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Abstract 

 

Electrochemical Modeling of a Lithium-Metal Anode 

by 

Anthony John Ferrese 

Doctor of Philosophy in Chemical Engineering 

University of California, Berkeley 

Professor John Newman, Chair 

 

The use of a lithium-metal anode in both current and future battery technologies, 

including lithium-sulfur and lithium-air batteries, is of great interest due to its high energy 

density and specific energy. Significant effort has been devoted to understanding the cathode 

in these technologies and toward mitigating dendrite formation, the largest failure mechanism 

for lithium-metal batteries. This research addresses the problems that could occur even if 

dendrite propagation is controlled, namely large-scale movement of the lithium at the lithium-

metal anode, resulting in a shape change of the lithium/separator interface.  

In the first part of Chapter 1, a two-dimensional electrochemical model is created which 

forms the basis for the latter half of Chapter 1, Chapter 2, and Chapter 3. In Chapter 1, 

modeling was done using COMSOL Multiphysics, which uses a finite-element approach. This 

model incorporates electrode tabbing where, during discharge, the current is drawn from the 

top of the positive tab and inserted into the bottom of the negative tab. Also modeled is a 

moving boundary at the negative electrode, a CoO2 intercalation electrode as the cathode, and 

a lithium-metal negative electrode. The positive electrode is modeled using porous electrode 

theory, the separator as a liquid electrolyte with a binary salt, and the total volume changes are 

assumed to be zero. Finally, the negative electrode in this model is stoichiometrically twice the 

thickness required, to avoid the need for a separate negative current collector.  

In the second part of Chapter 1, the model was cycled at various rates, and shows that, 

even without dendrites, there is significant large-scale movement of lithium both during each 

half cycle and after a full cycle of a discharge followed by a charge. Specifically, more lithium is 

depleted near the negative tab while discharging the cell, yet after a full cycle of a discharge 
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followed by a charge, there is a net migration of lithium towards the negative tab. The model 

shows that this migration is caused by three separate phenomena. First, the geometry strongly 

affects the current density distribution, which directly correlates to the asymmetric depletion of 

lithium during the discharge phase. The second driving force is the open-circuit-potential 

function, the slope of which not only affects the magnitude of the movement, but also is the 

largest nonlinearity that contributes to the movement of lithium after a full cycle. The third, 

and smallest, contributor to the movement of lithium is the concentration gradient in the liquid 

electrolyte. When the OCP is flat and the concentration gradients are reduced by increasing the 

diffusivity, the lithium will return to its starting position after a full cycle. 

Chapter 2 builds on the work developed in Chapter 1 through modeling the movement 

over extended cycling. The model was cycled at various rates, depths of discharge, and lengths 

of the rest over multiple cycles. From this, we saw that, with a large excess of lithium at the 

negative electrode, the movement of the lithium reaches a quasi-steady state where the 

movement during each subsequent cycle remains at the same magnitude. The rate at which the 

movement of the lithium reaches that steady state depends on the slope of the open-circuit-

potential function, the rate of discharge and charge, the depth of discharge, and the length of 

time that the cell is allowed to rest both after the discharge and charge phase.  

First, the slope of the open-circuit-potential function strongly affects both the 

magnitude of the movement of lithium seen during cycling and the rate at which a steady state 

is reached. A more steeply sloped open-circuit-potential function causes less movement of 

lithium during cycling, and a steady state is reached more quickly than with a flatter open-

circuit-potential function.  

Next, the assumption that there is a large excess of lithium in the negative electrode is 

relaxed, and the utilization of the negative electrode is increased to 80 percent. This is achieved 

by reducing the thickness of the negative electrode from 50 to 15 μm with the result that 

pinching of the negative electrode is seen and is another nonlinearity that leads to a 

progression of the movement of lithium over multiple cycles.  

With a 50 μm thick negative electrode, the effect of the discharge and charge rate is 

discussed. Here we see that increasing the C-rate both increases the magnitude of the 

movement of lithium during cycling and delays the quasi-steady state seen previously. We then 

explore the effect that the depth of discharge has on the movement of lithium during cycling, 

and the effects of the rest periods. Finally, we compare the magnitude of the effect of the C-

rate with that of the rest periods and find that the lithium is more uniform if the cell was 

charged quickly and allowed to rest for longer and is less uniform if the cell is charged slowly 

with a limited rest period following charging. 

Chapter 3 builds on the model developed in Chapter 1 by relaxing the assumption that 

the separator, while inhibiting dendrites, also allowed the lithium to move unhindered. 

Therefore, in this chapter, a dendrite-inhibiting polymer separator which has a shear modulus 
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twice that of lithium is included in the model. Such a separator resists the movement of lithium 

seen in Chapters 1 and 2 though the generation of stresses in the cell. As can be imagined, as 

the lithium moves, the separator is either compressed or stretched. This translates into stresses 

in the separator and lithium that affect the negative electrode through two mechanisms: 

altering the thermodynamics of the negative electrode and deforming the negative electrode 

mechanically. Both of these mechanisms are treated in this chapter. 

First, the effect of the stress on the thermodynamics is developed. From this, we see 

that it takes very high pressures to modify the kinetics enough to have an appreciable effect on 

the movement of lithium. Under these pressures, the assumption that the lithium is rigid is 

invalid, thus the elastic deformation of lithium is included. This relaxes the stresses in the 

negative electrode through the elastic compression of the lithium; however, the stresses in the 

negative electrode are still significantly larger than the yield strength of lithium, meaning that 

plastic deformation of the negative electrode must be included.  

With the inclusion of elastic and plastic deformation of the negative electrode the 

model shows that a dendrite-inhibiting polymer separator significantly resists the lithium 

movement seen in Chapters 1 and 2. In addition, we find that the plastic deformation plays a 

much larger role in the flattening of the lithium than either the pressure-modified reaction 

kinetics or elastic deformation. Furthermore, the flattening of the negative electrode causes 

only very slight differences in the local state of charge in the positive electrode. Thus, we can 

safely say that including a dendrite-inhibiting separator benefits a lithium-metal battery 

through forcing the negative electrode to be more uniform without causing negative effects in 

the positive electrode such as larger swings in the local state of charge. 

In Chapter 4, a second method to inhibit dendrite growth is explored through the use of 

a ceramic that is conductive to lithium ions. While ceramics tend to be very stiff, they are also 

very brittle and exhibit little or no plastic deformation and fail catastrophically when their yield 

point is reached. This lack of plastic deformation combined with their high elastic moduli, 

means that ceramics can operate safely in a very narrow window of strains making them 

especially susceptible to fracture due to small deformations. Therefore, the stress profile due to 

bending of a ceramic layer is calculated for two different bending programs and two different 

geometries.  

First, as a base case, the stress profile for a block ceramic is calculated for constant 

radius bending. This stress profile is then compared to a constant radius bending of a laminated 

polymer-ceramic layer. It is found that the stress reduction due to the addition of a polymer 

layer only reduces the maximum stress in the ceramic layer by 9 percent. Because of this, a 

second, periodic geometry, with a polymer section followed by a ceramic section, is introduced. 

Due to the unique nature of constant radius bending, the stress profile in this periodic 

geometry is the same as if it were a solid ceramic. Therefore, a new bending program of a 

cantilevered beam with a point force at the end is used to compare the periodic geometry to a 
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block ceramic. The resulting reduction in stress due to the addition of the polymer section is 

found to be significant, between about 50 and 99 percent depending on the ratio of Young's 

moduli. 
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Chapter 1 

 

Modeling Lithium Movement  

in a Lithium-Metal Battery 

 
1.1 Introduction 

 

 Electrochemical batteries have been used as convenient and relatively safe portable 

energy-storage devices for many years; and, with the development of rechargeable-battery 

technology, batteries have become an everyday dependence. With the progression of 

technology, the demand on rechargeable portable energy has increased to a point where, in 

certain applications, energy density is the limiting factor. More recently, the push toward 

widespread use of rechargeable batteries for powering vehicles along with other high-energy-

demand applications has gained in popularity. Thus, there has been a large increase in the need 

for improved energy density in rechargeable batteries.1 For example, while nickel-metal hydride 

batteries are an acceptable solution for hybrid-electric vehicles (HEVs), the move toward fully 

electric vehicles such as plug-in hybrids (PHEVs) and eventually electric vehicles (EVs) will 

require higher-energy-density batteries. Several new battery technologies have been proposed; 

however, a long-time favorite has been lithium-metal batteries due to their high theoretical 

energy density.1-3 By replacing the standard graphite electrode with a solid lithium electrode, 

the size and weight of the battery are significantly reduced.1 

 Although the benefits of lithium-metal batteries are clear, there are several failure 

mechanisms that occur during cycling of the batteries. The most critical of these mechanisms 

and the most researched is the control of the electrode/electrolyte interface, primarily dendrite 

growth at the lithium surface during charging, which has been shown to cause shorting.4-6 The 

regime of stability in which dendrite propagation is repressed, found through modeling 

dendrite growth, is shown to occur when the shear modulus of the separator is greater than 

that of lithium metal (for more detail on this subject, please refer to Chapter 3).5  There are 

currently two main methodologies that are being researched to inhibit dendrite growth. The 

first, is to create a polymer separator with acceptable ionic conductivity that has a shear 

modulus greater than that of lithium (Chapter 3),1, 7-9 and the second is to protect the anode 

with a ceramic that is conductive to lithium ions (Chapter 4).10, 11 However, even if dendrites 

can be prevented, it is likely that gradual redistribution will occur due to a rearrangement of the 

lithium over large length scales, on the order of centimeters. For example, an increase in the 
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thickness of the lithium metal near the negative tab is predicted in the model described in this 

chapter.  

 This chapter, and the rest of this thesis for that matter, operates under the assumption 

that dendrite formation can be prevented through the use of a polymer separator or ceramic 

protective layer and looks instead into the possibility that anodic lithium redistribution could 

occur. Due to the difficulty in cycling lithium-metal batteries and the extensive focus on solving 

the dendrite problem, very little has been published on large-scale redistribution in batteries. 

Redistribution due to the mechanisms described in this paper has not been studied before. 

However, redistribution due to significantly different mechanisms has been observed in other 

chemistries, such as zinc secondary electrodes.12, 13 

 In this chapter, we develop the equations necessary for modeling a lithium-metal 

battery in two dimensions and determining the movement of lithium along the negative 

electrode/separator interface (Section 1.2). Then, in Section 1.3, we discuss the movement of 

lithium seen during the first cycle and the main drivers for this phenomenon. In Subsection 

1.3a, we discuss how the geometry of the cell plays an important role in determining the 

distribution of charge throughout the cell. Then, in Subsection 1.3b, we learn how the open-

circuit-potential function, specifically the slope of this function, is the largest non linearity 

contributing to the movement of lithium seen along the negative electrode/separator interface. 

Finally, in Subsection 1.3c, the role that the concentration gradients in the electrolyte have on 

the movement of lithium is discussed. 

  The equations and the model developed in this chapter form the basis for which the 

modeling in the subsequent chapters is built. In this chapter, only one cycle of the cell is looked 

at. In Chapter 2, we look at the lithium movement over multiple cycles and determine the 

driving forces leading to the further movement of lithium seen after the first cycle. We also 

treat how driving forces, such as the slope of the open-circuit-potential function, the depth of 

discharge to which the cell is cycled, the rate at which the cell is cycled, and the length of the 

rest periods after the discharge and charge phases work together to cause the movement of 

lithium to reach a steady state. 

 Chapter 3 further builds upon the model developed in this chapter by including a rigid, 

dendrite-inhibiting polymer separator into the model, thereby resisting the movement seen in 

this chapter and in Chapter 2 and causing stresses to build up in the negative electrode. In 

Chapter 3, we develop an understanding of continuum mechanics including both elastic and 

plastic deformation and build a model whereby both of these effects are included in the 

lithium-metal negative electrode. As shall be seen, the build-up of stresses in the negative 

electrode, as caused by the resistance of the separator to the movement of the underlying 

lithium, causes mechanical deformation of the lithium, leading to a more uniform negative 

electrode. 
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 Finally, in Chapter 4, we look into the use of ceramics used to stabilize a lithium-metal 

negative electrode. In this chapter, we calculate the stresses in the ceramic from bending due 

to either surface roughness of the lithium, the growth of a dendrite, or bending of the cell for 

packaging purposes. Throughout Chapter 4, we look at the stress profiles for three different 

ceramics, each with a different elastic modulus. We then determine the reduction in stress due 

to changing the geometry of the ceramic in two different ways: ceramics laminated with elastic 

polymers, and a repeating geometry of a ceramic segment followed by a polymer segment. 

 

1.2 Methods 

 

 In order to capture the behavior of interest, electrode tabbing is included (Figure 1.1) 

where, during discharge, the current is drawn from the top of the positive tab and inserted into 

the bottom of the negative tab. A moving boundary is also included along with an intercalation 

electrode as the cathode. Here, the y dimension of the model is through the thickness of the 

cell sandwich, which can be seen to be 200 μm thick, and the x dimension is taken to be along 

the length of the unwound cell sandwich and is 50 cm long. Tabs leading to the external leads 

of the cell are found at opposite corners of the cell.  The positive current collector is aluminum, 

and the positive and negative tabs are copper.  The positive electrode is modeled as a typical 

CoO2 porous intercalation electrode found in the literature.14-19 Here (Figure 1.1), the positive 

electrode active material particles have been drawn out of proportion to aid in the visualization 

of the model geometry. The separator is modeled as a liquid electrolyte, and the negative 

electrode as lithium metal. The negative electrode in this model is twice the thickness 

necessary in order to make unnecessary a separate negative current collector. All graphs 

presented later, unless specifically noted, are along the interface between the separator and 

the negative electrode (the line with points h1 and h2 lying on it in Figure 1.1) with the origin 

occurring at the left side of the cell, at the negative tab. This constitutes a through-plane cross-

section of, what could be considered, a typical 18650 cell construction.  
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Figure 1.1. Two-dimensional model geometry of a lithium-metal battery, consisting of a 

lithium-metal negative current collector, a lithium-metal negative electrode, a liquid-

electrolyte separator, composite cathode, and aluminum positive current collector.  

 

 In this work, modeling was done using COMSOL Multiphysics, which uses a finite-

element approach. The model geometry, shown in Figure 1.1, attempts to recreate a standard 

battery configuration. The negative electrode is modeled as a lithium-metal layer with a 

varying, finite thickness, and the positive electrode consists of porous LiCoO2. Film formation at 

the lithium/separator interface and volume changes of the positive electrode and of the overall 

cell were not considered. The separator is a liquid electrolyte which is assumed to fill any gaps 

when the lithium shrinks during discharge and moves into excess head space as the thickness of 

the lithium anode thickens during charge. In other words, the separator is able to expand and 

contract freely with the movement of the negative electrode, thereby keeping the total volume 

of the cell sandwich constant. The liquid electrolyte allows for the free movement of the lithium 

negative electrode and results in the worst-case scenario of lithium migration during cycling. If, 

for example, a polymer separator that has mechanical properties such that dendrite 

propagation is mitigated (as seen in the work by Monroe and Newman5) were used in place of 

the liquid electrolyte (as will be done in Chapter 3), the results of the shape change will be 

altered significantly. In fact, as can be seen in Chapter 3, the dendrite-inhibiting polymer 

separator significantly represses the movement of the lithium by providing a force opposite to 

the migration.  

 The cell was modeled as a two-dimensional coupled to a pseudo three-dimensional 

model. The two-dimensional model has the x and y dimensions, labeled in Figure 1.1, 

constituting the length along the unwound cell and the thickness through the cell sandwich, 
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respectively. The pseudo three-dimensional model (not shown), takes the x and y dimensions 

from the positive electrode of the two-dimensional model. The pseudo third dimension is the r-

dimension and constitutes the radial position in the active-material particles in the positive 

electrode. Transport in the separator is modeled with concentrated solution theory with the 

assumption that it is a binary electrolyte. Thus, the transference number of the lithium ion, the 

electrical conductivity, and the diffusion coefficient of the lithium salt characterize transport in 

the separator and are held as constants. 

 All equations were based on the papers by Doyle et al. and Fuller et al.14-18 and Newman 

and Thomas-Alyea.19 Modification includes expanding the equations for use in a two-

dimensional model and adding in a moving boundary at the interface between the negative 

electrode and the separator that moves stoichiometrically with the amount of current passed. 

The moving boundary is incorporated using a deformed mesh, and the movement is calculated 

by using Faraday's law and the density of lithium to convert the local current density into the 

velocity of the moving boundary. 

 

1.2a Governing Equations 

 

 Beginning with the liquid-electrolyte separator, a material balance on the salt is given 

by,  

 

 

 

   
  

            1.1 

Here we assume that the solvent concentration is not a function of the electrolyte 

concentration15 and that the transference number is constant.17 The potential in the liquid 

phase is governed by an extended Ohm's law,14 

 

 

 

          
     

 
         

     
     

         1.2 

where we assume that the conductivity and transference number are constant. Currently the 

activity coefficient    is assumed to be constant, but, if data are available, the variation can be 

included here. 

 It should be noted here that the convection terms, although perhaps relevant due to the 

moving boundary and liquid electrolyte, have been left out of the previous equations. This is 

due to the small effect that the concentration gradients have on the movement of the lithium 

and for the sake of simplicity. For a more detailed explanation please refer to Subsection 1.3c. 

 At the interface between the separator and the lithium anode, a charge-transfer 

reaction occurs following Butler-Volmer kinetics.15 Since the separator is assumed to be a liquid 

electrolyte, the reaction takes the form 



6 
 

 

 
          1.3 

and the general form of the kinetic expression is taken to be 

 

 

 

            
   

  
        

    

  
      1.4 

where    is the local value of the surface overpotential: 

 

 
             1.5 

Here U1 is the theoretical open-circuit potential, and    is the exchange current density, which is 

taken from Albertus et al.,20 where it is assumed to be 

 

 
      

     1.6 

Here   is the reaction rate constant and c2 is the local concentration of salt in the separator. 

The boundary conditions for these equations include the flux of lithium ions at the 

lithium/separator interface equaling the net transfer of current at that interface. The flux and 

concentration of each species as well as the potential in solution are taken to be continuous 

between the separator and the positive electrode. 

 The positive electrode consists of an inert conducting material, the liquid electrolyte 

phase, and the solid active-material insertion particles. These phases are treated as 

superimposed continua, and the material balance in the liquid phase is 

 

 

 

  
   
  

              
          

 
  1.7 

where ε2 is the volume fraction of the electrolyte in the positive electrode and a is the specific 

surface area or surface area of the active material per volume of the cathode. The pore-wall 

flux (jn) is related to local current density and to the divergence of the current in the electrolyte 

phase through 

 

 

 

    
     
 

 
    
 

  1.8 

 The current flowing in the electrolyte is governed by Equation 1.2 with the addition that 

there is a pore wall flux in this domain as described by Equation 1.8. Here the conductivity and 

diffusivity are effective values through the Bruggeman Equation21 

 

 
                            1.9 

 Although the diffusivity, conductivity, and transference number are known functions of 

concentration, they are currently held as constants. The boundary condition in the solution 
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phase of the positive electrode is such that the fluxes of the species are zero at the positive 

current collector/positive electrode boundary. 

 Due to the large surface area of the positive electrode, the kinetics fall in the linear 

regime; therefore the kinetic expression in the positive electrode is simplified to linear kinetics 

where 

 

 

 

        
  

  
  1.10 

Equation 1.5 defines the surface overpotential, ηs, where the open-circuit potential U1 is a 

function of the surface concentration of lithium in the solid c1, which is calculated in Equation 

1.13. The reaction in the positive electrode is 

 

 
LiCoO2 ↔ Li1-xCoO2 + xLi+ + xe-, 1.11 

where x varies between 0 and 0.5. The exchange current density is given by 

 

 
        

      
            

      
      

    1.12 

where            is the concentration of unoccupied sites in the insertion material. 

 The active material in the cathode is assumed to be made up of spherical particles of a 

constant radius Rp with diffusion being in the r-direction only, and the transport of lithium in 

the solid phase is governed by 

 

 

 

   
  

 
 

  

 

  
    

 
   
  

   1.13 

where c1 represents the concentration of lithium in the solid particle. A separate three-

dimensional model is used to solve Equation 1.13, where the x and y dimensions are those 

taken from the positive electrode in the two-dimensional model and the third dimension is the 

r-dimension which is out of the solid active-material particles. The boundary condition at the 

surface of the particles (r=Rp) is 

 

 

 

      

   
  

  1.14 

where the pore-wall flux is calculated in the cathode of the two-dimensional model. Equation 

1.13 is then solved numerically in the three-dimensional active-material model, and the 

solution at the boundary r=Rp is used in the two-dimensional model to solve for the exchange 

current density seen in Equation 1.12. Due to spherical symmetry, the second boundary 

condition for the three-dimensional model is 

 

 

   
  

           1.15 



8 
 

 

 The potential in the solid phase, which includes the current collectors as well as the 

negative and positive electrodes, is governed by Ohm's law 

 

 
           , 1.16 

and the current in the two phases is conserved through the equation: 

 

 
             1.17 

Thus the current flows through either the liquid electrolyte or the solid phase. The boundary 

conditions are such that the potential in the solid phase,   , is arbitrarily set to zero along the 

bottom of  the negative tab, and a uniform current in the solid phase,    is set along the top of 

the positive tab. 

 To restate, diffusion in the electrolyte is governed by Equation 1.1 for the separator and 

Equation 1.7 for the positive electrode. The potential in the liquid phase of the separator and 

the positive electrode is governed by Equation 1.2. The potential in the solid phase is governed 

by Ohm's law.  The reaction kinetics in the positive electrode is linear and are Butler-Volmer 

(Equation 1.4) at the negative electrode/separator interface (Equation 1.10). Finally, Equation 

1.13 governs the solid-phase diffusion of the lithium in the positive electrode. 

 The problem is now completely specified and is solved numerically at every time step 

and position. 

 

1.3 Results and Discussion 

 

 Transport properties used in the model are listed below in Table 1.1. The total volume 

as well as the porosities of the cell are assumed to be constant throughout the cycling of the 

battery. This means that, during discharge, the separator is assumed to fill in the void left by 

the lithium removed, and, on charging, the separator shrinks, allowing for the growth of the 

lithium plate. Thus, as the negative electrode shrinks on discharge, the separator expands 

keeping the total volume of the cell constant. In other words, the distance between the current 

collectors remains constant. 
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Table 1.1. Transport properties used in this model. (a) signifies data is not available for 

these parameters. (b) signifies the value that is given as an initial condition. 

 

System Specific 

 

Adjustable 

 Parameter 

 

Value 

 

Ref. 

 

Parameter 

 

Value 

 D1 

 

5x10-13m2/s 

 

25 

 

T 

 

298 K 

 D2 

 

7.5x10-11m2/s 

 

26 

 

Rp 

 

4 μm 

          

 

3.7 S/m 

 

18 

 

c10 

 

26,000 mol/m3 (b) 

      

 

1.3 S/m 

 

26 

 

c20 

 

2000 mol/m3 (b) 

     

 

1.0776x107 S/m 

 

- 

 

ε2 

 

0.3 

      

 

3.546x107 S/m 

 

- 

     α1, α2  

 

0.5 

 

(a) 

     t+ 

 

0.363 

 

17 

     K 

 

6.1x10-6 mol0.5/m0.5-s 

 

20 

      

 The lithium-metal battery was cycled galvanostatically at four different rates beginning 

with a discharge, followed by a rest period of 1000 seconds, and completed by a charge at the 

same rate and duration as the discharge. A rest period of 1000 seconds was chosen because it 

was a convenient number larger than the time constant in the x direction for diffusion of the 

electrolyte through the cathode and separator. To be sure that the rest period is not affecting 

the simulation results, the model was also cycled with a rest period of 20,000 seconds after 

discharge with similar results (less than a 5% difference). All rate calculations are based on the 

positive electrode. The four charge rates are a 0.1-C rate, corresponding to a 10 hour discharge 

rate, a 0.2-C rate, corresponding to a 5 hour discharge rate, a 0.5-C rate, corresponding to a 2 

hour discharge rate, and a 1-C rate. All cycles were run to a time corresponding with a 50 

percent depth of discharge based on the positive electrode, meaning that the cell cycles 

between Li0.5CoO2 and Li0.75CoO2. The average lithium removed during discharge was 9.98 μm, 

which is approximately 1/5 the total amount of lithium available. The current needed for a 

given C rate was calculated from the theoretical current needed to achieve a 1 hour discharge 

rate at the positive electrode. The time of the discharge was calculated based on the theoretical 

time required to fill 50 percent of the available capacity in the positive electrode. The maximum 

concentration of lithium in the positive electrode (c1max) was assumed to be one lithium atom 

per CoO2 molecule with a starting concentration of 26,000 mol/m3 or roughly 50 percent of the 

maximum concentration.  
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Figure 1.2. Dimensionless current density along the negative electrode/separator 

interface at the beginning of discharge at a C/5 rate. 

 

 Figure 1.2 shows the initial dimensionless current density for the 0.2-C rate along the 

negative electrode/separator interface. The dimensionless current density was calculated by 

dividing the local current density by the average current density. Here the asymmetric current 

distribution can be clearly seen with the minimum current occurring at about 0.74 in the x 

direction and achieving about 97 percent of the average current. The tendency for the current 

to pass through the left side of the battery is due to the fact that the resistance of the negative 

electrode is roughly four times higher than that of the positive current collector. Thus, the 

current would rather travel along the positive current collector, which is less resistive, leading 

to a left-biased current density. 

 

1.3a Cell Geometry 

 

 In this model, the geometry of the cell strongly affects the current density and 

nonuniformity of the lithium negative electrode during cycling of the cell. The magnitude of the 

asymmetry of the current density seen in Figure 1.2 is a direct result of the large length-to-

thickness ratio. For the purpose of this discussion, the physical dimensions of the cell and the 

conductivities were kept constant, and the effective length-to-thickness ratio was changed 

through the addition of tabs to the standard geometry of Figure 1.1. Each tab along the positive 

electrode passed the same current such that the total current remained the same throughout 

the addition of tabs. It should be noted that the same effect could be achieved by either 
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changing the physical dimensions of the cell geometry or by changing the conductivities of the 

positive current collector or negative electrode. For example, by changing the conductivity of 

the negative electrode (by adding a current collector) to have the same conductivity as that of 

the positive current collector, one can achieve similar results to that of the system with two 

tabs along both the top of the positive electrode and the bottom of the negative electrode. 

Similarly, by making the positive current collector more resistive than the negative, one can 

achieve the mirror image of the 1-tab line in Figure 1.3, meaning that cycling would remove the 

lithium more towards the right side of the cell where x/L=1. 

 For this section, the model was discharged once at a C/5 rate for 2.5 hours for each of 

the tab geometries described, and the results of the change in the height of the lithium relative 

to its starting location are plotted in Figure 1.3.  

 

 
Figure 1.3. Height of the lithium negative electrode relative to its starting location with 

varying tab geometries after a discharge at a C/5 rate for 2.5 hours. 

 

 Here, three different tab geometries were used. The first was the standard 

configuration seen in Figure 1.1, where the positive and negative tabs are placed at opposite 

corners of the cell. The results of this arrangement can be seen in both Figures 1.3 and 1.4, 

where there is an asymmetric bias of the change in the height of the negative electrode 

interface toward the negative-electrode tab. One more tab was then added to both of the 

remaining corners of the cell, making the tab configuration symmetric and leaving the cell with 

two tabs on each electrode, one at each corner. A uniform current was applied at each of the 

two positive tabs such that each passed half of the total current. The result of this symmetric 
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tab placement was as expected, forcing the current distribution and consumption of lithium 

change to be symmetric as well. Next, one tab was placed half way between the two tabs along 

both the top and the bottom of the cell leaving the cell with three tabs evenly spaced at each 

electrode. Again, a uniform current was applied at each of the three positive tabs such that 

each passed one third of the total current. As expected, increasing the number of tabs forces 

the current density to become more uniform. This means that the degree of shape change 

diminishes with the end result being that if one had a continuous tab along both the positive 

and negative electrodes, the reaction rate would be completely uniform, and there would be no 

movement of lithium along the x axis at all.   

 Again, the same result can be achieved for the three-tab system by taking the two-tab 

geometry and halving the length of the cell. Similarly, as you diminish the length of the cell 

down to zero, you achieve a one-dimensional model that assumes a uniform reaction rate 

which would remove the movement of lithium in the x dimension.  

 As is shown in Figure 1.3, the geometry of the cell model has a large effect on the 

movement of lithium over the half cycle. However, without any nonlinearities, the lithium, 

although migrating during the half cycle, will return to its original starting position. To explain 

this further, on discharge, the current distribution is biased toward the left side of the cell, such 

as in Figure 1.2. This means that more lithium is consumed on the left side of the cell and less 

on the right leading to a nonuniform lithium distribution as seen in the 1-tab line in Figure 1.3. 

If the geometry were the only factor contributing to the current distribution, the we would 

expect that, during the charge phase, the current density would be equal and opposite to the 

discharge phase resulting in a bias toward the right side of the cell. This would result in the 

lithium being deposited at a faster rate on the right side of the cell, during charge, meaning that 

after a full cycle of a discharge followed by a charge, the lithium would have exactly returned to 

its starting position.  
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Figure 1.4. Height of the lithium negative electrode along the lithium/separator 

interface relative to its starting position after a discharge and charge cycle at various C-

rates to a 50% depth of discharge. 

 

 If we look at Figure 1.4, however, we can see that this is not the case. Figure 1.4 shows 

significant movement of the lithium metal after a full cycle consisting of a discharge phase, a 

rest period of 1000 seconds, then a charge phase. The cell was cycled at various rates to a 50% 

depth of discharge calculated based on the positive electrode. After the full cycle of a 

discharge, rest, and charge phase, the net overall state of charge is the same as before the cycle 

began. The profiles seen in Figure 1.4 were taken immediately following the completion of the 

charging. All cycles were conducted galvanostatically.  

 From Figure 1.4, it is apparent that nonlinearities in the equations discussed in Section 

1.2 are contributing to a build-up of lithium on the left side of the negative electrode, toward 

the negative tab. As is discussed in the next sections of this chapter, the two main 

nonlinearities contributing to this shape change are the open-circuit potential function in the 

positive electrode (Section 1.3b) and the concentration gradients of the salt in the liquid phase 

(Section 1.3c). 

 It should be noted here that the thinning of the negative electrode, on discharge, could 

be considered another nonlinearity. For example, as the cell is discharged, more lithium is 

removed on the left side of the cell than the right making the lithium thinner on the left side of 

the cell. Since the negative tab is also on the left side of the cell, in an extreme case, one could 

imagine pinching to occur where the lithium at that point becomes thin enough to change the 
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resistivity of the negative electrode considerably. In this model however, a maximum of 10 μm 

of lithium is removed out of a total thickness of 50 μm. Furthermore, it is not the change in the 

average thickness of the lithium, but rather the difference between the local thicknesses of the 

lithium that contributes to the nonlinearities of the system. As seen in Figure 1.3 the height of 

the lithium, after discharge, ranges from about -10.08 μm to -9.95 μm making the maximum 

change in thickness of the lithium about 0.13 μm. Therefore, while the changing conductivity of 

the negative electrode due to changes in the local thickness of the lithium is accounted for in 

the model through the incorporation of a moving boundary, this nonlinearity is small enough to 

be considered negligible. This phenomenon, however, is negligible due to the large excess of 

lithium at the negative electrode and this assumption the effects of a high utilization of the 

negative electrode is detailed in Subsection 2.2b in Chapter 2. 

 

1.3b Open-Circuit-Potential Function 

 

 In this model there are two main nonlinearities that contribute to the accumulation of 

lithium on the left side of the negative electrode seen in Figure 1.4, the largest being the open-

circuit-potential function or OCP. In order to describe how the OCP function affects the shape 

change, four different OCP functions (seen in Figure 1.5a) are modeled. These include the 

standard, experimentally measured OCP function for CoO2 (Experimental OCP),22 a sloped linear 

OCP function (Sloped OCP), a sloped linear OCP with a hyperbolic tangent function (Drop OCP), 

and a flat OCP function. Instead of plotting the final change in the height of the lithium after a 

full cycle (as seen in Figure 1.4), two points (h1 and h2) were used. These measure the height of 

the lithium relative to its starting position along the negative electrode/separator interface 

(seen in Figure 1.1). The difference between these points (h1-h2) is plotted in Figure 1.5b versus 

time for a full cycle at a C/5 rate with a 1000-second rest between the discharge and charge 

phases and a 2000-second rest after the full cycle. The points were chosen at 1 cm and 37.5 cm 

on the x-axis in order to achieve the maximum height difference between the two points while 

still minimizing errors that can occur at the edges of the model. 
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Figure 1.5. a) Open-circuit potential functions versus state of charge (y) and b) the 

corresponding difference in height between two points, h1 and h2 (seen in both Figure 

1.1 and 1.3), versus time. The movement for the Flat OCP line is seen in Figures 1.7 and 

1.8.  

 

 When plotting the difference in heights (h1-h2) versus time (Figure 1.5b), several 

interesting results can be seen. The plot of the experimental OCP for CoO2 (Experimental OCP in 

Figure 1.5b) shows local minima and maxima during both the charge and discharge phases. This 

means that, starting from time zero, h1 starts to dip below h2 making the shape nonuniform and 

concave, similar to the 1-tab line in Figure 1.3. However, as we continue forward in time, we 

reach a local minimum, and the line starts to return toward zero, meaning that the shape of the 
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interface between the separator and negative electrode is starting to flatten out. The plot then 

goes through several local maxima and minima before reaching the global minimum right at the 

cutoff for the discharge portion of the cycle.  

 These local minima and maxima are due to changes in the slope of the OCP. To explain 

this further, during discharge for example, the lithium is consumed faster on the left side of the 

cell than the right. The opposite must be true for the positive electrode, where more lithium is 

being inserted into the active material on the left side of the positive electrode than on the 

right. This means that the local SOC in the positive electrode is higher on the left than on the 

right leading to a potential gradient within the positive electrode. As discharge continues, the 

average SOC in the positive electrode increases and the electrode passes through a section 

where the OCP is steeper. This steeper OCP section equates to a larger potential gradient for 

the same concentration gradient, which leads to the concentration gradient of the lithium in 

the active material in the positive electrode flattening because of the greater driving force. One 

of the ways that this is achieved is by increasing the reaction rate across the area of the positive 

electrode where the SOC is lower and decreasing the reaction rate where the SOC is higher. 

This has the effect of flattening the concentration gradients of the lithium in the solid phase of 

the positive electrode and flattening the lithium interface at the negative electrode. This 

phenomenon can especially be seen when comparing Sloped OCP and Drop OCP lines in Figure 

1.5b (please note that the Drop OCP line has the same slope as the Sloped OCP line with the 

addition of a hyperbolic tangent).  

 When studying the Sloped OCP line in both Figure 1.5a and b, we can see that, when the 

slope of the OCP remains constant, the local minima and maxima are removed. However, a 

comparison of Sloped OCP and Drop OCP lines in Figure 1.5b shows that, as the SOC goes 

through the dip due to the hyperbolic tangent, the Drop OCP line departs from the Sloped OCP 

line. As the SOC passes completely through the hyperbolic tangent portion of the OCP, the Drop 

OCP line starts to return to its original path (Sloped OCP), as though the drop had never 

occurred. This theory has also been developed in the literature.16, 18, 23 

 The second effect that the OCP has on shape change in this model is that as we increase 

the slope of the OCP function, the shape change decreases. Again, this is caused by differences 

in the SOC or the concentration of lithium in the solid phase, which is governed by the OCP. For 

a given difference in potential between two points, there is a larger concentration gradient of 

lithium in the solid phase with a flatter OCP than with a steeper OCP function. That is, there is a 

greater driving force to decrease the concentration gradients in the solid phase with a steeper 

OCP than a flatter one. This can be seen when comparing the Experimental OCP line with the 

Sloped OCP line in Figure 1.5b.  

 The third interesting phenomenon in Figures 1.5a and b is that, during rest, the 

difference between h1 and h2 starts to return to zero, meaning that the shape of the lithium is 

flattening out when no external current is being passed. This flattening out of the negative 
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electrode during rest is, again, an effect of the OCP, which enhances the equilibration of lithium 

concentrations in the solid phase of the positive electrode. For example: after a discharge at a 

C/5 rate, more lithium at the negative electrode has been removed near the negative tab than 

near the edge closest to the positive tab (seen in the 1-tab line in Figure 1.3). This means that 

the concentration of lithium in the solid phase of the positive electrode is higher on the left side 

of the cell and lower on the right (seen in Figure 1.6 below). Because of the sloped OCP, there is 

a potential gradient due to the concentration gradient that drives the lithium in the positive 

electrode to equilibrate. Because of the length scales of the positive electrode (100 μm thick vs. 

50 cm long), it is much easier for the lithium to cross through the separator and interact with 

the negative electrode than to diffuse through the positive electrode in the x direction. This can 

be seen qualitatively in Figure 1.6 where the lithium in the "Region of Higher Concentration" 

reacts into the electrolyte and passes through the separator depositing on the left side of the 

negative electrode. Concurrently, the exact same amount of lithium reacts into the electrolyte 

on the right side of the negative electrode and passes through the separator, intercalating into 

the right side of the positive electrode. This equilibrates the positive electrode while flattening 

the negative electrode.  

 

 
Figure 1.6. Cartoon of the shape of the lithium negative electrode and corresponding 

concentration of lithium in the active material of the positive electrode right after 

discharge. The arrows represent the direction of the flux of lithium due to the 

equilibration of the concentration gradients in the positive electrode during the rest 

phase directly following the discharge phase. 
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 More quantitatively, this phenomenon can be seen in Figure 1.7 where the local current 

density along the surface of the negative electrode is measured at various times during an 

extended rest phase after a discharge half cycle at a C/5 rate to a 50% DOD. The zero-second 

line in Figure 1.7 corresponds to the current density immediately after discharge. As is 

expected, no net current is being passed during this rest phase, shown by the fact that the 

integral of the local current density is zero. However, there is still a local, nonzero current 

density during the rest period. To explain this phenomenon more completely, the lithium in the 

higher-concentration region of the positive electrode (the left side of the cell) crosses through 

the separator and deposits on the left side of the negative electrode causing the negative 

current density in that region. At the same time, the lithium on the right side of the negative 

electrode reacts into the solvent, diffuses through the separator and intercalates into the right 

lower-concentration region of the positive electrode causing the positive current density in that 

region. This creates a current-neutral process that both equilibrates the positive electrode and 

flattens the negative electrode. Of course, as can be seen in the Flat OCP line in Figure 1.8, if 

the OCP is flat, then there is no potential driving force to equilibrate the positive electrode, and 

the negative electrode will not flatten.  

 

 
Figure 1.7. Local current density at the surface of the negative electrode following a 

discharge at a rate of C/5 for 2.5 hours. Zero seconds, corresponds to the start of the 

rest phase after discharge.  
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1.3c Diffusivity 

 

 The Flat OCP line in Figure 1.8 shows several additional interesting features. Along with 

the absence of any flattening of the negative electrode during the rest phases, the movement 

of the lithium during the half cycles is much more extreme. This follows from the trend that, as 

the slope of the OCP flattens, the extent of the shape change increases. With a flat OCP, the 

driving force for equilibrating the concentration gradients in the solid phase of the positive 

electrode is completely absent. This means that the positive electrode will act as if it were a 

very thin electrode with all of the lithium intercalating into and out of the very edge of the 

positive electrode nearest the separator and biased towards the negative tab. This leads to the 

state of charge at the edge of the positive electrode nearest the negative tab increasing up to 

around 2.5, which is clearly not physical. This result is simply because the limitation in the 

model for the extent of the SOC at any point in the positive electrode is based on the OCP and, 

with the OCP being held constant, that limitation is no longer present, leading to very large 

swings in the SOC. 

 

 
Figure 1.8. The difference in height between points h1 and h2 (seen in both Figure 1.1 

and 1.3) versus time for two different OCP functions, Flat OCP and Experimental OCP, 

seen in Figure 1.5a.  

 

 The third phenomenon that can be seen in the Flat OCP line in Figure 1.8 is that even 

though the OCP is held constant, the shape of the lithium after a full cycle still doesn't return to 

zero, meaning that there still is a net shift of the lithium after cycling. This is due to the 
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concentration gradients in the liquid phase, and the effects of the concentration gradients can 

be seen clearly in Figure 1.9 below. Figure 1.9 again shows the movement of the lithium (h1-h2) 

at the negative electrode over time for two different OCP functions: the experimental OCP 

function for CoO2 (Experimental OCP line in Figure 1.5a) and the flat OCP (Flat OCP line in Figure 

1.5a). The solid lines represent the simulation being run under 'normal' conditions and are the 

same as those seen in Figure 1.5b for the Experimental OCP line and Figure 1.8 for the Flat OCP 

line. The dashed lines are for simulations run under the same conditions but with the diffusivity 

of the salt in the liquid electrolyte raised by 3 orders of magnitude. This makes the 

concentration gradients very flat and, as can be seen in the Flat OCP High Diffusivity line in 

Figure 1.9, without the nonlinearity of the concentration gradients or the OCP, the shape of the 

lithium returns back to zero after a full cycle. It should be mentioned again, however, that the 

significant movement seen during the half cycles is due to the geometry. It is also interesting to 

note that while the concentration gradients play a role when the OCP is flat (seen in the Flat 

OCP and Flat OCP High Diffusivity lines in Figure 1.9), when one compares the solid and dashed 

lines for the Experimental OCP case, no significant difference is seen in the movement.  This 

shows us that the effect of concentration gradients on the shape change is much smaller than 

the effect that the OCP has.  

 

 
Figure 1.9. Comparison of the shape change (h1 and h2) over time when the diffusivity in 

the liquid phase is normal (solid lines) and is increased by three orders of magnitude 

(dashed lines) for two OCP functions, Flat OCP and Experimental OCP, seen in Figure 

1.5a.  
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 Along a similar line, the movement of the lithium with a liquid electrolyte will induce 

convection in the electrolyte. This convection can be considered, perhaps crudely, to be an 

enhancement of the diffusivity, which has been found to have a very limited effect on the 

movement of the lithium during cycling. Therefore, the convective term in the flux equation has 

been neglected for the sake of simplicity. The exclusion of the convection term in a liquid 

electrolyte system was also found to have a negligible effect on the concentration profiles in 

the work by Pollard et al.24 Again, as can be seen when comparing the high-diffusivity 

Experimental OCP (dashed) and normal-diffusivity Experimental OCP (solid) lines in Figure 1.9, 

there is a small difference (a maximum of about 6%) in the movement of the lithium due to the 

increased diffusivity. This can be considered to be the maximum error incurred by the absence 

of convection terms and was deemed to be an acceptable level of error. 

 

1.4 Conclusions 

 

 In this chapter, a two-dimensional model has been presented that is able to capture the 

movement of lithium during cycling. This model incorporates electrode tabbing, a moving 

boundary at the negative electrode, a CoO2 intercalation electrode as the cathode, and a 

lithium-metal negative electrode. The positive electrode is modeled using porous electrode 

theory, the separator as a liquid electrolyte with a binary salt, and the total volume changes are 

assumed to be zero. Finally, the negative electrode in this model is twice the thickness required 

by stoichiometry in order to avoid the need for a separate negative current collector. 

 The model has been cycled at various rates, and it is seen that, even without dendrites, 

significant large-scale movement of lithium occurs both during each half cycle and after a full 

cycle of a discharge followed by a charge. More specifically, the lithium is depleted more near 

the negative tab, yet after a full cycle, there is a net migration of the lithium towards the 

negative tab. This migration was found to be caused by three separate phenomena. First, as 

was described in Section 1.3a, the geometry strongly affects the current density distribution 

which directly correlates to the asymmetric depletion of lithium during the discharge phase. 

The second driving force, discussed in Section 1.3b, is the open-circuit-potential function, the 

slope of which not only affects the magnitude of the movement, but also is the largest 

nonlinearity that contributes to the movement of lithium after a full cycle. The third and 

smallest contributor to the movement of the lithium is the concentration gradients in the liquid 

electrolyte which was detailed in Section 1.3c. We have seen that when the OCP is flat and the 

concentration gradients are reduced through increasing the diffusivity, the lithium will return to 

its starting position after a full cycle. 

 Throughout this chapter, only one cycle was modeled. This situation is very unlikely to 

come about in a real application, where repeated cycling is a given. Thus, Chapter 2 will take 

the same model, as described in this chapter, and look at the movement of lithium after several 
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cycles. Through this analysis, we shall see that there are several factors contributing to the 

continued movement of lithium after multiple cycles: the open-circuit-potential function, the 

depth of discharge, the rate of discharge and charge, and the length of the rest periods. In 

Chapter 2, we shall also see how these driving forces work together to cause the movement of 

lithium to reach a steady state. 

 The major assumption in this chapter was that the separator, while inhibiting dendrites, 

also allowed the lithium to move unhindered. However, in order to inhibit dendrites either a 

stiff polymer separator or a ceramic protective layer is needed. In Chapter 3 we see how the 

incorporation of a stiff polymer separator affects the movement of the lithium seen both in this 

chapter and in Chapter 2. Then, in Chapter 4, we look into the use of a ceramic to inhibit 

dendrites and calculate the stresses in a ceramic protective layer due to bending.  
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List of Symbols 

 

a  Specific interfacial area        [m2/m3] 

c1max Maximum concentration in solid       [mol/m3] 

ci Concentration of salt         [mol/m3] 

Di Diffusion coefficient of salt        [m2/s] 

F Faraday's constant, 96,485        [C/eq] 

f± Activity coefficient         [-] 

i0 Exchange current density        [A/m2] 

ii Current density         [A/m2] 

iloc Reaction rate          [A/m2] 

jn Pore wall flux of lithium ions        [mol/m3-s] 

K Exchange current density rate constant      [mol0.5/m0.5·s] 

ka Anodic reaction rate constant       [m3/s] 

kc Cathodic reaction rate constant       [m3/s] 

     Effective conductivity defined by Equation 1.16     [m3/s] 

   Conductivity          [S/m] 

R Universal gas constant, 8.314        [J/mol-K] 

Rp Radius of cathode material        [m] 

T Temperature          [K] 

t+ Transference number of Li+        [-] 

U1 Open-circuit potential         [V] 

α  Transfer coefficients         [-] 

  Porosity of electrode         [-] 

   Overpotential          [V] 

    Electric potential         [V] 

 

Subscripts 

 

0 initial value 

1 solid phase 

2 solution phase 

CCa current collector at the anode 

CCc current collector at the cathode 
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Chapter 2 

 

Modeling Lithium Movement  

over Multiple Cycles  

in a Lithium-Metal Battery 

 
2.1 Introduction 

 

In Chapter 1, a two-dimensional model was presented that is able to capture the 

movement of lithium during cycling. The model was cycled at various rates, and we saw that, 

even without dendrites, significant large-scale movement of lithium occurred both during each 

half cycle and after a full cycle of a discharge followed by a charge. More specifically, we saw 

that, on discharge, the lithium was depleted more near the negative tab, yet after a full cycle, 

there was a net migration of the lithium towards the negative tab. This migration was found to 

be caused by three separate phenomena detailed in Section 1.3. First, as was described in 

Subsection 1.3a, the cell geometry strongly affects the current density distribution, which 

directly correlates to the asymmetric depletion of lithium during the discharge phase. The 

second driving force, discussed in Subsection 1.3b, is the open-circuit-potential function, the 

slope of which not only affects the magnitude of the movement, but also is the largest 

nonlinearity that contributes to the movement of lithium after a full cycle. The third and 

smallest contributor to the movement of the lithium is the concentration gradients in the liquid 

electrolyte which was detailed in Subsection 1.3c. We saw that when the OCP is flat and the 

concentration gradients are reduced by increasing the diffusivity, the lithium will return to its 

starting position after a full cycle. 

Throughout Chapter 1, only one cycle of a discharge followed by a rest period and then 

a charge was modeled. This situation is very unlikely to come about in a real application, where 

repeated cycling is likely. Thus, this chapter will take the same model, as described in Section 

1.2, and look at the movement of lithium after several cycles.  

To give an overview of the model developed in Section 1.2: the model incorporates 

electrode tabbing, a moving boundary at the negative electrode, a CoO2 intercalation electrode 

as the cathode, and a lithium-metal negative electrode. The positive electrode is modeled using 

porous electrode theory, the separator as a liquid electrolyte with a binary salt, and the total 

volume changes are assumed to be zero. Finally, the negative electrode in this model is twice 

the thickness required by stoichiometry in order to avoid the need for a separate negative 



26 
 

current collector. All equations for the model are detailed in Subsection 1.2a and are based on 

the papers by Doyle et al. and Fuller et al.1-5 and Newman and Thomas-Alyea.6 As such, the 

reader is referred to Subsection 1.2a in Chapter 1 for a more complete description of the 

equations.  

In this work, modeling was done using COMSOL Multiphysics, which uses a finite-

element approach. The model geometry, shown in Figure 2.1, attempts to recreate a standard 

battery configuration. In order to capture the behavior of interest, electrode tabbing is included 

where, during discharge, the current is drawn from the top of the positive tab and inserted into 

the bottom of the negative tab. Here, the y dimension of the model is through the thickness of 

the cell sandwich, which can be seen to be 200 μm thick, and the x dimension is taken to be 

along the length of the unwound cell sandwich and is 50 cm long. The negative electrode is 

modeled as a lithium-metal layer with a varying, finite thickness, and the positive electrode 

consists of porous LiCoO2. Film formation at the lithium/separator interface and volume 

changes of the positive electrode and of the overall cell were not considered. The separator is a 

liquid electrolyte which is assumed to fill any gaps when the lithium shrinks during discharge 

and moves into excess head space as the thickness of the lithium anode thickens during charge. 

In other words, the separator is able to expand and contract freely with the movement of the 

negative electrode, thereby keeping the total volume of the cell sandwich constant. The liquid 

electrolyte allows for the free movement of the lithium negative electrode and results in the 

worst-case scenario of lithium migration during cycling. This constitutes a through-plane cross-

section of, what could be considered, a typical 18650 cell construction.  

 
Figure 2.1. Two-dimensional model geometry of a lithium-metal battery, consisting of a 

lithium-metal negative electrode, a liquid-electrolyte separator, composite cathode, and 

aluminum positive current collector. The negative electrode in this model is twice the 

thickness necessary in order to make unnecessary a separate negative current collector 
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2.2 Results and Discussion 

 

Since, in this chapter, we look at the movement of lithium over time for extended 

cycling, we shall adopt a new method for characterizing the movement of lithium in the x-

direction along the separator/negative electrode interface. As opposed to describing the 

movement of lithium with the difference in heights (h1-h2) of the lithium at the negative 

electrode (as described in Subsection 1.3b and seen in Figure 1.5b in Chapter 1), the 

characterization in this chapter takes a somewhat more physical significance. Here, the 

magnitude of the shape change is characterized by converting the integral of the height of the 

lithium relative to its average height to a number of coulombs of lithium. We see this a bit 

clearer in Figure 2.2 where the height of the lithium negative electrode along the 

lithium/separator interface is plotted relative to its average position during the discharge phase 

at a C/5 rate. 

 

 
Figure 2.2 Height of the lithium negative electrode along the lithium/separator interface 

relative to its average position as the cell is discharged at a C/5 rate. Curve 1 is the 

height of lithium after 200 seconds of discharge, Curve 2 after 400 seconds of discharge, 

and Curve 3 after 600 seconds of discharge. 

 

As we can see in Figure 2.2 as well as from Figure 1.5b in Chapter 1, as the cell is 

discharged, the lithium is removed more at the left side of the negative electrode than at the 

right side. This creates a nonuniform distribution in the height or thickness of the lithium. If we 

take the average height of the lithium as zero, then, as the lithium is removed, the 'zero line' 
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moves with it, causing the second derivative of the curve to increase while the integral of the 

curve remains at zero. This can be seen if we look at the progression of the discharge in Figure 

2.2. 'Curve 1' occurs after 200 seconds of the discharge phase. As the cell is discharged further, 

the height of the lithium relative to its average height reaches 'Curve 2' and then 'Curve 3.' We 

can see that the integral of each line remains at zero; however, as we discharge the cell from 

'Curve 1' to 'Curve 3,' the area on the left side of the curve (the hatched area) increases. If we 

define the average height of the lithium to be zero, each parabola crosses the x-axis at the 

same point. We can use this knowledge to our advantage by defining the negative portion of 

the curve as the left side               and the positive portion of the curve as the right 

side              . By taking the integral of the curve from                   , we 

can calculate the area which, through the use of the molar density of lithium and Faraday's 

constant, can be transformed into the number of coulombs of lithium that have passed from 

the right side of the negative electrode             to the left side            . This can 

also be thought of as the number of coulombs that have passed across the dashed vertical line 

at           shown in Figure 2.2.  

Since we arbitrarily chose to use the integral of the left side of the curve, as the cell 

discharges the hatched area becomes more negative as well as the number of coulombs of 

lithium that have passed to the left. This can be seen in Figure 2.3b, where the lines become 

negative as the cell is discharged in the left side of the plot. 

 

2.2a The Slope of the Open-Circuit-Potential Function 

 

As was determined in Chapter 1, the slope of the open-circuit-potential (OCP) function is 

the largest nonlinearity contributing to the movement of lithium along the negative 

electrode/separator interface. Thus, in order to determine the effect that the slope of the 

open-circuit-potential function has on the movement of the lithium after multiple cycles, we 

use a linear approximation to the open-circuit-potential function.  
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Figure 2.3. a) Open-circuit potential functions versus state of charge (y) and b) the 

corresponding movement of lithium (measured in coulombs of lithium passed from the 

right side of the negative electrode             to the left side              

during one cycle at a rate of C/5 to a 50% depth of discharge. A concave down plot, as 

seen in Figure 2.2, translates to a negative number in Figure 2.3b. 
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From Figure 2.3a, we see two different linear open-circuit-potential functions compared 

to the open-circuit-potential function measured experimentally for a LiyCoO2 positive electrode 

versus lithium. The slope of the 'Matched OCP' line was taken to match the average slope of the 

experimental OCP. This is seen when comparing the 'Matched OCP' and 'Experimental OCP' 

lines in Figure 2.3b, where the movement of lithium is somewhat similar. The ‘Sloped OCP’ line 

was chosen because it is significantly flatter than either the experimental or the 'Matched OCP' 

line, and thus, provides a good contrast for comparison with the ‘Matched OCP’ line.  

Through Figure 2.3b, we find that both the 'Matched OCP' and 'Sloped OCP' lines reach a 

quasi-steady state where they nearly flatten out. To explain this further: during discharge, for 

example, the lithium is removed faster from the left side of the cell than the right, causing a 

nonuniform lithium distribution. During the beginning of the discharge, the quickly becoming 

less uniform and the slope of the lines in Figure 2.3b are steep. As the discharge progresses, the 

slope of the lines in Figure 2.3b lessen, signifying that the removal of lithium is becoming more 

uniform. Finally, after enough time, both the 'Matched OCP' and the 'Sloped OCP' lines become 

nearly flat signifying that the lithium at the negative electrode is being removed uniformly from 

the negative electrode, causing the shape of the lithium at the negative-electrode/separator 

interface to remain the same as discharge continues. This quasi-steady state is caused by the 

potential difference in the positive electrode due to differing states of charge (SOC) and the 

changes in the ohmic drop in the separator canceling the tendency for a nonuniform current 

distribution from the effect of geometry. 

To put it another way, as was described in Chapter 1, the geometry of the cell (due to 

tabbing and differing resistances of the positive current collector and negative electrode) 

causes a nonuniform current distribution (seen in Figure 1.2). As the battery discharges, the 

nonuniform current density causes the SOC in the positive electrode to vary. This means that 

there is also a variation of the potential in the positive electrode that depends on the slope of 

the OCP. Furthermore, the nonuniform current density at the negative electrode will cause the 

lithium to become thinner on the left side of the cell than the right (seen in Figures 1.3 and 2.2) 

leading to an increase in the distance between the separator and the negative on the left side 

of the cell relative to the right. This variation in the thickness of the separator causes the ohmic 

drop in the separator to be larger on the left than the right. Both the variation in the potential 

in the positive electrode and, to a smaller extent, the variation of the ohmic drop in the liquid 

phase of the separator work in tandem to force the current distribution to become more 

uniform and, as can be seen in Figure 2.3b, leads to a quasi-steady state in the distribution of 

lithium along the negative-electrode/separator interface during both discharge and charge.  

To be clear, this quasi-steady state is due to there being a considerable excess of lithium 

at the negative electrode. This excess allows for the resistance of the negative electrode to 

remain somewhat constant throughout the discharge. Furthermore, because there is a 

significant amount of excess lithium, the difference in thickness between the thinnest and 
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thickest portion of the negative electrode is quite small compared to the overall thickness of 

the electrode. If, for example, the cell were somehow able to discharge enough so that a 

significant amount of lithium at the negative electrode was removed, the movement (seen in 

Figure 2.3b) would start to decrease again due to the resistance of the negative electrode 

increasing. This assumption of considerable excess lithium is discussed in much more detail in 

Subsection 2.2b.  

 

 
Figure 2.4. Movement of lithium along the lithium/separator interface during five cycles 

with two different linear OCP slopes at a rate of C/5 to a 10% depth of discharge based 

on the positive electrode. 

 

From Figure 2.4, we can see that the magnitude of shape change for the lithium in both 

the 'Sloped OCP' and 'Matched OCP' cases have reached a quasi-steady state where the 

movement after one cycle is nearly the same as after five. Immediately following charging, for 

the 'Matched OCP' line, about 22.5 coulombs of lithium in the negative electrode have moved 

from the right side of the cell to the left, and, after five cycles, that number remains almost 

exactly the same. This is nearly the steady state (at 22.85 coulombs) that was reached in Figure 

2.3b. When looking at the ‘Matched OCP' line in Figure 2.4, we can see that the movement 

immediately following charging reaches 42.3 coulombs after the first charge and 43.2 coulombs 

after the fifth. This is a modest increase especially when compared to the movement seen in 
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the first cycle and, as will be shown in the following Subsections, is due to pinching (Subsection 

2.2b), the limited depth of discharge (Subsection 2.2d), and rest periods (Subsection 2.2e). That 

is to say that, cycling to a higher depth of discharge or allowing for longer rest periods will 

cause the movement of lithium seen immediately after charging to remain the same after the 

fifth cycle as after the first.  

 

2.2b Pinching or High Depths of Discharge for the Negative Electrode 

 

In the previous section we saw that after five cycles at a C/5 rate to a 10 percent depth 

of discharge based on the positive electrode, there was no noticeable increase in the 

movement for the 'Matched OCP' case and only a slight increase in the movement for the 

'Sloped OCP' case. We also saw, in Figure 2.3b, that the movement of the lithium reaches a 

quasi steady state where, after a certain point, discharging the cell does not appreciably 

increase the movement of lithium. These simulations were run with a large amount of excess 

lithium such that the conductivity of the negative electrode did not change appreciably. For 

example, in Figure 2.4, the cell was cycled to a 10 percent depth of discharge based on the 

positive electrode which translates to only a 4 percent depth of discharge based on the 

negative electrode. To put it another way, during cycling only 4 percent of the lithium was 

utilized.  

In this Subsection, we explore the effect of cycling to a high depth of discharge based on 

the negative electrode. This can be achieved in two ways, by increasing the capacity of the 

positive electrode or decreasing the thickness of the negative electrode. Here, we have chosen 

to decrease the thickness of the negative electrode so that the positive electrode can be kept 

the same as in the other Subsections to allow for an easier comparison. By decreasing the 

thickness of the negative electrode, we have also increased the resistivity of the negative 

electrode thereby increasing the bias of the current distribution toward the left side of the cell. 

Thus, we expect a much more nonuniform current distribution and a much larger shape change 

to occur with a thinner negative electrode.  

Because of the higher utilization of the negative electrode, the resistance of the 

negative electrode changes substantially during cycling where it increases as the cell is 

discharged. In addition, the nonuniform thickness due to the nonuniform current density will 

exacerbate the situation, possibly leading to a situation where the lithium at the negative tab is 

very thin or nonexistant and leads to a cell failure. 

In the figures below, the thickness of the lithium at the negative electrode is decreased 

from 50 to 15 μm, and the cell was cycled over 60 percent of the capacity of the positive 

electrode corresponding to about an 80 percent depth of discharge for the negative electrode. 

As can be seen in Figure 2.5 below, while the negative electrode started out at 15 μm thick, 

after the first discharge at a C/5 rate (based on the positive electrode), about 12 μm of lithium 
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was stripped from the negative electrode leaving an average of 3 μm of lithium remaining. 

However, because of the nonuniform current distribution, the thickness at the negative tab or 

x/L=0 has diminished to about 2.4 μm for the 'Matched OCP' case and to about 1.5 μm for the 

'Sloped OCP' case. 

 

 
Figure 2.5. Thickness of the lithium negative electrode along the lithium/separator 

interface after the first discharge at a rate of C/5 to an 80% depth of discharge based on 

the negative electrode. The initial thickness of the negative electrode was 15 μm. 

 

In order to compare the movement of lithium seen with a high depth of discharge for 

the negative electrode to the movement seen in the previous Subsection, we convert the 

movement of lithium at the end of discharge into the number of coulombs of lithium passed 

across the           line seen in Figure 2.2. In Figure 2.6 below, we see the movement of 

lithium at the negative electrode measured in coulombs at the end of discharge for several 

different cases. In Figure 2.6, the movement seen after one discharge (Cycle Number 1) for the 

'Sloped OCP' and 'Matched OCP' correspond to the thickness profiles with the same names 

seen in Figure 2.5. After 5 cycles we can see that for the 'Matched OCP' case, the movement 

after discharge has increased modestly from -445 coulombs to -449 coulombs. This corresponds 

to a modest thinning of the left point of the negative electrode from 2.44 μm to 2.425 μm. 



34 
 

When comparing this to the 'Sloped OCP' case, we see that, similar to Figures 2.3b and 2.4, as 

the slope of the OCP decreases, the movement increases. Furthermore, the 'Sloped OCP' case 

sees more movement after cycling than the 'Matched OCP' case, increasing from -1031 

coulombs after the first discharge to -1048 coulombs after the fifth. This corresponds to 

thinning of the left point of the negative electrode from 1.525 μm to 1.49 μm. The 'Low Depth 

of Discharge' case corresponds to the movement of the lithium after discharge for the 'Matched 

OCP' case in Figure 2.4. In this simulation the negative electrode is initially 50 μm thick and only 

4 percent of the lithium is used during cycling. From this comparison we can see that the 

amount of lithium movement is much lower, and the movement of lithium after 5 cycles is the 

same as after 1.  

The final case seen in Figure 2.6 is the 'Matched OCP C/2 Rate' case where the 

simulation was run under the same conditions as the 'Matched OCP' case (80 percent lithium 

utilization) but at a higher, C/2 rate based on the positive electrode. From this case we can see 

that increasing the C-rate of cycling both increases the movement seen as well as exacerbates 

the increase in movement seen after multiple cycles. The effect of the C-rate on the movement 

of lithium is discussed in more detail in Subsection 2.2c. 
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Figure 2.6. Movement of lithium at the negative electrode after discharging as 

measured in coulombs of lithium passed from the right side of the negative electrode 

            to the left side            . The 'Matched OCP', 'Sloped OCP', and 

'Matched OCP C/2 Rate' simulations were run to an 80% depth of discharge, and the 

'Low Depth of Discharge' line was run to a 4% depth of discharge based on the negative 

electrode and is the movement seen after discharge in Figure 2.4. The dashed horizontal 

lines are for reference. 

 

In Figure 2.6, the increase in movement over cycling was calculated for the first 5 cycles. 

It is of interest, however, to determine the progression of this movement over extended 

cycling. Thus, the 'Sloped OCP' case in Figure 2.6 was extended to 50 cycles, the results of which 

can be seen in Figure 2.7 below. Rather than plot the movement of lithium along the negative 

electrode in coulombs passed across the x/L=0.375 plane, in Figure 2.7 we instead plot the 

minimum thickness of the negative electrode (which remains at x/L=0) after discharging for 

cycles 1 through 50. From this, we can see the progression of the thinning of the left side of the 

negative electrode. If this thinning were allowed to progress unchecked, it would result in a 

pinching off of the negative electrode from the negative tab when the thickness seen in Figure 

2.7 reaches zero.  
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Figure 2.7. Minimum thickness of the lithium negative electrode after discharge at a rate 

of C/5 with the Sloped OCP function to an 80% depth of discharge based on the negative 

electrode. The initial thickness of the negative electrode was 15 μm. 

 

From Figure 2.7 we can see that the thickness of the lithium at the left side of the 

negative electrode diminishes as cycling continues as was expected from Figure 2.6. However, it 

is readily apparent that after extended cycling the thinning of the negative electrode slows 

down. To put it another way, the thickness of the left side of the negative electrode, after the 

discharge during cycle 1, is 1.562 μm. After discharging during cycle 2, the thickness is 1.555 μm 

which is a decrease of 0.093 μm or 5.95 percent. If we now progress to cycles 49 and 50, the 

thickness of the lithium after discharge is 1.364 μm and 1.362 μm respectively, which is a 

decrease of only 0.002 μm or 0.15 percent. As we can see from this example, the thinning off 

the electrode slows down substantially after only 50 cycles. 

In order to project the thinning of the negative electrode out to thousands of cycles we 

plot the data seen in Figure 2.7 against the log of the Cycle Number and fit it to a quadratic 

function with good agreement. The accuracy of the fit is tested by only using the first 25 cycles 

and projecting the fit out to cycle 50 (the red line in Figure 2.8). As can be seen in Figure 2.8, 

the fit used shows good agreement to the thickness of the lithium, and, through this fit, we find 

that the thickness of the lithium at the negative tab will reach zero after about 40,000 cycles. 

However, as was seen in Figure 2.6, increasing the C-rate during cycling and increasing the 

depth of discharge of the negative electrode will exacerbate the thinning of the left side of the 
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negative electrode and decrease the number of cycles required to cause the thickness of the 

lithium to reach zero.  

Clearly 50 cycles is not nearly enough data to be able to extrapolate out to 40,000 

cycles, and the error is most likely sizable; however, I believe that this illustrates the point that 

this phenomenon should not be considered a major failure mode. Furthermore, including a 

separate negative current collector will completely solve this issue where, even if the lithium is 

completely stripped from a segment, the rest of the electrode is still connected to the negative 

tab. 

 

 
Figure 2.8. Minimum thickness of the lithium negative electrode after discharge at a rate 

of C/5 with the Sloped OCP function to an 80% depth of discharge based on the negative 

electrode. The red line is a quadratic fit of cycles 1 through 25 and is projected out to 

cycle 50 showing a good fit. The slight wavering of the line is due to errors that occur at 

the edges of the model. 

 

It should be noted here that while only the thickness of the lithium at the end of 

discharge was plotted, during charge, lithium is deposited returning the negative electrode back 

to its original thickness with a slight accumulation of lithium on the left side of the cell as seen 

in Chapter 1. Furthermore, after extended cycling, while the lithium at the left side of the cell is 

thinning at the end of discharge, at the end of charge the thickness is increasing, meaning that 
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magnitude of the swing in the local state of charge at the left side of the cell is increasing during 

cycling. 

 

2.2c The Effect of the C-rate on Cycling 

 

In Subsection 2.2a we saw that, given enough time, and with excess lithium at the 

negative electrode, the movement of lithium will reach a quasi-steady state and the rate at 

which this steady state is achieved as well as the magnitude of the movement is determined, in 

part, by the slope of the OCP. Furthermore, as we see in Figure 2.4, the quasi-steady state seen 

after one cycle is preserved after multiple cycles.  

Both Figures 2.3b and 2.4 were cycled at a C/5 rate. In Figure 2.8, however, we can see 

the results of cycling the model at a C/5 rate, a C/2 rate, and a C/1 rate. The cycling was 

performed under the same specifications as in Figure 2.4, with 1,000 second rests following the 

discharges and charges to a 10 percent depth of discharge (based on the positive electrode), 

and with a 50 μm thick negative electrode. The OCP function used in these simulations is the 

'Sloped OCP' line in Figure 2.3a for the 'C/5 Rate' line, 'C/2 Rate' line, and the 'C/1 Rate' line. 

The 'C/1 Rate, Matched OCP' line uses the 'Matched OCP' from Figure 2.3a. All the simulations 

are cycled to 10% of the capacity of the positive electrode. Rather than view the entirety of the 

movement of the lithium while cycling, the points in Figure 2.8 represent the movement of 

lithium immediately after charging.  

As we can see from Figure 2.8 below, at the C/5 rate, similar to the 'Sloped OCP' line in 

Figure 2.4, a steady state for the movement of the lithium is reached where the movement 

after cycle 5 is the same as after cycle one. For the 'C/1 Rate' line, however, we see a 

substantial increase after the first cycle where the movement starts at 48.3 coulombs after one 

cycle and climbs to 61.3 coulombs after five. By comparing the 'C/1 Rate' line with the 'C/5' rate 

line, we can see that increasing the rate of discharge and charge of the cell while holding the 

depth of discharge and rest periods constant increases the total movement of the lithium and 

causes the movement to increase as cycling continues. 
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Figure 2.8. Accumulation of lithium as measured in coulombs of lithium on the left side 

of the negative electrode immediately after charging. All simulations were run to a 10% 

depth of discharge based on the positive electrode with 1,000 second rests following 

both the discharge and charge. The OCP function is the 'Sloped OCP' line as seen in 

Figure 2.3a unless otherwise noted. 

 

Before explaining the increase in the movement at the C/1 rate, let us first compare it to 

the 'C/1 Rate, Matched OCP' line. In Subsection 2.2a we concluded that decreasing the slope of 

the OCP function increased the movement of the lithium. In Figure 2.8, however, when 

comparing the 'C/1 Rate, Matched OCP' line with the 'C/1 Rate' line we see that, after the first 

cycle, more lithium has accumulated on the left side of the cell in the 'C/1 Rate, Matched OCP' 

than the 'C/1 Rate' line where the slope of the OCP is lower. This phenomenon can be explained 

by looking at a more detailed plot of the movement of lithium over five cycles as is seen in 

Figure 2.9 below. 
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Figure 2.9. Movement of lithium along the lithium/separator interface during five cycles 

with two different linear OCP slopes at a rate of C/1 to a 10% depth of discharge based 

on the positive electrode. 

 

In Figure 2.9, when comparing point A to point A’, we see that more movement does 

occur for the ‘Sloped OCP’ line than the ‘Matched OCP’ line as would be expected from the 

slopes of the OCP functions. During rest, both lines relax toward zero, but the ‘Sloped OCP’ line 

does not relax as much as the ‘Matched OCP’ line. This can be seen in Figure 2.9 by noticing 

that the difference between points A and B is less than the difference between points A’ and B’. 

This is due to the flatter OCP for the ‘Sloped OCP’ case, meaning that there is less of a potential 

gradient in the positive electrode driving the negative electrode toward uniformity.  This 

reduced relaxation combined with the greater movement on discharge means that, at the start 

of charge, the ‘Sloped OCP’ line is more negative than the ‘Matched OCP’ line (point B is more 

negative than point B’). When comparing the difference between points B and C to the 

difference between points B’ and C’, we see that the movement during charging is greater for 

the ‘Sloped OCP’ case than the ‘Matched OCP’ case. However, because the ‘Sloped OCP’ line 

starts out more negative at point B, even though there is more movement during charge, after 

charge, the ‘Sloped OCP’ line at point C still remains below the ‘Matched OCP’ line at point C’.  

Along those lines, we can also see that smaller relaxation during the rest phases is one 

phenomenon that contributes toward the ‘Sloped OCP’ line increasing its movement after each 

subsequent charge phase (seen in the ‘C/1 Rate’ line in Figure 2.9). On the first discharge, the 

lithium starts as a uniform thickness before becoming concave down. Then, after the charge 

phase, the lithium has accumulated on the left side of the cell causing the shape to become 
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convex at point C. During the subsequent rest phase, the lithium is allowed to relax, but since it 

does not reach a uniform thickness, on the second discharge phase, it starts positive, or 

concave up and must flatten out before becoming concave down. This means that, although 

the magnitude of the movement of the lithium remains nearly the same between the first and 

second discharge phases, the movement immediately after the second discharge phase is less 

negative than after the first. This can be seen by comparing point A with point D in Figure 

2.9.Taking this analysis one step further, we can see that at the end of the rest following the 

second discharge, the ‘Sloped OCP’ line is less negative than at point B. Since the total 

movement during the charge remains nearly the same for the second charge as it was for the 

first, the shape of the lithium following the second charge is ultimately more positive, since it 

started from a smaller negative number.  

 

2.2d Depth of Discharge 

 

In Figures 2.4, 2.8, and  2.9, cycling was limited to a 10 percent depth of discharge based 

on the positive electrode which limits the movement of lithium during each cycle. This can be 

seen by comparing the ‘Sloped OCP’ and ‘Matched OCP’ lines in Figure 2.3b to the same lines in 

Figure 2.4 where, in Figure 2.3b, the movement of lithium at the end of discharge or charge is 

more pronounced than in Figure 2.4. Although limiting the depth of discharge limits the 

movement of lithium seen in each cycle, it also causes the movement to increase after each 

successive cycle. This can be seen at the higher C-rates in Figure 2.8 where the movement of 

lithium continued to increase after the first cycle. This phenomenon was discussed at the end of 

Subsection 2.2c and can be seen in Figure 2.10 below. Here we see that limiting the depth of 

discharge limited the movement seen during each discharge and charge phase. This, combined 

with the limited rest period, means that the movement does not reach a quasi-steady state 

after the first cycle and thus, multiple cycles are needed for the movement to equilibrate. In the 

case of the C/5 rate of cycling in Figure 2.4, even though the depth of discharge was held to 

only 10 percent of the total capacity of the positive electrode, the cell was given sufficient time 

to equilibrate so that no further movement of lithium during cycling was seen. Of course, for 

the case of the C/1 rates, both increasing the depth of discharge and increasing the rest period 

will help the cell to equilibrate, reducing the increase in movement after the first cycle. In this 

Subsection we discuss the effect of increasing the depth of discharge, and in Subsection 2.2e 

we discuss the effect of the rest period. 

In Figure 2.10 below, we see the results of one cycle at a C/1 rate to a 90 percent depth 

of discharge. For the ‘Matched OCP’ case, the movement during both the discharge and charge 

phases nearly flattens out. For the case of the ‘Sloped OCP’ line, however, the flatter OCP 

function and high rate of discharge and charge keep the movement from reaching a quasi-

steady state even at a 90 percent depth of discharge. Because of this, we expect that, similar to 
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the ‘C/1 Rate’ line in Figure 2.8, the movement seen immediately after charging will increase 

during cycling for the ‘Sloped OCP’ case although to a lesser extent than was seen in Figure 2.8. 

We also expect a similar result for the ‘Matched OCP’ case where cycling to a 90 percent depth 

of discharge limits the increase in movement during cycles 2 to 5. 

 

 
Figure 2.10. Movement of lithium along the lithium/separator interface during one cycle 

with two different linear OCP slopes at a rate of C/1 to a 90% depth of discharge based 

on the positive electrode. 

 

 
Figure 2.11. Accumulation of lithium as measured in coulombs of lithium on the left side 

of the negative electrode immediately after charging. All simulations were run at a C/1 

rate to a 90% depth of discharge based on the positive electrode with 1,000 second 

rests following both the discharge and charge phases. 
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In Figure 2.11, we can see the results of cycling a cell at a C/1 rate, to a 90 percent depth 

of discharge over five cycles. Similar to Figure 2.8, the movement seen in Figure 2.11 is the 

movement immediately after charging. Although not readily apparent, increasing the depth of 

discharge during cycling from 10 percent to 90 percent does limit the increase in movement 

seen after the first cycle. For example, in the case of the simulation run with the ‘Matched OCP’ 

function, at a 10 percent depth of discharge, the movement immediately following charging 

after the first cycle is 57.4 coulombs and after the fifth cycle is 61.4 coulombs or a 7 percent 

increase (seen in Figure 2.8). When the depth of discharge is increased to 90 percent however, 

the movement after the first cycle is increased to 115 coulombs and after five cycles, it reaches 

120.4 coulombs or a 4.7 percent increase (seen in Figure 2.11). The difference between the 90 

percent and 10 percent depth of discharge is more noticeable for the simulations with the 

‘Sloped OCP’ function. Here, with a 10 percent depth of discharge, after the first cycle, 48.3 

coulombs of lithium have accumulated on the left side of the cell and after 5 cycles, 61.3 

coulombs of lithium have accumulated, a 27 percent increase. Increasing the depth of discharge 

to 90 percent again increases the movement seen after the first cycle to 282 coulombs, but 

after five cycles, the accumulation reaches 337.5 coulombs, which is a 20 percent increase.  

This increase in movement can also be limited by extending the rest periods, however, 

even with very long (10,000 second) rest periods following the discharge and charges, the 

movement after each cycle continues to increase. This is due to the nonlinearity of the pinching 

of the negative electrode discussed in Subsection 2.2b. For the case off a 90 percent depth of 

discharge based on the positive electrode (as in Figures 2.10 and 2.11), even with 50 μm of 

lithium, during discharge, 18 μm of lithium is stripped from the negative electrode which is 36 

percent of the total lithium. Furthermore, because of the high rate of discharge, there is a 

somewhat significant difference in the thickness of the lithium at the left side of the cell 

compared to the middle. From Subsection 2.2b, we learned that this nonlinearity causes the 

movement of the lithium to increase during cycling which, in this Subsection, is seen because of 

the high depth of discharge and high rate of cycling. 

 

2.2e Rests 

 

From Figures 2.9 and 2.10, we saw that not only are the C-rate and depth of discharge 

important, but, as is especially seen in Figure 2.9, a short rest limits the relaxation of the lithium 

at the negative electrode. In Figure 2.12 below, we have plotted the movement of lithium 

immediately after charging, cycling at a C/2 rate to a 10 percent depth of discharge with a 

‘Sloped OCP’ function in the positive electrode. The ‘1,000 second Rest’ line in Figure 2.12 

corresponds to the ‘C/2 Rate’ line in Figure 2.8. Through changing only the rest periods during 

cycling, we see that decreasing the rest from 1,000 seconds both decreases the amount of 

movement seen after the charge phase and causes the movement to increase after each 
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successive cycle. The reason for this is explained in Subsection 2.2c in the paragraphs under 

Figure 2.9.  

Conversely, when we increase the rest period from 1,000 seconds to 10,000 seconds, 

we see that the accumulation of lithium on the left side of the cell immediately after charging 

increases and we see no further increase in accumulation after the first cycle. Again, this is due 

to the fact that the lithium was allowed to relax back toward uniform after the discharge and 

charge phases. This means that, at the start of cycle 3 for example, the lithium in the cell is 

almost in exactly the same place as at the start of cycle 2 and, therefore, the two cycles will 

behave nearly identically.  

 

 
Figure 2.12. Cycling at a C/2 rate with varying rests to a 10% DoD measured immediately 

after charging. The slope of the OCP is the 'Sloped OCP' function seen in Figure 2.3a. 

 

In Figure 2.12, we plotted the accumulation of lithium immediately after charging and 

varied the rest periods from 10 to 10,000 seconds. We saw that increasing the rest period 

increased the accumulation of lithium immediately after charging; however, we have also noted 

that during the rest phase, the lithium will relax back toward uniform. Therefore, in Figure 2.13, 

we plot the accumulation of lithium at the end of the rest phase following charging. From 

Figure 2.13, we see that increasing the rest phase decreases the movement of lithium after 

each complete cycle. For example, with a 10 second rest, the accumulation after each complete 

cycle is almost exactly the same as the accumulation of lithium immediately after the charge 

phase since, with only 10 seconds to relax, the lithium will not have moved appreciably. This 

can be seen when comparing the '10 second Rest' line in Figure 2.13 to the ’10 second Rest’ line 
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in Figure 2.12. On the other hand, after resting for 10,000 seconds, the lithium has returned to 

nearly uniform, as can be seen from the '10,000 second Rest' line in Figure 2.13. It should be 

noted that both Figures 2.12 and 2.13 are cycled under exactly the same conditions, and the 

only difference between lines with the same name is at which point the movement of lithium 

was calculated. 

 

 
Figure 2.13. Cycling at a C/2 rate with varying rests to a 10% DoD measured after resting 

and immediately before the subsequent cycle. The slope of the OCP is the 'Sloped OCP' 

function seen in Figure 2.3a. 

 

2.2f Uneven Charge/Discharge Rates 

 

As we saw in the previous Subsections, both the C-rate and the time of the rest period 

play an important role in determining both the magnitude of the movement of lithium during 

cycling and how quickly the movement reaches steady state. In this Subsection we look at the 

combination of these two effects. 

Throughout the previous sections the simulations were run with symmetric charge and 

discharge profiles. That is, the rate and time of discharge was exactly the same as the rate and 

time of charge. In this Subsection we look at what happens if the total time of cycling remains 

constant, but the rate of charge increases. For example, in Figure 2.14, the 'C/5 Symmetric, 100 

second Rest' line refers to a C/5 discharge rate and a C/5 charge rate to a 10 percent depth of 

discharge with 100 second rests following the discharges and charges. This means that the 

discharges and charges periods take 1800 seconds, making the total time for one cycle 3800 
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seconds. We then compare this to the 'C/5 Discharge 100 second Rest, C/1 Charge 1540 second 

Rest' line in Figure 2.14. Here, we discharge the cell at a C/5 rate for 1800 seconds and rest for 

100 seconds, but now we charge the cell at a C/1 rate. This charge period only takes 360 

seconds to complete; therefore the rest after charging is extended from 100 seconds, to 1540 

seconds thereby making the time to complete one cycle 3800 seconds. By comparing these two 

lines, we can understand whether, if given a certain amount of time to charge the cell, it is 

better to charge the cell quickly and rest for a longer period of time or charge the cell slowly 

and rest for a short period of time. 

 

 
Figure 2.14. Cycling at various rates with varying rests to a 10% DoD measured after 

resting and immediately before the subsequent cycle. The slope of the OCP is the 

'Sloped OCP' function seen in Figure 2.3a. 

 

From Figure 2.14 above, when comparing the symmetric lines to their counterpart 

asymmetric lines, with everything else equal, it is more favorable, at least in relation to the 

movement of lithium after resting, to charge the cell quickly and let it rest for longer than 

charge the cell slowly with a shorter rest. Of course, Figure 2.14 only takes into account the 

movement of the lithium after the rest following charging and not the maximum movement of 

the lithium, which is at the end of charging and is much higher, for a C/1 charge than a C/5 

charge. Furthermore, if given large amounts of time to complete the charge, then the 

movement seen after a full cycle will be very similar for both a slow or fast charge. For example, 

a C/5 symmetric cycle with 10,000 second rests will show similar movement after each 
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complete cycle to an asymmetric case with a C/1 charge and rest period of 11440 seconds. This 

is because the rest period is so long in either case that the lithium has become nearly uniform 

and any further rest will show only minimal changes. 

 

2.3 Conclusions 

 

In this chapter, the two-dimensional model presented in Chapter 1, which is able to 

capture the movement of lithium during cycling, was run for multiple cycles. This model still 

incorporates electrode tabbing, a moving boundary at the negative electrode, a CoO2 

intercalation electrode as the cathode, and a lithium-metal negative electrode. The positive 

electrode is modeled using porous electrode theory, the separator as a liquid electrolyte with a 

binary salt, and the total volume changes are assumed to be zero. Finally, the negative 

electrode in this model is twice the thickness required by stoichiometry in order to avoid the 

need for a separate negative current collector. 

The model was cycled at various rates, depths of discharge, and lengths of the rest. 

From this, we saw that, with a large excess of lithium at the negative electrode, the movement 

of the lithium will reach a quasi-steady state where the movement during each subsequent 

cycle will remain at the same magnitude. The rate at which the movement of the lithium 

reaches that steady state depends on the slope of the open-circuit-potential function, the rate 

of discharge and charge, the depth of discharge, and the length of time that the cell is allowed 

to rest both after the discharge and charge phase. First, as was described in Subsection 2.2a, 

the slope of the open-circuit-potential function strongly affects both the magnitude of the 

movement of lithium seen during cycling and the rate at which a steady state is reached. A 

more steeply sloped open-circuit-potential function will cause less movement of lithium during 

cycling, and a steady state will be reached more quickly than with a flatter open-circuit-

potential function. Then, in Subsection 2.2b, we relaxed the assumption that there is a large 

excess of lithium in the negative electrode and looked at the case where 80 percent of the 

negative electrode was utilized. This was achieved by reducing the thickness of the negative 

electrode from 50 to 15 μm with the result that the pinching of the negative electrode is 

another nonlinearity that leads to a progression of the movement of lithium over  multiple 

cycles. In Subsection 2.2c, we returned to a 50 μm thick negative electrode and discussed the 

effect of the discharge/charge rate. Here we saw that increasing the C-rate both increased the 

magnitude of the movement of lithium during cycling and delayed the steady state seen in 

Subsection 2.2a. In Subsection 2.2d, we explored the effect that the depth of discharge has on 

the movement of lithium during cycling, and in Subsection 2.2e, the effects of the rest periods. 

Finally, in Subsection 2.2f, we compared the magnitude of the effect of the C-rate with that of 

the rest periods and found that the lithium was more uniform if the cell was charged quickly 
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and allowed to rest for longer and was less uniform if the cell was charged slowly with a limited 

rest period following charging. 

The major assumption in this chapter was that the separator, while inhibiting dendrites, 

also allows the lithium to move unhindered. However, in order to inhibit dendrites either a stiff 

polymer separator or a ceramic protective layer is needed. In Chapter 3 we see how the 

incorporation of a stiff polymer separator will affect the movement of the lithium seen both in 

this chapter and in Chapter 1. Then, in Chapter 4, we look into the use of a ceramic to inhibit 

dendrites and calculate the stresses in a ceramic protective layer due to bending. 
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Chapter 3 

 

Mechanical Deformation  

of a Lithium-Metal Anode  

due to a Very Stiff Separator 

 
3.1 Introduction 

 

 In Chapters 1 and 2 we created a two-dimensional model to capture the movement of 

lithium during cycling. This model uses a finite-element method and incorporates electrode 

tabbing, transport using concentrated-solution theory, Butler-Volmer reaction kinetics, and the 

net movement of the lithium electrode during cycling. The model was cycled at various rates 

with the result that, even without dendrites, significant large-scale movement of lithium was 

seen both during each half cycle and after a full cycle of a discharge followed by a charge. More 

specifically, the lithium was depleted more near the negative tab, yet after a full cycle, there 

was a net migration of the lithium towards the negative tab. This migration was found to be 

caused by three separate phenomena. First, as was described in Section 1.3a, the geometry 

strongly affects the current density distribution which directly correlates to the asymmetric 

depletion of lithium during the discharge phase. The second driving force, discussed in Section 

1.3b, was the open-circuit-potential function, the slope of which not only affects the magnitude 

of the movement, but also is the largest nonlinearity that contributes to the movement of 

lithium after a full cycle. The third and smallest contributor to the movement of the lithium is 

the concentration gradients in the liquid electrolyte, which was detailed in Section 1.3c. In this 

section, we saw that, when the OCP is flat and the concentration gradients are reduced by 

increasing the diffusivity, the lithium will return to its starting position after a full cycle. 

 The model developed in Chapter 1 was extended, in Chapter 2, to multiple cycles at 

various rates, depths of discharge, and lengths of the rest. From this, we saw that, with 

significant excess lithium, the movement of the lithium reaches a quasi-steady state where the 

movement during each subsequent cycle is the same as during the previous cycle. The rate at 

which the movement of the lithium reaches a steady state depends on the slope of the open-

circuit-potential function, the rate of discharge and charge, the depth of discharge, and the 

length of time that the cell is allowed to rest. First, as was described in Section 2.2a, the slope 

of the open-circuit-potential function strongly affects both the magnitude of the movement of 

lithium seen during cycling and the rate at which a steady state is reached. A more steeply 
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sloped open-circuit-potential function causes less movement of lithium during cycling, and a 

steady state will be reached more quickly than with a flatter open-circuit-potential function. In 

Section 2.2b we explored cases with high lithium utilization and saw that the lithium becomes 

progressively thinner on the left edge of the cell during extended cycling. While this 

nonlinearity is a small one, it nonetheless contributes toward the continued movement of 

lithium during cycling.  

In Section 2.2c, we discussed the effect of the discharge/charge rate. Here we saw that 

increasing the C-rate increased the magnitude of the movement of lithium during cycling. In 

Section 2.2d, we explored the effect that the depth of discharge has on the movement of 

lithium during cycling, and in Section 2.2e, the effects of the rest periods were explored. Finally, 

in Section 2.2f, we compared the magnitude of the effect of the C-rate with that of the rest 

periods and found that the lithium was more uniform if the cell was charged quickly and 

allowed to rest for longer and was less uniform if the cell was charged slowly with a limited rest 

period following charging. 

 In both Chapters 1 and 2, the major assumption was that the separator, while inhibiting 

dendrites, also allowed the lithium to move unhindered. This, of course is not physical as 

lithium which is allowed to move freely forms dendrites during the charge phase. The 

propagation of dendrites, which is the primary mechanism for failure in lithium-metal 

batteries,1-3 can be inhibited through the incorporation of a polymer separator with acceptable 

ionic conductivity that has a shear modulus about twice that that of lithium.1, 4-7 

 Such a separator resists the movement of lithium seen in Chapters 1 and 2 through the 

generation of stresses in the cell. As can be imagined, as the lithium moves, the separator is 

either compressed or stretched. This translates into stresses in the separator and lithium that 

affect the negative electrode through two mechanisms: altering the thermodynamics of the 

negative electrode and deforming the negative electrode mechanically. Both of these 

mechanisms are treated in this chapter. The effect of the stress on the thermodynamics is 

developed in Section 3.5 along with the elastic deformation of the negative electrode. Then, in 

Section 3.7, the plastic deformation of the lithium negative electrode is included.  

Before discussing the results of modeling a lithium-metal battery with a very stiff 

separator, it is necessary to gain a solid background in mechanics. Therefore, in Sections 3.2 

through 3.4, the mechanical behavior of materials is discussed starting from the definition of 

stress and strain in Section 3.2, continuing on to elastic deformation in Section 3.3, and finishing 

on plastic deformation in Section 3.4. In Section 3.6, we look at Limit Analysis, which gives us a 

first look at what we expect the plastic deformation to look like and the range of stresses under 

which deformation should be expected to occur. Finally, in Section 3.7, we develop and discuss 

the full numerical analysis of plastic deformation in a lithium-metal negative electrode. 
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3.2 Stress and Strain 

 

 The following sections concern themselves with the mechanical behavior of materials, 

which refers to the response of materials to forces. This response, called deformation, can take 

several different forms including elastic, plastic, or viscoelastic. When a material deforms under 

small stresses, the deformation may be elastic. In this case, when the stress is removed, the 

material will revert to its original shape, and the deformation is considered reversible. The 

physical process involved is a simple stretching of atomic bonds by changing the distance 

between the atoms and, when the stress is removed, the elastic deformation will recover 

immediately. In this chapter, and in most continuum-mechanics text books for that matter, it is 

assumed that the material deforms much more quickly than the rate at which the load is 

applies, or, conversely, the stress in the material is equilibrated much faster than the rate of 

deformation. This assumption is typically valid for ductile materials and leads to a quasi-steady 

state. There may be, however, some time-dependent shape recovery called viscoelasticity 

which is not covered in this chapter. 

 Larger stresses may cause plastic deformation, which is defined as irreversible or 

permanent deformation. After a material undergoes plastic deformation, it will not revert to its 

original shape when the stress is removed. The physical process of plastic deformation involves 

the sliding of atoms past each other, permanently changing their relative positions. 

 In this section we define both stress and strain to provide a basis of understanding on 

which our later treatment of elastic and plastic deformation of a lithium-metal anode is built. 

There are several key areas of understanding which are treated in this section. In Section 3.2a 

we begin with the definition of stress and introduce the reader to the stress tensor and the 

notation used throughout the remainder of this chapter. Within this section, the concept of 

principal stress is described as well as the invariants of the stress tensor. We then introduce the 

concept of the stress deviator tensor which includes the off-diagonal components of the stress 

tensor. From this concept, we can define a new set of stress invariants based on the stress 

deviator called the deviatoric stress invariants. These invariants are used in plasticity to 

determine whether the stress in a body is sufficient to cause plastic deformation. This 

determination is called yield criteria and is treated in Section 3.4b. 

 In Section 3.2b, we define infinitesimal strain, the principal strain, and the strain 

invariants. Then, in Section 3.2c, we explore the uniaxial tension test, which is commonly used 

to describe the response of a material to stress. Finally, in Section 3.2d, we generalize the 

uniaxial loading to multiaxial loading. All the material from this section is built from references 

8 through 11, which can be found in the references section. 
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3.2a Stress 

 

 The stress on a material is defined as the intensity of a force at a point or 

 

 
     

   

 

 
  

 
3.1 

Because the stresses involve both forces and areas, they are tensor quantities. Nine 

components of stress are needed to describe fully a state of stress at a point, as shown in Figure 

3.1. A normal stress (compressive or tensile) is one in which the force is perpendicular to the 

area on which it acts, and a shear stress describes a force that is parallel to the area on which it 

acts. For example,     describes a force in the z-direction acting on a plane perpendicular to the 

z axis, and     describes a force in the y-direction acting on a plane perpendicular to the z-

direction. Thus,     is a normal force, and     is a shear force. 

 In Figure 3.1, the faces from which the positive axes are extended are taken to be the 

positive faces; the other faces, lying on the planes, are taken to be the negative faces. By 

Newton's third law, the forces acting on the positive faces (shown) are counteracted by 

opposing forces acting on the negative faces are in the negative (x, y, z) directions. 

 

 
Figure 3.1. Representation of the components of the second-order stress tensor    acting 

on the positive faces of a body in the Cartesian coordinate system 
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 In mechanics, it is common to denote the x, y, and z coordinates as x1, x2, and x3; thus, 

for much of this chapter, we refer to them as such. In keeping with this notation, we redo 

Figure 3.1 to include the typical coordinate notation (see Figure 3.2). 

 

 
Figure 3.2. Representation of the components of the second-order stress tensor    acting 

on the positive faces of a body in the Cartesian coordinate system using the typical 

notation of x1, x2, and x3 instead of the Cartesian x, y, and z coordinates. 

 

 In tensor notation, the state of stress is expressed as 

 

 
    

         
         
         

 . 

 

3.2 

It is also somewhat common to denote normal stresses simply as    and shear stresses as    . 

This, however, can lead to some confusion with the principal stresses also notated as   ; thus 

   , as described in Equation 3.2, will be used to denote all stresses. 

 It may be useful here to note that pairs of shear stresses with reversed subscripts are 

always equal (        . If they were not, then a force balance on an infinitesimal element 

would result in an infinite rotational acceleration. This can be seen from Figure 3.3, where, if 

        then the element has a net rotational force (torque) on it and undergoes an infinite 

rotational acceleration. This can be proven through performing a torque balance on a two-

dimensional element and equating it to the moment of inertia times the angular acceleration. 
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Through this analysis, it is seen that the net torque is proportional to   , while the moment of 

inertia is proportional to   , where   is the length of a side. 

 

 
Figure 3.3. An infinitesimal element with a shear stress applied showing that pairs of 

shear stresses with reversed subscripts must be equal for the element to avoid infinite 

angular acceleration.  

 

 Therefore, the stress may be written in its symmetric form 

 

 
    

         
         
         

 . 

 

3.3 

This stress tensor is often referred to as a Cauchy stress tensor and given the notation   , 

though in this chapter we simply use the tensor   .  

 

Principal Stresses 

 

 Regardless of the state of stress, at a given point, there exist three mutually 

perpendicular planes on which the shear stresses vanish. The remaining (normal) components 

on these three planes are called the principal stresses and are denoted as   ,   , and   . 

Correspondingly, the three planes are called principal planes, and the three mutually 

perpendicular axes that are normal to the three planes are called principal axes. Thus, by 

definition, principal stresses are directed along principal axes that are perpendicular to the 

principal planes. This is equivalent to denoting the symmetric tensor    by rotation of the 

coordinates. As a side note, all symmetric matrices are diagonalizable; more generally, any real 

normal matrix, where            , is also diagonalizable. 
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Stress Invariants 

 

 Every second rank tensor (such as the stress and strain tensor) has three independent 

invariant quantities associated with it. For the stress tensor, the first invariant is simply the 

trace of the stress tensor or 

 

 
                       

 

3.4 

 

While the second invariant of the stress tensor is      ,36 in mechanics it is stated in a somewhat 

more confusing manner as a combination of the first and second invariant of the stress tensor.9-

12, 19, 20, 38 In keeping with the mechanics literature we define the second invariant as 

 

 

   
 

 
         

   

      

                               
     

     
   

 

3.5 

 

Finally, the third invariant of the stress tensor is the determinant, or 

 

 
                                   

        
        

    . 

 

3.6 

 

  ,   , and   , given by Equations 3.4, 3.5, and 3.6, are invariants of stress and must have 

the same magnitudes for all choices of coordinate axes. For a more detailed derivation of the 

principal stresses and stress invariants, please see Section 2.4.2 and 2.4.3 in Advanced 

Mechanics of Materials.12 

 

Stress Deviator 

 

 Let us now break the stress tensor down into the mean normal stress or mean 

hydrostatic stress tensor     (where       ) and the stress deviator tensor   . This leads to 

 

 
           

 

3.7 

 

or 

 
          

 

3.8 

 

The mean normal stress tensor differs from the thermodynamic pressure because its 

components (   ,    , and    ) do not have to be equal. Therefore, even if we rotate our 
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coordinate system such that only the normal components remain, the stress deviator tensor is 

not necessarily zero.  

 

Deviatoric Stress Invariants 

 

Now that we have split the stress tensor into its hydrostatic and deviatoric components, 

let us determine the three stress invariants of the stress deviator. Again, the first deviatoric 

stress invariant is simply the trace of the stress deviator, or 

 

 
             

 

3.9 

 

The second invariant of the stress deviator is defined in mechanics as             
  . 

However, because the first invariant of the stress deviator is zero, the second invariant can be 

written as 

 

or 

 

   
 

 
      

 

 
  
     

 

   
 

 
          

           
           

      
     

 

    
   

 

3.10 

 

The third deviatoric stress invariant is, again, the determinant of the stress deviator tensor, or 

 

 
            

 

3.11 

 

 It should be noted here that the deviatoric stress invariants can be put in terms of the 

stress invariants seen in the previous Subsection. They are stated here simply because they 

have historically been used in mechanics to describe stresses causing plastic flow. As we see 

later in this chapter, the second deviatoric stress invariant is used in both the von Mises yield 

criterion and to define the equivalent stress. 

 

3.2b Strain 

 

 In continuum mechanics it is useful to describe a change in the shape of a material 

relative to its initial shape or reference state. This reference state, also called the undeformed 

state, corresponds to the shape of a stationary material. If a stress is applied to the material it 

deforms meaning that its shape changes and all the particles within the material move. From 



57 
 

this deformation, we define   (the displacement vector) which gives the distance and direction 

that a point in the solid has moved from its initial position as a result of the applied stress. 

 From this definition, we construct the symmetric infinitesimal strain tensor    from the 

displacement gradient    as 

 

 
   

 

 
        

 
  

 

3.12 

 

where the quantity of one-half is arbitrary, and makes the results of this analysis consistent 

with the well-known linear elastic theory when material displacements are small.  

 We can also define the deformation-rate tensor     as simply 

 

 
    

 

 
        

 
  

 

3.13 

 

where           .36-38 

 

Principal Strains and Strain Invariants 

 

 Similar to the stress tensor, we can diagonalize the infinitesimal strain tensor    to get 

the principal strains, which we denote as   ,   , and   . Furthermore, the strain tensor also has 

three invariants, the first of which is the trace of the strain tensor, or 

 

 
                        

 
3.14 

The second invariant is defined, in mechanics, as the double dot product of the strain tensor 

with itself minus the square of the first strain invariant. In keeping with the mechanics 

literature we define the second invariant of the strain tensor as 

 

 

    
 

 
          

   

      

                               
     

     
   

 

3.15 

 

Finally, the third invariant of the strain tensor is the determinant, or 

 

 
                                    

        
        

    . 

 

3.16 
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Strain Deviator and the Deviatoric Strain Invariants 

 

 Similar to our treatment of stress in Section 3.2a, let us now break the strain tensor 

down into the mean-normal strain       and the strain deviator     . This leads to 

 

 
        

 

 
          

 

3.17 

 

The strain deviator is useful in describing the equivalent strain. However, when a material is 

assumed to be incompressible the strain is equal to the strain deviator (        ).  

The first deviatoric strain invariant is simply the trace of the strain deviator, or 

 

 
               

 

3.18 

 

The second invariant of the strain deviator is                 
  . However, because the first 

invariant of the strain deviator is zero, the second invariant can be written as 

 

or 

   
 

 
         

 

 
  
 
     

 

   
 

 
          

           
           

      
     

     
   

 

3.19 

 

The third deviatoric strain invariant is, again, the determinant of the strain deviator tensor, or 

 

 
              

 

3.20 

 

 It should be noted here that the deviatoric strain and the deviatoric strain invariants are 

simply mathematical creations which have been used historically in mechanics to help to 

describe plastic flow. The deviatoric strain invariants can be put in terms of the strain invariants 

seen in the previous Subsection. As we see later in this chapter, the second deviatoric strain 

invariant is used to define the equivalent strain and is used in the hardening parameter found in 

the Levy-Mises and Prandtl-Reuss equations describing plastic flow. However, in both the Levy-

Mises and Prandtl-Reuss equations, plastic incompressibility (meaning that         ) is 

assumed making the strain tensor and the deviatoric strain tensor equal. This makes the 

definition of deviatoric strain and the deviatoric strain invariants somewhat pointless. It is, 

however, included here in order to aid the reader in matching the equations derived in the 

mechanics literature with the equations derived in this thesis. 
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3.2c The Uniaxial Tension Test 

 

 The most common test for determining the properties of a solid material is the uniaxial 

tension test. From this, the tensile data can be used to predict a material's behavior for both 

elastic and plastic deformation under forms of loading other than uniaxial tension. Its 

importance cannot be overstated as it is used to obtain the material properties (elastic 

modulus, yield stress, and material hardening properties) around which the equations for both 

elastic and plastic deformation are built.  

 In a typical test, the specimen is gripped from each end and stretched at a constant rate 

until failure. The force required to elongate the material is plotted against the increase in length 

of the specimen relative to its starting length to create a stress-strain curve (Figure 3.4 below). 

The first part of the curve, up to point A, defines the region of elastic deformation. The part 

from point A to B defines the region of stable plastic deformation, point B to C is the region 

where necking occurs, and point C represents the point of failure of the material. 

 

 
Figure 3.4 Stress   versus strain   for a uniaxial tension test on a typical ductile material. 

The Line OA represents the elastic region; point A represents the 0.2% offset yield 

strength; AB encloses the region of stabile plastic deformation; B is the ultimate tensile 

strength of the material, BC is the unstable plastic region, and point C represents the 

point of failure of the material. 

 

 It is tempting to define an elastic limit as the stress right before the first plastic 

deformation occurs or to define it as the first departure from linearity. Neither definition, 

however, is very useful because they both depend on how accurately strain is measured.11 To 

avoid this problem, the onset of plasticity is usually described by an offset yield strength (point 

A in Figure 3.4 This is found by constructing a straight line parallel to the initial linear portion of 

the stress-strain curve, but offset from it by   = 0.002 or 0.2% (the dashed line in Figure 3.4). 

The offset yield strength is then defined as the stress at the intersection between the stress-
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strain curve and the offset line (point A in Figure 3.4). The rationale is that if a material had 

been loaded to this stress and then unloaded, the unloading path would have been along this 

offset line, resulting in a plastic strain of         or 0.2%. The advantage of this way of 

defining yielding is that it is easily reproduced and provides a standard around which materials 

can be tested and compared. 

 The region between point A and point B in Figure 3.4 constitutes the region of stable 

plastic deformation. This region is considered stable because each subsequent infinitesimal 

strain requires a greater stress to cause it. This is defined as strain hardening with a more 

complete definition in Section 3.4a.  

 Point B represents the ultimate tensile strength or ultimate strength of the specimen. It 

is defined as the highest value of the stress and is the point of transition from stable to unstable 

plastic deformation. To explain this further, as long as the stress-strain curve rises, the 

deformation occurs uniformly. For a ductile material, the stress will reach a maximum well 

before fracture. At this maximum (point B), the deformation localizes, forming a neck where 

the local thickness is smaller than the average thickness. Local thinning continues to occur at 

the neck until it becomes so severe that fracture occurs at point C. 

 

3.2d Multiaxial Loading 

 

 The stress-strain test presented in Section 3.2c is given in terms of the normal stress and 

the normal strain. Such a representation was possible since only uniaxial loading was 

considered. However, in many applications of engineering materials, the loading is multiaxial. It 

is then useful to be able to determine relations for a material under multiaxial loading without 

having to test the material under every possible loading condition.  

 In order to achieve this, we generalize uniaxial stress-strain to a multiaxial stress-strain 

by using the equivalent (or effective) stress,   , and the equivalent strain   . The equivalent stress 

is related to the second deviatoric stress invariant through 
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 The equivalent strain is defined similarly as 

 

 

   
 

 
      

 
  

 

    
 

 
 
 

 
          

           
           

  

      
     

     
   

 
 
 

 

3.23 

 

or 

    
 

 
 
 

 
        

 
 
  

 

3.24 

 

The 2/3 is inserted into the definition of equivalent strain so that the equivalent strain    

becomes the uniaxial strain    (where     is the only non zero element of   ) under uniaxial 

loading for incompressible materials. 

 It has been shown experimentally that uniaxial data (such as in Figure 3.4) can be used 

to represent the stress-strain relationship under multiaxial loading by simply substituting the 

equivalent stress and the equivalent strain for the uniaxial stress and uniaxial strain. In fact, 

when equivalent stress-strain tests are plotted together with uniaxial stress-strain tests, the 

data show good agreement and tend to fall within the bounds of the normal experimental 

scatter.8 

 With the definitions of equivalent stress and equivalent strain, we can take our uniaxial 

stress-strain curve (such as Figure 3.4) and generalize it to multiaxial loading by simply changing 

the axes from stress and strain to equivalent stress and equivalent strain such as in Figure 3.5 

below. As is seen in Sections 3.4c and 3.7a, the multiaxial stress-strain plot is used in plasticity 

theory to describe the strain hardening properties of the material under multiaxial strain (or 

multiaxial stress). 
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Figure 3.5 A uniaxial tension test on a typical ductile material (from Figure 3.4) 

generalized to multiaxial loading through the use of equivalent stress    and equivalent 

strain   . The Line OA represents the elastic region; point A represents the 0.2% offset 

yield strength; AB encloses the region of stabile plastic deformation; B is the ultimate 

tensile strength of the material, BC is the unstable plastic region, and point C represents 

the point of failure of the material. 

 

3.3 Elasticity and Elastic Behavior of Metals 

 

 Small mechanical loads cause elastic deformation. The mechanics for elastic 

deformation of a crystalline solid, which most metals are, is a stretching of the bonds between 

atoms due to the applied load. Since there is no long-range movement of the atoms, elastic 

deformation is recoverable and, when the applied load is removed, the atoms return to their 

original equilibrium positions. 

 Since the configuration of the atoms changes with direction in a crystal, the elastic 

response of a crystal depends on the direction of the load. However, the crystalline materials 

that are ordinarily used are bulk materials and are typically polycrystalline metals whose elastic 

properties average those of the individual grains and are, hence, nearly isotropic. Because of 

this, these materials require only two elastic moduli to describe their behavior. These are 

typically the Young's modulus or elastic modulus E and Poisson's ratio  , but also include the 

shear modulus G and the bulk modulus K which, for isotropic systems, are functions of E and  .  

 In this section we first define, in Section 3.3a, the elastic modulus and Poisson’s ratio. 

Then, in Section 3.3b, we use these definitions to describe the equations for elasticity or the 

general statement of Hooke’s law. The equations developed in this section and in Section 3.3c 

specifically, are used throughout this chapter to relate the elastic stress to the elastic strain.  
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3.3a The Elastic Modulus and Poisson’s Ratio 

 

 If we look at the stress-strain curve found from a uniaxial-tension test, such as the one 

in Figure 3.4, we can see that the curve is linear for very small strains. Because, the specimen is 

in uniaxial tension, only one component of the stress is present (let us make this the x-direction 

in this example) and thus, all other stress components are zero (i.e.,                 

     ). This leads us to take the ratio of the stress to the strain as the slope of the linear 

portion, and we define this ratio as E, the Young's or elastic modulus, which is a property of the 

material. 

 Although uniaxial tension causes stress in only one direction, the strains are in the 

lateral direction as well as in the direction of the stress. For example, a bar stretched along its 

length will lengthen, but will also become thinner, reducing in diameter. Different materials, of 

course, behave differently. A completely incompressible material, for example, maintains its 

volume throughout deformation. A perfectly elastic material, on the other hand, elongates 

during uniaxial tension, but maintains its diameter, increasing in volume as it stretches. The 

ratio between the transverse deformation and axial deformation is called the Poisson's ratio,  , 

which is defined for uniaxial tension in the x1 direction as  
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Figure 3.6. An undeformed cube of material (dark grey) with dimensions L, stretched to 

a length of L+∆L (light grey). Due to Poisson’s ratio, the stretched material will contract 

in the transverse direction by ∆L’. 

 

 To explain this in another way, let us take a cube stretched in the x1 direction (such as in 

Figure 3.6).  The length increase of the cube is ΔL in the x1 direction, and has a length decrease 

of ΔL' in the x2 and x3 directions; the infinitesimal diagonal strains are given by 
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Integrating these expressions and using the definition of Poisson's ratio gives 
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Solving this gives us 
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For very small values of ΔL, we can approximate   as 
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 Most materials have Poisson's ratio values ranging between 0.0 and 0.5. A perfectly 

incompressible material deformed elastically at small strains has a Poisson's ratio of exactly 0.5, 

and a spring, or perfectly elastic material, has a Poisson's ratio of 0 meaning that it does not 

contract in directions transverse to stretching. Most steels and rigid polymers exhibit values of 

about 0.3. 

 

3.3b Equations for Elasticity: Generalized Hooke’s Law 

 

 Let us suppose that stresses are applied to a material in all directions. If we assume that 

the rate of deformation is slow enough, then we can assume a quasi-steady state. We can then 

simplify the equation of motion to 

 

 
         

 

3.30 

 

So long as the strains are small enough, the strain can be found by summing the strain 

increments due to each of the stresses. Thus: 
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Or, in matrix notation 
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or 

 

   
 

 
                    

 

   
   

 
   

      

 
    

 

 

3.32 

 

where        signifies the trace of the stress matrix or            . 

 Inversion of Equation 3.32 gives us 

 

 
   

  

           
         

 

     
   

 

3.33 

 

where, again,        signifies the trace of the strain matrix and    is the identity matrix. We call 

Equation 3.33 the general statement of Hooke's law. Notice that this equation relates one 

symmetric matrix      to another      in a linear manner with coefficients which are functions of 

the invariants and other scalars. This is true in plasticity except that the coefficients can be 

nonlinear functions of the scalar invariants. 

  

3.4 Plasticity and Plastic Behavior 

 

 In the previous sections we describe stress and strain and have become acquainted with 

the uniaxial tension test and its resulting stress-strain curve (Figure 3.4). As previously stated, 

deformation is typically split into two different regimes: elastic deformation and plastic 

deformation. Because we assume a quasi-steady state, elastic deformation occurs as soon as 

any load is applied and increases linearly with an increasing stress. We defined elastic 

deformation in Section 3.3 as a reversible deformation where the crystal structure of the 

material is maintained and the mechanism for deformation is through the stretching of the 

bonds between the atoms within the crystal. 

 Plastic deformation, however, is considered to be irreversible or permanent 

deformation and takes place at stresses higher than the yield stress of the material. The 

mechanism for plastic deformation is called Dislocation Theory (a more detailed discussion of 

dislocation theory can be found in Section A.1 of Appendix A) and involves one layer of atoms 

slipping over an adjacent layer. Such a shift can occur whenever the shear stress on a plane 

reaches a critical value and is accounted for through a Yield Criterion. (A more detailed 

discussion of yield criteria can be found in Section 3.4b) Because the equilibrium position of the 

atoms is changed, plastic deformation is considered irreversible and path- or history-

dependent.  
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 To explain the difference between elastic and plastic deformation in a physical way, let 

us conduct a simple test. If one were to bend a paperclip slightly and let go, the paperclip would 

spring back to its original position (elastic deformation). If, however, more force is applied to 

the bending of the paperclip, and it is bent substantially, when the force is removed, it will 

spring back slightly (the elastic component of the deformation), but most of the bending, or 

deformation, will remain (the plastic component of the deformation). This concept leads to the 

common assumption that the strain tensor in the plastic regime may be decomposed into its 

elastic and plastic components. 

Because of this path dependence, we start this section by idealizing the stress-strain 

curve in Section 3.4a. We then explore further the path-dependent nature of plasticity and its 

relationship to the stress-strain curve through an example of a material stressed above its yield 

point, resulting in a progression of the yield point. Section 3.4b explains two different yield 

criteria used in plastic deformation. In Section 3.4c we begin to describe the mathematical 

treatment of plastic deformation and the assumption made to simplify these equations. The 

equations developed in this section are used to describe numerically the plastic deformation of 

lithium metal treated in Section 3.7. Finally, in Section 3.4d we develop an analytical solution to 

a simplified plasticity problem to give the reader an understanding of how the equations 

developed thus far are used in practice. 
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3.4a Idealization of the Stress-Strain Curve 

 

 
Figure 3.7. (a) An example of a representative stress-strain diagram in uniaxial tension, 

and (b) its idealization. 

 

 The stress-strain diagram of a representative elastic-plastic material in uniaxial tension 

is shown in Figure 3.7a. The stress   is a monotonically increasing function of the strain   from 

O to H, after which it falls off until fracture occurs. From the origin, O, to the proportional limit 

A (where the stress-strain curve deviates from linearity), the material is linearly elastic and, 

since the deformation is reversible, unloading takes place along AO. However, as was explained 

in Section 3.2c, the elastic range generally extends beyond A to the offset yield strength, B. For 

loading above B, the deformation is irreversible so that unloading from a point C to zero stress 

would leave a permanent plastic strain. Reloading from a point such as E proceeds along EF to 

subsequent yielding at G, where further loading proceeds along the path GH. The portion of the 

plot from B to H is called strain or work hardening for the reason that as the strain increases, 

the material become harder i.e., a higher stress is required to deform the material further.  

 The portion of the stress-strain curve from H onwards is called strain softening for the 

same reason. As the strain continues, the material becomes softer and less stress is required to 
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deform the material further. Since, in this chapter, attention is focused on the work-hardening 

range of the stress-strain curve, the portion after H is ignored. 

 In general, the stress-strain curve in Figure 3.7a is influenced by time effects such as 

creep and strain rate as well as temperature. Prandtl,13 following experimental work, assumed 

isothermal deformation and ignored time effects, thereby idealizing the stress-strain curve to 

that shown in Figure 3.7b. To be a bit more precise, Prandtl13 followed the assumptions that, in 

Figure 3.7a: (a) the slope of EFG at E is taken to be the same as the slope at O; (b) the hysteresis 

loop is assumed to be determined by the point E; and (c) the reloading path is assumed to pass 

through C and proceeds thereafter from C to H, as if unloading had never occurred. These 

assumptions are taken to imply that the hysteresis loss is zero, so that the path CDE coincides 

with GFE. Furthermore, the proportional limit A is assumed to coincide with the yield limit at B 

and unloading paths such as along CE are straight lines parallel to OA. This leads to the idealized 

curve seen in Figure 3.7b where the points A, B, C, D, and E line up with those in Figure 3.7a. 

 As stated previously, the plastic deformation process is history- or path-dependent. In 

other words, there will not be a one-to-one correspondence between stress and strain during 

plastic deformation. For example, in Figure 3.7b, points A and D have the same stress level but 

different strains. On the other hand, the strains at points B and E are the same, but the stresses 

are different.  

 In order to explore the idealized stress-strain curve further, let us say that we have a 

material that follows an idealized stress-strain curve such as in Figure 3.7b. As we load the 

material, it deforms elastically until the yield limit is reached at point B. At this point, further 

loading of the material causes plastic deformation to occur. When point C is reached, we cease 

loading the material and begin unloading it. The stresses are relaxed, and the material follows 

the path CDE until the material is fully unloaded and point E' is reached. Since plastic 

deformation is irreversible, the material still retains some deformation even when no stress is 

applied, as is evident by the location of E'. Let us now start to load the material again. Since 

plasticity is path dependent, as we begin to load the material a second time, we start to deform 

it elastically following the path E'ED. Eventually we load the material enough such that it 

reaches the new yield limit at point C. This second yield limit is higher than the initial yield limit 

for the unworked material, and this phenomenon is called strain hardening or work hardening. 

The increase in the yield point of the material is due to the accumulation of dislocations during 

plastic deformation thereby changing the property of the material.12  

 

Yield Surface 

 

 Let us now generalize the increase in the yield point of the material beyond the uniaxial 

case seen in Figure 3.7b to multiaxial loading. The concept of the yield point from the uniaxial 
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tension test now becomes a yield surface signifying that yielding can be achieved from any 

combination of stresses, not just uniaxial.  

 To illustrate this phenomenon, we consider, as an example, a material loaded first with 

the normal stress     only. As we increase     while keeping all the other stresses zero, the 

specimen deforms elastically until the stress reaches point B on the initial yield surface shown 

in Figure 3.8. If the stress is increased to point C in Figure 3.8, then the specimen deforms 

plastically, and the yield surface expands to become the subsequent yield surface in Figure 3.8. 

The subsequent yield surface in Figure 3.8 now constitutes the new yield surface for the 

specimen, and any stress below this level causes only elastic deformation. As is discussed in the 

Dislocation Theory Section in Appendix A, this expansion of the yield surface is caused by an 

increase in the dislocation density. 

 

 
Figure 3.8 A representation of the history dependence of plastic deformation through 

the expansion of the yield surface. The initial yield surface represents some strain path 

which leads to the yield point of the material (any point along the 'Initial yield surface' 

curve) and the subsequent yield surface is the expansion of the yield surface (from an 

accumulation in the dislocations) due to further strain beyond the initial yield strength. 

The axes here are two normal stresses     and    . 

 

 Now we unload the material from point C to point A, keep the normal stress     

constant, and apply a normal stress     until point D is reached on the subsequent yield 

surface. During this process, following the path CAD, the material behaves elastically because 
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the path is inside the current yield surface. Therefore, no further plastic deformation occurs 

when the stress state of the specimen changes from C to D following CAD.  

 Now let us consider another loading history. Let a new specimen be loaded along the 

    axis. The elastic deformation continues until the initial yielding at point F. The stress     

increases until point G on the subsequent yield surface, which also contained points C and D 

from the previous loading program. The specimen in then unloaded from point G to E, and the 

normal stress     is kept constant while the normal stress     is applied and increased to bring 

the stress state of the specimen to point D. Since the path GED is inside the current yield 

surface, the material deforms elastically, and no additional plastic deformation occurs.  

 

3.4b Yield Criteria 

 

 There are two major yield criteria that are commonly used to describe the yielding of 

materials. The simplest yield criterion is one first proposed by Tresca. In terms of the principal 

stresses, the Tresca yield criterion states that plastic deformation occurs when the maximum 

difference between two principal stresses reaches a critical value   which is the shear yield 

stress. Mathematically, this is expressed as  

 

 

 

 
                               

 

3.34 

 

where   is the shear yield stress and   ,   , and    are the principal stresses. 

The second criterion, called the von Mises yield criterion, is related to the Tresca yield 

criterion but is somewhat more complicated. However, experiments have shown (a number of 

relevant references are listed in reference 14) that test points generally fall closer to the von 

Mises yield criterion than to Tresca's.  

 The von Mises yield criterion assumes that plastic yielding occurs only when the second 

invariant of the deviatoric stress tensor,   , reaches a critical value   , which is the square of 

the shear yield stress. 

 

 
         for yielding or plastic deformation 

 

3.35 

 

 
              for elastic deformation 

 

3.36 

 

From Equation 3.10 (the definition of   ), in terms of stress components, the yield criterion 

takes the form: 
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3.37 

 

or, in terms of the principal stresses: 

 

 
   

 

 
        

         
         

       

 

3.38 

 

 To relate the shear yield strength   to the tensile yield strength,   , we conduct a 

simple tension test: 

 

 
            

 

3.39 

 

and all other stresses equal zero, where    is the yield stress in simple tension. Substituting 

Equation 3.39 into Equation 3.37 gives 
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Therefore 
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 If we rewrite Equation 3.38 in terms of the tensile yield stress,   , we can say that 

yielding occurs when the equivalent stress    (defined by Equation 3.21), is equal to the yield 

stress. Mathematically, this leads to yielding occurring when 
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or, in full component form, 
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 While experimental test points generally fall closer to the Mises yield criterion than to 

Tresca's, the Tresca yield criterion is simpler and never deviates from the Mises yield condition 

by more than 15%. 

 

3.4c Plasticity 

 

 In this section we develop the constitutive equations for plastic deformation that are 

used in Section 3.7 to determine the deformation of lithium metal with a very stiff separator. 

Plastic deformation is a very complicated phenomenon with different materials each having a 

unique behavior. It is very difficult to determine generalized equations that can govern all 

materials; thus we make several assumptions to simplify the problem and limit ourselves to a 

select group of materials: ductile, isotropic crystalline materials such as mild steel, copper, or, in 

our case, lithium. In this section we first describe the assumptions commonly made to simplify 

plastic deformation. We then state the equations typically used in engineering to relate the 

stress to the plastic strain. Finally, we describe in detail how the equations for plastic 

deformation can be derived from Newton’s law of viscosity for a non-Newtonian fluid. 

 

Assumptions 

 

 Before we develop the constitutive equations for plastic deformation, let us first take a 

moment to discuss the assumptions that are commonly made in order to simplify plastic 

deformation.  

 

1) Time independent plasticity 

 

 We have already significantly simplified plasticity by limiting ourselves to ductile, 

isotropic crystalline materials. However, a further simplification is the common assumption of 

time-independent or rate-independent plasticity.8,9,11,12,19-22 This assumption is typically valid 

unless the metal has a unique crystal structure or the strain rates are particularly fast (above 

10-1/s to 10-2/s).21 The justification for this approximation is typically found through a uniaxial-

tension test. This test is performed for a given material under a variety of strain rates and, if the 

tensile stress-strain curves measured at room temperature are changed by only a few percent 

when the strain rate is changed by an order of magnitude or more (for example from 10-4/s to 

10-3/s), then the rate-independent-assumption can be made. This assumption holds true for 

most structural metals.  
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2) Plastic incompressibility 

 

 The second assumption commonly made is that of plastic incompressibility or, during 

plastic deformation, Poisson's ration is 0.5. This means that          (or      ) and the 

deviatoric strain, defined as 

 

 
        

 

 
          

 

3.17 

 

is equal to the strain, (or       ). 

 

3) Simplification of the equation of motion 

 

 A further simplification is applied to the equation of motion: 

 

 
 
  

  
           

 

3.44 

 

where   is the density (assumed to be constant),      is the substantial derivative,    is the 

gravitational term, and the stress is a function of the strain. Here we assume that the inertial 

terms on the left and the gravitational term on the right are zero leaving us with 

 

 
        

 

3.45 

 

4) Decomposition of the strain tensor 

 

 The final assumption is that the strain tensor can be decomposed into its elastic and 

plastic components. We can then we can simplify the equations by treating the elastic 

deformation and plastic deformation separately and can then combine these deformations 

back into a total deformation through the equation 

 

 
            

 

3.46 

 

where     is the elastic component of the strain tensor and     is the plastic component of the 

strain tensor.  
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Constitutive Equations 

 

 As a starting point for our discussion, we begin with Newton's law of viscosity  

 

 
             

 
   

 

 
             

 

3.47 
 

where   is the viscosity,    is the dilatational viscosity (notated with a tilde to distinguish it from 

the shear yield strength  ) and   is the velocity of the particles in the material.36 Here    is given 

by 

 

 
          
 

3.48 
 

where    is the total stress tensor and   is the thermodynamic pressure. Following from 

assumption 2 the term on the right of Equation 3.47 is zero such that Equation 3.47 becomes  
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The factor of 2 comes into Equation 3.49 due to the factor of 1/2 in the definition of strain.  

 Let us now subtract the hydrostatic stress tensor     from the stress tensor (         ) 

rather than the thermodynamic pressure. This leaves us with 
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The Levy-Mises theory of plasticity18 replaces the viscosity -2μ by  

 

 

 

  
 

 

    

 

 

3.51 

 

where          and   is generically called a "hardening parameter." Here,   is the shear yield 

stress, and     is rate of the second invariant of the deviatoric strain or, since we assume plastic 

incompressibility,                 . (A more detailed derivation of the Levy-Mises equation can 

be found in the next Subsection) The theory also neglects the elastic component of the strain 

stating that       . We now have 
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 From the Yield Criteria Section (Section 3.4b), we can relate the shear yield stress   to 

the tensile yield stress    through Equation 3.41: 

 

 
  

  

  
  

 

3.41 

 

Substituting Equation 3.41 into Equation 3.52 gives 
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Since, during yielding,                   we have (from Equations 3.22 and 3.24): 
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 The hardening parameter (which is a function of the invariants) in front of the rate of 

deformation tensor is determined through the multiaxial stress-strain curve (Figure 3.5) which 

we created from our uniaxial tension test (Figure 3.4) by using the equivalent stress and 

equivalent strain. 

 For the problem of plastic deformation of a lithium-metal anode, we would like to 

include both elastic and plastic deformation of the lithium metal in our calculation. Therefore 

we use include a superscript p on the strain tensor to denote that we are only looking at the 

plastic component of the tensor. Since we are assuming time-independent plasticity, we can 

cancel out dt from Equation 3.52 giving us 
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where      is the increment of the plastic strain. From Equations 3.22 and 3.24, we can relate 

the scalar factor to the equivalent stress    and the increment of the plastic component of the 

equivalent strain      given by 
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assuming plastic incompressibility. We now have 

 

 
   

 

 

  

    
    

 

3.57 

 

We can then calculate the elastic component of the strain through Hooke's law. 

 Solving Equation 3.57 for      leads to the Prandtl-Reuss equations which, in expanded 

form, are 
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It should be noted here that the Prandtl-Reuss equations can include the tensile yield strength 

as a function of the equivalent plastic strain (     
  ) to include the work-hardening behavior of 

lithium metal. 

 

The Transition from Rate-Dependent to Rate-Independent Plasticity 

 

 Let us now take a moment to relate the constitutive equations for plastic flow to those 

developed for Newtonian and non-Newtonian fluids. For all cases, the constitutive equation can 

be expressed as 

 

              
 
       3.59 
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where   and   are scalar funtions of relevant properties including the temperature, pressure, 

and composition of the material, as well as the scalar invariants of the tensor   . 

 For a Newtonian fluid,  and   are chosen so that 

 

 
             

 
   

 

 
                 

 

3.60 

 

where   and    are physical properties (   is the dilatation viscosity notated with a tilde to 

distinguish it from  , the shear yield strength), and p is the thermodynamic pressure of the local 

fluid element.  

 For plastic flow, we still use Equation 3.59 choosing   and   such that the stress is 

related to the rate of deformation     through  
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where          ,   is the hydrostatic pressure,   is the shear yield strength,    is the second 

invariant of the stress deviator (defined in Equation 3.10), and   is a function of        .20 In 

Equation 3.61, the brackets are defined such that: 
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We can relate Equation 3.61 to the multiaxial stress-strain curve (seen in Figure 3.5 or Figure 

3.9 below) through Equation 3.21 

 

 
        

 

3.21 

 

and Equation 3.41 
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Equation 3.61 can now be described as 
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where    is the equivalent stress and    is the tensile yield strength. We can now imagine the 

stress-strain plot (such as the one in Figure 3.9 below) as a steady-state line. If the equivalent 

stress    is at or below the current yield stress    then yielding does not occur. However, if we 

increase the stress to above the yield stress, we are above the stress-strain curve and the 

material deforms.  

 To explain this relation further, let us conduct a simple loading program on an example 

material whose stress-strain data is given by Figure 3.9. First, we stress the material elastically 

until it reaches the 0.2% offset yield strength at point A. So far the material has only deformed 

elastically, the equivalent stress is equal to the yield stress, and           in Equation 3.63. 

Now, we suddenly increase the stress on the material to point B in Figure 3.9. The equivalent 

stress at point B is greater than the yield strength and, if we maintain the applied stress, the 

material deforms until point C is reached where the yield strength now equals the equivalent 

stress and the rate of deformation goes to zero. Next, we suddenly increase the stress from 

point C to point D and hold the stress steady, allowing the material to deform until point E is 

reached where the equivalent stress again equals the new yield strength of the material. In 

order to get the strain for each step we must integrate over time. To calculate the total strain  

for a multi-step loading process, such as the one described previously, we sum the strain for 

each step to get the total strain for the loading program. 

 

 
Figure 3.9. Equivalent stress versus equivalent strain for an example material at a very 

low rate of strain such that the solid line can be thought of as steady state. Point A 

represents the 0.2% yield stress and point C and E, equilibrium points where the stress 

equals the yield stress and the stress can be maintained without further deformation 

occurring. Points B and D represent points away from equilibrium where the stress 

exceeds the yield stress of the material and deformation occurs. 
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 In the previous example, steps ABC and CDE are rather large. Decreasing the step size is 

equivalent to a slower and slower process such that eventually the process is very slow and the 

loading program follows the steady-state line. In terms of Equation 3.63,             . We 

can now make the assumption that the process is independent of time. This means that the 

process is slow enough that, by changing the rate at which we stress the material (or, 

equivalently, the rate at which we strain the material), we do not deviate appreciably from the 

steady-state stress-strain curve. To implement the time-independent assumption into Equation 

3.63 let us perform some algebra. 

 In this analysis we assume that we are in the plastic region of deformation and are 

slightly above the steady-state line meaning that         is small but positive. Taking the 

double dot product         of Equation 3.61 yields  
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(The algebra leading from Equation 3.61 to 3.64 can be found in Section A.5 of Appendix A.) 

Rearranging Equation 3.61 to  
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and substituting Equation 3.64 into Equation 3.65 gives 
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From Equation 3.10,               which gives us 
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where         . If we neglect the elastic component of the strain and assume that we are 

always in the plastic regime, then we can remove the brackets from Equation 3.67 giving us the 

Levy-Mises theory of plasticity (Equations 3.52 and 3.54).  
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Multiplying Equation 3.52 by dt and denoting the strains with a superscript p to denote that 

they are the plastic component of the strain tensor gives us the Prandtl-Reuss equations: 
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seen in expanded form in Equations 3.58. The Prandtl-Reuss equations relate the plastic 

component of the strain to the stress and are used in Section 3.7a to calculate numerically the 

plastic deformation of a lithium-metal anode. 

 

3.4d Analytical Solution to a Simplified Plasticity Problem 

 

 Before we solve numerically for the plastic deformation of lithium metal at the negative 

electrode, let us first solve a simplified problem analytically in order to gain an understanding of 

how the equations work. Building off an example in Section IV-6 of Elements of the Mechanical 

Behavior of Solids,8 let us take, for example, an aluminum sheet of length   , width   , and 

thickness   . We now pull on the ends of the slab and make the simplifying assumption that the 

width remains the same, but the length increases to  . Following this program, we determine 

the final thickness of the slab and the maximum force necessary to stretch the aluminum to 

that length. As a first step, we decouple the elastic deformation and plastic deformation. 

Because the deformation is large, we assume that the elastic deformation is negligible and 

consider only the plastic deformation. Let us also assume that, rather than use an experimental 

stress-strain curve, the plastic portion of the uniaxial stress-strain curve can be fit by the power-

law form: 

 

 
        

 

3.68 

 

where, again,    is the equivalent stress and    is the equivalent strain governed by Equations 

3.21 and 3.23, respectively. Here, C and n are constants and are fitting parameters where n 

typically varies between 0 and 0.5. 

 We now align our axes such that x1 is in the direction of the thickness of the slab, x3 is 

along the length of the slab, and x2, is along the width. Since we consider plastic deformation to 

be incompressible deformation, then: 
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or 
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 As defined by the problem, the width of the slab remains the same so that     , or 

    . This leads to  

 

 
  

  
 
   

 

3.71 

 

which relates the final thickness to the initial thickness and the initial and final lengths of the 

aluminum slab, all of which are known. 

 To determine the stress required to stretch the aluminum to length  , we use the 

Prandtl-Reuss equations. These were derived in Section 3.4c, and are repeated below (using 

principle stresses) for clarity: 
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 Since the slab deforms uniformly and is thin,    is assumed to be negligible. This leads 

to: 
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Since       
 
  , and 

 

 
   

 

 
    

 

3.73 

 

Equations 3.70 thus reduce to 
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3.74 

 

 Since the material is yielding, the yield stress can be related to the equivalent stress 

through Equation 3.42. With the prior simplification that     ,    becomes 

 

        
 

 
        

    
    

   

 
  

 
  

 
    

 

3.75 

 

The substitution of Equation 3.75 into Equations 3.74 yields 
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3.76 

 

Integrating Equations 3.76 from the initial strain (which is zero) to the final strain gives us 
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3.77 

 

Inverting the equations and substituting    
 

  
  for   

 
 yields: 

 

 
    

 

  
   

 

  
   

 

3.78 

 

Finally, substituting Equation 3.78 into Equation 3.68, we find 
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 Using empirically found values for C and n gives us the equivalent stress through 

Equation 3.79. We can then employ Equation 3.75 to solve for the stress pulling on the ends of 

the metal plate that is required to stretch the plate to the dimensions specified. 

 As we can see from this example, the equations derived in Section 3.4 can be simplified 

so that, with simple geometries, they can be solved analytically without too much difficulty. For 

the problem at hand, the plastic deformation of lithium due to a very stiff separator, we use the 

general equations and solve them numerically such as will be described in Section 3.7. 

 

3.5 Elastic Deformation of Lithium Metal due to a Very Stiff Separator 

 

 Now that we have developed an understanding of stress, strain, and elastic and plastic 

deformation, we can turn our focus onto the problem at hand: to determine the effects of a 

stiff polymer separator on a lithium-metal negative electrode. Such a separator resists the 

movement of lithium seen in Chapters 1 and 2, through the generation of stresses in the cell. As 

you can imagine, as the lithium moves, the separator is either compressed or stretched. This 

translates into stresses throughout the cell that affect the negative electrode through two 

mechanisms: altering the thermodynamics of the negative electrode and deforming the 

negative electrode mechanically. To that end, in this section, the model developed in Chapter 1 

is updated to include both of these mechanisms.  

 In this section the effect of the stress on the thermodynamics is developed along with 

the elastic deformation of the negative electrode. In Section 3.5a, we introduce the 

assumptions made and the geometry used in the model. Then, in Section 3.5b, we develop 

equations for the effect of stress on the thermodynamics of lithium metal and incorporate the 

change into the Butler-Volmer kinetic equation for the reaction at the surface of the negative 

electrode. In Section 3.5c we update the model developed in Chapter 1 to include the kinetic 

equation developed in Section 3.5b and discuss the results. Subsection 3.5d devotes itself to 

the addition of elastic deformation of the lithium into the model and the discussion of the 

results of the addition of elastic deformation. 

 

3.5a Introduction, Assumptions, and Model Geometry 

 

 Before we describe how the pressure, due to the addition of a stiff polymer separator, 

affects the thermodynamics of the reaction kinetics at the negative electrode, we first describe 

the model geometry and assumptions. In this chapter we update the model developed in 

Chapter 1, which incorporates a moving boundary at the negative electrode, a CoO2 

intercalation electrode as the cathode (modeled using porous electrode theory), and a lithium-

metal negative electrode. In Chapter 1, the separator was modeled as a liquid electrolyte with a 
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binary salt, and the total volume changes were assumed to be zero. In this chapter, however, 

the separator is updated to a theoretical polymer separator which has similar transport 

properties to the liquid electrolyte but has mechanical properties which inhibit dendrites. As an 

approximation, the separator is modeled as a series of springs, such as is seen in Figure 3.10. It 

should be noted here that the same cell geometry from Chapter 1 is used in this chapter and 

that Figure 3.10 is a repeat of the model geometry shown in Figure 1.1. 

 

 
Figure 3.10 Two-dimensional model geometry of a lithium-metal battery, consisting of a 

lithium-metal negative current collector, a lithium-metal negative electrode, a polymer 

separator, composite cathode, and aluminum positive current collector. The polymer 

separator is modeled here as a series of springs. 

 

 Furthermore, while in Chapter 1 the volume of the separator was assumed to vary with 

the consumption or deposition of lithium, thereby maintaining the total volume of the cell, in 

this chapter, the volume of the separator remains constant. This means that the total volume of 

the cell decreases during discharge, when the lithium is consumed, and the thickness of the 

negative electrode shrinks. Conversely, on charge, the deposition of lithium at the negative 

electrode causes the total volume to increase. If the volume of the separator were to vary 

during discharge (as it was allowed to do in Chapter 1), one can imagine that during discharge, 

as the lithium is consumed and the volume of the separator increases, the entire cell would 

experience considerable tension well beyond anything that could be considered reasonably 

possible. Furthermore, a commercially available cell is typically in a casing which allows for 

some expansion and contraction while still preserving some compression on the cell to 

maintain contact between the separator and electrodes. To put it another way, one can 
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imagine this system, where the volume of the separator is conserved, to be equivalent to a 

small weight being placed on the cell such that a compressive force is maintained while the 

volume of the cell is allowed to expand and contract.  

 To gain an initial understanding of how the stresses change during cycling, we turn our 

attention to Figure 3.11, below, where we have zoomed in on Figure 3.10 to get a closer look at 

the separator. In this state, the lithium is in its starting position and is flat. The local pressure is 

the average pressure, and we take this as the initial pressure in the cell or   . 

 

 
Figure 3.11. Close-up of the separator and negative electrode seen in Figure 3.10 in its 

undeformed state. Here the separator is modeled as a series of springs which, with the 

movement of the negative electrode, will exert a resisting force. 

 

 As we discharge the cell, we saw in Chapter 1 that current distributions led to more 

lithium being removed on the left side of the cell than the right. This led to a lithium profile 

such as is seen in Figure 3.12 below. Again, in this chapter, the volume of the separator remains 

the same while the thickness of the negative electrode decreases due to the lithium being 

consumed. Therefore, the faster consumption of lithium on the left leads to a local tensile force 

on the left, where the separator is stretched, and a local compressive force on the right, where 

the separator is compressed. It should be noted here that because the volume of the separator 

remains the same, the average pressure in the cell, after discharge, remains at   . 
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Figure 3.12. Close-up of the separator and negative electrode seen in Figure 3.10 in its 

deformed state directly following a discharge phase. Here the separator is modeled as a 

series of springs which, due to the uneven distribution of lithium, is exerting a resisting 

force. 

 

 Of course, the opposite is true after a full cycle where, as we saw in Chapter 1, the 

lithium accumulated on the left side of the cell after the charge phase. In this case, the 

separator is compressed on the left side of the cell where the negative electrode is thicker and 

is in tension on the right side where the lithium is thinner. Again, since the volume of the 

separator is maintained, the average pressure in the separator is maintained at   , which is the 

base pressure. 

 

3.5b The Effects of Pressure on the Reaction Kinetics 

 

The Effect of Pressure on the Thermodynamics of a Reaction 

 

 Now that we have an understanding of the model geometry and some of the basic 

assumptions that we are making, let us derive how the pressure on the negative electrode will 

alter the chemical potential of the lithium.   

 Maxwell's relations may be used to get an expression for the chemical potential as a 

function of pressure 

 

 
 
   
  

 
     

    

 

3.80 

 

where    is the partial molar volume of species i. If we assume that the partial molar volume is 

constant, we can integrate the partial derivatives and get: 
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3.81 

 

or 

 
   

 
      

 

3.82 

 

where    
 

 is the change in the chemical potential of species i due to an applied pressure,   . 

We note that   is now the thermodynamic pressure. 

 Let us take the reaction at the interface at the negative electrode to be 

 

 
           

 

3.83 

 

If we convert the reaction into chemical potentials we get 

 

 
              

 

3.84 

Let us define the electrochemical potential of species i under pressure to be   
 

 giving us 
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3.85 

 

Subtracting Equation 3.84 from Equation 3.85 gives us 
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3.86 

 

Substituting Equation 3.82 into Equation 3.86 gives us 

 

 
    

 
                

 

3.87 

 

or, the change in the electrochemical potential of an electron in the metal due to a change in 

the pressure. Here     is the change in pressure in the metal phase and     is the change in 

pressure in the electrolyte phase. The difference in pressure between the solid phase and the 

electrolyte phase is due to the surface tension and the curvature of the surface. Since we are 

interested in how the change in pressure effects the chemical potentials we need to use the 

change in the surface tension as the material deforms.  This change in the surface tension is 

give by  
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where   is the surface tension (a function of temperature, pressure, and composition) and    

and    are the radii of curvature, as given by the Laplace equation. Since    and    are very 

large, then we can assume that the surface tension does not change appreciably. Monroe et al.4 

also found the contribution of surface tension to be very small compared to the other 

mechanical forces involved in the abatement of dendrites. Thus: 
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and 

 
    

 
                            

 

3.90 

 

To obtain the partial molar volume of the lithium ion in solution, we employ the relationship 

proposed by Newman and Chapman,33 

 

 
     

  
     

         
  
  

 

3.97 

 

where      is the partial molar volume of neutral salt in the electrolyte,    and    are the 

stoichiometric numbers of ions in a unit formula of the neutral salt, and   
  and   

  are the 

anionic and cationic transference numbers. 

 In this analysis by Newman and Chapman,33 Q was used to represent the quantity 

 

 
  

  
 

  
   

  
 

  
    

 

3.92 

 

It was noted that this quantity could not be measured independently, and was arbitrarily taken 

to be zero. This led to the assumption (based solely on convenience) that the transference 

numbers of the ions were inversely proportional to their partial molar volumes and no physical 

significance should be attached to it.33 

 

The Effects of Pressure on the Reaction Kinetics at the Negative Electrode 

 

 Let us now turn our attention to deriving the effect of pressure on the reaction kinetics 

at the negative electrode. To do this, we first take the Butler-Volmer equation and assume that 

the activity of the reduced species (which is the lithium metal) is one. This gives us the familiar 

equation: 
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3.93 

 

 We now state that the measured potential across the interface of the negative 

electrode is equal to the open-circuit potential of lithium at standard pressure plus the surface 

overpotential plus the open-circuit potential due to deformation of the electrode:  

 

         
    

 

 
  

 

3.94 

 

Substituting Equation 3.94 into Equation 3.93 leads to 
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Through algebra, we get: 

 

 

    
 

       
          

  
      

      
 

  
  

 

            
          

  
     

      
 

  
   

 

3.96 

 

And, through further rearranging, we get 

 Since we set our reference at standard pressure, at open circuit        
 

         

Thus, the open-circuit potential    is 
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Plugging    into Equation 3.96 and doing some algebra leads to 
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We can now factor out the pre-exponential terms into the exchange current density leaving 

 

 

             
      

 

  
     

   

  
   

     
      

 

  
      

   

  
      

 

3.99 

 

where       
    

      
    Equation 3.99 gives us a kinetic expression for the reaction at the 

lithium-metal negative electrode as we vary the pressure. 

 There is, however, an alternate form of the pressure-modified kinetic expression 

proposed by Monroe et al.39 which is build off the work by Barton and Bockris34 and Diggle et 

al.34 From an analysis of growth rates of zinc dendrites, Diggle et al. extended the model 

proposed by Barton and Bockris for the kinetics of the reaction at the tip of a dendrite. They 

state that the ratio of the activities of the reverse anodic reaction must take into account the 

Kelvin term, which becomes appreciable at low values of dendrite tip radii. The Kelvin term is, 

for the case of lithium metal, 

 

 
     

 
 

 

3.100 

 

where   is the surface energy (i.e., surface tension) of the lithium/electrolyte interface, r is the 

radius of the dendrite tip, and     is the molar volume of lithium. From this, Diggle et al. include 

Equation 3.100 in the Butler-Volmer kinetic expression through the addition of an exponential 

term in front of the reverse reaction rate such that 

 

 
           

 

  
     

    

  
        

     

    
     

   

  
      

 

3.101 

 

where      is the current density at the tip of the dendrite,   is the average current, and    is the 

limiting current. 
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 Monroe et al.39 extended this kinetic expression to include mechanical pressure effects 

which appear in both the surface overpotential (as in Equation 3.94) and in exponential terms 

in front of both the anodic and cathodic terms in the Butler-Volmer equation. This leads to the 

equation 
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where Monroe et al. defines a new mechanical transfer coefficient,   . They then assume that 

          and      which allows for the exponents to be factored out leaving 

 

 
           

          
 

  
      

   

  
         

   

  
      

 

3.103 

 

The assumption that      and the difference between Equation 3.99 and 3.103 should be 

explored further. However, in this thesis, only Equation 3.99 is used. This is due to the fact that,  

as seen in Section 3.7b, with the addition of plastic deformation, the pressure-modified kinetics 

play only a very small role in forcing the lithium toward uniformity. 

 

3.5c The Effects of Kinetics on the Movement of Lithium 

 

 Now that we have updated the Butler-Volmer kinetics to include the effects of pressure, 

we can turn our attention toward describing how the kinetics affects the movement of lithium 

seen in Chapter 1. As we saw in Figures 3.10, 3.11, and 3.12, the separator is considered to be 

maintained at a constant volume and is modeled as a series of ideal springs. This allows the use 

of Hooke's law where    is the force on lithium,    is the change in the local thickness of the 

separator relative to its initial thickness before cycling (  ), and      is the elastic modulus of 

the separator: 

 

 
   

    

  
    

 

3.104 

 

Because the separator is a series of springs, the only force exerted on the negative electrode by 

the separator is   . Therefore,    in Equation 3.89 is simply      
 , where   

  is the initial 

force on the negative electrode or, in this case, 1 bar. Thus, 
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3.105 

 

 We can now use Equation 3.99 for the kinetic equation at the negative electrode in the 

model developed in Chapter 1, using Equation 3.90 as the expression for the change in the 

electrochemical potential of the electron due to pressure. The pressure is determined by the 

movement of lithium and is calculated through Equation 3.105. Thus, the movement of the 

lithium is coupled to the kinetics at the interface through the pressure caused by the resistance 

of the separator to the movement of the lithium. 

 In this section the lithium is assumed to be rigid and does not deform mechanically. The 

separator, however, is allowed to deform and exerts a force on the lithium governed by 

Equation 3.104. While this force on the negative electrode due to the deformation of the 

separator does not mechanically deform the lithium, it does alter the kinetics at the negative 

electrode through Equation 3.99. As can be seen in this Section (which is consistent with the 

finding of Monroe et al.4,39), the deformation of the separator forces the current distribution to 

be more nearly uniform causing a much more uniform lithium profile.  

 The lithium-metal battery was cycled galvanostatically at a C/2 rate for one cycle 

beginning with a discharge, followed by a rest period of 1000 seconds, and completed by a 

charge at the same rate and duration as the discharge. The current needed to achieve the C/2 

rate was calculated from the theoretical current needed to achieve a 2 hour discharge rate at 

the positive electrode. The time of the discharge was calculated based on the theoretical time 

required to fill 50 percent of the available capacity in the positive electrode such that y in 

LiyCoO2 varied from 0.5 to 0.75. 

 In order to determine the effect that the separator has on the movement of lithium, two 

different elastic moduli for the separator where chosen, 400 MPa and 16 GPa. An elastic 

modulus of 400 MPa was chosen because it falls within the range of values for the elastic 

modulus of polyethylene and polypropylene found in the literature.26-28 The second value for 

the elastic modulus of the separator was chosen to be 16 GPa which, when converted to a 

shear modulus, is 6.8 GPa, or twice the shear modulus of lithium at 3.4 GPa.4, 29, 30 (The 

requirement for the shear modulus of the separator to be at least 6.8 GPa was predicted by 

Monroe et al.4 to be sufficient to inhibit the growth of dendrites. This model included the 

pressure-modified kinetic equation (Equation 3.99) as well as elastic deformation of the lithium 

due to mechanical forces). The results of the model immediately after the charge phase are 

shown in Figure 3.13 below and are labeled '400 MPa Separator' and '16 GPa Separator'. The 

'Pliable Separator' line in Figure 3.13 is the 'C/2' result from Figure 1.4 where the separator did 

not resist the movement of the lithium at the negative electrode and is used as a comparison 

for the 400 MPa separator and 16 GPa separator.  
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Figure 3.13. Height of the lithium negative electrode along the lithium/separator 

interface relative to its starting position immediately after a cycle consisting of a 

discharge, rest, then a charge at a C/2 rate to a 50% depth of discharge with three 

different separator rigidities. The 'Pliable Separator' line is taken from the 'C/2' line in 

Figure 1.4, where the separator did not resist movement of the lithium. 

 

 From Figure 3.13, we can see that a separator with an elastic modulus of 400 MPa does 

not change the movement of the lithium appreciably from the results found in Chapter 1. 

However, the '16 GPa Separator' line shows a significant departure from the results of Chapter 

1. Both of these results are somewhat expected since Monroe and Newman found that the 

elastic modulus of the separator needs to be on the order of 16 GPa to inhibit dendrite 

propagation.4 If such a separator is employed to inhibit dendrites, then it should also 

significantly resist any movement of lithium whether dendritic or otherwise. The '400 MPa 

Separator' line does, however, show that the results from Chapter 1 are fairly accurate if a 

standard polypropylene Celgard separator with a liquid electrolyte is used and dendrites are 

not found.  

 

3.5d Elastic Deformation of Lithium Metal 

 

 From the '16 GPa Separator' line in Figure 3.13, we see that a very stiff separator 

significantly reduces the movement of the lithium (over a 75% reduction) when compared to a 



95 
 

pliable separator. However, this comes at the cost of the through-cell pressure peaking at 120 

bar or 12 MPa, as is seen in Figure 3.14 below.  

 

 
Figure 3.14 Pressure distribution along the lithium/separator interface immediately 

after a cycle consisting of a discharge, rest, then a charge at a C/2 rate to a 50% depth of 

discharge with two different elastic moduli for the separator. 

 

 Furthermore, on the right side of the cell, where the lithium is thinner, the cell is in 

tension by over 40 bar. Under these conditions one should expect some sort of mechanical 

failure within the battery and, at least, significant elastic deformation of the lithium, thereby 

relieving the stresses in the cell. Even with a separator with an elastic modulus of only 400 MPa, 

the through-cell pressure peaks at about 12 bar on the left, which would cause at least some 

elastic deformation of the lithium. The case for including elastic deformation of the lithium is 

strengthened when we compare the elastic modulus of lithium, which is 4.9 GPa, to the elastic 

modulus of the dendrite-inhibiting polymer, which is 16 GPa. From a simple inspection, we can 

conclude that the lithium would deform much more readily than the stiffer separator, causing 

the results found in both Figures 3.13 and 3.14 to be overestimations. Therefore, we include 

the elastic deformation of the lithium through Hooke's law: 
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3.32 

 

  Here we assume that the lithium is perfectly elastic, or the Poisson's ratio is zero. This 

leads to  

 

 
      

  

   
                

  

   
 

 

3.106 

 

due to the fact that the separator is only assumed to exert a force on the lithium in the y 

direction. In Equation 3.106,       is the elastic deformation of the lithium in the y direction,    

is the local force on the lithium (seen in Figure 3.14), and     is the Young's modulus of the 

lithium. The elastic deformation of the lithium, calculated through Equation 3.106, now 

modifies the thickness of the lithium through the equation: 

 

 
                     

   

 

3.107 

 

where      is the change in the height of the lithium relative to its average height,     is the 

local thickness of the lithium, and    
  is the average height of the lithium. We update Equation 

3.104 to include the elastic deformation of the negative electrode:  

 

 
   

    

  
      

 

3.108 

 

We now iterate Equations 3.106 through 3.108 using the stress found in Section 3.6c as the 

initial condition, and the results are in Figure 3.15 below. 
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Figure 3.15 Height of the lithium negative electrode along the lithium/separator 

interface relative to its starting position immediately after a cycle consisting of a 

discharge, rest, then a charge at a C/2 rate to a 50% depth of discharge with three 

different elastic moduli for the separator. The 'Pliable Separator' line is taken from the 

'C/2' line in Figure 1.4, where the separator did not resist movement of the lithium, and 

the dashed lines represent the inclusion of elastic deformation of the lithium. The solid 

colors are from Figure 3.13 and represent the effect of pressure on the electrode 

kinetics and elasticity of the separator, but not the elastic response of the lithium. 

 

 From Figure 3.15, we can see that a separator with an elastic modulus of 400 MPa 

causes only slight elastic compression (red dashed line in Figure 3.15). This slight deviation is 

expected since the separator is about an order of magnitude more elastic than the lithium. 

Thus, the separator will deform much more readily. However, with a dendrite-inhibiting 

separator with an elastic modulus of 16 GPa, significant elastic deformation of the lithium is 

seen (blue dashed line in Figure 3.15). In fact, by including elastic deformation, the lithium is 

deformed to around a quarter of the height it was when it was assumed to be rigid (solid blue 

line in Figure 3.15), and the movement is reduced to only 5 percent of its original height from 

Chapter 1, when a pliable separator was used (black line in Figure 3.15). 

 The elastic deformation of the lithium also has an effect on the through-cell pressure, as 

can be seen from Figures 3.16 and 3.17 below. With a separator that has a 400 MPa elastic 

modulus, the elastic deformation of the lithium only slightly reduced the through-cell pressure 

since the separator is much more elastic than the lithium. In the case of a separator with a 16 
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GPa elastic modulus, however, the through-cell pressure was significantly reduced to a 

maximum of around 27 bar. Again, this is due to the fact that the lithium deformed 

significantly. 

 

 
Figure 3.16. Pressure distribution along the lithium/separator interface immediately 

after a cycle consisting of a discharge, rest, then a charge at a C/2 rate to a 50% depth of 

discharge for a separator with an elastic modulus of 400 MPa. The solid line assumes 

that the lithium is perfectly rigid, and the dashed line allows for elastic deformation of 

the lithium. 
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Figure 3.17. Pressure distribution along the lithium/separator interface immediately 

after a cycle consisting of a discharge, rest, then a charge at a C/2 rate to a 50% depth of 

discharge for a separator with an elastic modulus of 16 GPa. The solid line assumes that 

the lithium is perfectly rigid, and the dashed line allows for elastic deformation of the 

lithium. 

 

Testing the Assumption of Constant Partial Molar Volume 

 

 If we are to assume that the lithium is able to deform elastically, then we must also look 

at the assumption in Equation 3.81 that the partial molar volume of the lithium,    , remains 

constant. From the definition of partial molar volume, we derive that the partial molar volume 

of lithium is related to the pressure by 

 

 
       

 
   

  

   
   

 

3.109 

 

Here     is the partial molar volume of the lithium under pressure,    

 
 is the initial partial molar 

volume of lithium,    is the change in pressure from its initial state, and     is the Young's 

modulus of lithium. We now use Equation 3.109 to calculate Table 3.1 at various pressures. 
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Table 3.1. The change in the partial molar volume (calculated from Equation 3.109) and 

the corresponding percent change from the initial partial molar volume of lithium due to 

elastic deformation caused by a pressure, ΔP.        (calculated from Equation 3.106) 

is the corresponding change in the height of the lithium due to elastic deformation. 

 

ΔP 

(bar) 

    

(m3/mol) 

Percent 

Change 

       

(μm) 

0 1.299 10-5 0.0000% 0.00 

20 1.2993 10-5 -0.0408% -1.02 10-2 

40 1.2987 10-5 -0.0816% -2.04 10-2 

60 1.2982 10-5 -0.1224% -3.06 10-2 

80 1.2977 10-5 -0.1633% -4.08 10-2 

100 1.2972 10-5 -0.2041% -5.10 10-2 

120 1.2966 10-5 -0.2449% -6.12 10-2 

140 1.2961 10-5 -0.2857% -7.14 10-2 

160 1.2956 10-5 -0.3265% -8.16 10-2 

180 1.2950 10-5 -0.3673% -9.18 10-2 

200 1.2945 10-5 -0.4082% -1.02 10-1 

 

 From Table 3.1, we see that even with a significant pressure of 100 bar applied to 

lithium metal, the partial molar volume changes by only about 0.2%. Thus, the partial molar 

volume of lithium metal,    , can be assumed to be constant with little error. This does not 

mean, however, that elastic deformation is negligible, simply that the partial molar volume of 

lithium can be thought of as a constant. The lithium is still compressed due to pressure thereby 

changing both the profile and the pressure gradient seen during cycling. We can see this in the 

       column in Table 3.1, which estimates the change in the height of the lithium from 

elastic deformation due to an applied pressure. Even though the change in the partial molar 

volume of lithium metal is slight, the compression of lithium is on the order of the movement of 

lithium seen in Figures 3.13 and 3.15. 

 

3.6 Limit Analysis as it Applies to Plasticity in Batteries 

 

 As we saw in Figure 3.17, including the elastic deformation of the lithium at the negative 

electrode reduces the stress on the lithium substantially. Even so, if we take the yield strength 

of lithium metal into account, which is 6.55 bar,31 even modest changes in the thickness of the 

lithium result in pressures above the yield strength. This can be seen more clearly in Figure 3.18 

below, where horizontal lithium yield-stress lines are superimposed on the plot of the through-

cell pressure after elastic deformation of the lithium (taken from the ‘16 GPa Elastic Lithium’ 
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line in Figure 3.17). From Figure 3.18, we can see that, even if the lithium is deformed 

elastically, there are regions of stress on the left and right sides of the plot, where the pressures 

exceed the yield strength of lithium. Therefore, in these regions (notated as ‘Plastic Region’ in 

Figure 3.18), plastic deformation of the lithium at the negative electrode should occur. 

 

 
Figure 3.18. Pressure distribution along the lithium/separator interface immediately 

after a cycle consisting of a discharge, rest, then a charge at a C/2 rate to a 50% depth of 

discharge for a separator with an elastic modulus of 16 GPa, allowing for elastic 

deformation of the lithium (taken from the ’16 GPa Rigid Lithium’ line in Figure 3.17). 

The horizontal dashed lines represent the yield stress of lithium. 

 

 Before we include the equations for plasticity in the model developed in Chapter 1 and 

updated in Section 3.5, it is useful to get a basic understanding of how we expect the negative 

electrode to deform plastically under the stress profile seen in Figure 3.18. Therefore, a limit 

analysis of the problem, the foundation for which is detailed in Section A.5 of Appendix A, is 

employed.  

 If we simplify the problem at hand such that only plastic deformation is included, then 

we can also simplify Figure 3.18 to include only pressures above the yield strength of lithium. 

Therefore, we split Figure 3.18 into three sections: pressures above the compressive yield 

strength, pressures below the tensile yield strength, and pressures between the yield strengths. 
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This can be seen in Figure 3.19 below where vertical dashed lines are added to signify the 

regions where the pressure exceeds the yield strength of lithium. The region on the left, labeled 

‘Compressive Region,’ is where the pressure exceeds the compressive yield strength of lithium, 

the region on the right, labeled ‘Tensile Region,’ is where the pressure exceeds the tensile yield 

strength of lithium, and the region in the middle, labeled ‘No Pressure,’ is where the pressure 

falls between the compressive and tensile yield strengths of lithium and only elastic 

deformation is expected to occur. 

 

 
Figure 3.19. Pressure distribution along the lithium/separator interface immediately 

after a cycle consisting of a discharge, rest, then a charge at a C/2 rate to a 50% depth of 

discharge for a separator with an elastic modulus of 16 GPa allowing for elastic 

deformation of the lithium (taken from the ’16 GPa Rigid Lithium’ line in Figure 3.17). 

The horizontal dashed lines represent the yield stress of lithium, and the vertical lines 

divide the plot into the different pressure regions. 

 

 We now take this simplification to be an extension of the punch-indentation problem 

found in Section A.5 of Appendix A and find the upper-bound solution. Rather than have one 

punch being forced into the metal (as is seen in Figure A.3), we now have two punches, fixed to 

the metal, which have equal but opposite forces (see Figure 3.20a). The left punch, P1, is 

compressed by pressure p, and the right punch, P2, is in tension by pressure -p. With this 
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analysis, we can determine the stresses necessary to cause plastic deformation and gain an 

understanding of how we expect the lithium to deform. 

 If we consider the left punch only, punch P1 is forced down, pushing triangle A down and 

to the right. This moves triangle B to the right, which forces triangle C up and to the right. If we 

now consider the right punch only, punch P2 is forced up, which pulls triangle E up and to the 

right. This pulls triangle D to the right, which moves triangle C down and to the right. As we can 

see, Punch P1 forces triangle C up and to the right, and punch P2 forces triangle C down and to 

the right. The combination of both of these vectors results in triangle C moving directly to the 

right at the same rate as triangles B and C. This means that no shearing takes place between 

triangles B and C or C and D and triangles B, C, and D all move to the right.  

 

 
Figure 3.20. Displacement field of a continuation of the punch-indentation problem in 

Section A.5 of Appendix A. Here two closely spaced punches are forced into a metal (R) 

with opposite forces. This results in triangle C being forced to the right at the same rate 

as B and D. 

 

 The results of this analysis show us that plasticity can indeed be a factor at the pressures 

shown in Figure 3.18. Furthermore, we expect the lithium on the left to be deformed down 

toward the compressive yield strength of lithium line and the lithium on the right to be 

deformed up toward the tensile-yield-strength line. This flattens the negative electrode and 

limits the stress build up to that of the yield strength of lithium. More interestingly though, is 

that we expect, the lithium in the center of Figure 3.18, where the pressure falls between the 

yield strengths of lithium metal, to be deformed to the right, toward the region in tension. 

 With this preliminary analysis, we can now move forward to include the equations for 

plastic deformation, described in Section 3.4, into the model for lithium movement developed 

thus far. 

 

3.7 Numerical Analysis of Plasticity in Lithium-metal Batteries 

 

 In Section 3.5 we included elastic deformation of the negative electrode as well as a stiff 

separator into the model created in Chapter 1. From that analysis we saw that, with a separator 

that could inhibit dendrite formation, significant elastic deformation of the negative electrode 
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occurred due to very high stresses. By comparing the stresses seen to the yield strength of 

lithium (Figures 3.18 and 3.19) we determined that the stresses in the lithium were well beyond 

the yield strength of lithium, where plastic deformation should occur. Therefore, in this section 

we include the plastic deformation of lithium, the equations for which were developed in 

Section 3.4, and determine the extent of the deformation and its effect on the cell. 

 

3.7a Methods and Assumptions 

 

 We now set up the equations for calculating numerically the plastic deformation of 

lithium in the negative electrode. There is a general lack of data on the mechanical properties 

of lithium metal; therefore, we make the general assumption that lithium metal behaves as a 

normal ductile metal. We now give a summary of the material learned thus far that is 

particularly relevant to the subject of plastic deformation in the hope that the reader gains a 

further understanding of the equations solved in this Section to determine the plastic and 

elastic deformation of lithium metal.  

 Solid mechanics can be considered part of the field of rheology and is closely related to 

fluid mechanics, involving Newtonian, non-Newtonian, and viscoelastic fluids. These are very 

complicated, and a complete and accurate mathematical description is probably not possible. 

 The momentum balance applies to all these fluids. It can be written as 

 

 
  

  

  
                 

 

3.110 

 

Even this is incomplete; for example, the electric force on a nonelectrically neutral medium is 

neglected. 

 For many applications, particularly in plasticity, the inertial terms (on the left) and the 

gravitational term are neglected. This is partly an attempt to get down to a tractable 

formulation. The equation to solve is then  

 

 
        

 

3.111 

 

 The continuity equation is generally applicable as 

 

 

  

  
             

 

3.112 

 

This may be simplified to an equation of incompressibility: 
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3.113 

 

 A really complex problem is to relate    to other physical quantities in the problem, such 

as the velocity gradient   , the deformation of the particles  , and the history of the material, 

such as the stress that it has been subjected to. In solid mechanics, the gradient of the 

deformation vector    also describes the state of strain in the material.  

 The mathematics of solid mechanics is similar to that of fluid mechanics. From the 

gradient of the displacement vector   , we can construct a symmetric tensor called the 

infinitesimal strain tensor, 

 

 
   

 

 
        

 
   

 

3.114 

 

where the factor of 1/2 was introduced historically. Otherwise, the rate of deformation tensor     

is simply related to the strain tensor: 

 

 
    

   

  
  

 

3.115 

 

 A general property of the stress is that it is symmetric, 

 

 
                       

 

3.116 

 

Any symmetric tensor can be diagonalized by a rotation of the coordinate system. This rotated 

coordinate system defines the principal axis of stress; in this coordinate system, the off 

diagonal elements of    are zero, and there are only normal stresses. If the three normal 

stresses are equal we have a situation of hydrostatics, where a material element can be 

compressed, but is not distorted. If these three normal stresses are not equal, there is a driving 

force for distortion of a material element. 

 A substantial simplification for fluids occurs if the system is isotropic and fluid properties 

are not dependent on the history of the fluid. Then    depends on the velocity gradient, and the 

relationship must be able to be expressed in a proper vectorial (or tensorial) relationship, which 

means that it is valid in any coordinate system. 

 Again,    is symmetric, as stated previously. There are two relevant symmetric tensors, 

the rate of deformation        
 

 and the unit tensor   . The sought constitutive equation can 

be expressed as 

 

              
 
       3.117 
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where   and   are scalar funtions of relevant properties. These properties include the 

temperature, pressure, and composition of the material, and composition of the material as 

well as the scalar invariants of the tensor   . These relevant invariants are     and      

    . Frequently,   is taken to be an arbitrary function of         (the functional dependence 

being defined by the particular fluid). 

 For a Newtonian fluid,  and   are chosen so that 

 

 
             

 
   

 

 
                 

 

3.118 

 

so that    depends linearly on first velocity derivatives and   and    are physical properties (   is 

the dilatation viscosity notated with a tilde to distinguish it from  , the shear yield strength) 

dependent on temperature, pressure, and composition and p is the thermodynamic pressure of 

the local fluid element.   and   (and p) are independent of the velocity derivatives. 

 For a non-Newtonian fluid   and (in principle)   can depend nonliearly on velocity 

derivatives. Worse yet, there are viscoelastic fluids where   and   can depend on the previous 

stress history of the fluid. 

 For an elastic solid, the stress    is related to the deformation through 

 

 
   

 

     
   

  

           
          

 

3.33 

 

in a manner very similar to the stress relation for a Newtonian fluid. E is a physical parameter 

called the Young's modulus, dependent on temperature, pressure, and composition, but 

independent of   . The Poisson's ratio   is another physical property, equal to 1/2 for an 

incompressible material and 0 for an ideally elastic material (where the material can stretch in 

one direction without decreasing in the transverse direction). 

 For a Hookian elastic solid, one has the momentum equation, the continuity equation, 

and Hooke's law relating    to   . With sufficient boundary conditions, one can solve problems in 

elastic mechanics. 

 However, if enough stress is applied to an elastic solid, the material will eventually begin 

to flow or deform plastically. When the stress is removed, the solid will not relax to its original 

shape. 

 First, we should understand that a uniform compression (or tension) does not generally 

lead to a distortion of shape. Consequently, we construct an effective stress which, in principal 

axes, depends on difference in normal stresses: 
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3.21 

 

Since this is a scalar invariant, it can be expressed in any coordinate system. 

         
 
   

 

 
      

 
 
    

      
 
   

 

3.22 

 

Thus, a solid is likely to behave elastically until a certain yield stress is reached. Beyond this, it 

essentially becomes a non-Newtonian fluid. 

 The situation has now become quite complicated and simplifications become necessary. 

Similar to non-Newtonian fluids (and turbulence) we may impose a condition of 

incompressibility. To jump way ahead, we should anticipate that most plastic flow situations are 

treated by solving the momentum and continuity equations and let the material flow until, with 

a combination of increase of equivalent strain (  ) and a decrease of equivalent stress (  ), the 

material again reaches a condition where the equivalent stress (  ) is equal to or drops below 

the yield stress   . 

 This is not so simple, because now the yield stress can depend on the history of the 

stress and strain of the material. This increase of    toward the ultimate strength of the 

material is called work hardening. 

 In this complicated situation we need experimental data. For this we study the uniaxial 

stress test (refer to Section 3.2c) which we generalize to multiaxial loading (refer to Section 

3.2d) through the use of the equivalent stress and equivalent strain. For the case of lithium, the 

uniaxial stress-strain curve can be seen in Figure 3.21. 

 For plastic flow, we still use Equation 3.117 choosing   and   such that the stress is 

related to the rate of deformation     through  

 

 
    

 

  
   

 

   
    

 

3.119 
 

where          ,   is the hydrostatic pressure,   is the shear yield strength,    is the second 

invariant of the stress deviator (defined in Equation 3.10), and   is a function of        .20 In 

Equation 3.119, the brackets are defined such that: 

 

 
     

                    
                        

  

 

3.120 
 

We can relate Equation 3.119 to the multiaxial stress-strain curve (seen in Figure 3.9 below) 

through Equation 3.21 
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3.21 

 

and Equation 3.41 

 

 
  

  

  
  

 

3.41 

 

Equation 3.119 can now be described as 

 

 
    

 

  
   

  
  
    

 

3.121 
 

where    is the equivalent stress and    is the tensile yield strength. We can now imagine the 

stress-strain plot (such as the one in Figure 3.9 repeated below for clarity) as a steady-state line. 

If the equivalent stress    is at or below the current yield stress    then yielding does not occur. 

However, if we increase the stress to above the yield stress, we are above the stress-strain 

curve and the material deforms. With sufficient boundary conditions and with knowledge of   

(a function of        ) for the specific material, we can solve Equation 3.121 along with the 

momentum equation and the continuity equation to determine the plastic deformation of a 

material.  

 
Figure 3.9. Equivalent stress versus equivalent strain for an example material at a very 

low rate of strain such that the solid line can be thought of as steady state. Point A 

represents the 0.2% yield stress and point C and E, equilibrium points where the stress 

equals the yield stress and the stress can be maintained without further deformation 

occurring. Points B and D represent points away from equilibrium where the stress 

exceeds the yield stress of the material and deformation occurs. 
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However, one further simplification that is often made is that of time-independent 

deformation. As the rate at which we strain the material becomes slower and slower, we get 

closer to equilibrium. At slow enough rates, we can say that the process has become time 

independent meaning that, by changing the rate at which we stress the material (or, 

equivalently, the rate at which we strain the material), we do not deviate appreciably from the 

steady-state stress-strain curve. To implement the time-independent assumption into Equation 

3.119 or 3.121, we take the double dot product         of Equation 3.118 giving us  

 

 
                     

 

3.122 
 

(The algebra leading from Equation 3.119 to 3.122 can be found in Section A.5 of Appendix A.) 

Substituting this into Equation 3.119 gives us  

 

 
     

         

      
           

 

3.123 
 

where         . If we neglect the elastic component of the strain and assume that we are 

always in the plastic regime, then we can remove the brackets from Equation 3.123 giving us 

the Levy-Mises theory of plasticity. Multiplying Equation 3.123 by dt gives us the Prandtl-Reuss 

equations: 

 

 
      

         

     
   

 

 

    

  
    

 

3.55 
 

(For a more detailed explanation of the application of the time independent assumption to 

Equation 3.119, please refer to the “The Transition from Rate-Dependent to Rate-Independent 

Plasticity” Subsection in Section 3.4c.) 

 We can use uniaxial stress-strain data seen in Figure 3.21 below (generalized to 

multiaxial through the use of equivalent stress    and equivalent strain   ) to determine the 

scalar function        . With the boundary conditions listed below, we solve numerically the 

momentum equation, the continuity equation, and Equation 3.55 relating the incremental 

plastic strain      to the deviatoric stress   . 
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Figure 3.21. Stress-strain curve for lithium under uniaxial loading as taken from “Li 

Material Testing -Fermilab Antiproton Source Lithium Collection Lens.”32 Here, the initial 

0.2% offset yield strength is 6.55 bar. 

 

 Now that we have an equations necessary, let us determine the boundary conditions in 

the lithium metal. We use the same model geometry as was used in Chapters 1, 2, and Section 

3.5, which can be seen in Figure 3.10. Since the model is two dimensional in the x and y 

dimension, we neglect all stresses and strains in the z direction, significantly simplifying the 

problem. We assume that the sides of the electrode deform only in the y direction and that the 

bottom of the negative electrode does not deform in the y-direction but can slide, frictionlessly 

in the x direction. That is to say, we assume that there is some sort of frictionless packaging 

around the cell such that the lithium will not squeeze out the sides if under compression and is 

supported along the bottom. Thus, 

 

 
                 

 

 
         

 

 
   

 

3.124 

 

and 

 
                     (bottom of the negative electrode). 

 

3.125 
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Because the forces at the interface must balance, at the boundary between the lithium and the 

separator the deformation of the lithium is equal to the deformation of the separator and we 

set the stress in the lithium equal to the stress in the separator through 

 

 
          

 

 

3.126 

 

where     is the stress in the y-direction in the lithium and       
 is the stress in the separator 

due to its deformation. 

 With the model of the separator as a series of ideal springs, the separator only deforms 

elastically with a Poisson's ratio of zero. Because of the high aspect ratio, it is appropriate to set 

certain       and ignore others. Therefore to determine the change in pressure in the separator 

due to its deformation, we use Hooke's law such that 

 

 
      

                 

     

    
   

 

3.127 

 

Here      is the elastic modulus of the separator and        is the deformation of the separator 

in the y-direction. Because the separator is assumed to be perfectly elastic and the 

deformations of the separator are small compared to the thickness of the separator, the local 

deformation of the separator in the y-direction can be calculated by dividing the local change in 

the thickness of the separator by the initial thickness or          
  .  

 Let us now turn to the elastic portion of the strain in the lithium metal. To relate the 

stress to the elastic deformation in the lithium metal, we take Equation 3.35 from Section 3.3b, 

which is the matrix form of the inverted generalized Hooke’s law and is repeated below for 

clarity: 

 

 
    

 

 
                     

 

3.35 

 

We use the same boundary conditions as for the plastic deformation (Equations 3.124 through 

3.126). Again, the deformation in the x-direction is set to zero at left and right edges of the 

lithium (Equation 3.124). At the bottom boundary of the negative electrode the deformation in 

y-direction is zero (Equation 3.125), and, at the negative electrode/separator interface, the 

stress in the lithium in the y-direction is equivalent to the change in pressure due to the 

deformation of the separator (Equation 3.126). 

 The deformation, calculated through Equations 3.55 and 3.35, now modifies the 

thickness of the lithium determined through the electrochemical model developed in Chapter 

1. The stress at the boundary is determined by Equations 3.55 and 3.127. These equations solve 
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for the mechanical deformation of the lithium at the negative electrode and, when 

implemented into the model developed in Chapter 1, the movement of lithium during cycling 

with a very-stiff separator can be determined. 

 

3.7b Results and Discussion 

 

 Let us now look at how the incorporation of a very stiff separator deforms the negative 

electrode. In Figure 3.22 below we see the results of the simulation after a full cycle of a 

discharge, rest, and charge. The simulations were run at a C/5 rate to a 10 percent depth of 

discharge based on the positive electrode. The dashed line, labeled ‘Movement with Pliable 

Separator’ represents the movement of lithium immediately after charge with a pliable 

separator that does not resist the movement of lithium. This line is simply used as a comparison 

for the case with a very stiff separator. The solid line, labeled ‘Movement with a Stiff Separator’ 

represents a simulation run under the same conditions at the ‘Movement with Pliable 

Separator’ simulation (that is at a C/5 rate to a 10 percent depth of discharge), with a very stiff, 

dendrite-inhibiting separator (16 GPa).  

 As we can see from the ‘Stiff-Separator’ case, the very stiff separator (16 GPa) has 

caused significant deformation to occur. As expected from Figures 3.18 and 3.19, plastic 

deformation has occurred at the left and right sides of the negative electrode, where the line is 

flat, and only elastic deformation has occurred in the middle of the negative electrode where 

the profile is sloped. These plastic and elastic deformation zones can be seen better if the stress 

were somehow to be relaxed in the negative electrode as is seen in the ‘Stress-Relaxed’ line in 

Figure 3.22. Here, the elastic deformation that occurred in the middle of the negative electrode 

has recovered to its original profile. The elastic portions of the deformation in the left and right 

sides of the graph have also recovered when the stress was relaxed; however, the plastic or 

irreversible portion of the deformation has not recovered, leading to a flat profile.  

 To explain the mechanism for this plastic deformation, during charge the lithium is 

deposited more on the left than on the right, leading to a build-up of lithium. As the lithium 

starts to build up on the left, the compressive stresses also start to build due to the lithium 

displacing the very stiff separator. Eventually the stresses will build to a point where the 

compressive yield strength of lithium is reached. As more lithium is deposited on the left side, it 

yields such that the stress in the left side of the negative electrode is maintained at the 

compressive yield strength. This means that as more lithium is deposited at the left side, it is 

deformed such that the height remains the same. These results are quasi-steady, where enough 

time has passed to permit this flow. 

 On the right side of the negative electrode a similar mechanism occurs where the 

lithium is deposited more slowly than on the left such that the local thickness of the lithium on 

the right side is less than the average thickness of the lithium thereby creating a region of 
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tension. As the charge progresses, the stresses reach the tensile yield strength of lithium, and 

the lithium yields.  

 Even though the deformation of the separator applies pressure in the y-direction, both 

the elastic and plastic deformation of the lithium causes stresses to build-up in the x-direction 

as well. This can be seen for the case of elastic deformation through inspection of Equation 

3.35. In Equation 3.35 we see that a stress in one direction (such as the y-direction) causes 

strains not only in that direction, but also in the perpendicular directions (such as the x-

direction) that are proportional to    . In plastic deformation, the same effect holds true 

where the material deformed pushes other material out of the way leading to stresses in that 

direction, such as in the limit analysis in Section 3.6. 

 

 
Figure 3.22. Height of the lithium negative electrode along the lithium/separator 

interface after a cycle consisting of a discharge, rest, then a charge at a C/5 rate to a 10 

percent depth of discharge. The dashed, 'Movement with Pliable Separator' line includes 

a separator that does not resist movement of the lithium. The solid, ‘Movement with 

Stiff Separator’ line includes a very stiff, dendrite-inhibiting separator (16 GPa), and the 

dotted, ‘Stressed-Relaxed’ line, is the height of the lithium with a very stiff separator if 

the stress were somehow relaxed. 
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  In Figure 3.23 below, we see the pressure on the separator measured in bar after a 

charge. This pressure is due to the movement of the lithium deforming the very stiff (16 GPa) 

separator. From this plot we see, as would be expected, a flat maximum and minimum where 

the profile of the lithium is flat due to plastic deformation. When comparing the pressures seen 

in Figure 3.23 to Figures 3.13 or 3.16, we can see that the plastic deformation of the lithium at 

the negative electrode has significantly reduced the stresses.  

 

 
Figure 3.23. Gauge stress on the separator measured in bar after charge with a very stiff 

separator (16 GPa) caused by the movement of the lithium negative electrode. 

 

 Let us next turn our attention to the movement of lithium during the cycle. Figure 3.24 

shows the profile of lithium after discharge at a C/5 rate to a 10 percent depth of discharge. As 

seen in Chapters 1 and 2, with a pliable separator the profile of the lithium is concave down. 

With a stiff separator, the lithium is deformed substantially from the pliable separator case, 

with plastic deformation occurring on the left and right sides of the negative electrode and 

elastic deformation occurring in the middle. As the cell is discharged, more lithium is removed 

from the left side of the cell than the right, causing tensile stresses to build on the left and 

compressive stresses on the right. Once the stresses build to the yield strength of lithium, 

plastic deformation occurs such that the lithium is deformed toward the region in tension. This 
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causes the lithium to flatten and the profile to be similar to that seen in Figure 3.22, but 

opposite due to the fact that the cell is being discharged rather than charged. 

 The more interesting phenomenon, however, occurs during rest. In Chapter 1 we 

learned that during rest the concentration of lithium in the solid phase of the positive electrode 

equilibrates during rest by interacting with the negative electrode. After discharge, for example, 

the positive electrode equilibrates by depositing lithium on the left side of the negative 

electrode and stripping lithium from the right. This phenomenon also occurs with a very stiff 

separator, as is seen in Figure 3.25 below. By comparing the ‘Movement with Pliable Separator’ 

lines in Figures 3.23 and 3.24, we see that the equilibration of the positive electrode has 

resulted in a flattening out of the negative electrode through deposition on the left and 

stripping on the right. However, when comparing the ‘Movement with Stiff Separator’ lines in 

Figures 3.24 and 3.25 below, we see that the equilibration of the positive electrode has caused 

the lithium to build up such that the height of lithium is now positive on the left and negative 

on the right. This is, again, due to the equilibration of the positive electrode where, during rest, 

lithium was deposited on the left and stripped from the right. Because the lithium started out 

fairly uniform due to the plastic deformation, only a small amount of lithium being deposited 

on the left was required for the height to become positive. This, again, caused the stresses in 

the negative electrode to build beyond the yield strength of the lithium and plastic deformation 

to occur, thereby limiting the overall change in the height of the lithium during rest, but still 

allowing the positive electrode to equilibrate. 
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Figure 3.24. Height of the lithium negative electrode along the lithium/separator 

interface at the end of discharge at a C/5 rate to a 10 percent depth of discharge. The 

dashed, 'Movement with Pliable Separator' line includes a separator that does not resist 

movement of the lithium, and the solid, ‘Movement with Stiff Separator’ line includes a 

very stiff, dendrite-inhibiting separator with an elastic modulus of 16 GPa. 
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Figure 3.25. Height of the lithium negative electrode along the lithium/separator 

interface after resting for 1,000 seconds following a discharge at a C/5 rate to a 10 

percent depth of discharge. The dashed, 'Movement with Pliable Separator' line includes 

a separator that does not resist movement of the lithium and the solid, ‘Movement with 

Stiff Separator’ line includes a very stiff, dendrite-inhibiting separator with an elastic 

modulus of 16 GPa. 

 

 After discharging and then resting, we charge the cell, the result of which can be seen in 

Figure 3.22 above. During rest, because of the equilibration of the positive electrode, the 

lithium built up so that the height is positive on the left and negative on the right. Furthermore, 

the stresses in the negative electrode have already reached the yield strength of lithium such 

that plastic deformation occurred. This means that, during charge, lithium is continuing to be 

deposited on the negative electrode, with more lithium deposited on the left than the right, 

but, due to the plastic deformation of the lithium, the profile stays relatively similar during 

charge such that the height profile after charge (seen in Figure 3.22) is very similar to the height 

profile after resting as seen in Figure 3.25. 

 Finally, in Figure 3.26 below, we look at the lithium after the rest following the charge. 

Again, the equilibration of the positive electrode causes lithium to be stripped from the left side 

of the cell and deposited on the right, leading to a flattening of the negative electrode relative 

to the pliable separator case. Similar to what occurred during the rest phase after discharge 
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with the stiff-separator case, after charge the stripping of the lithium from the left causes the 

height of lithium to become negative on the left, and the deposition of lithium on the right 

causes the height of lithium to become positive on the right.  

 

 
Figure 3.26. Height of the lithium negative electrode along the lithium/separator at the 

end of a full cycle consisting of a discharge, rest, charge, and rest at a C/5 rate to a 10 

percent depth of discharge. The thick, dashed, 'Movement with Pliable Separator' line 

includes a separator that does not resist movement of the lithium, and the solid, 

‘Movement with Stiff Separator’ line includes a very stiff, dendrite-inhibiting separator 

with an elastic modulus of 16 GPa.  

 

Effect of a Very Stiff Separator on the State of Charge in the Positive Electrode 

 

 From Figures 3.21 through 3.25, we see that a very stiff separator (16 GPa) causes the 

height of the lithium at the negative electrode to remain substantially more uniform than with 

a very pliable separator. This is due to stresses building up beyond the yield strength of lithium, 

causing elastic and plastic deformation to occur, which deforms the lithium back toward 

uniform. We now turn our attention to how this more uniform lithium profile affects the 

positive electrode, primarily the state of charge.  
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 For comparison we look at two limiting cases. Both cases were run at a C/5 rate to a 10 

percent depth of discharge based on the positive electrode, and the only difference between 

the two cases is the strength of their separators. First, in Figure 3.27 we see the state of charge 

in the positive electrode after charge with a liquid electrolyte. Because the liquid does not resist 

the movement of the lithium at all, the profile of the lithium at the negative electrode will be at 

its most extreme for the given charge rate and depth of discharge. On the other extreme, in 

Figure 3.27, we see the state of charge of the positive electrode after charge with an infinitely 

stiff separator such that the height of the lithium at the negative electrode stays almost 

perfectly uniform throughout the cycle. Through the comparison of Figures 3.27 and 3.28, we 

see that the state of charge for the two extremes looks nearly the same. This leads us to the 

conclusion that the more uniform lithium profile caused by a very stiff separator has a very 

small effect on the state of charge of the positive electrode. 

 

 
 

Figure 3.27. State of charge of the positive electrode at the end of charging after a cycle 

consisting of a discharge, rest, and charge at a C/5 rate to a 10 percent depth of 

discharge based on the positive electrode. The separator is a liquid electrolyte that does 

not inhibit the movement of lithium at the negative electrode.  
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Figure 3.28. State of charge of the positive electrode at the end of charging after a cycle 

consisting of a discharge, rest, and charge at a C/5 rate to a 10 percent depth of 

discharge based on the positive electrode. The shear modulus of the separator is infinite 

such that the profile of the lithium is almost exactly uniform. 

 

 
Figure 3.29. Local state of charge at point A in Figure 3.27 with a pliable separator and 

Figure 3.28 with an infinitely stiff separator. The state of charge for the two cases falls 

almost exactly on top of each other with a maximum difference at any point in time of 

0.18% and an average difference of 0.0087%. 
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 The comparison of Figures 3.27 and 3.28 is fairly qualitative; thus, in Figure 3.28 we look 

at the state of charge over time at point A seen in both Figures 3.27 and 3.28. In this plot, the 

state of charge from the pliable separator and infinitely stiff separator fall on top of one 

another such that they are indistinguishable. Through an analysis of the data points, the 

maximum difference between the state of charge at point A for the pliable separator and 

infinitely stiff separator cases is only 0.18 percent, and the average difference is only 0.0087 

percent. Several other points in the positive electrode other than point A were compared with 

similar results, although only the comparison of point A is shown here. From this analysis we 

can conclude that a more uniform lithium electrode, caused by a stiff separator does not 

change the state of charge in the positive electrode appreciably.  

 

Effect of Pressure Modified Reaction Kinetics on the Movement of Lithium with a Very Stiff 

Separator 

 

 In Section 3.5b, we modified the Butler-Volmer reaction kinetics at the negative 

electrode to be a function of pressure. Then, in Section 3.5c, we examined how this kinetics 

modified the height of lithium after cycling due to the stress build-up in the negative electrode. 

In that section, we found that it took a significant amount of pressure to modify the kinetics 

enough so that the height of lithium was significantly altered. In fact, we found that the 

pressures required to modify significantly the kinetics were so high that both elastic and plastic 

deformation of the lithium were likely to occur.  

 In the previous Subsection we included plastic deformation of the lithium at the 

negative electrode and saw that it significantly reduced the movement of the negative 

electrode, thereby reducing the stresses to around the yield strength of lithium. This can be 

seen in Figure 3.23 where the stress has a maximum of 8.6 bar and a minimum of -6.4 bar. In 

comparison to Figure 3.14 (where the lithium was assumed to be rigid) we can see that, 

because of plastic and elastic deformation, the peak stresses have been reduced by more than 

an order of magnitude. Obviously this significantly reduces the effect that the pressure-

modified kinetics has on forcing the current density to be more nearly uniform, and in this 

Subsection we examine the effects of the kinetics on the movement of lithium with plastic 

deformation and a very stiff separator. 

 In order to determine directly the effect of the kinetics on the movement of lithium, two 

simulations were run, each at a C/5 rate to a 10 percent depth of discharge based on the 

positive electrode and with a polymer separator with a shear modulus of twice that of lithium 

(the shear modulus of lithium is 3.4 GPa). Plastic and elastic deformation of the lithium at the 

negative electrode was included for both simulations, and the only difference was the kinetics 

at the negative electrode. 
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 Figure 3.30 shows the movement of lithium as measured in the number of coulombs of 

lithium passed through the         plane, the same as in Chapter 2. The 'Pressure-Modified 

Kinetics' line uses the modified Butler-Volmer kinetics as seen in Equation 3.99, and the 'Butler-

Volmer Kinetics' line has unmodified Butler-Volmer kinetics at the negative electrode. The 

'Pliable Separator, Butler-Volmer Kinetics' line is taken from Chapter 2 and is repeated here as a 

reference to compare with the plastically deformed lithium due to the 16 GPa separator. From 

Figure 3.30 below, we see that for both cases the movement seen during a cycle is significantly 

reduced by the stiff separator, with the pressure-modified kinetics having a slightly more 

uniform lithium profile. 

 In Chapter 2, we saw that, for the same rate of discharge and charge and the same 

depth of discharge, with a pliable separator around -22.5 coulombs moved after discharge. If 

we compare this to the -1.8 coulombs moved after discharge with a very stiff separator seen in 

Figure 3.30, the significant reduction in movement is obvious. As was discussed in detail in the 

previous Subsections, this reduction in movement is due to elastic and plastic deformation of 

the lithium and not the pressure-modified kinetics. Further evidence of this is seen when 

comparing the 'Pressure Modified Kinetics' line to the 'Butler-Volmer Kinetics' line in Figure 

3.30. From this comparison we see that while the pressure-modified kinetics does reduce the 

movement of the lithium, this reduction is very small when compared to the decrease in the 

movement due to the mechanical deformation caused by the separator.   
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Figure 3.30. Movement of lithium along the lithium/separator interface during one cycle 

at a rate of C/5 to a 10% depth of discharge based on the positive electrode. Except for 

the 'Pliable Separator, Butler-Volmer Kinetics' line, the separator is a dendrite-inhibiting 

separator with a shear modulus twice that of lithium, and elastic and plastic 

deformation of the lithium was included. 

 

 Let us now turn our attention to discussing the reason for the difference in the 

movement of lithium due to the inclusion of the pressure dependence in the kinetics at the 

negative electrode. As is seen in Figure 3.30, with the pressure dependence, the movement is 

slightly less than without. This is due to the pressure forcing the current density to be more 

nearly uniform, similar to the mechanism seen in the work by Monroe et al.4 To explain this in a 

more detailed manner, we look at the movement of lithium after discharge in Figure 3.22. 

Because of the nonuniform current distribution, the lithium is thinner on the left and thicker on 

the right, causing the separator to be in tension on the left and compression on the right. This 

pressure difference forces the current density to be more nearly uniform, thereby stripping the 

lithium more uniformly than if the kinetics had no pressure dependence. This effect, however, 

is significantly muted, due to plastic deformation where the stresses in the negative electrode 
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are limited by the yield strength of the lithium. Because the yield strength is so low, the stresses 

never reach a value high enough to alter the current density significantly.  

 

3.8 Plastic Deformation as it Applies to the Deformation of a Dendrite 

 

 In Section 3.7 we saw that, with a separator with mechanical properties high enough to 

inhibit dendrite growth (a shear modulus twice that of lithium predicted by Monroe and 

Newman4) significant plastic deformation occurred resulting in a flattening of the lithium. In the 

work by Monroe and Newman,4 they assumed that the lithium in a dendrite deforms only 

elastically. With only elastic deformation of the dendrite, the only mechanism to inhibit the 

propagation of the dendrite is by forcing the current density to be uniform through the 

pressure-modified kinetics developed by Monroe and Newman.39 However, with the inclusion 

of plastic deformation, there exists a second mechanism to inhibit the propagation of the 

dendrite. As the dendrite grows, it deforms the separator causing the stress to rise. Once the 

stress in the lithium reaches the yield stress of the lithium, it can plastically deform thereby 

halting its growth through the polymer. Therefore, rather than predict the shear modulus 

requirements (or elastic modulus) of the separator in relation to the shear modulus (or elastic 

modulus) of the lithium, it should, instead, be related to the yield strength of the lithium which 

is about three orders of magnitude lower. 

 While a complete model for the propagation, stresses, and plastic deformation of a 

lithium dendrite has not been created, in this section we create a very simple model relating 

the elastic modulus of the separator to the yield stress of the lithium. Through this analysis it is 

hoped that the reader gain an order-of-magnitude estimate of the mechanical properties 

necessary for a separator to limit the propagation of a dendrite through plastic deformation of 

the lithium. 

 In this analysis several assumptions are made. First, we assume that the plastic 

deformation of the dendrite is the only mechanism that inhibits its growth through the 

separator. This means that we assume that the stress at the surface of the negative electrode is 

insufficient to alter significantly the pressure-modified kinetics. This assumption follows from 

the findings in Section 3.7b which showed that the pressure-modified kinetics played only a 

small role (when compared to plastic deformation) in limiting the movement of the lithium 

during cycling.  

 The second assumption is that the yield stress of lithium is constant and that yielding 

begins as soon as the stress reaches the yield stress of lithium. Furthermore, we assume that 

the lithium behaves as an isotropic crystalline material where the grain size of the lithium metal 

is much smaller than the length scale of a dendrite. This assumption is not particularly accurate 

since, in the case of zinc, the dendrites are single crystals.35 Since the mechanical properties of 

a single crystal differ with the orientation of the crystal, the mechanical properties used in this 
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analysis should reflect this. Considering the lack of literature data even for bulk properties of 

lithium metal, we continue with our assumption that the lithium behaves as an isotropic 

material. 

 Next, we assume that the both the lithium and the polymer behave as perfectly elastic 

materials (a Poisson's ratio of 0) and that the only stress in either the lithium or the polymer is 

in the y direction, which is through the thickness of the cell. This assumption is purely for the 

sake of simplicity. We also relax the assumption that the positive electrode is perfectly rigid for 

the reason that, with a polymer separator, the polymer is typically mixed into the positive 

electrode as the electrolyte. This means that it is likely that the positive electrode deforms 

elastically, though not necessarily with the same elastic modulus. We do assume, however, that 

the separator and the positive electrode have the same elastic properties. Again, this is for the 

sake of simplicity and differing mechanical properties for the separator and positive electrode 

can be added to the model later. 

 Finally, we assume that the dendrite is in the shape of a cosine function, such as in 

Figure 3.31 below, with an amplitude of 0.1 μm. 4  

 

 
Figure 3.31. Schematic of a pristine electrode (dashed line) and a roughened lithium 

electrode (solid line). The roughened electrode is assumed to follow a cosine function. 

The top half of the diagram is a polymer separator and the bottom half lithium metal. ∆Y 

is the peak to peak amplitude of the dendrite or half the amplitude of the cosine curve. 
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 From these assumptions, we can describe the stress in the separator through Hooke's 

law: 

 

 
                  

 

3.128 
 

where        is the stress in the separator in the y direction,      is the elastic modulus of the 

separator, and        is the strain in the separator in the y direction. Similarly, we can describe 

the stress in the lithium through 

 

 
                

 

3.129 
 

Since we are interested in when the lithium deforms plastically, we use (again for the sake of 

simplicity) the Tresca yield criterion which states that yielding occurs when the largest 

difference in principal stresses equals the yield strength. Because we only consider stress in the 

y direction, the largest difference in the stress is        ; therefore, plastic deformation occurs 

when          where    is the yield strength of lithium. 

 In order to relate Equation 3.128 to Equation 3.129, we convert the strains to 

deformations (assuming the deformations are small) such that Equation 3.128 becomes 
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where       is the change in the thickness of the separator relative to its initial thickness     
 . 

Equation 3.129 is similarly updated to 
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where     
  is the change in the thickness of the lithium due to elastic deformation and    

  is 

the initial thickness of the lithium. Here we assume that the change in the thickness of the 

separator and the lithium due to the growth of the dendrite is much smaller than the thickness 

of either the separator or the lithium. We can now relate the deformation of the separator to 

the height of the dendrite through 

 

 
             

  

 

3.132 
 

where    is the peak to peak amplitude of the dendrite, as seen in Figure 3.31. We now 

combine Equations 3.130, 3.131, and 3.132 and solve for the elastic modulus of the separator 

to get 
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3.133 
 

As we can see from Equation 3.133, the elastic modulus of the separator is a function of 

the yield strength of lithium, the elastic modulus of lithium, the height of the dendrite that 

allow, and the thickness of both the separator and the lithium. Here we are assuming a 

maximum allowable height of the dendrite before the separator deforms it plastically.  

 To get an idea of what values of      to expect, let us choose some values for the 

properties of lithium to use in Equation 3.133. From Section 3.7, we set the yield strength of 

lithium at 0.655 MPa31 and the elastic modulus to 4.9 Gpa29. Let us now say that the lithium is 

50 µm thick and the positive electrode and separator can deform elastically thereby making 

    
  125 µm. We set    to 0.2 µm and use Equation 3.133 to estimate the elastic modulus of 

the separator to be 0.42 Gpa in order to inhibit dendrite growth. From this analysis, we predict 

that the elastic modulus of the separator be on the order of 1/10th of the elastic modulus of the 

lithium. Or, better yet, the elastic modulus of the separator should be about two orders of 

magnitude higher than the yield strength of lithium. 

 The properties of the lithium metal used in the previous analysis are fairly variable. This 

variation in both the elastic modulus and the yield strength can be seen in Table 3.2 below 

where values for both the elastic modulus and yield strength are taken from three different 

references at various temperatures. 

 

Table 3.2. Physical properties of lithium metal as found in several references and at 

several temperatures. The elastic modulus and yield strength for reference 31 were 

found through a compressive test of lithium metal and the elastic moduli and yield 

strengths found in reference 32 were obtained using a tensile test. The specifics of the 

test used to determine the elastic modulus in reference 29 was not specified. 

Elastic 
Modulus 

(Gpa) 

   

T (˚C ) 
 

Yield 
Strength 

(Mpa) 
Reference 

 

1.90 25 0.655 31 

7.80 25 0.76 32 
5.00 50 0.42 32 
4.00 75 0.41 32 

4.90 25 - 29 
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 From Table 3.2, we can see the variation of both the elastic modulus of lithium and yield 

strength. However, in Equation 3.133, changing the elastic modulus of the lithium only slightly 

affects the value of     . For example, with    = 7.8 GPa we calculate     = 0.418 GPa, 

whereas with    = 1.9 GPa we calculate     = 0.448 GPa. The yield strength of lithium, 

however, affects      much more strongly since increasing it increases the numerator and 

decreases the denominator of Equation 3.133. For example, with    = 0.76 MPa,     = 0.494 

GPa, but with    = 0.41 MPa,     = 0.262 GPa. 

 It should be noted again that the model developed in this section is a very basic model 

intended only to give the reader an order-of-magnitude understanding of what mechanical 

properties should be expected of a dendrite-inhibiting separator. Obviously a much more 

detailed model needs to be developed to give a more accurate estimate of the mechanical 

properties necessary. For example, no viscoelastic effects for either the separator or the lithium 

were included. Polymers often exhibit viscoelastic effects and it is possible that a dendrite could 

grow slowly enough to allow for the polymer to viscoelastically deform at stresses below the 

yield strength of lithium metal. This would allow the dendrite to propagate through the 

separator without deforming plastically. It is in the author’s opinion, however, that the model in 

this section is useful for gaining a quick, order-of-magnitude estimate of the elastic modulus 

required of a dendrite-inhibiting separator. Furthermore, this model shows us that the elastic 

modulus of a dendrite-inhibiting separator should be a function of the yield strength of the 

lithium as well as the thicknesses of the separator and the lithium and the height of the 

dendrite before plastic deformation takes place. 

 

3.8 Conclusions 

 

In this chapter, the two-dimensional model presented in Chapter 1, which is able to 

capture the movement of lithium during cycling, was run with separators with a 400 MPa elastic 

modulus and with a 16 GPa elastic modulus. Both separators resist the movement of lithium 

seen in Chapters 1 and 2 through the generation of stresses in the cell. As the lithium moves, 

the separator is either compressed or stretched, translating into stresses in the separator and 

lithium. These stresses affect the negative electrode through two mechanisms -altering the 

thermodynamics of the negative electrode and deforming the negative electrode mechanically. 

Both of these mechanisms were treated in this chapter.  

In Section 3.2 the basic definitions of stress and strain were discussed including principal 

stress and strains, invariants, and the uniaxial tension test. Then, in Section 3.3, the equations 

for elastic deformation were developed.  Section 3.4 lent itself to the discussion of plastic 

deformation including yield criteria, dislocation theory, and the development and derivation of 

the equations for plasticity.  
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The later sections of this chapter dealt with the implementation of the equations 

developed in the beginning of the chapter. In Section 3.5, we introduced the problem at hand 

and discussed the model geometry. Then, the effect of the stress on the thermodynamics and 

its relation to the reaction kinetics at the negative electrode were developed. We saw that it 

took very high pressures to modify the kinetics enough to have an appreciable effect on the 

movement of lithium. It was noted that under these pressures, the assumption that the lithium 

was rigid was invalid; thus the elastic deformation of lithium was included. This again, relaxed 

the stresses in the negative electrode through the elastic compression of the lithium, However 

the stresses in the negative electrode were still significantly larger than the yield strength of 

lithium, and thus it was concluded that plastic deformation of the negative electrode must be 

included.  

In Section 3.6, the limit-analysis theorems, which were developed in Section A.5 of 

Appendix A, were applied to the deformation of the lithium negative electrode.  Through this 

analysis we found that, under the stresses seen in Section 3.6, plastic deformation could occur 

and would cause a mechanical deformation of the lithium from the region in compression to 

the region in tension. 

Finally, in Section 3.7, the equations for plastic deformation were incorporated into the 

model. From this, we saw that a very stiff (16 GPa), dendrite-inhibiting separator can cause 

plastic and elastic deformation of the lithium at the negative electrode, thereby mechanically 

resisting the lithium movement seen in Chapters 1 and 2. We found that the plastic 

deformation plays a much larger role than either the pressure-modified reaction kinetics or 

elastic deformation and deformed the lithium toward uniformity. Furthermore, the flattening 

of the negative electrode caused only very slight differences in the local state of charge in the 

positive electrode. Thus, it can safely be said that including a dendrite-inhibiting separator 

benefits a lithium-metal battery through forcing the negative electrode to be more uniform 

without causing negative effects in the positive electrode such as larger swings in the local state 

of charge. 
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List of Symbols 

 

A Area           [m2] 

ci Concentration          [mol/m3] 

E Young's or elastic modulus        [Pa] 

F Force           [N] 

F Faraday's constant, 96,485 (Section 3.6)       [C/mol] 

G Shear modulus         [Pa] 

  Gibb’s free energy         [J] 

H Hardening properties of a material       [-] 

   Exchange current density        [A/m2] 

     Local current density         [A/m2] 

  Identity matrix         [-] 

   Stress invariants         [Pan] 

    Strain invariants         [-] 

   Deviatoric stress invariants        [Pan] 

   Anodic reaction rate constant       [m3/s] 

   Cathodic reaction rate constant       [m3/s] 

K Bulk modulus          [Pa] 

L Length           [m] 

   Unit normal vector         [-] 

  Hydrostatic stress         [Pa] 

p  Pressure          [Pa] 

qi  Displacement (Section 3.5)         [m] 

R Universal gas constant, 8.314        [J/mol-K] 

     Stress deviator         [Pa] 

T Temperature          [K] 

u  Deformation in the x-direction       [m] 

   Open-circuit potential         [V] 

   Open-circuit potential due to pressure      [V] 

v  Deformation in the y-direction       [m] 

V Volume          [m3] 

  Partial molar volume         [m3/mol] 

w  Deformation in the z-direction       [m] 

W Work           [J] 

x1  x-direction          [m] 

x2  y-direction          [m] 

x3  z-direction          [m] 
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    Anodic transfer coefficient        [-] 

    Cathodic transfer coefficient        [-] 

    Transfer coefficient for the metal (assumed to be 1)     [-] 

    Kronecker delta         [-] 

   Strain           [-] 

    Strain components         [-] 

   Principal strains         [-] 

   Plastic strain          [-] 

    Equivalent plastic strain (see Equation 3.26)       [-] 

   Surface overpotential         [V] 

  Shear yield strength         [Pa] 

  Hardening parameter         [-] 

  Chemical potential         [J/mol] 

   Chemical potential due to pressure       [J/mol] 

  Poisson's ratio          [-] 

   Stress           [Pa] 

    Stress components         [Pa] 

   Principal stresses         [Pa] 

   Yield stress          [Pa] 

    von Mises or equivalent stress       [Pa] 

  Shear stress (also              )         [Pa] 

   Shear yield stress          [Pa] 

  Potential across the interface at the negative electrode (Section 3.6)   [V] 
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Appendix A 

 
 It is the purpose of this appendix to give the reader an extended understanding of 

several topics discussed in Chapter 3. Therefore, equations that were derived or first stated in 

Chapter 3 are notated with their original numbering to aid the reader in cross-referencing. 

 

A.1 Dislocation Theory 

 

 Let us turn our attention to the nature of how plastic deformation occurs, which is 

mainly through the generation and motion of dislocations, or imperfections within a crystal. 

These dislocations can occur within a grain in a metal, but are common between grains where 

two different crystal structures meet or, where two materials meet. Although primarily 

considered to be in the field of material science, it is, none the less, of importance and is 

discussed briefly here in order to gain a basic understanding of the mechanism for plastic 

deformation. Further information on this subject can be found in most material-science or 

continuum-theory text books in varying detail. Although I have by no means done an exhaustive 

search of the literature on dislocation theory, one text on the subject that I found quite useful 

was that by McClintock and Argon.1 

 Originally the theory for how crystals deformed plastically was through the shearing or 

slipping of an entire plane of atoms. This theory, however, was discredited in the early 

twentieth century when the stresses required to cause slip were measured by tension tests of 

single crystals. These tests found that the stresses required to cause slip were two or more 

orders of magnitude lower than those predicted if the entire plane were to slip at once. 

Therefore, and alternate theory of the mechanism for plastic deformation, called dislocation 

theory, was proposed.2-4 

 Dislocation theory states that crystals contain preexisting defects, called dislocations 

that are boundaries between regions that are already displaced relative to one another by one 

unit of slip. Movement of a dislocation allows slip to occur and the stress for slip is the stress 

required to move a dislocation rather than the stress required to move an entire plane.  

 There are two important unique forms of dislocations that are of note: edge dislocations 

and screw dislocations. The geometry of an edge dislocation (seen below in Figure A.1) can be 

visualized by cutting part way into a perfect crystal and then inserting an extra half plane of 

atoms. The other unique form of a dislocation is the screw dislocation (seen in Figure A.2). This 

can be visualized by cutting part way into a perfect crystal and then shearing the cut by one 

atomic distance. Both the case of the edge dislocation and screw dislocation are merely 

extreme cases; the reality is usually any number of combinations of these dislocations.  
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 In both cases, the dislocation is the boundary between a region that has slipped and one 

that has not. For the case of the edge dislocation,  , as seen in Figure A.1, the dislocation is the 

boundary between the region that has slipped (let us say the region to the left of the 

dislocation,  ) and the region that has not slipped (let us say the region to the right of the 

dislocation,  ). The imagined extra half plane is then directly above  . When an edge 

dislocation moves, the direction of slip is perpendicular to the dislocation. This can be seen by 

breaking the bonds between atoms A and B and forming bonds between A and D. This has the 

effect of moving the dislocation one unit to the right. 

 Somewhat in contrast to an edge dislocation, the movement of a screw dislocation 

causes slip in the direction parallel to itself. This movement can be seen in Figure A.2 if you 

imagine that the atom at point A instead bonds with atom at point B, and all the subsequent 

atoms below A also slip vertically. The screw dislocation will then have shifted one unit to the 

right.  

 Instead of considering these defects in terms of the motion of the atoms around them, 

like we have in the previous paragraphs, it is typical to consider the imperfections as separate 

entities. Thus, we consider plastic deformation to be due to the motion and mutual interaction 

of these dislocations in an otherwise ideal crystal. 

 

 
Figure A.1. An edge dislocation in a crystal lattice or the addition of an extra half plane 

into a perfect crystal. 
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Figure A.2. A screw dislocation around which the crystal lattice forms a helical pattern. 

 

 This picture of a dislocation traveling through a frozen lattice, where every atom is at 

precisely prescribed lattice sites, is correct only at very low temperatures, where the effect of 

thermal oscillations can be neglected. This picture is not as accurate, however, at higher 

temperatures where there is an increased level of thermal motion that makes slip possible in 

most crystal's other directions.  

 

A.2 Derivation of the Hardening Parameter   from the von Mises Yield Criterion 

 

 Let us turn our attention to describing    in  

 

 
              or           

 
        

 

3.54 
 

which can be found through the use of the von Mises yield criterion. Since the von Mises yield 

criterion is defined as 

 

        
 

 
  

   

 

3.37 
 

and the second deviatoric stress invariant is defined as 

 
   

 

 
        

 

3.10 
 

then, through combining Equations 3.37 and 3.10, we get 
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A.1 
 

Squaring Equation 3.54 gives us 
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A.2 
 

and, substituting in Equation A.1 into A.2, leads to 

 

 
    
 
    
 

    
 

 
  

  

 

A.3 
 

or 

 
    

         

   
   

 

A.4 
 

Taking the square root of Equation A.4 gives us 

 

     
     

 
    
 

   
   

 

A.5 
 

and, from the definition of incremental strain (assuming plastic incompressibility), we get 

 

      
 

 
 
 

 
    
 
    
 
 

 
 
  

 

3.24 
 

Substituting Equation 3.24 into Equation A.5 yields 
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A.3 Limit Analysis 

 

 Obtaining an exact solution to all but the most simple geometries in continuum 

mechanics is a daunting task. It is useful, therefore, to be able to get an approximate solution 

which bounds the problem and gives an estimate of what the numerical solution might look 

like.  
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 In this section, limit theorems are presented, which provide the basis for determining 

limiting solutions. These limiting solutions can be classified into upper-bound and lower-bound 

solutions for the load (defined as          ) required to cause plastic deformation. An upper-

bound solution overestimates the true load while a lower-bound solution underestimates it. If 

both the upper and lower bounds can be established, the range of possible values for the true 

load is determined. When the difference between the upper- and lower-bound solutions is 

insignificant, the approximations provide answers which are very close to the true solutions. 

Although it is not always possible to determine both the upper- and lower-bound solutions, any 

limiting solution can be useful. For example, in the materials-processing field, the upper-bound 

solution can provide answers for stress (and power) which will be more than sufficient to 

perform a given task. On the other hand, in structural designs, the lower-bound solutions can 

provide a conservative estimate of the load-carrying capacity of a structure, and is much more 

desirable than the overestimated upper bound. 

 The theorems of limit analysis are developed for incompressible plastic materials 

(Poisson ratio of 0.5) and thus, assume that only plastic deformation occurs and that volume 

changes are negligible. The upper- and lower-bound theorems are simply stated in Sections 

3.5a and A.3b. Then, in Section A.3c, an example problem is discussed. The full derivation of the 

upper and lower-bound limit theorems is given in detail by both Suh and Turner6 and 

McClintock and Argon.1 

 

A.3a Lower-Bound Limit Theorem 

 

 The lower-bound limit estimates the lower limit of a load required to cause plastic 

deformation to occur. The theorem states that: 

 

 “-The load corresponding to an assumed stress field which satisfies: 

1) the equilibrium condition everywhere in the continuum (     ) 
2) the yield criterion (either the Tresca or von Mises) 
3) the stress boundary conditions as defined by the specific problem 

is always less than that corresponding to the true stress field.”6 Therefore, the lower-bound to 

the limit load can be obtained by assuming a stress field which satisfies the above three 

conditions. 

 

A.3b Upper-Bound Limit Theorem 

 

The upper-bound limit estimates the upper limit of a load required to cause plastic 

deformation to occur. The upper-bound analysis also incorporates slip-line theory, which gives 
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an estimate for the movement of the material under plastic deformation. The theorem states 

that: 

 

“-The actual work done in deforming a rigid-plastic continuum is always less than the work 

done by an assumed displacement which: 

1) satisfies the displacement boundary condition 
2) yields a strain field which satisfies the incompressibility condition.”6  

 Therefore, the upper-bound to the limit load can be obtained by assuming a 

displacement field which satisfies the above two conditions and by equating the work done by 

the external agent with that done deforming the material along the assumed displacement 

field. The equilibrium condition is totally neglected in obtaining the upper-bound solution.  

 

A.3c Hardness Test Example 

 

 Both of the theorems described above are somewhat vague. Therefore, in this section, 

an example (built upon an example found in Section IV-9 of Elements of the Mechanical 

Behavior of Solids6) is shown where both the lower and upper-bound solutions are obtained. 

Through this example, it is hoped that the reader will gain an understanding of the workings of 

limit analysis. 

 

Hardness Test Example 

 

A semi-infinite solid is indented by a flat punch, as shown in Figure A.3, in a manner 

similar to a standard hardness test. The material is assumed to be rigid-plastic (Poisson ration of 

0.5 or incompressible) with a shear yield stress  . We will now determine the upper- and lower-

bound indentation loads assuming plane strain conditions and that there is no friction between 

the indenter and the work piece. 
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Figure A.3. Lower-bound solution to the stress distribution for the punch-indentation 

problem where the punch, P, is forced into the material, R, with pressure p. Regions A 

and B represent the regions where plastic deformation will occur due to the pressure 

applied to the material through the punch. 

A) Lower-Bound Solution 

For the punch to be able to indent into the material, the material in region A must yield and 

be displaced. Due to constraint in the y-direction, the material must be deformed toward 

region B, thereby requiring the material in region B also to yield and be displaced. Therefore, 

the state of stress existing in region B must high enough for yielding to occur. For the sake of 

simplicity we use the Tresca yield criterion which states that               where    is 

simply the largest stress in the region, and    the smallest. (Note that we use the convention of 

signifying compressive stresses as negative.) In region B, the stress in the vertical direction must 

be zero to satisfy equilibrium with the air above it. Therefore the horizontal stress may be 

represented by a compressive stress with a magnitude of         , which satisfies the 

Tresca yield condition. In order to satisfy the equilibrium condition in the x-direction, the state 

of stress in region A must be in equilibrium with the state of stress in region B and also satisfy 

the yield condition. If this is the case, then the state of stress (as shown in Figure A.3) is 

        and, using the Tresca yield criterion,        . Therefore, the punch must exert 

pressure p given by 

 

 
      
 

A.7 
 

B) Upper-Bound Solution 

 For the upper-bound theorem, we assume that the material will shear along the slip-

lines shown in Figure A.4 below. The shear stress that needs to be overcome along these slip 

lines is again the critical shear stress  . As the punch, P, moves downward, three blocks (A, B, 

and C) of the work material are displaced. They are always in contact with each other, but are 
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sliding along the rigid boundaries shown in Figure A.4. Because the blocks are slipping rather 

than compressing, the assumed displacement field satisfies the condition of incompressibility. 

 

 
 

Figure A.4. Displacement field for the upper-bound solution to the punch-indentation 

problem where the punch, P, is forced into the material, R, with pressure p. Regions A, 

B, and C represent the constant-volume regions where plastic deformation will occur 

due to the pressure applied to the material through the punch. The arrows show the 

direction of movement for each region, and the boundaries represent the slip 

boundaries. 

 

 We now define the relative displacement as   , where the subscript denotes the 

boundary where the slip is occurring. For example, the displacement per unit time for the 

interface between triangle A and the work material, R is denoted by    , the displacement of 

punch P is denoted by   , etc. Furthermore, we can also define the area of the interface as    

and use the same subscripts as for    such that     is the area of the interface between 

triangle A and the work material R. With these definitions, the work done by the punch can be 

related to the work done in deforming the work material. The work performed by the punch 

(  ) is then 

 

 
        

 

A.8 
 

where, because of the symmetry of the system, a is one-half of the cross-sectional area of the 

punch and p is the pressure applied to the punch. The work done in deforming the material 

(  ) is then 

 

 
                                          
 

A.9 
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With Equations A.8 and A.9, the pressure, p can be determined. The areas are simply 

determined from the geometric relations. 

 The major task now is to determine the relative velocity between the different blocks 

themselves: between the blocks and the rigid portion R of the work material, and between the 

blocks and the punch. The velocities,   , are shown below in Figure A.5 in the form of a vector 

diagram commonly known in the field as a hodograph. The velocities must satisfy the 

requirements of compatibility, and consequently the velocity vectors always form a closed 

loop.6 Compatibility requires that rigid blocks adjacent to the rigid region must slide parallel to 

the slip lines between the blocks and the rigid material. Similarly, the relative velocities 

between blocks themselves are always parallel to the slip lines between blocks. 

 

 
Figure A.5. Hodograph of the displacement field of the punch-indentation problem 

shown in Figure A.4.  Each line represents the vector displacement for each slip 

boundary normalized to the displacement of the punch. 

 

 In the construction of a hodograph, all the absolute velocities are shown to emanate 

from a single stationary point, point O in Figure A.5, which represents the entire rigid section. 

Since the punch is moving downward, a vector representing    is drawn downward. 

Recognizing that block A has to move parallel to the slip line between A and R, the absolute 

velocity of B is drawn from the stationary point O along the direction shown. Similarly, the 

absolute velocities of blocks B and C are drawn from O. The magnitudes of these velocities are 

determined by setting the magnitude of    arbitrarily to unity. The absolute velocity of block A, 

   , is determined by drawing a horizontal line from the end of the vector    until it intersects 

with    , because the relative velocity between the punch and block A has to be horizontal. 

The magnitude of the absolute velocity     is similarly determined by drawing a relative 

velocity vector     parallel to the slip line between blocks A and B. 
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 Substituting these values into Equation A.9 and setting Wd equal to Wp leads to the 

solution to the upper-bound: 

 

 
      
 

A.10 
 

Therefore, the true indentation pressure lies between the two limiting values given by 

Equations A.7 and A.10: 

 

 
         
 

A.11 
 

 Indenters used in a standard hardness tests are not flat but are balls, pyramids, or 

cones. In some tests, including the Rockwell hardness test, the depth rather than the area of 

indentation is measured. In the Brinell, Vickers, and Knoop hardness tests, the hardness is given 

in terms of the average load per unit area. While in all of these tests, plane strain conditions do 

not apply, the indentation loads for the plane strain case are not substantially different, 

although always less. Experimentally, the indentation hardness in a typical test is found to 

range from 6.2 to     .1 

 

A.4 Mathematical Treatment of Strain 

 

 In this section we develop the mathematical treatment of strain. The derivation of the 

equations for strain that follows was taken from Section 2.7 in Advanced Mechanics of 

Materials7 and from L. Landau and E. Lifshitz.8 

 In continuum mechanics it is useful to describe a change in the shape of a material 

relative to its initial shape or reference state. This reference state, also called the undeformed 

state, corresponds to the shape of a stationary material. If a stress is applied to the material it 

deforms meaning that its shape changes and all the particles within the material move.  
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Figure A.6. An undeformed body (white) and the same body after deformation has 

occurred (grey).    and    are two points on the undeformed body where the distance 

between them is    and   
  and   

  are the same two points after deformation has 

occurred with the distance between them being    . The displacement of point    due 

to the deformation is   and the displacement of point    is     . 

 

 Let us first define the position of a particle in the undeformed reference state as    

where              (see Figure A.6). If we stress the material, then the particle specified moves 

to a new position notated as   
  where   

    
    

    
   (see Figure A.6). The displacement of the 

point due to the deformation is then given by the vector   
     which we denote as   (the 

displacement vector) 

 

 
    

      

 

A.12 

 

 When a body is deformed, the distances between its points change. Therefore, let us 

consider two points very close together,    and   . The radius vector joining them before 

deformation is    and the radius vector joining the same two points after deformation is 

          . The distance between the points is        
     

     
  before 

deformation, and         
      

      
   after deformation. Taking the square of the 

distances gives us  

 

and 
          

 

A.13 
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 Let us now consider the difference in squared distances between the points in the 

undeformed and deformed body: 

 

 
                        

 

A.14 

 

 We can employ the chain rule on    to get 

 

 
           

 

A.15 

 

which, when incorporated into Equation A.14 leads to 

 

 

                                      

 

                                            
 
            . 

 

A.16 

 

The quantity in the brackets is used to define the Lagrangian description of the strain: 

 

 
   

 

 
      

 
         

 

A.17 

 

where the quantity of one-half is arbitrary, and makes the results of this analysis consistent 

with the well-known linear elastic theory when material displacements are small. If we 

substitute Equation A.13 into Equation A.17, realizing that       , we get    in terms of    , or 

 

 

   
 

 
      

 
         

 

 
        

 
             

 

                                                 
 

 
        

 
        

 
   

 

A.18 

 

 Assuming that    is small we can drop the higher order term          
 

. Thus, we 

denote the strain tensor as 

 

 
   

 

 
        

 
   

 

A.19 
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We can also define the deformation-rate tensor     as simply 

 

 
    

 

 
        

 
   

 

A.20 

 

For a more detailed explanation of infinitesimal strain theory, please refer to Sections 2.7 and 

2.8 in Advanced Mechanics of Materials7 and Chapter 1 in L. Landau and E. Lifshitz.8 

 

A.5 Algebra to get Equation 3.113 from Equation 3.110 

 

 From Equation 3.110, we have the relation of the stress to the strain for plastic 

deformation: 

 

 
    

 

  
   

 

   
     

 

3.110 
 

We first assume that we are always in the plastic regime allowing us to remove the brackets. 

Taking the double dot product of Equation 3.110 yields 
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From Equation 3.10, we have               which gives us 
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Rearranging Equation A.22 gives us 

 

                  
     

   
  

 

  

 

A.23 
 

We take the square root of Equation A.23 yielding 

 

 
                    

 

A.24 
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