
UC Berkeley
UC Berkeley Previously Published Works

Title
Generating surface crack patterns

Permalink
https://escholarship.org/uc/item/6g1770qg

Authors
Iben, HN
O'Brien, JF

Publication Date
2006-09-02

Supplemental Material
https://escholarship.org/uc/item/6g1770qg#supplemental

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6g1770qg
https://escholarship.org/uc/item/6g1770qg#supplemental
https://escholarship.org
http://www.cdlib.org/

Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)
M.-P. Cani, J. O’Brien (Editors)

Generating Surface Crack Patterns

Hayley N. Iben James F. O’Brien

University of California, Berkeley

Abstract
We present a method for generating surface crack patterns that appear in materials such as mud, ceramic glaze,
and glass. To model these phenomena, we build upon existing physically based methods. Our algorithm generates
cracks from a stress field defined heuristically over a triangle discretization of the surface. The simulation produces
cracks by evolving this field over time. The user can control the characteristics and appearance of the cracks using
a set of simple parameters. By changing these parameters, we have generated examples similar to a variety of crack
patterns found in the real world. We assess the realism of our results by comparison with photographs of real-
world examples. Using a physically based approach also enables us to generate animations similar to time-lapse
photography.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling

1. Introduction

Surface crack patterns occur on a variety of materials, in-
cluding glass, mud, and ceramic glaze. These cracks are of-
ten the result of shrinkage of the object’s surface area. For
example, mud in a river bed dries faster on the surface than
in the underlying soil, causing stress to build. The mud de-
velops cracks to relieve this stress. In ceramics, glaze with
a different coefficient of thermal expansion than that of the
pottery will accumulate stress during the cooling process.
When this stress is too high, the glaze cracks. We have de-
veloped a method to model the crack patterns created by
these types of processes, as demonstrated by the example
of “crackle glass” shown in Figure 1.

Several physically based simulation papers present meth-
ods to fracture objects, such as a finite element ap-
proach [OH99] and the virtual node algorithm [MBF04].
Such fracturing methods use a second-order dynamic simu-
lation, moving the nodes according to calculated forces. Our
method does not simulate dynamic forces or elastic waves,
so the nodes do not move or have velocity. Instead, we use a
first-order quasi-static system, a method that is inherently
more stable than a second-order system. Our choice also
avoids certain problems caused by moving nodes, such as
collisions or mesh tangling issues.

We generate crack patterns on a triangle discretization
of the input surface. This triangulation can be arbitrary, al-
though our results are better if the surface is 2-manifold and
the size of the triangles does not vary too drastically over the

Figure 1: A crackle glass dragon, generated by uniform
shrinkage of the surface. This example required 2.7 hours of
computation with an input mesh of 75,000 triangles.

mesh. We define a stress field over this triangle mesh and
evolve it iteratively due to processes such as elastic relax-
ation or shrinkage. Areas of high tensile stress form cracks
which in turn alleviate stress in the surrounding region.

The algorithm we use to determine where cracks occur
and how they propagate is derived from the method origi-
nally presented in [OH99]. Cracks occur at existing vertices
in the triangle mesh and they propagate through a process
of local remeshing. The tip of an advancing crack always

c© The Eurographics Association 2006.

178 H. N. Iben and J. F. O’Brien / Generating Surface Crack Patterns

corresponds to a vertex location, allowing the formation of
smooth and realistic-looking crack patterns.

Our method is a novel combination, obtaining the realism
of a physically correct simulation but maintaining the con-
trollability of a heuristic based method. We provide the user
with several parameters to control the appearance and char-
acteristics of the crack patterns. Some of these parameters
are based on physical properties of the material while others
are intuitive heuristics. By tuning these quantities, the user
can produce a variety of results using the same system.

2. Background

The methods used in computer graphics for generating crack
patterns can be grouped into two categories. One area of re-
search follows a non-physical approach for creating crack
patterns, such as mapping crack patterns to a surface. Other
papers use physically based methods to crack or fracture ob-
jects. Our method falls primarily into the second category,
using a finite element discretization common in physically
based approaches. However, rather than accurately simu-
lating the elastic deformation of an object, we instead use
heuristic methods to define a stress field directly. The re-
sulting approach generates realistic crack patterns while still
allowing the user a substantial amount of control.

Several researchers developed methods for modeling frac-
ture in solid materials, primarily using physically based sim-
ulation. Terzopoulos and colleagues introduced simulating
elastic [TPBF87] and inelastic deformation of objects, in-
cluding fracture [TF88]. A mass-spring system was later
used to simulate fracture [NTB∗91]. Finite elements have
been widely used to simulate brittle fracture [OH99], duc-
tile fracture [OBH02], elasto-plastic materials and fracture
interactively [MG04], and the fracture and deformation of
voxelized surface meshes [MTG04]. Other algorithms in-
clude generating fracture on elastic and plastic materials
with the virtual node algorithm [MBF04], a membrane-
bending model for thin shell objects [GSH∗04], and a mesh-
less framework [PKA∗05].

In addition to being used for objects that are being
broken or torn apart, physically based methods have also
been used to create surface cracks patterns. A mass-spring
system was used to reproduce crack patterns in micro-
sphere monolayers [SM88], model tree bark [FP96], crack
a surface [HTK98], and crack a volume [HTK00]. Gob-
ron and Chiba used cellular automata to crack multi-layer
surfaces [GC00] and simulate materials peeling off of sur-
faces [GC01]. Paint cracking and peeling was also simulated
using a two-layered model on a 2D grid [PPD02]. Federl and
Prusinkiewicz used wedge-shaped finite elements to model
cracks formed by drying mud and tree bark [FP02] [FP04].

There have been several non-physical approaches to
generating surface cracks. One type of approach maps
some form of a crack pattern to an object’s sur-
face [HTCY04] and then carves out a volume to generate

Figure 2: As an artistic effect, we initialized the stress field
to uniform tension with some bias to crack in the princi-
ple curvature directions. The result of using this heuristic is
demonstrated by the vertical cracks of the angel’s arm and
the cracks following the folds of fabric. Total computation
time was 4.0 hours with an input mesh of 105,772 triangles.

crack depth [MGDA04] [DGA05]. Others form cracks on
a 2D surface to replicate Batik painting cracks [WvOC04]
or create cracks similar to an input image [Mou05]. These
methods use an input pattern or image to generate surface
cracks. In contrast, our method creates cracks from a stress
field defined heuristically on the object’s surface.

Outside of computer graphics, fracture mechanics has
been extensively studied in engineering and a wide range
of methods to analyze the failure of materials is available.
Researchers use finite element methods, finite differencing
methods, or boundary integral equations to simulate the
failure of real materials. An overview of methods used in
this field can be found in [And04] and [Nis97]. Physics re-
searchers have studied specific crack pattern problems, such
as drying mud [Kit99], alumina/water slurry [SdBGM00], or
both mud and ceramics [BPC05] [BPA∗05].

3. Stress, Forces and the Separation Tensor

As in previous approaches [OH99][OBH02][FP04], we use a
finite element discretization with some form of local remesh-
ing. However, we generate cracks on the surface of objects
instead of fracturing a volume. We use a triangle mesh dis-
cretization of the model where other methods use 3D ele-
ments. This reduced dimension of our elements simplifies
the simulation computations. We initialize our stress field
directly with heuristics instead of using a full finite element
simulation. This simplification gives the user control over
the resulting crack patterns and decreases the initial stress
computation costs. Instead of moving the nodes when frac-
ture occurs, such as in [OH99][HTK00][FP04][MBF04], our
method keeps the node stationary and updates the stress field
with a first-order quasi-static system.

c© The Eurographics Association 2006.

H. N. Iben and J. F. O’Brien / Generating Surface Crack Patterns 179

Figure 3: Cracks generated from initializing the stress field
with a pattern modeling impacts in flat glass. The field is
evolved by the relaxation process, causing the cracks to
propagate. Total computation time was 20 seconds with an
input mesh of 4,804 triangles.

3.1. The Algorithm

To generate the crack patterns, we define a stress field over
the triangles and evolve this field over time using crack gen-
eration processes. We then analyze the stress field to deter-
mine where cracks form in the mesh. These cracks are intro-
duced as free boundaries that affect the relaxation process
and stress field. After cracks form, we update the stress field
and repeat the process until either cracks cannot be added or
the user is satisfied with the result.

The following pseudo-code describes our algorithm:

1. Initialize the stress field according to heuristics
and optionally evolve it with relaxation.

2. Compute the failure criteria for each node and
store this criteria in a priority queue.

3. While failure can occur and we want to continue:
a. Crack the mesh at the node associated with the

top of the priority queue.
b. Evolve the stress field:

i. Perform relaxation
ii. Optional: Add shrinkage tension and/or cur-

vature biasing.
c. Update the mesh information and priority

queue.
4. For display: either (a) post-process the mesh by

moving the vertices to give the cracks width and
filling in the gaps with side-walls for the cracks or
(b) directly render crack edges.

3.2. Stress Field

We define the stress field by storing tensors at the triangle
centers and treating the stress as a constant over the area of

the triangle. This value reflects the force distribution per unit
area within the element. When the stress field is initialized
to zero, the surface is in equilibrium. To simulate drying and
shrinkage, the stress tensor can be initialized to uniform ten-
sion, indicating all directions pull uniformly. Alternatively,
we can use the curvature tensor to initialize stress, indicating
that the high curvature areas are more prone to cracks. The
user could also manually specify areas of high tension on
the surface. We can also introduce some amount of random
noise into the stress field to model material inhomogeneities.

3.3. Forces

The stress tensor of an element encapsulates the amount of
force a small piece of material exerts on a node. The force
acting on node i by an element is

f [i] =−A
3

∑
j=1

p[j]

2

∑
k=1

2

∑
l=1

β jlβikσkl (1)

where A is the area of the element, β the barycentric basis
matrix, p the node’s position in world coordinates and σ the
stress tensor. To calculate the total force for a given node, we
sum the forces exerted by the surrounding elements.

The derivation of this equation and the barycentric basis
matrix can be found in [OH99]. The primary difference be-
tween our equations and theirs is due to our discretization
choice. We use triangles instead of tetrahedra, so the stress
tensor is a two dimensional quantity in the plane of its trian-
gle and the β matrix is 3×3 instead of 4×4. This reduction
in dimension lowers the computation cost at each step of
the simulation. Note that while the stress tensor is defined
in a local 2D coordinate system for each triangle, the above
expression produces a force vector in the common 3D coor-
dinate system where the mesh is embedded.

3.4. The Separation Tensor

We analyze the stress field to determine where to generate
cracks by using the formulation of the separation tensor ς

presented in [OH99]. They form the tensor by balancing the
tensile and compressive forces exerted on a node. Because
the forces are calculated in 3D, we can use them directly in
the equation

ς =
1
2

−m(f+)+ ∑
f∈{ f+}

m(f)+ m(f−)− ∑
f∈{ f−}

m(f)

 (2)

where f+ is the tensile force, f− the compressive force, and
m a function computing the outer product of a vector. To
compute these forces, we decompose the stress tensor into
tensile σ

+ and compressive σ
− components and use Equa-

tion (1).

We use this tensor to determine whether a crack occurs
at a node and the resulting direction. We take the eigende-
composition of ς to find the largest positive eigenvalue, v+.

c© The Eurographics Association 2006.

180 H. N. Iben and J. F. O’Brien / Generating Surface Crack Patterns

Figure 4: Curvature can be used to control crack formation, as demonstrated by the image on the left requiring 3.2 hours
computation. Notice the high concentration of cracks around areas of high curvature, such as the ears, neck and leg. The right
image was simulated using only uniform shrinkage of the surface, resulting in more evenly spaced cracks and requiring 2.5
hours. The input mesh size was 51,382 triangles for both examples.

The material fails at a node when v+ is greater than the ma-
terial toughness, τ. A crack occurs at this node in the crack
plane defined by n̂+, the eigenvector corresponding to v+.
We discuss this process further in Section 4.2.

4. Mesh Updates

After calculating an initial stress field, our method performs
an iterative procedure to generate crack patterns. This pro-
cess interleaves the evolution of the stress field and propaga-
tion of cracks. The stress field changes primarily according
to elastic relaxation. The user can further control its evolu-
tion by imposing various conditions, such as shrinkage ten-
sion, impact stress-patterns, or bias to crack on high cur-
vature regions. Cracks occur when large stresses produce
a large separation eigenvalue in the mesh. The cracks cre-
ate open boundaries in the mesh that alleviate perpendicular
components of the nearby stress field. The physically based
interaction between the stress field evolution and crack gen-
eration algorithm is what leads to the creation of interesting
crack patterns.

4.1. Relaxation

Rather than using a second-order dynamic system to model
the behavior of the mesh by integrating the motion of its ver-
tices, we instead treat stress directly as an independent vari-
able that evolves according to a first-order relaxation pro-
cess. If stress were a scalar quantity, this process would sim-
ply be mesh-based diffusion. For tensor quantities that each
live in distinct local 2D coordinate systems, the derivation is
somewhat more complex. Fundamentally, our stress relax-
ation is also a diffusion process, as described below.

Other cracking methods have used relaxation to smooth
the stress field after initialization [GC00], to reduce the ten-
sile stress around cracks based on distance to the nearest

crack [PPD02], or to recalculate the equilibrium state adap-
tively during crack formation [FP04]. We use relaxation to
redistribute stress from areas of high stress to areas of low
stress. To perform the relaxation, we use the virtual displace-
ment of the nodes to calculate the change in the stress field.
We compute the forces exerted on nodes with Equation (1),
encapsulating the effect of the stress field on the nodes. We
assume that if we were modeling the displacement of the
nodes, they would be moved by these forces. However, by
not actually moving the nodes, we avoid the time-step and
stability issues that would otherwise result.

Let F[n] be the sum of all forces f [n] on node n exerted by
the surrounding elements. We calculate the virtual displace-
ment based on the total forces acting on node n by

∆ p[n] = ∆ t F[n] (3)

where ∆ t is the time step controlling the rate of relaxation.

We assume that stress in an element is linearly propor-
tional to its strain with proportionality constant 1. We use
Green’s strain tensor, ε, to determine the amount of defor-
mation of an element around the node. This tensor is repre-
sented by a 3×3 matrix defined by

εi j =
1
2

(
∂x
∂ui

· ∂x
∂u j

−δi j

)
. (4)

If we assume that virtual displacements are piecewise linear
over the mesh, then we can define the partial derivatives as

∂xi

∂u j
=

3

∑
k=1

p[k]iβk j . (5)

We need the strain tensor’s change in the element, so we
compute the derivative with respect to the node positions

∂εi j

∂p[n]r
=

1
2

(
3

∑
m=1

p[m]rβniβm j +
3

∑
m=1

p[m]rβmiβn j

)
. (6)

c© The Eurographics Association 2006.

H. N. Iben and J. F. O’Brien / Generating Surface Crack Patterns 181

Because we have assumed the relationship between strain
and stress is linearly proportional, we compute the change
of stress in an element with node n as

∆σ =
∂ε

∂p[n]
∆ p[n] . (7)

At every time step, we use the force on the node to deter-
mine its virtual displacement from Equation (3). We update
the element’s stress tensor by accumulating ∆σ into it. After
changing the stress, we update the forces on the nodes. This
process repeats iteratively. Periodically, the separation ten-
sor at each node is updated and the crack-generation routine,
described in Section 4.2, is invoked.

We can treat boundary edges in our mesh as either free or
fixed. For fixed boundaries, we simply zero the net force act-
ing on the fixed boundary vertices prior to computing stress
updates. Free boundaries require no special action by the al-
gorithm. The boundary edges introduced during crack gen-
eration are treated as open boundaries so that relaxation will
relieve stress components perpendicular to the crack edges.

The above equations implement a simple forward Euler
step of stress relaxation. Just as faster methods have been
used for integrating diffusion in the context of mesh smooth-
ing, we could likewise accelerate our algorithm by using a
more sophisticated integration scheme. However, we have
so far found our computation times to be sufficiently fast
and therefore have not invested time implementing a more
sophisticated, and presumably faster, method.

In addition to relaxation, there are other ways to update
the stress field. We model uniform shrinkage of the object by

Figure 5: The dotted line (crack plane) gives the loca-
tion of a new crack. Bold edges are crack edges. Left: After
crack edges are added, we locally remesh to ensure all ele-
ments are triangles. Middle: Cracks are snapped to an exist-
ing edge if θ1 is less than a set threshold (ex: 25◦). Right:
Cracks are also snapped to an existing crack edge when θ2 is
less than a set threshold (ex: 15◦), avoiding back-cracking.

Figure 6: Example of a crackle glaze teapot, generated by
initializing the stress field to uniform shrinkage and evolv-
ing it by adding uniform tension. This example required 4.9
hours computation with an input mesh of 60,000 triangles.

adding c I, where c is a positive constant factor, to the stress
tensor of each element. This amounts to generating uniform
tension in the mesh, as illustrated by Figures 6 and 7. Ad-
ditionally, we want to avoid stress patterns that are identi-
cally uniform as they create unrealistic artifacts in the result-
ing crack pattern. The discretization error in an unstructured
mesh adds some inherent randomness to the stress field. We
can also add randomness to the tensor explicitly.

Another way to update the stress field is with the object’s
curvature. We estimate the principle curvature using the dis-
crete operator given in [CSM03]. As an update, we add a
specified amount of the curvature tensor to the stress tensor,
causing areas with high curvature to be more prone to crack-
ing. Alternatively, we can multiply the separation tensor by
a scaling factor, such as Gaussian curvature, mean curvature
or the Frobenius norm of the curvature tensor. We demon-
strate the effect of using a scaling factor in Figures 4 and 10.

We can generate impact patterns on a surface by initializ-
ing the stress field appropriately. The stress field generated
by an impact varies based on the material. For flat glass, ra-
dial cracks initially form outward from the impact point, fol-
lowed by concentric cracks. We model this interaction by
initializing the stress field to high stress radiating outward
from the impact point and low stress in the concentric direc-
tion, as illustrated in Figure 3.

4.2. Generating Cracks

As described in Section 3.4, we use the separation tensor ς

to determine where to crack the mesh. We insert the largest
positive eigenvalue, v+, of each node’s ς to a priority queue.
We then iteratively crack based on the largest values in the
queue. When the top eigenvalue is larger than the material
toughness threshold, τ, a crack occurs at the corresponding
node. We generate cracks in the direction perpendicular to

c© The Eurographics Association 2006.

182 H. N. Iben and J. F. O’Brien / Generating Surface Crack Patterns

Figure 7: A rendered example of a crackle glaze cup (left) compared to a photograph (right). Our algorithm generates this
effect by initializing the stress field to uniform shrinkage over the surface and evolving it with uniform tension. Total computation
time was 43 minutes with a 39,611 triangle input mesh.

the corresponding eigenvector. To compute where new edges
should be inserted in the mesh, we intersect the plane defined
by n̂+ with the surrounding triangles. The intersecting trian-
gles are split, creating new free boundary edges in the mesh.
We do not add a new crack edge if it is too close to a current
crack edge, avoiding back-cracking as described in [OH99]
and illustrated in Figure 5. This plane-triangle intersection is
fast in comparison to splitting and remeshing tetrahedra, an
advantage of computing cracks on a surface discretization.

The results generated by our method depend on the res-
olution of the discretization of the model, only generating a
crack in the elements surrounding the node at each time step.
We use the approach presented in [O’B00] to propagate the
crack further. After cracking a node, we compute a resid-
ual value v∗ = v+− τ. This quantity modifies the separation
tensor of a node by

ς
′ = ς+α m(n̂+)v∗ (8)

where α is an input parameter. Small values for α result in
more jagged cracks while large values cause the cracks to
propagate further in the same direction. The parameter α

heuristically captures material inhomogeneities, effectively
controlling the jaggedness of the cracks in the simulation, as
illustrated in Figures 11 and 12. For our trials, we found α

values between zero and one to generate nice results.

Small or poorly shaped elements can introduce numeri-
cal instabilities in the simulation. We attempt to avoid cre-
ating ill-shaped triangles by snapping crack edges to mesh
edges if they are close, as described in [OH99] and illus-
trate in Figure 5. However, some slivers are large enough
that edge snapping would create objectionable artifacts, yet
still small enough that they would generate poorly condi-
tioned elements. This problem can be traced back to very
large singular values in the β matrix. We initially compute
a threshold based on the singular values of the input trian-
gles’ β matrices. Each time we calculate the β matrix of an

element, we compute its SVD and examine the singular val-
ues. We reconstruct the β matrix when we need to restrict
its singular values to the threshold. The effect on the be-
havior of the simulation is that these small slivers become
more compliant in the direction with large singularity. This
change causes the system to remain numerically stable even
with poorly shaped elements.

5. Post-Processing

During the simulation, we do not change the positions of the
nodes. For the ceramic examples, we implemented a shader
that interpolates information about crack locations to ren-
der the dark lines. This rendering technique is demonstrated
in Figures 6 and 7.

For some of our examples, such as Figures 3 and 11, we
wanted to create a visible gap at the crack locations. To do
this, we sum the change in positions from Equation (3) for
each node n as we compute them in the relaxation process

∆T p[n] =
R

∑
i=1

γ F[n] (9)

where R is the total number of relaxation steps and γ a
parameter controlling the rate of movement. As a post-
processing step, we displace the nodes by this vector. This
displacement generates gaps in the mesh where the cracks
occur. To fill the gaps, we build rectangles connecting the
displaced crack node positions to the original positions, off-
set inward by a user specified amount. This creates nice side-
walls for the cracks, as illustrated in Figures 11 and 12. Other
examples using this method include Figures 1 and 2. Note
that this post-processing movement is performed after the
simulation is finished. Poorly shaped or inverted triangles
that may result do not create significant problems.

We can also add a curling effect to the crack edges, as
found in mud and peeling paint. To model this phenomena,

c© The Eurographics Association 2006.

H. N. Iben and J. F. O’Brien / Generating Surface Crack Patterns 183

Figure 8: An animation of mud drying for Figure 11, simulated by setting the stress field to uniform shrinkage of the surface.

we use the magnitude of the result from Equation (9), giving
the distance the node moved on the surface. We then move
the crack nodes in the normal direction by a user-defined
portion of this displacement. By iteratively propagating this
change to the surrounding nodes, we produce a lifting effect.
An example of curled mud is demonstrated in Figure 9.

6. Results and Discussion

We implemented the method described above in C++ and
rendered our results using Pixie. The running time of the
algorithm is dependent on the mesh resolution and concen-
tration of cracks on the surface, with the largest time spent
in the relaxation process. Because adding cracks increases
the size of the mesh, the computation time for each iteration
also increases. However, we found the simulation times to
be reasonable on a Macintosh G5 computer with 2.5 GB of
memory and are given in the captions.

Our method generates crack patterns similar to a variety
of cracks found in nature. For example, ceramic glazes of-
ten contain cracks, sometimes generated intentionally by a
crackle glaze process. Our method simulates this effect by
uniformly shrinking the surface and evolving the stress field
with uniform tension. The results of simulating this phe-
nomenon appear in Figures 6 and 7. We also provide a com-
parison photograph with a Japanese teacup in Figure 7.

Figure 9: Example of adding a curling effect to the cracked
mud from Figure 12. This example required 2.0 minutes com-
putation time on a 19,602 triangle input mesh.

Crack patterns also occur in glass for various reasons.
When the outer layer of molten glass cools rapidly, as hap-
pens when submerged in water, it solidifies without chance
for annealing. The resulting thermal shock causes the so-
lidified outer layer to crack, creating glasswork known as
“crackle glass.” Because this layer is adhered to the inner
core of molten glass, the object retains its overall shape. We
model this effect by initializing the stress field to uniform
shrinkage, as illustrated in Figure 1.

Flat glass also cracks in a particular manner when struck
by an object, as described in Section 4.1. We allow the user
to specify a stress field on the object to model this impact ef-
fect and demonstrate our results in Figure 3. As a future di-
rection, we could extend our system to allow users to specify
arbitrary stress fields on objects.

During the mud drying process, cracks form to alleviate
the stress that builds on the surface. Our method generates
similar results by using uniform shrinkage, as demonstrated
in the comparison between our results and photographs
in Figures 11 and 12. The simulation generating these re-
sults differed in the parameter controlling crack propagation,
α. Capturing such a mud cracking process with time-lapse
photography is time consuming because drying can be slow.
Our method is able to generate animations of the cracking
process similar to the real world by writing frames as the
simulation progresses, as demonstrated in Figure 8. We also
generate a curled version of Figure 12 in Figure 9. These ex-
amples demonstrate the ease of generating different results
by varying a few intuitive parameters.

Our method can also use the object’s geometry to in-
fluence crack patterns. For example, the simulation creat-
ing Figure 2 initialized the stress field to uniform shrinkage
and then biased it in the principle curvature directions. This
is illustrated by the vertical cracks in the left arm and the
cracks along the folds of cloth. We can also bias the cracks
to form in regions of high curvature by scaling the separation
tensor. We use the Frobenius norm of the curvature tensor
as a scale factor in Figure 4 and the sum of squares of the
principle curvature values in Figure 10, generating a higher
concentration of cracks in high curvature regions.

The method presented in this paper generates a variety of
crack patterns by combining a physically based simulation
with traditional appearance driven heuristics. With this ap-
proach, we obtain the realism of a physically correct simula-
tion but keep the controllability of a heuristic based method.

c© The Eurographics Association 2006.

184 H. N. Iben and J. F. O’Brien / Generating Surface Crack Patterns

We compare some of our results, such as the mud and ce-
ramic glaze, with photographs to demonstrate the realism
generated by our method. Although the images are differ-
ent, the generated crack patterns have qualitatively similar
characteristics to the real ones. Our approach could be incor-
porated into an artistic tool, enabling users to paint a stress
field on an object to easily generate various cracking results
using one system.

Acknowledgments
We thank the other members of the Berkeley Graphics
Group, particularly Jonathan Shewchuk and Carlo Séquin,
for their helpful criticism and comments. This work was sup-
ported in part by California MICRO 04-066 and 05-044, and
by generous support from Apple Computer, Pixar Anima-
tion Studios, Autodesk, Intel Corporation, Sony Computer
Entertainment America, and the Alfred P. Sloan Foundation.
Iben was supported by NSF and GAANN fellowships.

References

[And04] ANDERSON T. L.: Fracture Mechanics: Fundamentals
and Applications, 3 ed. CRC Press, 2004.

[BPA∗05] BOHN S., PLATKIEWICZ J., ANDREOTTI B., ADDA-
BEDIA M., COUDER Y.: Hierarchical crack patterns as formed
by successive domain divisions. II. From disordered to determin-
istic behavior. Physical Review E 75 (Apr 2005).

[BPC05] BOHN S., PAUCHARD L., COUDER Y.: Hierarchical
crack patterns as formed by successive domain divisions. I. Tem-
poral and geometrical hierarchy. Physical Review E 75 (Apr
2005).

[CSM03] COHEN-STEINER D., MORVAN J.-M.: Restricted de-
launay triangulations and normal cycle. In Proceedings of
the 19th Annual ACM Symposium on Computational Geometry
(2003), pp. 312–321.

Figure 10: Another example of an artistic effect achieved
by using curvature to bias the concentration of cracks. In
this example, the separation tensor was weighted by κ

2
1 +κ

2
2

where κ1 and κ2 are the principle curvature values. Compu-
tation time was 1.5 hours on a 30,008 element mesh.

[DGA05] DESBENOIT B., GALIN E., AKKOUCHE S.: Modeling
cracks and fractures. The Visual Computer 21, 8–10 (Sep 2005),
717–726.

[FP96] FEDERL P., PRUSINKIEWICZ P.: A texture model for
cracked surfaces, with an application to tree bark. In Proc. of
the 7th Western Computer Graphics Symp. (1996), pp. 23–29.

[FP02] FEDERL P., PRUSINKIEWICZ P.: Modelling fracture for-
mation in bi-layered materials, with applications to tree bark and
drying mud. In Proc. of the 13th Western Computer Graphics
Symp. (2002).

[FP04] FEDERL P., PRUSINKIEWICZ P.: Finite element model of
fracture formation on growing surfaces. Lecture Notes in Com-
puter Science 3037 (Jan 2004), 138–145.

[GC00] GOBRON S., CHIBA N.: Crack pattern simulation based
on 3d surface cellular automaton. In Proc. of the International
Conference on Computer Graphics (2000), pp. 153–162.

[GC01] GOBRON S., CHIBA N.: Simulation of peeling using
3d-surface cellular automata. In Proceedings of the 9th Pa-
cific Conference on Computer Graphics and Applications (2001),
pp. 338–347.

[GSH∗04] GINGOLD Y., SECORD A., HAN J. Y., GRINSPUN E.,
ZORIN D.: A discrete model for inelastic deformation of thin
shells. In ACM SIGGRAPH / Eurographics Symposium on Com-
puter Animation (2004). Poster.

[HTCY04] HSIEH H.-H., TAI W.-K., CHIANG C.-C., YANG

M.-T.: Flexible and interactive crack-like patterns presentation
on 3d objects. Lecture Notes in Computer Science 3280 (Jan
2004), 90–99.

[HTK98] HIROTA K., TANOUE Y., KANEKO T.: Generation of
crack patterns with a physical model. The Visual Computer 14, 3
(1998), 126–137.

[HTK00] HIROTA K., TANOUE Y., KANEKO T.: Simulation of
three-dimensional cracks. The Visual Computer 16 (Nov 2000),
371–378.

[Kit99] KITSUNEZAKI S.: Fracture patterns induced by dessica-
tion in a thin layer. Physical Review E 60, 6 (Dec 1999).

[MBF04] MOLINO N., BAO Z., FEDKIW R.: A virtual node al-
gorithm for changing mesh topology during simulation. ACM
Transactions on Graphics 23, 3 (2004), 385–392.

[MG04] MÜLLER M., GROSS M.: Interactive virtual materials.
In Proceedings of Graphics Interface (2004), pp. 239–246.

[MGDA04] MARTINET A., GALIN E., DESBENOIT B.,
AKKOUCHE S.: Procedural modeling of cracks and fractures. In
International Conference on Shape Modeling and Applications
(2004), pp. 346–349.

[Mou05] MOULD D.: Image-guided fracture. In Proceedings of
Graphics Interface (2005), pp. 219–226.

[MTG04] MÜLLER M., TESCHNER M., GROSS M.: Physically-
based simulation of objects represented by surface meshes. In
Proceedings of the Computer Graphics International (2004),
pp. 26–33.

[Nis97] NISHIOKA T.: Computational dynamic fracture mechan-
ics. International Journal of Fracture 86 (1997), 127–159.

[NTB∗91] NORTON A., TURK G., BACON B., GERTH J.,
SWEENEY P.: Animation of fracture by physical modeling. The
Visual Computer 7, 4 (1991), 210–219.

c© The Eurographics Association 2006.

H. N. Iben and J. F. O’Brien / Generating Surface Crack Patterns 185

Figure 11: A rendered example of dried mud (left) compared to a photograph (right, copyright 2004 Mayang Adnin). We used
uniform shrinkage of the surface and set α = 0.85 to propagate the cracks further, requiring 2.7 minutes computation time on a
19,602 triangle input mesh.

Figure 12: A comparison between rendered dried mud (left) and a photograph (right, copyright 2004 Mayang Adnin). As
in Figure 11, we used uniform shrinkage of the surface, but changed α = 0.5 to demonstrate controlling the crack propagation
parameter. Total computation time was 2.0 minutes on a 19,602 triangle input mesh.

[O’B00] O’BRIEN J. F.: Graphical modeling and animation of
fracture. PhD thesis, Georgia Institute of Technology, Aug 2000.

[OBH02] O’BRIEN J. F., BARGTEIL A., HODGINS J.: Graphical
modeling and animation of ductile fracture. In Proceedings of
ACM SIGGRAPH 2002 (Aug 2002), pp. 291–294.

[OH99] O’BRIEN J. F., HODGINS J.: Graphical modeling and
animation of brittle fracture. In Proceedings of ACM SIGGRAPH
1999 (Aug 1999), pp. 137–146.

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRÉ P.,
GROSS M., GUIBAS L. J.: Meshless animation of fracturing
solids. In Proceedings of the ACM SIGGRAPH 2005 (July 2005),
pp. 957–964.

[PPD02] PAQUETTE E., POULIN P., DRETTAKIS G.: The simu-
lation of paint cracking and peeling. In Proceedings of Graphics
Interface (May 2002), pp. 59–68.

[SdBGM00] SHORLIN K., DE BRUYN J., GRAHAM M., MOR-

RIS S.: Development and geometry of isotropic and directional
shrinkage-crack patterns. Physical Review E 61, 6 (June 2000).

[SM88] SKJELTORP A. T., MEAKIN P.: Fracture in microsphere
monolayers studied by experiment and computer simulation. Na-
ture 335 (Sept. 1988), 424–426.

[TF88] TERZOPOULOS D., FLEISCHER K.: Modeling inelastic
deformation: Viscoelasticity, plasticity, fracture. In Computer
Graphics (SIGGRAPH ’88 Proceedings) (Aug 1988), vol. 22,
pp. 269–278.

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER

K.: Elastically deformable models. In Computer Graphics (SIG-
GRAPH ’87 Proceedings) (July 1987), vol. 21, pp. 205–214.

[WvOC04] WYVILL B., VAN OVERVELD K., CARPENDALE S.:
Rendering cracks in batik. In Proc. of the 3rd Int. Symp. on Non-
photorealistic Animation and Rendering (2004), pp. 61–69.

c© The Eurographics Association 2006.

