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Abstract

When faced with a novel problem, people can sometimes
decide what to do by imagining alternative sequences of
actions and then taking the sequence that solves the
problem. In many problems, however, various constraints,
such as working memory capacity, limit the amount of
internal lookahead that people can do. This paper describes
Bottom-Up Recognition Learning (BURL), a model of
limited-lookahead learning based on final first learning and
knowledge compilation. In BURL, knowledge compilation
of limited-lookahead search over successive problem-
solving trials transfers knowledge from the leaf nodes of a
problem space to the top node. Two experiments test
BURL’s predictions. The first compares the Soar
implementation of BURL to human subjects learning to
play two Tic-Tac-Toe isomorphs. This experiment shows
that BURL can account for learning that occurs when
subjects can perform a limited lookahead. The second
experiment studies transfer between two strategy
acquisition tasks for one isomorph. This experiment shows
that BURL must be used in conjunction with other learning
methods to fully explain skill acquisition on limited-
lookahead tasks.

Introduction

When faced with a novel problem, people can sometimes
decide what to do by imagining alternative sequences of
actions and then taking the sequence that solves the
problem. In many problems, however, various constraints,
such as working memory capacity, limits the amount of
internal lookahead that people can do. For example, even in
a simple game like Tic-Tac-Toe (TTT), people can have
trouble imagining complete sequences of moves leading
from the beginning of the game to the end. As a result, a
person (when playing against a perfect opponent) will often
lose several games before learning how to consistently get a
draw (the best outcome against a perfect opponent).

What kind of learning process is responsible for this
bebavior? Newell (1990) has proposed the chunking-leaming
hypothesis which says that all long term leaming occurs
through chunking, a form of knowledge compilation. He and
his colleagues have tested this hypothesis by demonstrating
how chunking, as implemented in Soar (Laird, et al., 1987),
supports a wide variety of learning behavior (Steier, et al.,
1987). However, limited-lookahead leaming is not directly
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supported by a knowledge compilation learning mechanism.
The problem is that knowledge compilation works by
compiling the results of search, but a limited lookahead
search will not produce a result unless the search reaches the
goal state, hence there will be nothing to compile. The lack
of result can be circumvented by using a beuristic evaluation
of the lookahead state, however this potentially incorrect
evaluation will then get compiled leading to erroneous
behavior in all later problem-solving trials. As a result, the
current weak method for lookahead in Soar will only learn
appropriate behavior if it is allowed to exhaustively
lookahead. If the chunking-learning hypothesis is true, we
must find a different way of using chunking to learn when
lookahead is limited, Otherwise, we must reject the
hypothesis and consider additional kinds of learning
mechanisms.

In this paper, we present Bottom-Up Recognition
Learning (BURL), a knowledge-compilation based theory of
limited-lookahead learning. According to our theory, people
begin with recognition knowledge of the final states of a
problem, then, through successive trials, transfer this
knowledge up to intermediate states, until eventually, a
limited lookahead search from the initial problem state is
sufficient to reach an intermediate state whose outcome is
recognizable. Recognition knowledge for an intermediate
state is acquired through knowledge compilation whenever
limited lookahead reaches a recognized state. Thus, state
recognition knowledge flows from the bottom of the search
space up to the top. In addition to describing BURL, we
present two experiments designed to test BURL.

Other Theories

Several other theories might also be used to explain limited-
lookahead learning. First, people might remember the
moves that they made in one trial and then use these again if
they get the desired outcome, or avoid these moves if an
undesirable outcome occurs. Second, if people can remember
their sequence of moves, they might engage in self-
explanation (VanLehn, et al., 1991). That is, they could
attempt to explain why the sequence of moves led to the
resulting state. This process would produce knowledge that
would allow them to avoid or select moves in future trials.
Finally, people might also treat the task as concept
discovery, where the concept being discovered is a strategy
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Figure 1: Illustration of basic bottom-up recognition learning, showing how recognition knowledge flows from the bottom of
the tree to the top as successive trials are attempted.

and each game is an experiment designed to test a strategy.
Although these seem plausible, they are all highly deliberate
learning techniques. Our goal, as stated above, was to
explore methods that are naturally supported by the
chunking-leaming theory. This led to the creation of BURL.

BURL is a form of final first leaming (e.g., Howes,
1994), a class of learning methods in which state
evaluations are backed up from terminal states (either goal or
failure states) to higher states in a search space, one trial at a
time. This technique has been used in reinforcement leaming
(Sutton, 1988), to model the acquisition of software
interaction skills through exploration (Howes, 1994), and to
improve the performance of machine game-playing programs
(Samuel, 1967).

Final first learning describes a general class of learning
methods, because it does not specify the leaming technique
used to acquire the knowledge. The learning technique
dictates the conditions needed for learning knowledge and the
characteristics of the resulting knowledge. For example,
BURL must look ahead at least one step to learn any
knowledge, but Howes' technique can leam without doing
any internal lookahead because it remembers how to
construct the previous state and then explicitly constructs
evaluation knowledge for that state,

Huffman (1994) has developed a method similar to BURL
for use in a Soar-based agent that learns from instruction. To
the authors’ knowledge, however, the work presented in this
paper represents the first effort to apply and evaluate a final
first learning technique based on knowledge compilation to
human problem solving. General evidence for the use of
final first learning by humans can be found in the work of
Crowley and Siegler (1993). In a developmental study, they
found that children developed rules for playing Tic-Tac-Toe
in a final first manner.
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Bottom-Up Recognition Learning

Basic BURL is illustrated in Figure 1. Each of the diagrams
(a-f) illustrate one complete trial or game. The agent is
trying to leam to solve the problem represented by the
problem space shown in 1(a), where State L is the goal
state. Prior to the first problem solving trial the agent only
has recognition knowledge for the leaf states in the problem
space. In other words, the agent can only recognize a state in
which it has failed or succeeded. Each diagram illustrates
what the agent knows by shading states that are recognized
as on the path to failure and bolding those that are
recognized as on the path to success. Arrows indicate the
path that the agent took for that trial. A solid arrow means
that the agent knew the outcome of the move. A dashed
arrow means that the agent did not know the outcome.

The agent begins the first trial in State A, 1(a). For this
example, we will assume that the agent can only look ahead
one step. From State A, the agent looks ahead and sees that
he can reach either States B or C. Since the agent doesn’t
recognize either state, he doesn't know which route to take,
s0 a path must be chosen based on a bias. Lets assume that
the agent selects B. By select, we mean that the agent
applies the action leading to B in the external problem
situation. From State B, the agent again looks ahead and,
this time, sees D and E. Neither state is recognizable, so
assume the agent picks D. From State D, however, one step
lookahead reveals States H and I, both recognized by the
agent as failures. As a result of this lookahead, the agent
learns recognition knowledge for State D. Figure 1(b) shows
the new state of the agent’s knowledge. The new knowledge
allows the agent to immediately recognize that State D is on
the path to failure. For the first trial (a), however, the agent
bas already committed to a path leading to failure, so it
selects one of the failure paths to H or I to end the trial.



On the second trial, the agent has the recognition
knowledge shown in Figure 1(b). Beginning at A, the agent
still doesn’t recognize B or C as leading to success or
failure. Suppose that the agent selects B again. From State
B, lookahead reveals D and E. Since D is now recognized as
a state that leads to failure, the agent will pick E. Lookahead
from E indicates that it is also on the path to failure, so the
agent learns recognition knowledge for E (See Figure 1(c))
and then ends the trial with failure at State J.

In the third trial, Figure 1(c), the agent still doesnt
recognize either of the states from State A. The agent once
again selects B. This time, lookahead from State B reaches
D and E, both failure states, which allows the agent to learn
to recognize that B is on the path to failure. This leads to
the state of knowledge shown in 1(d).

In trial 4, the agent takes the path shown in 1(d), reaching
the goal state. Trial 4 results in recognition knowledge to
detect that G is on the path to success (1(e)). The agent’s
recognition knowledge is now sufficient to solve the task on
all following trials. In trial 5, lookahead from State C,
reveals that G leads to success, so recognition knowledge is
acquired for C (shown in 1(f)). After Trial 6, the agent learns
that A is on the path to success (this is not shown),
completing the leaming process.

Note that BURL does more than just cache evaluations.
Because it uses knowledge compilation, the recognition
knowledge that BURL learns when evaluating one state can
potentially apply to multiple states. Knowledge compilation
mechanisms build recognition knowledge that tests for only
those features that were essential for producing a result. For
example, in TTT many states are simply rotations of other
states. If recognition knowledge is acquired for one state, it
is likely that the same knowledge will apply to the rotated
states. This feature distinguishes BURL from simple
caching schemes. Generalization allows the agent to
recognize additional states, without actually trying them;
however, it also can lead to overgeneral knowledge, where
states are recognized incorrectly. This would be undesirable
for a machine-based game-playing program, but is consistent
with human behavior (Larkin, 1981).

From this example, we can see that BURL has several
interesting properties. First, BURL can learn from failure
and success. In fact, it is possible for BURL to leamn to
correctly solve a problem by either failing many times or
succeeding many times. On one hand, if BURL keeps
failing, but never succeeds, it will eventually learn not to
take failure paths, leaving only successful paths. On the
other hand, if BURL consistently succeeds, then it will
acquire knowledge of the correct path, preventing it from
exploring any failure paths.

Second, the rate of learning depends on two characteristics:
1) the generality of acquired recognition knowledge; and 2)
the bias used to select a move when lookahead is
insufficient. The generality of the acquired recognition
knowledge affects leaming rate by increasing the number of
recognizable states. In one trial, generalization can enable
the agent to learn to recognize states that, without
generalization, could take several trials to learn. The
generality of the knowledge depends upon many factors of
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the task and the cognitive representation. We discuss some
of these later in the experimental sections.

The bias affects learning because it affects the paths that
the agent takes in each trial. What BURL learns in a trial is
dependent on the moves made in that trial and previously
acquired recognition knowledge. A good bias will tend to
push the agent toward a goal state, so the agent will quickly
acquire knowledge of states that are on the path to success.
In contrast, a bad bias must be overcome through
experience. It tends to force the agent down the wrong path,
trial after trial, until the agent learns enough recognition
knowledge to overcome the bad bias.

Extended BURL

Further Limiting Lookahead. To drastically decrease
the amount of search when looking ahead more than 1 step,
we modified BURL so that it uses the bias to control
lookahead. If the outcome of the current state is not known
(i.e., there is no recognition knowledge for whether the
current state is or is not on the path to success), then the
bias is used to select a move for lookahead. The agent then
evaluates the move using an n-step lookahead. If the
lookahead search is inconclusive (because the depth limit
prevents the agent from reaching recognizable states), then
the selected move is taken as the agent’s actual move for
that turm. Howeyver, if lookahead reveals that the move leads
to failure, then the move is rejected and the bias is used to
select a different move (which is also evaluated using
lookahead). The end result is that, in general, search is
drastically decreased. For example, on its first move in TTT
the modified BURL agent will only need to evaluate 7 states
(vs. 56 without this modification): the opponent’s 7
responses to the single bias move (assuming n=2). This
seems reasonable given the observed response times of about
5 seconds a move for the human subjects.

Implementation in Soar. BURL has been implemented
in Soar as a method increment that can be used in place of
Soar’'s default exhaustive lookahead method. The method
increment is designed such that any task modeled in Soar
that makes use of the default method can instead use BURL
by simply adding knowledge of a bias or loading a supplied
random bias. No changes to the original task code are
needed.

The Experimental Task: Tic-Tac-Toe
Isomorphs

We proposed BURL while attempting to model learning
results for several isomorphs of TTT that are being used to
study the interaction between perception and cognition
(Zhang, 1993). Although the original research used 4
isomorphs, we have concentrated our modeling efforts on the
two isomorphs (the easiest and hardest of the 4) shown in
Figure 2. In the Line isomorph (Figure 2a), the first person
to get three circles on a straight line wins. In the Number
isomorph (Figure 2b), the first person to get three numbers
that add up to 15 wins. The mapping between the two
isomorphs is shown in Figure 2c. It should be evident that
two or three circles on a straight line are easy to perceive in
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Figure 2: (a) The Line isomorph. (b) The Number isomorph. (c) The mapping between the two isomorphs. Modified from
(Zhang, 1993).

Line, but that the same information is more difficult to see
in Number, because it must be computed by adding pairs or
triples. In addition, the symmetry information in Line
(center, corners, sides) is easier (0 perceive than in Number
(5, even and odd numbers).

Previous Empirical Results

In the two experiments reported in Zhang (1993), subjects
played either the Line or the Number isomorph (see Figure
2) against a perfect computer opponent until they got 10
draws in a row. They were told that they could not win. In
Exp. 1, the computer opponent always selected an even
number! as the first move (see Figure 2c). To draw, subjects
had to select 5, followed by any odd number (the five-odd
strategy). In Exp. 2, the computer always selected S as the
first move. To draw, subjects had to select any even number,
followed by any remaining even number (the even-even
strategy). We will refer to the 4 conditions using Isomorph-
Experiment, such as Number-2, meaning the Number
isomorph under the learning conditions for Exp. 2.

The empirical results for Experiments 1 and 2 are shown
in Figure 3 (the bars marked as Subjects). It reports the
average number of games needed to get the first draw and the
average number of games played before 10 draws in a row
were achieved (not counting the 10 draws). If a subject did
not get 10 draws in a row after playing 50 games, 50 was
used as the number to 10 Draws. The experiments reveal
three important behavioral regularities: 1) Line is easier than
Number regardless of the computer’s first move; 2) the even-
even strategy is easier to learn than the five-odd strategy; and
3) one draw is not sufficient to acquire the appropriate
strategy.

The BURL Model for TTT

In applying BURL to TTT we made the following
assumptions based on the theory of perception and cognition
proposed by Zhang and on the empirical results. (1) Subjects
can detect final draw and lose states (leaf states). (2) For a
given state, subjects first consider moves that block the
opponent. If no block is needed, then all possible moves are

1 We use 5, even and odd numbers in Number to refer to the
positions in Line as well, since they are equivalent to the
center, corners, and sides in Line. See Figure 2c.
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considered. (3) Subjects assume the opponent will move to
win, if possible, otherwise block the subject from winning,
otherwise, take one of the available moves. (4) In Line,
symmetry information is available to the subject (i.e., they
can detect and use information about the relationships
between corners, sides and the center). Recognition
knowledge learned for one trial of Line should therefore
apply to symmetric situations. (5) In Number, symmetry
information is not available. Recognition knowledge is
therefore sensitive to the specific numbers tested during a
single trial. (6) The biases were set by analyzing the
subject’s moves on the first few trials. This analysis
revealed that only the subjects’ first move of each trial was
biased. All following moves were equivalent to random
selection (prior to learning). The bias for the first move is
probabilistic and was set to match the distribution of moves
selected by the subjects. (7) Based on the speed of subjects’
responses, we assume only a two step lookahead (n=2).

Given the biases and the assumptions about the use of
symmetry, Line should be easier than Number, because
symmetry information is available and the bias tends to
select the correct first move. In addition, we would expect
that the tasks in Exp. 2 should be easier than those in
Exp.1, because for the first move in Exp. 2, subjects have a
50% chance of selecting the correct first move (an even
number or a corner), whereas in Exp. 1 subjects only have a
12.5% chance of selecting the correct first move (5 or the
center). In addition, the correct first move for Line in Exp. 2
corresponds to the subjects’ bias. The critical point for the
model is whether or not it can produce the specific changes
in difficulty across the 4 conditions.

Simulation Results

The model was tested by simulating the same number of
subjects as that used in the empirical studies (20 subjects for
each of the 2 conditions in Exp. 1 and 15 subjects for each
of the conditions in Exp. 2). Each simulated subject (the
model) played against the same computer opponent used in
the empirical studies until getting 10 draws in a row or
having played 50 games. The results are shown in Figure 3,
alongside the empirical data. At first glance, BURL appears
to account for the three regularities revealed in the
experiments described above: Line is always easier than
Number, the even-even strategy (Line-2 and Number-2) is
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1(28) = 1.12, p = .27; (28) = 1.84, p = .08; 1(38) = .316, p = .75; t(38) = -1.64, p<.0001; t(28) = -1.22, p=.23; t(28) = -2.5,
p=.02.

easier to acquire than the five-even strategy, and one draw is
not sufficient to acquire the appropriate strategy. However,
when we look closely, BURL appears to explain behavior
on Line, but not on Number. For Number, the simulation
and subjects differ significantly on both the number of
games to the first draw and the number needed to get 10
draws. To determine why, we collected verbal protocols from
several subjects for each isomorph. The protocols for Line
provided very little information, since subjects were able to
readily perceive the information needed to make a move;
however, the Number protocols revealed that successful
subjects treated the task as a concept acquisition task. These
subjects stated a possible strategy for selecting moves, then
proceeded to test the strategy by trying it for several games.
In addition, although subjects appear to do some lookahead
on Number, most only attempt to determine if they need to
block the computer—they do not check to see if they can
make a move that would force the computer to block them.
Thus, subjects only attempt a partial one-step lookahead.
Clearly, this is not the type of task for which BURL is
applicable. For that reason, in the next experiment, we will
look only at Line.

Transfer Across Strategies

Although BURL appears to simulate the subjects’ behavior
on Line, more data is needed to determine precisely where
the model might be right or wrong. Since BURL makes
specific predictions about the recognition knowledge that
will be acquired during a task, a good test is to see if
subjects are learning the predicted knowledge. One way to
test these predictions is with a transfer study. When the
simulation learns to correctly solve Line-1, it has acquired a
large body of recognition knowledge. We might expect some
of this knowledge to transfer to Line-2. Likewise,
knowledge for Line-2 should also transfer to Line-1. Thus,
we have two transfer conditions: Line-1 to Line-2 and Line-2
to Line-1. Because Line-2 is relatively quick to learn,
comparatively little recognition knowledge is acquired.
Thus, we would expect to see a lot of transfer from Line-1
to Line-2, but little transfer from Line-2 to Line-1.

We used the model to simulate 20 subjects for each
condition. After the simulation, we collected data from 20
real subjects for each condition. The results are shown in
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Figure 4. When the number of games needed to get 10 draws
in a row was used as the measure of transfer, as expected, the
model shows transfer from Line-1 to Line-2 (1(38) = 2.65,
p<.01), but none from Line-2 to Line-1 (#(38) = -0.57,
p=.57). However, the subjects show transfer in the opposite
direction, from Line-2 to Line-1 (t(36) = 2.18, p<0.04), but
not from Line-1 to Line-2 (t(36)=-0.043, p=0.97). When the
number of games needed to get the first draw was used as a
measure, the simulation and experimental results were
consistent: there was no significant transfer from Line-1 to
Line-2 (Simulation: #38)=1.45, p=.16; Subjects: 1(36) =
-1.64, p=0.11) or from Line-2 to Line-1 (Simulation:
1(38)=-0.13, p=.90; Subjects: t(36) = 0.66, p=0.52) (see
Figure 6). Transfer was measured as the difference between
the subjects who played the isomorph first and those who
played it second.

It seems that subjects acquired meta-knowledge from the
first task: whenever getting the first draw, simply make the
same moves that lead to the first draw to get the rest of the
10 draws. This can be easily seen from Figure 5. When
Line-1 was played as the first task, subjects needed 4.28
games to get the first draw and 10.11 games before getting
10 in a row. Thus, on average subjects got 10 draws in a
row within 5.8 games of getting the first draw. In contrast,
when Line-1 was played as the second task, subjects needed
3.35 games to get the first draw and only 3.9 games before
getting 10 in a row. Thus, on average subjects got 10 draws
in a row within 1.5 games of getting the first draw. This
meta-knowledge should have a much larger effect on Line-1
because it is much harder than Line-2. Since Line-2 is
relatively easy (subject’s who attempt it first need only 3.9
games on average to get 10 draws), the effect of the meta-
knowledge might not be readily apparent. In addition, the
standard deviation for Line-2 is quite high: 1.092 for the first
draw and 3.161 for 10 draws in a row.

Conclusion

BURL represents a natural solution to the problem of
explaining how knowledge compilation can be used to
directly learn when lookahead is limited. The
implementation of BURL as a method increment in Soar
provides the Soar user with a more cognitively plausible
lookahead learning method than the default, exhaustive
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method. In addition, this work provides additional support
for the chunking-learning hypothesis by showing how
chunking can be applied to limited lookahead learning. The
experiments described above show that BURL can explain
some of the behavioral regularities of human learning;
however, they also reveal possible discrepancies in the type
of knowledge acquired during problem solving. To refine
BURL we are planning to conduct a detailed model-tracing
analysis of the model using individual subject moves. This
will allow us to use the precise bias used by each subject
and will provide additional details concemming where the
model fits and does not fit the data.
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