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Where would you stand on the subway?  

A Bayesian framework for modeling commuter positioning choices in simulated 

subway coaches 

Rohit Priyadarshi Sanatani (sanatani@mit.edu) 
Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue 

Cambridge, MA 02139 USA 

 

 

Abstract 

Subway systems in large cities witness high volumes of 
commuter traffic, with crowded coaches and limited seats. In 
such scenarios, commuters often carefully position themselves 
in strategic locations with the aim of maximizing their chances 
of getting a place to sit. While user behavior in subways around 
the world have been the focus of multiple studies in the past, 
these everyday acts of ‘optimal decision making’ is of 
particular interest to the cognitive scientist. This paper inquires 
into commuter positioning choices in simulated subway 
coaches, within the framework of Bayesian probabilistic 
modelling. Data on preferred standing positions were collected 
across 20 subjects for 30 co-passenger configurations, through 
an interactive computer game. A generative model based on a 
Bayesian network involving three key spatial parameters was 
constructed, and used for inferring preferred positions 
conditioned on the specific configurations. The model was able 
to accurately simulate the quick and intuitive decisions made 
by the players under constraints of time, and also effectively 
capture noise in responses across subjects.  

Keywords: Bayesian model; commuter positioning; choice 
simulation; subway game 

Introduction and Background 

Subway systems around the world form a unique backdrop 

against which the drama of urban public life plays out. They 

also usually evolve into strong anchors within popular 

culture, and the collective memory of citizens and visitors. 

Be it the antique ruggedness of the London Underground, the 

socialist classicism of the Moscow subway, or the chaotic 

ballet of the Delhi Metro - these networks come to represent 

the very ethos of the cities that they adorn. This ‘culture’ of 

the subway is produced and reproduced through complex 

behavioral patterns playing out every single day across 

hundreds of tunnels and thousands of commuters, deep below 

the ground.  

Crowding in subway coaches is a common occurrence in 

large metropolitan cities, especially during rush hour. Given 

the limited number of seats available, a significant number of 

passengers are forced to stand through a significant part of 

their daily commute (Berkovich et al. 2013). The regular 

commuter, however, is often skilled in intuitively analyzing 

the configuration of a coach, and deciding on the most 

‘optimal’ place to sit or stand, depending on a variety of 

spatial, social and ambient parameters. In crowded scenarios, 

commuters often carefully position themselves in strategic 

locations with the aim of maximizing their chances of getting 

a seat (Pownall et al. 2008). These seemingly intuitive 

choices taken by commuters as agents with free will is of 

particular interest to the cognitive scientist. Probabilistic 

modeling aimed at capturing such ‘noisy’ human decisions, 

can thus become a fruitful endeavor, and also pave way for 

more ‘human’ predictive models for a variety of planning and 

decision-making tasks.   

Optimal decisions and the Bayesian framework 

This body of research aims to build a predictive model of 

commuter positioning choices by adopting a Bayesian 

framework of cognition (Griffiths, Kemp and Tenenbaum, 

2008). There is a wealth of existing literature examining the 

processes of Bayesian inference in intuitive day to day 

decisions undertaken by the human mind. Past studies have 

examined the ‘optimality’ of human cognition, and suggested 

that everyday intuitive judgements follow principles of 

optimal statistical inference based on implicit probabilistic 

models of the everyday world (Griffiths and Tenenbaum, 

2006). Such lines of inquiry build upon the hypothesis that 

human minds possess implicit ‘generative engines’ built 

upon Bayesian causal networks, and involving assigned 

priors across generative parameters. The cognitive 

mechanism involves Bayesian inference through sampling 

from such models against the light of existing constraints. 

Everyday decision making is often carried out through 

inferences based on a limited number of samples, allowing 

the human mind to make reasonably accurate choices within 

very short spans of time (Vul et al., 2014).  

Multiple probabilistic models within various domains of 

human judgement have been able to accurately simulate 

quick human decision-making processes against the light of 

sparse data. Within the realm of concept learning, (Xu and 

Tenenbaum, 2007) examined word learning in adults and 

children through a Bayesian framework. Meaningful 

generalizations made from very few examples were 

explained as an act of making rational inductive inferences 

by building upon prior knowledge of possible meanings as 

well as the observed samples of a word’s referents. Within 

the domain of scene perception and understanding, Bayesian 

probabilistic modeling has been applied for facial analysis, 

human pose estimation as well as object reconstruction tasks 

(Kulkarni et al. 2015). More recently, probabilistic 

frameworks have been proposed for inferring three 

dimensional spatial structures from limited data in the form 

of RGB and depth imagery (Gothoskar et al. 2021). Along 

similar lines, (Battaglia et al. 2013) applied the Bayesian 

framework to develop computational models of ‘intuitive 
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physics’ that allow humans to coherently engage with the 

physical world. Such models used approximate, probabilistic 

simulations to make quick inferences in complex natural 

scenes. Notably, they were also able to capture illusions and 

biases which are inherent to the human experience.  

This present body of work situates itself against the above 

discussed line of scholarship, and applies Bayesian 

probabilistic modelling within the realm of urban public 

behavior and everyday decision making. It aims to build a 

predictive model that is capable of capturing the quick and 

intuitive judgements made by commuters in simulated 

crowded subway coaches, where they intend to maximize 

their chances of getting a seat.  

Data Collection – ‘The Subway Game’ 

The development of a rapid data-collection framework for 

gathering data pertaining to positioning preferences across 

human subjects becomes a key consideration at this point. 

Several past studies looking into commuter behavior have 

relied upon real-time observation inside physical 

subway/train coaches and stations (Pownall et al. 2008, 

Berkovich et al. 2013). While such data most accurately 

captures behavioral patterns in real world scenarios, it 

nevertheless poses problems on two important counts. 

Firstly, while such a method may be most representative of 

actual behavioral outcomes, it becomes extremely difficult to 

control for extraneous parameters, while studying the causal 

effects of specific independent variables on specific 

behavioral outcomes. Such studies would thus require 

randomized control across an extremely large sample of 

observed subjects, and across diverse scenarios. Secondly – 

and most importantly from a cognitive science point of view 

– observation without the subject’s knowledge makes it even 

more difficult for the observer to accurately gauge the 

subject’s goals and motivations. It is common for commuters, 

for example, to often not want to sit, and end up standing even 

when there are seats available. From a Bayesian perspective, 

accurately estimating the correct priors across several 

parameters becomes all the more difficult.   

An alternate framework for collecting such data – 

including the one employed for this study – is through 

simulation. There have been multiple recent studies 

employing game engines for the simulation of real-world 

scenarios, with aim of collecting data on participant behavior. 

While such a framework inevitably simplifies a scenario by 

reducing the number of parameters involved, it nevertheless 

makes it easier to effectively isolate and control for specific 

parameters while studying the causal relationships between 

others. Also, inducing specific motivations becomes easier 

through subject briefing before experimentation, and also 

through explicit rewards for achieving specific goals. This 

study employs a computer game, titled ‘The Subway Game’, 

for simulating specific scenarios in subway coaches, and for 

collecting user data on positioning preferences.  

The Data Collection Interface 

‘The Subway Game’ was developed on Processing 4 (Reas 

and Fry, 2007), and presented to the player a 2-dimensional 

layout of a typical subway coach (modeled on the 

Bombardier coaches on the Yellow Line of the Delhi Metro). 

It comprised of 46 seats and 8 doors situated symmetrically, 

including 3 identical bays of 14 seats each. Each of the seats 

were occupied by black circles, each representing a 

commuter.   

The game read from a .csv file that contained the locations of 

different standing co-passengers, each of whom were 

‘competing’ with the player for seats. 30 different scenarios 

of different competitor configurations were pre-generated 

and written to the .csv file for the game to display. The 

number of competitors in these scenarios ranged from 1 to 

29. Each of these scenarios could be presented to the player 

by displaying similar black circles at the competitor 

locations.  

Gameplay 

The game started with an introductory prompt which reads 

thus: “You enter a subway coach, tired after a hard day’s 

work. All seats are occupied. Where would you stand, so you 

could grab a seat soon?” This prompt was intended to induce 

appropriate priors, linked to a specific goal i.e., that of getting 

a seat. The observer also briefed the player on the scenario, 

and verbally indicated that it was equally likely for any of the 

sitting passengers to vacate their seats at any stop. The player 

inputs their name, following which the gameplay begins.  

The main gameplay comprised of each of the 30 passenger 

configurations being sequentially presented to the player in a 

randomized order. The player was asked to click on any point 

on the coach where they think they would stand in order to 

maximize their chances of getting a place to sit (Fig 1). The 

cursor was represented by a red circle of the same size as that 

of the competitors. A timer appearing at the bottom of the 

screen allowed a window of 10 seconds per scene for the 

player to respond.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Subway Game - Gameplay 
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Subjects and setup 

20 subjects – all graduate students across 5 departments at the 

Massachusetts Institute of Technology – participated in the 

gameplay. The game was presented on a laptop computer 

(Dell XPS 15 7590) of screen resolution 1920 x 1080 pixels. 

Each gameplay lasted for 3 minutes on an average.   

Data tabulation 

At the end of each gameplay, the x and y coordinates of the 

preferred user standing position for each scenario was 

recorded into a .csv file. In addition, the seat locations, door 

locations, and the location of each competitor was also 

registered. The heads of the final tabulated dataset are 

presented below in (Table 1).  

 

Table 1: Key Dataset Parameters 

 

 

Probabilistic Modelling 

A multitude of parameters play crucial roles in determining 

positioning choices in coaches. Based on a critical review of 

existing literature, along with qualitative responses collected 

from subjects during the course of gameplay, this study 

adopted 3 key parameters for the synthesis of the generative 

model used for probabilistic modeling. The parameters were 

(i) number of seats to which the player is the closest out of all 

competitors (S), (ii) distance to nearest co-passenger (P) and 

(iii) distance to nearest door (D) (Fig 2).  

Figure 2: The key causal parameters considered by the 

model 

The Generative Model 

Figure 3 shows a schematic Bayesian network representing 

the causal dependencies of the parameters in question 

through a directed acyclic graph. This represents the structure 

of the generative model drawn up for determining the optimal 

positions that subjects may have gravitated towards in their 

responses.  

The three key parameter D,S and P are considered as 

arguments for an utility function that computes a preference 

score for any arbitrary point (x,y) within the subway coach. 

The utility function is represented thus:  

 

Score = (Ss*Pp)/ Dd                           .. .. .. .... (1) 

where, 

S = Number of seats (normalized) to which the player is the 

closest out of all other competitors  

s = weight of factor S 

P = Normalized distance to nearest co-passenger 

p = weight of factor P 

D = Normalized distance to nearest Door 

d = weight of factor D  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The key causal parameters considered by the 

model 

Preference score distributions across possible 

standing positions 

The utility function was also scripted in Processing, in order 

to output preference scores for all possible standing positions 

across the subway coach. The game having been developed 

on a pixel-based canvas, the entire length of the bays 

(between the seats on either side) was discretized into squares 

of width 5px. The x and y values corresponding to the central 

pixel of these squares were passed through the utility 

function, and the display colour of that square was set to a 

value on colour gradient as a function of the preference score 

at that point (x,y). This allowed for the generation of 

heatmaps in order to visualize the score distribution across 

the entire available coach space (Fig 4).  

 

 
 

Figure 4: Heatmap representing score distributions across 

a coach for scenario 13 

Inference algorithm – sampling from the ‘intuitive 

generative engine’ 

In order to draw inferences on likely standing positions, a 

sampling algorithm was scripted to draw a fixed number of 

samples from the generative model, constrained on the 

specific passenger configurations for each scenario. A 

uniform prior was assigned over the x and y coordinates for 

each of the possible standing positions. The algorithm passed 

each sampled point through the utility function, and returned 

the sampled point corresponding to the highest preference 
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score. To compare with human data, the inference algorithm 

was run 20 times for each scenario (corresponding to the 20 

subject sample size of the study) (Fig 5).    

 

 

 

 

Figure 5: Representative predictions (in blue) for 20 runs 

of the model (scenario 13)  

Model parameters and human judgements 

In order to evaluate the various model parameters against 

human data, the .csv files for each subject were combined 

using Pandas in Python, and all user x and y values for each 

scenario were grouped together. A visualizer script then read 

each of these values from the combined .csv file, and 

displayed them together along with the preference score 

heatmap. The parameter weights s,d and p were modulated to 

evaluate the degree to which each of the parameters 

influenced positioning choices, and also to arrive at an 

optimal configuration for the model. To do that, however, the 

effect on human judgements of the two dominant model 

parameters, namely S and P, were first considered in 

isolation. This provided valuable insights into the nuances of 

everyday human judgements in such a setting.  

 

Number of seats nearest to (S): Fig 6 depicts user responses 

for several scenarios overlaid on corresponding heatmaps 

generated by the model, and considering the effect of 

parameter S in isolation (s = 1, p = 0, d = 0).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: User clicks (red) and model predictions (blue) 

overlaid on heatmaps for parameter S in isolation.   

From a rational standpoint, parameter S plays the most 

significant role in determining the actual probabilities of a 

commuter getting a seat. This is because, assuming equal 

chances of any seat being vacated at a particular stop, the 

passenger nearest to it would be most likely to secure it. In 

other words, to maximize chances of getting a seat, one 

would want to be the nearest passenger to as many seats in 

the coach as possible. However, it is clear from (Fig 6), that 

human intuitions were different. While in many cases it is 

actually most gainful to be standing right next to a co-

passenger (see heatmap for scenario 12), possible social 

factors surrounding personal space generate a tendency for 

passengers to maintain a distance between each other. Thus, 

in most scenarios, user positions predicted by the model are 

much closer to co-passengers than what the actual responses 

reveal. This pattern is particularly evident in crowded 

scenarios (compare user response and model predictions for 

scenario 29). The possible psychological impact of social 

distancing in a post-COVID era may also have played a major 

role, and may be taken up as a different study.   

It was thus evident that parameter S alone was not 

sufficient to explain passenger intuitions accurately. We now 

discuss the effect of parameter P in this regard.  

 

Distance to nearest co-passenger (P): We see below the 

score heatmaps and model predictions for P in isolation (s = 

0, p = 1, d = 0) (Fig 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: User clicks (red) and model predictions (blue) 

overlaid on heatmaps for parameter P in isolation.   

 

It is clear from the figure that parameter P alone does not 

account for patterns of user intuition either. While the model 

predictions maximized distances from nearest co-passengers, 
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the results were far removed from actual user choices. It is 

also known through common experience, that commuters do 

not always maximize their distances from others, but rather 

optimize the same keeping in mind other factors as well. 

While considerations of interpersonal space did play a major 

role, the subjects nevertheless kept the goal of the game in 

mind – to maximize the chances of getting a place to sit. A 

comparison between figures 6 and 7 makes it clear that 

parameter S was certainly the dominant determinant of 

positioning choices in this regard.  

The distance to nearest door (D) was also considered 

separately, but was found to play a relatively minor role. 

While its coefficient has been considered in the model, its 

effect has not been discussed separately in this paper.   

Tuning the model to human data 

The values of the parameter coefficients (namely s,p and d) 

were then modulated to best represent the human data. Based 

on the findings discussed above, the value of coefficient s was 

kept as the highest of the three, followed by p and d in that 

order. The number of samples drawn from the generative 

model for inferring an optimal position was again modulated 

to best fit human data. After a number of cycles of iterative 

testing, the following values of the model parameters was 

found to correspond to an optimal model calibration – s = 2; 

p = 0.75, d = 0.25. The number of samples drawn for a good 

fit was n = 8. Figure 8 below compares user data and 20 runs 

of the model predictions for various passenger 

configurations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: User clicks (red) and model predictions (blue) 

overlaid on score heatmaps of the tuned model.   

 

Model predictions were most effective for configurations 

which involved convergence across subject clicks. While 

response time was not formally included in the dataset, these 

configurations were also found to correspond to quickest 

responses. Figure 9 below depicts such a case.    

 

 

 

 

 

 

Figure 9: User and model data for scenario 14  

Discussion: Optimal positions in a fast-moving 

world 

The performance of the model as depicted above 

demonstrates the robustness of the Bayesian framework in 

simulating the quick decision-making processes that 

characterize human judgements under constraints of time. 

Most importantly, it showcases the optimal nature of these 

decisions. The ability of such the framework to adequately 

capture the noise in human data demonstrates its 

effectiveness for modelling everyday human judgements. 

Figure 8 shows that the quick decisions made by the players 

of the Subway Game were not necessarily the most rational. 

If that were the case, the user clicks would have aligned 

closely with the most saturated zones of the heatmap. While 

the clicks did broadly correspond to these zones, they were 

nevertheless much more dispersed than what a rational 

algorithm with throw up. The players made the most optimal 

decisions given the little time (<10s) that they had to process 

each scene. They relied on inferences based on a very limited 

number of samples drawn from the intuitive generative 

engine in their mind. In the real world as well, commuter 

positioning arguably occurs in similar ways – the quick 

intuitive judgements that we make as to where to stand are 

never the most rational. But they are the best judgements 

given the little time we have in fast moving rush hour traffic.  

This phenomenon of optimal positioning was captured by 

the model, by simulating this sampling process. In the current 

calibration, the model relied on 8 samples. This allowed for 

the model to capture the noise that characterises the dataset. 

Increasing the number of samples would decrease noise and 

make the model more rational (Fig 10). But it would also 

make it less human.  

 

 

 

 

 

 

 

 

 

Figure 10: The road to the rational: Model predictions 

using samples n = 3 (top), 8 (middle with human data 

overlaid) and 50 (bottom) for scenario 12.    
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Conclusion: Challenges, Opportunities and 

Future Directions 

This body of research aimed at modelling everyday 

behavioural decisions in a simulated public environment 

within a Bayesian framework. As indicated by the results of 

the study and the prediction accuracy of the model, such a 

framework proves to be extremely effective in this regard. It 

is however worthwhile to mention a number of key 

limitations that this study worked within. Firstly, as 

mentioned at the very outset, any behavioural data collected 

through a simulated platform will always remain a reductive 

simplification of real-world behavioural nuances. Any 

inferences drawn from such a study thus needs to be carefully 

examined before generalising to real-world scenarios. 

Secondly, while this study presented a single goal to subjects 

- that of maximizing chances of getting a place to sit – it is 

not necessarily representative of the multitude of goals and 

motivations that actually drive positioning choices. For 

example, position of staircases on platforms often influences 

positioning choices during rush hour, to minimize travel time. 

Thirdly, this study does not consider points of entry and exit 

into the coach, and also allows the subject to view the 

configuration of the entire coach at once. In real life, points 

of entry play a major role in positioning choices, as the 

configuration of only a part of the coach is discernible by the 

commuter based in their initial position.  

That being said, the framework showcased through such a 

study nevertheless paves way for future work that may have 

strong real-world implications. The ability of a model to 

adequately capture and replicate ‘noise’ in human 

judgements has the potential to pave way for artificial 

intelligence that is itself more human. While predictive 

models are used widely in allied disciplines such as design 

and planning, such ‘human’ models can lead to far more 

contextual design decisions as a result. For example, while 

this study restricted itself to a single coach configuration, 

similar data may be collected across various configurations 

of seats, in order to evaluate the behavioural implications of 

different spatial layouts. A similar framework may also be 

deployed to inquire into behavioural patterns across age, 

gender or ability. Such insights may be valuable when 

designing for barrier free networks, or deciding upon 

locations of reserved seats.  

Finally, there is immense potential for the Subway Game 

to be hosted on the web for a much larger study involving 

crowd-sourced user responses across a bigger sample size. 

Such a crowd-sourced platform can capture the value of this 

framework, and build a large dataset of behavioural patterns 

in the subway within a relatively short period of time.  

In conclusion, it is hoped that the rapid data-collection 

framework and modelling paradigm outlined in this paper is 

taken forward for similar studies linked to associated 

scenarios. Insights into urban public behaviour can be really 

valuable to cognitive scientists and social scientists alike, and 

a Bayesian approach may be particularly well suited for 

engaging with the degrees of complexity and uncertainty that 

characterize the public realm.     
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