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STUDY PROTOCOL Open Access

Adaptive interventions for optimizing
malaria control: an implementation study
protocol for a block-cluster randomized,
sequential multiple assignment trial
Guofa Zhou1 , Ming-chieh Lee1, Harrysone E. Atieli2, John I. Githure2, Andrew K. Githeko3, James W. Kazura4 and
Guiyun Yan1*

Abstract

Background: In the past two decades, the massive scale-up of long-lasting insecticidal nets (LLINs) and indoor
residual spraying (IRS) has led to significant reductions in malaria mortality and morbidity. Nonetheless, the malaria
burden remains high, and a dozen countries in Africa show a trend of increasing malaria incidence over the past
several years. This underscores the need to improve the effectiveness of interventions by optimizing first-line
intervention tools and integrating newly approved products into control programs. Because transmission settings
and vector ecologies vary from place to place, malaria interventions should be adapted and readapted over time in
response to evolving malaria risks. An adaptive approach based on local malaria epidemiology and vector ecology
may lead to significant reductions in malaria incidence and transmission risk.

Methods/design: This study will use a longitudinal block-cluster sequential multiple assignment randomized trial
(SMART) design with longitudinal outcome measures for a period of 3 years to develop an adaptive intervention for
malaria control in western Kenya, the first adaptive trial for malaria control. The primary outcome is clinical malaria
incidence rate. This will be a two-stage trial with 36 clusters for the initial trial. At the beginning of stage 1, all
clusters will be randomized with equal probability to either LLIN, piperonyl butoxide-treated LLIN (PBO Nets), or
LLIN + IRS by block randomization based on their respective malaria risks. Intervention effectiveness will be
evaluated with 12 months of follow-up monitoring. At the end of the 12-month follow-up, clusters will be assessed
for “response” versus “non-response” to PBO Nets or LLIN + IRS based on the change in clinical malaria incidence
rate and a pre-defined threshold value of cost-effectiveness set by the Ministry of Health. At the beginning of stage
2, if an intervention was effective in stage 1, then the intervention will be continued. Non-responders to stage 1
PBO Net treatment will be randomized equally to either PBO Nets + LSM (larval source management) or an
intervention determined by an enhanced reinforcement learning method. Similarly, non-responders to stage 1 LLIN
+ IRS treatment will be randomized equally to either LLIN + IRS + LSM or PBO Nets + IRS. There will be an 18-
month evaluation follow-up period for stage 2 interventions. We will monitor indoor and outdoor vector
abundance using light traps. Clinical malaria will be monitored through active case surveillance. Cost-effectiveness
(Continued on next page)
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of the interventions will be assessed using Q-learning.

Discussion: This novel adaptive intervention strategy will optimize existing malaria vector control tools while
allowing for the integration of new control products and approaches in the future to find the most cost-effective
malaria control strategies in different settings. Given the urgent global need for optimization of malaria control
tools, this study can have far-reaching implications for malaria control and elimination.

Trial registration: US National Institutes of Health, study ID NCT04182126. Registered on 26 November 2019.

Keywords: Adaptive intervention, Sequential multiple assignment randomized trial, Block-cluster randomized, Long-
lasting insecticidal net (LLIN), Indoor residual spraying, Piperonyl butoxide-treated LLIN, Larval source management,
Clinical malaria incidence rate, Active case surveillance, Cost-effectiveness, Q-learning

Background
Tremendous progress has been made in malaria control
in Africa over the past two decades. This is the result of
effective vector interventions, particularly the massive
scale-up of long-lasting insecticide-treated nets (LLINs)
and indoor residual spraying (IRS), as well as improve-
ments in diagnostic testing and expanded availability of
artemisinin-combination therapy (ACT). Nonetheless,
current first-line interventions are not sufficient to elim-
inate malaria in many countries, and a dozen countries
in Africa show a trend of increasing malaria incidence
over the past several years [1]. Vector control is an im-
portant component of national malaria control strategies
in Africa, and the core vector control methods are
LLINs, IRS, and larval source management (LSM) [2, 3].
However, the massive scale-up of LLINs and IRS has led
to major changes in vector biology, which pose signifi-
cant new challenges to malaria control and elimination.
Insecticide resistance is rising rapidly, and pyrethroid

resistance has been documented in malaria vectors in
most countries throughout the Afrotropical region [4].
All major malaria vectors in Africa, including Anopheles
gambiae, Anopheles funestus, and Anopheles arabiensis,
are highly resistant to pyrethroids [5–7] and to multiple
classes of insecticides [8, 9], resulting in limited viable
insecticides for IRS. In addition to the significant prob-
lem posed by insecticide resistance, outdoor transmis-
sion is becoming increasingly common. Recent studies
document a behavioral shift in malaria vectors, from
midnight biting to biting in the early evening and morn-
ing when people are outdoors and not protected by IRS
or LLINs [10–12]. The first-line control measures
(LLINs and IRS) only protect residents sleeping under
nets or resting indoors. Outdoor malaria transmission
has become a very important challenge to malaria con-
trol. More importantly, malaria risk is dynamic and
spatially heterogeneous. Malaria risk fluctuates over time
and is associated with the success of control programs
[13–16]. It may vary among villages due to micro-
geographic variations in vector ecology [17, 18], resi-
dents’ health-seeking behaviors [19], socioeconomic

factors, and other reasons [20–22]. The effectiveness of
a control method in one setting is not always guaranteed
elsewhere. Control methods need to be adapted to local
malaria risks and vector ecology [23].
The problem of how to optimize intervention strat-

egies to maintain the current progress toward eventual
malaria elimination has become an important one. In
Africa, the core malaria vector control tools are LLINs,
IRS, and LSM [2, 3]. However, there is little knowledge
regarding how these interventions should be combined
in order to optimize their impact on the malaria burden.
IRS is an expensive method of malaria control [24], and
LSM is labor intensive and requires strong and sustained
community participation [25]. Under what epidemio-
logical settings will IRS exhibit the highest impact, and
at what frequency should it be applied? Where should
LSM be implemented to further reduce malaria trans-
mission and morbidity? In addition, it is imperative that
newly approved control tools, e.g., next-generation nets,
new larvicide formulations, and new classes of IRS insec-
ticides, be incorporated into control programs. How,
when, and where should these tools be integrated into
malaria control programs that rely on current first-line
intervention tools?
In recent field tests, some new intervention tools have

shown promise against insecticide-resistant malaria vec-
tors and outdoor transmission. These include long-
lasting piperonyl butoxide-treated nets (PBO Nets),
long-lasting larvicides, and non-pyrethroid insecticides
for IRS. All currently deployed LLINs worldwide are
pyrethroid-based, despite high insecticide resistance in
malaria mosquito vectors [26]. Recently, next-generation
LLINs combining the synergist PBO with pyrethroids
were recommended by the WHO to combat pyrethroid
resistance [27]. PBO enhances the effects of pyrethroids
on mosquito vectors, thus reducing vector resistance.
Field studies in Africa found that compared to regular
LLINs, PBO Nets significantly reduced malaria transmis-
sion in areas of high pyrethroid resistance [28–33]. Lar-
val source management has been recommended as a
public health intervention tool in specific locations
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where habitats are relatively few and readily identified
[2, 3]. New US Environmental Protection Agency (EPA)-
approved long-lasting microbial larvicides are now avail-
able. These larvicides are released slowly, thereby in-
creasing their effective duration to 3–5 months and
reducing operational costs [34]. On the other hand, the
dynamic and cryptic nature of larval habitats may allow
for only a portion of habitats to be identified and
treated. Would new long-lasting larvicides, potentially
more cost-effective than larvicides used in the past,
provide added benefit to malaria control? Apart from
pyrethroid insecticide IRS, new classes of insecticides,
e.g., Actellic, an organophosphate, have recently been
introduced for IRS in Africa [2, 3]. Field tests in several
African countries found that these new IRS treatments
significantly reduced malaria transmission in areas with
moderate to high vector resistance to pyrethroids [15,
28, 35]. These non-pyrethroid insecticides are expected
to be more expensive but also more effective against
pyrethroid-resistant vectors. Given the prevalent outdoor
resting behavior of mosquito vectors, will the non-
pyrethroid insecticides provide added benefit and be
cost-effective for malaria control?
The commonly used trial design in malaria control is

randomized controlled trials (RCTs) or cluster-
randomized trial (CRT) [28, 34, 36–39], which is consid-
ered the gold standard for assessing the relative efficacy
of competing treatment options in evidence-based dis-
ease management [40]. Future malaria control strategies
will likely involve in combination of different types of in-
terventions, such as LLINs plus LSM or other interven-
tions to control insecticide-resistant and outdoor vectors
[28, 34, 36–39, 41–45]. Due to the potential large sample
size requirement, a complete factorial design of RCT or
CRT is not a practical way to find the robust combin-
ation among the many available interventions. A multi-
stage adaptive intervention may be an appropriate and
cost-saving approach. An adaptive design is loosely de-
fined as a trial design that allows modifications to the
trial procedure after its initiation without undermining
its validity and integrity [46–49]. One way to inform the
development of adaptive intervention is to randomly se-
quentially (during different stages of the intervention)
assign different interventions to different arms or differ-
ent subjects to different interventions, i.e., the sequential
multiple assignment randomized trial (SMART) [46].
Unlike in conventional RCT/CRT, which treats all inter-
ventions/subjects equally and fixed throughout a trial, in
adaptive interventions, decisions must be made concern-
ing if and when an intervention needs to be continued
or replaced or terminated, and accordingly, which inter-
vention should follow. In this context, future subjects
are randomized with bias toward the best-performing in-
terventions. Adaptive design has frequently been used in

clinical studies in areas such as psychology, mental
health, and cancer treatment [46–49], but it has not
been used in studies on vector and vector-borne infec-
tious disease control.
The aim of this trial is to design optimal adaptive

combinations of vector control interventions to
maximize reductions in malaria burden based on local
malaria transmission risks, vector ecology, and the avail-
able mix of interventions approved by the Ministry of
Health (MoH) of Kenya. The hypothesis is that an adap-
tive approach based on local malaria risk and changing
vector ecology will lead to significant reductions in mal-
aria incidence and transmission risk. This paper de-
scribes a protocol for finding the optimal combination
of interventions using a cluster-randomized sequential
multiple assignment randomized trial (SMART) design
in Kenya.

Methods/design
Hypothesis, interventions, and endpoint outcomes
Hypothesis
An adaptive approach based on local malaria risk and
changing vector ecology will lead to significant reduc-
tions in malaria incidence and transmission risk.

Objective
The central objective of this trial is to design optimal
adaptive combinations of vector control interventions to
maximize reductions in malaria burden based on local
malaria transmission risks, vector ecology, and the avail-
able mix of interventions approved by the Ministry of
Health of Kenya.

Trial design
This is an open-label, block-cluster randomized, con-
trolled, sequential multiple assignment trial with a vari-
able number of arms (adaptive design) and a baseline
period without crossover. A potential trial design is
shown in Fig. 1 and Table 1.

Interventions

LLIN We will use the currently implemented LLINs,
which are the standard intervention administrated by
the MoH. These include Olyset LLIN (Sumitomo Chem-
ical UK PLC, London, UK), which contains 2% permeth-
rin with 150 denier yarn, and PermaNet 2.0
(Vestergaard, Lausanne, Switzerland) containing 1.8 g/kg
(75 denier yarn) or 1.4 g/kg (100 denier yarn) of delta-
methrin. For LLIN clusters, no additional nets will be
supplied, since this intervention is the government-
administered standard intervention and current coverage
is very high (95%) in our study area. In addition, local
government-run hospitals, clinics, and health centers
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routinely distribute nets to pregnant women and chil-
dren under 5 years old, and therefore, the coverage is
well maintained.

PBO LLIN We will test the Olyset Plus LLIN (Sumi-
tomo Chemical UK PLC, London, UK), which contains
2% permethrin and 1% PBO. For the PBO Net clusters,
each household will be provided one Olyset Plus per two
people along with appropriate education, which is the
same as the standard LLIN allocation practice [2, 3].
Residents will be asked to use the PBO Nets provided,
and net usage will be monitored.

Actellic® IRS For the IRS, we will use the micro-
encapsulated pirimiphos-methyl, Actellic 300CS (Syn-
genta Crop Protection AG, Basel, Switzerland), with an
AI concentration of 300 g/L. Actellic 300CS IRS has
been implemented in several African countries [35, 50–
52]. For IRS clusters, each dwelling’s interior walls and
ceiling will be sprayed with the recommended dosage of
1 g/m2 at the recommended frequency of once a year.
This is also the current PMI-implemented spraying fre-
quency in several African countries [50–52].

LSM LSM will be implemented in selected clusters and
will include the physical filling or removal of temporary
larval habitats and the larviciding of semi-permanent
and permanent habitats, per Kenya’s National Malaria
Strategic Plan [2, 3]. For the larviciding, we will use the
long-lasting microbial larvicide manufactured by Central
Life Sciences (Sag Harbor, NY, USA) with active ingredi-
ents Bacillus thuringiensis israelensis (Bti) (6% by
weight) and Bacillus sphaerius (Bs) (1% by weight). This
product has been proven effective against insecticide-
resistant mosquitoes [34]. Application dosage will follow
the recommendation of the manufacturer: semi-
permanent and permanent habitats will be treated with
FourStar® 180-day Briquets with one briquet per 100 ft2

of water surface, regardless of water depth. Re-treatment
will occur every 4 to 5 months.

Primary and secondary endpoints
The primary endpoint is clinical malaria incidence rate.
The secondary endpoints are malaria vector abundance
and transmission intensity. A clinical malaria case is de-
fined as an individual with fever (axillary temperature of
37.5 °C or higher) and other related symptoms such as

Fig. 1 Study site; distribution of trial clusters and initial interventions. Block zones are shown in different background colors; initial intervention in
each cluster is shown in different boundary colors. LLIN, long-lasting insecticidal net; PBO, piperonyl butoxide-treated LLIN; IRS, indoor
residual spraying
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chills, severe malaise, headache, or vomiting, in the pres-
ence of a Plasmodium-positive blood smear. Clinical
malaria incidence rate is calculated as the number of
clinical malaria episodes divided by the total person-
time (person-years) at risk based on demographic

surveys. Malaria vector abundance is measured as the
total density of malaria vector mosquitoes (An. gambiae
s.s., An. arabiensis, An. funestus, and other new species
capable of transmitting malaria) collected indoors by
CDC miniature light traps. Malaria transmission

Table 1 Content and timelines for the schedule of enrolment, interventions, and assessments

*Due to the adaptive nature of the design, the initial interventions (year 1) are fixed; however, the subsequent interventions depend on the outcomes from initial
interventions, i.e., effective interventions will be continued; otherwise, other interventions will be introduced. Black color represents definite interventions, and red
color represents all possible interventions depend on outcomes from previous stage of interventions. LLIN long-lasting insecticidal net, PBO LLIN piperonyl
butoxide-treated LLIN, IRS indoor residual spraying, LSM larval source management
**Enhanced method: the most cost-effective method determined by machine learning based on outcomes from previous interventions
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intensity is measured as the sum of the indoor entomo-
logical inoculation rates (EIRs).

Study area and cluster selection
We will conduct our study initially in 36 randomly
selected clusters in an area consisting of both low-
and high-elevation localities (1100 m to 1700 m alti-
tude) in the Lake Victoria shore area southeast of Ki-
sumu County, western Kenya (34° 49′ E to 34° 59′ E,
0° 15′ S to 0° 22′ S) (Fig. 1). A cluster is a village or
several neighboring villages, typically covering an area
of approximately 2 km2 and comprising 200–300
households and about 500–1000 inhabitants. A village
is the smallest administrative unit in Kenya. For sim-
plicity of management and field surveys, cluster
boundaries will coincide with administrative boundar-
ies. These boundaries have been mapped using Arc-
GIS prior to any field surveys based on Kisumu
County administrative maps. Clusters are selected at
about 2 km apart to avoid any spill-over effect. The
catchment population of the study area, including all
study clusters and buffer zones, is estimated as 100,
000 according to 2010 census data.
Local residents are predominantly farmers who depend

on crop farming and cattle and goat herding for subsist-
ence. Malaria transmission is seasonal, with two peaks in
vector abundance reflecting the bimodal rainfall pattern:
a major peak between April and June and a minor peak
between October and November [53]. Malaria is pre-
dominantly caused by Plasmodium falciparum [54]. The
main malaria vectors in the area are An. gambiae s.s.,
An. arabiensis, and An. funestus s.l. [55]. In the trial
study area, a 2017–2018 survey found that An. funestus
accounted for 45% of all Anopheles captured, followed
by An. gambiae s.l. (37%), and other Anopheles species
(18%), and 89% of An. gambiae s.l. are An. arabiensis
[50]. In addition, outdoor transmission is high [50, 55].
The mosquito resistance to different insecticides which
include pyrethroids has been reported in the study area
and in the nearby Ahero area (10 km north of the trial
site) [8, 50]. Although metabolic-based resistance has
not been determined in the study area, the fact that An.
funestus is the dominant malaria vectors in the area jus-
tifies the usefulness of PBO LLINs, because pyrethroid
resistance in An. funestus is due mainly to metabolic-
based resistance [56].

Baseline surveys for cluster randomization
We will conduct entomological, epidemiological, and
demographic surveys before the start of the interven-
tions (Table 1). Together with other topographic and
landscape variables, these surveys will provide baseline
data for cluster stratification and randomized allocation

of different interventions. The baseline data will also be
used in evaluating the interventions.

Demographic and socioeconomic data
A baseline census of the population with house locations
(mapped by spatial coordinates) will be conducted at the
start of the study and updated annually. Demographic
surveys will include all residents who live inside the
study clusters. Each household and its family members
will have a unique ID that will be used to trace the indi-
viduals’ visits to health centers for cross-sectional blood
sampling and active malaria case surveillance. We will
use our pre-established demographic surveillance system
to track the population and its changes on an annual
basis.
Data on socioeconomic status and malaria interven-

tion practices will be obtained during the demographic
surveillance, which will administer a separate question-
naire to all households in each study cluster. A series of
questions will address socioeconomic status indicators
(house size, ownership of electronics, land income, occu-
pation, and others), LLIN ownership and usage, use of
repellents, use of IRS, and malaria treatment-seeking
behaviors.

Cross-sectional vector abundance and malaria infection
prevalence
To determine malaria infection prevalence, cross-
sectional finger-prick blood samples will be collected on
blood films and on filter papers for PCR analysis, follow-
ing the nested PCR method for dried blood spots based
on the 18S rRNA gene to detect the malaria species [54,
57, 58]. In western Kenya, the major rainy season is usu-
ally from April to July and the major dry season is from
November to March next year. To minimize the season-
ality effect, we will conduct vector abundance and para-
site prevalence surveys twice a year, once in June/July
and another time from November to January.
All clusters will be examined for mosquito abundance.

We have previously determined that the CDC light trap is
an efficient sampling tool [55, 59]. For each cluster, we will
conduct adult mosquito collections in 10 houses for 10
nights per month. An. gambiae s.l. and An. funestus s.l. will
be analyzed by rDNA-PCR for species identity [60, 61]. All
specimens will be tested for Plasmodium sporozoite infec-
tion using PCR [62, 63], and blood meal analysis will be
performed by PCR [64–66]. Aquatic habitats within the
0.5-km buffer zone of the study cluster will be mapped
using GPS and examined for Anopheles larval and pupal
abundance using standard dippers [67]. A subset of larvae
will be reared to adults and used to test resistance to pyr-
ethroid and organophosphate insecticides using the stand-
ard WHO insecticide susceptibility bioassay [68].
Plasmodium falciparum isolates from the community-
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based and hospital-based surveillance will be genotyped at
Pfmdr1 for lumefantrine tolerance and at PfKelch13 for ar-
temisinin resistance [69].

Acquisition of other malaria risk predictor variables
A variety of predictor variables for malaria risk will be
collected for each cluster: (1) human density and age
structure; (2) topographic parameters, which are associ-
ated with mosquito larval habitat formation [70, 71]; (3)
land-use and land-cover types related to the develop-
ment and survival of Anopheline mosquito larvae and
adults [72–74]; and (4) meteorological data. Topographic
parameters such as elevation, slope, wetness index, flow
distance to stream, aspect of land surface, and curvature
will be obtained from the digital elevation model of the
study site, which we have already developed. Land-use
and land-cover data will be obtained from supervised
classification of the most recent satellite images, and the
normalized difference vegetation index (NDVI) will be
computed. Meteorological data (temperature, rainfall,
and vapor pressure) will be obtained from a global
0.5° × 0.5° gridded data set of monthly terrestrial surface
climate from the World Meteorological Organization
database.

Cluster stratification for interventions
For each cluster, we will determine vector abundance
and malaria infection prevalence. Malaria risk in each
cluster will be predicted based on the predictive features
(variables) described above. We plan to adopt two ap-
proaches for risk prediction. The first approach (classifi-
cation-based) will first stratify the study clusters into
distinct strata based on weighted vector abundance and
malaria infection prevalence using k-means or hierarch-
ical clustering algorithms [75]. A classifier will be trained
to predict risk-group assignments based on predictive
variables. To avoid overfitting, we will first try classifica-
tion models with low complexities, such as naïve Bayes,
softmax, and support vector machines (SVM) to estab-
lish a baseline, and then move to more complex models,
such as decision trees, random forests, and neural net-
works [76–81]. The second approach (regression-based)
will directly predict prevalence and malaria transmission
intensity based on the predictive variables using Gradi-
ent Boosting (GB) linear and logistic regression (Logit-
Boost) or an ensemble of regression trees [82]. Each
method has pros and cons. The classification-based ap-
proach is easier to interpret and less prone to overfitting,
but the cluster assignment may not be clear-cut. On the
other hand, although it does not require cluster assign-
ment, the regression-based approach must model preva-
lence and vector abundance separately and is thus more
prone to overfitting with nonlinear models [83].

The data from all study clusters (36 initially) will be
split into a training set and a validation set, with model
parameters trained on the training set and performance
evaluated on the validation set. Tenfold cross-validation
will be performed to maximally utilize the data [84, 85].
For the classification task, we will determine each
model’s sensitivity and specificity and use the auROC
(area under ROC curve) to measure model performance.
For the regression task, we will use the mean-square loss
to measure model performance. Trained models will be
further tested and refined on data from 36 different clus-
ters collected in year 2 and future years.
The goal is to stratify all clusters into 3 blocks during

the initial intervention stage: low transmission, inter-
mediate transmission, and high transmission.

Trial design and outcome measures
Initial cluster randomization
The SMART trial design includes two intervention
stages (Fig. 2 and Table 1). Based on pre-intervention
malaria risk analysis, study clusters will be stratified into
three blocks with different risk levels as described above.
In each block, clusters will be randomly assigned with
equal probability to one of the three interventions in
stage 1, i.e., LLIN, PBO LLIN, and LLIN + IRS (Fig. 2).
Cluster randomization will be done using computer-
generated random numbers. Ideally, each block will in-
clude 12 clusters and each of the three interventions will
be assigned to four clusters in each block (Fig. 1).

Stage 1 intervention
Stage 1 (initial intervention) will be 15 months long, in-
cluding a 3-month field implementation of interventions
and 12 months of follow-up on the interventions’ impact.
The main purpose of stage 1 is to determine the effect
of the individual interventions on malaria incidence and
to identify clusters not responding to these interven-
tions. At the beginning of stage 1, all study clusters will
be randomized with equal probability to the three inter-
ventions, as shown in Fig. 2, by a block randomization
method. At the end of the 12-month follow-up, clusters
will be assessed for “response” versus “non-response” to
PBO Nets or LLIN + IRS. Response and non-response
are defined based on the change in clinical malaria inci-
dence when using PBO Nets/LLIN + IRS compared to
LLIN (Fig. 2). If a cluster demonstrates a reduction in
malaria incidence that is (1) statistically significant and
(2) greater than the pre-defined threshold value set by
the Ministry of Health (MoH) based on cost-
effectiveness, then this cluster is considered a responder;
otherwise, the cluster is considered a non-responder. It
is important to use the LLIN group (group A in Fig. 1)
as the comparison group when determining response/
non-response, because malaria incidence varies between
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seasons and years due to seasonal or inter-annual cli-
matic variability. In addition, LLIN is the government-
implemented first-line routine intervention.

Stage 2 intervention
The stage 2 intervention will be 21 months long, includ-
ing a 3-month intervention implementation and 18
months of follow-up on the interventions’ impact. The
main objective of stage 2 is to identify the optimal adap-
tive intervention in clusters not responding to the stage
1 intervention, i.e., the non-response clusters at the end
of stage 1 will receive a modified intervention to im-
prove the outcome (reduction of malaria incidence)
(Fig. 2). In particular, non-responders to stage 1 PBO
LLIN treatment will be randomized with equal probabil-
ity to either PBO LLIN + LSM (larval source manage-
ment) or an intervention determined by an enhanced
reinforcement learning method. Similarly, non-
responders to stage 1 LLIN + IRS treatment will be ran-
domized with equal probability to either LLIN + IRS +
LSM or PBO LLIN + IRS. Therefore, this design has 4
embedded adaptive interventions (Table 2).

Enhanced machine learning method
A reinforcement learning-based method will be developed
and deployed to adaptively assign treatments to different
study clusters based on stage 1 intervention results and his-
torical results. Assume K treatment options are available
and each treatment’s outcome (a) is stochastic, depending

not only on treatment but also on contextual cluster fea-
tures (s) such as current malaria prevalence, incidence rate,
and the socioeconomic, entomological, and genetic features
described earlier. We will use a specific reinforcement
learning algorithm, Q-learning [86], to design a function,
Q(s, a), which calculates the expected reward (e.g., reduc-
tion of malaria incidence) if treatment a is applied to the
study group with feature vector s. The Q-function measures
each treatment method’s effectiveness conditioned on spe-
cific clusters and will be learned based on data collected
from existing and ongoing trials. We will use linear func-
tions, decision trees, or neural networks to model the Q-
function [81, 87]. To avoid overfitting, we will start with
simple linear models and progress toward more complex
models such as decision trees and neural nets when more
data become available. The enhanced method will automat-
ically assign a treatment to each group based on the esti-
mated Q-function. To achieve a balance between
exploration and exploitation, we will assign treatments sto-
chastically according to a probability vector calculated from
the Q-function. A number of algorithms are possible, in-
cluding ε-greedy, Boltzmann exploration, upper confidence
bounds (UCB), and reinforcement comparison [88]. We
will first test these algorithms in simulation studies and
choose the best one for implementation in real trials.

Sample size justification
The primary aim of this study is to determine which ini-
tial intervention, PBO LLIN or LLIN + IRS, is more

Fig. 2 Sequential multiple assignment randomized trial (SMART) study for developing adaptive malaria intervention strategy in Kenya. R,
randomization; LLIN, long-lasting insecticidal net; PBO LLIN, piperonyl butoxide-treated LLIN; IRS, indoor residual spraying; LSM, larval
source management
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effective in reducing malaria incidence after 36 months.
The second aim is to estimate the mean outcomes of the
4 embedded adaptive interventions from months 16 to
36 and to identify the most effective intervention. Sam-
ple size calculation is based on the primary aim, using
the primary outcome (clinical malaria incidence) and
between-group comparison of the average clinical mal-
aria incidence at month 36. The proposed sample size
(n = 36 clusters) will detect a 10% reduction in clinical
malaria incidence with 89.2% power using the current
incidence rate in the study sites (302 clinic cases per
1000 person-years) and a 2-tailed α = 0.05 with a human
population size of 500 per cluster (Table 3). If malaria
incidence is 30% lower than the current value, the design
will still detect a 20% incidence reduction with 97%
power (Table 3). This calculation assumes a 1:1 re-
sponse/non-response ratio, a fixed cluster size of 500
participants, and an intra-cluster correlation coefficient
of 0.05 [89]. This sample size is likely powered to detect
smaller changes in incidence reduction, as previous stud-
ies in Kenya and Ghana indicated intra-cluster correl-
ation coefficients of < 0.02 [90].

Active malaria case detection and asymptomatic infection
survey
Clinical malaria will be identified through active case de-
tection. A cohort of 150 households, which includes
about 500 residents based on our previous surveys in the
same area (household size of 3.35 or 14,824/4420 per-
sons/household), will be selected randomly from each
cluster, and all residents in the selected households will
be recruited upon signing consent/assent forms for par-
ticipation. Written informed consent/assent (for minors
under age of 18) for study participation will be obtained
from all consenting heads of households and each indi-
vidual who is willing to participate in the study. Inclu-
sion criteria are provision of informed consent/assent
and no reported chronic or acute illness except malaria.
Exclusion criteria are individuals who are unwilling to
participate or infants under the age of 6 months.

Participants will be visited every 2 weeks and screened
for clinical malaria. A clinical malaria case is defined as
an individual with fever (axillary temperature of 37.5 °C
or higher) and other related symptoms such as chills, se-
vere malaise, headache, or vomiting at the time of exam-
ination or 1–2 days prior to the examination, in the
presence of a Plasmodium-positive blood smear.
During each visit, a project field team consisting of a

lead laboratory technician, a community health volun-
teer, and a field assistant will talk to the matriarch, who
has information on the health status of every resident in
the household, to check if any resident in the household
has experienced fever within the last 48 h or is suspected
to have malaria. For all fever and suspected malaria
cases, blood will be taken and thin and thick smears pre-
pared on a labeled slide. Body temperature will be taken
with a digital thermometer, and the symptoms and signs
of the illness will be recorded on a case report form
(CRF). Clinical cases will be referred to the nearest
government-run hospital or health center for free treat-
ment. Each participant will be assigned a unique identifi-
cation number corresponding to their household and
cluster. Each participant will also receive an identity
card, which can be used to obtain free malaria treatment
at the hospital or health center whenever they have a
fever or believe they have malaria.
Asymptomatic malaria infection is important for mal-

aria control. To determine the impacts of interventions
on malaria infection prevalence, we will collect finger-
prick blood samples as described in baseline surveys.
Study subjects are selected from the same households as
the active case detections. Finger-prick blood samples
will be collected on blood slides and on filter papers for
PCR analysis, i.e., to determine infection status. The sur-
vey will be done twice a year, once in the rainy season
and another time during dry season. Age and sex of par-
ticipants will be recorded.
We masked field staff, who will conduct the active case

detections and collect blood samples and mosquito sam-
ples in the cross-sectional surveys, to the study groups

Table 2 Four embedded adaptive interventions in the proposed SMART trial study

Embedded adaptive
intervention

First-stage
intervention

Status at end of first-stage
treatment

Second-stage intervention option Subgroup in the
design

#1 PBO LLIN Responder Continue PBO LLIN B + C

Non-responder PBO LLIN + LSM

#2 PBO LLIN Responder Continue PBO LLIN B + D

Non-responder Enhanced machine learning
method

#3 LLIN + IRS Responder Continue IRS E + F

Non-responder LLIN + IRS + LSM

#4 LLIN + IRS Responder Continue IRS E + G

Non-responder PBO LLIN + IRS
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the clusters were assigned to. However, it is not possible
to mask either the investigators or the participants to
the treatment allocation of indoor residual spraying.

Informed consent, ethical clearance, and conflict of
interest statement
Ethical clearance has been obtained from the Ethical Re-
view Committee of Maseno University, Kenya (MSU/
DRPI/MUERC/00778/19), and the Institutional Review
Board (IRB) of the University of California, Irvine, USA
(HS# 2017-3512). Written consent will be obtained from
all participants. Written assent for children (< 18 years of
age) will be obtained from the participants and their par-
ents or guardians. Inclusion criteria are as follows:
provision of informed consent (assent for children) and
no reported chronic or acute illness other than malaria.
Exclusion criteria are as follows: unwillingness to partici-
pate in the study or reported chronic or acute illness
other than malaria. Permission to use microbial larvi-
cides for malaria vector control has been obtained from
the Pest Control Products Board of Kenya. All investiga-
tive team members in the USA and Kenya have no fi-
nancial conflict of interest with the larvicide
manufacturer, Central Life Sciences.

Malaria vector population monitoring
We will conduct malaria vector population surveillance
on a seasonal basis continuously until at least 12 months
after the stage 2 intervention (Fig. 2). We will monitor
both indoor- and outdoor-biting mosquito abundance
using non-baited CDC light traps. We will set up two
traps within each sampling compound: one inside the
living room and the other outside the house 5 m away.
We will conduct a total of 40 trap-nights (20 indoor and
20 outdoor) of vector sampling per cluster per season.
Species of collected mosquitoes will be identified, and
blood-feeding status will be recorded. We will test for P.
falciparum sporozoite infection and blood meal source
using an enzyme-linked immunosorbent assay (ELISA)
on all specimens [55]. For each house where the vector
population is sampled, we will record the number of
sleeping persons at the house on the day of the vector
survey. We will calculate the sporozoite rate and EIR for
each cluster. The EIR will be calculated as (number of

Anopheles per person) × (average number of persons bit-
ten by one Anopheles in 1 day) × (sporozoite rate) and
standardized to a seasonal basis. We will calculate in-
door and outdoor transmission intensities separately, as-
suming that all mosquitoes collected from a compound
had their blood meal from the same household. We will
calculate the EIR for each cluster, if possible, or for each
block. In addition to population monitoring, we will also
conduct insecticide resistance monitoring twice a year.

Cost-effectiveness analysis
The cost-effectiveness analysis will assess the eco-
nomic costs of each phase of the PBO LLIN, IRS, or
LSM from both a provider and a societal perspective,
using standard economic evaluation methodologies
[91]. Economic costs will be estimated for all areas of
resource use, regardless of whether they incur a fi-
nancial expense [92]. For example, if IRS or larvicides
have been donated or community volunteers are help-
ing with the intervention free of charge, an economic
cost will attach a market value to these resources.
Economic costs will include initial setup investment
(e.g., capital for vehicles used in transporting the in-
secticides; GPS units for house or habitat mapping;
pumps, storage space, and equipment; and traps for
mosquito surveillance), running costs (e.g., insecti-
cides, salaries for field application staff, staff training,
protective clothes, gloves, fuel costs, and vehicle in-
surance), and costs of program management and
quality control (e.g., material procurement, project co-
ordinator, and quality controller). The initial setup
cost will be annuitized over each asset’s useful life-
time. This process reflects the value-in-use of a cap-
ital asset, not the cost when the item was purchased.
We will record the number of person-hours used per
month and the quantity of insecticides used to ac-
complish the intervention during the above experi-
mental activities. Cost data on equipment and
supplies will be obtained from local markets in Kenya
and Ethiopia, labor costs from the MoH of Kenya and
Ethiopia, and insecticide costs from the manufac-
turers. Costs will be measured in the currency in
which the resources are paid, then converted to US
dollars. This costing method includes costs involved
in field intervention, quality control, and program
evaluation. Costs associated with academic research
will be excluded. Incremental cost-effectiveness ratios
will be based on the primary endpoint (i.e., the
economic cost per clinical malaria case prevented).
One-way and multi-way sensitivity analysis will exam-
ine the cost-effectiveness implications of potential
changes in labor cost, insecticide price, and insecti-
cide application frequency and efficacy [93]. Costs
and effects will be presented in both discounted and

Table 3 Power calculation (%) for proposed cluster-randomized
SMART trial. Shown are degrees of power to detect four levels
of incidence reduction under three incidence scenarios

Annual incidence rate
(cases/1000 population)

Reduction in malaria incidence

40% 30% 20% 10%

Observed in the site: 302 > 99.9 > 99.9 > 99.9 89.2

30% lower value: 211 > 99.9 99.8 97.0 59.0

30% higher value: 393 > 99.9 > 99.9 > 99.9 97.0
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undiscounted form. Cost-effectiveness results will be
compared among the two intervention groups and the
control group, and among the four embedded adap-
tive interventions.

Other related surveys
Similar bioassays or questionnaire surveys have been done
by our group in different sites in western Kenya; details
have been described in our previous studies [8, 94, 95].
Briefly, mosquito insecticide resistance surveys will be
done twice a year to monitor if mosquitoes develop resist-
ance to the newly introduced IRS and PBO LLIN inter-
ventions. Mosquito resistance to insecticides will be
determined using standard WHO tube bioassays [8]. In-
secticide decay will be tested using standard WHO cone
test [94]. This will be done twice a year. The test will in-
clude both LLINs and IRS wall materials; details of the
tests have been described in our previous study [94].
Questionnaire surveys on bed net ownership, net usage,
and net physical integrity will be done once a year [95].

Data analysis
Differences in clinical malaria incidence and vector abun-
dance between the treatment and control groups will be
analyzed using Poisson multivariate regression models
with intervention, malaria risk, cluster, and calendar time
as covariates, using a generalized estimating equation
(GEE) approach with population at each cluster as an off-
set [96]. GEE is necessary because incidence will be mod-
eled monthly as a longitudinal measure using grouped
data. Intervention will be a time-varying covariate, since
the treatment in a cluster may be adapted and readapted
depending on the response to the previous treatment. The
odds ratio and 95% confidence interval for clinical malaria
rates between the treatment groups and the control group
will be calculated. For the second aim analysis (estimation
of outcomes for the 4 embedded adaptive interventions),
weighted and replicated generalized estimating equations
will be used to estimate the mean clinical malaria inci-
dence rates among the 4 embedded adaptive interventions
and to compare the slopes at each stage for each adaptive
intervention. Here, weighting is necessary to account for
the potential over- or underrepresentation of some groups
(e.g., non-responders would have a 1/4 chance of follow-
ing their assigned treatment sequence, whereas responders
would have a 1/2 chance of following their assigned treat-
ment sequence) [97, 98].
We will identify a final intervention strategy after all

cost and effectiveness data are collected. The aim of this
strategy will be to recommend an optimal intervention
method given the local conditions at each site. For this
purpose, we will adopt the Q-learning framework from
the previous section on enhanced machine learning
methods [99]. We will train a neural network to predict

each method’s utility, accounting for both effectiveness
(reduction in malaria incidence rate) and cost based on
the conditions at each site, such as malaria risk and so-
cioeconomic, entomological, and genetic features. All
data collected throughout this research will be used to
train the final model. To reduce model complexity, we
will consider clustering sites into a small number of clas-
ses and then training a model to predict the efficacy of
each method conditioned on each class. Once the Q-
function is learned, we will identify the optimal interven-
tion by choosing the intervention method that
maximizes the learned Q-function.

Discussion
The continuing high malaria burden in many areas of
Africa calls for improving the effectiveness of malaria
intervention tools [1]. This will require optimizing
current first-line interventions and integrating newly ap-
proved tools into control programs [100]. Due to the
heterogeneity and dynamic changes in malaria risk and
vector ecology among epidemiological settings, interven-
tions that work in one setting may not work well in
others. This trial study aims to develop adaptive inter-
vention strategies tailored toward local malaria risks and
vector ecologies based on the available set of interven-
tions and cost factors at a point in time. Such an adap-
tive strategy is expected to enhance the efficiency of
malaria interventions. If adaptive interventions built
from modern data analytic methods work well, they
could provide new malaria vector control strategies in
Africa and other endemic areas where malaria incidence
is high or has rebounded since the implementation of
currently used intervention tools.
Randomized controlled trial (RCT) design has been

used to evaluate malaria control interventions [28, 101–
103]. The SMART design represents a significant depart-
ure from standard RCT design, in which the intervention
method is fixed a priori. In contrast, in the SMART de-
sign, the intervention method is adaptive, i.e., data from
the early response to an intervention and predicted fu-
ture risks are used to determine the next intervention
method for those enrolled in the trial. Adaptive interven-
tion is necessary for several reasons. First, given the
many available and emerging malaria vector control
tools, finding the best intervention or combination of in-
terventions is not easy. It would be very difficult if not
impossible to design an RCT due to the potentially huge
sample size needed. Second, due to the heterogeneity
and dynamic nature of transmission, interventions must
adapt and readapt to the changing epidemiology. Third,
standard RCT does not allow interventions to be ad-
justed during the trial, whereas adaptive intervention al-
lows for changes, making it easier to find the best-suited
intervention. Therefore, results from the adaptive
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intervention provide evidence for effective interventions
that are closely tailored to local malaria risks, vector
ecologies, and intervention logistics. To our knowledge,
this is the first cluster-randomized SMART for malaria.
Recent developments in predictive data analytic tech-

niques and machine learning provide novel tools to as-
sist in identifying mosquito larval habitats and assessing
malaria risks [101, 102]. Machine learning, such as
reinforcement learning, has been used to identify opti-
mal intervention strategies in clinical treatment studies
[80, 86–88]. Reinforcement learning techniques are be-
ing used increasingly in the area of personalized medi-
cine [103, 104] but have not previously been used for
malaria. We will use Q-learning to identify larval habi-
tats and to find the optimal intervention suited to local
malaria epidemiological settings. The trial will include
larviciding using long-lasting larvicides and IRS with
new insecticides. The combination of satellite image
analysis and machine learning will aid significantly in lo-
cating mosquito breeding sites and implementing IRS.

Trial status
This trial is underway. Pre-intervention epidemiological
and entomological surveillances were started in July 2019.
Cluster selection, stratification, and randomization have
been done. Demographic surveillance has been conducted
once, in July 2019. Cohort active case surveillance was ini-
tiated in October 2019 and officially started in March
2020. The stage 1 intervention started recruiting in late
February 2020, and recruitment will continue until March
2021 as anticipated. Post-intervention follow-ups started
in March 2020 till February 2022. The trial was registered
with US National Institutes of Health at ClinicalTrials.gov,
study ID NCT04182126. Registered on 26 November
2019 and last updated on 3 March 2020. The manuscript
was prepared when the trial protocol was registered; trial
protocol was submitted for publication when recruitment
of study participant was ongoing.
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