimate of FST, DXY can be estimated by the
transformation:

D̂XY ∝ −log(1− FGST) (3.9)

Another commonly used transformation, presented in [46] relates the time of diver-
gence to a ratio of FST values:

D̂XY ∝
FGST

1− FGST

(3.10)

Here we evaluate the accuracy of these transformations by approximating the ex-
pected value of each using similar Taylor expansions as earlier. Without having an
accurate approximation of Var(FGST), we can only make a first order approximation
of equation 3.9 such that:

E(−log(1− FGST)) ≈ −log(1− E(FGST)) (3.11)

For equation 3.10, by plugging in the estimator for FST from equation 3.4, we find

FGST

1− FGST

= 2
dXY

dX + dY
− 1

Taking the expectation of this quantity,

E
( FGST

1− FGST

)
= 2E

( dXY
dX + dY

)
− 1

By deriving a similar second-order Taylor approximation for the expectation on the

RHS, as we did earlier with E
(
dX+dY
dXY

)
, we get:

E
( dXY
dX + dY

)
≈ E(dXY )

E(dX) + E(dY )
− Cov(dX , dXY ) + Cov(dY , dXY )(

E(dX) + E(dY )
)2

+
Var(dX) + Var(dY ) + 2Cov(dX , dY )(

E(dX) + E(dY )
)3 E(dXY ) (3.12)

and we have a second-order Taylor approximation of the expectation of equation
3.10.
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Figure 3.8: Linearized FST estimates. Testing the linearity of two FST transfor-
mations plotted against species divergence time. On the left is the approximate mean
log transformed value. On the right is the approximated mean fraction transformed
value. Both using FGST as a proxy for the unknown FST. Plotted on the x-axis of both
is the simulated divergence time. The red circles correspond to empirical values of
E(−log(1−FST)) and E(FST/(1−FST)) to verify the accuracy of the approximation
(line in black). (A,B) correspond to the approximations under a constant population
size model. (C,D) correspond to the ηY = 10ηX imbalanced population size model.

In figure 3.8 we evaluate the linearity between these expressions and divergence
time (x versus y axis), and the accuracy of our approximations against simulated
data (dots versus line), under two different population size models. It is clear that
Slatkin’s [46] linear FST is a linear predictor of divergence time under the constant
population size model assumed in its derivation. However, under a model where
the population size of species Y is 10 times higher than X, the linearity disappears.
The log transformation of [3] and [37] performs worse and can only be used as a
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local-linear approximation. Across large values of DXY , it demonstrates clear non-
linear behavior and Slatkin’s [46] transformation is preferable under all conditions
investigated here.

3.9 Discussion/Conclusion

In this paper we have discussed the equations needed to calculate exact values for
the covariance between pairs of coalescence times in a species tree model, under
piecewise constant population sizes. Using these expressions, we are able to get exact
values for the mean, variance, and covariance of average pairwise differences for a
given mutation rate and sample size. We have demonstrated that in the constant
population size scenario, we can exactly recreate the results of Takahata and Nei [49].
Using our results, we have further explored properties of FST and its approximation
FGST under a divergence model. In particular we demonstrate the downward bias in
FST estimation using sequence data, and show it is non-vanishing for low mutation
rates. As well, the results of the transformation used for gene flow estimation can
be biased upwards when using an empirical estimate of FST. Finally we study the
accuracy of a couple of commonly-used linear transformations of FST as approximate
measures of population divergence times, and find for equal population sizes, the
estimator proposed in [46] has the best performance, but when population sizes are
no longer equal, even this transformation shows deviations from linearity.

There are many interesting properties to study with the covariance in pairwise
coalescent times. In this manuscript we presented one such application, the distri-
bution of average pairwise differences. We hope that the software provided, STCov,
will allow for greater investigation into the properties and usefulness of these quan-
tities for estimating various species tree properties, such as topology reconstruction,
divergence time and population size estimation, gene flow and admixture detection.

3.10 Software Availability

Along with this manuscript, we provide code (implemented in C++) available for
download which calculates the various coalescent quantities presented here (means,
variances, covariances, and shared branch length). We have designed the code to be
very flexible to user inputted species trees. The program outputs exact quantities
for any user-defined rooted, bifurcating, piecewise-constant population size species
tree. The code is implemented in C++ and freely available at https://github.

com/gaguerra/STCov.

https://github.com/gaguerra/STCov
https://github.com/gaguerra/STCov
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Chapter 4

Statistically Consistent Species
Topology Inference using
Coalescent Covariance and
Minimum Spanning Trees

This is joint work with Rasmus Nielsen.

Methods for estimating species tree topologies have been on the rise with the
increase in the availability of large scale sequence data for many species. These
methods mainly focus on variation between local gene trees due to the process of in-
complete lineage sorting (ILS), with some also modelling the variance in constructing
each gene tree estimate from a finite amount of data, although the latter can be com-
putationally intensive. Here we define a new distance metric which can be used to
infer species tree topologies based on the estimated covariance between coalescence
events within local gene trees. We first demonstrate that this is in fact a metric
that uniquely defines a tree shape, and provide (partial) proofs that, in the limit
of infinite gene trees, the graph-theoretic minimum spanning tree (MST) algorithm
recovers this shape (statistical consistency). This approach is an extremely fast,
summary statistic based method that averages information across input sequences
to return an estimated species topology. We compare against the quartet-based
method ASTRAL on sets of simulated data under various sampling efforts.
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4.1 Introduction

It has become clear in recent years that trees relating a set of species at a local region
of the genome can differ from one another, and from the evolutionary history of the
species as a whole [30, 8, 36]. A highly common source of gene tree discrepancy
due to coalescent variation, incomplete lineage sorting (ILS), is an inherent result of
the stochastic coalescent process. The level of ILS is a function of the demographic
parameters surrounding the evolutionary history. Short branch lengths and large
ancestral population sizes on a species tree are where ILS is most present across local
trees. In the presence of high ILS, traditional methods that attempt to concatenate
multiple sequences and estimate a single gene tree, or estimate a most common gene
tree, have been shown to be potentially statistically inconsistent in the presence of
ILS [24, 9] and the anomaly zone [6].

The multispecies coalescent (MSC) framework has become the common way to
model deviations of gene trees from the underlying species tree. From a set of
estimated gene trees, a class of computationally efficient summary statistic methods
have been developed to estimate species trees using large amounts of genes, and
large amounts of species, for example [23, 58, 29]. Here we present a new summary
statistic method based on the previously unstudied covariance in pairwise coalescence
times, and show that a statistically consistent topology estimator exists using this
information.

In the previous chapter, we introduce theory and a package to calculate this co-
variance in coalescence times. Here we expand the theory to demonstrate that a
distance metric based on this covariance, specifically correlation, can be used to con-
struct a fully connected graph between all pairs of individuals, and a minimum span-
ning tree through this graph is guaranteed to reconstruct the species tree topology
accurately, under the assumption that the covariance terms are estimated without
error. As the covariance can never be known without variance in estimation, we
present empirical simulations to demonstrate the effect of estimation error from too
little genes, and its diminishing effect as the number of genes increases.

4.2 Tree Estimation Method

Constructing the fully connected graph GS
Let S represent a bifurcating, rooted, species tree of n species, labeled (1, ..., n).
Viewing the topology of S as a graph, let each leaf node and branching point in the
tree represent a node on the graph. This is a graph consisting of 2n−1 nodes (labeled
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N1, ..., N2n−1), with 2n − 2 edges connecting the nodes in a tree pattern. See figure
4.1A for an example visualization of n = 4 species. Take node N6 in the figure as an
example, this point on the tree represents the speciation event of species 3 from the
species ancestral to (1,2). We associate a random variable with node N6 which has
distribution equal to the distribution of time to coalescence between two lineages,
where one is a modern-day individual sampled from species 3, and one is from species
1 or 2. For a leaf node, e.g. node N2, we associate the random variable of the time to
coalescence for any two individuals sampled from species 2. A fully-connected graph
of these nodes can be denoted by GS and can be seen in figure 4.1B.

We can define a distance between nodes on GS as a function of their associated
random variables, as such:

Definition 4.2.1. For nodes NX , NY on species graph GS , define the distance be-
tween the nodes (edge weight) to be

d(NX , NY ) = 1− Cov(Tx1,x2, Ty1,y2)√
Var(Tx1,x2)Var(Ty1,y2)

where x1 and x2 are individuals sampled from each side of the divergence event NX

on S, and similarly for y1, y2. We assume that all 4 individuals are unique.

The distance metric defined here is non-additive, the distance between two nodes
is not equal to the sum of weights on any non-direct path between the two.

To construct GS , the topology of S must already be known. This is rarely known
exactly, and must be estimated. To be able to do the estimation, we must gener-
alize our fully connected graph GS to something that can be constructed without
knowledge of S.

Constructing the fully connected graph G
In reality, we do not have the information necessary to determine which species
diverged at which node on the species tree. As such, the distance in definition
4.2.1 cannot be calculated without first knowing the tree, S. However, what can be
calculated is the distance between pairs of species.

Let G also be a fully connected graph, which requires no knowledge of S to
construct. For a set of n species, let G have M =

(
n
2

)
+ n nodes. Each node

represents one of the M pairs of taxa, allowing pairs of the same species. Here
(
n
2

)
represents the number of nodes where the pair of taxa are unique, i.e. species i and
species j. The next n nodes represent pairs of taxa where both individuals are from
the same species, i.e. i, i. We refer to the nodes on G as “pseudo-nodes” in this
paper as we reserve the proper term “node” to be a vertex on the species graph, GS .
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Definition 4.2.2. For any two species, with species labels i, j, denote the pseudo-
node Zi,j ∈ G, to be the speciation event of species i and j. Zi,j ∈ G.

Definition 4.2.3. For pseudo-nodes Zi,j, Zl,k on graph G, define their edge weight
to be:

d(Zi,j, Zk,l) = 1− Cov(Ti,j, Tk,l)√
Var(Ti,j)Var(Tk,l)

Where Ti,j is the time to coalescence for a lineage sampled from species i, and
one from j. Again, note that this distance metric in non-additive.

Figure 4.1C gives a visualization of G from a set of n = 4 species, whose unknown
species topology is shown in panel A.

To clarify the use of the term ‘pseudo-node’, we use the term pseudo-node and
node as distinct terms to refer to the nodes of G and GS , respectively. All nodes,
NX , are unique, but all pseudo-nodes are not necessarily unique. Each node (on GS)
represents a unique speciation event in the evolutionary history of the set of species.
Each pseudo-node, however, only represents the speciation event for a single pair of
taxa, and this can be redundant for speciation events deep in a tree. Observe in
figure 4.1C that the pseudo-nodes grouped by a grey dotted circle are all represented
by the same, single, speciation event. This leads us to the following definition:

Definition 4.2.4. A pseudo-node Zi,j maps to a node NX if the speciation event of
i and j occurs at node NX on species tree S.

This will be useful later on when we begin proofs of statistical consistency.

Estimating a tree topology

From a set of K gene trees of n species, we can estimate the edge weights of the
graph, G from sample variances and covariances. The goal is to estimate the species
tree topology, S. We do this using the minimum spanning tree algorithm over G.

Minimum spanning tree

From the fully connected graph, G, define MST(G) to be the minimum spanning tree
(MST). The MST is a graph-theoretic procedure which determines the dominant tree-
like pattern of the entire set of edge-weighted nodes by outlining the shortest path
of nearest-neighbor connections. In general, a spanning tree is an acyclic subgraph
which passes through all nodes contained in G. The MST is the spanning tree whose
total edge weight is minimized. Using Kruskal’s algorithm [22], the MST can be
found in M log(M) time.
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Tree topology from the MST

Given the constructed MST(G) from the set of distances, the estimated unrooted
species tree topology Ŝ can be discerned by pruning the MST. We use two steps
sequentially to prune the tree:

• Step 1: Prune MST(G)

– For any node Zi,j of degree 1, in MST(G), if i 6= j, remove node and its
edge from MST(G).

– Recalculate node degrees

– Repeat until all Zi,j, i 6= j are of degree 2 or higher.

• Step 2: Contract MST(G)

– For any node Zi,j of degree 2, if i 6= j, contract node.

– Recalculate node degrees.

– Repeat until all Zi,j, i 6= j are of degree 3 or higher.

Here, contract consists of two steps. First, remove the node and its edges. Second,
add an edge directly between the two nodes formerly connected by the removed
node. Note that Step 2 is performed on the pruned version of MST(G) from Step 1.
Due to Step 2, any root node (for example node N7 in figure 4.1) will be removed.
This means the algorithm will return an unrooted species tree, and it is the user’s
responsibility to provide a rooting location/outgroup.

In what immediately follows, we will show that (conditional on a conjecture) the
MST algorithm is guaranteed to return the true topology when the covariance/vari-
ance between coalescence times are known without error.

4.3 Statistical Consistency

In this section, we prove (contingent on conjecture 1) that when the covariance
between pairs of coalescence times is known without error, that the estimated tree
via the MST algorithm is guaranteed to recover the true species tree topology.

Species tree S, known

First, we start with the proof of consistency when the tree is known. This is a sanity
check that the distance metric and minimum spanning tree approach is guaranteed
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Figure 4.1: Graph Theoretic View of Species Trees: (A) A standard bifuract-
ing, rooted species tree, S of 4 species. (B) A fully connected graph, GS between
the leaf and internal nodes of S. (C) Assuming the species tree S is unknown, and
therefore the nodes are unknown, a fully connected graph, G between what we call
“pseudo-nodes”, indicating the speciation event between a pair of species. A graph
G can be contracted/pruned into GS once the species tree is known. In both (B)
and (C) an example spanning tree which matches the topology of S is highlighted in
black.

to return the correct tree. Given the species tree, we can reduce the fully connected
graph, G of M nodes to the much smaller complete sub-graph GS of 2n − 1 nodes.
The set of nodes, N , in this subgraph can be chosen randomly from the pseudo-nodes
that map to each node. By definition, N1, ..., Nn are the pseudo-nodes Z1,1, ..., Zn,n.
For an internal node Nx, define X1 and X2 to be the sets of species on each side of
the node in S. We can arbitrarily choose any pseudo-node Zx1,x2 (x1 ∈ X1, x2 ∈ X2)
to represent NX .

Definition 4.3.1. For two nodes, NI and NJ , and species tree S, define P(NI , NJ)
to be the set of nodes in the path between the two nodes, obeying the edges of S.
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Lemma 1. For any two nodes (leaf or internal), denoted by NI , NJ , and topology S:

d(NI , NJ) ≥ d(Np1, Np2)

for all Np1 and Np2 ∈ P(NI , NJ).

Proof. Let NI and NJ be nodes on species tree S. As well, let NX be a node in the
path from NI to NJ along S. We will first show that d(NI , NJ) ≥ d(NX , NJ) and
iteratively apply this rule to show that for any two nodes NX , NY in the path that
d(NI , NJ) ≥ d(NX , NY ).

Decompose the distance matrix to note that:

d(NI , NJ) ≥ d(NX , NJ)

is equivalent to
Cov(Ti1,i2, Tj1,j2)

σiσj
≤ Cov(Tx1,x2, Tj1,j2)

σxσj

where notation σa is the standard deviation in time to coalescence for a pair of
individuals originating at node Na.

Without loss of generality (WLOG), assume NX is more ancient than node NI .
(This must be true of either NI or NJ) Observe that we can write the distribution
of coalescence times for pairs of individuals whose species diverge at node NX as a
conditional function of the distribution of times at node NI . Let τX and τI represent
the timing of the nodes on the species tree S, (divergence times). Then we have:

Tx1,x2
d
= Ti1,i2|Ti1,i2 ≥ τX

where “
d
=” indicates equality in distribution. We can use the law of total variance

to get an expression of σ2
i as a function of σ2

X . Define random indicator variable

Φ =

{
1, w.p. P (Ti1,i2 > τX |S)

0, w.p. 1− P (Ti1,i2 > τX |S)

Note that Tj1,j2 is independent of Φ, as the pair of individuals (j1, j2) are distinct
from (i1, i2), and marginally, Tj1,j2 does not depend on these individuals. As well,
observe Ti1,i2 is independent of Tj1,j2 conditional on the event (Ti1,i2 < τX), as the
event implies i1, i2 have coalesced before the lineages reach τj (as τX < τj).
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The law of total variance of Ti1,i2 gives us:

σ2
i = E

(
Var(Ti1,i2|Φ)

)
+ Var

(
E(Ti1,i2|Φ)

)
= P (Ti1,i2 > τX |S)Var

(
Ti1,i2|Ti1,i2 ≥ τX

)
+
(

1− P (Ti1,i2 > τX |S)
)

× Var
(
Ti1,i2|Ti1,i2 < τX

)
+ P (Ti1,i2 ≥ τX |S)

(
E(Ti1,i2|Ti1,i2 ≥ τX)− E(Ti1,i2)

)2

+ (1− P (Ti1,i2 ≥ τX |S))
(
E(Ti1,i2|Ti1,i2 < τX)− E(Ti1,i2)

)2

Where observe Var(Ti1,i2|Ti1,i2 ≥ τX) = Var(Tx1,x2) = σ2
X . We can then write:

σ2
i = P (Ti1,i2 ≥ τX |S)σ2

X + ζ

where ζ is a sum of non-negative terms, therefore is greater than or equal to 0.
Similarly, we can use the law of total covariance to get an expression for the term

Cov(Ti1,i2, Tj1,j2):

Cov(Ti1,i2, Tj1,j2) = E
(
Cov(Ti1,i2, Tj1,j2|Φ)

)
+ Cov

(
E(Ti1,i2|Φ),E(Tj1,j2|Φ)

)
= P (Ti1,i2 ≥ τX ,S)Cov(Ti1,i2, Tj1,j2|Ti1,i2 ≥ τX)

+
(
1− P (Ti1,i2 ≥ τX |S)

)
Cov(Ti1,i2, Tj1,j2|Ti1,i2 < τX)

+ P (Ti1,i2 ≥ τX |S)
(
E(Ti1,i2|Ti1,i2 ≥ τX)− E(Ti1,i2)

)
×
[
E(Tj1,j2|Ti1,i2 ≥ τZ)− E(Tj1,j2)

]
+
(

1− P (Ti1,i2 ≥ τX |S)
)(

E(Ti1,i2|Ti1,i2 < τX)− E(Ti1,i2)
)

×
(
E(Tj1,j2|Ti1,i2 ≥ τX)− E(Tj1,j2)

)
= P (Ti1,i2 ≥ τX |S)Cov(Tx1,x2, Tj1,j2)

As we have mentioned, marginally, Tj1,j2 ⊥⊥ Φ and so the last two terms equal 0,
as well, Tj1,j2 ⊥⊥ Ti1,i2|

(
Ti1,i2 < τZ

)
making the second covariance term 0. We then

have the result:

Cov(Ti1,i2, Tj1,j2) = P (Ti1,i2 ≥ τX |S)Cov(Tx1,x2, Tj1,j2)

With these two results, we observe:
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Cov(Ti1,i2, Tj1,j2)

σIσJ
=
P (Ti1,i2 ≥ τZ |S)Cov(Tx1,x2, Tj1,j2)

σj
√
P (Ti1,i2 ≥ τX |S)σ2

X + ζ

≤ P (Ti1,i2 ≥ τZ |S)Cov(Tx1,x2, Tj1,j2)

σj
√
P (Ti1,i2 ≥ τX |S)σ2

X

=

√
P (Ti1,i2 ≥ τX |S)Cov(Tx1,x2, Tj1,j2)

σJσX

≤ Cov(Tx1,x2, Tj1,j2)

σJσX

where the first inequality comes from ζ ≥ 0, and the second comes from 0 ≤√
P (Ti1,i2 ≥ τX |S) ≤ 1.
So we have now shown for any three nodes, in order (NI , NX , NJ), that:

d(NI , NJ) ≥ d(NX , NJ)

To show the general case, let (NI , NX , NY , NJ) be an ordering of nodes on tree S,
meaning NX , NY ∈ P(NI , NJ). Again, without loss of generality assume node NX is
more ancient on the tree than NI , and NY is more ancient on the tree than NJ . We
will show that d(NI , NJ) ≥ d(NX , NY ). To do so, first consider the triplet of nodes
(NI , NX , NJ), from above we know

d(NI , NJ) ≥ d(NX , NJ)

Next, consider the second triplet of nodes (NX , NY , NJ), as we have already removed
NJ from the expression. Applying the result above again, we see:

d(NX , NJ) ≥ d(NX , NY )

which gives us our result:
d(NI , NJ) ≥ d(NX , NY )

for any nodes in the path from NI to NJ on species tree S.

We have defined the metric d(·, ·), with the property that the direct distance be-
tween any two nodes is greater than or equal to any individual distance on the path
connecting them via species tree S. Denote the MST of graph GS to be MST(GS).
Assuming each edge weight is unique, the MST is unique.
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Theorem 1. For the fully connected graph, GS , induced by metric d(·, ·) on tree S,
known, the minimum spanning tree, MST(GS), is the same unrooted topology of leaf
nodes as the species tree S, assuming the distances d(·, ·) are known without error
and no two distances are exactly the same.

Proof. We will show this result by showing that all edges that are not in species tree
S cannot be in any minimum spanning tree of GS , and therefore only edges matching
S remain. To do this, we exploit the cycle property of MSTs.

The cycle property states that for any cycle C in the graph: The edge f in cycle
C whose edge weight is larger than every other edge in the cycle, cannot be an edge
in a MST. This is easily proven using a contradiction argument.

Let NI and NJ be any two non-adjacent nodes in species tree S (meaning there
exists some other node Nk such that to traverse from NI to NJ via S you must pass
through Nk). Define cycle Ci,j to be the set of edges which connect NI and NJ on
tree S, as well as the direct edge connecting NI and NJ . Combining the result of
Lemma 1, and the assumption that no two distances are exactly the same value, it
is true that d(NI , NJ) is the maximum edge length in Ci,j. Therefore, by the cycle
property, the edge directly connecting NI and NJ cannot be in any MST.

By iteratively applying this argument to all pairs of nodes which are not directly
adjacent on tree S, we see that no edge directly connecting the pair can be in a
MST. Therefore, the only path which remains to connect all nodes is the same path
as S.

Species tree, S, unknown

In practice, we do not directly know the internal nodes. Instead, we have distances
between all M pseudo-nodes, pairs of lineages. To show statistical consistency still
holds in the presence of pseudo-nodes, it suffices to prove that the distance between
two pseudo-nodes which map to the same node, NI , is smaller than the distance from
either of the two pseudo-nodes to a pseudo-node which does not map to NI . If this
is true, than the minimum spanning tree result above still holds, as all pseudo-nodes
which map to the same node will cluster with one another, forming a node on the
tree. This section relies on a (currently) unproven conjecture:

Conjecture 1. For any two pseudo-nodes Zi,j, Zk,l which both map to a node NX ,
and any pseudo-node Zw,y which maps to a node NA more ancient on S than NX :

d(Zi,j, Zk,l) ≤ min
(
d(Zi,j, Zw,y), d(Zk,l, Zw,y)

)



CHAPTER 4. TREE TOPOLOGY INFERENCE WITH MST 61

In the proof of the following lemma, we consider a pseudo-node Zw,y which does
not map to a node NX . There are then three possibilities to where this pseudo-node
could map to: a node more recent on S, a node more ancient on S, or a sister-node on
S (meaning it is not an ancestral node to NX , nor NX to it). Conjecture 1 accounts
for the case when the node is more ancient than NX .

Lemma 2. For pseudo-nodes Zi,j, Zk,l which both map to node NX , and any node
Zw,y which does not map to NX :

d(Zi,j, Zk,l) ≤ min
(
d(Zi,j, Zw,y), d(Zk,l, Zw,y)

)
Proof. WLOG assume that d(Zi,j, Zw,y) ≤ d(Zk,l, Zw,y), then it suffices to show :

d(Zi,j, Zk,l) ≤ d(Zi,j, Zw,y)

There are three cases to consider here: 1. Zw,y occurs more recently on S than NX ,
2. Zw,y occurs more anciently than NX , and 3. Zw,y maps to a sister node of NX .

1: Let Zw,y occur more recently than NX . Then, similar to the proof of Lemma
1, we can write Tk,l as a conditional expression of Tw,y:

Tk,l
d
= Tw,y|Tw,y ≥ τk,l

Applying the laws of total variance and covariance, we see:

Var(Tw,y) = Var(Tk,l)P (Tw,y ≥ τk,l|S) + ζ

Cov(Ti,j, Tw,y) = Cov(Ti,j, Tk,l)P (Tw,y ≥ τk,l|S)

where ζ is a sum of non-negative terms. Applying these results we get the following:

Cov(Ti,j, Tw,y)

σi,jσw,y
=

Cov(Ti,j, Tk,l)P (Tw,y ≥ τk,l|S)

σi,j
√

Var(Tk,l)P (Tw,y ≥ τk,l|S) + ζ

≤ Cov(Ti,j, Tk,l)
√
P (Tw,y ≥ τk,l|S)

σi,jσk,l

≤ Cov(Ti,j, Tk,l)

σi,jσk,l

which implies d(Zi,j, Zk,l) ≤ d(Zi,j, Zw,y) for case 1.
2: Let Zw,y occur more anciently than NX . We must currently conjecture this is

true (see conjecture 1).
3: Let Zw,y → NR, a sister node to NX . This case is straightforward. As NR and

NX are sister nodes, there exists a common node ancient to both, denote this NA,
NA ∈ P(NX , NR). Lemma 1 tells us that d(NX , NR) ≥ d(NX , NA). By applying case
2 to any pseudo-node which maps to NA, we have our result.
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We have now shown that the distance between pseudo-nodes which map to the
same node is smaller than the distance to any other pseudo-node, conditional on
conjecture 1 being true. Let G be the fully connected graph over the M pseudo-nodes
with our distance metric. Denote the MST of graph G to be MST(G). Assuming
each edge weight is unique, the MST is unique.

Theorem 2. For the fully connected graph, G, induced by metric d(·, ·) on tree S, the
minimum spanning tree, MST(G), is guaranteed to return the same topology of leaf
nodes as the species tree S when pruned, assuming the distances d(·, ·) are known
without error and no two distances are exactly the same. Conjecture 1 must be
assumed to be true.

Proof. Here it suffices to show that the path between any two pseudo-nodes Zi,j,
Zk,l which map to the same node NX only contains other pseudo-nodes which map
to NX in their path. Given that this is true, we can effectively collapse the set of
pseudo-nodes into NX , and apply Theorem 1.

We will show this by contradiction.
Suppose there exists a pseudo-node Zs,t which does not map to NX such that

Zs,t ∈ P(Zi,j, Zk,l) on MST(G). Let D be the total weight of this path P(Zi,j, Zk,l).
Insert the edge that directly connects Zi,j and Zk,l, to form a cycle, C, in the minimum
spanning tree, C = (Zi,j, Zk,l)+P(Zi,j, Zk,l). WLOG assume Zi,j and Zs,t are directly
connected on MST(G). If we apply the result of lemma 2, we know:

d(Zi,j, Zk,l) < d(Zi,j, Zs,t)

By removing the edge (Zi,j, Zs,t) from C, the total weight connecting all nodes in C
is now: (

D + d(Zi,j, Zk,l)− d(Zi,j, Zs,t)
)
< D

and so the spanning tree which replaces edge (Zi,j, Zs,t) ∈ MST(G) with edge (Zi,j, Zk,l)
results in a spanning tree of less total weight than MST(G), therefore MST(G) is not
the minimum spanning tree, a contradiction.

From this, we know that all pseudo-nodes of a node NX form a self-contained
spanning tree in the MST(G). Denote this self contained spanning tree as NT

X . To
form a spanning tree, any two self contained spanning trees, NT

X , NT
Y can only be

connected by one single edge, otherwise a cycle will form in the graph. Therefore
we can treat these self contained spanning trees, NT

1 ,..,NT
2n−1 as we would the nodes

N1, ..., N2n−1. From this we apply theorem 1. By collapsing all self contained span-
ning trees into single nodes, we exactly recover the species tree topology S.
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We have conditionally proven that if the covariance between all pairs of indi-
viduals is known without error, constructing a minimum spanning tree using the
correlation-based distance will exactly recover the underlying species tree, S.

4.4 Consistency Simulation

As the covariances, and therefore distances, cannot be estimated without error, we
present simulations to show as the amount of information increases, the error in
estimation decreases, and the MST approach is asymptotically consistent. We note
that there are two sources of variance in our simulation, a finite number of genes,
and a finite amount of pairwise differences within a gene. We simulate a species
tree of 8 individuals, and test the claim of consistency by evaluating the accuracy
under different levels of sequencing efforts. Specifically, we test the accuracy in
reconstruction for 100, 500, 1000, 2500, 5000, 10000, and 20000 sampled genes. For
each, we produce 100 independent replicates, and assess the average performance. We
measure two metrics: First, the percentage of replicates in which the MST returns the
true tree, and second, the average Robinson-Foulds (RF) [42] distance between the
estimated and true species tree topology. As expected, as the proportion of correct
trees fixes to 1.0 with a sufficient number of sequences sampled, as the covariance
terms can be estimated with a decreasing amount of sampling variance. See figure
4.2 for the results of this test.

Tree parameters

We simulate an 8 species topology, (H,((G,(F,E)), (D,(C,(B,A))))), with 4 individuals
per species, a requirement for our approach. We generate K gene trees using ms [16]
and gene sequences of length L = 1000bp conditional on each tree using Seq-Gen [39]
with population scaled mutation rate θ = 0.001. The species tree is parameterized
as follows, τA,B = 2.5, τE,F = 2.0, τ(A,B),C = 3.0, τ((A,B),C),D = 3.5, τ(E,F ),G = 4.0,
τ(((A,B),C),D),((E,F ),G) = 5.0, τH,((G,(F,E)),(D,(C,(B,A)))) = 8.0, with all population sizes
= η0 = 1.0.

4.5 Performance against ASTRAL

5 species simulation

We test the performance of our method against ASTRAL-III for various number
of genes sampled for a tree of 5 species (4 individuals per species), under a fixed
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Figure 4.2: Consistency Plot: For a fixed species tree, gene length, and mutation
rate, we simulate K independent loci and estimate the species tree topology. (A) The
y-axis represents the percentage of 100 independent replicates in which the true tree
is correctly estimated. (B) The distribution of RF-distances between the estimated
and true topologies, with 25 independent replicates per K.

species tree and mutation rate. We simulate a tree topology ((A,B),(C,(D,E))),
where in particular the branch length connecting node (D,E) to C is short. We
expect there to be ILS between the lineages C,D,E, making tree inference difficult
between topological orderings (C,(D,E)), (D,(C,E)), and (E,(C,D)). We assume a
constant population size across the phylogeny (scaled to equal 1.0), and the following
species divergence times: τD,E = 2.0, τC,D,E = 2.2, τA,B = 1.5, τABCDE = 5.0. For
each replicate we simulate K gene trees using ms [16], and generate sequences of
length L = 1000bp for each tree using Seq-Gen [39], with mutation parameter θ. We
simulate a number of independent genes, K in {100, 500, 1000, 2500, 5000, 10000},
with θ = 0.001. This gives a total of 6 simulation scenarios. For each scenario we
simulate 100 independent replicates, and count the number of replicates in which
each method produced the correct topology. Figure 4.3 shows the results of this
simulation for our MST method against ASTRAL.

We see for low sample size, K, our method does not have sufficient information
to accurately estimate the variance covariance structure between individuals, and
so cannot discern the correct branching pattern of C,D,E. As the number of genes
increases, our method has an increasingly better approximation to the variance/co-
variance, and can accurately estimate the topology. ASTRAL is much more accu-
rate than our method for low numbers of genes, as the local topology at every gene
is informative for ASTRAL, whereas we rely on pooling information across genes.
Note, for any pair of individuals (i, j), the expected number of pairwise differences
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Figure 4.3: Performance, 5 species: The number of independent genes is indi-
cated on the x-axis. Accuracy is measured as the percentage of correctly estimated
topologies across 100 replicates for each method.

is θLE(ti,j|S).

4.6 Discussion

We have defined a new metric between nodes on a species tree using the correla-
tion between coalescence times. We have conditionally proven that constructing a
minimum spanning tree over a fully connected graph of what we call “pseudonodes”,
where weights on the graph are given by the distance presented here, is guaranteed to
return the underlying unrooted true species tree topology, S. Our proof, as presented
here, relies on conjecture 1 that has yet to be shown.

We have shown through 2 simulation scenarios the performance of this approach
on the problem of species tree inference. The results of our simulation against AS-
TRAL are promising for large numbers of genes. Further simulation studies and
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larger numbers of replicates are needed to make any claims about our performance,
in general.

The proofs of consistency here only rely on proving inequalities of correlation-
s/covariances between pairs of coalescence times. The distance we define in this
manuscript is therefore not required for our statistical guarantees. In fact there
are likely other distance metrics which make use of this correlation/covariance that
have better performance and properties. A problem with our distance metric as
it is defined here is that the distance is highly non-additive. A transformation of
the correlation/covariance that maintains some additive property will probably have
better performance in the presence of estimation error of the covariances. Defining a
distance metric using the only the covariances would be most preferred as the error
in variance estimation can be ignored. Note that the proofs are all still correct for
any distance metric which only uses the relative difference between covariances, and
not necessarily normalized by their variances.

4.7 Notation reference

• n: Number of modern-day species, here labeled {1, ..., n}.

• S: Species tree relating the n species.

• N : The set of 2n − 1 nodes on S connected by 2n − 2 edges. Labeled
N1, N2, ..., N2n−1. Nodes 1, .., n represent leaves, n+ 1, .., 2n− 1 internal nodes.

• τX : The speciation time of NX according to S.

• GS : A fully connected graph between all nodes on S.

• τi,j: The split time between species i, j on S.

• Zi,j: A “pseudo-node” indicating the speciation event of species i and j.

• Ti,j: The random variable of time to coalescence between an individual sampled
from species i and one from j.

• M : The set of n(n+ 1)/2 total pseudo-nodes across n species.

• G: A fully connected graph between all pseudo-nodes.

• d(NX , NY ): The edge weight between two nodes on GS .

• d(Zi,j, Zk,l): The edge weight between two pseudo-nodes on G.
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• Ti,j d
= Tk,l: Indicates that Ti,j is equal in distribution to Tk,l
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Appendix A

Supplement for Chapter 2

A.1 Notation Reference

• N : Number of species considered.

• S = (S, τ, η): A species tree parameterized by topology S, split times τ , and
population sizes η.

• K: Number of independent loci/genes.

• M : Number of sampled individuals (M ≥ N).

• Q =
(
M
2

)
: Number of pairs of individuals.

• ~hj: Set of M haplotypes at locus j, j ∈ {1, 2, ..., K}.

• ḡj: Estimated gene tree at locus j.

• Gj: True gene tree at locus j.

• a, b: Individuals sampled from populations A, B, respectively.

• τA,B: The split time of species A and B according to S.

• Each pair of individuals are indexed by an integer i,in (1, ..., Q).

• ḡj(i): The estimated coalescence time of pair i at locus j.

• Gj(i): The true time to coalescence of pair i at locus j.

• µ: The per generation per base pair mutation rate.
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• L: The number of base pairs of gene.

• θ: The population scaled mutation rate, θ = 2µη0, for the reference population
size, η0.

• ω = 1
θ×L

• ωGj(i): Mutational estimation variance of the true coalescence time.

A.2 Further Simulation Details

5-species simulation details

In this simulation study we analyzed a species tree of 5 species (labeled 1...5) with 10
individuals (labeled 1...10) where 2 individuals are from each species (i.e individuals
1 and 2 are from species 1). We simulate the rooted species topology (5,(4,(1,(2,3)))).

For a single replicate, we use ms to generate K independent gene trees of 10
individuals, 2 from each species, and Seq-Gen [39] to generate sequence data from
the gene trees. To generate K = 100 gene trees of 10 individuals with species labeled
as integers 1 through 5:

./ms 10 100 -T -I 5 2 2 2 2 2 -n 1 1.8 -n 2 2.4 -n 3 1.0 -n 4 2.0

-n 5 3.0 -ej 1.0 2 3 -en 1.0 3 2.4 -ej 1.5 1 3 -en 1.5 3 3.0

-ej 2.2 3 4 -en 2.2 4 4.0 -ej 4.0 4 5 -en 4.0 5 5.0 | tail +4

|grep -v // >gene.trees

In ms [16], time is measured in units of 4η0 generations, whereas COAL PHYRE
measures time in 2η0 generations, so that times from COAL PHYRE must be halved
to compare to the units of ms. As well, population sizes in ms are diploid, whereas
in COAL PHYRE we measure population sizes as haploid. To compare with ms,
population sizes from COAL PHYRE need to be doubled.

From the gene.trees file, and for a given mutation parameter θ (which we used
either 0.01 or 0.001 in our simulation), and sequence length L, we use Seq-Gen. For
example, for θ = 0.001 and L = 1000:

./Seq-Gen -mHKY -l 1000 -s 0.001 <gene.trees >seqfile

We use this seqfile file as input into COAL PHYRE.
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8-species simulation details

For 8 species, 2 individuals sampled per species, we generated a single replicate of
K = 100 independent gene trees using:

./ms 16 100 -T 8 2 2 2 2 2 2 2 2 -n 1 1.5 -n 2 2.5 -n 3 2.0 -n 4 6.0

-n 5 0.5 -n 6 1.0 -n 7 3.0 -n 8 4.0 -ej 0.5 2 1 -en 0.5 1 6.0

-ej 0.75 4 3 -en 0.75 3 1.0 -ej 0.8 8 7 -en 0.8 7 2.0 -ej 1.3 6 5

-en 1.3 5 4.0 -ej 1.5 3 1 -en 1.5 1 5.0 -ej 1.8 7 5 -en 1.8 1.5

-ej 2.0 5 1 -en 2.0 1 6.0 | tail +4 | grep -v // >gene.trees

For θ = 0.01 and gene length L = 1000, we generate sequence data with Seq-Gen:

./Seq-Gen -mHKY -l 1000 -s 0.01 <gene.trees >seqfile

We use this seqfile file as the input into COAL PHYRE.

A.3 Normal Approximation To Poisson, A

Simulation

Throughout we discuss the distribution of estimated coalescence times. The esti-
mation error from the mutation process, conditional on a branch length, follows a
Poisson distribution. As our estimated coalescence times are not discrete, we use
the Normal approximation to the Poisson. In this section we demonstrate in a sim-
ple simulation scenario, that this approximation is well fit to model the estimation
error. For a given coalescence time (fixed here to be 5 in units of 2η0 generations),
we simulate 1000 pairs of sequences, of length L = 1000 base pairs, under varying
scaled mutation rates, θ (indicated in figure A.1 legend), to generate an empirical
distribution of estimated coalescence times from the number of pairwise differences.
Figure A.1 shows these distributions versus the normal approximation presented ear-
lier. This demonstrates the accuracy and suitability of the Normal approximation to
mutational variance in time estimation.
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for varying mutation rates.
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Appendix B

Supplement for Chapter 3

B.1 Simulation Details

For a given divergence time, we simulated (nX , nY ) haploid individuals from each
population under a species tree with split time parameterized by the value seen on
the x-axis on the figures. In every simulation, we use the population size of species
X, ηX , to be the reference population size. As well, we assume ηX = ηXY , but we
vary population size ηY to be 1, 2, and 10 times the value of ηX . Gene trees are
generated using ms, and empirical estimates indicated by open circles in the figures
are calculated using independent trees. With the simulated gene trees, to evaluate
empirical estimates sequence data (10,000 bp per gene) is generated under a finite-
sites model with the Jukes-Cantor model of evolution, using Seq-Gen, and a mutation
parameter, which we vary 2µηX = 0.1, 1.0, 10.0. From the pairwise differences in
each sequence, we generate empirical estimates using the sample means, variances
and covariances from the independent replicates, to simulate estimates from the type
of data used in practice (finite sites).

B.2 Mean, Variance and Covariance of Average

Pairwise Differences

Using results presented earlier, we can write exact expressions for the variance and
covariance of average pairwise differences as functions of the mutation rate (µ), sam-
ple sizes (nX , nY ), and coalescence times:
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Var(dX) =
µ

nX(nX − 1)

[
4E(ti,i′) + 8µVar(ti,i′) + 4(nX − 2)

(
E(ti,i′ ∩ ti,i′′)

+ 4µCov(ti,i′ , ti,i′′)
)

+ (nX − 2)(nX − 3)
(
E(ti,i′ ∩ ti′′,i′′′)

+ 4µCov(ti,i′ , ti′′,i′′′)
)]
− 4µ2E(ti,i′)

2

Var(dY ) =
µ

nY (nY − 1)

[
4E(tj,j′) + 8µVar(tj,j′) + 4(nY − 2)

(
E(tj,j′ ∩ tj,j′′)

+ 4µCov(tj,j′ , tj,j′′)
)

+ (nY − 2)(nY − 3)
(
E(tj,j′ ∩ tj′′,j′′′)

+ 4µCov(tj,j′ , tj′′,j′′′)
)]
− 4µ2E(tj,j′)

2

Var(dXY ) =
µ

nXnY

[
2E(ti,j) + 4µVar(ti,j)

+ (nY − 1)
(
E(ti,j ∩ ti′,j) + 4µCov(ti,j, ti′,j)

)
+ (nX − 1)

(
E(ti,j ∩ ti,j′) + 4µCov(ti,j, ti,j′)

)
+ (nX − 1)(nY − 1)

(
E(ti,j ∩ ti′,j′) + 4µCov(ti,j, ti′,j′)

)]
− 4µ2E(ti,j)

Similar to the the variance equations, the covariance terms can be expressed as
functions of coalescence times by plugging in the expressions presented earlier:

Cov(dX , dY ) = µE(ti,i′∩j,j′) + 4µ2Cov(ti,i′ , tj,j′)

Cov(dXY , dX) =
2

nX

(
µE(ti,i′∩i,j) + 4µ2Cov(ti,i′ , ti,j)

)
+
nX − 2

nX

(
µE(ti,i′∩i′′,j) + 4µ2Cov(ti,i′ , ti′′,j)

)

Cov(dXY , dY ) =
2

nY

(
µE(tj,j′∩i,j) + 4µ2Cov(tj,j′ , ti,j)

)
+
nY − 2

nY

(
µE(tj,j′∩i,j′′) + 4µ2Cov(tj,j′ , ti,j′′)

)
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B.3 Comparing against Takahata and Nei’s

Results
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Figure B.1: Comparing Results to Takahata and Nei, constant population
size. We compare the theoretical results derived by Takahata and Nei (blue solid
lines) with those derived here (black dashed lines), for a sample size of nx = 10,
and variable divergence time DXY . Note that Var(dY ) and Cov(dY , dXY ) are not
pictured as they are identical to their dX counterparts, by swapping nX for nY in
the equations.

Here we compare against Takahata and Nei’s [49] results for the variance and covari-
ance in pairwise differences under a constant population size model, and sample sizes,
nX , nY . Under this scenario, Takahata and Nei (with partial results also derived by
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Tajima [48]) find:

E(dXY ) = E(dX)
(
1 +

1

2
DXY

)
Var(dX) =

nX + 1

3(nX − 1)
E(dX) +

2(n2
X + nX + 3)

9nX(nX − 1)
E(dX)2

Var(dXY ) = (1− e−DXY /2)2
[
(DXY /2 + 1− 2F )E(dX) + E(dX)2

]
+ 2e−DXY /2(1− e−DXY /2)

[(DXY

4
+

1

2
− F

)
E(dX) +

1

3
E(dX)2

]
+ e−DXY

[1

3
E(dX) +

2

9
E(dX)2

]
Cov(dX , dY ) = e−DXY

(1

3
E(dX) +

2

9
E(dX)2

)
Cov(dXY , dX) =

2

nX

[
(1− e−DXY /2)E(dX)F + e−DXY /2

{1

2
(
DXY

2
+ 1)E(dX)

+
1

3
E(dX)2

}]
+
nX − 2

nx

[
1

3

(
1− 3

2
e−DXY /2 +

1

2
e−3DXY /2

)
E(dX)Z1

+
3

2
(e−DXY /2 − e−3DXY /2)

{1

3
(
DXY

2
+ 1− Z2)E(dX) +

2

9
E(dX)2

}
+ e−3DXY /2

(1

3
E(dX) +

2

9
E(dX)2

)]

Where E(dX) = E(dY ), F = 1
2

(
1− (DXY /2 + 1)e−DXY /2

)
,

Z1 = 1− 3
2
(1 +DXY /2)e−DXY /2 + 1

2
(1 + 3DXY /2)e−3DXY /2, and Z2 = 1

3

{
1− (1 +

3DXY /2)e−3DXY /2
}

. Results for Var(dY ), Cov(dXY , dY ) can be obtained by replacing
nx with nY .

Figure B.1 demonstrates that the results from Takahata and Nei match those
derived in this manuscript with calculations done using STCov. The results presented
in this manuscript can therefore be viewed as generalizations to those above.
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B.4 Average Pairwise Difference Accuracy Plots
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Figure B.2: Average pairwise difference results, 2µηX = 10, ηY = 1ηX.
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Figure B.3: Average pairwise difference results, 2µηX = 1, ηY = 1ηX.
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Figure B.4: Average pairwise difference results, 2µηX = 0.1, ηY = 1ηX.
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Figure B.5: Average pairwise difference results, 2µηX = 10, ηY = 2ηX.
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Figure B.6: Average pairwise difference results, 2µηX = 1, ηY = 2ηX.
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Figure B.7: Average pairwise difference results, 2µηX = 0.1, ηY = 2ηX.



APPENDIX B. SUPPLEMENT FOR CHAPTER 3 87

0 5 10 15 20

18
19

20
21

22

 

E
(d

X
)

DXY
0 5 10 15 20

20
60

10
0

 

E
(d

Y
)

DXY
0 5 10 15 20

50
10

0
20

0

 

E
(d

X
Y
)

DXY

0 5 10 15 20

10
0

12
0

 

V
ar

(d
X
)

DXY
0 5 10 15 20

20
0

60
0

10
00

 

V
ar

(d
Y
)

DXY
0 5 10 15 20

10
0

30
0

 

V
ar

(d
X

Y
)

DXY

0 5 10 15 20

0
20

40
60

80

 

C
ov

(d
X
,d

Y
)

DXY
0 5 10 15 20

0
40

80

 

C
ov

(d
X
,d

X
Y
)

DXY
0 5 10 15 20

80
10

0
12

0

 

C
ov

(d
Y
,d

X
Y
)

DXY

Figure B.8: Average pairwise difference results, 2µηX = 10, ηY = 10ηX.
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Figure B.9: Average pairwise difference results, 2µηX = 1, ηY = 10ηX.
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Figure B.10: Average pairwise difference results, 2µηX = 0.1, ηY = 10ηX.

B.5 Covariance and Shared Branch Length

In this section we provide further details on the calculations of covariance and ex-
pected shared branch length for a pair of coalescence events. As mentioned in the
main text, these calculations depend on the species tree topology. For 4 unique indi-
viduals a, b, c, d, there are 5 canonical topologies which need to be considered. Figure
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B.11 illustrates these possibilities. Note that for events in which multiple individuals
are in the same population, we simply assume divergence times are 0 on the tree.

a b c d

a b c d

a bc d a bc d

a bc d

S1 S2 S3

S4 S5

Possible species tree configurations:

Figure B.11: 5 possible species tree configurations. For 4 individuals,(a, b, c, d)
there are 5 canonical species tree configurations to consider when calculating quan-
tities Cov(ta,b, tc,d) and E(ta,b∩c,d). Here we assume some exchangeability between
lineages a,b and between lineages c,d.

In the following sections we discuss the general equations and tools needed to
calculate the expected shared branch length and covariance as presented in the main
text.

Expected shared branch length, 4 unique individuals

Here we present some details into the equations/recursions for the expected shared
branch length of two coalescence events tab and tcd where a, b, c, d are all unique
individuals, who can originate from different modern day species. There is some
underlying species tree S, which we condition all of our calculations on, implicitly.
Let Dab and Dcd represent the divergence times on S of these pairs of individuals.

Defining shared branch length

To understand the expected shared branch length between two coalescence branches
2tab and 2tcd, we need an explicit formula to calculate shared branch length. Following
the logic of [34], we take a two step approach:
Step 1:
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Compute

β1 = tab + tcd

β2 = tac + tbd

β3 = tad + tbc

Step 2:
Let βm = min(β1, β2, β3). Then compute

ta,b∩c,d = (β1 − βm)

where ta,b∩c,d represents the total length of overlap shared by the branch between
a, b the branch connecting c, d. Note when there is no shared branch length, ta,b∩c,d =
0, which occurs when tab or tcd is the minimum coalescence time on the tree of these
4 individuals. See figure 3.1 for an illustrative definition of expected shared branch
length.

We are interested in

E[ta,b∩c,d] = E[β1 − βm] = E[tab + tcd − βm] = E[tab] + E[tcd]− E[βm]

We already know E[tab] and E[tcd] from earlier mean calculations. What is left to
do is derive the equations for E[βm].

Expanding E[βm]

Using the definitions above, we can expand βm to the following, by conditioning on
the probability that quantity β1, β2 or β3 is the minimum value,

E[βm] =E[min(β1, β2, β3)]

=E[min(tab + tcd, tac + tbd, tad + tbc)]

=E[tab + tcd|tab + tcd = βm]P (tab + tcd = βm)

+ E[tac + tbd|tac + tbd = βm]P (tac + tbd = βm)

+ E[tad + tbc|tad + tbc = βm]P (tad + tbc = βm)

Next, it is important to observe that tab + tcd achieves the minimum if and only if tab
or tcd is the first (most recent) coalescence event on the tree of 4 individuals a, b, c, d.

For the sake of generality, we will focus on one of the three terms, although all
results hold for the other two, by just appropriately re-labeling terms.
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Focusing on E[tab + tcd|tab + tcd = bm]P (tab + tcd = βm)

Using the observation that the minimum is achieved if and only if one of the two
times is the minimum coalescence time, we can further expand this quantity. For
notation, let us denote Cm to be the first coalescence time on the tree.

E[tab + tcd|tab + tcd = βm]P (tab + tcd = βm)

= E
[
tab + tcd|(tab = Cm) OR (tcd = Cm)

]
P
(
(tab = Cm) OR (tcd = Cm)

)
If we write out the integrals required to compute this quantity, and employ the use
of Bayes’ Theorem, we can form this into more recognizable terms,

E
[
tab + tcd|(tab = Cm) OR (tcd = Cm)

]
P
(
(tab = Cm) OR (tcd = Cm)

)
=

∫ ∞
Dab

∫ ∞
Dcd

(tab + tcd)P
(
tab, tcd|(tab = Cm) OR (tcd = Cm)

)
dtcdtab

× P
(
(tab = Cm) OR (tcd = Cm)

)
=

∫ ∞
Dab

∫ ∞
Dcd

(tab + tcd)
P
(
(tab = Cm) OR (tcd = Cm)|tab, tcd

)
P (tab, tcd)

P
(
(tab = Cm) OR (tcd = Cm)

) dtcddtab

× P
(
(tab = Cm) OR (tcd = Cm)

)
=

∫ ∞
Dab

∫ ∞
Dcd

(tab + tcd)P
(
(tab = Cm) OR (tcd = Cm)|tab, tcd

)
P (tab, tcd)dtcddtab

Now, let’s expand P
(
(tab = Cm) OR (tcd = Cm)|tab, tcd

)
. Observe, by the inclusion-

exclusion principle

P
(
(tab = Cm) OR (tcd = Cm)|tab, tcd

)
= P (tab = Cm|tab, tcd) + P (tcd = Cm|tab, tcd)
− P

(
(tab = Cm) AND (tcd = Cm)|tab, tcd

)
= P

(
tab = Cm|tab, tcd) + P (tcd = Cm|tab, tcd)

since P
(
tab = Cm AND tcd = Cm|tab, tcd

)
= 0 as we assume all coalescence events

are bifurcating between only two individuals at a time.
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Applying Bayes’ Theorem once more to each of these terms we see

P
(
tab = Cm|tab, tcd) + P (tcd = Cm|tab, tcd)

=
P (tab, tcd|tab = Cm)P (tab = Cm)

P (tab, tcd)
+
P (tab, tcd|tcd = Cm)P (tcd = Cm)

P (tab, tcd)

By plugging in this expression to our density in the double integral above, we can
get a much more clear expression for the expectation

∫ ∞
Dab

∫ ∞
Dcd

(tab + tcd)P
(
(tab = Cm) OR (tcd = Cm)|tab, tcd

)
P (tab, tcd)dtcddtab

=

∫ ∞
Dab

∫ ∞
Dcd

(tab + tcd)
[P (tab, tcd|tab = Cm)P (tab = Cm)

P (tab, tcd)

+
P (tab, tcd|tcd = Cm)P (tcd = Cm)

P (tab, tcd)

]
P (tab, tcd)dtcddtab

=

∫ ∞
Dab

∫ ∞
Dcd

(tab + tcd)
[
P (tab, tcd|tab = Cm)P (tab = Cm)

+ P (tab, tcd|tcd = Cm)P (tcd = Cm)
]
dtcddtab

=

∫ ∞
Dab

∫ ∞
Dcd

(tab + tcd)P (tab, tcd|tab = Cm)P (tab = Cm)dtcddtab

+

∫ ∞
Dab

∫ ∞
Dcd

(tab + tcd)P (tab, tcd|tcd = Cm)P (tcd = Cm)dtcddtab

= E[tab + tcd|tab = Cm]P (tab = Cm) + E[tab + tcd|tcd = Cm]P (tcd = Cm)

To summarize this subsection, we have shown that

E
[
tab + tcd|(tab = Cm) OR (tcd = Cm)

]
P
(
(tab = Cm) OR (tcd = Cm)

)
= E[tab + tcd|tab = Cm]P (tab = Cm) + E[tab + tcd|tcd = Cm]P (tcd = Cm)

Next we will focus on one of these two expectation terms, E[tab+tcd|tab = Cm]P (tab =
Cm), as it can be generalized to all terms in this calculation.
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Immediately note that we can expand each expectation using the linearity of
expectations

E[tab + tcd|tab = Cm]P (tab = Cm)

= E[tab|tab = Cm]P (tab = Cm)︸ ︷︷ ︸
Term 1

+E[tcd|tab = Cm]P (tab = Cm)︸ ︷︷ ︸
Term 2

Recall that the expectation is still over the joint conditional distribution P (tab, tcd|tab =
Cm) (and similarly with tcd in the conditional for the second term).

In the next two subsections, we present a derivations of terms 1 and 2 in case
when a, b, c, d are all in the same (potentially ancient) population. The rest of the
cases are implemented in our C++ code.

Calculating Term 1: E[tab|tab = Cm]P (tab = Cm)

Under the condition that all 4 individuals having survived to the same species without
coalescing, the probability that any one of the possible 6 pairs is the first to coalesce
is 1

6
. So we know immediately P (tab = Cm) = 1

6
. Let Dabcd be the time at which all

4 individuals have a common species ancestor. Let Habcd represent the population
size change history back in time starting at time Dabcd. Habcd can be viewed as a list
of time/size pairs (τi, ηi) where τ1 = Dabcd.

Term 1 = E[tab|tab = Cm]P (tab = Cm)

=

∫ ∞
Dabcd

tabP (tab|tab = Cm)P (tab = Cm)dtab

=
∑

i∈Habcd

P (tab > ti)

∫ τi+1

τi

tabP (tab|tab = Cm)P (tab = Cm)dtab

=
∑

i∈Habcd

P (tab > ti)
1

6

∫ τi+1

τi

tabP (tab|tab = Cm)dtab

=
∑

i∈Habcd

P (tab > τi)
1

6

∫ τi+1

τi

tabP (6p Coal = tab|τi)dtab

=
∑

i∈Habcd

P (tab > τi)
1

6

∫ τi+1

τi

tab
6

2ηi
e
−6(tab−τi)

2ηi dtab

Notation:
(

6p Coal = t|τi
)

is the event that 6 possible pairs can coalesce starting

at time τi, and the time of the first event is t > τi. These 6 pairs represent the
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6 possible pairings: {a|b, a|c, a|d, b|c, b|d, c|d}. We formally present this and more
notation at the end of this manuscript.

Calculating Term 2: E[tcd|tab = Cm]P (tab = Cm)

Term 2 = E[tcd|tab = Cm]P (tab = Cm)

=

∫ ∞
Dabcd

∫ ∞
Dabcd

tcdP (tab, tcd|tab = Cm)P (tab = Cm)dtabdtcd

=
∑

i∈Habcd

P (Tcd > τi)

∫ τi+1

τi

tcd

∫ tcd

Dabcd

P (tab|tcd, tab = Cm)P (tab = Cm|tcd)

× P (tcd)dtcddtab

=
∑

i∈Habcd

P (tcd > τi)

×
∫ τi+1

τi

tcdP (tcd)

∫ tcd

Dabcd

P (tab|tcd, tab = Cm)P (tab = Cm|tcd)dtcddtab︸ ︷︷ ︸
Term 2(i)

Term 2(i) =

∫ τi+1

τi

tcdP (tcd)

∫ tcd

Dabcd

P (tab|tcd, tab = Cm)P (tab = Cm|tcd)dtcddtab

=

∫ τi+1

τi

tcdP (tcd)

[ ∑
k∈Habcd,k<i

(
P (5p No Coal ∈ (0, τk))

×
∫ τk+1

τk

P (tab|tcd, tab = Cm)dtab

)
+ P (5p No Coal ∈ (0, τi))

∫ tcd

τi

P (tab|tcd, tab = Cm)dtab

]
dtcd

=

∫ τi+1

τi

tcdP (tcd)

[ ∑
k∈Habcd,k<i

(
P (5p No Coal ∈ (0, τk))

×
∫ τk+1

τk

1

5
P (5p Coal = tab|τk)dtab

)
+ P (5p No Coal ∈ (0, τi))

∫ tcd

τi

1

5
P (5p Coal = tab|τi, tcd)dtab

]
dtcd
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=

∫ τi+1

τi

tcdP (tcd)

[ ∑
k∈Habcd,k<i

(
P (5p No Coal ∈ (0, τk))

× 1

5

[
1− P (5p No Coal ∈ (τk, τk+1))

])
+ P (5p No Coal ∈ (0, τi))

1

5

[
1− P (5p No Coal ∈ (τi, tcd))

]]
dtcd

=

∫ τi+1

τi

tcdP (tcd)dtcd

[ ∑
k∈Habcd,k<i

(
P (5p No Coal ∈ (0, τk))

× 1

5

[
1− P (5p No Coal ∈ (τk, τk+1))

])]

+ P (5p No Coal ∈ (0, τi))
1

5

∫ τi+1

τi

tcdP (tcd)
[
1− P (5p No Coal ∈ (τi, tcd))

]
dtcd

=

∫ τi+1

τi

tcdP (tcd)dtcd

[ ∑
k∈Habcd,k<i

(
P (5p No Coal ∈ (0, τk))

× 1

5

[
1− P (5p No Coal ∈ (τk, τk+1))

])]

+ P (5p No Coal ∈ (0, τi))
1

5

∫ τi+1

τi

tcdP (tcd)dtcd

− P (5p No Coal ∈ (0, τi))
1

5

∫ τi+1

τi

tcdP (tcd)P (5p No Coal ∈ (τi, tcd))dtcd

Notation:
(

5p No Coal ∈ (τi, t)
)

is the event that none of the 5 possible pairs

coalesce in the time interval (τi, t). We formally present this and more notation at
the end of this manuscript.

Expected Shared Branch Length, 3 unique individuals

Here I am deriving the equations/recursions for the expected shared branch length of
two coalescence events tab, tbc, where a, b, c are three unique individuals, not necessar-
ily of the same species. There is some underlying species tree S, which we condition
all of our calculations on, implicitly.



APPENDIX B. SUPPLEMENT FOR CHAPTER 3 97

Defining shared branch length

To understand the expected shared branch length between two coalescent branches
tab and tbc, we need to take a different approach than in the 4 individual case. Note
that there are three possible scenarios for the ordering of our pairs: (tab = tbc),
(tab < tbc), (tab > tbc). Let ta,b∩b,c denote the shared branch length. We can expand
the expectation into these three cases, and calculate their values separately.

E(ta,b∩b,c) = E(ta,b∩b,c|tab = tbc)P (tab = tbc) + E(ta,b∩b,c|tab < tbc)P (tab < tbc)

+ E(ta,b∩b,c|tab > tbc)P (tab > tbc)

=
[
2E(tab|tab = tbc)− E(tac|tab = tbc)

]
P (tab = tbc)

+ E(tab|tab < tbc)P (tab < tbc)

+ E(tbc|tab > tbc)P (tab > tbc)

= 2E(tab|tab = tbc)P (tab = tbc)︸ ︷︷ ︸
Term 3

−E(tac|tab = tbc)P (tab = tbc)︸ ︷︷ ︸
Term 4

+ E(tab|tab < tbc)P (tab < tbc)︸ ︷︷ ︸
Term 5

+E(tbc|tab > tbc)P (tab > tbc)︸ ︷︷ ︸
Term 5

Here let us observe that, in a tree of only three individuals, the event
(
tab = tbc

)
is

equivalent to events
(
tac < tab

)
,
(
tac < tbc

)
and

(
tac = Cm

)
where Cm denotes the

first coalescence event. Using this, we can see that Terms 4 and 5 are symbolically
equivalent to calculating the expected coalescence time conditional on being the first
event. From this, we will derive the forms for Term 3 and Term 4, which is sufficient
to symbolically represent all terms in the expression.

Calculating Term 3: E(tab|tab = tbc)P (tab = tbc)

Denote Cm to be the first coalescence event among the three pairs {a|b, a|c, b|c}.
Note that when tab = tbc, it must be that tac = Cm.



APPENDIX B. SUPPLEMENT FOR CHAPTER 3 98

Term 3 = E(tab|tab = tbc)P (tab = tbc)

=

∫ ∞
Dabc

tabP (tab|tab = tbc)P (tab = tbc)dtab

=
∑
i∈Habc

P (tab > τi)

∫ τi+1

τi

∫ tab

Dabc

tabP (tab|tac = Cm)P (tac = Cm)dtacdtab

=
∑
i∈Habc

P (tab > τi)

∫ τi+1

τi

tabP (tab)

∫ tab

Dabc

tabP (tac = Cm|tab)dtacdtab

=
∑
i∈Habc

P (tab > τi)

∫ τi+1

τi

tabP (tab)

∫ tab

Dabc

1

2
P (2p Coal = tac)dtacdtab

=
∑
i∈Habc

P (tab > τi)

∫ τi+1

τi

tabP (tab)

[ ∑
k∈Habc,k<i

P (2p No Coal ∈ (Dabc, τk))

×
∫ τk+1

τk

1

2
P (2p Coal = tac)dtac

+ P (2p No Coal ∈ (Dabc, τi))

∫ tab

ti

1

2
P (2p Coal = tac)dtac

]
dtab

=
∑
i∈Habc

P (tab > τi)

(∫ τi+1

τi

tabP (tab)dtab

[ ∑
k∈Habc,k<i

P (2p No Coal ∈ (Dabc, τk))

×
∫ τk+1

τk

1

2
P (2p Coal = tac)dtac

]

+ P (2p No Coal ∈ (Dabc, τi))

∫ τi+1

τi

tabP (tab)

∫ tab

τi

1

2
P (2p Coal = tac)dtacdtab

)

=
∑

i∈Habcd

P (tab > τi)

(∫ τi+1

τi

tabP (tab)dtab

[ ∑
k∈Habc,k<i

P (2p No Coal ∈ (Dabc, τk))

× 1

2

∫ τk+1

τk

P (2p Coal = tac)dtac

]
+ P (2p No Coal ∈ (Dabc, τi))

×
∫ τi+1

τi

tabP (tab)
1

2

[
1− P (2p No Coal ∈ (τi, tab))

]
dtab

)
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=
∑

i∈Habcd

P (τab > τi)

(∫ τi+1

τi

tabP (tab)dtab

[ ∑
k∈Habc,k<i

P (2p No Coal ∈ (Dabc, τk))

× 1

2

∫ τk+1

τk

P (2p Coal = tac)dtac

]

+ P (2p No Coal ∈ (0, τi))
[1

2

∫ τi+1

τi

tabP (tab)dtab

− 1

2

∫ τi+1

τi

tabP (tab)P (2p No Coal ∈ (τi, tab))dtab

])

Term 4: E(tac|tab = tbc)P (tab = tbc)

Term 4 = E(tac|tab = tbc)P (tab = tbc)

=

∫ ∞
Dabc

tacP (tac|tab = tbc)P (tab = tbc)dtac

=

∫ ∞
Dabc

tacP (tac = Cm|tac)P (tac)dtac

=
∑
i∈Habc

P (tac > τi)

∫ τi+1

τi

P (tac = Cm|tac)P (tac)dtac

=
∑
i∈Habc

P (tac > τi)

∫ τi+1

τi

P (2p No Coal ∈ (Dabc, tac))P (tac)dtac

=
∑
i∈Habc

P (tac > τi)P (2p No Coal ∈ (Dabc, τi))

×
∫ τi+1

ti

P (tac)P (2p No Coal ∈ (τi, tac))dtac

=
∑
i∈Habc

P (tac > τi)P (2p No Coal ∈ (Dabc, τi))

∫ τi+1

ti

1

2ηi
e
−3(tac−τi)

2ηi dtac

Covariance calculation, 4 individuals (same species)

In this section, we will describe the equations needed to derive a key quantity in
the covariance between pairs of coalescence events, where we explicitly assume all
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individuals have failed to coalesce with one another until that point, and there are 4
unique individuals.

Let us suppose we are interested in calculating Cov(Tab, Tcd|S) for some individ-
uals labeled a, b, c, d in our set of species. Note we may have piecewise constant
population sizes within the ancestral species, which we get from species tree S. The
formula for the covariance of our two random variables is as follows:

Cov(Tab, Tcd|S) = E(TabTcd|S)− E(Tab|S)E(Tcd|S)

The second part of the right hand side is a simple exercise in the multispecies
coalescent framework, which has been presented in the main text. The challenge
comes from calculating E(TabTcd|S), which is what we will focus on in this section.
Specifically, we focus on the component when all lineages have already survived
to a common ancestral population. Denote the time of this event to be Dabcd the
divergence time of all 4 individuals/species. Further, let us use the symbol > Dabcd

to indicate all lineages being more ancient than this time.
To begin, note that for 4 individuals there will be 3 distinct coalescence events,

with the last (most ancient) being the TMRCA of the set. Using this, we are inter-
ested in evaluating

E(TabTcd|S,> Dabcd) =

∫
Dabcd

tcdP (tcd|S,> Dabcd)

∫
Dabcd

tabP (tab|tcd,S, > Dabcd)dtabdtcd

by conditioning on all of the possible orderings of coalescence events.
Here is what we define as the canonical 6 orderings of events:

C1. Tab is the first coalescent event.
C2. Tab is the second event, Tcd is the third.
C3. Tab = Tcd as the third coalescent event.
C4. Tcd is the second event, Tab is the third.
C5. Tcd is the first event, Tab is the second.
C6. Tcd is the first event, Tab is the third.

From here on out, we will use Ci for i ∈ {1, ..., 6} to denote each case.

For any split on the species tree, here the split denoted by time Dabcd, let Habcd

be the sequence constant population size intervals back in time that trace the single
ancestry from time Dabcd back. For instance Habcd[1] = (τ1, η1), where τ1 = Dabcd

and η1 represents the population size of this ancient population. So we will denote
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i ∈ Habcd to be the ith branch segment in the ‘history’ of this ancient species.

So we can begin our equation. For notation’s sake, we drop the > Dabcd notation
from the following calculations as a space saving measure, but implicitly assume it
is present. It will be made clear when this is no longer the case.

E(TabTcd|S) =

∫
Dcd

tcdP (tcd|S)

∫
Dabcd

tabP (tab|tcd, S)dtabdtcd

=
∑

i∈Habcd

P (Tcd > τi)

∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

Dabcd

tabP (tab|tcd, S)dtabdtcd

=
∑

i∈Habcd

P (Tcd > τi)
[ ∫ τi+1

τi

tcdP (tcd|S)

×
∫ ∞
Dabcd

tabP (tab|tcd, S)1(tab < tcd)dtabtcd

+ 1(Tab = Tcd)

∫ τi+1

τi

t2cdP (tcd|S)P (tab = tcd|tcd, S)dtcd

+

∫ τi+1

τi

tcdP (tcd|S)

∫ ∞
tcd

tabP (tab|tcd, S)1(tab > tcd)dtabdtcd

]
=

∑
i∈Habcd

P (Tcd > τi)

×
[ ∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

Dabcd

tabP (tab|tcd, [Tab 1st event], S)

× P ([Tab 1st event]|tcd, S)dtabdtcd

+

∫ τi+1

τi

tcdP (tcd|S)

×
∫ tcd

Dabcd

tabP (tab|tcd, [Tac,ad,bc,bd 1st event], [Tab 2nd event], S)

× P ([Tab 2nd event]|tcd, [Tac,ad,bc,bd 1st event], S)

× P ([Tac,ad,bc,bd 1st event]|tcd, S)dtabdtcd

+

∫ τi+1

τi

tcd
2P (tcd|S)

∫ tcd

t0

4

5
P (tac,ad,bc,bd = ζ1|tcd, S)

×
∫ tcd

ζ1

1

2
P (Coal event not Tab or Tcd = ζ2|ζ1, tcd, S)dζ2dζ1dtcd
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+

∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

t0

4

5
P (Tac,ad,bc,bd 1st event = ζ1|tcd, S)

× P (2p No Coal in (ζ1, tcd)|tcd, S)dζ1

∫ ∞
tcd

tabP (tab|tcd, S)dtabdtcd

+

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (t0, tcd)|tcd, S)

×
∫ ∞
tcd

1

3
tabP (3p coal = tab|tcd, S)dtabdtcd

+

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (t0, tcd)|tcd, S)

∫ ∞
tcd

2

3
P (3p Coal = ζ|tcd, S)

×
∫ ∞
ζ

tabP (tab|ζ, S)dtabdζdtcd

]

Where inside the bracket of the last equation is a sum of 6 quantities which cor-
respond directly to each of the 6 cases presented above, in order. Also, note we use
notation, ζ, to represent coalescence events not equal to tab or tcd.

We will go through each one of these 6 equations, and evaluate the integrals, not-
ing that these are all conditional on the event that Tcd occurs in the interval (τi, τi+1).
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Case 1: Tab is the first coalescent event.

C1(i) =

∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

Dabcd

tabP (tab|tcd, [Tab 1st event], S)

× P ([Tab 1st event]|tcd, S)dtabdtcd

=

∫ τi+1

τi

tcdP (tcd|S)
[ ∑
k<i∈Habcd

(
P (5p No Coal in (t0, τk))

×
∫ τk+1

τk

tabP (tab|tcd, [Tab 1st event], S)dtab

)
+ P (5p No Coal in (t0, τi))

∫ tcd

τi

tabP (tab|tcd, [Tab 1st event], S)dtab

]
dtcd

=

∫ τi+1

τi

tcdP (tcd|S)
[ ∑
k<i∈Habcd

(
P (5p No Coal in (t0, τk))

×
∫ τk+1

τk

tab
1

5

5

2ηk
e
− 5(tab−τk)

2ηk dtab

)
+ P (5p No Coal in (t0, τi))

∫ tcd

τi

tab
1

5

5

2ηi
e
− 5(tab−τi)

2ηi dtab

]
dtcd

=

∫ τi+1

τi

tcdP (tcd|S)dtcd

×
[ ∑
k<i∈Habcd

(
P (5p No Coal in (t0, τk))

∫ τk+1

τk

tab
1

5

5

2ηk
e
− 5(tab−τk)

2ηk dtab

)]
+ P (5p No Coal in (t0, τi))

×
∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

τi

tab
1

5

5

2ηi
e
− 5(tab−τi)

2ηi dtabdtcd︸ ︷︷ ︸
C1A(i)

The first quantity is separated into easy to evaluate integrals for every interval in
the species tree. Now we look specifically at the remaining double integral denoted
C1A(i).
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C1A(i) =

∫ τi+1

τi

tcdP (tcd|S)
1

5

[
− (

2

5
ηi + tcd)e

− 5(tcd−τi)
2ηi +

2

5
ηi + τi

]
dtcd

= − 2

25
ηi

∫ τi+1

τi

tcd
1

2ηi
e
− 6(tcd−τi)

2ηi dtcd −
1

5

∫
τi
τi+1t2cd

1

2ηi
e
− 6(tcd−τi)

2ηi dtcd

(
2

5
ηi + τi)

∫ τi+1

τi

tcd
1

2ηi
e
− tcd−τi

2ηi dtcd

Which is a sum of easily evaluatable integrals.

Case 2: Tab is the second event, Tcd is the third.

C2(i) =

∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

Dabcd

tabP (tab|tcd, [Tac,ad,bc,bd 1st event], [Tab 2nd event], S)

× P ([Tab 2nd event]|tcd, [Tac,ad,bc,bd 1st event], S)

× P ([Tac,ad,bc,bd 1st event]|tcd, S)dtabdtcd

=

∫ τi+1

τi

tcdP (tcd|S)

[ i−1∑
k=0

(
P (5p No Coal in (t0, τk))

×
∫ τk+1

τk

4

5
P (5p Coal = ζ|tcd, S)

×
∫ tcd

τ

tab
1

2
P (2p coal = tab|tcd, τ, S)dtabdζ

)]
dtcd

+ P (5p No Coal in (t0, τi))

∫ τi+1

τi

tcdP (tcd|S)

×
[ ∫ tcd

τi

4

5
P (5p Coal = ζ|tcd, S)

×
∫ tcd

τ

tab
1

2
P (2p Coal = tab|ζ, tcd, S)dtabdτ

]
dtcd

= C2A(i) + P (5p No Coal in (t0, τi))C2B(i)

So let’s look at each of these two triple integrals, starting with C2A(i), which is
the event that Tab occurs more recently than the interval that contains Tcd (before
τi).
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C2A(i) =

∫ τi+1

τi

tcdP (tcd|S)

[ i−1∑
k=0

(
P (5p No Coal in (t0, τk))

×
∫ τk+1

τk

4

5
P (5p Coal = ζ|tcd, S)

×
∫ tcd

ζ

tab
1

2
P (2p coal = tab|tcd, τ, S)dtabdζ

)]
dtcd

=

∫ τi+1

τi

tcdP (tcd|S)

[ i−1∑
k=0

(
P (5p No Coal in (t0, τk))

×
∫ τk+1

τk

4

5
P (5p Coal = ζ|tcd, S)

×
(∫ τk+1

ζ

tab
1

2
P (2p Coal = tab|ζ, tcd, S)dtabdζ

+ P (2p No Coal in(ζ, τk+1))

∫ tcd

τk+1

tab
1

2
P (2p Coal = tab|τk+1, tcd, S)

)]
dtcd

=

∫ τi+1

τi

tcdP (tcd|S)dtcd

[ i−1∑
k=0

P (5p No Coal in (t0, τk))

×
∫ τk+1

τk

4

5
P (5p Coal = τ |tcd, S)︸ ︷︷ ︸

C2A(i)1(k)

×
∫ τk+1

ζ

tab
1

2
P (2p Coal = tab|ζ, tcd, S)dtabdζ

]
︸ ︷︷ ︸

C2A(i)1(k) con’t

+
i−1∑
k=0

P (5p No Coal in (t0, τk)

∫ τk+1

τk

4

5
P (5p Coal = ζ|tcd, S)

× P (2p No Coal in (ζ, τk+1))dζ

×
∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

τk+1

P (2p Coal = tab|τk+1, tcd, S)dtabdtcd︸ ︷︷ ︸
C2A(i)2(k)
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=

∫ τi+1

τi

tcdP (tcd|S)dtcd

[ i−1∑
k=0

P (5p No Coal in (t0, τk))× C2A(i)1(k)

]

+
i−1∑
k=0

P (5p No Coal in (t0, τk)

∫ τk+1

τk

4

5
P (5p Coal = τ |tcd, S)tab

× 1

2
P (2p No Coal in (ζ, τk+1))dζ × C2A(i)2(k)

So let’s evaluate the double integrals C2A(i)1(k) and C2A(i)2(k) next.

C2A(i)1(k) =

∫ τk+1

τk

4

5
P (5p Coal = ζ|tcd, S)

×
∫ τk+1

ζ

tab
1

2
P (2p Coal = tab|τ, tcd, S)dtabdζ

]
=

∫ τk+1

τk

4

5
P (5p Coal = ζ|tcd, S)

[1

4

(
− (ηk + τk+1)e

−
2(τk+1−ζ)

2ηk

+ ηk + ζ
)]
dζ

= −1

5
(ηi + τk+1)

∫ τk+1

τk

P (5p Coal = ζ|tcd, S)e
−

2(τk+1−ζ)
2ηk dζ

+
1

5
ηk

∫ τk+1

τk

P (5p Coal = ζ|tcd, S)dζ

+
1

5

∫ τk+1

τk

ζP (5p Coal = ζ|tcd, S)dζ

which are simple to evaluate integrals for each interval.
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C2A(i)2(k) =

∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

τk+1

tab
1

2
P (2p Coal = tab|τk+1, tcd, S)dtabdtcd

=

∫ τi+1

τi

tcdP (tcd|S)

[ ∫ τi

τk+1

tab
1

2
P (2p Coal = tab|τk+1, τi, S)dtab

+ P (2p No Coal in (τk+1, τi))

×
∫ tcd

τi

tab
2
P (2p Coal = tab|τi, tcd, S)dtab

]
dtcd

=

∫ τi+1

τi

tcdP (tcd|S)dtcd

( i−1∑
j=k+1

P (2p No Coal in (τk+1, τj))

×
∫ τj+1

τj

tab
1

2
P (2p Coal = tab|τj, τj+1, S)dtab

)
+ P (2p No Coal in (τk+1, τi))

×
∫ τi+1

τi

tcdP (tcd|S)
1

2

(
− (ηi + tcd)e

− 2(tcd−τi)
2ηi + ηi + τi

)
dtcd

=

∫ τi+1

τi

tcdP (tcd|S)dtcd

×
( i−1∑
j=k+1

P (2p No Coal in (τk+1, τj))

×
∫ τj+1

τj

tab
1

2
P (2p Coal = tab|τj, τj+1, S)dtab

)
+

1

2
P (2p No Coal in (τk+1, τi))

[
− ηi

∫ τi+1

τi

tcdP (tcd|S)e
− 2(tcd−τi)

2ηi dtcd

−
∫ τi+1

τi

t2cdP (tcd|S)e
− 2(tcd−τi)

2ηi dtcd + (ηi + τi)

∫ τi+1

τi

tcdP (tcd|S)dtcd

]
So this finishes Case 2A, I currently leave the single integrals up to the reader.

See the notation section for assistance.

Let’s look at C2B(i) now. Note this is the event where all three coalescent events
occur in (τi, τi+1) with Tab as the second event, and Tcd is the last.
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C2B(i) =

∫ τi+1

τi

tcdP (tcd|S)

[ ∫ tcd

τi

4

5
P (5p Coal = ζ|tcd, S)

×
∫ tcd

ζ

tab
1

2
P (2p Coal = tab|ζ, tcd, S)dtabdζ

]
dtcd

=

∫ τi+1

τi

tcdP (tcd|S)

[ ∫ tcd

τi

4

5
P (5p Coal = ζ|tcd, S)

× 1

2

(
− (ηi + tcd)e

−2
(tcd−ζ)

2ηi + ηi + τ
)]
dζdtcd

=

∫ τi+1

τi

tcdP (tcd|S)

[
− 2

5
(ηi + tcd)

5

3

(
e
−2

(tcd−τi)
2ηi − e−5

(tcd−τi)
2ηi

)
+

2

5
ηi
(
1− e−5

(tcd−τi)
2ηi

)
+

2

5

(
− (

2

5
ηi + tcd)e

−5
(tcd−τi)

2ηi +
2

5
ηi + τi

)]
dtcd

= −2

3
ηi

∫ τi+1

τi

tcdP (tcd|S)e
−2

(tcd−τi)
2ηi dtcd −

2

3

∫ τi+1

τi

t2cdP (tcd|S)e
−2

(tcd−τi)
2ηi dtcd

+
8

75
ηi

∫ τi+1

τi

tcdP (tcd|S)e
−5

(tcd−τi)
2ηi dtcd

+
4

15

∫ τi+1

τi

t2cdP (tcd|S)e
−2

(tcd−τi)
2ηi dtcd

+
2

5

(2

5
ηi + τi

)∫ τi+1

τi

tcdP (tcd|S)dtcd
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Case 3: Tab = Tcd as the last coalescent event.

C3(i) =

∫ τi+1

τi

tcd
2P (tcd|S)

∫ tcd

t0

4

5
P (tac,ad,bc,bd = ζ1|tcd, S)

×
∫ tcd

ζ1

1

2
P (Coal event not Tab or Tcd = ζ2|ζ1, tcd, S)dζ2dζ1dtcd

=

∫ τi+1

τi

tcd
2P (tcd|S)

[ i−1∑
k=0

P (5p No Coal in (t0, τk))

×
∫ τk+1

τk

4

5
P (5p Coal = ζ1|tcd, S)

∫ tcd

ζ1

1

2
P (2p Coal = ζ2|tcd, ζ1, S)dζ2dζ1

+ P (5p No Coal in (t0, τi))

∫ tcd

τi

4

5
P (5p Coal = ζ1|tcd, S)

×
∫ tcd

ζ1

1

2
P (2p Coal = ζ2|tcd, ζ1, S)dζ2dζ1

]
dtcd

=

∫ τi+1

τi

tcd
2P (tcd|S)

[ i−1∑
k=0

P (5p No Coal in (t0, τk))

×
∫ τk+1

τk

4

5
P (5p Coal = ζ1|tcd, S)

×
(∫ τk+1

ζ1

1

2
P (2p Coal = ζ2|tcd, ζ1, S)dζ2

+ P (2p No Coal in (ζ1, τk+1))

∫ tcd

τk+1

1

2
P (2p Coal = ζ2|tcd, τk+1, S)dζ2

)
dζ1

]
dtcd

+ P (5p No Coal in (t0, τi))

×
∫ τi+1

τi

tcd
2P (tcd|S)

∫ tcd

τi

4

5
P (5p Coal = ζ1|tcd, S)︸ ︷︷ ︸

C3A(i)

×
∫ tcd

ζ1

1

2
P (2p Coal = ζ2|tcd, ζ1, S)dζ2dζ1dtcd︸ ︷︷ ︸

C3A(i) con’t



APPENDIX B. SUPPLEMENT FOR CHAPTER 3 110

= P (5p No Coal in (t0, τi))× C3A(i)

+

∫ τi+1

τi

tcd
2P (tcd|S)dtcd

[ i−1∑
k=0

P (5p No Coal in (t0, τk))

×
∫ τk+1

τk

4

5
P (5p Coal = ζ1|tcd, S)

∫ τk+1

ζ1

1

2
P (2p Coal = ζ2|tcd, ζ1, S)dζ2dζ1︸ ︷︷ ︸

C3B(k)

]

+

[ i−1∑
k=0

P (5p No Coal in (t0, τk))

×
∫ τk+1

τk

4

5
P (5p Coal = ζ1|tcd, S)P (2p No Coal in (ζ1, τk+1))dζ1

×
∫ τi+1

τi

tcd
2P (tcd|S)

∫ tcd

τk+1

1

2
P (2p Coal = ζ2|tcd, τk+1, S)dζ2dtcd︸ ︷︷ ︸
C3C(i,k)

]

= P (5p No Coal in (t0, τi))× C3A(i)

+

∫ τi+1

τi

tcd
2P (tcd|S)dtcd

[ i−1∑
k=0

P (5p No Coal in (t0, τk))× C3B(k)

]

+

[ i−1∑
k=0

P (5p No Coal in (t0, τk))

∫ τk+1

τk

4

5
P (5p Coal = ζ1|tcd, S)

× P (2p No Coal in (ζ1, τk+1))dζ1 × C3C(i, k)

]

So let’s evaluate C3A(i), C3B(k) and C3C(i, k). The rest of the equation are
easy to evaluate single integrals (with a constant population size).
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C3A(i) =

∫ τi+1

τi

tcd
2P (tcd|S)

∫ tcd

τi

4

5
P (5p Coal = ζ1|tcd, S)

×
∫ tcd

ζ1

1

2
P (2p Coal = ζ2|tcd, ζ1, S)dζ2dζ1dtcd

=

∫ τi+1

τi

tcd
2P (tcd|S)

∫ tcd

τi

4

5
P (5p Coal = ζ1|tcd, S)

[
1

2

(
1− e−

2(tcd−ζ1)
2ηi

)]
dζ1dtcd

=

∫ τi+1

τi

tcd
2P (tcd|S)

[ ∫ tcd

τi

2

5
P (5p Coal = ζ1|tcd, S)dζ1

−
∫ tcd

τi

2

5
P (5p Coal = ζ1|tcd, S)e

− 2(tcd−ζ1)
2ηi dζ1

]
dtcd

=

∫ τi+1

τi

tcd
2P (tcd|S)

[
2

5

(
1− e−

5(tcd−τi)
2ηi

)
− 2

3

(
e
− 2(tcd−τi)

2ηi − e−
5(tcd−τi)

2ηi

)]
dtcd

=
2

5

∫ τi+1

τi

tcd
2P (tcd|S)dtcd −

2

3

∫ τi+1

τi

tcd
2P (tcd|S)e

− 2(tcd−τi)
2ηi dtcd

+
4

15

∫ τi+1

τi

tcd
2P (tcd|S)e

− 5(tcd−τi)
2ηi dtcd

Now for C3B(k):

C3B(k) =

∫ τk+1

τk

4

5
P (5p Coal = ζ1|tcd, S)

∫ τk+1

ζ1

1

2
P (2p Coal = ζ2|tcd, ζ1, S)dζ2dζ1

=
2

5

∫ τk+1

τk

P (5p Coal = ζ1|tcd, S)

[
1− e−

5(τk+1−ζ1)
2ηk

]
dζ1

=
2

5

∫ τk+1

τk

P (5p Coal = ζ1|tcd, S)dζ1

− 2

5

∫ τk+1

τk

P (5p Coal = ζ1|tcd, S)e
−

5(τk+1−ζ1)
2ηk dζ1

Now for C3C(i, k):
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C3C(i, k) =

∫ τi+1

τi

tcd
2P (tcd|S)

∫ tcd

τk+1

1

2
P (2p Coal = ζ2|tcd, τk+1, S)dζ2dtcd

=

∫ τi+1

τi

tcd
2P (tcd|S)dtcd

∫ τi

τk+1

1

2
P (2p Coal = ζ2|τk+1, τi, S)dζ2

+ P (2p No Coal in (τk+1, τi))

×
∫ τi+1

τi

tcd
2P (tcd|S)

∫ tcd

τi

1

2
P (2p Coal = ζ2|τi, tcd, S)dζ2dtcd

=

∫ τi+1

τi

tcd
2P (tcd|S)dtcd

[ i−1∑
j=k+1

P (2p No Coal in (τk+1, τj))

×
∫ τj+1

τj

1

2
P (2p Coal = ζ2|τj, τj+1, S)dζ2

]
+ P (2p No Coal in (τk+1, τi))

[ ∫ τi+1

τi

tcd
2P (tcd|S)dtcd

−
∫ τi+1

τi

tcd
2P (tcd|S)e

− 2(tcd−τi)
2ηi dtcd

]

Case 4: Tcd is the second event, Tab is the third.

C4(i) =

∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

t0

4

5
P (Tac,ad,bc,bd 1st event = ζ1|tcd, S)

× P (2p No Coal in (ζ1, tcd)|tcd, S)dζ1

∫ ∞
tcd

tabP (tab|tcd, S)dtabdtcd

=

∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

t0

4

5
P (5p Coal = ζ1|tcd, S)

× P (2p No Coal in (ζ1, tcd)|tcd, S)dζ1

∫ ∞
tcd

tabP (tab|tcd, S)dtabdtcd

=

∫ τi+1

τi

tcdP (tcd|S)

[ i−1∑
k=0

(
P (5p No Coal in (t0, τk))

×
∫ τk+1

τk

4

5
P (5p Coal = ζ1|tcd, S)P (2p No Coal in (ζ1, tcd)|tcd, S)dζ1
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× P (2p No Coal in (τk, tcd)|tcd, S)
)

+

∫ tcd

τi

4

5
P (5p Coal = ζ1|tcd, S)P (2p No Coal in (ζ1, tcd)|tcd, S)dζ1

]
×
[ ∫ τi+1

tcd

tabP (tab|tcd, S)dtabdtcd + P (1p No Coal in (tcd, τi+1)|tcd, S)

×
∫ ∞
τi+1

tabP (tab|τi+1, S)dtab

]
=

[ i−1∑
k=0

P (5p No Coal in (t0, τk))

∫ τk+1

τk

4

5
P (5p Coal = ζ1|tcd, S)

× P (2p No Coal in (ζ1, τk+1)|tcd, S)dζ1

× P (2p No Coal in (τk+1, τi))

]
×
[ ∫ τi+1

τi

tcdP (tcd|S)P (2p No Coal in (ti, tcd))

∫ τi+1

tcd

tabP (tab|tcd, S)dtabdtcd︸ ︷︷ ︸
C4A(i)

+

∫ τi+1

τi

tcdP (tcd|S)P (2p No Coal in (ti, tcd))P (1p No Coal in (tcd, τi+1)dtcd

×
∫ ∞
τi+1

tabP (tab|τi+1, S)dtab

]
+ P (5p No Coal in (t0, τi))

×
[ ∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

τi

4

5
P (5p Coal = ζ1|tcd, S)︸ ︷︷ ︸

C4B(i)

× P (2p No Coal in (ζ1, tcd)|tcd, S)dζ1

∫ τi+1

tcd

tabP (tab|tcd, S)dtabdtcd︸ ︷︷ ︸
C4B(i) con’t

+

∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

τi

4

5
P (5p Coal = ζ1|tcd, S)︸ ︷︷ ︸

C4C(i)

× P (2p No Coal in (ζ1, tcd)|tcd, S)dζ1P (1p No Coal in (tcd, τi+1))dtcd︸ ︷︷ ︸
C4C(i) con’t

×
∫ ∞
τi+1

tabP (tab|τi+1, S)dtab
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So let’s evaluate C4A(i), C4B(i), and C4C(i).

C4A(i) =

∫ τi+1

τi

tcdP (tcd|S)P (2p No Coal in (ti, tcd))

∫ τi+1

tcd

tabP (tab|tcd, S)dtabdtcd

=

∫ τi+1

τi

tcdP (tcd|S)e
− 2(tcd−τi)

2ηi

(
− (2ηi + τi+1)e

− (τi+1−tcd)
2ηi + 2ηi + tcd

)
dtcd

= −(2ηi + τi+1)

∫ τi+1

τi

tcdP (tcd|S)e
− 2(tcd−τi)

2ηi e
− (τi+1−tcd)

2ηi dtcd

+ 2ηi

∫ τi+1

τi

tcdP (tcd|S)e
− 2(tcd−τi)

2ηi dtcd +

∫ τi+1

τi

t2cdP (tcd|S)e
− 2(tcd−τi)

2ηi dtcd

Now on to C4B(i):

C4B(i) =

∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

τi

4

5
P (5p Coal = ζ1|tcd, S)

× P (2p No Coal in (ζ1, tcd)|tcd, S)dζ1

×
∫ τi+1

tcd

tabP (tab|tcd, S)dtabdtcd

=

∫ τi+1

τi

tcdP (tcd|S)

[
4

3

(
e
− 2(tcd−τi)

2ηi − e−
5(tcd−τi)

2ηi

)]
×
[
− (2ηi + τi+1)e

− (τi+1−tcd)
2ηi + 2ηi + tcd

]
dtcd

= −4

3
(2ηi + τi+1)

∫ τi+1

τi

tcdP (tcd|S)e
− 2(tcd−τi)

2ηi e
− (τi+1−tcd)

2ηi dtcd

+
4

3
(2ηi + τi+1)

∫ τi+1

τi

tcdP (tcd|S)e
− 5(tcd−τi)

2ηi e
− (τi+1−tcd)

2ηi dtcd

+
8

3
ηi

∫ τi+1

τi

tcdP (tcd|S)e
− 2(tcd−τi)

2ηi dtcd −
8

3
ηi

∫ τi+1

τi

tcdP (tcd|S)e
− 5(tcd−τi)

2ηi dtcd

+
4

3

∫ τi+1

τi

t2cdP (tcd|S)e
− 2(tcd−τi)

2ηi dtcd −
4

3

∫ τi+1

τi

t2cdP (tcd|S)e
− 5(tcd−τi)

2ηi dtcd

Next, C4C(i):
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C4C(i) =

∫ τi+1

τi

tcdP (tcd|S)

∫ tcd

τi

4

5
P (5p Coal = ζ1|tcd, S)

× P (2p No Coal in (ζ1, tcd)|tcd, S)dζ1P (1p No Coal in (tcd, τi+1))dtcd

=

∫ τi+1

τi

tcdP (tcd|S)P (1p No Coal in (tcd, τi+1))

×
(4

3
e
− 2(tcd−τi)

2ηi − 4

3
e
− 5(tcd−τi)

2ηi

)
dtcd

=
4

3

∫ τi+1

τi

tcdP (tcd|S)e
− 2(tcd−τi)

2ηi e
− (τi+1−tcd)

2ηi dtcd

− 4

3

∫ τi+1

τi

tcdP (tcd|S)e
− 5(tcd−τi)

2ηi e
− (τi+1−tcd)

2ηi dtcd
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Case 5: Tcd is the first event, Tab is the second.

C5(i) =

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (t0, tcd)|tcd, S)

×
∫ ∞
tcd

1

3
tabP (3p coal = tab|tcd, S)dtabdtcd

= P (5p No Coal in (t0, τi|S)

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (τi, tcd)|tcd, S)

×
[ ∫ τi+1

tcd

tab
1

3
P (3p Coal = tab|tcd, S)dtab

+ P (3p No Coal in (tcd, τi+1))

×
∫ ∞
τi+1

tab
1

3
P (3p Coal = tab|τi+1, S)dtab

]
dtcd

= P (5p No Coal in (t0, τi|S)

×
[ ∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (τi, tcd)|tcd, S)︸ ︷︷ ︸
C5A(i)

×
∫ τi+1

tcd

tab
1

3
P (3p Coal = tab|tcd, S)dtabdtcd︸ ︷︷ ︸

C5A(i) con’t

+

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (τi, tcd)|tcd, S)

× P (3p No Coal in (tcd, τi+1))dtcd

∫ ∞
τi+1

tab
1

3
P (3p Coal = tab|τi+1, S)dtab

]

So let’s evaluate C5A(i):
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C5A(i) =

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (τi, tcd)|tcd, S)

×
∫ τi+1

tcd

tab
1

3
P (3p Coal = tab|tcd, S)dtabdtcd

=

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (τi, tcd)|tcd, S)

× 1

3

[
−
(2

3
ηi + τi+1

)
e
− 3(τi+1−tcd)

2ηi +
2

3
ηi + tcd

]
dtcd

= −1

3

(2

3
ηi + τi+1

)
×
∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (τi, tcd)|tcd, S)e
− 3(τi+1−tcd)

2ηi dtcd

+
2

9
ηi

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (τi, tcd)|tcd, S)dtcd

+
1

3

∫ τi+1

τi

t2cdP (tcd|S)P (5p No Coal in (τi, tcd)|tcd, S)dtcd

Case 6: Tcd is the first event, Tab is the third.

C6(i) =

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (t0, tcd)|tcd, S)

∫ ∞
tcd

2

3
P (3p Coal = τ |tcd, S)

×
∫ ∞
τ

tabP (tab|τ, S)dtabdτdtcd

]
=

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (t0, tcd)|tcd, S)

×
[ ∫ τi+1

tcd

2

3
P (3p Coal = τ |tcd, S)

∫ ∞
τ

tabP (tab|τ, S)dtabdτ

+ P (3p No Coal in (tcd, τi+1)|tcd, S)

∫ ∞
τi+1

2

3
P (3p Coal = τ |τi+1, S)

×
∫ ∞
τ

P (tab|τ, S)dtabdτ

]
dtcd
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=

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (t0, tcd)|tcd, S)

×
[ ∫ τi+1

tcd

2

3
P (3p Coal = τ |tcd, S)

∫ τi+1

τ

tabP (tab|τ, S)dtabdτ

+

∫ τi+1

tcd

2

3
P (3p Coal = τ |tcd, S)P (1p No Coal in(τ, τi+1)|S)dτ

×
∫ ∞
τi+1

tabP (tab|τi+1, S)dtab

+ P (3p No Coal in (tcd, τi+1)|tcd, S)

∫ ∞
τi+1

2

3
P (3p Coal = τ |τi+1, S)

×
∫ ∞
τ

tabP (tab|τ, S)dtabdτ

]
dtcd

=

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (t0, tcd)|tcd, S)

∫ τi+1

tcd

2

3
P (3p Coal = τ |tcd, S)︸ ︷︷ ︸

C6A(i)

×
∫ τi+1

τ

tabP (tab|τ, S)dtabdτdtcd︸ ︷︷ ︸
C6A(i) con’t

+

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (t0, tcd)|tcd, S)︸ ︷︷ ︸
C6B(i)

×
∫ τi+1

tcd

2

3
P (3p Coal = τ |tcd, S)P (1p No Coal in(τ, τi+1)|S)dτdtcd︸ ︷︷ ︸

C6B(i) con’t

×
∫ ∞
τi+1

tabP (tab|τi+1, S)dtab

+

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (t0, tcd)|tcd, S)P (3p No Coal in(tcd, τi+1)|S)dtcd

×
∫ ∞
τi+1

2

3
P (3p Coal = τ |τi+1, S)

∫ ∞
τ

tabP (tab|τ, S)dtabdτ︸ ︷︷ ︸
C6C(i)

= C6A(i) + C6B(i)

∫ ∞
τi+1

tabP (tab|τi+1, S)dtab + C6C(i)

∫ τi+1

τi

tcdP (tcd|S)

× P (5p No Coal in (t0, tcd)|tcd, S)P (3p No Coal in(tcd, τi+1)|S)dtcd
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So let’s evaluate each of these three components.

C6A(i) =

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (t0, tcd)|tcd, S)

×
∫ τi+1

tcd

2

3
P (3p Coal = τ |tcd, S)

∫ τi+1

τ

tabP (tab|τ, S)dtabdτdtcd

=

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (t0, tcd)|tcd, S)

×
∫ τi+1

tcd

2

3
P (3p Coal = τ |tcd, S)

×
[
−
(

2ηi + τi+1

)
P (1p No Coal in (τ, τi+1)|S) + 2ηi + τ

]
dτdtcd

=

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (t0, tcd)|tcd, S)

×
[
− 2

3

(
2ηi + τi+1

)∫ τi+1

tcd

P (3p Coal = τ |tcd, S)

× P (1p No Coal in (τ, τi+1)|S)dτ +
4

3
ηi

∫ τi+1

tcd

P (3p Coal = τ |tcd, S)dτ

+
2

3

∫ τi+1

tcd

τP (3p Coal = τ |tcd, S)dτ

]
dtcd

= P (5p No Coal in (t0, τi)|S)

∫ τi+1

τi

tcdP (tcd|S)

× P (5p No Coal in (τi, tcd)|tcd, S)

×
[
−
(

2ηi + τi+1

)(
e
− (τi+1−tcd)

2ηi − e−
3(τi+1−tcd)

2ηi

)
+

4

3

(
1− e−

3(τi+1−tcd)
2ηi

)
+

2

3

[
−
(2

3
ηi + τi+1

)
e
− 3(τi+1−tcd)

2ηi +
2

3
ηi + tcd

]]
dtcd
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= P (5p No Coal in (t0, τi)|S)

×
[(

2ηi + τi+1 −
4

3
− 2

3

(2

3
ηi + τi+1

))
×
∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (τi, tcd)|tcd, S)e
− 3(τi+1−tcd)

2ηi dtcd

−
(

2ηi + τi+1

)∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (τi, tcd)|tcd, S)e
− (τi+1−tcd)

2ηi dtcd

+
(4

3
+

4

9
ηi

)∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (τi, tcd)|tcd, S)dtcd

+
2

3

∫ τi+1

τi

t2cdP (tcd|S)P (5p No Coal in (τi, tcd)|tcd, S)dtcd

]

So now lets look at C6B(i):

C6B(i) =

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (t0, tcd)|tcd, S)

×
∫ τi+1

tcd

2

3
P (3p Coal = ζ|tcd, S)P (1p No Coal in(ζ, τi+1)|S)dζdtcd

= P (5p No Coal in (t0, τi)|S)

∫ τi+1

τi

tcdP (tcd|S)P (5p No Coal in (τi, tcd)|tcd, S)

× 2

3

[
3

2

(
e
− (τi+1−tcd)

2ηi − e−
3(τi+1−tcd)

2ηi

)]
dtcd

= P (5p No Coal in (t0, τi)|S)

∫ τi+1

τi

tcdP (tcd|S)

× P (5p No Coal in (τi, tcd)|tcd, S)e
− (τi+1−tcd)

2ηi dtcd

− P (5p No Coal in (t0, τi)|S)

∫ τi+1

τi

tcdP (tcd|S)

× P (5p No Coal in (τi, tcd)|tcd, S)e
− 3(τi+1−tcd)

2ηi dtcd

Lastly, let’s look at C6C(i):
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C6C(i) =

∫ ∞
τi+1

2

3
P (3p Coal = ζ|τi+1, S)

∫ ∞
ζ

tabP (tab|ζ, S)dtabdζ

=
n−1∑
j=i+1

(3p No Coal in (τi+1, τj)|S)

∫ τj+1

τj

2

3
P (3p Coal = ζ|τj, S)

×
[ ∫ τj+1

ζ

tabP (tab|ζ, S)dtab + P (1p No Coal in (τ, τj+1))

×
∫ ∞
τj+1

tabP (tab|τj+1, S)dtab

]
dζ

=
n−1∑
j=i+1

(3p No Coal in (τi+1, τj)|S)

×
[ ∫ τj+1

τj

2

3
P (3p Coal = ζ|τj, S)

(
−
(
2ηj + τj+1

)
e
−

(τj+1−ζ)
2ηj + 2ηj + ζ

)
dζ

+

∫ ∞
τj+1

tabP (tab|τj+1, S)dtab

∫ τj+1

τj

2

3
P (3p Coal = ζ|τj, S)e

−
(τj+1−ζ)

2ηj dζ

]
=

n−1∑
j=i+1

(3p No Coal in (τi+1, τj)|S)

×
[(∫ ∞

τj+1

tabP (tab|τj+1, S)dtab −
(
2ηj + τj+1

))
×
∫ τj+1

τj

2

3
P (3p Coal = ζ|τj, S)e

−
(τj+1−ζ)

2ηj dζ

+
4

3
ηj

∫ τj+1

τj

2

3
P (3p Coal = ζ|τj, S)dτ +

2

3

∫ τj+1

τj

2

3
ζP (3p Coal = ζ|τj, S)dζ

]

By piecing together these quantities, which have all been presented as single inte-
grals over a constant population window, we can get the exact value for E(Tab, Tcd|S, >
Dabcd) which is used in all subsequent covariance calculations.

We omit the presentation of similar calculations when only three individuals are
present (E(tab, tbc|S,> Dabc)) as the logic follows similar to the process presented
here.
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Notation for integrals

P (K p No Coal ∈ (τi, τi+1)) = e
−K(τi+1−τi)

2ηi

indicates the probability that given K pairs of individuals entering branch i, none of
them coalesce in the branch parameterized by times τi, τi+1 and ηi.

P (K p Coal = τ |τi) =
K

2ηi
e
−K(τ−τi)

2ηi

is the probability that given K pairs of individuals have survived to branch i, that
the first coalescence of the K pairs occurs at time τ .

Tac,ad,bc,bd 1st event = ζ1

is the event that of the available 6 pairs of coalescence events, the first to occur
happens at time ζ1 and it is not pairs a, b or c, d.

In the equations presented here, we commonly see ambiguous notation like∫ τi+1

τi

P (tab)dtab

Here we are assuming tab has failed to coalesce before τi, and therefore the density
P (tab) should also be conditioned on that value, such that

P (tab|τi) =
1

2ηi
e
−Tab−τi

2ηi

we simply leave this off for sake of compactness in our equations.
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