
UC Irvine
UC Irvine Previously Published Works

Title
Revisiting the role of intermittent heat transport towards Reynolds 
stress anisotropy in convective turbulence

Permalink
https://escholarship.org/uc/item/6g05338v

Authors
Chowdhuri, Subharthi
Kumar, Siddharth
Banerjee, Tirtha

Publication Date
2020-09-25

DOI
10.1017/jfm.2020.471

Copyright Information
This work is made available under the terms of a Creative Commons 
Attribution License, availalbe at 
https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6g05338v
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


J. Fluid Mech. (2020), vol. 899, A26. © The Author(s), 2020.
Published by Cambridge University Press

899 A26-1

doi:10.1017/jfm.2020.471

Revisiting the role of intermittent heat transport
towards Reynolds stress anisotropy in convective

turbulence
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2Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
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Thermal plumes are the energy-containing eddy motions that carry heat and momentum
in a convective boundary layer. The detailed understanding of their structure is of
fundamental interest for a range of applications, from wall-bounded engineering flows to
quantifying surface–atmosphere flux exchanges. We address the aspect of Reynolds stress
anisotropy associated with the intermittent nature of heat transport in thermal plumes by
performing an invariant analysis of the Reynolds stress tensor in an unstable atmospheric
surface layer flow, using a field-experimental dataset. Given the intermittent and
asymmetric nature of the turbulent heat flux, we formulate this problem in an event-based
framework. In this approach, we provide structural descriptions of warm-updraft and
cold-downdraft events and investigate the degree of isotropy of the Reynolds stress tensor
within these events of different sizes. We discover that only a subset of these events
are associated with the least anisotropic turbulence in highly convective conditions.
Additionally, intermittent large-heat-flux events are found to contribute substantially to
turbulence anisotropy under unstable stratification. Moreover, we find that the sizes related
to the maximum value of the degree of isotropy do not correspond to the peak positions of
the heat-flux distributions. This is because the vertical velocity fluctuations pertaining
to the sizes associated with the maximum heat flux transport a significant amount of
streamwise momentum. A preliminary investigation shows that the sizes of the least
anisotropic events probably scale with a mixed length scale (z0.5λ0.5, where z is the
measurement height and λ is the large-eddy length scale).

Key words: intermittency, isotropic turbulence, plumes/thermals

1. Introduction

Taylor’s statistical theory of turbulence states that the turbulence is isotropic if the
average value of any function of the velocity components, defined in relation to a given set
of axes, is unaltered under axis rotation (Taylor 1935). However, the condition of isotropy
is not satisfied for the energy-containing scales of turbulence, since no energy production
can happen for isotropic turbulence due to its directional independence (Tennekes &

† Email address for correspondence: subharthi.cat@tropmet.res.in
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Study Approach Metric Remarks

Chamecki & Dias
(2004)

Scale decomposition Spectra and structure
functions

Test of local isotropy
hypothesis

Kurien &
Sreenivasan (2000)

Scale decomposition SO(3) decomposition
of structure
functions

Anisotropy in
small-scale motions

Djenidi & Tardu
(2012)

Time-averaged
statistics

Reynolds stress and
dissipation tensors

Large- and small-scale
anisotropy

Djenidi, Agrawal &
Antonia (2009)

Time-averaged
statistics

Taylor’s anisotropy
coefficient

Anisotropy in
energy-containing
motions

Salesky, Chamecki &
Bou-Zeid (2017)

Time-averaged
statistics

Vertical and
horizontal velocity
variance ratio

Anisotropy in
energy-containing
motions

Liu et al. (2017) Scale decomposition Scale-decomposed
Reynolds stress
tensor

Scale description of
anisotropy in an urban
surface layer

Dong et al. (2017) Event-based
description

Reynolds stress
tensor

Reynolds stress
anisotropy associated
with coherent
structures

Zhou & Xia (2011) Event-based
description and
scale
decomposition

Conditionally
sampled structure
functions

Anisotropy in positive
and negative velocity
increments

TABLE 1. A brief summary of different approaches and metrics used to study anisotropy in a
turbulent flow.

Lumley 1972). Several metrics have been used to quantify turbulence anisotropy (see
table 1 for a brief review) and, out of those, one of the metrics to quantify the anisotropic
signatures of the energy-containing motions at a point in the flow is the anisotropy
Reynolds stress tensor (e.g. Krogstad & Torbergsen 2000). This tensor becomes zero
in an isotropic turbulence and its anisotropy is quantified by using the invariants of bij,
an approach pioneered by Lumley & Newman (1977), known as invariant analysis. The
invariants of the anisotropy Reynolds stress tensor have been used extensively in the
context of wall-bounded neutral flows to deduce the anisotropic characteristics of the
energy-containing motions (e.g. Shafi & Antonia 1995).

In convective turbulence, buoyant structures, such as thermal plumes, are the
energy-containing motions that transport heat and drive the flow (Celani, Mazzino &
Vergassola 2001). These thermal plumes are well-organized structures of warm rising
(warm-updraft) and cold descending (cold-downdraft) fluid, which generate ramp–cliff
patterns in temperature time series when passing a thermal probe (Zhou & Xia 2002).
Shang et al. (2003) have shown that, in turbulent Rayleigh–Bénard convection, the time
series of the instantaneous vertical heat flux associated with the thermal plumes displays
intermittent characteristics. Intermittency is defined as a property of the turbulent signal
which is quiescent for much of the time and occasionally bursts into life with unexpectedly
high values more common than in a Gaussian signal (e.g. Davidson 2015). However, the
effect of this intermittent heat transport on the anisotropic fluctuations in the velocity
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Intermittent heat transport and Reynolds stress anisotropy 899 A26-3

field of convective turbulence is not yet well understood, as acknowledged by Pouransari,
Biferale & Johansson (2015). This problem is particularly relevant for the surface layer
of a convectively driven atmospheric boundary layer, where the most prevalent coherent
structures are the thermal plumes, and the heat transport characteristics associated with
these plumes appear to be intermittent (e.g. Katul et al. 1994).

The previous works on the atmospheric surface layer (ASL) plumes have focused
on the following: (a) deducing their detailed structures and dynamics (Wilczak 1984);
(b) identifying the coupling between the surface and air temperatures (Garai & Kleissl
2011, 2013); and (c) investigating the difference in the Monin–Obukhov similarity
functions by conditioning on the updraft and downdraft motions (Li et al. 2018; Fodor,
Mellado & Wilczek 2019). However, some early investigators noted that in an unstable
ASL there were certain intermittent bursts in the upward heat flux, persisting for
approximately 10–20 s duration, which were associated with large downward momentum
transport (Kaimal & Businger 1970; Haugen, Kaimal & Bradley 1971). They commented
that the vertical velocity fluctuations associated with these heat-flux events could either
transport momentum downwards in large bursts or transport it upwards. Businger
(1973) termed these intermittent momentum bursts associated with the heat-flux events
as ‘convection-induced stress’. Recently, Lotfy et al. (2019) also obtained the same
result from a field experiment in an unstable ASL, where they observed that the
persistent warm updrafts of 10–20 s duration were associated with a large amount of
momentum flux in the downward direction. By investigating the large-eddy simulation
results in convective conditions, Salesky & Anderson (2018) interpreted this phenomenon
as a buoyancy-dominated scale modulation effect. They explained that, under highly
convective conditions, the small-scale turbulence is excited in the updraft regions and
suppressed in the downdraft regions, leading to intermittent periods of small-scale
excitation in the momentum fluxes.

From the discussion above, it becomes apparent that, in an unstable ASL, the vertical
velocity fluctuations associated with the coherent heat-flux events could transport large
amount of momentum in intermittent bursts, in either the upward or downward direction.
Since only the anisotropic part of the velocity fluctuations can carry momentum (Dey
et al. 2018; Könözsy 2019), this indicates that the Reynolds stress anisotropy associated
with these coherent heat-flux events must be different from the averaged whole flow.
Therefore, studying the role of intermittent heat-flux events towards the anisotropy in the
velocity fluctuations is of practical importance in the context of ASL turbulence. For a
systematic investigation of this problem, invariant analysis of the anisotropy Reynolds
stress tensor in an event-based framework is a well-suited approach.

The event-based approach in turbulence is based on the fact that coherent physical
structures exist in a turbulent flow (e.g. Chapman & Tobak 1985). Specifically, Narasimha
et al. (2007) mentioned that, in this approach, the turbulent field can be expressed in terms
of events, given that its types, magnitudes, arrival times, etc. are defined properly. The
interest in the event-based description of turbulence started with the flow visualization
studies of Kline et al. (1967). They observed that the flow near the wall of a boundary
layer was organized into streaks of high- and low-momentum fluid. Subsequently, the
low-momentum streaks were seen to intermittently erupt away from the wall in a chaotic
process named bursting. This accounted for much of the outward vertical transport of
momentum and the production of turbulent kinetic energy in the boundary layer. A detailed
review of different conditional sampling techniques to detect events in turbulence can
be found in Antonia (1981) and Wallace (2016). The types of coherent structures whose
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899 A26-4 S. Chowdhuri, S. Kumar and T. Banerjee

signatures are associated with these events are reviewed in detail by Cantwell (1981),
Robinson (1991) and Jiménez (2018).

Sreenivasan, Antonia & Britz (1979) first applied this event-based approach to
investigate the effect on turbulence anisotropy associated with the coherent structures in
a heated turbulent jet. Based on the premise that the fine structures were superposed on
the large structures, Sreenivasan et al. (1979) extracted the coherent ramp–cliff events
in a heated turbulent jet, and then subtracted these patterns from the signal to get the
superposed fluctuations. Their focus was to show that the skewness in the temperature
gradient vanishes for the fine structures, thus confirming the local isotropy. Recently,
following the work of Lozano-Durán, Flores & Jiménez (2012), Dong et al. (2017)
studied the connected regions of high-intensity momentum zones in three-dimensional
simulations of homogeneous shear and channel flows and investigated the Reynolds stress
anisotropy. They quantified anisotropy by the invariants of the Reynolds stress tensor
within these high-intensity momentum zones along with their sizes; where the size was
defined as the box diagonal of the parallelepiped that circumscribed these connected
regions. Zhou & Xia (2011) attempted to disentangle the role of thermal plumes on the
velocity field in a Rayleigh–Bénard convection, by studying separately the anisotropy
in the inertial subrange of the positive and negative vertical velocity increments. They
showed that the negative increments at small separations deviated from the Kolmogorov
scaling, which they attributed to the presence of the coherent structures such as thermal
plumes.

The anisotropy directly associated with the intermittent occurrences of the coherent
structures is regarded as a state-of-the-art theoretical and experimental problem
(Pouransari et al. 2015). To the best of our knowledge, very few studies have addressed this
problem by adopting an event-based approach. This is particularly pertinent in the context
of ASL turbulence, where there are no comprehensive studies to quantify anisotropy
concomitant with the intermittent heat-flux events in convective conditions. The present
study attempts to fill this gap, using a field-experimental dataset. Therefore, we define our
objectives as follows:

(i) To investigate the detailed correspondence between the heat-flux events and
turbulence anisotropy in an unstable ASL.

(ii) To formulate a structural description of the heat-flux events and to investigate
whether they have any characteristic length scales associated with least anisotropic
turbulence.

The present paper is organized in three different sections. In § 2 we describe the dataset
and methodology to develop various statistical measures to quantify anisotropy associated
with the heat-flux events. In § 3 we present and discuss the results, and in § 4 we conclude
our findings and provide future directions for further research.

2. Data and methodology

We have used the dataset from the Surface Layer Turbulence and Environmental Science
Test (SLTEST) experiment. The SLTEST experiment was conducted over a flat and
homogeneous terrain at the Great Salt Lake desert in Utah, USA (40.14◦N, 113.5◦W), with
the aerodynamic roughness length (z0) being z0 ≈ 5 mm (Metzger, McKeon & Holmes
2007). The SLTEST site characteristics and the high quality of the dataset have been
documented in detail in many previous studies (e.g. Hutchins & Marusic 2007). In this
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Intermittent heat transport and Reynolds stress anisotropy 899 A26-5

experiment, nine north-facing sonic anemometers (CSAT3, Campbell Scientific, Logan,
USA) were installed on a 30 m tower approximately logarithmically at z = 1.4, 2.1, 3.0,
4.3, 6.1, 8.7, 12.5, 17.9, 25.7 m, levelled to within ±0.5◦ from the true vertical. All CSAT3
sonic anemometers were synchronized in time and the sampling frequency was set at
20 Hz. The experiment ran continuously for nine days from 26 May 2005 to 3 June 2005.

2.1. Data processing
The data were divided into 30 min periods containing the 20 Hz measurements of the three
wind components and the sonic temperature from all nine sonic anemometers. To select
the 30 min periods for analysis, we followed the standard procedures listed below:

(i) The 30 min periods were selected from the fair weather conditions during the
daytime periods with no rain.

(ii) The time series of all three components of velocity and sonic temperature were
plotted and visually checked. No electronic spikes were found in the data (Vickers
& Mahrt 1997).

(iii) The horizontal wind direction sector was limited to −30◦ < θ < 30◦ (where θ is the
horizontal wind direction from North).

(iv) The coordinate systems of all nine sonic anemometers were rotated in the streamwise
direction by applying the double-rotation method of Kaimal & Finnigan (1994) for
each 30 min period. The turbulent fluctuations in the wind components (u′, v′ and
w′ in the streamwise, cross-stream and vertical directions, respectively), and in the
sonic temperature (T ′) were calculated after removing the 30 min linear trend from
the associated variables (Donateo, Cava & Contini 2017).

(v) Only those 30 min periods were chosen when the surface layer was unstable, i.e.
the sensible heat flux was positive at all nine measurement heights, and the vertical
variations in the 30 min averaged momentum and heat fluxes were less than 10 %.

Application of all these checks resulted in a total of 29 periods suitable for our analysis.
For these periods, σu/u was less than 0.2, so Taylor’s hypothesis could be assumed to be
valid (Willis & Deardorff 1976). The Obukhov length (L) was calculated for each of these
30 min periods as

L = − u3
∗T0

kgH0
, (2.1)

where T0 is the surface air temperature, computed from the mean sonic temperature at
z = 1.4 m, g is the acceleration due to gravity (9.8 m s−2), H0 is the surface kinematic
heat flux, computed as w′T ′ at z = 1.4 m (by the constant flux layer assumption), k is the
von Kármán constant (0.4) and u∗ is the friction velocity computed as

u∗ = (u′w′ 2 + v′w′ 2)1/4, (2.2)

with u′w′ and v′w′ the streamwise and cross-stream momentum fluxes, respectively,
computed at z = 1.4 m.

The range of −L values was between 2 and 20 m for these 29 periods suitable for
our analysis. Since each 30 min period consisted of the nine level time-synchronized
turbulence measurements from the CSAT3 sonic anemometers, a total of 261 combinations
of the stability ratios (ζ = z/L) were possible for these selected periods. The entire range
of −ζ (12 ≤ ζ ≤ 0.07) was divided into six stability classes (Liu, Hu & Cheng 2011)
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Stability class Number of 30 min runs Heights (m)

−ζ > 2 55 z = 6.1, 8.7, 12.5, 17.9, 25.7
1 < −ζ < 2 53 z = 3.0, 4.3, 6.1, 8.7, 12.5, 17.9, 25.7
0.6 < −ζ < 1 41 z = 2.1, 3.0, 4.3, 6.1, 8.7, 12.5, 17.9
0.4 < −ζ < 0.6 34 z = 1.4, 2.1, 3.0, 4.3, 6.1, 8.7
0.2 < −ζ < 0.4 44 z = 1.4, 2.1, 3.0, 4.3, 6.1
0 < −ζ < 0.2 34 z = 1.4, 2.1, 3.0

TABLE 2. The six different stability classes formed from the ratio −ζ = z/L in an unstable ASL
flow, from highly convective (−ζ > 2) to near-neutral (0 < −ζ < 0.2). The associated heights
with each of the stability classes are also given.

u′–w′ quadrant Quadrant name T ′–w′ quadrant Quadrant name

u′ < 0, w′ > 0 (II) Ejection w′ > 0, T ′ > 0 (I) Warm updraft
u′ > 0, w′ < 0 (IV) Sweep w′ < 0, T ′ < 0 (III) Cold downdraft
u′ > 0, w′ > 0 (I) Outward interaction w′ > 0, T ′ < 0 (II) Cold updraft
u′ < 0, w′ < 0 (III) Inward interaction w′ < 0, T ′ > 0 (IV) Warm downdraft

TABLE 3. The four quadrants of u′–w′ and T ′–w′ in an unstable ASL.

and these were considered for the detailed analysis of the Reynolds stress anisotropy
associated with the heat-flux events (table 2). We discuss the analysis methods in the
following sections.

2.2. Quadrant analysis
The quadrant analysis is a conditional sampling method of investigating the contributions
to the turbulent transport of scalars and momentum in terms of the organized eddy motions
present in the flow (Wallace 2016). The four different quadrants of the u′–w′ and T ′–w′

planes are defined in table 3. In the T ′–w′ (u′–w′) quadrant plane, the warm updrafts (I)
(ejections (II)) and cold downdrafts (III) (sweeps (IV)) are the down-gradient motions.
On the other hand, the remaining two quadrants represent the counter-gradient motions
generated due to the turbulent swirls in the flow (Gasteuil et al. 2007).

In the quadrant analysis method applied to the ASL, the momentum- or heat-flux
fractions and time fractions from each quadrant of u′–w′ or T ′–w′ are reported over smooth
and rough surfaces (McBean 1974; Antonia 1977; Narasimha et al. 2007; Zou, Zhou & Sun
2017). The flux fractions (Ff ) and time fractions (Tf ) for each quadrant (X) are evaluated
as

(Ff )X =
∑

[(w′x ′)IX]∑
w′x ′ (x = u, T),

(Tf )X =
∑

IX

N
(X = I, II, III, IV),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.3)
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Intermittent heat transport and Reynolds stress anisotropy 899 A26-7

where

IX =
{

1 if {w′, x ′} ∈ X,

0 otherwise,

and N is the total number of points in a run.
However, following Chowdhuri & Burman (2020), we extend the quadrant analysis

method to study the anisotropy Reynolds stress tensor in relation to the heat-flux events
occurring in the T ′–w′ quadrant plane. We normalize w′ and T ′ by their respective standard
deviations, and use the symbol x̂ to denote the turbulent fluctuations in x normalized
by its standard deviation (x̂ = x ′/σx , where x can be u, w or T). Before describing the
methodology, we give a short description of the anisotropy Reynolds stress tensor.

2.2.1. Anisotropy Reynolds stress tensor
The anisotropy Reynolds stress tensor is widely used to express the anisotropy in the

energy-containing motions (Pope 2000), and is defined in the Cartesian tensor notation as

bij = u′
iu

′
j

2q
− 1

3
δij, q = u′

ku
′
k

2
, (2.4a,b)

where i = 1, 2 and 3 denote the streamwise, cross-stream and vertical directions, q is
the turbulent kinetic energy, and δij is the Kronecker delta. Note that bij is a symmetric
and traceless tensor, bounded between −1/3 ≤ bij ≤ 2/3, and equal to zero for isotropic
turbulence. From the Cayley–Hamilton theorem, the two invariants ξ and η of bij are
defined as

6ξ 3 = bijbjkbki, 6η2 = bijbji, (2.5a,b)

where ξ represents the topology of the anisotropy Reynolds stress tensor and η represents
the degree of isotropy.

The different realizable anisotropic states of turbulence are defined based on the values
of ξ and η and are represented on the ξ–η plane, known as the anisotropy-invariant map
(Choi & Lumley 2001). The anisotropy Reynolds stress tensor (bij) has three limiting
anisotropic states based on the shape of the energy distribution in the three principal
axes associated with the three eigenvalues and eigenvectors of bij, also known as the
componentiality of turbulence (Kassinos, Reynolds & Rogers 2001). These three limiting
states of bij are 1-component anisotropy (rod-like energy distribution, b1c), 2-component
anisotropy (disk-like energy distribution, b2c), and 3-component isotropy (spherical energy
distribution, b3c), represented in the principal axes coordinate system as

b1c =
⎡
⎣2/3 0 0

0 −1/3 0
0 0 −1/3

⎤
⎦ , b2c =

⎡
⎣1/6 0 0

0 1/6 0
0 0 −1/3

⎤
⎦ , b3c =

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ .

(2.6a–c)

An alternative to the anisotropy-invariant maps is the barycentric map introduced by
Banerjee et al. (2007), where each realizable anisotropic state of bij is written as a linear
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899 A26-8 S. Chowdhuri, S. Kumar and T. Banerjee

combination of the three limiting states b1c, b2c and b3c as

C1cb1c + C2cb2c + C3cb3c, (2.7)

where the coefficients C1c, C2c and C3c are the three corresponding weights associated
with the three limiting states, defined as

C1c = e1 − e2,
C2c = 2(e2 − e3),

C3c = 3e3 + 1,

⎫⎬
⎭ (2.8)

with
C1c + C2c + C3c = 1, (2.9)

where e1, e2 and e3 are the three eigenvalues of bij in the order e1 > e2 > e3. Note that these
three coefficients C1c, C2c and C3c are bounded between 0 and 1. In the extreme case, one of
the coefficients taking the value 0 signifies that the particular limiting state associated with
that coefficient does not exist. Similarly, 1 signifies only that that particular limiting state
exists while the other two states are non-existent (Banerjee et al. 2007). Given the linearity
in the construction of the barycentric map, it provides a non-distorted visualization of
anisotropy (Radenković, Burazer & Novković 2014). Banerjee et al. (2007) defined the
coefficient C3c as the degree of isotropy, such that, the higher the value of C3c, the more
the anisotropic state of bij is dominated by the 3-component isotropy. The anisotropic states
of bij can be represented by the RGB colour map of Emory & Iaccarino (2014) as⎡

⎣R
G
B

⎤
⎦ = C1c

⎡
⎣1

0
0

⎤
⎦+ C2c

⎡
⎣0

1
0

⎤
⎦+ C3c

⎡
⎣0

0
1

⎤
⎦ , (2.10)

such that the 1-component anisotropy is red, the 2-component anisotropy is green and
the 3-component isotropy is blue. All other states within the barycentric map are linear
combinations of these three colours.

Since in this study we will be using the barycentric map to visualize the anisotropic
states of bij, some details about its construction are appropriate here. The barycentric map
is spanned by a Euclidean domain where the three limiting states of bij are placed at the
three vertices of an equilateral triangle having the coordinates (0, 0) for the 2-component
anisotropy, (1, 0) for the 1-component anisotropy, and (1/2,

√
3/2) for the 3-component

isotropy (Stiperski & Calaf 2018). This is graphically illustrated in figure 1. The coordinate
system (x, y) of the barycentric map is defined as

x = C1cx1c + C2cx2c + C3cx3c

= C1c + C3c

2
(2.11)

and

y = C1c y1c + C2c y2c + C3c y3c

=
√

3
2

C3c, (2.12)

such that the distance from the base of the equilateral triangle is directly proportional to
the degree of isotropy (C3c) of bij. At the centroid of the barycentric map (1/2,

√
3/6),
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Intermittent heat transport and Reynolds stress anisotropy 899 A26-9

C3c = 1

C1c = 0 C2c = 0

[C3c > {C1c , C2c }]

[C2c > {C1c, C3c }] ε R2 [C1c > {C2c, C3c }] ε R1

C2c = C3c

C1c = C3c

C1c = C2c

C1c = 1-
3 

, C2c = 1-
3 

, C3c = 1-
3 

C2c = 1 C3c = 0 C1c = 1

ε R3

FIGURE 1. An example of a barycentric map spanned by an equilateral triangle is shown to
graphically illustrate the anisotropic states of bij, using the RGB colour map of Emory &
Iaccarino (2014). The three vertices of the equilateral triangle represent the three limiting states
with coefficients C1c, C2c or C3c being equal to 1. At the sides opposite to the vertices, any one of
these coefficients is 0, which indicates the absence of that particular anisotropic state associated
with it. The black circle is the centroid of the equilateral triangle where C1c = C2c = C3c = 1/3.
The three black lines are the three perpendicular bisectors that divide the equilateral triangle into
three equal regions: R1 (right-third portion), R2 (left-third portion) and R3 (top-third portion).
In each of these three regions, the anisotropic state of bij is dominated by a particular limiting
state associated with its coefficient C1c, C2c or C3c.

from (2.11) and (2.12) it can be shown that

C1c = C2c = C3c = 1/3. (2.13)

This barycentric map can also be divided into three equal regions, R1 (right-third portion),
R2 (left-third portion) and R3 (top-third portion), by drawing three perpendicular bisectors
from the centroid of the map (figure 1). From (2.11) and (2.12), along with the constraint
defined in (2.9), these perpendicular bisectors can be represented mathematically as

C2c = C1c, C1c = C3c, C2c = C3c. (2.14a–c)

Subsequently from symmetry it follows that: in the region R1, C1c > {C2c, C3c}; in the
region R2, C2c > {C1c, C3c}; and in the region R3, C3c > {C1c, C2c}. Therefore, in each of
these three regions (R1, R2 or R3), the anisotropic state of bij is dominated by a particular
limiting state associated with its coefficient (C1c, C2c or C3c).
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899 A26-10 S. Chowdhuri, S. Kumar and T. Banerjee

2.2.2. Representation of anisotropy on T̂–ŵ quadrant plane
To study the detailed correspondence between the anisotropic states of bij and the

heat-flux events occurring in the T̂–ŵ quadrant plane, we first linearly bin T̂ and ŵ into a
uniform 50 × 50 grid for each run belonging to a particular stability class. The width of
each grid is defined as

dx̂ = x̂max − x̂min

50
(x = w, T). (2.15)

We choose the maximum (T̂max , ŵmax ) and minimum (T̂min, ŵmin) values over
all runs from a particular stability class to ensure the same grid for individual
runs. Subsequently, we find the points lying between {T̂bin(m) < T̂ < T̂bin(m) + dT̂ ,
ŵbin(n) < ŵ < ŵbin(n) + dŵ}, where 1 ≤ m ≤ 50, 1 ≤ n ≤ 50, and T̂bin(m) and ŵbin(n)
are the edges of a particular (m, n) grid. For these points, we construct the anisotropy
Reynolds stress tensor at (m, n) grid as

〈bij | {T̂bin(m) < T̂ < T̂bin(m) + dT̂, ŵbin(n) < ŵ < ŵbin(n) + dŵ}〉

=

(∑
u′

iu′
j

)
m,n(∑

u′
iu′

i

)
m,n

− 1
3
δij, (2.16)

conditioned on the heat-flux events occurring between

{T̂bin(m) < T̂ < T̂bin(m) + dT̂, ŵbin(n) < ŵ < ŵbin(n) + dŵ}
and assign it to the value {T̂bin(m), ŵbin(n)}.

In (2.16), the terms (
∑

u′
iu′

j)m,n are the contributions to the Reynolds stress tensor from
each (m, n) grid. Accordingly, the trace of bij from (2.16) is zero due to the kinetic energy
term (

∑
u′

iu′
i)m,n appearing in the denominator. Note that this kinetic energy is the energy

contained in each (m, n) grid, rather than the total kinetic energy over the whole 30 min
period. This formulation is similar to the scale decomposition of bij, where at each scale
the anisotropic Reynolds stress tensor is normalized by the kinetic energy contained in that
scale to make it trace-free (Yeung & Brasseur 1991; Liu et al. 2017; Brugger et al. 2018).

To assess the frequency of occurrences of these heat-flux events, we compute the joint
probability density function (j.p.d.f.) between T̂ and ŵ as

P(T̂bin(m), ŵbin(n)) = Nm,n

N dT̂ dŵ
, (2.17)

where Nm,n is the number of points lying in (m, n) grid and N is the total number of points
in a 30 min run (36 000 for SLTEST data). Following Nakagawa & Nezu (1977), we also
calculate the bivariate Gaussian j.p.d.f. for each grid as

G(T̂bin(m), ŵbin(n))

= 1

2π
√

1 − R2
wT

exp

[
−
(

T̂2
bin(m) − 2RwTT̂bin(m)ŵbin(n) + ŵ2

bin(n)

2(1 − R2
wT)

)]
, (2.18)

where RwT is the correlation coefficient between w and T (w′T ′/σwσT).

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 F

lo
ri

da
 In

te
rn

at
io

na
l U

ni
, o

n 
24

 Ju
l 2

02
0 

at
 0

9:
42

:4
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
47

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.471


Intermittent heat transport and Reynolds stress anisotropy 899 A26-11

If the three eigenvalues of bij (as defined in (2.16)) are e1b, e2b and e3b, respectively, with
e1b > e2b > e3b, we can calculate the degree of isotropy for (m, n) grid as

〈C3c | {T̂bin(m), ŵbin(n)}〉 = 3e3b + 1, (2.19)

and the RGB colour map of its anisotropic states as⎡
⎣R

G
B

⎤
⎦ = 〈C1c | {T̂bin(m), ŵbin(n)}〉

⎡
⎣1

0
0

⎤
⎦+ 〈C2c | {T̂bin(m), ŵbin(n)}〉

⎡
⎣0

1
0

⎤
⎦

+ 〈C3c | {T̂bin(m), ŵbin(n)}〉
⎡
⎣0

0
1

⎤
⎦ , (2.20)

with
〈C1c | {T̂bin(m), ŵbin(n)}〉 = e1b − e2b,

〈C2c | {T̂bin(m), ŵbin(n)}〉 = 2(e2b − e3b).

}
(2.21)

Since we construct the same linear grid values of T̂ and ŵ for all runs belonging to
a particular stability class, we take the average of the j.p.d.f., C3c, and the RGB colour
matrices over all the individual periods. This averaging is necessary since it reduces the
variability that exists from one run to another, due to the chaotic nature of turbulence.
For a particular stability range, we can thus plot the averaged two-dimensional matrices of
P(T̂bin(m), ŵbin(n)), 〈C3c | {T̂bin(m), ŵbin(n)}〉, and the RGB colour maps for each (m, n)

grid of the T̂–ŵ quadrant plane. While presenting the results in § 3.2, these averaged
metrics are referred to as being associated with (T̂, ŵ), without explicitly mentioning that
these are the binned values. It is worth noting that the results obtained from this method
are almost insensitive to the choice of the grid size. We verified this by changing the grid
sizes of T̂ and ŵ by a factor of 2 (25 × 25 and 100 × 100) and repeating the calculations,
with no appreciable change being noticed in the results (not shown).

By performing the binning exercise in ŵ and T̂ as discussed above, we mask any
time dependence, and hence no information can be obtained about the time scales of the
associated heat-transporting events. It is thus interesting to formulate a description of the
distribution of Reynolds stress anisotropy associated with different time scales of these
heat-transporting events. To extract that information in addition to the quadrant analysis,
we turn our attention to persistence analysis.

2.3. Persistence analysis
In non-equilibrium systems, persistence is defined as the probability that the local value
of a fluctuating field does not change sign up to a certain time (e.g. Majumdar 1999). The
concept of persistence has earlier been used by Chamecki (2013) to study the non-Gaussian
turbulence in canopy flows. He showed that an asymmetric velocity distribution inside
the canopy can have very different persistent time scales for ejection and sweep events.
Chamecki (2013) also noted that the persistent time is equivalent to the inter-pulse periods
between the subsequent zero crossings of the turbulent signal (Sreenivasan, Prabhu &
Narasimha 1983; Kailasnath & Sreenivasan 1993; Bershadskii et al. 2004). We can apply
this definition of persistence to the joint fluctuations in vertical velocity and temperature,
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w
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s–1

)
T

′ (K
)

v
′ (

m
s–1

)

FIGURE 2. A 60 s long section of a time series of w′, T ′, u′ and v′ for −ζ = 9. The red and blue
shaded regions show two particular blocks of heat-flux events corresponding to warm-updraft
and cold-downdraft quadrants, respectively, which persist for a time TB of around 10–20 s.

to characterize the distribution of the time scales of the heat-flux events from four different
quadrants of T ′–w′.

In order to implement our method, we choose the time series of w′ and T ′ from any
30 min period belonging to a specific stability class (table 2), and conditionally sample
the events occurring in the four different quadrants of the T ′–w′ plane. The events
conditionally sampled from each quadrant of T ′–w′ (I, II, III or IV) can persist either
as a single pulse or as a block of many consecutive pulses with a certain duration TB,
before switching to another quadrant. The duration TB is computed as the number of points
residing within a single block, multiplied by the sampling interval of 0.05 s. In figure 2
we provide a graphical illustration of this method by showing a segment of a time series
belonging to a particular stability range (−ζ = 9), sampled from the warm-updraft (I) and
cold-downdraft (III) quadrants. The shaded blocks in figure 2(a,b) represent warm updrafts
(red) and cold downdrafts (blue) respectively, which persist for around 10–20 s duration.
Associated with these blocks, we also show the horizontal velocity fluctuations (u′ and v′)
in figure 2(c,d).

We convert the block duration (TB) to a streamwise length by using Taylor’s hypothesis,
that is, multiplying TB with the mean wind speed (u) computed over the 30 min period.
We then scale TBu with a relevant length scale. The possible candidates as the relevant
length scales in an unstable ASL are the measurement height z and the boundary layer
depth zi. However, zi was not measured directly at SLTEST and hence an alternative
large-eddy length scale λ was used by Chowdhuri, McNaughton & Prabha (2019), where λ
was computed as the peak wavelength of the horizontal velocity spectrum at z = 25.7 m.
This was based on the observation that the large-scale structures contribute directly to
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Intermittent heat transport and Reynolds stress anisotropy 899 A26-13

the horizontal velocity spectrum in the ASL (Kaimal et al. 1976; Panofsky et al. 1977;
Banerjee et al. 2015). As discussed by Chowdhuri et al. (2019), a model spectrum of the
form

κSuu(κ) = aκ

(1 + bκ)5/3 (2.22)

is fitted to the streamwise velocity (u) spectrum, where κ is the streamwise wavenumber
and a and b are the best-fit constants. By maximizing (2.22) with respect to κ , λ is
evaluated as 4πb/3. The other details and the rationale behind the computation of λ can
be found in Chowdhuri et al. (2019).

The spectrum or the scalewise distribution of the normalized streamwise lengths of the
blocks (TBu/	, where 	 can be either z, λ or the combination of the two) can be at least
a few decades wide, given the large variation in TB, ranging from a minimum of 0.05 s
(sampling interval) to a few seconds. For the blocks associated with each T ′–w′ quadrant,
we thus logarithmically bin their scaled streamwise lengths (TBu/	) into 60 bins, where the
minimum and maximum are chosen over all the 30 min periods that fall within a particular
stability class. Below we discuss the method to compute the Reynolds stress anisotropy
associated with these blocks of different normalized streamwise lengths.

2.3.1. The distribution of the Reynolds stress anisotropy
For any particular T ′–w′ quadrant, we collect all the blocks of the heat-flux events having

their normalized streamwise lengths between

(TBu/	)bin{m} < (TBu/	) < (TBu/	)bin{m} + d log(TBu/	),

where (TBu/	)bin{m} is the logarithmically binned value, d log(TBu/	) is the bin width and
m is the index of the bin (1 ≤ m ≤ 60). The bin width is defined as

d log(TBu/	) = log(TBu/	)max − log(TBu/	)min

60
. (2.23)

We construct the anisotropy Reynolds stress tensor associated with these blocks as

〈bij | [(TBu/	)bin{m} < (TBu/	) < (TBu/	)bin{m} + d log(TBu/	)]〉

=
∑

u′
iu′

j∑
u′

iu′
i

− 1
3
δij, (2.24)

and assign it to a streamwise size of (TBu/	)bin{m}. In (2.24), the terms
∑

u′
iu′

j are the
contributions to the Reynolds stress tensor from all the blocks having their sizes between
(TBu/	)bin{m} and (TBu/	)bin{m} + d log(TBu/	).

Similar to § 2.2.2, we calculate the three coefficients associated with 1-component
anisotropy, 2-component anisotropy and 3-component isotropy (C1c, C2c and C3c) of
〈bij | (TBu/	)bin{m}〉 as

〈C1c | (TBu/	)bin{m}〉 = ẽ1b − ẽ2b,

〈C2c | (TBu/	)bin{m}〉 = 2(ẽ2b − ẽ3b),

〈C3c | (TBu/	)bin{m}〉 = 3ẽ3b + 1,

⎫⎬
⎭ (2.25)

where ẽ1b, ẽ2b and ẽ3b are the three eigenvalues of 〈bij | (TBu/	)bin{m}〉 with ẽ1b > ẽ2b >
ẽ3b.
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899 A26-14 S. Chowdhuri, S. Kumar and T. Banerjee

Since we construct the same logarithmic grids of (TBu)/	 for all the runs belonging to
a particular stability class, we take the average of these three coefficients over all these
periods to reduce the run-to-run variability.

2.3.2. Probability and flux distributions
The probability density function (p.d.f.) of the normalized streamwise lengths of the

blocks belonging to any particular T ′–w′ quadrant is calculated as

P(TBu/	)bin{m} = Nb

Ntot d log(TBu/	)
, (2.26)

where Nb is the number of blocks lying between

(TBu/	)bin{m} < (TBu/	) < (TBu/	)bin{m} + d log(TBu/	)

and Ntot is the total number of blocks detected over a 30 min period (from the same
quadrant). The heat and momentum fluxes within these blocks are defined as

〈w′x ′ | [(TBu/	)bin{m} < (TBu/	) < (TBu/	)bin{m} + d log(TBu/	)]〉

=
∑

w′x ′

N × d log(TBu/	)
(x = u, T), (2.27)

where N is the number of samples in a 30 min run for the SLTEST data. These heat- and
momentum-flux distributions are scaled by the product of the standard deviations σwσT
and σuσw, respectively. When these scaled flux distributions from (2.27) are integrated
over the whole spectrum of (TBu)/	, the results show the strength of the coupling between
w′ and T ′ (u′) from each quadrant of T ′–w′.

Similar to § 2.3.1, we take the average of the p.d.f.s and the heat- and momentum-flux
distributions over all the 30 min periods belonging to a particular stability class. While
presenting the results in § 3.3, these averaged distributions of the degree of isotropy,
probability and fluxes are referred to as being associated with (TBu)/	 only, without
explicitly mentioning that these are the binned values. Apart from that, the amount of
spread between the individual 30 min runs for a particular stability class is computed
as one standard deviation from the ensemble average and shown as error bars. Similar
to quadrant analysis, the results obtained from this method have also been verified for
sensitivity to the choice of the number of bins.

3. Results and discussion

We begin by discussing the general characteristics of the Reynolds stress anisotropy
with the change in the stability ratio −ζ . We also highlight the correspondence between
the intermittent nature of turbulent heat transport and the Reynolds stress anisotropy.
By presenting the relevant results, this correspondence is further investigated in detail,
complemented with the quadrant and persistence analyses of the heat-flux events. The
possible physical interpretations of these results are also discussed.

3.1. The characteristics of Reynolds stress anisotropy with stability
Figure 3(a) shows the anisotropic states of the Reynolds stress tensor for the 30 min
averaged flow plotted on the barycentric map (see (2.10), (2.11) and (2.12)) with the
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FIGURE 3. Plots of the (a) anisotropic states of bij on the barycentric map (see (2.11) and
(2.12)), (b) the degree of isotropy C3c (see (2.8)) versus the wind shear (∂u/∂z), and (c) scaled
vertical velocity and temperature standard deviations (σw/u∗ and σT/T∗), C3c and the correlation
coefficient between the vertical velocity and temperature (RwT ) versus the stability ratio (−ζ ). In
panel (c), the left y axis is logarithmic, the right y axis is linear and the x axis is reversed such
that the −ζ values proceed from large to small. The thick blue and red lines denote the local
free convection scalings for σw/u∗ and σT/T∗. The colour bar at the bottom corresponds to both
panels (a) and (b), showing the stability ratios as log10(−ζ ).

stability ratio −ζ . The variations of the three associated coefficients (C1c, C2c and
C3c) with −ζ are provided in figure S1a in the supplementary figures (available at
https://doi.org/10.1017/jfm.2020.471). As shown in figure 1, the barycentric map is
spanned by an equilateral triangle, which can be divided into three regions R1, R2
and R3, where the anisotropic states of bij are dominated by 1-component anisotropy,
2-component anisotropy and 3-component isotropy, respectively. As evident from figure
3(a), the anisotropic states of bij move towards the region R3 from the region R2 as −ζ
approaches the local free convection limit (−ζ > 1). This implies that the anisotropic state
of bij is more dominated by the 3-component isotropy as the surface layer becomes highly
convective. The reason for this is that, in a highly convective surface layer, the turbulent
kinetic energy (TKE) is mainly generated in the vertical direction through a buoyancy
production term, while in the horizontal direction the production of TKE due to shear is
almost negligible. However, the pressure–strain correlation in highly convective conditions
efficiently redistributes the TKE generated in the vertical to the horizontal direction, thus
driving the turbulence to be dominated by the 3-component isotropy (McBean & Elliott
1975; Zhuang 1995; Bou-Zeid et al. 2018). The effectiveness of pressure–strain correlation
in redistributing the TKE in highly convective conditions is related to the covariance
between the pressure and vertical velocity fluctuations, as detailed in the physical model
of McBean & Elliott (1975). On the other hand, for small values of −ζ (0 < −ζ < 0.2),
the anisotropic state of bij is dominated by the 2-component anisotropy, as the blue shaded
points in figure 3(a) remain concentrated within the region R2. From table 2, it is clear
that the near-neutral stability class (0 < −ζ < 0.2) corresponds to the lowest three levels
of the SLTEST experiment (z = 1.4, 2.1, 3.0 m), where due to the blocking of the ground
the vertical velocity fluctuations are suppressed. Therefore, the turbulence very close to
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the ground is in a 2-component anisotropic state dominated by the horizontal velocity
components. This is in agreement with the studies by Krogstad & Torbergsen (2000) and
Ali et al. (2018).

Apart from the anisotropic states of bij, we can also evaluate its degree of isotropy C3c to
quantify how close the turbulence is towards the 3-component isotropy. From figure 3(b)
we note that for 0 < −ζ < 0.2, strong anisotropic turbulence (C3c ≈ 0.1) is associated
with large wind shear (∂u/∂z). The wind shear is approximated using the finite-difference
scheme (Stull 1988; Arya 2001) as(

∂u
∂z

)
zm

≈ u(z2) − u(z1)

z2 − z1
, (3.1)

where z2 and z1 are the two adjacent levels from the SLTEST data with z2 > z1 and zm =
(z2 + z1)/2. However, in the limit of local free convection (−ζ > 1), the effect of wind
shear is weak and the turbulence is more dominated by 3-component isotropy (C3c > 1/3).
This result is consistent with the observations of Stiperski & Calaf (2018), where they
found that, in an unstable surface layer as we approach z → 0 (associated with small values
of −ζ ), the anisotropic characteristics of turbulence are dominated by strong wind shear.
On the contrary, as the local free convection is approached (−ζ > 1), the effect of wind
shear weakens and the turbulence becomes less anisotropic. This is in agreement with Jin,
So & Gatski (2003), where they showed both analytically and from numerical simulations
that, in a buoyant shear flow, the effect of increase (decrease) in buoyancy (shear) was to
drive the turbulence towards isotropy.

To investigate this further, figure 3(c) shows the scatter plot of the scaled vertical and
temperature standard deviations (σw/u∗ and σT/T∗) along with the correlation coefficient
between w and T (RwT) and the degree of isotropy (C3c), against the stability ratio −ζ . Note
that the temperature scale (T∗) is defined here as H0/u∗ with the omission of the negative
sign, to keep the quantity σT/T∗ positive. The local free convection scalings for σw/u∗ and
σT/T∗ are given as

σw

u∗
= 1.8(−ζ )1/3,

σT

T∗
= 1.05(−ζ )−1/3, (3.2a,b)

where the coefficients are fitted from the data and match well with the values reported
by Wyngaard, Coté & Izumi (1971). It is interesting to note that, after −ζ < 0.5, the
local free convection scaling does not hold for σw/u∗, but it extends for σT/T∗. Khanna
& Brasseur (1997) explained this as: the buoyancy-induced motions contribute more to
the temperature fluctuations than the shear-induced motions.

In an unstable surface layer, the horizontal velocity variances depend on the global
stability ratio −zi/L, rather than on −ζ (Monin & Yaglom 1971; Panofsky 1974; Panofsky
et al. 1977; Wyngaard 2010). Therefore, the variation in degree of isotropy (C3c) with −ζ
is mainly determined by the strength of the vertical velocity fluctuations (σw), decreasing
from C3c ≈ 0.6 to C3c ≈ 0.1 as σw/u∗ decreases with −ζ (figure 3c). From figure 3(c) and
supplementary figure S1b, we note that w′ is more strongly coupled to T ′ than to u′ in the
local free convection (RwT ≈ 0.65 and Ruw ≈ −0.05). However, with decrease in −ζ , the
correlation coefficient between w′ and u′ increases (Ruw ≈ −0.25) whereas it decreases
between w′ and T ′ (RwT ≈ 0.4). This is also reflected in the transport efficiencies of heat
(ηwT) and momentum (ηuw), defined as

ηwx =

(∑
w′x ′

)
down-gradient

+
(∑

w′x ′
)

counter-gradient

(
∑

w′x ′)down-gradient
, (3.3)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 F

lo
ri

da
 In

te
rn

at
io

na
l U

ni
, o

n 
24

 Ju
l 2

02
0 

at
 0

9:
42

:4
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
47

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.471


Intermittent heat transport and Reynolds stress anisotropy 899 A26-17

2.0

1.5

1.0

0.5

0

–0.5
6

5

4

3

2

1

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0
101 100 10–1

–ζ

C3c

C3c

C3c

x = T
x = w
x = u

x′3
/σ

3 x
x′4

/σ
x4

(a)

(b)

FIGURE 4. The scatter plot of the (a) skewness and (b) kurtosis of the temperature, vertical
velocity and streamwise velocity fluctuations (T ′, w′ and u′) are shown against −ζ . The red, blue
and pink open circles denote T ′, w′ and u′, respectively, with their skewness and kurtosis being
plotted on the left-hand y axis. The black stars show the degree of isotropy (C3c, see (2.8)) with
its values being plotted on the right-hand y axis. The thick horizontal black lines denote the
values of 0 and 3, which are the skewness and kurtosis for the Gaussian distribution.

where x can be either u or T (Li & Bou-Zeid 2011). From supplementary figure S1b, it is
evident that in local free convection ηuw → 0 whereas ηwT almost approaches a constant
value of 0.9. However, with decrease in −ζ , ηuw increases to ≈0.6 and ηwT decreases
to ≈0.75. We next investigate the p.d.f.s of T ′, w′ and u′ to establish a correspondence
between the turbulence anisotropy and its transport characteristics.

Figure 4(a) and (b) show the skewness and kurtosis of the p.d.f.s of T ′, w′ and
u′ (x ′3/σ 3

x and x ′4/σ 4
x , where x = u, w, T) along with the degree of isotropy (C3c).

The associated p.d.f.s are shown in supplementary figure S2. For a perfect Gaussian
distribution, the skewness and kurtosis have values of 0 and 3, respectively. Physically, the
skewness is associated with the asymmetry in the p.d.f.s whereas the kurtosis is related to
intermittency (Davidson 2015).

From figure 4(a) and (b), it is clear that the skewness and kurtosis of the temperature
fluctuations are strongly non-Gaussian (≈1.5 and 5, respectively) in the local free
convection limit (−ζ > 1). The strong non-Gaussian nature of temperature fluctuations
in highly unstable conditions is remarkably consistent with the previous studies in the
ASL (Chu et al. 1996; Garai & Kleissl 2013; Lyu et al. 2018). Similar behaviour has also
been observed in turbulent Rayleigh–Bénard convection experiments of Adrian, Ferreira
& Boberg (1986). The strong non-Gaussianity in T ′ in highly unstable conditions is caused
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due to the intermittent bursts associated with warm updrafts, interspersed with relatively
more frequent quiescent cold downdrafts bringing well-mixed air from aloft (Adrian et
al. 1986; Chu et al. 1996). However, the skewness and kurtosis of T ′ become closer
to Gaussian (0.5 and 3, respectively) for the near-neutral stability (0 < −ζ < 0.2). The
close-to-Gaussian characteristics of the T ′ p.d.f.s in a near-neutral ASL are in agreement
with Chu et al. (1996) and with the pipe flow experiment of Nagano & Tagawa (1988),
where temperature behaved more like a passive scalar.

On the other hand, the p.d.f.s of u′ remain near-Gaussian for all values of −ζ , with its
skewness and kurtosis approaching 0 and 3, respectively. For w′, the skewness stays almost
constant at 0.4 to 0.5 for all values of −ζ , implying the consistent upward transport of
vertical kinetic energy (Chiba 1978; Hunt, Kaimal & Gaynor 1988). However, the kurtosis
for w′ increases from 3 to 4 as −ζ decreases. This observation is consistent with Chu et al.
(1996), where they found that the kurtosis in w′ increased from 3.12 in highly unstable
conditions to 3.77 in near-neutral conditions. Chiba (1984) postulated that this increase
in the kurtosis of w′ at small −ζ values is related to the increasing importance of the
small-scale eddies near the ground. However, Hong et al. (2004) hypothesized it to be
related to the low-speed streaks, initiating inactive and active turbulence interactions with
increasing intermittency.

We note that the degree of isotropy (C3c) also decreases in a similar way as the skewness
and kurtosis of the temperature fluctuations approach a near-Gaussian distribution with
decrease in −ζ (figure 4). Katul et al. (1997) demonstrated that the temperature skewness
was directly related to the difference in the time fractions (ΔTf ) of the warm-updraft and
cold-downdraft events (asymmetry) as

ΔTf = Q3

3
√

2π
, (3.4)

where Q3 = T ′3/σ 3
T , by assuming that the time fractions spent in the counter-gradient

quadrants of the T ′–w′ plane could be ignored. This implies that the asymmetry in the
distributions of the warm-updraft and cold-downdraft events associated with the skewness
of the temperature fluctuations, has a strong correspondence with the anisotropy in the
Reynolds stress tensor. In supplementary figure S3, we show the heat-flux fractions
(Ff ) and the time fractions (Tf ) associated with each quadrant of the T ′–w′ plane. It
indicates that, in highly unstable conditions (−ζ > 1), the warm updrafts carry more heat
flux even though they occur for less time than the cold downdrafts (see supplementary
figure S3c).

The same observation can also be made from figure 5(a), where the strong
non-Gaussianity in the temperature fluctuations in highly unstable conditions
(−ζ > 2) introduces a large asymmetry in the p.d.f.s of the scaled heat flux (P(ŵT̂)). The
intermittent bursts associated with warm updrafts characterized by large kurtosis carry
more heat flux than predicted by the distribution if ŵ and T̂ were both standard Gaussian
random variables. According to Krogstad (2013), the p.d.f. of the product of two standard
Gaussian random variables x̂ and ŷ can be expressed as

P(x̂ ŷ) = K0(|x̂ ŷ|)
π

, (3.5)

where K0(|x̂ ŷ|) is the modified Bessel function of the second kind. However, this strong
non-Gaussianity is not felt in the p.d.f.s of the scaled momentum flux (P(ûŵ)) because the
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FIGURE 5. The p.d.f.s of the scaled (a) heat flux (P(ŵT̂)) and (b) momentum flux (P(ûŵ)) are
shown for the six different classes of −ζ as indicated in the legend on the right. The thick black
curves denote the modified Bessel function of the second kind, which corresponds to the p.d.f.
of ŵx̂ (x = u, T), if û, ŵ and T̂ were all standard Gaussian random variables (see (3.5)). The
grey shaded portions show the hyperbolic hole, defined as |x̂ŵ| = 1 (x = u, T).

probability distributions of the u and w fluctuations are closer to Gaussian compared to
those for temperature (figures 5(b) and S2).

In a nutshell, from figures 4 and 5 one can infer that the characteristics of the
turbulent heat transport in an unstable surface layer are strongly (weakly) non-Gaussian for
highly (feebly) convective conditions, associated with less (more) anisotropic turbulence.
However, till now we have presented the anisotropic characteristics of the averaged
flow, which comprises the heat-flux events from all four quadrants of T ′–w′. Given the
asymmetric and intermittent nature of turbulent heat transport, it is thus imperative to
employ event-based analysis to investigate ‘whether the strongest (weakest) heat-flux
events are associated with less (more) anisotropic turbulence’. Therefore, we turn our
attention towards the quadrant analysis to deduce the anisotropic characteristics of the
Reynolds stress tensor, associated with the heat-flux events from the four different
quadrants.

3.2. Quadrant analysis of Reynolds stress anisotropy
From quadrant analysis, we study the detailed correspondence between the Reynolds
stress anisotropy and the heat-flux events of varying intensities with their frequency of
occurrences. Figure 6 shows the RGB colour map computed by (2.20) with the superposed
contours of degree of isotropy (see (2.19)) on the T̂–ŵ quadrant plane. From the RGB
colour map, the anisotropic states of the Reynolds stress tensor in the red, green and blue
shaded regions of the T̂–ŵ quadrant plane are dominated by 1-component anisotropy,
2-component anisotropy and 3-component isotropy, respectively. We also include the
hyperbolic hole, defined as |T̂ŵ| = 1, to identify the strong heat-flux-producing events
that lie in the region outside of it (Smedman et al. 2007). The six different panels in figure
6(a)–(f ) correspond to the six different stability classes as mentioned in table 2.
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FIGURE 6. The quadrant maps of the degree of isotropy (〈C3c | (T̂, ŵ)〉, see (2.19)) plotted
on the T̂–ŵ quadrant plane are shown for six different classes of the stability ratios: (a)
−ζ > 2, (b) 1 < −ζ < 2, (c) 0.6 < −ζ < 1, (d) 0.4 < −ζ < 0.6, (e) 0.2 < −ζ < 0.4 and
(f ) 0 < −ζ < 0.2. The anisotropic states of 〈bij | (T̂, ŵ)〉 are represented by the RGB colour
map such that the red, green and blue shaded regions of the quadrant plane are dominated by
1-component anisotropy, 2-component anisotropy and 3-component isotropy, respectively (see
(2.20)). The thick pink lines denote the hyperbolic hole |T̂ŵ| = 1. Quadrants I and III represent
the warm updrafts and cold downdrafts, whereas quadrants II and IV represent the cold updrafts
and warm downdrafts.

From figure 6(a), we notice that, in highly convective conditions (−ζ > 2), the
anisotropic states of the Reynolds stress tensor for strong heat-flux events (|T̂ŵ| > 1) are
mostly dominated by either 3-component isotropy or 1-component anisotropy (indicated
by blue and red, respectively). However, for weak heat-flux events (|T̂ŵ| < 1) the
anisotropic states of the Reynolds stress tensor are dominated by 2-component anisotropy
(indicated by green). This implies that the influence of the three limiting states of the
Reynolds stress tensor are associated with specific heat-flux events, residing within the
red (1-component anisotropy), blue (3-component isotropy) and green (2-component
anisotropy) regions of the T̂–ŵ quadrant plane. We also notice from figure 6(a) that
the zones of 3-component isotropic states (blue regions) reside mainly within the
warm-updraft (C3c ≈ 0.5) and cold-downdraft (C3c ≈ 0.4) quadrants. On the other hand,
from figure 7(a) we note that the j.p.d.f. contours between T̂ and ŵ depart significantly
from the bivariate Gaussian distribution (see (2.18)) in highly convective conditions.
By comparing the features in figure 6(a) with the j.p.d.f. contours in figure 7(a), we
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FIGURE 7. The contour maps of the j.p.d.f.s between T̂ and ŵ (P(T̂, ŵ) as thick black lines, see
(2.17)) and the bivariate Gaussian distribution (G(T̂, ŵ) as dotted red lines, see (2.18)) are shown
for six different classes of the stability ratios: (a) −ζ > 2, (b) 1 < −ζ < 2, (c) 0.6 < −ζ < 1,
(d) 0.4 < −ζ < 0.6, (e) 0.2 < −ζ < 0.4 and (f ) 0 < −ζ < 0.2. The same RGB colour map and
hyperbolic hole from figure 6 are shown here too.

observe that the 1-component anisotropy zones (red regions) are associated with extremely
low-probability events of very high heat fluxes, located well beyond the hyperbolic hole
(|T̂ŵ| � 1).

However, as −ζ becomes smaller, the j.p.d.f. contours become progressively close
to bivariate Gaussian distribution (figure 7a–f ), with the green regions (2-component
anisotropy) being systematically more prominent (figure 6a–f ). On the other hand, the
blue regions (3-component isotropy) become systematically less visible (figure 6a–f ). This
is consistent with figure 3(a), where the anisotropic states of the Reynolds stress tensor
become progressively more dominated by 2-component anisotropy as the near-neutral
stability is approached. Furthermore, this is also in agreement with figure 4, where highly
anisotropic turbulence is associated with an almost symmetrical distribution of the warm
updrafts and cold downdrafts in near-neutral stability, due to the small values of skewness
in T ′ (see (3.4)).

It is interesting to note that the 1-component anisotropy indicated by the red regions
in the T̂–ŵ quadrant plane does not appear to have a signature in the 30 min averaged
Reynolds stress anisotropy (figure 3a). This is because this anisotropic state is associated
with highly intermittent low-probability events of very high heat fluxes. In addition to that,
the Reynolds stress anisotropy is dominated by the 3-component isotropic state specifically
for those heat-flux events which reside within the blue regions of the T̂–ŵ quadrant
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plane (figure 6). This observation is non-trivial and this outcome would not be possible
without an event-based description. Since the approaches based on time-averaged statistics
would predict that higher convective conditions (high heat fluxes) are associated with less
anisotropic turbulence, this analysis shows that the connection between the intensity of
the heat flux and turbulence anisotropy is more intricate than that. Therefore, one can ask
‘whether there are any characteristic sizes of the heat-flux events associated with least
anisotropic turbulence’. However, the quadrant analysis does not give information about
the time scale or size of the heat-flux events. We thus focus our attention on persistence
analysis to investigate the anisotropic states of the Reynolds stress tensor associated with
the streamwise sizes of the heat-fluxevents.

3.3. Persistence analysis of Reynolds stress anisotropy
We employ persistence analysis to characterize the streamwise sizes of the heat-flux events
from each quadrant of T ′–w′. This is achieved by converting the persistent time TB to a
streamwise length TBu from Taylor’s hypothesis. We begin by discussing the persistence
p.d.f.s to highlight the physical characteristics of these heat-flux events and the aspect of
non-Gaussianity. Along with that, we also investigate the anisotropic states of the Reynolds
stress tensor associated with these heat-flux events of different sizes. The spread in the
averaged plots is shown as the error bars, computed as one standard deviation from the
ensemble mean for a particular stability class.

3.3.1. Persistence p.d.f.s of heat-flux events
Figure 8(a)–(f ) show the p.d.f.s of the normalized streamwise sizes ((TBu)/z) for the

heat-flux events occurring in each quadrant of T ′–w′, corresponding to the six different
stability classes (table 2). We choose to normalize the streamwise sizes by z, under the
assumption that these heat-flux events are associated with the thermal plumes which grow
linearly with height (Tennekes & Lumley 1972). The associated histograms of (TBu)/z
for the heat-flux events from each quadrant are also shown in figure 17(a)–( f ) (see the
Appendix). Typically, for the warm-updraft and cold-downdraft quadrants we encounter
100–200 heat-flux events corresponding to the large sizes (TBu)/z > 4.

The most distinct feature we notice from the highly convective (−ζ > 2) stability class
(figure 8a) is that the persistence p.d.f.s of the warm-updraft and cold-downdraft events
collapse with a power law of an exponent −0.4,

P[(TBu)/z] ∝ [(TBu)/z]−0.4, (3.6)

which approximately extends up to (TBu)/z ≈ 1. A similar power law was reported by
Chamecki (2013) for the persistent p.d.f.s of u and w fluctuations smaller than the integral
time scale in a plant canopy. Apart from that, Yee et al. (1993) and Katul et al. (1994)
also documented a power-law behaviour in the p.d.f.s of the small sizes of the heat-flux
bursts from an unstable ASL. Additionally, we also note that the p.d.f.s of (TBu)/z for the
counter-gradient events are in close agreement with the p.d.f.s of the down-gradient events
for small values of (TBu)/z < 0.2. Beyond those sizes, the p.d.f.sof the counter-gradient
events drop faster than the down-gradient events. This implies that these counter-gradient
events have a statistical tendency to occur in smaller sizes and do not persist for a long
time. This is in agreement with the simulations of Dong et al. (2017), where they found
that the p.d.f.s of counter-gradient and down-gradient momentum events of small sizes
agreed with each other and diverged for larger sizes.
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FIGURE 8. The persistence p.d.f.s of the heat-flux events are shown for the six different
stability classes: (a) −ζ > 2, (b) 1 < −ζ < 2, (c) 0.6 < −ζ < 1, (d) 0.4 < −ζ < 0.6,
(e) 0.2 < −ζ < 0.4 and ( f ) 0 < −ζ < 0.2. The markers for different quadrants are explained
in the legend in panel (a). A distinct power-law of exponent −0.4 is shown as a thick grey line in
all the panels. The thick black lines correspond to the log-normal distribution. The error bars in
all the panels show the existing spread between individual 30 min runs for each of the stability
classes, computed as one standard deviation from the ensemble mean.

However, this power-law segment systematically disappears as we approach the
near-neutral stability (0 < −ζ < 0.2) and gets replaced by a log-normal distribution
(figure 8f ). This is broadly in agreement with Sreenivasan & Bershadskii (2006), where
they commented that, for an active scalar such as temperature in highly convective
turbulence, the p.d.f.s of the inter-pulse periods followed a power law. Conversely, in
a shear-driven turbulence when the temperature behaved more like a passive scalar, the
p.d.f.s followed a log-normal distribution.

For (TBu)/z > 1, the p.d.f.s of the warm-updraft and cold-downdraft events significantly
differ from each other in the highly convective case (−ζ > 2, figure 8a). However,
they systematically agree with each other as the near-neutral stability (0 < −ζ < 0.2)
is approached (figure 8a–f ). As we will show later, this is related to the asymmetry
in the distributions of the warm-updraft and cold-downdraft events due to strong
non-Gaussianity in temperature fluctuations in a highly convective surface layer. As
discussed by Chamecki (2013), these large values of (TBu)/z are exponentially distributed
according to a Poisson-type process, which could be studied by considering the cumulative
distribution functions (CDFs) of (TBu)/z. In general, the CDFs are comparatively
smoother than the p.d.f.s, thus yielding a more robust fit for the exponential distribution.
The CDF (F[(TBu)/z]) is defined as

F[(TBu)/z] =
∫ [(TBu)/z]

[(TBu)/z]max

P[(TBu)/z] d log[(TBu)/z]. (3.7)
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FIGURE 9. Same as figure 8, but the CDFs are shown instead of the p.d.f.s.: (a) −ζ > 2,
(b) 1 < −ζ < 2, (c) 0.6 < −ζ < 1, (d) 0.4 < −ζ < 0.6, (e) 0.2 < −ζ < 0.4 and (f )
0 < −ζ < 0.2. In each panel, the inset shows the enlarged area between 1 ≤ (TBu)/z ≤ 10 (grey
shaded region), where the CDFs are plotted on log-linear axes to indicate the exponential decay
as a straight line. The markers are explained in the legend in panel (f ). The equations related to
the exponential decay are shown in the legend of each panel.

Figure 9 shows the CDFs of the heat-flux events from the four quadrants of T ′–w′. We
note that the power-law region is not seen clearly in the CDFs, as they converge to 1 for
the small sizes (TBu)/z < 1. For the large sizes (1 ≤ (TBu)/z ≤ 10), we plot the CDFs in
a log-linear coordinate system (see the insets in figure 9) such that the exponential decay,

F
[
(TBu)

z

]
∝ exp

[
−k

(TBu)

z

]
, (3.8)

in such plots would appear as a straight line with a slope of −k. From the insets in figure 9,
we notice that, for larger values of (TBu)/z, F[(TBu)/z] indeed decays exponentially
according to (3.8). We also find that the slopes corresponding to the warm-updraft and
cold-downdraft events are significantly different from each other (k = 1.3 and k = 0.7,
respectively) for highly convective stability (figure 9a). However, these two slopes become
systematically close to each other as the near-neutral stability is approached (k = 0.65,
figure 9f ). On the other hand, with stability, no appreciable change in the slope is
observed for the counter-gradient events. This difference in the slopes for warm-updraft
and cold-downdraft events is linked to the non-Gaussianity in temperature fluctuations
in a highly convective surface layer. Sreenivasan et al. (1983) mentioned that the long
intervals (large (TBu)/z) are a consequence of large-scale structures passing the sensor
and the short intervals (small (TBu)/z) are a consequence of the nibbling small-scale
motions superposed on the large-scale structures. From that perspective, we expect that
the non-Gaussian characteristics of the warm-updraft and cold-downdraft events might be
related to the large-scale structures.
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FIGURE 10. The heat-flux distributions (see (2.27)) are plotted against the normalized sizes
(TBu)/z of the heat-flux events corresponding to (a) warm-updraft, (b) cold-downdraft,
(c) cold-updraft and (d) warm-downdraft quadrants. In the upper panels, the black arrows
indicate the collapsed position of the peaks of the heat-flux distribution associated with the
warm updrafts and cold downdrafts. The different colours represent the six different stability
classes as indicated in the legend on the right.

To summarize, from figures 8 and 9 we have observed that the warm-updraft and
cold-downdraft events having sizes (TBu)/z < 1 are scale-invariant owing to a power-law
dependence in the highly convective stability. This scale-invariant property disappears
systematically as the near-neutral stability is approached. Apart from that, the effect
of non-Gaussianity (Gaussianity) appears mostly at the sizes (TBu)/z > 1 in a highly
(weakly) convective surface layer, possibly associated with the large-scale structures
(Sreenivasan et al. 1983). We will revisit this while investigating the linkage between the
persistence p.d.f.s and the degree of isotropy of the Reynolds stress tensor in § 3.3.4. Next
we discuss the anisotropy characteristics of the Reynolds stress tensor associated with
these heat-flux events of different sizes.

3.3.2. The degree of isotropy, heat- and momentum-flux distributions
We begin by discussing the amount of heat flux associated with the normalized

streamwise sizes (TBu)/z (see (2.27)), corresponding to the six different stability classes.
From figure 10(a) and (b), we note that the z-scaling of the streamwise sizes of the heat-flux
events collapses the scaled heat-flux peak positions at (TBu)/z ≈ 2 and (TBu)/z ≈ 2.5 for
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FIGURE 11. The distributions of the degree of isotropy (C3c) are plotted against the normalized
sizes (TBu)/z of the heat-flux events corresponding to (a) warm-updraft, (b) cold-downdraft,
(c) cold-updraft and (d) warm-downdraft quadrants. In the upper panels, the black arrows
indicate the collapsed position of the peaks of the heat-flux distribution associated with the
warm updrafts and cold downdrafts (figure 10).

the warm-updraft and cold-downdraft quadrants, respectively. We also observe that the
heat-flux events from the counter-gradient quadrants contribute insignificantly to the total
heat flux (figure 10c and d). This result is in agreement with the heat-flux fractions shown
in supplementary figure S3. To infer whether the least anisotropic turbulence is associated
with the peak positions of the heat flux, we investigate the distributions of the degree of
isotropy (C3c, see (2.25)) associated with these events.

From figure 11, we note that the down-gradient heat-flux events corresponding to
warm-updraft and cold-downdraft quadrants are associated with larger values of C3c,
compared to the counter-gradient heat-flux events from cold-updraft and warm-downdraft
quadrants. Therefore, we may infer that the counter-gradient events which carry
significantly less heat flux are associated with more anisotropic turbulence than the
warm-updraft and cold-downdraft events. Apart from that, we observe that there is a
critical size of warm-updraft and cold-downdraft events associated with the maximum
value of C3c and this critical size is larger for the cold downdrafts compared to
the warm updrafts. Also, the maximum value of C3c decreases systematically as the
near-neutral stability is approached. This is in agreement with our previous observations
for the averaged flow, where the degree of isotropy systematically decreased from highly
convective to near-neutral stability (figures 3 and 4). Moreover, the heat-flux events
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FIGURE 12. The distributions of the degree of isotropy are plotted against the normalized sizes
(TBu)/z of the heat-flux events from (a) warm-updraft and (b) cold-downdraft quadrants. The
ratio between the vertical and horizontal velocity variances are plotted against the normalized
sizes (TBu)/z of the heat-flux events from (c) warm-updraft and (d) cold-downdraft quadrants.
The horizontal black arrows in panels (c) and (d) indicate the ratio 0.5.

corresponding to warm updrafts are associated with relatively less anisotropic turbulence
than the cold downdrafts, as the values of C3c are larger in general. However, the peak
positions of C3c associated with warm-updraft and cold-downdraft events do not match
with the peak positions of the heat-flux distributions (figure 11a and b). This mismatch
is more apparent for the warm-updraft events than the cold downdrafts. The deviation in
the peak positions of C3c and heat-flux distributions complements the results from the
quadrant analysis (figures 6 and 7), where we found that the large-heat-flux events do not
necessarily relate to the least anisotropic turbulence.

From the definition of isotropy (Könözsy 2019), there are two possible reasons
contributing to the Reynolds stress anisotropy associated with the sizes of the
warm-updraft and cold-downdraft events:

(i) The amplitudes of the horizontal velocity fluctuations exceed the vertical velocity
fluctuations.

(ii) The vertical velocity fluctuations contribute substantially to the upward or downward
transport of streamwise momentum.

To investigate the first of the two aforementioned reasons, in figure 12 we show the
ratios of the vertical and horizontal velocity variances associated with the normalized sizes
(TBu)/z of the warm-updraft and cold-downdraft events. The velocity variances associated
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with (TBu)/z from each quadrant of T ′–w′ are defined similarly as in § 2.3.2, such that

〈x ′2 | [(TBu/z)bin{m} < (TBu/z) < (TBu/z)bin{m} + d log(TBu/z)]〉

=
∑

x ′2

N × d log(TBu/z)
(x = u, v, w), (3.9)

where the symbols carry their usual meaning. Since in isotropic turbulence the three
velocity variances in x , y and z directions are equal to each other, it follows that

〈w′2 | [(TBu)/z]〉
〈u′2 | [(TBu)/z]〉 + 〈v′2 | [(TBu)/z]〉 = 0.5. (3.10)

From figure 12(c) and (d), we note that, for the sizes of the warm-updraft and
cold-downdraft events (TBu)/z < 2 and (TBu)/z < 2.5, respectively, the horizontal
velocity variances dominate, since the variance ratio is smaller than 0.5. At the peak
position of the heat flux, the variance ratio indeed becomes closer to 0.5 for the highly
convective stability and then systematically decrease as the near-neutral stability is
approached (figure 12c and d). However, for the highly convective stability the maximum
in the degree of isotropy associated with these events occurs at relatively smaller sizes
than the peak positions of the heat-flux distribution (figure 12a and b). Therefore, the
disagreement in the peak positions of heat flux and degree of isotropy might be related to
the second reason associated with momentum transport.

Figure 13 shows the distributions of the heat and momentum fluxes associated with
the warm-updraft and cold-downdraft events of different sizes, (TBu)/z (see (2.27)). It is
clear that the heat-flux peak position associated with warm-updraft events ((TBu)/z ≈ 2)
corresponds to a significant amount of down-gradient momentum in a highly convective
surface layer (figure 13a and c). However, for the peak position (TBu)/z ≈ 2.5 associated
with the cold-downdraft events, the momentum transport is rather erratic in nature
(figure 13b and d). The association of highly erratic momentum transport with the cold
downdrafts has been observed in the numerical simulations of Li et al. (2018) and in
the observations of Chowdhuri & Prabha (2019). Salesky & Anderson (2018) interpreted
this as: under highly convective conditions, the small-scale turbulence is excited in the
updraft regions and suppressed in the downdraft regions, leading to intermittent periods
of small-scale excitation in the momentum fluxes.

Summarizing these observations, we note that there is a characteristic size of the
warm-updraft and cold-downdraft events associated with least anisotropic turbulence,
which does not scale with z. On the other hand, the sizes of the warm-updraft and
cold-downdraft events which carry the maximum heat are found to scale with z. The
mismatch in the peak positions of heat flux and degree of isotropy is related to the fact
that the warm-updraft events which carry the maximum amount of heat are also associated
with significant down-gradient momentum transport (figure 13a and c). However, for the
cold-downdraft events these two peak positions almost coincide (figures 11b and 12b). This
might be related to inefficient momentum transport associated with the cold-downdraft
events, unlike the warm updrafts (figure 13c and d).

So far, we have focused on the degree of isotropy (C3c) of the Reynolds stress
tensor associated with the heat-flux events of different sizes, to quantify how close the
turbulence is to 3-component isotropy. However, apart from 3-component isotropy, there
are 1-component and 2-component anisotropic states whose dominance is described by
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FIGURE 13. The scaled heat- and momentum-flux distribution plotted against the normalized
streamwise sizes (TBu)/z of the heat-flux events corresponding to the warm-updraft (a and c)
and cold-downdraft (b and d) quadrants.

the other two coefficients C1c and C2c, respectively. Therefore, we can ascertain the
entire anisotropic states of the heat-flux events of different sizes, by investigating the
distributions of all three coefficients such as: C1c, C2c and C3c. We focus our attention
on the down-gradient events, since for these events there is an intricate relation between
the heat-flux intensity and the degree of isotropy.

3.3.3. The anisotropic states of the Reynolds stress tensor
Figure 14 shows the three coefficients associated with the three limiting states

of the anisotropy Reynolds stress tensor to describe the anisotropic states of the
warm-updraft and cold-downdraft events (see (2.25)). These three coefficients describe
the corresponding weights associated with each of the three limiting states of the
anisotropy Reynolds stress tensor, such as: C1c is related to 1-component anisotropy (red
lines in figure 14), C2c is related to 2-component anisotropy (green lines in figure 14)
and C3c is related to 3-component isotropy (blue lines in figure 14). Note that from
(2.25) the sum of the three anisotropy coefficients should be 1 for each (TBu)/z value.
Nevertheless, the graphs shown in figure 14 are ensemble-averaged over all the runs from
a particular stability class. Owing to such ensemble averaging, the sums of the three
coefficients may differ from 1 for some (TBu)/z values. This occurs because some of
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FIGURE 14. The three coefficients (C1c, C2c and C3c) associated with the three limiting states
of the anisotropy Reynolds stress tensor are plotted against the normalized streamwise sizes
(TBu)/z of the heat-flux events corresponding to warm-updraft and cold-downdraft quadrants:
(a) −ζ > 2, (b) 1 < −ζ < 2, (c) 0.6 < −ζ < 1, (d) 0.4 < −ζ < 0.6, (e) 0.2 < −ζ < 0.4 and
(f ) 0 < −ζ < 0.2. The markers associated with these three coefficients are explained above
panel (a).

the bins of (TBu)/z values may remain empty for some specific runs which construct the
ensemble.

For the highly convective stability (figure 14a), we note that for the warm-updraft events
the maximum in C3c is located at (TBu)/z ≈ 0.5. Moreover, we also observe that, for the
warm-updraft events smaller than this size ((TBu)/z < 0.5), the values of the coefficient
C2c exceed the other two coefficients. On the other hand, for the sizes of warm-updraft
events larger than (TBu)/z > 0.5, the coefficient C1c is the largest amongst the three and its
peak position coincides with the heat-flux peak position. This implies that the anisotropic
states of the Reynolds stress tensor associated with the warm-updraft events smaller
(larger) than the critical size (TBu)/z ≈ 0.5 are dominated by 2-component (1-component)
anisotropy.

However, for the cold-downdraft events from highly convective stability (figure 14a),
the coefficients C1c and C2c dominate over C3c for all sizes, albeit C2c being the largest
for sizes (TBu)/z < 1. For sizes (TBu)/z > 1, the coefficient C1c is the largest and its peak
position almost coincides with the maximum heat flux associated with cold-downdraft
events. Interestingly enough, we also find that, as the near-neutral stability is approached
(figure 14a–f ), the coefficient C2c systematically becomes the largest amongst the three for
most of the sizes of warm-updraft and cold-downdraft events. Nonetheless, at larger sizes
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(in the order of the heat-flux peak positions) there remains a tendency for the coefficient
C1c to dominate the anisotropic state of the Reynolds stress tensor.

The results from figure 14 are in accordance with the results from the quadrant analysis
in figures 6 and 7. For the highly convective stability, we note that the blue regions
(dominated by 3-component isotropy) in the anisotropy contour maps (figure 6a) broadly
correspond to the critical sizes of warm updrafts and cold downdrafts ((TBu)/z ≈ 0.5
and (TBu)/z ≈ 1) where C3c values are maximum. For the sizes smaller (larger) than
this, the anisotropic states of the Reynolds stress tensor are dominated by 2-component
(1-component) anisotropy, shown as green (red) regions in figure 6(a). However, for the
near-neutral stability (figures 6f and 14f ) the dominance of 2-component anisotropy is
associated with almost all sizes of the warm-updraft and cold-downdraft events, except at
the larger sizes where there is a signature of 1-component anisotropy.

Hitherto, from analyses presented in figures 11–14 we have found that the
least anisotropic turbulence is associated with particular sizes of warm-updraft and
cold-downdraft events. These sizes do not exactly correspond to the peak positions of
the heat-flux distribution and also do not scale with z. With stability (highly convective
to near-neutral) this particular size changes from (TBu)/z ≈ 0.5 to (TBu)/z ≈ 2 for the
warm-updraft events and from (TBu)/z ≈ 1 to (TBu)/z ≈ 3 for the cold-downdraft events.
From the persistence p.d.f.s and CDFs of these events presented in figures 8 and 9, we have
noted that there is a power-law behaviour associated with sizes (TBu)/z < 1, followed
by an exponential decay (Poisson-type process) for sizes (TBu)/z > 1. In the following
section, we present results to investigate whether there is any correspondence between
these p.d.f.s and the critical sizes of warm-updraft and cold-downdraft events associated
with least anisotropic turbulence.

3.3.4. The linkage between degree of isotropy and persistence p.d.f.s
Before discussing anisotropy, to highlight non-Gaussianity we convert the p.d.f.s in

figure 8 to a distribution about the time fractions (Tf ) spent in each quadrant of T ′–w′,
by presenting the same in a premultiplied form. If, from a particular quadrant of T ′–w′, a
number Ntot of blocks are being detected, with each Nith block containing ni points, then
we can write

Ntot∑
i=1

Nini ∝ Tf , (3.11)

where Tf is the time fraction spent in that particular quadrant. Since the probability of
finding a block containing ni points is Ni/Ntot, from (2.26) we can write

Ni ∝ (P[(TBu)/z] d log[(TBu)/z]) and ni ∝ (TBu)/z.

Therefore (3.11) can be expressed as∫ (TBu/z)max

(TBu/z)min

(
TBu

z

)
P
[(

TBu
z

)]
d log

(
TBu

z

)
∝ Tf . (3.12)

From (3.12) we can also write∫ (TBu/z)max

(TBu/z)min

{[
TBu

z
P
(

TBu
z

)]
III

−
[

TBu
z

P
(

TBu
z

)]
I

}
d log

(
TBu

z

)
∝ ΔTf , (3.13)

where the subscripts I and III refer to the warm-updraft and cold-downdraft quadrants
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FIGURE 15. The log–log plots of the premultiplied p.d.f.s of (TBu)/z (see (3.12)) corresponding
to the heat-flux events from the warm-updraft and cold-downdraft quadrants are shown for the six
different stability classes: (a) −ζ > 2, (b) 1 < −ζ < 2, (c) 0.6 < −ζ < 1, (d) 0.4 < −ζ < 0.6,
(e) 0.2 < −ζ < 0.4 and (f ) 0 < −ζ < 0.2. In all the panels, the right-hand y axis is linear and
used to represent the distribution of the degree of isotropy (〈C3c | [(TBu)/z]〉) associated with the
warm-updraft and cold-downdraft events. The thick grey line shows the same power law as in
figure 8, but owing to premultiplication the exponent changed to +0.6. The grey shaded region
represents (TBu)/z < 1, and the black line denotes the value of 1. The markers are explained in
the legend in panel (f ).

and ΔTf is the difference in the time fractions spent in those quadrants. From (3.4)
we know that ΔTf ≈ T ′3/σ 3

T , given the assumption that the time fractions spent in the
counter-gradient quadrants could be neglected. Since from figure 8 we have noticed
that the persistence p.d.f.s of the counter-gradient events decrease faster than the
down-gradient events for the large sizes, we may rewrite (3.13) as

∫ (TBu/z)max

(TBu/z)min

{[
TBu

z
P
(

TBu
z

)]
III

−
[

TBu
z

P
(

TBu
z

)]
I

}
d log

(
TBu

z

)
∝ T ′3

σ 3
T

. (3.14)

Figure 15(a)–(f ) show the premultiplied p.d.f.s of (TBu)/z corresponding to the warm
updrafts and cold downdrafts for the same six different stability classes, along with the
degree of isotropy. Upon close inspection, we note that these premultiplied p.d.f.s can
be divided into two regions, which approximately intersect at (TBu)/z ≈ 1. The first
region extends up to (TBu)/z ≈ 1, where the premultiplied p.d.f.s of the warm-updraft
and cold-downdraft events collapse with a power law in highly convective stability
(−ζ > 2). This power-law region progressively diminishes as the near-neutral stability is
approached (figure 15a–f ). The second region extends beyond (TBu)/z ≈ 1, where these
premultiplied p.d.f.s are widely separated in highly convective stability, while agreeing
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with each other in near-neutral stability (figure 15a–f ). In the premultiplied form we can
relate the difference in the values between the warm updrafts and cold downdrafts to the
non-Gaussianity through (3.14). Therefore, we claim that the effect of non-Gaussianity
(Gaussianity) in a highly (weakly) convective surface layer is only felt through those
warm-updraft and cold-downdraft events having sizes (TBu)/z > 1. This also explains why
at sizes (TBu)/z > 1, the p.d.f.s and CDFs of the warm-updraft and cold-downdraft events
differ most for the highly convective stability (figures 8a and 9a).

From figure 15 we can also compare the distribution of the degree of isotropy
between the warm-updraft and cold-downdraft events. We find that, with the change in
stability, the peak positions of the degree of isotropy shift systematically from the region
(TBu)/z < 1 to the region (TBu)/z > 1. From figure 9, we noted that,for sizes (TBu)/z > 1,
the characteristics of the warm-updraft and cold-downdraft events might be related to the
passing of the large-scale structures over the measurement points.

To get a preliminary insight into this systematic shift, we empirically investigated
the distributions of the degree of isotropy associated with the warm-updraft and
cold-downdraft events by normalizing their streamwise sizes with a mixed length scale.
This mixed length scale is a geometric mean of two length scales such as the large-eddy
length scale λ (see (2.22)) and z, represented as z0.5λ0.5. This has been discovered in the
context of event-based analysis, where Rao, Narasimha & Badri Narayanan (1971) showed
that the frequency of the burst events in a turbulent boundary layer scaled with a mixed
time scale, involving both inner and outer variables. Similarly, Alfredsson & Johansson
(1984) found that the governing time scale of the near-wall region of a channel flow was a
mixture of outer and inner scales. They interpreted this as a sign of the interaction of outer
and near-wall flows. This mixed scale has been reviewed in detail by Buschmann, Indinger
& Gad-el Hak (2009) and Gad-el Hak & Buschmann (2011). Recently, McKeon (2017)
noted that this mixed length scale can be derived from first principles through matched
asymptotic expansions, a theory proposed by Afzal (1984). Afzal (1984) showed that, by
matching the inner and outer expansions of the Reynolds shear stress, an intermediate
layer could be formulated for wall-bounded turbulent flows where the appropriate length
scale was the geometric mean of the inner and outer length scales.

Figure 16 shows that, by normalizing the streamwise sizes of the warm-updraft and
cold-downdraft events by the mixed length scale, one could reasonably collapse the
peak positions of the degree of isotropy at (TBu)/(z0.5λ0.5) ≈ 0.08 and (TBu)/(z0.5λ0.5) ≈
0.15, respectively. From figures 8 and 15, we have found that the warm-updraft and
cold-downdraft events having sizes (TBu)/z < 1 are scale-invariant owing to a power-law
dependence in the highly convective stability. This scale-invariant property disappears
systematically as the near-neutral stability is approached. Apart from that, the effect
of non-Gaussianity (Gaussianity) appears mostly at the sizes (TBu)/z > 1 in a highly
(weakly) convective surface layer. Therefore, this mixed length scaling to collapse the
peak positions of the degree of isotropy may suggest that the least anisotropic turbulence
might be associated with an interaction between two different physical processes. One of
these processes might be related to scale invariance, while the other with non-Gaussianity,
associated with the warm-updraft and cold-downdraft events. This is at present a
conjecture, which needs to be verified from theoretical arguments. Recently Tong & Ding
(2020) have proposed a matched asymptotic expansion for the convective surface layer, to
derive the scaling of the mean velocity profile. By following their footsteps, along with
the line of reasoning developed by Afzal (1984), it might be possible to derive this mixed
length scale from first principles for convective surface layer turbulence. However, this is
beyond the scope of the present article. We present our conclusions in the next section.
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FIGURE 16. The distributions of the degree of isotropy (C3c) for the z- and mixed length-scaled
sizes of the heat-flux events from warm-updraft and cold-downdraft quadrants ((TBu)/z and
(TBu)/(z0.5λ0.5)) are shown in the top and bottom panels, respectively. The scale λ is the
large-eddy length scale obtained from (2.22). In the top panels, the grey shaded region represents
(TBu)/z < 1 and the black line denotes the value of 1. In the bottom panels, the black arrows
indicate the peak positions of C3c corresponding to the mixed length-scaled sizes of the heat-flux
events from warm-updraft and cold-downdraft quadrants.

4. Conclusions

We report novel comprehensive results of Reynolds stress anisotropy associated with
intermittent heat transport in an unstable ASL, from the SLTEST experimental dataset. We
adopt an event-based description of the heat-transporting events occurring intermittently
and persisting over a wide range of time scales. The Reynolds stress anisotropy is
quantified by using a metric called degree of isotropy, computed from the smallest
eigenvalue of the anisotropy Reynolds stress tensor. The important results from this study
can be broadly summarized as follows:

(i) The anisotropic state of the Reynolds stress tensor evolves from being dominated
by 2-component anisotropy to being dominated by 3-component isotropy as the
stability changes from weakly to highly convective. The degree of isotropy of
the Reynolds stress tensor is governed by the strength of the vertical velocity
fluctuations, which preferentially couple with the temperature fluctuations. These
temperature fluctuations exhibit strong (weak) non-Gaussian characteristics in a
highly (weakly) convective surface layer.
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(ii) The Reynolds stress anisotropy in an unstable surface layer is strongly related
to the asymmetric and intermittent nature of heat transport, associated with
non-Gaussianity in the temperature fluctuations.

(iii) By adopting an event-based approach, it is found that not all the heat-flux events
are associated with the same anisotropic state of turbulence. The anisotropic
states associated with highly intermittent large-heat-flux events are dominated
by 1-component anisotropy; whereas, the anisotropic states associated with more
frequent but weak heat-flux events are dominated by 2-component anisotropy. On the
other hand, the anisotropic states associated with moderate-heat-flux events which
lie between these two extremes are dominated by 3-component isotropy.

(iv) There is a critical size associated with the organized heat-flux events (warm updrafts
and cold downdrafts) which corresponds to the maximum value of the degree of
isotropy (i.e. least anisotropic turbulence). By investigating the anisotropic states
of the Reynolds stress tensor, it is found that, in a highly convective surface layer,
the warm-updraft and cold-downdraft events smaller (larger) than this critical size
are associated with anisotropic states dominated by 2-component (1-component)
anisotropy. However, in a near-neutral surface layer, the anisotropic states are mostly
dominated by 2-component anisotropy, regardless of the sizes of the warm-updraft
and cold-downdraft events.

(v) This critical size associated with least anisotropic turbulence does not scale with z.
However, the z scaling is successful in collapsing the peak positions of the heat-flux
distribution associated with the sizes of the warm-updraft and cold-downdraft
events. This disagreement occurs because the sizes of the warm-updraft events
corresponding to maximum heat flux are also associated with a significant amount
of streamwise momentum. This causes a drop in the degree of isotropy associated
with their sizes.

Note that the findings from this study should be verified from field experiments in
an unstable ASL flow conducted over rough surfaces and in complex terrains. Our
preliminary investigation shows that this critical size probably scales with a mixed
length scale z0.5λ0.5, where λ is the large-eddy length scale. We propose a conjecture
that this mixed length scaling may reflect an interaction between two different physical
processes, one of which may be associated with scale invariance and the other with
the non-Gaussianity in turbulence. The verification of this conjecture is beyond the
scope of the present study. An inevitable limitation of this study is the unavailability
of three-dimensional velocity and temperature information. Owing to this constraint,
the intermittent heat-flux events and the associated Reynolds stress anisotropy cannot
be connected to the three-dimensional topology of the coherent structures in convective
turbulence. In the future, we would address this problem through large-eddy or direct
numerical simulations. This study also raises a few important questions, which deserve
future attention:

(i) Is there a theoretical framework to explain the mixed length scale in convective
turbulence?

(ii) What is the physical connection between the event-based (related to flow
structures) and scale-based (related to harmonic analysis) description of turbulence
anisotropy?
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Appendix. Histograms of the heat-flux events

In figure 17(a)–(f ), we show the histograms of the heat-flux events from each quadrant
of T ′–w′, corresponding to the six different stability classes. The number of events (n)
shown in figure 17(a)–(f ) is computed after considering all 30 min runs from a particular
stability class (e.g. 55 number of 30 min runs for −ζ > 2, amounting to 27.5 hours of
observation). For each stability class, the total number of heat-flux events counted over all
sizes (TBu)/z from each quadrant are given in table 4. Typically, for the warm-updraft
and cold-downdraft quadrants, we encounter more than 100–200 of heat-flux events
corresponding to the sizes (TBu)/z > 4. For the counter-gradient quadrants, the total
number of heat-flux events corresponding to large sizes (TBu)/z > 1 is also more than 100,
although the histograms decrease faster than the down-gradient quadrants. This implies
that these counter-gradient events have a statistical tendency to occur in smaller sizes and
do not persist for a long time. Therefore, the mean statistics shown in figures 8–16 for
the heat-flux events from all four quadrants have been averaged over more than 100–200
events for the streamwise sizes (TBu)/z > 1. We note that many statistics textbooks (e.g.
Ross 2014) as well as the seminal paper by Student (1908) consider that a sample size of
more than 30 is enough for ensuring the statistical convergence of the mean to the actual
population mean, from the weak law of large numbers. Nevertheless, we also performed
the Student’s t-test to ensure the statistical significance of the ensemble mean. For the
large values of (TBu)/z, based on the sample size of around 100–200 events, the margin of
error in the ensemble mean computed over these samples is approximately 7 %–10 % with
a confidence level of 95 %.
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FIGURE 17. Same as in figure 8, but the histograms are shown for the heat-flux events from each
quadrant. (a) − ζ > 2, (b) 1 < −ζ < 2, (c) 0.6 < −ζ < 1, (d) 0.4 < −ζ < 0.6, (e) 0.2 <
−ζ < 0.4 and ( f) 0 < −ζ < 0.2.

Stability class (no.) Warm updraft Cold downdraft Cold updraft Warm downdraft

−ζ > 2 (55) 63 608 66 482 71 547 54 523
1 < −ζ < 2 (53) 76 621 80 812 83 334 66 543
0.6 < −ζ < 1 (41) 70 043 73 814 73 472 60 849
0.4 < −ζ < 0.6 (34) 70 062 72 961 69 641 61 341
0.2 < −ζ < 0.4 (44) 105 273 108 822 101 299 91 870
0 < −ζ < 0.2 (34) 100 780 103 151 92 335 88 357

TABLE 4. The total number of heat-flux events from each quadrant of T ′–w′ are tabulated for
all sizes (TBu)/z, corresponding to each stability class as shown in table 2. The number in
parentheses denotes the number of 30 min runs in each stability category.
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