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ABSTRACT OF THE DISSERTATION
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Professor Van M. Savage, Chair

Neurons are connected by complex branching processes that collectively process information

for organisms to respond to their environment. Classifying neurons according to differences

in structure or function is a fundamental piece of neuroscience. Here, by constructing new

biophysical theory and testing against our empirical measures of branching structure, we

establish a correspondence between neuron structure and function as mediated by principles

such as time or power minimization for information processing as well as spatial constraints

for forming connections. Based on these principles, we use Lagrange multipliers to predict

scaling ratios for axon and dendrite sizes across branching levels. We test our predictions

for radius scale factors against those extracted from images, measured for species that range

from insects to whales. Notably, our findings reveal that the branching of axons and pe-

ripheral nervous system neurons is mainly determined by time minimization, while dendritic

branching is mainly determined by power minimization. Further comparison of different

dendritic cell types reveals that Purkinje cell dendrite branching is constrained by material

costs while motoneuron dendrite branching is constrained by conduction time delay. We
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extend this model to incorporate asymmetric branching, where there are multiple different

paths from the soma to the synapses and thus multiple interpretations of conduction time

delay; one considers the optimal path and the other considers the sum of all possible paths,

leading to different predictions. We find that the data for motoneurons show a distinction

between the asymmetric and symmetric branching junctions, corresponding to predictions

using different interpretations of the time-delay constraint. Moreover, the more asymmetric

branching junctions are localized near the synapses, indicating that different functional prin-

ciples affect the structure at different regions of the cell. Finally, we use machine-learning

methods to classify cell types using functionally relevant structural parameters derived from

our model. Incorporating branching level as a feature in classification in addition to pa-

rameters related to information flow improves performance across methods, suggesting that

information flow drives localized differences in morphology. Future directions of this work

include estimating specific parameters related to functional tradeoffs and myelination using

numerical optimization and analyzing changes across stages of development.
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CHAPTER 1

Introduction

Over the last 200 years, the advent of advanced microscopy techniques and staining meth-

ods has led to the conceptualization of neurons as independent cellular units of the nervous

system. The Spanish neuroanatomist Santiago Ramón y Cajal utilized the Golgi staining

technique to make detailed drawings of neurons, comparing neurons across a range of cell

types and species [130]. This work not only established the existence of multiple cell types,

but showed that specific cell types were characteristic of localized regions of the nervous sys-

tem. The Golgi staining technique allowed for the discernment of treelike processes—axons

and dendrites—extending from the soma (cell body) of neurons [51]. The diversity in form

and function of dendrites suggests that they have evolved to fill a range of functional roles in

the nervous system [126]. Indeed, Ramón y Cajal argued that the diversity of morphological

forms in neuron processes could all be explained by the physical laws of conservation for

time, space, and material [24]. This work, presented in “Histology of the Nervous System of

Man and Vertebrates,” is considered the founding document of neurobiology, and is possibly

the only document over 100 years old that is still regularly consulted by neuroscientists.

This documement is arguably the first attempt at cell-type classification in neuroscience. As

neuron cell types differ based on characteristic morphological, physiological, molecular, and

connectional properties, the most reasonable approach to understanding this complexity, and

how it integrates to the structure and function of brain circuits, is attempting to cluster the

diverse cells into characteristic groups [130].

The two classes of neuron processes, axons and dendrites, differ in both function and
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form. Axons, with their long parent branches sometimes extending across distances of over

a meter and projecting between regions of the nervous system [94], generally conduct signals

from the soma to the synapses, where they connect to other neurons, and have likely evolved

to minimize conduction time delay [30]. Axons are electrically active and conduct action

potentials, and they play an essential role in transferring large amounts of information be-

tween brain areas in a short amount of time [64]. In contrast, dendrites have shorter parent

branches and more extensive branching trees, carrying signals from the synapses to the soma

and generally relying on passive electronic spread [94]. Thus, it is likely that different princi-

ples related to the attenuation of signals are more important factors governing the structures

of dendrites than for axons [30].

Neuronal tissue is energetically costly to operate and maintain, creating pressures to

minimize metabolic energy costs in signalling [12]. While attempts have been made to

quantitatively describe Ramón y Cajal’s laws using graph theory [36], generating realistic

synthetic neurons [37], this approach is limited because it does not take into account these

metabolic factors that affect information flow in neurons. An important consideration in

the design of neurons is the functional tradeoff between material costs, energetic costs, and

time costs. Although wider fibers exhibit less attentuation of passive signals, rendering

both passive spread and active propagation faster [94], creating fibers of larger width and

thus volume increase both material costs and energetic costs needed for maintenance [64,

121, 97]. Moreover, an important adaptation of the nervous system is myelination—a fatty

sheath that surrounds fibers and speeds up conduction [109]. Foundational experimental

and theoretical work has shown that the conduction time delay decreases for myelinated

fibers; the conduction velocity is proportional to the square root of the diameter of neuron

fibers for unmyelinated fibers, and proportional to the diameter itself for myelinated fibers

[52, 100]. Thus, studies that focus solely on the path length of neuron processes in order

to optimize conduction time ignore key attributes—conduction speed and its relation to the

radius—that drive information processing in the nervous system.
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Another potential consequence of this tradeoff between time delay and metabolic costs

is hemispheric specialization. Previous studies have shown that for some cells, there is an

allometric scaling relationship between cell size and body mass of species [104] that applies

to a range of biological cells, including neurons. If larger animals have processes that have

a larger volume, and therefore are wider,they may conduct signals more rapidly but will

do so at the expense of a metabolic and material cost that is associated with the larger

volume [121]. On the other hand, some specific types of neurons have been observed to

be invariant in size in relation to species size [126]. Previous studies have proposed that

hemispheric specialization is an adaptation that arises in larger animals in order to offset

the long conduction time delays that are associated with cells remaining the same width

within larger brains; that is, cells that often communicate with one another are clustered

closer to each other [97].

A promising approach to address this complexity of the structure-function relationship

and the tradeoffs that occur across neuron cell-types is biological scaling theory, as it has

previously been applied to relate branching structures in other biological networks—such

as blood vessels and plants—to functional properties related to transport, material costs,

and space-filling. West, Brown, and Enquish (WBE) proposed that allometric biological

scaling relationships, such as Kleiber’s law, which relates body mass to metabolic rate via

a 3/4 exponent [60], arise due to resource distribution networks that are optimized to sup-

ply all parts of the body [125]. The branching processes of neurons, emerging from the

soma, are analogous to the branching vessels in cardiovascular networks, emerging from the

heart. Moreover, previous work has characterized branching blood vessels using analogous

mathematical descriptions of electrical circuits [129], implying that there might also be func-

tional similarities between these diverse biological systems. These structural and functional

similarities suggest that applying the mathematical framework developed to study the rela-

tionship between branching patterns of blood vessels and transport, metabolism, material

costs, and space-filling [103, 22, 23] might be useful in developing a framework to understand
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the functional tradeoffs across cell types in the nervous system.

There are vast amounts of data available online in public repositories that allow us to

analyze morphological properties in neurons and test our theoretical predictions based on

biophysics models to empirical quantities, allowing us to further develop the model. In this

study, we focus on one resource, NeuroMorpho.Org [10]—a publicly accessible archive of

digital reconstructions of neuron morphology. This archive has neurons from a range of

species and sizes—from insects and rodents to elephants and whales—allowing for cross-

species comparisons and analysis of potential allometric relationships. The morphological

data is collected using a range of microscopy techniques, including light microscopy and

electron microscopy, as well as a range of software techniques used to trace the images into

3-dimensional quantitative reconstruction data [10]. The data is organized according to cell-

types and brain regions, and there is also data available from human patients that is labelled

by disease such as epilepsy and cancer.

There is also a remarkable amount of data available for non-neuronal nervous systems

cells. For a long time, it was thought that these cells, named glia based on the greek word for

glue, basically functioned as structural aids for neurons without any function of their own

[53]. However, recent work has revealed that they have diverse functions that contribute

to brain function and information processing. In particular, astrocytes and microglia have

been shown to respond to electrical stimulation [45]. They have branching processes that

are comparable to neurons, allowing for a similar method of analysis. The vast amounts

of data available at NeuroMorpho.Org are the result of shared efforts from labs all over the

world. Moreover, the archive is constantly being updated [10], providing many opportunities

to further our understanding.

Our work here makes use of these valuable resources and the existing mathematical frame-

work used to describe cardiovascular networks to tackle the problem of cell-type classification

and understanding the relationship between structure and function in the nervous system.

Chapter 2 establishes a unifying model that describes the relationship between structure
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and function in neurons, combining the principles of minimizing conduction time delay and

energetic costs while taking into account material costs and space-filling constraints. The

parameters of this model can be adjusted for a variety of factors such as myelinated ver-

sus unmyelinated fibers, and consideration of different tradeoffs. Theoretical predictions of

morphological quantities in this model are compared to distributions in morphological data

across a range of species and cell types. Correspondences are drawn between specific cases

of the model that lead to predictions that agree with specific cell and process types. In

addition to these correspondences that apply across species of different sizes, an allometric

scaling relationship between conduction time delay and body mass is extracted from this

model and validated using data.

Chapter 3 explores relaxing the assumption of symmetric branching that is imposed in

Chapter 2, allowing for further important insights. While the symmetric assumption implies

that all paths from the soma to the synapses are equal in length, asymmetric branching

leads to multiple possible paths of varying lengths. When optimizing the structure for time

delay, which path is most important to minimize? Is it the shortest path? The longest path?

Some combination of all the paths? This chapter considers theoretical predictions based

on all these possible interpretations, and finds that different interpretations correspond to

the median values in the data corresponding to different regions in the cell, suggesting that

even within a single cell, there are multiple regimes describing different structure-function

correspondences. Moreover, the presence of asymmetric branching appears to be localized

at specific regions, leading to important hypotheses about the functional underpinnings of

asymmetric branching in neurons.

Chapter 4 extends this framework of asymmetric branching networks, combining the

theory with machine-learning classification methods to highlight difference between different

types of neuronal dendrites as well as between different types of glial cells, astrocytes and

microglia. Although machine-learning is often a black box, obscuring mechanistic insight

into the clustering of data into groups, the use of parameters related to information flow in
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nerve cell processes from the theory provides insight into the functional basis that underlies

observed differences in structure. The incorporation of a third factor related to the spatial

position of branching junctions relative to the cell body and synapses improves the perfor-

mance of classification methods—particularly for distinguishing glial cells—suggesting that

the differences in information flow are localized to specific regions of the cell.

We apply these methods to observe morphological differences between healthy and dis-

eased cells, identifying localized morphological differences in pyramidal cells of tumor and

epilepsy patients compared to control cells. These results highlight the promise of our meth-

ods to apply to larger datasets and address important problems in neuroscience such as

characterization of glia, which are poorly understood, and disease-specific alterations in neu-

ron morphology.

Chapter 5 discusses future directions of this work, including: i. alternate characteriza-

tions of branch lengths and labeling schemes, ii. numerical analysis of the model, and iii.

further studies of morphological changes across time and stages of development. Appendices

A, B, and C expand upon the calculations and analysis discussed in the previous chapters,

as well as highlighting topics that were explored but the results were inconclusive, providing

potential avenues for future investigation. Appendix D details the data sources used in this

work.
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CHAPTER 2

How Axon and Dendrite Branching Are Guided by

Time, Energy, and Spatial Constraints

2.1 Introduction

Neurons are fundamental structural units of information processing and communication in

animals. They are made up of a centralized cell body, called the soma, and two types of

extending processes, axons and dendrites. These processes transfer information between

cells in the form of electrical and chemical signals. Axons generally conduct signals from the

cell body to the synapses, where they connect with the dendrites of other neurons. These

dendrites generally conduct signals from the synapse to the cell body. The processes form

synaptic connections with one another in complex patterns. Different types of cells exhibit

diverse morphological forms - some neurons have no axons or dendrites, while some have long

axon processes that extend over meters, and others have vast dendritic trees that branch

extensively to fill two- or three-dimensional space, corresponding to the mathematical and

modeling concept known as space-filling [56].

Seminal studies in neuroscience characterized morphological differences across cell types.

For instance, Santiago Ramón y Cajal’s “Histology of the Nervous System of Man and

Vertebrates” is considered to be the founding document of neurobiology [130], consisting of

detailed drawings and comparative descriptive analysis of neuron morphology across different

cell types and species [24]. Modern techniques and devices have allowed for more precise

quantitative measurements at the single-cell level. For example, recent work has established

7



quantitative morphological distinctions across different cell types, focusing on quantities such

as mean dendritic length, total dendritic length, and number of branching points [46, 70].

As vast as the structural diversity is, there is an even greater diversity of functional

properties [56]. Within sensory, motor, and interneurons, there are different types of neuro-

transmitters and receptors that affect the nature of signal processing [109]. A major future

goal of neuron cell-type classification is to establish a correspondence between morphological

and functional properties [130]. Here, we seek to address the question of how structural

properties relate to neuron function and whether there are evolutionary driving forces that

dictate how morphology is optimized by biological principles or pressures.

A promising approach to the relationship between neuron structure and function is biolog-

ical scaling theory, as it has previously been applied to understand patterns in the branching

structures of biological resource distribution networks. Generally, a biological property Y

scales with body mass M as Y = Y0M
b, where Y0 is a proportionality constant and b is a

scaling exponent [125]. An example is metabolic rate scaling with body mass to the power

3/4, a result known as Kleiber’s Law [60].

West, Brown, and Enquist (WBE) proposed that Kleiber’s law and other biological scal-

ing laws arise because biological organisms are sustained by resource distribution branching

networks that are optimized to supply all parts of the body [125]. Past work on cardiovas-

cular networks has employed WBE theory to derive scaling laws for the vessel radius and

length as a result of minimizing power loss for fluid flow along with space filling in order

to fuel whole organism metabolism [103]. Moreover, previous results have shown a quarter-

power allometric scaling relationship between cell size and body size in a range of cell types

in mammals, including neurons [104].

Single neuron cells have centralized cell bodies that are analogous to the heart and branch-

ing processes that are analogous to blood vessels. Consequently, we propose that a similar

approach based on optimizing organismal function subject to biophysical constraints may

be fruitful for attempting to predict and understand the branching structures of axons and
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dendrites. As such, we consider biophysical properties of neurons that might play an impor-

tant role in governing structure, and we use empirical imaging data to guide our evaluation

of the relative importance of different functions.

One important evolutionary function of neuronal networks is the transferring of large

amounts of information between brain regions in a short amount of time [64]. At the indi-

vidual cell level, the varied morphological forms observed for neurons are various adaptations

to basic principles such as limiting signal time delay [24]. Thus, it is important to consider

conduction time as a key design principle that governs neuronal branching structures.

Indeed, foundational work by Cuntz et al. has used graph theory to quantify and study

how connections among axons and dendrites determine conduction time delay. This approach

focuses on the tradeoff between wiring costs and conduction time, represented as path length

[36]. The results formalize the laws set forth by Ramón y Cajal, leading to a graph-theoretical

algorithm that generates synthetic and biologically accurate axonal and dendritic trees [37].

Although this formalism is deeply insightful and very successful at explaining neuron

structures, two key aspects are absent for optimizing Ramón y Cajal’s laws: the diameter of

axonal and dendritic fibers is not incorporated, and the principle of conservation of space,

as set forth by Ramón y Cajal, is missing. Because axon and dendrite radius relates to

resistance to the flow of electrical current, it has a profound effect on signaling speed and

conduction time. The radius is thus a key structural feature governing the function of

neurons. Moreover, space-filling principles constrain the possible connections, branching,

and network structure of neurons. Consequently, in this paper we take a similar approach to

Cuntz et al. [36, 29] except we now incorporate the dependence of conduction time on fiber

radius and myelination (insulation that surrounds the fiber and facilitates signal transduction

[109]), using principles set forth by Hodgkin and Rushton [52, 100], along with the principle

of space-filling.

A complicating factor that creates a tradeoff is that as the speed of information process-

ing increases, energy loss due to dissipation also increases [64]. Indeed, signaling in the brain
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consumes a substantial amount of energy [12], suggesting that energy expenditure is another

important factor constraining neuron structure. Previous work has shown that the relation-

ship between metabolic rate and conduction time plays an important role in determining

axon function in species across scales of body size [121]. This leads to the WBE framework,

which relies on the assumption that resource distribution networks are optimized such that

the energy used to transport resources is minimized [125]. This framework is applied to

cardiovascular networks by minimizing power lost to dissipation in small vessels, leading to

the derivation of a power law (also known as Murray’s law), which states that the radius

scales with an exponent of 3 in branching blood vessels [103].

Importantly, Wilfred Rall derived a similar power law for neurons. By using the assump-

tion that the charge is conserved at branching junctions, the diameter of daughter branches

and parent branches can be related by an exponent of 3/2 [93]. Rall found that this power

law holds for motoneurons but not for other cell types. Because of this seminal work, many

subsequent theoretical and experimental studies on the scaling of neuron branching have

used Rall’s law as a baseline for quantifying variation in scaling exponents by calculating

departures and differences from the 3/2-value of the scaling exponent for Rall’s law [51,

111]. Although there are many functional differences between cardiovascular networks and

neurons, the presence of these analogous scaling laws suggests that the mathematical frame-

work applied to branching blood vessels might be useful to apply to neurons. While energy

efficiency is the primary constraining factor considered in studies of cardiovascular systems,

neurons differ in that information processing and signalling is a key consideration. We use

the objective function approach from biological scaling theory for cardiovascular systems

as a basis and use it to construct new models and functions that incorporate characteristic

properties of neurons across their vast diversity of cell types, morphologies, and physiological

functions. Applying this lens to look at neurons will expand upon existing frameworks, and

comparative studies might help capture more nuances in other biological systems as well.

In this paper, we show that much of the variation around Rall’s law can be explained
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and predicted using our approach—varying the relative importance and weighting of time

versus energy and the associated biological and physical constraints to consider a host of

functions that can be optimized to derive predictions for diverse morphological quantities.

That is, building on biological and physical principles that constrain electrophysiological

signaling and information processing in neurons, we construct a general model that predicts

a suite of neuron morphologies based on which biological or physical principles are under the

strongest selection. Our model includes both conduction time and energy efficiency while

also incorporating additional factors such as the material costs and space-filling [24]. We

make theoretical predictions for how branch radius changes across branching generation for

both axons and dendrites. We compare these predictions to our empirically measured data

to make conclusions about the functional basis for morphological differences observed across

cell types. We also use this model to predict how conduction time delay in neurons changes

with neuron size, another of our predictions that is supported by empirical data. We use

data collected from light and electron microscopy. These data collected by different methods

yield extremely consistent results, strengthening support for our general model as a basis to

predict neuron morphology.

2.2 Theory

2.2.1 Model

Because conduction time delay and power usage are fundamental and costly for information

processing in neurons, we develop a mathematical objective function to jointly minimize time

and power that is subject to constraints [19]. By deriving the minimization conditions, we

predict how biological principles and constraints govern neuronal structure, as achieved via

evolutionary pressures and developmental processes that shape branching networks and ma-

terials, such as myelination. Our work differs substantially from work on the cardiovascular

system that does not consider effects of conduction time delay, as the physiology and func-
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tion of neurons conducting currents differ in essential ways from blood vessels transporting

blood. As a consequence, we also obtain different scaling relations than for the cardiovascu-

lar system. Here, we obtain a suite of predictions based on the details of the particular type

of neuron such as functional differences and myelination.

Equation 2.1 is a general form of our objective function. The biophysical constraints are

represented as functions and added to the expressions to be minimized, allowing us to use

the method of undetermined Lagrange multipliers to optimize this overall objective function.

F = αPTOT + (1− α)TTOT +
N∑
i

λifi(rk, lk, k, n,mc, d) (2.1)

Here, PTOT is the power lost due to dissipation and TTOT is the time delay for a signal

travelling across the network. The parameter α can be varied to consider the tradeoff between

these two principles in governing the structure of different cell types. The functions fi

represent biophysical constraint functions that generically depend on the branch radius rk

and the branch length lk, where k is the branching generation of the network (with 0 being

the trunk andN being the tips). This function also depends on the total number of branching

levelsN of a neuron process, the branching ratio n, the mass of the cellmc, and the dimension

d of space into which the neuron processes project. The branching ratio, n, is equal to 2

for a bifurcating network, though it may vary in general. We use optimization methods to

calculate scaling relationships between the radius of successive branches, rk+1

rk
, as shown in

Figure 2.1.

In Equation 2.1, the first term is the power loss due to dissipation, given by PTOT =∑N
k=0

lk
r2kn

k . For a neuronal network, we define the power loss by the equation, P = I20Rnet,

where I0 is the ionic current and Rnet is the resistance to current flow in the network. Because

we are focusing on average, large scale quantities across the full extent of the neuron and need

to consider a coarse-grained average of signal propagation, we can reasonably approximate

axons and dendrites as wires through which current flows and encounters resistance from
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Figure 2.1. A hierarchical branching network A visual depiction of the successive

branching levels of a network and the quantities of interest alongside an image of a mouse

cerebellar Purkinje neuron and its dendritic branching structure. This image was obtained

using confocal microscopy and Lucifer yellow fluorescent dye. We have cropped this image

available on CellImageLibrary.Org, distributed by Maryann Martone, Diana Price, and

Andrea Thor [74].

the neuron fiber. The resistance is given by Rk = ρlk
Ak

, where Ak is the cross sectional

area of the wire, and lk is the length of the segment at that level. The parameter ρ is the

intrinsic resistivity of the axon or dendrite, and we assume that ρ is constant, meaning that

the material is uniform [56]. Approximating axons and dendrites as cylinders, the cross-

sectional area is πr2k for level k, and the resistance is Rk =
ρlk
πr2k

. Following standard practice,

we have absorbed all physical constants into the Lagrange constants, and the magnitude of

these terms do not affect the theoretical predictions.

The second term represents conduction time delay, TTOT =
∑N

k=0
lk

r
1
2+ϵ

k

, and arises because

the average velocity of a signal along a single branch is v̄ = lk/tk, where tk is the time delay.

We can solve this expression for tk and sum 1
v̄
over the length of each branch [97]. At each

generation, we consider a single branch to denote the total path length of a signal, and we

calculate the total conduction time delay by summing the time delays for single branches
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across all N generations. The parameter ϵ describes the degree of myelination. Previous

work has shown that the conduction speed is proportional to the square root of the diameter

for an unmyelinated fiber [52], and directly proportional to the diameter for a myelinated

fiber [100]. Thus, an ϵ value of 0 corresponds to an unmyelinated fiber, and a value of 1
2

corresponds to a myelinated fiber.

Notably, we include linear terms for PTOT and TTOT , consistent with approaches for other

systems in physics and economics. Because our quantities are always positive based on their

biological interpretation, minimizing these terms and the overall functions effectively mini-

mizes all monotonic transformations such as positive powers or logarithms of the function.

Consequently, our predicted minima and scaling ratios actually hold for a broad range of

functional forms (in the same way that maximum likelihood and maximum entropy calcula-

tions minimize the logarithm of the function to also find the minimum of the linear form).

In addition, many complicated nonlinear functions behave linearly near critical points and

linearity is the simplest form in lieu of additional information, providing additional reasons

for its use as a starting point. Future studies may expand on this baseline model to consider

other mathematical forms if sound biological justification is provided for their consideration.

With this form of the objective function, we can switch between models that optimize

either conduction time or power usage by varying α between 0 and 1, corresponding to the

following two equations.

T =
N∑
k=0

lk

r
1
2
+ϵ

k

+ λ

N∑
k=0

nkr2klk + λmmc +
N∑
k=0

λkn
kld (2.2)

P =
N∑
k=0

lk
r2kn

k
+ λ

N∑
k=0

nkr2klk + λmmc +
N∑
k=0

λkn
kld (2.3)

In these two equations, the governing optimization principle (first term) is constrained by

brain region volume (second term), neuron size (third term), and space-filling (fourth term).
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These quantities are held constant during the optimization. We can define the total volume

as
∑N

k=0 n
kπr2klk, based on the assumption that the projections are cylindrical and branches

are symmetric. We absorb the constant π into the Lagrange multiplier λ. The term that

describes size, mc, is the mass of the cell. The last constraint comes from the fact that a

resource distribution network must extend and branch out to reach as much of the space it

fills as possible, whether it is a 2-dimensional plane or 3-dimensional volume. Each branch

in a given level of the network reaches a fixed volume of cells in the space it fills, called the

service volume, and the total service volume at each level is preserved. The service volumes

vary in proportion to ldk, so the total volume is proportional to the service volumes summed

across each of the branches at a given generation k, nkldk [103]. Thus, this quantity is held

constant as a constraint function at each level k in the N generations. We assume that the

branching ratio is constant, so the number of vessels at level k is nk.

The predictions that arise from these two functions will correspond to different cell types

and processes based on differences in signaling properties. We hypothesize that the principle

of power loss due to dissipation will be favored in determining the structure of processes that

rely on passive electronic spread, such as dendrites, while the principle of conduction time

delay will be favored in determining the structure of processes that are electrically active

and conduct action potentials, such as axons. The power term describes the attenuation of a

signal depending on the internal resistivity of the process. For processes that conduct action

potentials, the time delay term is a more useful descriptor, as it accounts for signaling not

limited to passive attenuation and considers differences observed in myelinated and unmyeli-

nated fibers. Through the tradeoff between these principles, our general model accounts for

both types of signaling.

Furthermore, we note that the energetic cost of maintaining the resting membrane po-

tential is already captured in the constraint for the total network volume. This is crucial

when considering energy consumption in neurons because a large component is involved in

maintaining the resting membrane potential that goes beyond energy loss to dissipation [12].
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This resting membrane potential depends on the energy required by the sodium-potassium

pump, which increases with surface area of the neuron [12]. Increasing surface area corre-

sponds to an increase in volume if we assume that myelination has minimal affects on the

total surface area (see Section 2.5), so that energy consumption is a per-volume quantity

[121].

Crucially and somewhat surprisingly, the space-filling constraint does not change any of

our predictions for radius scaling ratios. However, space-filling does play a crucial role in

determining how neuron size scales with body size across species, as well as the predictions

for length scaling ratios, lk+1

lk
, as shown in Appendix A. Notably, we do not compare these

predictions to empirical length scaling ratios here because that would likely require the

introduction and usage of an alternative labeling scheme like the Horton-Strahler method

as opposed to the generational labeling scheme for branch radius throughout the rest of this

paper (see Section 2.5). As such, we leave that construction and analysis to future work in

which we will delve deeper into asymmetric branching and alternative labeling schemes.

In Section 2.2.3, we show that minimizing power subject to a conduction time delay

constraint leads to a 1
4
-power scaling between conduction time delay and neuron size. This

objective function can be described by the following equation:

P ∗ =
N∑
k=0

lk
r2kn

k
+ λ

N∑
k=0

lk

r
1
2
+ϵ

k

+ λmmc +
N∑
k=0

λkn
kld (2.4)

Equations 2.2, 2.3, and 2.4 are all specific cases of the more general Equation 1, with

varying values of α as well as choice of constraint functions.

2.2.2 Scaling Ratio Calculation

We use the method of Lagrange multipliers to solve for the values of the scaling ratios for

radius, rk+1

rk
that minimize the objective function. Below, we show a sample calculation of
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the method of Lagrange multipliers for the case of power minimization (Eq. 2.3). A more

detailed calculation can be found in Section A.1.

We will first minimize P by differentiating with respect to radius at an arbitrary level k

and setting the result equal to 0.

∂P

∂rk
=

−2lk
nkr3k

+ 2λnkrklk = 0 (2.5)

Solving for the Lagrange multiplier, we have

λ =
1

n2kr4k
(2.6)

Using the fact that the Lagrange multiplier is a constant and thus the denominator must

be constant across levels, we can solve for the scaling ratio

rk+1

rk
= n−1/2 (2.7)

This method is used to solve for the scaling ratios for radius for the other cases and

compared to empirical results. These findings are summarized in Table 1 in the Results

section.

To ease comparison with previous work, we first note that the convention in neuroscience

is to quantify changes in branching radius by using the following equation that relates the

diameter of a parent branch to the two daughter branches:

dη0 = dη1 + dη2 (2.8)

We next note that much existing work presents results as a measure of departure from

the baseline of Rall’s law, corresponding to η = 3
2
[93].
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Conveniently, for symmetrically branching networks, there is a simple correspondence

between this conventional formulation, focusing on scaling exponents relative to Rall’s law,

and our model, focusing on radius scaling ratios

rk+1

rk
= n−1/η (2.9)

For example, Rall’s law, η = 3
2
, corresponds to the radius scaling ratio rk+1

rk
= n−2/3 in

our framework. This equation allows for a simple translation for us to validate our general

model’s various predictions due to the tradeoff of different functional principles in the context

of existing results in the neuroscience literature.

2.2.3 Allometry Calculation

We now use the objective function P* (Eq. 2.4), to derive a functional scaling relationship

between conduction time delay and body mass. Here, we consider conduction time delay

as a constraint, focusing on the unmyelinated case (ϵ = 0), and considering the case of

3-dimensional space filling (d = 3).

We begin by taking the derivative of P* with respect to radius and length and then

setting these derivatives equal to zero to solve for the multipliers λ and λk, respectively, at

the stationary point. Substituting the expression for λk back into the original expression

for P ∗, we get an expression that simplifies to the original power term that it minimized,∑N
k=0

lk
r2kn

k . For simplicity, we replace the power term with P and the time delay constraint

term with T and rearrange. This calculation is shown in detail in Section A.2.

Previous results have shown a proportional relationship between mc, the mass of a single

cell, and the fourth root of an animal’s body mass, M1/4, on average, though specific cell

types might vary slightly from this general rule [104]. Thus, we can replace this term and

consider a new Lagrange multiplier with the absorbed constant
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P ∗ = 2P + λT + λMM1/4 (2.10)

We will now take the derivative of this term with respect to M, the mass, and set it equal

to 0.

∂P ∗

∂M
= 2

∂P

∂M
+ λ

∂T

∂M
+ λM

∂M1/4

∂M
= 0 (2.11)

Previous results have shown that the energetic cost, which we have interpreted here as

power loss due to dissipation, decreases with increasing body weight of animals at a linear

rate on average for both myelinated and unmyelinated fibers, as metabolic rate is a per

volume quantity [121]. Thus, we can express ∂P
∂M

generally as a negative constant, −C. We

can rewrite the above expression as follows

∂T

∂M
=

−λMM−3/4

4λ
+ 2

C

λ
(2.12)

Solving and applying the initial condition that T=0 when M=0, we have

T =
−λM

λ
M1/4 +

2C

λ
M (2.13)

Thus, from this equation, we have extracted the scaling relationship - a mixed power law

relationship that includes a 1
4
-power law and a linear term with relative weights. Figure 5

shows experimental data that support this theoretical result of the 1
4
-power law.

2.3 Methods

To test the theoretical predictions and model, it is important to look at empirical data for

scaling ratios for radius between child and parent branches in successive levels. We analyzed
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data from NeuroMorpho.Org - an online database with digital reconstructions from a wide

range of species [10]. In this dataset, we have included reconstructions from neuron images

using light microscopy methods as well as electron microscopy (EM) images made available

through researchers involved with recent projects such as the FlyEM project at Janelia [107,

6]. Figures 2.2, 2.3, and 2.4 show five examples of images of neuron reconstructions obtained

from NeuroMorpho.Org. These reconstructions are obtained by tracing neuron image stacks

obtained using various microscopic and staining techniques for in vitro neurons and slicing

at regular intervals. This database provides 3D reconstruction data that are organized in

text files by pixels, in files that specify a pixel ID label for each point, the x,y,z spatial

coordinates, the radius of the fiber at each point, and a parent pixel ID, referring to the

adjacent pixel previously labelled. The scaling ratios for radius and length can be obtained

by organizing this data in terms of branches. This is accomplished by finding the pixels at

which the difference between the child pixel ID and the parent pixel ID is greater than 2,

which can be defined as branching points. Based on the branching points, a branch ID and

parent branch ID can be assigned to each of the pixels.

The radius can be extracted from each of the branches by taking each of the radius values

in each branch and averaging them by the following formula, defining each branch as branch

k, where the pixels i range from 1 to Nk, and where Nk is the last pixel of each branch

rk =

Nk∑
i=1

ri
Nk

(2.14)

The length of each branch can be extracted by summing up the Euclidean distances

between each of the points in the branch by the following formula:

lk =

Nk∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2 (2.15)

Once the radius and length of each of the branches is found, the scaling ratios are com-
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puted by dividing the daughter radius by the corresponding value for the parent branch.

Through this method and using the Python library matplotlib, we generate histograms to

visualize the distributions. For the radius distributions, we find a large peak at rk+1

rk
= 1.0,

which is likely due to the resolution limit of the images. After a certain level, the radius

for each of the branches is equivalent to the pixel size itself. Thus, in our distributions for

radius, we focused on the data for scaling ratios that are less than 1.0. We use solid black

lines to denote the mean values in the data, and error bars represent twice the Standard

Error of the Mean (SEM)–the standard deviation divided by the square root of the number

of data points.

We looked at neuron reconstructions from both axons and dendrites, and from a range

of cell types, brain regions, and species. More detailed information about the source of each

of the individual reconstructions can be found in Appendix D.

For dendrites, we looked at three different types of cells: Golgi cells, Purkinje cells,

and motoneurons. The Golgi cells are from Giraffa, Homo Sapiens, Loxodonta africana,

Megaptera novaeangliae, Neofelis nebulosa, Pan troglodytes, Panthera tigris [3], and Mus

musculus [117]. The Purkinje cells are from Cavia porcellus [95], Mus musculus [80, 28, 81,

75], and Rattus [71, 75, 118]. The motoneurons are from Danio rerio [79, 112], Drosophila

melanogaster [107], Felis Catus [35], Mus musculus [42], Oryctolagus cuniculus [110], Rattus

[99], and Testudines [31]. In Figure 2, we look at the combined dendrite data for all cell

types and species. In Figure 2.3, we look at the radius scaling ratios of Purkinje cells and

motoneurons individually, and draw comparisons between the two.

Due to the small size of axons and the limited resolution of images, the data available

on NeuroMorpho.Org are limited in scope. The data shown in Figure 2.2 was taken from

the following species: Anisoptera [48], Brachyura [17], Drosophila melanogaster [54], Gallus

gallus domesticus [44], and Rattus [73]. The neurons were taken from a range of brain

regions: the midbrain, the hippocampus, the antennal lobe, the optic lobe, and the ventral

nerve cord.
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To study peripheral nervous system neurons, we sampled from reconstruction data that

was labelled by region on NeuroMorpho.Org. This data, shown in Figure 2.4, was taken

from Drosophila melanogaster [50, 84, 127] and Mus musculus [14, 65, 26, 106] and includes

dendritic arborizations, sensory neurons, somatic neurons, and touch receptors.

To look at functional scaling relationships between mass and conduction time delay, we

first look at data for conduction time delay in motoneurons and sensory neurons across a

range of species sizes, listed in order of size: Soricidae,Mus musculus, Rattus, Cavia porcellus,

Oryctolagus cuniculus, Felis Catus, Canis lupus familiaris, Sus scrofa, Ovis aries, Giraffa,

and Loxodonta africana [40]. Using the mean conduction velocity measured in studies of each

species, this conduction time delay data was calculated by estimating the animal leg length

using the average body mass, and then dividing that distance by the measured velocities

that vary across species. We use a log-log plot, shown in Figure 2.5, to obtain a power law

relationship between body mass and conduction time, where the slope is equal to the power.

2.4 Results

We compared theoretical predictions for scaling ratios calculated from objective functions

T, P, and P* with the mean values we measure from the empirical data. Because mean

values capture the average overall branching properties for axons and dendrites, the mean

represents the most natural and straightforward starting point for comparing our general

theory with empirical data. To further clarify our approach in the context of previous

studies, most neuroscience studies focus on the median values of scaling exponent data that

are exponentially distributed, whereas here, we focus on scaling ratio data with normal and

symmetric distributions, thus rendering the difference between the mean and median values

to be negligible. As theory is refined and additional predictions are made, other features of

the distribution, such as those related to the spread, should also be measured and compared

(see Section 2.5). Based on the results of these comparisons for different types of neurons and
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processes, we determine the functional properties that play the greatest role in determining

structure for different processes and cell types.

2.4.1 Theoretical Predictions

Using the model and the method of undetermined Lagrange multipliers as detailed above,

we made theoretical predictions for functions using different values of the parameters. Table

2.1 shows the results for the various objective functions minimizing conduction time delay

and power. The approximations listed are based on the simplifying assumption that the

network is purely bifurcating, with a branching ratio of 2.

We consider the theoretical predictions for four objective functions. The first two objec-

tive functions are specific cases of T (Eq. 2.2) that minimize conduction time delay. We

consider this function for two possible values of the parameter ϵ. The unmyelinated case

corresponds to ϵ = 0, whereas ϵ = 1
2
signifies the myelinated case. The second two objective

functions minimize power. The objective function P (Eq. 2.3) minimizes power with the

volume fixed as a constraint. The alternative objective function P* (Eq. 2.4), is the ob-

jective function that minimizes power with the time delay fixed as a constraint. For power

minimization we focused on the unmyelinated case where ϵ = 0, since its predictions align

most with the data from dendrites, which are typically unmyelinated. These predictions can

be transformed into results comparable with existing literature using Eq. 2.9.

For all of the calculations, we considered different values of the parameter d, the dimension

of space filled by the processes. A value of d = 2 signifies neuron processes that branch into

a 2-dimensional plane, such as Purkinje cells in the cerebellum. A value of d = 3 signifies

neuron processes that fill a 3-dimensional volume, such as motoneurons [109]. We interpreted

the volume constraint as a material constraint, assuming that the processes are cylindrical

for both 2- and 3-dimensional space-filling. It is interesting to note that the dimension of

space filling does not affect results for radius scaling ratios. However, it does play a role

in the results of the theoretical predictions for length. As in the studies of cardiovascular
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Table 2.1. Results for Radius Scaling Ratio Theoretical Predictions

Biophysical Principle Prediction Closest Biological Match Data Mean

Time Minimization,

Unmyelinated (T, ϵ = 0)
n−2/5 ≈ 0.76 Peripheral Nervous System Neurons 0.76± 0.008

Time Minimization,

Myelinated (T, ϵ = 1
2)

n−1/3 ≈ 0.79 Axons 0.79± 0.001

Power Minimization

with Fixed Volume (P )
n−1/2 ≈ 0.71 Purkinje cell dendrites 0.69± 0.007

Power Minimization

with Fixed Time Delay (P ∗)
n−2/3 ≈ 0.63 Motoneuron dendrites 0.64± 0.006

network branching, we focused on radius scaling ratios in this analysis [85]. We explain this

choice further in Section 2.5.

2.4.2 Axons and Dendrites

Figure 2.2 shows histograms that illustrate the differences in distributions of radius scaling

ratios for dendrites and axons, along with representative images of the morphology of these

two processes. Axons generally carry signals from the cell body to the synapses, where they

transfer information to the dendrites of other neurons. Dendrites have extensive, tree-like

structures and generally connect with the axons of other neurons to carry signals to the cell

body. The distributions observed for these scaling ratios resemble the distributions observed

in scaling ratios of cardiovascular networks, with the radius scaling ratios exhibiting a normal

distribution. Note that the distribution of scaling ratios for axons is normal, but we have

restricted it to values between 0 and 1, eliminating the cases where the resolution limit of

the images is reached and the values greater than 1, which are biologically questionable.

In this figure, we show the comparison of the mean dendrite radius scaling ratio, 0.67±

0.004, with theoretical predictions from the four different calculations. We find that the
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dendrite radius scaling ratio mean is closest to the theoretical predictions from the objective

functions minimizing power. The mean lies in between the optimal scaling ratios for function

P, so n−1/2 ≈ 0.71, which holds volume to be fixed, and function P*, so n−2/3 ≈ 0.63, which

holds time delay to be fixed. Later, in Figure 2.3 we look at the distributions of radius

scaling ratios in these Purkinje cells and motoneurons individually to compare them to the

closest theoretical results. In Section 2.5, we elaborate on the implications of focusing on

the means in this analysis over the spread of the distributions.

Note that the radius scaling ratio mean for axons, 0.79 ± 0.001, is significantly larger

than the mean radius scaling ratio observed for dendrites, 0.67 ± 0.004. The axon scaling

ratio mean in the data is closest to the theoretical prediction, n−1/3 ≈ 0.79, for the objective

function that minimizes time, T, for myelinated fibers, ϵ = 1
2
. The next closest prediction,

n−2/5 ≈ 0.76, is that of the objective function that minimizes time, T for unmyelinated

fibers, ϵ = 0. This suggests that time minimization and myelination are important factors

that determine the structure for axons.

2.4.3 Purkinje Cells and Motoneurons

One of the parameters that we built into our theoretical model is d, the dimension of space

filling of the processes. Thus, we looked at the comparison of results from data from rep-

resentative cells with 2-dimensional and 3-dimensional dendritic trees. For 2-dimensional

dendritic trees, we looked at cerebellar Purkinje cell data from rodents including mice, rats,

and guinea pigs. For 3-dimensional dendritic trees, we looked at motoneurons from a range

of species including rodents, amphibians, cats, and humans. The histograms for these two

cell types, along with a representative image for each type, are shown in Figure 2.3. The

theoretical results of minimizing power and time cost functions while varying the param-

eter d does not capture the differences in radius scaling ratios observed in this data. We

hypothesized that the differences observed can be explained by other principles such as the

functional differences of these cell types. The mean for Purkinje cells, 0.69 ± 0.01, agrees
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with the theoretical predictions for the function P, that is power minimization with a vol-

ume constraint, n−1/2 ≈ 0.71, while the mean for motoneurons, 0.64± 0.01, agrees with the

theoretical predictions for function P*, that is power minimization with a time constraint,

n−2/3 ≈ 0.63.

Based on the results of the comparison of Purkinje cells and motoneurons, we concluded

that volume plays a greater role in constraining the structural design of Purkinje cells, while

time plays a greater role in constraining the structural design of motoneurons.

2.4.4 Peripheral Nervous System Neurons

In the Peripheral Nervous System (PNS), motoneurons play an important role in the ex-

change of information with sensory neurons. Peripheral nerves carry sensory information

and interact with motoneurons, which directly innervate effector cells such as muscles [109].

Thus, the importance of conduction time as a constraint for motoneurons motivated us to

examine data from other types of PNS neurons such as sensory neurons. Figure 2.4 shows

the radius scaling distribution of a sample of the PNS neurons labeled by region on Neu-

roMorpho.Org. This data was taken from flies and mice. The mean radius scaling ratio,

0.76 ± 0.01, is closest to the theoretical prediction, n−2/5 ≈ 0.76, for the objective func-

tion, T, that minimizes time for unmyelinated fibers, ϵ = 0. This suggests that time is an

important factor in optimizing structure for PNS neurons.

2.4.5 Time Delay Scaling

So far, we have focused on predictions and data combined from species of a range of sizes.

Here, we consider how function varies across species of a range of body masses. We used

P*, the equation minimizing power with fixed time delay. As shown in Section 2.2.3, our

theoretical calculations have led to the relationship between conduction time delay and mass

described in Equation 2.13.
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In order to test this theoretical result, we analyzed experimental data to determine an

observed relationship between time delay as a function of species size. Previous experimental

studies have looked at conduction time delay across species ranging from shrews to elephants

[40]. A regression analysis of the data shows that the 1
4
-power mass term is more significant

than the linear term, as is shown in more detail in the Appendix, in Section A.3. Furthermore,

we used a log-log plot to determine the power of the relationship, plotting the log of the

conduction time delay data against the log of the average body mass of each species. This

plot is shown in Figure 2.5.

Our theoretical predictions suggest the presence of a 1
4
(=0.25) power law that relates

species mass to neuron conduction time delay. These experimental results support this power

law, as the power law determined from the data is 0.30± 0.04. It is possible that at a wider

range of masses, a scaling law closer to the linear relationship might be observed. Further

data and analysis of the relationship between the size of individual neurons and processes

and species mass and between conduction velocity and time delay will provide useful insight

into this allometry.

2.5 Discussion

A comparative analysis of the radius scaling ratios of different processes and cell types

suggests that there are selection pressures for different functional roles that underlie the

diversity in neuron branching patterns. There are a number of characteristic differences

observed between axons and dendrites that are maintained across species and cell size. Axons

are long and function to transmit signals over large distances, sometimes between different

regions of the nervous system [94]. Moreover, axons have the unique property of myelination,

which provides an important role in information transfer in the nervous system [122]. Our

results indicate that the radius scaling ratio mean for axons is closest to the prediction

that minimizes time for conduction through myelinated fibers, which supports this notion
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that information processing speed is a key principle governing the structure of axons. The

predictions and results from the data for axons are supported by previous theoretical results

predicting scaling laws for myelinated axons [111].

In contrast, dendritic trees are relatively short, have more extensive branching, and gener-

ally do not conduct action potentials [94]. Previous theoretical work on wiring optimization

in cortical circuits similarly proposes that there are differing evolutionary selection pressures

governing axons and dendrites. Rather than conduction time delay, the key principle behind

dendritic structure is passive cable attenuation [30]. Our results suggest that dendrites are

optimized to minimize power, which is related to a voltage drop, with a volume constraint

that we have interpreted as a cost in materials. Thus, minimizing power in our theoretical

framework is effectively minimizing the attenuation of the passive signals in dendrites.

There is a great deal of diversity in the branching structures of dendritic trees, and

the differences in scaling ratio distributions among the different types gives us important

insights into their distinct functional roles. We found that the structure of Purkinje cells

and motoneurons are both governed by power minimization, and Purkinje cell structure

is constrained by volume while motoneuron structure is constrained by time delay. The

predictions and results from the data for Purkinje cells and motoneurons are supported

by previous theoretical and experimental results [51, 123]. We conclude that time plays a

greater role in optimizing the structure for motoneuron dendrites.

Efficiency in information processing is a key function of neurons in the sensorimotor

system, and our results emphasize that function as a key feature governing their structural

design. When organisms are exposed to environmental stimuli, it triggers a response in the

motor system that must be executed very rapidly. Some of these responses are innate, and

some are learned through practice, gradually increasing in speed [119]. We found that the

structure of neurons in the peripheral nervous system, such as the sensory neurons that relay

information from the environment to motoneurons, is governed by time minimization, which

is consistent with the evolutionary function of the sensorimotor system. The correspondence
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of our theoretical predictions with empirical measurements from neurons of different types

supports intuitive notions about neuron computation in these specific cell types.

So far, we have looked at optimization problems minimizing power and time individually.

However, it is possible that there might be intermediate values, and different cell types might

have different relative importance of time and power in determining structure. A possible av-

enue for future work is using numerical methods to extend the number of functional principles

we consider and to better estimate parameters, such as the relative importance of different

functional principles and degree of myelination. This might provide a more biologically re-

alistic estimate for scaling ratios, as it is likely that neuron cell structures are designed to

optimize not only conduction speed or energy efficiency, but a relative combination of both.

Recent work has looked at data and the scaling exponents in dendrites to compare the

results to Rall’s law for neurons - with a 3/2 exponent to describe branching diameters -

as well as exponents derived for other biological networks such as cardiovascular networks

and trees. Their data show a range of exponents varying from Rall’s law, and they pro-

pose that cell biological constraints related to intracellular transport and the cytoskeleton

are important in determining the morphology of neurons [66]. This is supported by other

recent studies that relate dendritic morphology, including measures of caliber, to cytoskele-

tal proteins such as microtubules and actin filaments [83, 7]. While it is likely that these

are important considerations driving morphology, our general model derives scaling ratios

with a range of values - depending on the tradeoff of functional principles - that agree with

the median range of exponents in their data, suggesting that our framework is a promising

general model that accounts for much of the observed variation around Rall’s law.

The similarities in distributions of scaling ratios in radius and length between neurons and

cardiovascular networks suggest that a unifying framework underlies these diverse biological

systems. Moreover, our work extends previous work on biological scaling theory in resource

distribution networks by considering other driving factors besides energy efficiency as well

as the tradeoff between multiple functional principles. This approach and the inclusion of
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additional principles has the potential to motivate future studies both in neuroscience and

biological resource distribution networks.

Some features of neural systems not captured by our current model could be incorporated

in future iterations. For instance, the morphology of dendritic arbors is not static but is con-

stantly changing based on interactions with surrounding neurons and glia [109]. Moreover,

we have formulated the space-filling constraint based on the idea that cardiovascular net-

works are optimized such that vessels feed every cell in the body. However, neurons exhibit

more complex space-filling patterns due to their interactions with one another, such as tiling

and self-avoidance [25, 124]. It might also be fruitful to consider different formulations of

the space-filling constraints for different types of neurons. For example, axons tend to have

projections that feature a longer parent branch, and the daughter branches occur further

away from the soma. Indeed, previous work has extended the WBE model to look at scaling

in plants [91]. Previous work on space-filling for plants such as palm trees, which have sim-

ilar morphology, might help guide future studies in this direction and improve predictions,

particularly for length scaling ratios.

We have chosen to focus on radius scaling ratios in this analysis because the branch

length measurements are not accurately characterized, as also previously reported for vascu-

lar scaling [85]. Recent work suggests Horton-Strahler labeling — where the first level begins

at the tips, and higher levels are determined when two branches of the same level combine

— may yield better estimates of branch length scaling [21]. For instance, previous work on

river networks has used Horton-Strahler labeling, and it has been applied to other networks

in biology, particularly those in in which asymmetric branching is observed [116, 58].

Hermann Cuntz’s group has also applied this ordering method to analyze dendritic trees,

finding differences in branching metrics across neuron cell types [120]. In future work, we

plan to investigate how this alternative labeling scheme for branch lengths compares with

theoretical predictions derived using our framework. We hypothesize that applying this

labeling scheme to define branching levels for length will give a distribution of scaling ratios
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that looks more like the normal distributions observed for radius scaling ratios, and values

for means that agree more closely with our theoretical predictions, as has been seen in work

on cardiovascular networks.

Furthermore, we note that our comparison of the predictions to the data involve only

the mean values. The mean provides a single, simple, cumulative, and easily interpretable

measure. Other possible choices include the mode of the distributions, which would differ-

ently account for the spread or the shape of the variation of the distributions. The mean

and mode values do not align in all cases. Future work should look further into additional

features–such as variance or higher-order moments–of the distributions of radius and length

scaling ratios in order to extract even more valuable information from the data.

Additionally, we have represented the energy consumption here as the power lost due

to dissipation during signaling. In neurons, however, maintaining the resting membrane

potential makes up a significant fraction of the energetic costs. Here, we assumed that this

cost is captured in the volume term in the model. However, it might be possible to more

explicitly formalize the inclusion of the resting potential via the incorporation of additional

factors that affect this cost. For example, myelination affects the surface area as well as

the capacitance of axons, and the energy required to maintain the resting potential varies

linearly with capacitance [121]. Incorporating these complexities in our model might improve

its biological accuracy and usefulness when comparing predictions to empirical data from

neurons.

Throughout this model, we have assumed that branching is symmetric - the radius and

length of daughter branches are identical. Previous work has attempted to capture asymme-

try in cardiovascular networks and plants [22]. Another major goal of our future work is to

apply this theoretical framework to look at branching of neuron processes and to use branch-

ing properties related to asymmetry to compare different cell types. This will be pursued in

Chapter 3 of this dissertation.

Beyond the scaling ratios for successive branches in the individual neuron processes,
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it is interesting to consider allometric scaling relationships of species size and functional

properties that vary with size. Previous work on cardiovascular networks has extracted an

allometric scaling relationship that relates species size (or mass) with network volume [103],

and other previous work on scaling has shown an allometric scaling relationship between

single cell neurons and animal body mass [104]. In addition, when brains grow in size, they

require more extensive axonal trees to traverse greater distances [16]. Building on these ideas

from our theoretical formulation of the objective function that minimizes power subject to

the constraint of fixed conduction time delay, we were able to extract a functional scaling

relationship between species size and time delay for unmyelinated fibers. We derived that

there is a mixed power law relationship between animal body mass and conduction time

delay, including both a term with a 1
4
-power and a linear term with mass. The dominance of

the 1
4
-power law is supported by experimental data of conduction time delay from species of

a range of masses: the conduction time delay scales with the fourth root of the animal body

mass.

An interesting aspect of this result is that neurons in larger animals have longer con-

duction delays. These results are important to consider in the context of evolution - longer

delays might provide a functional explanation for the increased specialization of brain func-

tion hemispheres. Due to the greater conduction time delays, it might be advantageous for

larger brains to exhibit more specialization and to organize cells with information about

related memories and skills in localized clusters [97], thus improving the efficiency of infor-

mation processing.

2.5.1 Conclusion

We conclude that neuron function places profound constraints on neuron morphology, thus

cementing the foundations in Ramón y Cajal’s work [24] and resulting theoretical and com-

putational formalism by Cuntz and Chklovskii [36, 30]. We extend this work to include

metabolic constraints and to consider the volumetric aspect of morphology. Our approach
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provides a framework to measure and quantify neuron morphology, and a mathematically

and theoretically advanced way to describe the influence of biophysical constraints in select-

ing morphological patterns in neurons. Combining empirical measures with our theoretical

predictions, we showed fundamental differences between axons and dendrites and between

Purkinje cells and motoneurons that are connected to the myelination of axons and the di-

mension of space being filled by the branching processes. Our results are consistent with and

supportive of the hypothesis that the tradeoff between these functional principles governs

neuronal branching and structure, and therefore accounts for the variation in scaling laws

observed in recent studies [66]. Future work will shed even more light on these foundational

questions by building models to capture more biological complexity and by obtaining larger

amounts of data at higher resolutions across more species and more cell types. Indeed, look-

ing across species and cell types will also help reveal further differences in neuronal function

and tradeoffs among different principles that may transform how we understand the function

and form of the brain.

Chapter 2 is taken from a published work by the dissertation author, Paheli Desai-

Chowdhry, Alexander B Brummer, and Van M Savage. “How axon and dendrite branching

are guided by time, energy, and spatial constraints.” In: Scientific Reports 12, 20810 (2022).

https://doi.org/10.1038/s41598-022-24813-2 [38], with minor changes to the figure captions.
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Figure 2.2. Comparison of Dendrite and Axon Radius Scaling Ratio

Distributions, Combined Histograms showing the distributions of radius scaling ratios

for axons and dendrites combined from a range of species, brain regions, and cell types

available on NeuroMorpho.Org. In the figure, µ represents the mean and SEM represents

the standard error of the mean (SEM). The standard deviations of the distributions are

0.20 for dendrites and 0.17 for axons. The black solid lines denote the mean in the

distributions, shown with error bars, and the red, green, blue, and magenta dashed lines

represent the theoretical predictions for various objective functions. We restricted radius

scaling ratio data to values that are less than 1.0. The representative reconstruction images

show the characteristic differences in morphology between dendritic and axonal trees. The

dendritic tree, shown on the left, is taken from an elephant cerebellar Golgi cell [3]. The

axonal tree, with a representative long parent branch, is taken from a mouse touch receptor

[65].
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Figure 2.3. Comparison of Radius Scaling Ratio Distributions of Cerebellar

Purkinje Cell and Motoneuron Dendrites A comparison of histograms showing the

distribution of radius scaling ratios observed in dendrites of Purkinje cells and

motoneurons, along with representative images. In the figure, µ represents the mean and

SEM represents the standard error of the mean. The standard deviations of the

distributions are 0.19 for Purkinje Cells and 0.20 for motoneurons. We have restricted

radius scaling ratio data to values that are less than 1.0. The black solid lines denote the

mean values in the distributions, shown with error bars, and the red, green, blue, and

magenta dashed lines represent the theoretical predictions for various objective functions.

The representative image for the Purkinje cell is from a mouse [81] and the representative

image for the motoneuron is from a cat spinal motoneuron [35].
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Figure 2.4. Peripheral Nervous System Neurons A histogram showing the

distribution of radius scaling ratios in Peripheral Nervous System (PNS) neurons, along

with a representative image of the dendritic tree of a mouse sensory neuron [106]. In the

figure, µ represents the mean and SEM represents the standard error of the mean. The

standard deviation of the distribution is 0.20. We have restricted radius scaling ratio data

to values that are less than 1.0. The black solid lines denote the mean in the distributions,

shown with error bars, and the red, green, blue, and magenta dashed lines represent the

theoretical predictions for various objective functions.
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Figure 2.5. Scaling of Conduction Time Delay and Species Mass A scatter plot

showing the relationship between the log of the conduction time delay and the log of the

body mass of a range of species. Here, the slope, 0.30± 0.04, corresponds to the power that

relates species mass to conduction time delay. This is close to our theoretical result of 1
4

(=0.25).
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CHAPTER 3

Neuronal Branching is Increasingly Asymmetric Near

Synapses, Potentially Enabling Plasticity While

Minimizing Energy Dissipation and Conduction Time

3.1 Introduction

The concept of asymmetry lies at the core of many biological processes, particularly in the

nervous system, from asymmetries at the molecular level to whole-brain asymmetries. At

the molecular level, asymmetry underlies the electrical and chemical transmission that en-

ables information processing in the brain. Neurons connect to one another through axons

and dendrites at synapses, where inter-cellular channels allow the transmission of signaling

molecules, or neurotransmitters, and the spread of electrical currents. The asymmetry of

these channels at the molecular level leads to functional asymmetry of the synapses, which is

a key property enabling sensory processes [41]. At the cellular level, polarity and the asym-

metric organization of cellular component is vital to many processes such as cell migration,

cell division, and morphogenisis [55]. Asymmetry in neurons in particular has an important

role in determining the physiology of neural circuits and cognition [33].

At the whole brain level, a key feature and an important topic in the study of the human

brain is its division into hemispheres. The asymmetry between the left and right specialized

regions of the human brain is crucial in our understanding of its structural organization and

cognitive functions; many cognitive and psychiatric disorders are linked to specific alterations
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in this lateral hemispheric asymmetry [62]. Hemispheric asymmetries have been observed

not only in humans, but in a range of species–including mammals, birds, reptiles, and fish–

suggesting that lateral asymmetry is not unique to humans but rather an important principle

in the structure and function of the nervous system [86].

In order to begin to understand broad-level asymmetries in the human brain, it is impor-

tant to begin with the basic building blocks of the nervous system: neurons [101]. Neurons

are said to be one of the most polarized cells in the body, with two distinct structural and

functional domains— axons and dendrites [15]. A deeper understanding of the details of the

structure and function of these neurites and how they respond to developmental and envi-

ronmental cues to form synaptic connections is a crucial step leading up to an understanding

of whole-brain asymmetry, cognition, behavior, and how alterations lead to diseased states

[101].

Axons and dendrites form extensive branching trees that allow them to connect to one

another, enabling information processing and communication in animals. Axons and den-

drites are morphologically and functionally distinct; axons have long parent branches that

can transmit information across large distances, and dendrites have shorter branches with

more extensive branching trees. Axons utilize action potentials to transmit information over

long distances, sometimes even crossing brain regions. The branching patterns and asym-

metries of axons are characterized by systematic changes in branching radius and length

across bifurcation branching points and are known to play a key role in signal propagation

dynamics in neurons [87]. These axons connect to the dendrites of other neurons, which in

contrast, rely on passive electronic spread and do not conduct action potentials [94]. Axons

and dendrites have different mechanisms for forming new branches near their synaptic con-

nections, allowing them to form the circuitry that is the backbone of information flow in the

nervous system in the most efficient and frugal way[115, 64]. Foundational work by Santiago

Ramón y Cajal documented the vast diversity of structural forms in neurons through de-

tailed drawings of the morphology of neurons across cell-types. Ramón y Cajal established
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the correspondence between these diverse morphological forms and the vast functional di-

versity across cell-types by proposing functional principles that govern the structure such as

conservation of space, time, and materials [24].

Previous work has attempted to develop a quantitative formalism to describe neurite

branching through the laws of conservation of time and materials as described by Ramón

y Cajal, using principles of optimization and a graph theoretical algorithm to generate bio-

logically realistic synthetic axonal and dendritic trees [36, 29]. While this framework is able

to successfully generate biologically accurate branching trees, it is limited in that it only

considers the lengths of branching processes. Focusing on the 1-dimensional trace of these

structures only captures one element of the biological factors that affect information process-

ing speed, thus ignoring other important contributors. Foundational work by Hodgkin and

Rushton describes the theoretical and empirical foundation for a quantitative description of

the dependence of conduction velocity on the caliber of neurites as well as myelination [52,

100]. Our previous work incorporates volumetric interpretations of conduction time delay

and material costs using mathematical principles from metabolic scaling theory in relation

to cardiovascular networks to incorporate metabolic costs. Synthesizing these ideas leads to

a unifying model that can predict various morphological structural parameters for axons and

dendrites across a range of cell types [38].

We observe significant deviations from symmetric branching in neuron morphology data,

as previewed in Figure 3.1 (D), suggesting that asymmetric branching is an important fea-

ture for the structure of neurons, likely corresponding to functional consequences as well.

Although foundational work in modeling cardiovascular networks assumes that the branch-

ing junctions have perfect symmetry of the two daughter branches [125, 103], in biological

resource distribution networks there is substantial variation around this symmetric case. Za-

mir first quantified deviations around symmetric branching that occur in vessels, showing

differing levels of asymmetry across levels of coronary arteries [129, 128]. Further work by

Tekin et al. built on this to establish systematic patterns in asymmetry throughout cardio-
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Figure 3.1. (A) An image of a mouse cerebellar Purkinje neuron and its dendritic

branching structure. This image was obtained using confocal microscopy and Lucifer

yellow fluorescent dye. We have cropped this image available on CellImageLibrary.Org,

distributed by Maryann Martone, Diana Price, and Andrea Thor [74] (B) A diagram of a

branching junction as part of a hierarchical branching network with successive branching

levels, illustrating asymmetric branching junctions (C) Definitions of asymmetric scale

factors, β1 and β2, and average and difference scale factors, β̄ and ∆β, (D) A quantification

of the branching asymmetry present across all data analyzed, as measured by the difference

scale factor, ∆β, where the most symmetric values lie at a value of 0.
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vascular networks, adding to the analysis of asymmetry in branching length and width to

incorporate patterns of asymmetry in branching angles [114], as well as deriving optimization

principles that underlie these patterns.

In order to understand the role of asymmetric branching in neuronal function across

cell-types, here we extend our model of the structure-function correspondence to incorporate

asymmetric branching. Using the asymmetric branching approach to model neurons, we must

consider a multitude of path lengths from the soma to the synapses, suggesting that the whole

network–rather than one optimal path–has an important contribution to neuron function and

computation. Our results allow us to formulate hypotheses about the connection between

branching and plasticity. In particular, our results suggest that it is possible that asymmetric

branching emerges due to plasticity and responses to external factor. We hypothesize that

asymmetric branching provides these dynamic branching processes with a robust architecture

that is resilient to damage and allows them to adapt to fluctuating environments.

3.2 Theory

We represent neurons as hierarchically branching information processing networks, with

successive branching levels that decrease in radius and length according to a scaling (i.e.,

power law) relationship. Figure 3.1 illustrates this with a representative image and a diagram

of a branching junction.

We predict how the information processing function and surrounding substrate govern

the branching structure of neurons. We do this by optimizing a mathematical cost function

subject to a set of constraints, which allows us to obtain theoretical predictions for structural

parameters that are the best possible given the biological constraints of the physical system

[19]. Here, we choose a cost function that minimizes conduction time delay and energy

consumption (represented by power loss) that is subject to computational, biological, and

physical constraints.
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C = αP + (1− α)T +
∑
i

λifi(rk, lk, k,N, n, ϵ) (3.1)

Equation 3.1 is a general form of this equation, where T is conduction time delay and

P is power loss due to dissipation based on the assumption that these neuron processes are

like wires through which a current is flowing, subject to electrical ohmic resistance. The

parameter α can be toggled between 0 and 1 to minimize either power or time alone. The

remaining terms in this function are constraint functions, representing biological quantities

such as material costs that are held constant during the optimization. Each term in the cost

function depends on the radius and length of the branch at each branching generation k,

where 0 is the branching generation at the parent branch connected directly with the soma,

and N is the last branching generation at the tips. The constraint functions fi depend

on the radius and length, rk and lk, the branching ratio n (where n = 2 for a bifurcating

function), and a parameter describing myelination, ϵ, where ϵ = 0 for unmyelinated fibers

and ϵ = 1
2
for myelinated fibers. We chose this parameter to vary this way because of

previous foundational experimental and theoretical work that shows the conduction velocity

is proportional to the square root of the diameter of a neuron fiber for unmyelinated processes

and directly proportional to the diameter for myelinated fibers [52, 100]. Here, we focus on

two main constraints: a material constraint, which we represent as the total network volume,

and a time delay constraint, which we consider for the specific cases that focus on power

minimization.

In our previous work, we use optimization methods to solve for theoretical predictions for

scaling ratios for radius and length of processes in successive branching generations, β = rk+1

rk

and γ = lk+1

lk
[38]. However, a key assumption of this work is that the branches are sym-

metric—the radius and length of the two daughter branches at each branching junction are

identical. Despite this assumption, most biological axons and dendrites exhibit asymmetric

branching [87, 43]. By analyzing neuron image reconstruction data from NeuroMorpho.Org

[10], we quantify the pervasiveness of asymmetric branching across different cell types, as
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shown in Figure 3.1 (D).

In Figure 3.1 (B), we show an example of asymmetric branching. Here, we have two

unequal daughter branches at the bifurcation point, so there are two separate scaling ratios

for radius and length, βk,1 =
rk+1,1

rk
and βk,2 =

rk+1,2

rk
(shown in Figure 3.1 (C)), and γk,1 =

lk+1,1

lk
and γk,2 =

lk+1,2

lk
, respectively.

We define the average scale factor as β̄ = β1+β2

2
and the difference scale factor as ∆β =

β1−β2

2
(shown in Figure 3.1 (C)) based on conventions in previous work [22]. If we define β1

as the scaling ratio corresponding to the larger branch, we can describe β1 and β2 in terms

of the average and absolute value difference scale factors as in Equation 3.2.

β1 = β̄ + |∆β|; β2 = β̄ − |∆β| (3.2)

Thus, we can think of |∆β| as a measure of the magnitude of the asymmetry, or the

amount of shift away from the average. Figure 3.1 (D) shows a distribution of ∆β in combined

data for a range of cell types and species, preserving the sign as well as the magnitude to

show variance around the symmetric case in both directions. We later break this data down

into specific cell and process types in Figure 3.3.

Using an existing mathematical framework for asymmetric branching networks in the

cardiovascular system [22], we extend our previous model [38] and are able to relax the

assumption of symmetric branching. Using the scaling ratios in our expressions for power,

time, and network volume along with the values for the radius and length at the tips, we

derive whole network properties. As compared with our previous work, we needed to develop

much more clever mathematical methods and do much more extensive derivations than for

the symmetric theory. A big advance in overcoming these challenges is that we solve these

equations recursively (See Appendix B).

First, we define power, one of the functions to be minimized in the optimization, in terms

of the asymmetric scale factors.
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P = RN,TOT

N∑
k=0

(
N−1∏
j=k

[
β2
j,1

γj,1
+

β2
j,2

γj,2

])
(3.3)

Note that we can also formulate this in terms of the difference and absolute value differ-

ence scale factors, where β2
j,1 = β̄ + |∆β| and β2

j,2 = β̄ − |∆β|.

The other function to be minimized in the optimization is the conduction time delay. This

term is more complicated with asymmetric branching, as there are multiple possible paths

that a signal might take through the network. Previous work on plant networks deals with

deviations from symmetry using a combination of terms relating to the mean and maximum

path lengths [108]. Thus, we consider different cases of time delay: average time, total time,

maximum time, and minimum time.

We define total time delay as follows in Equation 3.4.

TTOT = TN,TOT

N∑
k=0

(
N−1∏
j=k

[
γj,1

β
1
2
+ϵ

j,1

+
γj,2

β
1
2
+ϵ

j,2

]−1
)

(3.4)

The average time delay is similar, though the total time at each generation is divided by

the number of branches at that generation.

T̄ = TN,TOT

N∑
k=0

1

2k

(
N−1∏
j=k

[
γj,1

β
1
2
+ϵ

j,1

+
γj,2

β
1
2
+ϵ

j,2

]−1
)

(3.5)

Finally, we define the time delay for the maximum and minimum path length. If we

choose rk+1,1 to be the larger daughter radius (Figure 3.1 (B)), then we can define the

maximum path length.

TMAX = TN,TOT

N∑
k=0

(
N−1∏
j=k

[
β

1
2
+ϵ

j,1

γj,1

])
(3.6)

Similarly, we can define the minimum path length.
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TMIN = TN,TOT

N∑
k=0

(
N−1∏
j=k

[
β

1
2
+ϵ

j,2

γj,2

])
(3.7)

Next, we define the network volume or material cost— one of the constraint functions to

be held fixed in the optimization.

V = VN,TOT

N∑
k=0

(
N−1∏
j=k

[
β2
j,1

γj,1
+

β2
j,2

γj,2

]−1
)

(3.8)

In this study, we will minimize the cost function in equation 2.1 under different limits

to arrive at a suite of relationships between the two scaling ratios, β1 and β2, based on a

scaling exponent P that dictates a generalized conservation equation:

1 = βP
1 + βP

2 (3.9)

Although the distribution of scaling exponents yields information about broad network

behavior, we first focus on how asymmetry changes with the distance from the soma. If

we find that the asymmetry is localized to specific parts of the cell, this could be due to

differences in the functional underpinnings that drive structures in different regions of the

cell or due to other extrinsic factors such as connecting neurons or due to environmental cues.

In order to analyze the data in terms of distance from the soma, we can use an established

measure called leaf number that has been used to study scaling in dendritic branching [66].

The leaf number is defined as the number of tips that are distal to each branch. The leaf

number at the tips will be equal to 0, and the leaf number will be greatest near the soma.

Figure 3.2 illustrates leaf numbering. For each pair of radius scaling ratios in the data,

we have a corresponding leaf number of the parent branch of the junction. We can define

asymmetry level in terms of the difference between β1 and β2, or the difference scale factor in

Equation 3.2. Distributions of this difference scale factor for different cell types are shown in

Figure 3.3. Looking at the relationship between leaf number and this measure of asymmetry
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Figure 3.2. Branching Network with Leaf Number

will allow us to determine where the most asymmetry occurs in terms of distance from the

soma, as illustrated in Figure 3.4.

Note that there is an analogous formulation for the difference scale factor for length,

∆γ = γ1−γ2
2

. In our analysis, we fix the length scale factor, ∆γ = γ1−γ2
2

, to always be

positive. This enforces the following sign convention on the difference scale factor for radius.

Consequently, when ∆β > 0, one child branch will be both wider and longer than the other

child branch. When ∆β < 0, one child branch will be wider and shorter than the other child

branch. These two scenarios correspond to positive and negative asymmetric branching and

provide a visual way to interpret our results. Here, we focus on branch width rather than

length, meaning our results are meaningful in terms of the magnitude but not the direction of

asymmetry. For the length scaling to be correctly interpreted, we need to use an alternative

[85, 23, 18, 38] labeling scheme for branching networks, such as Horton-Strahler labeling.

We expand upon this in the Discussion section, Section 3.5.
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3.3 Methods

We use the method of undetermined Lagrange multipliers to optimize cost functions with

varying constraints[96]. When we perform this optimization, we arrive at equations that

relate the two radius scaling ratios to each other raised to some scaling exponent (as in

Equation 2.9) and corresponding to a generalized conservation rule. We minimize the func-

tion by differentiating with respect to each scaling ratio and setting the result equal to zero

to solve for the multiplier. Using the fact that the multiplier is constant at each genera-

tion k, we set λk = λk+1 to solve for the resultant equation. More details on each of these

calculations can be found in the Appendix B.

To test the theoretical predictions and model, we compared the results to data from

NeuroMorpho.Org - an online database with digital reconstructions from a wide range of

species [10]. These reconstructions are obtained by manually tracing neuron image stacks

using computational methods, some manual and some automatic, obtained using microscopic

and staining techniques for in vitro neurons and slicing at regular intervals. This database

provides 3D reconstruction data that are organized in text files that specify a pixel ID label

for each point, the x,y,z spatial coordinates, the radius of the fiber at each point, and a parent

pixel ID that refers to the adjacent pixel previously labelled. The scaling ratios for radius and

length can be obtained by organizing this data in terms of branches. This is accomplished by

finding the pixels at which the difference between the child pixel ID and the parent pixel ID

is greater than 2, which can be defined as branching points. Based on the branching points,

a branch ID and parent branch ID can be assigned to each of the pixels. The radius can be

extracted from each of the branches by taking each of the radius values in each branch and

averaging them. The length of each branch can be extracted by summing up the Euclidean

distances between each of the points in the branch. Once the radius and length of each of the

branches is found, the scaling ratios are computed by dividing the daughter radius by the

corresponding value for the parent branch. We can identify the branches that have the same
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parent to find the two daughters. To extract the scaling exponent P as defined in Equation

3.9, we use the fsolve function in the python library SciPy to numerically solve for the roots

of the equation 1− (βP
1 + βP

2 ) = 0.

We look at neuron reconstructions from both axons and dendrites for diverse cell types,

brain regions, and species. Due to the small size of axons and the limited resolution of images,

the data available on NeuroMorpho.Org are limited in scope. The axon reconstruction data

were taken from the following species: fruit flies [54], dragonflies [48], crabs [17], chickens

[44], and rats [73]. The neurons were taken from a range of brain regions: the midbrain, the

hippocampus, the antennal lobe, the optic lobe, and the ventral nerve cord.

The Purkinje cells are from mice [80, 28, 81, 75], rats [71, 75, 118], and guinea pigs Cavia

porcellus [95]. The motoneurons are from zebrafish [79, 112], turtles[31], mice [42], rats [99],

rabbits [110], and cats [35].

To study peripheral nervous system (PNS) neurons, we sampled from reconstruction data

that was labelled by region on NeuroMorpho.Org. This data was taken from fruit flies [50,

84, 127] and mice [14, 65, 26, 106] and includes dendritic arborizations, sensory neurons,

somatic neurons, and touch receptors.

The scaling ratio data were filtered to remove all daughter pairs where the scaling ratio

corresponding to either daughter is equal to 1.0; these values likely occur due to the resolution

limit of the image where the radius of both the daughter and the parent branches are equal

to the pixel size. Since these values contribute artifacts to the distributions extracted from

the data, we remove them from the final dataset.

3.4 Results

Here, we present our results and compare our theoretical predictions with empirical data.
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3.4.1 Theory Results

From the general cost function as described in Equation 3.1, we derive a suite of predictions

for scaling relationships. Through this suite of mathematical relationships, we can use op-

timization to derive powers and corresponding scaling ratios associated with each neuronal

function and mechanism. Table 3.1 summarizes the results of these optimizations. More

details on the calculations are in Appendix B.

3.4.2 Data Results

Here, we compare the theoretical predictions to empirical results, including histograms show-

ing distributions of scaling exponents and the relationship between asymmetry and network

level, or distance from the soma. The scaling exponent data was restricted to values above

0. As in the neuroscience literature [66], we compared the median values in the data to the

theoretical predictions. The colored dotted lines show the theoretical predictions for each of

comparison to the median as well as the relative peaks in the data.

3.4.2.1 Asymmetry Distributions Across Branching Generations

Figure 3.3 shows the distributions of asymmetry in the branching junctions of each of the

neurite types, where degree of asymmetry is represented as the difference scale factor, ∆β.

The value of µ is the mean of the data, and σ is the standard deviation. For all of the neurite

types, there is a normal distribution of asymmetry factors, with a peak at the symmetric

case, where ∆β = 0. Purkinje cells show the least asymmetry, as σ is the smallest, which is

consistent with expectations based on the visual symmetries in their branching architecture.

Figure 3.4 shows plots relating the degree of asymmetry to the Leaf Number, where the

smaller leaf numbers are the tips closest to the synapses, as illustrated in Figure 3. Here,

we focus on the magnitude of the difference scale rather than the direction of asymmetry,

defined by the absolute value of the difference scale factor ∆β, as defined previously.
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Minimize Constraint Result Exponent Corresponding cell type
Data median

(95% CI)

P V β2
1 + β2

2 = 1 2 Purkinje cell dendrites 2.14 (2.03-2.27)

Tavg,ummyel V β
5/2
1 + β

5/2
2 = 1 5/2 PNS neurons 2.98 (2.76-3.16)

Tmax,unmyel V β
5/2
1 = 1 5/2 PNS neurons 2.98 (2.76-3.16)

Tmin,unmyel V β
5/2
2 = 1 5/2 PNS neurons 2.98 (2.76-3.16)

Tavg,myel V β3
1 + β3

2 = 1 3 Axons 2.96 (2.66-3.23)

Tmax,myel V β3
1 = 1 3 Axons 2.96 (2.66-3.23)

Tmin,unmyel V β3
2 = 1 3 Axons 2.96 (2.66-3.23)

P Ttot,ummyel β
3/4
1 + β

3/4
2 = 1 3/4

Asymmetric

motoneurons
0.90 (0.82-1.08)

P Tmax,ummyel β
3/2
1 = 1 3/2 Motoneurons 1.39 (1.35-1.42)

P Tmin,ummyel β
3/2
2 = 1 3/2 Motoneurons 1.39 (1.35-1.42)

Table 3.1. Theoretical Predictions for scaling exponents for different functions and

comparisons to the median values in the data The first column is the function that is

minimized, either P or T , as obtained by varying α in Equation 2.1. The second column

represents a constraint function or a quantity that is held fixed in the optimization. The

third column is the result of the minimization using the method of undetermined Lagrange

multipliers, and the fourth column is the scaling exponent inferred from these results,

which we can compare to the median in the data, including a 95% confidence interval

shown in the sixth column.
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Figure 3.3. Plots of Asymmetric Difference Scale Factor for (A) Purkinje Cells, (B)

Motoneurons, (C) Peripheral Nervous System Cells, and (D) Axons
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Figure 3.4. Plots of Degree of Asymmetry vs Leaf Number for A) Purkinje Cells, (B)

Motoneurons, (C) Peripheral Nervous System Cells, and (D) Axons
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The horizontal dashed line is what we define as a cutoff for the asymmetry line— a

difference scale factor ∆β more than two standard deviations away from the mean (at which

symmetry occurs)— that shows the division between the symmetric and asymmetric modes.

We observe that the most asymmetric branching junctions, or those that occur above the

asymmetry line, occur at lower leaf numbers, or closer to the synapses in the neuronal

network.

3.4.2.2 Overall Network Power Distributions

Figure 3.5 shows the distributions of scaling exponents solved from the data. These show

general network-wide trends in branching, and the corresponding solid black lines are the

medians in the data. The medians in the Purkinje cell and motoneuron scaling exponent data

correspond to the theoretical predictions for the functions minimizing power and the medians

in the axons and PNS neuron scaling exponent data correspond to the theoretical predictions

for the functions minimizing conduction time delay. The motoneuron data correspond to the

prediction for the function that includes conduction time delay as a biophysical constraint,

while the Purkinje cell data correspond to the prediction for the function that includes a

material constraint.

3.4.2.3 Symmetric Versus Asymmetric Motoneuron Branching Junctions

Although the general network-wide trends are useful, we also split the data based on degree

of asymmetry. We split the motoneuron data into symmetric and asymmetric branches,

where the difference scale factor for the symmetric data fall within two standard deviations

from 0. Analyzing the data separately in Figure 3.6, we find different median powers that

correspond to theoretical predictions from different functions. The scaling exponent data for

asymmetric branching junctions in motoneurons corresponds to the theoretical prediction

for the function that interprets the conduction time delay as a sum of all possible paths,
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Figure 3.5. Branching Scaling Exponent Data
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Figure 3.6. Symmetric and Asymmetric Scaling Exponent Data for Motoneuron

Branching Junctions

while the data for the symmetric branching junctions correspond to the prediction for the

function that considers one optimal path.

3.5 Discussion

Asymmetric branching in neurons gives rise to multiple possible paths from the soma to the

synapses and vice versa. Although a symmetric branching network model can provide in-

sights into the connections between branching patterns and functional principles of neurons,

it obscures key features of these networks, such as large differences in path lengths from

soma to tips and how those contribute to the functionality of neurons. The introduction

of asymmetric branching to our model gives rise to multiple possible interpretations of the

conduction time delay term, one that focuses on optimizing the path associated with either

the maximum or minimum conduction time delay in the network, and another that takes

into consideration the sum of all paths in the network. Notably, the mathematical results

of the optimization of the models are the same for the symmetric model [38] and the maxi-

mum or minimum interpretation of conduction time delay in the asymmetric case. However,

the total path interpretation of the conduction time delay leads to different results for the
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function minimizing power with a time delay constraint. Moreover, for motoneurons, we

find that splitting the scaling exponent data into the most symmetric and the most asym-

metric data leads to different median values that correspond to theoretical predictions for

different interpretations of this constraint, which also correspond to different regions in the

cell relative to the soma and synapses. The median for asymmetric junctions corresponds to

the theoretical prediction with the total path length interpretation of the conduction time

delay constraint, suggesting that the whole network— rather than just one optimal path—

is important for asymmetric branching junctions. The symmetric model obscures this dis-

tinction, and thus our comparisons of asymmetric and symmetric branching junctions lead

us to look more closely at the position of branching junctions relative to the soma or the

synapses, and whether there is any connection between this position and asymmetry.

We define this position using the key measure of leaf number. The distributions of

leaf numbers shown in Figure 3.4 reflect what we know about differences in the structure

of axons and dendrites. The maximum leaf number for axons is around 600, while it is

around 1200-1600 for dendrites, thus reflecting the longer single parent branch for axons

versus the more extensive branching and the greater number of branching generations for

dendrites. Moreover, there are significant differences observed among different types of

dendritic structures. The maximum leaf numbers for motoneurons and PNS neurons are

around 1200, while it is around 1600 for Purkinje cells. We hypothesize that these differences

might be due to differences in extracellular environments; motoneurons and PNS neurons

are both part of the sensorimotor circuits that are localized in distal parts of the body,

while Purkinje cells are located in the cerebellum within the brain itself. As dendrite branch

formation is controlled by guidance cues in the environment that trigger complex intracellular

signalling cascades and lead to protrusions [63], the vastly disparate biological environments

and extrinsic cues likely greatly influence the extent of dendritic branching in these different

cell types.

Although our analysis of the correspondences across cell types focuses on median values
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in the data, as seen in other biological networks [114], we find much more variance at the

local level. In neuroscience, theoretical and experimental work has shown that motoneurons

grow in a roughly self-referential manner and their basic structure and branching points

are predetermined. However, environmental cues and activity-dependent behavior cause lo-

cal changes in morphology [77, 63]. Here, we are able to observe that the median scaling

exponents differ significantly for symmetric and asymmetric branching in motoneurons, cor-

responding to different theoretical predictions. It is possible that the variance in symmetry

of branching junctions might account for the wide distribution of scaling exponents for each

cell type. The distributions of scaling exponents have a wide variance and multiple local

peaks. Although we map the median scaling exponent to the closest theoretical prediction

in this analysis, it is possible that there are multiple functional principles at play at different

localized regions of the cells, corresponding to the peaks observed across the distribution.

Moreover, we observe a correspondence between asymmetry of branching junctions and their

relative position in a neurite, whether they are closer to the tips or to the soma. At the tips,

where the leaf number is closest to zero, the branching junctions can be either extremely

symmetric or extremely asymmetric.

Importantly, the most asymmetric branching junctions always occur at the tips. In

contrast, the branching junctions that occur closest to the soma all fall under the symmetric

type, where the ∆β value is within two standard deviations from the symmetric case. Thus,

we observe two different symmetry/asymmetry regimes, with a shift from the

most symmetric branching at the soma to an increased number of asymmetric

branching junctions at the tips.

Because the tips of axons and dendrites are closest to the synapses, this suggests that the

asymmetry might have to do with the forming of actual connections at the tips. This is con-

sistent with existing knowledge that the branching of axons and dendrites is determined by

synapses; new branches are formed preferentially near the synapses[115]. Moreover, previous

studies have shown that there are activity-dependent changes in morphology of motoneurons
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[57]. Studies of other biological networks have also shown that they are robust to damage

and changes in the environment, developing corresponding changes in morphology to adapt

to environments [59]. It is possible that the difference in power observed at the tip is due to

changes as a result of activity-dependent behavior such as synaptic formation and pruning.

This is consistent with empirically-informed mathematical models that describe the elonga-

tion of neurites as an extension of the cytoskeleton, where the most active building blocks

(microtubules) are located at the distal portions and tips, making them more susceptible to

developmental variation based on environmental cues [78].

Moreover, the fact that for asymmetric branching junctions, the interpretation of con-

duction time delay as a sum of all possible paths rather than one optimal path supports the

notion that asymmetric branching is connected to plasticity in the network. These asym-

metric branching patterns are determined by the sum of paths across the whole network,

suggesting that the whole network is optimized in a way that is robust to damage in single

paths and such that the whole network is optimized to make as many synaptic connections

with other neurites as possible.

In this analysis, we have chosen to focus on radius scaling ratios and asymmetries that

occur in the width of daughter branches. Although length asymmetry might provide addi-

tional insights into the properties of these networks, the branch length measurements are

not accurately characterized, as also previously reported for vascular scaling [85] as well as

other types of plant and animal networks [23, 18]. Recent work suggests Horton-Strahler

labeling — where the first level begins at the tips, and higher levels are determined when two

branches of the same level combine — may yield better estimates of branch length scaling,

as it has been previously applied to neurons and other biological networks[21, 116, 120]. In

future work, we plan to investigate how this alternative labeling scheme for branch lengths

compares with theoretical predictions derived using our framework. If we are able to obtain

meaningful results from the analysis of length scaling ratios, the direction of asymmetry

and the distinction between the two types—positive and negative asymmetry— will be an
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important consideration in addition to the magnitude which we focused on here.

Moreover, we aim to formulate a new constraint that relates to the way in which neurons

fill space. So far, our optimization considers only intrinsic properties of neurons without

explicitly accounting for: 1. interactions amongst neurons, 2. electrical activity that might

strengthen or prune synapses, and 3. environmental chemoattractants and chemorepellants

that might shape the growth and development of neurons, particularly in relation to their

length. Adding this interaction term might lead us to understand length scaling ratios more.

Future studies have the potential to illuminate the function of asymmetry in neuron

plasticity by analyzing in-vivo neuron image data taken across stages of development. Long

term, a greater understanding of the details of the asymmetries observed within and among

neurites and single cells may help pave the way to understanding lateral asymmetries in the

brain and the structure-function correspondence.

In conclusion, we find that our asymmetric branching model for axons and dendrites

brings to light the importance of considering all possible paths from the synapse to the soma

rather than one optimal path. While this distinction does not affect the predictions for

functions that minimize conduction time delay, they alter the predictions for the functions

that minimize power and fix conduction time delay as a constraint. For motoneurons, the

different interpretations of conduction time delay correspond to the median in the scaling

exponent data of different types of branching junctions. The symmetric branching junctions

agree with the predictions focusing on one optimal path, while the asymmetric branching

junctions agree with the predictions that take all paths into consideration.

Moreover, the asymmetric branching junctions are localized closer to the synapses, sug-

gesting that there is some connection between asymmetric branching and environmental

factors, plasticity, and whole network robustness. This distinction between predictions for

asymmetric and symmetric branching is observed only when time delay is a constraint (as

opposed to a function to be minimized) and for motoneuron dendrites (but not axons). This

is consistent with the notion that dendrites, in contrast to axons, are shorter with more
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extensive branching that allows them to connect to multiple other neurons [94]. Our results

support the notion that the whole network with its various paths—rather than simply op-

timal paths—are important factors governing the structures of these dendrites. Dendrite

branches must reach multiple potential synaptic targets, and these synaptic connections

are constantly evolving, forming, and pruning. This asymmetric branching framework is

necessary in order to study and reason about these features of the network.

Chapter 3 is taken from a submitted work that is currently under review by the dissertation

author, Paheli Desai-Chowdhry, Alexander B Brummer, Samhita Mallavarpu, and Van

M Savage. “Neuronal Branching is Increasingly Asymmetric Near Synapses, Potentially

Enabling Plasticity While Minimizing Energy Dissipation and Conduction Time.” In: Under

Review (2023). https://doi.org/10.1101/2023.05.20.541591 [39].
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CHAPTER 4

Information Flow Drives Localized Morphological

Differences Across Neuronal and Glial Cell Types

4.1 Introduction

Neurons are the fundamental structural units of the nervous system, connecting to one an-

other through their branching processes - axons and dendrites - that allow them to transmit

information in the form of electrical and chemical signals. There is a vast diversity of dif-

ferent types of cells that have different morphological forms and biological functions in the

nervous system circuitry [56]. Arguably, the first attempt at cell-type classification in neu-

roscience is credited to the neuroanatomist Santiago Ramón y Cajal, who made detailed

drawings of the morphological forms of a range of neuronal cell types across species and at-

tempted to comparatively analyze them, arriving at a set of biophysical functional principles

that dictate neuron morphology [24]. While Ramón y Cajal’s work focused on qualitative

descriptions of the distinctions across these cell types, more recent work has made use of

increasingly quantitative technology to analyze distinctions across cell-types and establish

a quantitative structure-function correspondence [36, 30, 38, 46, 70, 2]. A major goal in

cell-type classification in neuroscience is to establish a correspondence between the different

criteria that distinguish cell types from one another, such as morphological, physiological,

connective/topological, and molecular properties.

Another major goal is to better understand how disease affects these properties in differ-

ent cell types, and whether there are disease-related alterations that are specific to certain
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cell types [130].

In order to understand the structure, function, and pathology of neuronal cells, it is also

important to understand the context in which these cells exist. About half of brain cells are

comprised of non-neuronal nervous system cells, called glia. Glial cells are a broad class of

cells consisting of the subcategories microglia, astrocytes, and oligodendrocytes [45]. For a

long time, it was thought that they were simply glue for neurons without any specific function

of their own [53]. More recent research has revealed a range of functions that make them

integral to brain function and even information processing. Oligodendrocytes are essential in

providing myelin sheaths that protect neuron processes and increase the conduction velocity

of information transfer [90]. Astrocytes are a key part of synapses—the connections between

neurons—that play important roles in regulating synaptic transmission and plasticity [9].

They also play a role in the signalling that controls blood flow and metabolism in the brain

[13]. Microglia are key in generating immune responses and maintaining homeostasis in the

central nervous system. They are very sensitive to the environment and they undergo drastic

morphological changes in response to neuronal activity and the presence of pathogens [113].

Glial cells, unlike axons, cannot generate action potentials. However, they are electrically

active and they communicate with neurons. Microglia and astrocytes in particular have

been shown to respond to electrical stimulation [45]. Although their functions are vastly

different, they have branching processes that are comparable to neurons, and allow for a

similar method of quantitative morphological analysis.

Previous work analyzes the structure-function correspondence between other types of

branching biological networks—such as blood vessels, lungs, and plants—by combining

machine-learning classification techniques with a biologically informed mathematical theory

that relates vessel branching structure to functional properties related to resource trans-

port and supply. Rather than simply classifying cells based on arbitrary structural quanti-

ties, the connection of these features to function based on the theory provides insights into

the structure-function correspondence [23]. Further work uses parameters extracted from
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this theoretical model as features in classification methods that separate cancerous tissue

from healthy vessel tissue, providing evidence for the promise of these parameters as po-

tential imaging biomarkers to identify tumors [21]. While previous recent studies have used

machine-learning methods to classify between different types of neuronal and glial cell types

[2], the features they use are structural, and mechanistic insight into how these features

relate to different in function is unclear. Moreover, while these studies focus on length as

morphometric features classifying cell types [2], the caliber of neuronal and glial processes is

an important structural feature in that it relates to information flow. Since we have previ-

ously built a theory relating neuron morphology to function inspired by this mathematical

framework [38, 39], a promising approach to address cell-type classification as well as po-

tential disease-related alterations in neuronal and glial cells is to combine this theory with

machine-learning methods to comparatively analyze cells. Here, we conduct this analysis

for different types of dendrites and glial cells as well as applying these methods to analyze

differences between healthy cells and cells from tumor and epilepsy patients.

4.2 Theory

Our model considers the tradeoffs among biological functions that neuron structures are

evolved to optimize. One important evolutionary function of neuronal networks is the trans-

fer of large amounts of information between brain regions in a short amount of time [64].

At the individual cell level, the varied morphological forms observed for neurons are various

adaptations to basic principles such as limiting signal time delay [24]. Thus, it is important

to consider conduction time as a key evolutionary principle that governs neuronal branch-

ing structures. We formulate this model based on the dependence of conduction velocity on

fiber radius and myelination, using principles set forth by Hodgkin and Rushton [52, 100]. In

addition to optimizing solely conduction time velocity in neurons, there are additional costs

due to signaling in the brain that consumes a substantial amount of energy [12], suggesting
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that energy expenditure is another important factor that constrains neuron structure. Previ-

ous work has shown that the relationship between metabolic rate and conduction time plays

an important role in determining axon function in species across scales of body size [121].

This leads to the WBE framework, which relies on the assumption that resource distribution

networks are optimized such that the energy used to transport resources is minimized [125].

Our model includes both conduction time and energy efficiency while also incorporating ad-

ditional factors such as material costs and space-filling [24]. Synthesizing these ideas leads

to a unifying model that can predict various morphological structural parameters for axons

and dendrites across a range of cell types [38, 39].

We represent neurons as hierarchically branching information processing networks, with

successive branching levels that decrease in radius and length according to a scaling rela-

tionship. We define β as the scaling relationship between the daughter and parent widths,

rk+1

rk
. Figure 3.1 illustrates this with a representative image and a diagram of a branching

junction. Since these branching junctions are often asymmetric—that is, the two daughter

branches are not equal to one another—there are two separate scaling ratios that correspond

to each of the daughter branches, β1 and β2. Based on these two quantities, we can define

the average scale factor as β̄ = β1+β2

2
and the difference scale factor as ∆β = β1−β2

2
(shown

in Figure 3.1 (C)) based on conventions in previous work [22]. If we define β1 as the scaling

ratio corresponding to the larger branch, we can describe β1 and β2 in terms of the average

and absolute value difference scale factors as in Equation 1.

β1 = β̄ + |∆β|; β2 = β̄ − |∆β| (4.1)

Thus, we can think of |∆β| as a measure of the magnitude of the asymmetry, or the

amount of shift away from the average. Figure 3.1 (D) shows a distribution of ∆β in data

combined across a range of cell types and species, preserving the sign as well as the magnitude

to show variance around the symmetric case in both directions.
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We predict how biological function such as information processing and space-filling gov-

ern the branching structure of neurons by optimizing a mathematical cost function subject

to a set of constraints, which allows us to obtain theoretical predictions for structural pa-

rameters that are the best possible given the biological constraints of the physical system

[19]. Here, we choose a cost function that minimizes conduction time delay and energy

consumption (represented by power loss) that is subject to computational, biological, and

physical constraints. The biophysical constraints are represented as functions and added to

the expressions to be minimized, allowing us to use the method of undetermined Lagrange

multipliers to optimize this overall objective function [96].

C = αP + (1− α)T +
∑
i

λifi(rk, lk, k,N, n, ϵ) (4.2)

In this general function C, we can define P as the power lost due to dissipation, which

relates to the decay of signals traveling in dendrites from the synapses to the cell body. For a

neuronal network, we define the power loss by the equation, P = I20Rnet, where I0 is the ionic

current and Rnet is the resistance to current flow in the network. Because we are focusing

on average, large scale quantities across the full extent of the neuron and need to consider

a coarse-grained average of signal propagation, we can reasonably approximate axons and

dendrites as wires through which current flows and encounters resistance from the neuron

fiber. The resistance is given by Rk = ρlk
Ak

, where Ak is the cross sectional area of the wire,

and lk is the length of the segment at that level. The parameter ρ is the intrinsic resistivity of

the axon or dendrite, and we assume that ρ is constant, meaning that the material is uniform

[56]. Approximating axons and dendrites as cylinders, the cross-sectional area is πr2k for level

k, and the resistance is Rk =
ρlk
πr2k

. Following standard practice, we have absorbed all physical

constants into the Lagrange constants, and the magnitude of these terms do not affect the

theoretical predictions.

For an asymmetric branching junction, we define the power loss across the branching

network based on recursion using the scaling rations β1 and β2 as well as the analogous
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length scaling relationships, defined as γ = lk+1

lk
. Using our expressions for these quantities

based on the average and difference scale factors in Equation 1, we can describe P as

P = RN,TOT

N∑
k=0

(
N−1∏
j=k

[
(β̄j + |∆βj|)2

γ̄j + |∆γj|
+

(β̄j − |∆βj|)2

γ̄j + |∆γj|

])
(4.3)

In our analysis, we fix the length scale factor, ∆γ = γ1−γ2
2

, to always be positive. This

enforces the following sign convention on the difference scale factor for radius. Consequently,

when ∆β > 0, one child branch will be both wider and longer than the other child branch.

When ∆β < 0, one child branch will be wider and shorter than the other child branch. These

two scenarios correspond to positive and negative asymmetric branching and provide a visual

way to interpret our results. Here, we focus on branch width rather than length, meaning

our results are meaningful in terms of the magnitude but not the direction of asymmetry.

For the length scaling to be correctly interpreted, we need to use an alternative [85, 23, 18,

38] labeling scheme for branching networks, such as Horton-Strahler labeling. We expand

upon this in the Discussion.

In our function C, the parameter α can be varied to consider the tradeoff between the

two principles, P , power loss, and T , conduction time delay. Here, we focus on dendrites and

glia, which are associated with passive cable attenuation as a key principle rather than action

potentials [30, 94, 45]. This is associated with the principle P , which is related to a voltage

drop. We confirm this by looking at the range of scaling ratios and exponents in the data

and noticing that they all fall within the range of predictions for specific cases of the function

C that focus on minimizing power loss, P , as predicted in our previous work [38, 39]. Our

function T , time delay, as described in our model is associated more with active conduction,

or action potentials. We associate this principle more with axons, as they are designed to

transmit large amounts of energy in a short amount of time [94]. Since we do not analyze

axons as extensively in this study, we omit the expression for T . More information on this

principle can be found in our previous work [39]. We elaborate on this in the Discussion.
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It is clear that the parameters β̄ and ∆β as defined by this model contribute to infor-

mation flows through these networks. Although previous work on other types of biological

networks focused on these parameters as features to classify between networks [23], here, we

explore the incorporation of another feature into our classification. In order to quantify the

distance of a branching junction relative to the soma and the synapses, we can use an estab-

lished measure called leaf number that has been used to study scaling in dendritic branching

[66]. We will refer to the leaf number as Ln throughout this paper and will later use a relative

measure, Ln,rel, to normalize this parameter across cells to allow for comparisons based on

distance from the soma. The leaf number is defined as the number of tips that are distal to

each branch. The leaf number at the tips will be equal to 0, and the leaf number will be

greatest near the soma. Figure 3.2 illustrates leaf numbering. For each pair of radius scaling

ratios in the data, we have a corresponding leaf number of the parent branch of the junction.

Our previous work has shown that the most asymmetric branching junctions occur closest

to the tips or the synapses. Moreover, there are different functional principles governing the

structure at different regions of the cells [39]. Here, we argue that leaf number provides us

with essential information about these structures and their correspondence with function.

For some comparisons, incorporating leaf number plays a greater role in distinguishing the

two groups, as the classification methods perform better with the inclusion of Ln,rel as a

feature.

For the comparison of diseased cells to healthy cells in particular, there are differences

that occur at specific leaf numbers, meaning different locations in the cell. Our results thus

suggest that the morphological distinctions between cells are driven by information flow at

localized cell regions.
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4.3 Methods

The morphological data we analyze in this study is taken from NeuroMorpho.Org [10], an

online database with a large amount of morphological data reconstructed from neuron and

glia images for a range of cell types and species. In this study, we focus on 4 different types

of dendrites—motoneurons, purkinje cells, medium spiny neurons (MSNs), and pyramidal

cells—and two different types of glial cells—astrocytes and microglia—along with some axon

data. The quantitative morphological data is extracted from images by tracing neuron image

stacks using computational methods, some manual and some automatic, that were obtained

using a range of microscopic and staining techniques for in vitro neurons sliced at regular

intervals. We analyze a total of 160 individual images and 6689 branching points. The

motoneurons were from cats [35], mice [20], and rats [99]. The Purkinje cells were from mice

[28, 69]. The medium spiny neurons were from mice [49]. The pyramidal neurons were from

humans [61, 5]. The astrocytes were from mice[68, 32, 67] and rats [27]. The microglia were

from mice [11, 98, 1] and rats [8, 76]. The axons were from mice [14].

The data is stored in text files by pixel, where each pixel contains a pixel ID number,

x, y, and z spatial coordinates, the radius (based on the distance from the location of the

pixel to the edge of the process on each side), and a parent pixel ID number referring to the

previous pixel to which each pixel connects. For this analysis, we convert this pixel-based

data to branch-based data, defining the branch points in the pixel data by identifying the

pairs of pixels where the parent pixel ID numbers are separated by 2 or more. Thus, we

obtain branch-based data with a list of branch ID numbers and corresponding parent branch

ID numbers. For each branch, we take the average radius of each of the pixels belonging to

that branch to assign a radius value.

For each branch, we can find the scaling ratio, β, by dividing its radius by the radius

of the parent branch to which it is assigned. We can identify two daughter branches of the

same branching junction by identifying branches that share the same parent branch. From
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the two daughters, we can extract the parameters β̄ and ∆β by computing β̄ = β1+β2

2
and

∆β = β1−β2

2
. We filter this data by removing all pairs of daughter for which any one of the

daughters has β ≥ 0.999. The values that are very close to 1 are likely an artifact due to the

resolution limit of the images; after a certain level, all of the radius value are equal to the

pixel size of the image, leading to the computation of β ≈ 1. Filtering these data removes

large peaks and symmetries observed in the raw data that are due to these limitations of the

measurements.

In this study, we are also interested in looking at the position of these branching junctions

relative to the soma and the synapses. We measure this based on the leaf number, Ln—the

number of distal branches at every branching junction. We calculate this by looping through

the branch data, identifying the tips as the branches that are not the parent branches of

other branches, and assigning each of the remaining branches the sum of the number of distal

tips of its daughters branches. However, in order to normalize these Ln values to allow for

comparisons between different cells and cell-types, we define a new parameter, Ln,rel. For

each cell, from the list of Ln values, we identify the maximum value, Ln,max, defining the

branch furthest from the tips or closest to the soma. We define each of the other Ln,rel values

at each point i relative to this value, computing Ln,rel,i = log2

(
Ln,max

Ln,i

)
. Thus, for the point

at which Ln,max = Ln, Ln,rel is equal to 0, defines the soma. For some images, we averaged

the values of β̄ and ∆β at each Ln,rel for each image or cell-type in order to aid visualization

and discernment of clusters in the data.

For each comparison, we assigned each cell-type a classifier label to be either 0 or 1. The

closest set to a balanced set was created by balancing the number of images used for each

cell-type, but it should be noted that with this method, it is not possible to control for the

number of data points in each image due to the variability of the images. When two cell-types

were being compared and more data were available for one type, a subset of data for that

type was used for comparison in order to achieve even more balance. Between 70-80% of the

images were randomly assigned to the training data for each cell type, and the remaining data
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were assigned to the test set. We used 7 different machine-learning classification methods,

which we later refer to by abbreviations: Logistic Regression (LR), Support Vector Machine

(SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Decision Tree (DT), Näıve Bayes

(Bayes), and Neural Networks (NN). These methods were implemented in RStudio. For

Logistic Regression, we used the function glm to build the model for the classifier. For

Support Vector Machine and Näıve Bayes classification, we used the package ’e1071’, using

the functions svm and naiveBayes. For SVM, we used the ’radial’ kernel, which we showed

to perform better than other kernels. This is supported by previous results [2, 72]. For

K-Nearest Neighbors, we used the package ’FNN’ using the function knn, where the number

of nearest neighbors, k, was chosen based on local maxima of the performance metrics of

classification, accuracy and AUC. For Random Forest classification, we used the package

’randomForest’, using the function randomForest. For Decision Tree classification, we used

the package ’rpart’, using the function rpart. For Neural Networks, we used the package

’neuralnet’, using the functions neuralnet and compute.

These classification methods use the features, either β̄ and ∆β or β̄, ∆β, and Ln,rel and

the assigned classifier label in the training set to predict the classifier labels for each of

the points in the test set. These predicted values are given in a list of the length of the

number of points in the test data. One way to measure the performance of the classification

methods is to look at how accurately the points are classified, comparing the predictions

to the classifier labels of each of the points in the test set and reporting the percentage

of points that are labeled accurately. Here, in Table 4.9, we report the accuracy measures

of each of the classification methods by image, where the classification was performed on

the raw branching junction test data for all the images, and the average predicted label

for each image was compared to the true label. However, a more useful measure of the

performance of these methods is the area under the curve (AUC) of the Receiver Operating

Characteristic (ROC) Curve that considers the tradeoff between true positive rates and false

positive rates, which is more useful for datasets like these that are not balanced. Tables
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4.1-8 report the performance of the 7 classification methods based on the AUC, where the

uncertainty measure is based on a 95% confidence interval. The ROC metrics, such as the

AUC and confidence intervals, were computed using the package ’pROC.’ The plots of the

ROC curves were created using the package ’ggplot2.’ The plots of all other visualizations

were created using the Python library matplotlib.

4.4 Results

In Figure 4.1, we illustrate the feature space of the combined data from a range of different

dendritic cell-types, as well as axons and glial cells, based on β̄, ∆β, and Ln,rel. We can

locate clear clusters that indicate the distinctions between the types based on these features.

Figure 4.2 further indicates the distinctions between dendrites, axons, and glial processes.

We observe that out of the cell and process types observed here, the small localized cluster

at low β̄ as well as low Ln,rel values are unique to dendrites. It is important to note that for

all of these cell and process types, there appears to be a general relationship between both

β̄ and Ln,rel as well as between ∆β and Ln,rel, as we show in Figure 4.3.

We further illuminate the differences between different cell-types within these three

groups, comparing dendrites and glial cells first, and then applying these methods to look

at distinctions between healthy and diseased cells.

4.4.1 Dendrites

Here, we compare 4 different types of dendrites—Motoneurons, Purkinje cells, Medium Spiny

Neurons, and Pyramidal cells—for a total of 6 comparisons. Visual representations of these

cells, reconstructed from the image morphological data on NeuroMorpho.Org [10] are shown

in Figure 4.4. Tables 1, 2, 3, 4, 5, and 6 show the performance of 7 different classification

methods. We first compare these dendrites using β̄ and ∆β as features, as shown in Figure

4.5. The performance of these methods are measured by the AUC (area under curve) of the
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Figure 4.1. Plots of different cell/process types in the feature space of β̄, ∆β, and Ln,rel.

Here, for each image, the average β̄ and ∆β are taken at each level, Ln,rel

ROC curves, which are also shown in Figure 4.6. Next, we compare these dendrites using β̄,

∆β, and Ln,rel as features, as shown in Figure 4.7. The ROC curves for this feature space are

also shown in 4.8. The data in Tables 4.1-6 are based on the combined branching point data

for all images. Classification of the cell-types in the test sets based on the whole images, or

the average prediction of each of the points in the images, is shown in Table 4.9.

For all of these comparisons, the 7 classification methods perform relatively well, and

incorporating Ln,rel as an additional feature in the classification improves the performance,

though the improvement is most significant for the comparison of Medium Spiny Neurons

and all the other three cells. The classification method that consistently performed the best

for all comparisons was Random Forest.
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Figure 4.2. Plots of different cell/process types, clustered by axons, dendrites, and glial

cells, in the feature space of β̄, ∆β, and Ln,rel. Here, for each cell type, the average β̄ and

∆β are taken at each level, Ln,rel

Figure 4.3. Plots showing the relationship between the average scale factor and the

relative leaf number and the magnitude of the difference scale factor and the relative leaf

number.
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Figure 4.4. Images showing reconstructions of the images and morphological data from

NeuroMorpho.Org [10] for different dendrite types including Motoneurons, from a cat [35]

(upper left), Purkinje Cells, from a mouse [81] (upper right), Medium Spiny Neurons, from

a mouse [49] (lower left), and Pyramidal Cells, from a human [5] (lower right).

4.4.2 Glia

Here, we compare two different types of glial cells—astrocytes and microglia. Visual represen-

tations of these cells, reconstructed from the image morphological data on NeuroMorpho.Org

[10] are shown in Figure 4.9. Table 4.7 shows the performance of 7 different classification

methods. We compare these glial cells using both the 2-dimensional and 3-dimensional fea-

ture spaces as previously defined, shown in Figure 4.10. The performance of these methods
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Figure 4.5. Plots of 2-dimensional feature spaces of the training data for 6 different

combinations of dendritic types
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Table 4.1. Motoneurons versus Purkinje Cells Classification AUC (Area Under ROC

curve) Measures

Features/Method LR SVM KNN RF DT Bayes NN

β̄,∆β
0.719

±0.058

0.700

±0.062

0.735

±0.055

0.761

±0.052

0.695

±0.056

0.723

±0.057

0.719

±0.058

β̄,∆β, Ln,rel

0.723

±0.056

0.766

±0.053

0.691

±0.058

0.715

±0.056

0.729

±0.053

0.724

±0.057

0.738

±0.057

Table 4.2. Medium Spiny Neurons versus Pyramidal Cells Classification AUC (Area

Under ROC curve) Measures

Features/Method LR SVM KNN RF DT Bayes NN

β̄,∆β
0.574

±0.061

0.677

±0.060

0.720

±0.051

0.846

±0.038

0.802

±0.042

0.599

±0.058

0.531

±0.066

β̄,∆β, Ln,rel

0.760

±0.041

0.830

±0.043

0.834

±0.034

0.912

±0.026

0.856

±0.031

0.740

±0.043

0.766

±0.043

Table 4.3. Motoneurons versus Pyramidal Cells Classification AUC (Area Under ROC

curve) Measures

Features/Method LR SVM KNN RF DT Bayes NN

β̄,∆β
0.681

±0.041

0.816

±0.033

0.792

±0.036

0.827

±0.032

0.793

±0.035

0.776

±0.038

0.680

±0.041

β̄,∆β, Ln,rel

0.777

±0.039

0.870

±0.030

0.814

±0.039

0.884

±0.029

0.851

±0.033

0.803

±0.038

0.772

±0.040

are measured by the AUC (area under curve) of the ROC curves, which are shown in Figure

4.11. The data in Table 4.7 are based on the combined branching point data for all images.

Classification of the cell-types in the test sets based on the whole images, or the average

prediction of each of the points in the images, is shown in Table 4.9.
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Table 4.4. Medium Spiny Neurons versus Purkinje Cells Classification AUC (Area Under

ROC curve) Measures

Features/Method LR SVM KNN RF DT Bayes NN

β̄,∆β
0.578

±0.075

0.599

±0.074

0.616

±0.073

0.771

±0.059

0.639

±0.064

0.624

±0.072

0.579

±0.075

β̄,∆β, Ln,rel

0.776

±0.060

0.884

±0.045

0.861

±0.048

0.907

±0.038

0.854

±0.049

0.742

±0.064

0.792

±0.062

Table 4.5. Motoneurons versus Medium Spiny Neurons Classification AUC (Area Under

ROC curve) Measures

Features/Method LR SVM KNN RF DT Bayes NN

β̄,∆β
0.586

±0.071

0.749

±0.056

0.746

±0.056

0.805

±0.048

0.732

±0.054

0.747

±0.054

0.549

±0.059

β̄,∆β, Ln,rel

0.885

±0.035

0.924

±0.029

0.871

±0.036

0.952

±0.021

0.923

±0.027

0.835

±0.047

0.886

±0.035

Table 4.6. Purkinje versus Pyramidal Cells Classification AUC (Area Under ROC curve)

Measures

Features/Method LR SVM KNN RF DT Bayes NN

β̄,∆β
0.563

±0.061

0.660

±0.060

0.701

±0.049

0.802

±0.042

0.607

±0.051

0.532

±0.060

0.564

±0.062

β̄,∆β, Ln,rel

0.585

±0.063

0.794

±0.053

0.784

±0.051

0.873

±0.038

0.824

±0.052

0.566

±0.064

0.665

±0.060

Here, incorporating Ln,rel as an additional feature in the classification significantly im-

proves the performance of all 7 classification methods, as the data are nearly indistinguishable

for the 2-dimensional feature space, but high AUC and accuracy values for most methods us-

ing the 3-dimensional space. The classification method that performed the best was Random
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Table 4.7. Astrocytes versus Microglia Classification AUC (Area Under ROC curve)

Measures

Features/Method LR SVM KNN RF DT Bayes NN

β̄,∆β
0.549

±0.045

0.596

±0.043

0.596

±0.043

0.615

±0.044

0.571

±0.044

0.538

±0.046

0.544

±0.045

β̄,∆β, Ln,rel

0.753

±0.035

0.804

±0.031

0.775

±0.030

0.827

±0.027

0.702

±0.042

0.776

±0.031

0.794

±0.030

Forest.

4.4.3 Healthy versus Diseased Cells

Here, we apply these methods to attempt to distinguish between healthy and diseased den-

drites in humans. We compare control cells for Pyramidal principle cells in the Middle Tem-

poral Gyrus to two different classes of diseased cells—cells from patients with tumors and

cells from patients with epilepsy. Table 4.8 shows the performance of 7 different classifica-

tion methods, all using β̄, ∆β, and Ln,rel as features. The performance of these classification

methods are measured by the AUC (area under curve) of the ROC curves. The data in

Table 4.8 are based on the combined branching point data for all images. Classification of

the cell-types in the test sets based on the whole images, or the average prediction of each

of the points in the images, is shown in Table 4.9.

We show both the 2-dimensional and 3-dimensional feature spaces for both these com-

parisons in Figure 4.12. As seen in these images, we can observe a significant distinction

between the control and diseased cells in the data for both types, visible as clusters of the

data with both low β̄ and low Ln,rel values. We filter the data to focus on the points with

Ln,rel = 0, or the first branching junction in the tree from the soma, and then perform the

classification methods again. This approach leads to better performance, although there is

more uncertainty in the AUC values due to the limited number of data points. The per-
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Table 4.8. Healthy versus Diseased Neurons Classification AUC (Area Under ROC curve)

Measures

Features/Method LR SVM KNN RF DT Bayes NN

Tumor
0.584

±0.072

0.662

±0.070

0.681

±0.067

0.598

±0.075

0.566

±0.073

0.645

±0.069

0.523

±0.072

Tumor, Filtered
0.692

±0.312

0.731

±0.268

0.529

±0.291

0.740

±0.232

0.726

±0.222

0.778

±0.216

0.558

±0.314

Epilepsy
0.563

±0.057

0.661

±0.054

0.608

±0.056

0.748

±0.047

0.699

±0.051

0.588

±0.056

0.585

±0.049

Epilepsy, Filtered
0.668

±0.186

0.806

±0.145

0.827

±0.136

0.812

±0.132

0.868

±0.117

0.796

±0.171

0.796

±0.158

formance of the classification methods using the filtered data is also reported in Table 4.8.

We notice in the data that in this cluster where the distinction is observed, the ∆β values

for the controls are closer to 0, or symmetric branching junctions, whereas the data for the

diseased cells are significantly more asymmetric.

4.5 Discussion

Overall, radius scaling ratios, β̄ and ∆β, perform well in classifying between the 4 different

types of dendrites, suggesting that information flow is a driving force in distinguishing dif-

ferent types of cells. For dendrites, signals generally travel from the synapses—the junctions

between two cells—back to the cell body, and relate to the information flow of signals through

the network through passive cable attentuation [94]. For most of these comparisons, these pa-

rameters related to information flow are generally sufficient to classify between them, as the

improvement in the performance of all classification methods by including the third feature

(relative leaf number) is minimal. In particular, the distinctions between Motoneurons and
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Table 4.9. Image Based Classification Accuracy Measures

Classification/Method LR SVM KNN RF DT Bayes NN

Motoneurons/Purkinje 2D 4/6 4/6 4/6 4/6 4/6 4/6 4/6

Motoneurons/Purkinje 3D 4/6 4/6 4/6 5/6 4/6 4/6 4/6

MSNs/Pyramidal 2D 13/21 13/21 13/21 17/21 14/21 13/21 10/21

MSNs/Pyramidal 3D 13/21 13/21 14/21 17/21 16/21 13/21 10/21

Motoneurons/Pyramidal 2D 3/6 4/6 4/6 4/6 4/6 4/6 4/6

Motoneurons/Pyramidal 3D 4/6 5/6 5/6 5/6 5/6 4/6 5/6

MSNs/Purkinje 2D 4/7 5/7 5/7 7/7 5/7 4/7 5/7

MSNs/Purkinje 3D 7/7 6/7 6/7 7/7 7/7 4/7 7/7

Motoneurons/MSNs 2D 3/7 4/7 5/7 6/7 4/7 4/7 3/7

Motoneurons/MSNs 3D 7/7 7/7 7/7 7/7 7/7 7/7 7/7

Purkinje/Pyramidal 2D 3/6 3/6 3/6 3/6 3/6 3/6 3/6

Purkinje/Pyramidal 3D 3/6 3/6 4/6 4/6 5/6 4/6 4/6

Astrocytes/Microglia 2D 7/10 7/10 7/10 7/10 7/10 7/10 6/10

Astrocytes/Microglia 3D 5/10 7/10 7/10 8/10 4/10 4/10 6/10

Tumor/Control 3/6 3/6 3/6 4/6 3/6 3/6 4/6

Tumor-Filtered/Control 3/6 5/6 2/6 4/6 5/6 4/6 4/6

Epilepsy/Control 5/10 5/10 6/10 9/10 6/10 6/10 7/10

Epilepsy-Filtered/Control 6/10 6/10 7/10 7/10 7/10 5/10 8/10

Purkinje Cells and between Motoneurons and Pyramidal Cells show minimal improvements.

The cells with higher β̄ values show on average less change in the radius from daughter

to parent branches. It makes sense, for example, that these values are higher on average

for Purkinje cells as compared to motoneurons because Purkinje cells have more extensive

branching trees and signals must travel through many branching junctions in order to reach

the soma. Less changes in the width means that the conduction velocity remains more steady
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throughout the trajectory of a signal through the network. The observation that on average,

the ∆β values remain closer to 0 for Purkinje cells is consistent with the fact that these

structure tend to be symmetric.

For all the comparisons involving Medium Spiny Neurons, the incorporation of Ln,rel

as a feature more significantly improved performance across classification methods. This

suggests that for Medium Spiny Neurons, there might be more region-specific differences

in the information flow through dendrites. For classification between Purkinje Cells and

Pyramidal Cells, both methods perform poorly for both 2-dimensional and 3-dimensional

feature spaces, but some methods, such as Support Vector Machine, Decision Tree, and

Neural Networks, perform better for the 3-dimensional feature space, and some methods,

such as K-Nearest Neighbors and Random Forest, perform well for both spaces.

Interestingly, for glial cells, the distinction between the two cell-types—astrocytes and

microglia—is not significant for the 2-dimensional feature space, but the addition of Ln,rel as a

feature very significantly boosts the performance of all classification methods. This suggests

that for glial cells, there might be more region-specific differences in the information flow

through their processes.

Due to the promise of these methods in classifying different types of neuronal and glial

cell types, we apply these methods to look at distinctions between healthy cells and diseased

cells in order to attempt to extract insights about the pathology. In this study, we focus

on comparisons between control cells and cells from patients with tumors and epilepsy.

Interestingly, although the classification methods were minimally successful in separating the

diseased branching junctions from healthy branching junctions in the raw data, we observe

that there is a clear distinction in the data localized at the soma. If we filter the data based

on Ln,rel, focusing only on the data points with Ln,rel = 0, the classification methods perform

much better. Observing the data, we notice that for the branching junctions at the soma,

for the control cells, the ∆β values are centered closer to 0 (the symmetric case), whereas for

both the tumor and epilepsy data, the ∆β values diverge from 0 (suggesting asymmetry).
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We illustrate this observed phenomenon in Figure 4.13. This difference between healthy

and diseased cells is localized near the soma, and suggests that there might be a potential

biomarker to identify these diseased cells that is localized near the soma.

Out of all of the 7 machine learning classification methods utilized in this study, Random

Forest performed consistently better than all other methods, both in terms of accuracy of

classifying images and in terms of the tradeoff between true positive rates and false positive

rates of classifying individual data points. The high performance of the Random Forest

method over other standard methods has been previously noted [34]. The next method that

tended to perform better than others was Support Vector Machine, using a radial kernel,

which has been shown to perform well on biological data [2, 72]. An important advantage

of both these methods is that they perform well when there is a relationship between the

features [88, 102]. As we observe in Figure 2.4, there appears to be a nonlinear relationship

between both β̄ and Ln,rel as well as between ∆β Ln,rel. This might explain the higher

performance of RF and SVM over the Näıve Bayes method, for example, because Näıve

Bayes makes the key assumption that the features are independent of one another [88, 105].

Moreover, methods such as K-Nearest Neighbors are sensitive to noise, which might explain

their variable performance [88]. Random Forest methods are known to be more accurate

compared to Decision Tree methods, as they are a combination of multiple decision trees

[34].

In this analysis, we have chosen to focus on radius scaling ratios. Although length scaling

ratios might provide additional insights into the distinctions between these cells in relation

to other biological properties, such as the ways in which these branching processes fill space,

the branch length measurements are not accurately characterized, as also previously reported

for vascular scaling [85] as well as other types of plant and animal networks [23, 18]. Recent

work suggests Horton-Strahler labeling — where the first level begins at the tips, and higher

levels are determined when two branches of the same level combine — may yield better

estimates of branch length scaling, as it has been previously applied to neurons and other
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biological networks [21, 116, 120]. In future work, we plan to investigate how this alternative

labeling scheme for branch lengths improves the characterization of length scaling ratios,

and whether further insights into the distinctions between these cells can be gleaned from

studying asymmetries in the lengths of daughter branches.

While our results are promising and suggest that this method of analysis is useful for

extracting new insights about neuronal and glial cells, we are limited in the amount of

morphological data available at a high enough precision to allow for this method of analysis.

In particular, our ability to analyze axons was severely limited by the limited number of

images available with the level of precision required for this analysis, as axons are generally

thinner than dendrites and their widths are often smaller than the pixel size or resolution

limit of the images. Moreover, we were limited in the number of tumor and epilepsy cells

available at the precision level required for this analysis, and while the classification methods

showed improved performance for the filtered data, localized to the soma of each individual

neuron, the low number of data points led to more uncertainty in the AUC metrics. While

this observation of increased asymmetry at the branching junctions closest to the soma might

be a possible biomarker for tumor or epilepsy images, it is necessary to confirm this result

by reproducing it with larger datasets. However, even with our relatively small sample of

data, our methods using functionally informed structural parameters as features to classify

between cells show enormous promise in extracting new information about neurons and glia.

Consequently, our study makes a strong case for collecting more high-precision morpho-

logical data across neuronal and glial cell types, applying these methods to larger datasets,

using more modern classification methods, and reproducing these results as well as extending

them further.

In conclusion, our study combines machine-learning methods with a functionally informed

structural model of neuronal and glial processes to not only classify between different types of

cells, but to understand the functional basis behind those differences in structure. Although

machine-learning is a tool that often obscures mechanistic insight into how models are able to
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make predictions, our features—β̄ and ∆β—have specific connections to functional principles

related to information flow [23].

We introduce Ln,rel as another feature in our model, providing insight into the localization

of functionally driven structural differences across neuronal and glial cell types as well as

potential disease-related alterations. As more and more data are becoming available using

high precision microscopy, such as new electron microscopy datasets by the FlyEM project at

Janelia [107, 6], many more opportunities to apply these methods to even larger datasets at

higher resolutions and across more cell types will arise. In this paper, we have scratched the

surface of attempting to understand the function of glial cells, about which current knowledge

is limited, as well as disease-related morphological changes and functional underpinnings of

those changes. Our results illustrate the promise of these methods to further tackle these

important problems that will help us better understand the basic building blocks of the

nervous system.

Chapter 4 is taken from a manuscript that is currently undergoing revisions (and will be

submitted to a journal) by the dissertation author, Paheli Desai-Chowdhry, Alexander

B Brummer, Samhita Mallavarapu, and Van M Savage. “Information Flow Drives Localized

Morphological Differences Across Neuronal and Glial Cell Types.” In: In Preparation (2023).
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Figure 4.6. Plots of ROC curves for Motoneurons versus Purkinje Cells (upper left),

MSNs versus Pyramidal Cells (upper right), Motoneurons versus Pyramidal Cells (middle

left), MSNs versus Purkinje Cells (middle right), Motoneurons versus MSNs (lower left),

and Purkinje versus Pyramidal Cells (lower right), illustrating the performance of

classification methods for 6 different combinations of dendrite cell-type comparisons, using

β̄ and ∆β as features
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Figure 4.7. Plots of 3-dimensional feature spaces of the training data for 6 different

combinations of dendritic types
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Figure 4.8. Plots of ROC curves for Motoneurons versus Purkinje Cells (upper left),

MSNs versus Pyramidal Cells (upper right), Motoneurons versus Pyramidal Cells (middle

left), MSNs versus Purkinje Cells (middle right), Motoneurons versus MSNs (lower left),

and Purkinje versus Pyramidal Cells (lower right), illustrating the performance of

classification methods for 6 different combinations of dendrite cell-type comparisons, using

β̄, ∆β, and Ln,rel as features
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Figure 4.9. Images showing reconstructions of the images and morphological data from

NeuroMorpho.Org [10] for different glial cell types including Astrocytes, from a mouse [32]

(left) and Microglia, from a mouse [8] (right)

Figure 4.10. Plots of the feature spaces for comparing two different types of glial cells,

astrocytes and microglia, using β̄ and ∆β (left) and β̄, ∆β, and Ln,rel (right) as features
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Figure 4.11. Plots of the ROC curves illustrating the performance of classification

methods comparing two different types of glial cells—astrocytes and microglia—using β̄

and ∆β (left) and β̄, ∆β, and Ln,rel (right) as features.
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Figure 4.12. Plots of feature spaces showing the comparison of training data for control

and diseased cells, tumor and epilepsy cells, with β̄ and ∆β, (top) and β̄, ∆β, and Ln,rel

(bottom) as features
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Figure 4.13. Visualization of the observed differences between control and

tumor/epilepsy human pyramidal cells
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CHAPTER 5

Future Directions and Conclusion

This work accomplishes the development of a unifying model that relates axon and dendrite

structure to biophysical function, considering the tradeoff between conduction time delay

and power loss minimization, subject to material costs and space-filling constraints. The

model parameters can be varied to consider a range of cases that can predict morphological

quantities that correspond to different cell-types, and the model can be used to consider

symmetric as well as asymmetric branching junctions. The model can be used to extract

characteristic features specific to cell-types that are consistent across species, while also being

able to predict allometric scaling relationships that illustrate how functional principles vary

across species of different sizes. From this theoretical framework, we learn that structural

and functional properties in neuron processes vary based on position in the cell relative to the

synapses and the soma, and this position, along with parameters related to information flow,

can be used as features subjected to machine-learning methods to classify among different

types of cells. These features can characterize differences in dendrites, glial cells, and diseased

cells.

5.1 Future Directions: Length

Although the parameters related to information flow in our model–β̄ and ∆β—perform

relatively well in classifying cell-types, sometimes even in the absence of the third feature,

Ln,rel, the parameters relating to space-filling in our model—γ̄ and ∆γ—do not perform

well in classifying cells. One possible explanation for this is that information flow is a

93



more substantial driving force of the diverse structures across cell types than is space-filling.

However, it is more likely that these disparities are due to the fact that our labeling system

for branches is insufficient or simply inaccurate for characterizing length scaling relationships,

and hence, it will be necessary to adopt an alternate labeling scheme. In Section A.4, we

show a distribution of the length scaling ratios for data combined across cell types and

species. These data follow an exponential distribution rather than the expected normal

distribution that we observe for radius scaling ratios. Similar disparities are observed for

cardiovascular and plant networks [85, 23, 18], suggesting that an alternate labeling scheme

might prove beneficial. In particular, the Horton-Strahler labeling method, which starts at

the tips and increases as two branches fuse to form a junction, has previously been developed

for river networks [116], and has also previously been applied to study neurons [120] as well as

cardiovascular networks [21] and plant networks [58]. This method takes what they define as

a centripetal approach to labelling, beginning at the tips, rather than a centrifugal approach,

beginning at the soma or root. This Horton-Strahler labeling has proven advantageous in

studying asymmetric networks and very extensive networks such as those of Purkinje cell

dendrites. Centripetal labeling methods are said to be more useful for analyzing distal regions

of cells, whereas centrifugal approaches are more useful for analyzing branches closer to the

soma [120]. A promising future direction is applying such alternative labeling schemes to

neurons using this method of analysis and attempting to extract more information about

length scaling ratios and their connection to the principle of space-filling.

It is likely that space-filling plays an important role in determining the structure of neu-

rons, as the three-dimensional structures of neurons provide them with a computational

advantage over electrical circuits, which are planar [64]. However, some neurons, such as

Purkinje cells, are planar [109]. Thus, given the differences in the way Purkinje cells fill

space compared to other 3-dimensional neurons, such as motoneurons, it is surprising that

the length scaling ratios did not separate them when applied as features in classification

methods. Moreover, although we built a parameter, d, in the model, to account for differ-
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ences in space-filling dimension, this parameter did not affect the prediction of the radius

scaling ratios. Since we focused on radius scaling ratios in this analysis, dimension did not

end up being a factor in our distinction of cell-type correspondences to theoretical predic-

tions. Further characterization of the length scaling ratios might resolve these inconsistencies.

In addition, further development of the space-filling constraint could help account for and

integrate different patterns such as tiling and self-avoidance [25, 124]. A possible source of

ideas for the mathematical incorporation of different types of space-filling in previous work

that has characterized such differences in plants is work by Charles Price and Brian Enquist,

which extends the WBE theory to look at scaling and morphology in plants [91]. Another

idea is to develop a space-filling constraint that considers interactions between neurons. This

might help account for additional features of biological neurons such as activity-dependent

plasticity and environmental factors that might shape the growth of neurons [126], particu-

larly in relation to their length.

5.2 Future Directions: Increasing Biological Realism

An interesting finding in our analysis of asymmetric branching in Chapter 3 is the emer-

gence of multiple possible interpretations of the conduction time delay, as there are multiple

possible paths between the soma and the synapses. For some predictions, the conduction

time delay term or constraint was interpreted as the sum of all paths (thus related to the

average path length), and the predictions from these cases agreed most with the empirical

data that focus on the most asymmetric junctions. This suggests that it is possible that the

whole network—rather than a single maximal or minimal path—is important in character-

izing neuronal branching patterns. A possible explanation for this is that these structures

are optimized in order to be robust to damage in localized regions. Previous work has found

that in leaf-venation networks, the presence of closed loops makes these networks resilient to

damage in localized regions [59]. Previous work has also quantified loops in cardiovascular
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networks [47]. A possible future direction is attempting to characterize loops in neuronal

branching networks, and determine whether they might be an adaptation to increase the

robustness of these networks.

In order to further capture the essential features of biological neurons in our model,

another potential avenue for the development of our model is incorporating some sort of

tapering [51] or measure of curvature. In our model, we assume that the branches are

cylindrical and the radius remains constant at each branch until it transitions in level. When

analyzing the data, we take an average of the radius values at each branch. This ignores

variation that might be important to the function of neurons. Moreover, incorporating

cytoskeletal elements into the model might further strengthen its biological realism and

provide new insights into the relationship between structure and function [51, 66].

5.3 Future Directions: Numerical Analysis of the Model

So far, we have looked at optimization problems that minimize power and time individually.

However, it is possible that there might be intermediate values, and that different cell types

might have different relative importance of time and power in determining structure. A goal

of our future work is using numerical methods to extend the number of functional principles

we consider in each prediction. Here, we will consider our general objective function with

volume, mass, and space-filling constraints.

C = αP + (1− α)T + λVN,TOT

N∑
k=0

(
N−1∏
j=k

[
β2
j,1γj,1 + β2

j,2γj,2

]−1

+λmmc

+
N∑
k=0

(
λkl

d
N,TOT

N−1∏
j=k

[
γd
j,1 + γd

j,2

]−1
) (5.1)

Here, we can define P as follows:
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P = RN,TOT

N∑
k=0

(
N−1∏
j=k

[
β2
j,1

γj,1
+

β2
j,2

γj,2

])
(5.2)

We can define T either in terms of the total, average, maximum, or minimum path. The

four possible definitions of this term are:

TTOT = TN,TOT

N∑
k=0

(
N−1∏
j=k

[
γj,1

β
1
2
+ϵ

j,1

+
γj,2

β
1
2
+ϵ

j,2

]−1
)

(5.3)

T̄ = TN,TOT

N∑
k=0

1

2k

(
N−1∏
j=k

[
γj,1

β
1
2
+ϵ

j,1

+
γj,2

β
1
2
+ϵ

j,2

]−1
)

(5.4)

TMAX = TN,TOT

N∑
k=0

(
N−1∏
j=k

[
β

1
2
+ϵ

j,1

γj,1

])
(5.5)

TMIN = TN,TOT

N∑
k=0

(
N−1∏
j=k

[
β

1
2
+ϵ

j,2

γj,2

])
(5.6)

In order to estimate the relative importance of the different functional principles, we will

use numerical methods to minimize C and estimate the relative weights of these different

principles as parameters. One possible way I might do this is using nonlinear regression

methods in R such as polynomial regression, which uses the method of least squares mini-

mization. Another way is to use functions from the optimize package in the SciPy library,

which makes use of other methods such as the conjugate gradient algorithm. Table 5.1

summarizes the specific goals of this optimization problem.

In these expressions, βk,1, βk,2, γk,1, and γk,2 will be input from the neuron reconstruction

data. In each neuron process, there will be N levels, so the input data will be a 4 x N matrix.

One possible way to characterize k is using the Ln,rel parameter that we defined in Chapter

4. If we define nk as the number of branches at each level k, we will consider the average

values for βk and γk at each branching generation k as follows:
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Table 5.1. Summary of Numerical Optimization Problem Specifications

Model C (Equation 5.1)

Variables and Parameters in the Model βk,1, βk,2, γk,1, γk,2, N , α, λ, λk, λmmc, ϵ, d

Input Data (Known Variables and Parameters) [βk,1, βk,2, γk,1, γk,2] from k ∈ 1 : N

Output (Parameters to be Estimated) α, λ, λk, λmmc, ϵ, d

β̄k =

∑nk

i=1 βi

nk

(5.7)

γ̄k =

∑nk

i=1 γi
nk

(5.8)

For each neuron reconstruction, we can minimize this function with the above input

from the data and estimate the parameters: α, λ, λk, λmmc, ϵ, and d. The estimation of

the specific parameters ϵ, the parameter encoding the presence of myelination, and d, the

parameter denoting the dimension of space filling, will likely be proof of concept because

for a given type of neuron, we should already have this information from the data. The

estimation of the constants that we previously defined as the Lagrange multipliers—λ, λk,

and λm—will tell us about the relative importance of the biophysical constraints. Since the

estimates of the cell mass, mc, is often not readily available with the neuron reconstruction

data, we can either estimate it through volume estimates or absorb it into the multiplier

estimation as λmmc. Based on averages in the literature and established concepts in scaling

theory, we might estimate this value to extract λm. The parameter α will reflect an estimate

of the relative importance of time versus power. We were previously only considering α to be

equal to either 0 or 1, meaning that power and time minimization are completely separate.

However, in biological neurons, it is likely that neuron cell structures are designed to optimize

not only conduction speed or energy efficiency, but a relative combination of both.
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5.4 Future Directions: Developmental Changes

It is widely understood that the morphology of dendritic arbors is not static, but is constantly

modified based on interactions with surrounding neurons and glia, activity, and environmen-

tal factors such as chemoattractants and chemorepellants [109, 126]. Incorporating this

dynamical aspect of neuron morphology will be useful in future development of our model.

It is also interesting to consider the question of whether functional principles change how

they influence structure over stages of development and whether these changes are reflected

in the scaling ratios.

Another possible avenue of future development of this work is looking at in vivo im-

age data that is taken across timepoints. By applying our machine learning classification

methods using β̄, ∆β, and Ln,rel as features, we might be able to capture the functional

basis behind observed differences across time, such as in response to activity, environmental

factors, disease progression, or stages of development. A potential resource for this type of

data is fruit fly data from the NeuronBridge website [4].

5.5 Future Directions: Analyzing Images using Angicart++

So far, the data we have looked at has been from existing neuron reconstructions available on

NeuroMorpho.Org and Allen Brain Atlas. However, we have run into issues in analyzing this

data due to the resolution limits of the images and image reconstructions, particularly for

the radius scaling ratios. For the histograms showing the distributions of scaling ratios in the

whole range (for the data shown in this thesis, we have truncated the values at or above 1.0),

we notice a large peak at 1.0, indicating that after a certain level of the network, the radius

measurements are all equal to the pixel size. In addition, the distributions of asymmetric

radius scale factors showed diagonal lines that were likely an artifact of the resolution limit

of the images and the fact that for smaller processes, the difference scale factors occurred

at regular intervals that were multiples of the pixel size. Many existing tools for neuron
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reconstructions from images focus more on capturing the path length and connectivity than

on radius [37]. Moreover, many of these reconstruction processes require some amount of

user intervention. The automated systems that do exist are not general enough to replace

manual reconstructions [89].

Previous work in our group has involved the development of a novel software, Angi-

cart++, that allows the extraction of blood vessel radius, length, and connectivity from 3D

image stacks using a volumetric approach to measure radius [85]. Due to the structural

similarities between branching blood vessels and branching neuron processes, a goal of this

work is to analyze 3D image stacks of neuron processes directly and compare the results to

those in existing reconstructions. If we are able to replicate or possibly even improve the

resolution of the image data, other groups analyzing morphological properties of neurons

might be able to utilize this software to improve the efficiency of data processing through

automation.

5.6 Future Directions: Additional Cell-Type Classification

While our machine learning classification methods using functionally informed structural

quantities was successful in classifying some cell-types, other distinctions were not as ob-

vious. In particular, we attempted to distinguish Medium Spiny Neurons (MSNs) in the

Basal Ganglia based on the type of dopamine receptors—D1 or D2—that they express as

they are functionally distinct and have different roles in the basal ganglia circuitry [46]. In

Appendix C, we illustrate the findings of these classification attempts. Although there might

be observable distinctions based on our parameters, we are hindered by the limited amount

of data available at the precision and resolution required for our analysis. Upon collecting

larger datasets, it might be fruitful to continue to attempt to distinguish these cells.

Additionally, we attempted to distinguish between excitatory and inhibitory cells by

lumping them together into two groups from our individual cell types. We elaborate on these
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results in Appendix C. Although we are able to observe significant distinctions between the

two types, it is unclear whether these distinctions are because of their excitatory or inhibitory

properties, or simply because of the distinctions between the cell types that were used in

these categories. While distinctions could be observed between individual excitatory and

inhibitory pairs, these distinctions were no more or less significant than those observed

between pairs of two excitatory or two inhibitory neurons. Incorporation of additional cell

types in this analysis that belong to both of these groups might clarify distinctions that are

specific to this property.

5.7 Conclusion

Overall, this work lays the foundation for the analysis of the correspondence between neu-

ron morphology and function using biological scaling theory and machine-learning methods.

The promise of these results suggests that there is great potential for future studies using

larger datasets at higher resolutions and across more species and cell types. In addition to

providing useful insights into the structure-function correspondence of neurons, these results

are also useful in the context of other studies of biological networks such as cardiovascular

networks, plants, and lungs. Although these biological resource distribution networks have

very different functions and are at different spatial scales, the ability to apply similar math-

ematical methods and obtain analogous results suggests that they possess essential and very

generic similarities in their properties. That is, it is evidence that argues that these diverse

biological systems are unified by a very similar or overlapping set of underlying physical

principles.
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APPENDIX A

Scaling Ratios and Allometry

A.1 Scaling Ratio Calculation

We use the method of Lagrange multipliers to solve for the values of the scaling ratios for

radius and length, rk+1

rk
and lk+1

lk
, that minimize the objective function. This is carried out

by setting the derivatives of these functions - with respect to radius and length - equal to 0

and solving for the Lagrange multipliers. These values are assumed to be constant, so we

solve for the scaling ratios by setting the ratio of the multiplier expressions at successive

branching generations equal to 1.

Below, we show a sample calculation of the method of Lagrange multipliers for one of

the cases. We will consider the objective function P - the function minimizing power with

fixed volume, mass, and space-filling - for our sample calculation. Below is the equation for

this function:

P =
N∑
k=0

lk
r2kn

k
+ λ

N∑
k=0

nkr2klk + λmmc +
N∑
k=0

λkn
kldk (A.1)

A.1.1 Radius Scaling Ratio Calculation

To find the radius scaling ratio, we will minimize P with respect to rk, at an arbitrary level

k, and set the result equal to 0. Thus, we can find a formula for a Lagrange multiplier and

derive the scaling law.

102



∂P

∂rk
=

−2lk
nkr3k

+ 2λnkrklk = 0 (A.2)

Solving for the Lagrange multiplier, we have

λ =
1

n2kr4k
(A.3)

Since this is a constant, the denominator must be constant across levels.

n2(k+1)r4k+1

n2kr4k
= 1 (A.4)

Thus, we can solve for the scaling ratio

rk+1

rk
=
(
n−2
)1/4

= n−1/2 (A.5)

A.1.2 Length Scaling Ratio Calculation

To find the length scaling ratio, we will minimize P with respect to lk, at an arbitrary level

k, and set the result equal to 0. Thus, we can find a formula for a Lagrange multiplier, using

the formula above, and derive the scaling law.

∂P

∂lk
=

1

nkr2k
+ λnkr2k + dλkn

kld−1
k = 0 (A.6)

Solving for the Lagrange multiplier, we have

λk =
− 1

nkr2k
− λnkr2k

dnkld−1
k

(A.7)
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Substituting λ, as calculated before, we can simplify the expression for this multiplier as

follows

λk =
− 1

nkr2k
− 1

nkr2k

dnkld−1
k

= − 2

dn2kld−1
k r2k

(A.8)

Since this is a constant, the denominator must be constant across levels, so

n2(k+1)ld−1
k+1r

2
k+1

n2kld−1
k r2k

= 1 (A.9)

Thus, substituting in the scaling ratio for radius, we can solve for the scaling ratio for

length

(
lk+1

lk

)d−1

= n−2

(
rk+1

rk

)−2

(A.10)

(
lk+1

lk

)d−1

= n−2
(
n−1/2

)−2
= n−1 (A.11)

For the case where the dimension of space-filling, d, is equal to 3, we have

lk+1

lk
= n−1/2 (A.12)

This method is repeated to solve for the theoretical predictions of scaling ratios for radius

and length for the other objective functions.

A.2 Allometry Calculation

We can use the objective function P ∗ - the function minimizing power with fixed time delay,

size, and space-filling - to derive a functional scaling relationship between conduction time
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delay and species mass, considering the unmyelinated case where ϵ is equal to 0, and the

case of 3-dimensional space-filling, choosing d to be 3. The equation for this function is

P ∗ =
N∑
k=0

lk
r2kn

k
+ λ

N∑
k=0

lk

r
1
2
k

+ λmmc +
N∑
k=0

λkn
kl3k (A.13)

We begin by setting the derivative of the function with respect to radius equal to zero to

solve for the multiplier λ.

∂P ∗

∂rk
=

−2lk
r3kn

k
− λlkr

−3/2
k

2
= 0 (A.14)

Below, we have the expression for the multiplier

λ =
−4

r
3/2
k nk

(A.15)

We can similarly solve for the multiplier λk by setting the derivative with respect to

length equal to 0.

∂P ∗

∂lk
=

1

r2kn
k
+ λr

−1/2
k + 3λkn

kl2k = 0 (A.16)

Using the expression for λ above, we can solve for an expression for λk.

λk =
1

r2kn
2kl2k

(A.17)

If we plug this expression for λk back into the original expression for P ∗, we get

P ∗ =
N∑
k=0

lk
r2kn

k
+ λ

N∑
k=0

lk

r
1/2
k

+ λmmc +
N∑
k=0

(
1

r2kn
2kl2k

)
nkl3k (A.18)
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The last term simplifies to a term that is identical in form to the power term. So we can

rewrite this as

P ∗ = 2
N∑
k=0

lk
r2kn

k
+ λ

N∑
k=0

lk

r
1/2
k

+ λmmc (A.19)

For simplicity, if we denote the power expression as P, the time delay expression as T,

we can rewrite this as

P ∗ = 2P + λT + λmmc (A.20)

Previous results have shown a proportional relationship between mc, the mass of a single

neuron, and the fourth root of an animal’s body mass, M1/4 [104]. Thus, we can replace this

term and consider a new Lagrange multiplier with the absorbed constant

P ∗ = 2P + λT + λMM1/4 (A.21)

We will now take the derivative of this term with respect to M, the mass of the species,

and set it equal 0.

∂P ∗

∂M
= 2

∂P

∂M
+ λ

∂T

∂M
+ λM

∂M1/4

∂M
= 0 (A.22)

Previous results have shown that the energetic cost, which we have interpreted here as

power loss due to dissipation, decreases with increasing body weight of animals at a linear

rate [121]. Thus, we can express ∂P
∂M

generally as a negative constant, −C. We can rewrite

the above expression as

∂T

∂M
=

−λMM−3/4

4λ
+ 2

C

λ
(A.23)
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Solving this differential equation, we have

T =
−λM

λ
M1/4 +

2C

λ
M + C0 (A.24)

If we apply the initial condition T=0 for M =0, we get C0 = 0. Thus, we obtain the

following expression relating conduction time delay and body mass

T =
−λM

λ
M1/4 +

2C

λ
M (A.25)

A.3 Allometric Scaling Relationship Regression Analysis

Our calculations have led to the following allometric relationship between conduction time

delay and species mass

T =
−λM

λ
M1/4 +

2C

λ
M (A.26)

Note that the function for conduction time delay is a linear combination of two terms.

The first term depends on the 1
4
-power of the body mass and the second term depends

linearly on the body mass.

In order to test the fit of this model to the data, we will run a regression analysis on the

following linear model

T = β0 + β1M + β2M
1/4 (A.27)

Here, β0, β1, and β2 are the estimated coefficients. This will allow us to estimate the mag-

nitude of each of these coefficients and the relative importance of each term in determining

the conduction time, based on data.

107



Below is a summary of the results

Table A.1. Regression Coefficients

Estimate Standard Error t value Pr(> |t|)

(Intercept) -4.79 3.20 -1.50 0.172

M 0.00132 0.00326 0.408 0.694

M1/4 9.40 1.66 5.66 0.000478

Estimated coefficients for each term in a linear model fitting conduction time delay to M

and M1/4 shows the relative weight of each of the terms in the model as well as the

likelihood that the relationship between the term and conduction time delay is purely by

chance. The notation Pr(> |t|) represents the p-values, or the probability that the

correlation observed is due to random variation.

These results suggest that the M1/4 term dominates in terms of magnitude, as its co-

efficient, 9.40, is higher than the coefficient for the linear mass (M) term that is 0.00132.

Moreover, the Pr(> |t|) or p-values suggest that the M1/4 term is the only term that is not

likely to be due to random chance.
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A.4 Length Scaling Ratio Distributions for Dendrites and Axons

Figure A.1. Length Scaling Ratio Distributions Histograms showing the

distributions of length scaling ratios for dendrites and axons in a range of species, brain

regions, and cell types available on NeuroMorpho.Org. The mean dendrite scaling ratio is

3.16± 0.43 and the mean axon scaling ratio is 2.38± 0.15. In the figure, µ represents the

mean and SEM represents the standard error of the mean. The standard deviations of the

distributions are 25.10 for dendrites and 4.07 for axons. The black solid lines denote the

mean in the distributions, shown with error bars. We zoomed in to the window to look at

values between 0 and 20, although the mean is calculated from additional data beyond this

point. The exponential distributions observed for length scaling ratios observed here reflect

the distributions observed in the length scaling ratios for cardiovascular networks.

109



APPENDIX B

Asymmetry Calculations

In Table 3.1, we show a series of results calculated from specific cases of the general cost

function in Equation 3.1. Here, we will show the calculations of these results in more detail.

B.1 Power Minimization with Fixed Volume

The simplest case for this type of calculation is the optimization of a cost function that min-

imizes power lost due to dissipation (α = 1 in Equation 3.1) with a material cost constraint.

We have represented the material cost constraint here as the total network volume, and this

is a quantity that we hold to be fixed in the optimization.

The specific function we are minimizing here is:

PTOT = I20RN,TOT

N∑
k=0

(
N−1∏
j=k

[
β2
j,1

γj,1
+

β2
j,2

γj,2

])
+ λVN,TOT

N∑
k=0

(
N−1∏
j=k

[
β2
j,1γj,1 + β2

j,2γj,2

]−1
)

+λmmc +
N∑
k=0

(
λkl

d
N,TOT

N−1∏
j=k

[
γd
j,1 + γd

j,2

]−1
)
(B.1)

We begin the optimization by taking the derivative of the function with respect to βi,1

and βi,2 and setting them equal to 0.
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∂PTOT

∂βi,1

=
N∑
k=0

(
2I20RN,TOTβi,1

γi,1

N−1∏
j=k,j ̸=i

[
β2
j,1

γj,1
+
β2
j,2

γj,2

]
−2λVN,TOTβi,1γi,1
β2
i,1γi,1 + β2

i,2γi,2

N−1∏
j=k,j ̸=i

[
β2
j,1γj,1+β2

j,2γj,2

]−1
)

(B.2)

∂PTOT

∂βi,2

=
N∑
k=0

(
2I20RN,TOTβi,2

γi,2

N−1∏
j=k,j ̸=i

[
β2
j,1

γj,1
+
β2
j,2

γj,2

]
−2λVN,TOTβi,2γi,2
β2
i,1γi,1 + β2

i,2γi,2

N−1∏
j=k,j ̸=i

[
β2
j,1γj,1+β2

j,2γj,2]

]−1
)

(B.3)

Since both of these equations, B.2 and B.3, are equal to 0, we can simplify this expression

by adding a linear combination of these equations, which is also equal to 0. We will multiply

B.2 by βi,1 and multiply B.3 by βi,2, arriving at the following expression.

0 =
N∑
k=0

(
2I20RN,TOT

N−1∏
j=k

[
β2
j,1

γj,1
+

β2
j,2

γj,2

]
− 2λVN,TOT

N−1∏
j=k

[
β2
j,1γj,1 + β2

j,2γj,2

]−1
)

(B.4)

Since all of these terms are positive biological quantities and because the sum of the

terms is equal to 0, then each of the individual terms in the sum must be equal to zero.

Using this fact, we can solve for an expression for λ.

λ =
I20RN,TOT

VN,TOT

N−1∏
j=k

[
β2
j,1γj,1 + β2

j,2γj,2

][
β2
j,1

γj,1
+

β2
j,2

γj,2

]
(B.5)

If we plug this expression for λ back into B.2, we can simplify the expression to the

following:

γi,1 = γi,2 (B.6)

Now, using the fact that λ is a constant and thus stays the same across generations; that

is, λk = λk+1, we arrive at the following expression:

[
β2
k,1γk,1 + β2

k,2γk,2

][
β2
k,1

γk,1
+

β2
k,2

γk,2

]
= 1 (B.7)
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Substituting B.6 in B.7 and simplifying, we arrive at

β2
k,1 + β2

k,2 = 1 (B.8)

That is, the two scaling ratios are raised to a scaling exponent of 2. Note that in this

case, we can rewrite the equation by expanding βk,1 and βk,2 based on their definitions,

βk,1 =
rk+1,1

rk
and βk,2 =

rk+1,2

rk
.

(
rk+1,1

rk

)2

+

(
rk+1,2

rk

)2

= 1 (B.9)

This leads to the following relationship between the radii:

r2k+1,1 + r2k+1,2 = r2k (B.10)

Note that this implies that the sum of the cross-sectional areas of the two daughter

branches is equal to the cross-sectional area of the parent branch (scaling this equation by

π would give this relationship). This implies that our scaling exponent relationship is area-

preserving in this case. There is an analogous area-preserving case observed in studies of

cardiovascular branching blood vessels [103].

B.2 Time Minimization, Umyelinated

The calculations involving optimization of conduction time delay are more complicated be-

cause in an asymmetric branching network, there are multiple possible paths from the soma

to the synapses. Thus, different interpretations correspond to different optimization prob-

lems.
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B.2.1 Average Path Interpretation

For the average interpretation, the idea is that for a bifurcating branching network, there

is an average time at each level, divided by the total number of branches, 2k. (This can be

generalized for other types of networks with branching ratio n as nk). Thus, we can define

the function we are optimizing as follows:

T = TTOT

N∑
k=0

1

2k

(
N−1∏
j=k

[
γj,1

β
1/2
j,1

+
γj,2

β
1/2
j,2

])
+ λVN,TOT

N∑
k=0

(
N−1∏
j=k

[
β2
j,1γj,1 + β2

j,2γj,2

]−1
)

+λmmc +
N∑
k=0

(
λkl

d
N,TOT

N−1∏
j=k

[
γd
j,1 + γd

j,2

]−1
)
(B.11)

Following the same steps for the optimization as in section B.1, we arrive at

β
5/2
k,1 + β

5/2
k,2 = 1 (B.12)

That is, the two scaling ratios are raised to a scaling exponent of 5/2. As we saw before,

we can rewrite this relationship as follows.

r
5/2
k+1,1 + r

5/2
k+1,2 = r

5/2
k (B.13)

While the previous case was area-preserving, this case is area-increasing.

B.2.2 Maximum/Minimum Path Interpretation

For both the maximum and minimum path interpretations of conduction time delay, we focus

on just one of the β values, the larger one, β1 corresponding to the minimum time delay path

(as the velocity is the greatest) and the smaller one, β2 for maximum time delay path (as

the velocity is the smallest). For simplicity, we will focus on the calculation minimizing the
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conduction time delay of the optimal path using β1, as the calculations are mathematically

equivalent.

Thus, we can define the function we are optimizing as follows:

T = TTOT

N∑
k=0

(
N−1∏
j=k

γj,1

β
1/2
j,1

)
+ λVN,TOT

N∑
k=0

(
N−1∏
j=k

[
β2
j,1γj,1 + β2

j,2γj,2

]−1
)

+λmmc +
N∑
k=0

(
λkl

d
N,TOT

N−1∏
j=k

[
γd
j,1 + γd

j,2

]−1
) (B.14)

Note that here, since we are focusing on β1, corresponding to the maximum velocity or

the minimum conduction time delay, we are minimizing the minimum path here. We take

the derivative of the function with respect to βi,1 and βi,2 and set them equal to 0.

∂T

∂βi,1

=
N∑
k=0

(
TTOT

2

β
−1/2
i,1

γi,1

N−1∏
j=k,j ̸=i

β
1/2
j,1

γj,1
−2λVN,TOTβi,1γi,1
β2
i,1γi,1 + β2

i,2γi,2

N−1∏
j=k,j ̸=i

[
β2
j,1γj,1+β2

j,2γj,2

]−1
)

(B.15)

∂T

∂βi,1

= −2λVN,TOTβi,2γi,2
β2
i,1γi,1 + β2

i,2γi,2

N−1∏
j=k,j ̸=i

[
β2
j,1γj,1 + β2

j,2γj,2

]−1
)

(B.16)

Note that since βi,2 does not appear in the conduction time delay term being minimized,

the first term disappears when taking the derivative with respect to βi,2. As before, since

both of these equations, B.15 and B.16, are equal to 0, we can simplify this expression by

adding a linear combination of these equations, which is also equal to 0. We will multiply

B.15 by βi,1 and multiply B.16 by βi,2, arriving at the following expression.

0 =
N∑
k=0

(
TTOT

2

N−1∏
j=k

β
1/2
j,1

γj,1
− 2λVN,TOT

N−1∏
j=k

[
β2
j,1γj,1 + β2

j,2γj,2

]−1
)

(B.17)

As before, we can solve for an expression for λ.

λ =
TTOT

4VN,TOT

N−1∏
j=k

β
1/2
j,1

γj,1

[
β2
j,1

γj,1
+

β2
j,2

γj,2

]
(B.18)
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If we plug this expression for λ back into B.15, we can simplify the expression to the

following:

β2
i,2γi,2 = 0 (B.19)

Now, using the fact that λ is a constant and thus stays the same across generations; that

is, λk = λk+1, we arrive at the following expression:

β
1/2
k,1

γk,1

[
β2
k,1γk,1 + β2

k,2γk,2

]
= 1 (B.20)

By substituting B.19 in B.20 and simplifying, we arrive at

β
5/2
k,1 = 1 (B.21)

Here, we find that the scaling exponent, which only applies to β1, is 5/2. Repeating this

calculation with β2, focusing on the maximum path, would yield the equation β
5/2
k,2 = 1. As

above, substituting the expressions for the scaling ratios, we can rewrite this as

r
5/2
k+1,1 = r

5/2
k (B.22)

This is for the minimum path calculation. Analogously, if we focus on the maximum

path, we can write this equation as r
5/2
k+1,1 = r

5/2
k . For either case, focusing on the relationship

between the parent and the selected daughter branch, we see that the relationship is area-

increasing.

B.3 Time Minimization, Myelinated

Here, we repeat the above calculations for the myelinated case, where the velocity is pro-

portional to the radius of each branch rather than the square root of the radius. Thus, we
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begin with a similar function but with different powers for β in the conduction time delay

term.

B.3.1 Average Path Interpretation

As above, for the average interpretation, by the total number of branches, 2k. Thus, we can

define the function we are optimizing as follows:

T = TTOT

N∑
k=0

1

2k

(
N−1∏
j=k

[
γj,1
βj,1

+
γj,2
βj,2

])
+ λVN,TOT

N∑
k=0

(
N−1∏
j=k

[
β2
j,1γj,1 + β2

j,2γj,2

]−1
)

+λmmc +
N∑
k=0

(
λkl

d
N,TOT

N−1∏
j=k

[
γd
j,1 + γd

j,2

]−1
) (B.23)

Following the same steps for the optimization as in sections B.1 and and B.2, we arrive

at

β3
k,1 + β3

k,2 = 1 (B.24)

That is, the two scaling ratios are raised to a scaling exponent of 3, and this relationship

is area-increasing. Note that this is the same as the area-increasing relationship pretended

for branching blood vessels [103].

B.3.2 Maximum/Minimum Path Interpretation

As before, we optimize the function focusing on the path calculated with the larger scaling

ratio, β1, corresponding to the path of minimum conduction time delay.

The function we are optimizing for the myelinated case is as follows:
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T = TTOT

N∑
k=0

(
N−1∏
j=k

γj,1
βj,1

)
+ λVN,TOT

N∑
k=0

(
N−1∏
j=k

[
β2
j,1γj,1 + β2

j,2γj,2

]−1
)

+λmmc +
N∑
k=0

(
λkl

d
N,TOT

N−1∏
j=k

[
γd
j,1 + γd

j,2

]−1
) (B.25)

Following the same steps for the optimization as in sections B.1 and B.2, we arrive at

β3
k,1 = 1 (B.26)

Here, we find that the scaling exponent, which only applies to β1, is 3, for the minimum

path. Repeating this calculation with β2 would yield the equation β3
k,2 = 1 for the maximum

path. As before, this relationship is area-increasing.

B.4 Power Minimization with Fixed Time Delay

Here, we repeat these calculations for the case where the constraint is conduction time delay

rather than volume.

B.4.1 Total Paths Interpretation

For the total paths interpretation of the conduction time delay, we are optimizing the fol-

lowing function:

P ∗ = I20RN,TOT

N∑
k=0

(
N−1∏
j=k

[
β2
j,1

γj,1
+

β2
j,2

γj,2

])
− λTTOT

N∑
k=0

(
N−1∏
j=k

[
γj,1

β
1/2
j,1

+
γj,2

β
1/2
j,2

])

+λmmc +
N∑
k=0

(
λkl

d
N,TOT

N−1∏
j=k

[
γd
j,1 + γd

j,2

]−1
) (B.27)

Note that the sign of the constraint function is arbitrary, so we use the negative one to

simplify the calculation. We begin the optimization by taking the derivative of the function
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with respect to βi,1 and βi,2 and setting them equal to 0.

∂P ∗

∂βi,1

=
N∑
k=0

(
2I20RN,TOTβi,1

γi,1

N−1∏
j=k,j ̸=i

[
β2
j,1

γj,1
+
β2
j,2

γj,2

]
− TTOTγi,1

2β
3/2
i,1

[
γj,1
βj,1

+
γj,2
βj,2

]2 N−1∏
j=k,j ̸=i

[
γj,1

β
1/2
j,1

+
γj,2

β
1/2
j,2

]−1
)

(B.28)

∂P ∗

∂βi,2

=
N∑
k=0

(
2I20RN,TOTβi,2

γi,2

N−1∏
j=k,j ̸=i

[
β2
j,1

γj,1
+
β2
j,2

γj,2

]
− TTOTγi,2

2β
3/2
i,2

[
γj,1
βj,1

+
γj,2
βj,2

]2 N−1∏
j=k,j ̸=i

[
γj,1

β
1/2
j,1

+
γj,2

β
1/2
j,2

]−1
)

(B.29)

Since both of these equations, B.28 and B.29, are equal to 0, we can simplify this expres-

sion by adding a linear combination of these equations, which is also equal to 0. We will

multiply B.28 by βi,1 and multiply B.29 by βi,2, arriving at the following expression.

0 =
N∑
k=0

(
2I20RN,TOT

N−1∏
j=k

[
β2
j,1

γj,1
+

β2
j,2

γj,2

]
− λ

TTOT

2

N−1∏
j=k,j ̸=i

[
γj,1

β
1/2
j,1

+
γj,2

β
1/2
j,2

]−1
)

(B.30)

Since all of these terms are positive biological quantities and because the sum of the

terms is equal to 0, then each of the individual terms in the sum must be equal to zero.

Using this fact, we can solve for an expression for λ.

λ =
−4I20RN,TOT

TTOT

N−1∏
j=k

[
β2
j,1

γj,1
+

β2
j,2

γj,2

][
γj,1

β
1/2
j,1

+
γj,2

β
1/2
j,2

]
(B.31)

If we plug this expression for λ back into B.28, we can simplify the expression to the

following:

γi,1
γi,2

=
β
5/4
i,1

β
5/4
i,2

(B.32)

Now, using the fact that λ is a constant and thus stays the same across generations; that

is, λk = λk+1, we arrive at the following expression:
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β
3/2
k,1 +

β2
k,1

β
1/2
k,2

[
γk,2
γk,1

]
+

β2
k,2

β
1/2
k,1

[
γi,1
γi,2

]
+ β

3/2
k,2 = 1 (B.33)

Substituting B.32 in B.33, simplifying, and factoring, we arrive at

β
3/4
k,1 + β

3/4
k,2 = 1 (B.34)

That is, the two scaling ratios are raised to a scaling exponent of 3/4. As before, we can

also represent this expression as

r
3/4
k+1,1 + r

3/4
k+1,2 = r

3/4
k (B.35)

Note that this relationship, unlike the others mentioned above, is area-decreasing, as

this scaling exponent is less than 2 and the sum of the cross-sectional areas of the daughter

branches is less than the cross-sectional area of the parent.

B.4.2 Maximum/Minimum Path Interpretation

For the maximum/minimum interpretation of the conduction time delay constraint, we are

optimizing the following function, focusing on β1 (minimum path):

P ∗ = I20RN,TOT

N∑
k=0

(
N−1∏
j=k

[
β2
j,1

γj,1
+

β2
j,2

γj,2

])
− λTTOT

N∑
k=0

(
N−1∏
j=k

β
1/2
j,1

γj,1

)

+λmmc +
N∑
k=0

(
λkl

d
N,TOT

N−1∏
j=k

[
γd
j,1 + γd

j,2

]−1
) (B.36)

Following the same steps for the optimization as in sections B.1, B.2, and B.3, we arrive

at

β
3/2
k,1 = 1 (B.37)
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Here, we find that the scaling exponent, which only applies to β1, is 3/2. Repeating this

calculation with β2 for the maximum path would yield the equation β
3/2
k,2 = 1. Note that this

exponent is different than the exponent calculated for the total path interpretation of time

delay, which is different from the previous cases that minimize conduction time delay. We

can rewrite this expression as

r
3/2
k+1,1 = r

3/2
k (B.38)

An analogous expression can be written for the maximum path length calculation, with

r
3/2
k+1,2 = r

3/2
k . Focusing on just the relationship between one daughter and the parent branch,

this relationship is area-decreasing. However, given that the radius of the second daughter

does not affect this relationship, is it possible that it is in fact area-preserving or increasing.

120



APPENDIX C

Cell-Type Classification: Excitatory vs Inhibitory

Neurons and D1 vs D2-expressing Medium Spiny

Neurons

While our machine learning classification methods using functionally informed structural

quantities was successful in classifying some cell-types, they were not as successful for others.

Here, we highlight two areas of potential future investigation, where the results from our

analysis were not conclusive.

C.1 Excitatory vs Inhibitory Neurons

Neurons connect to one another at the synapses, and the neuron receiving input from another

neuron is referred to as the postsynaptic cell. Synapses are excitatory if the increase the

likelihood of that the postsynaptic cell will generate an action potential, and inhibitory

if they decrease this likelihood. Neurotransmitters bind to ion channel receptors on the

postsynaptic cell, and the type of channel determines whether the synapse is excitatory or

inhibitory [92]. Glutamate is a common example of an excitatory neurotransmitter, and

GABA (γ-Aminobutyric acid) is a common example of an inhibitory synapse. An important

factor contributing to the circuitry in the brain is the excitatory/inhibitory balance; networks

are constantly adapting and changing their connectivity in order to maintain this balance

[82]. To this end, we aim to examine whether there are any morphological differences that

we can pinpoint between excitatory and inhibitory neurons.
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Purkinje cells and Medium Spiny Neurons (MSNs) are inhibitory, whereas motoneurons

and pyramidal cells are excitatory. Thus, we lumped together excitatory and inhibitory cells

and attempted to classify between them.

Figure C.1. Excitatory vs Inhibitory Cells Feature Space

Table C.1. Exhibitory vs Inhibitory Neurons AUC (Area Under ROC curve) Measures

Metric/Method LR SVM KNN RF DT Bayes NN

AUC
0.610

±0.42

0.747

±0.035

0.725

±0.37

0.792

±0.031

0.727

±0.036

0.565

±0.044

0.573

±0.044

While we were able to observe significant distinctions between the two types, it is unclear

whether these distinctions are because of their excitatory or inhibitory properties, or simply

because of the distinctions between the cell types. While distinctions could be observed
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between individual excitatory and inhibitory pairs, these distinctions were no more or less

significant than those observed between pairs of two excitatory or two inhibitory neurons.

Incorporation of additional cell types in this analysis that belong to both of these groups

might clarify distinctions that are specific to this property.

C.2 D1 vs D2-expressing Medium Spiny Neurons

In addition to examining differences among broad cell-type categories based on the types of

receptors they expressed, we attempted to distinguish Medium Spiny Neurons (MSNs) in

the Basal Ganglia based on the type of dopamine receptors they express, D1 or D2, as they

are functionally distinct and have different roles in the basal ganglia circuitry [46]. We did

this classification for the 2D and 3D feature spaces in the raw data as well as image-based

classification using the maximum and average leaf numbers per cell.

Table C.2. D1- vs D2-expressing Medium Spiny Neurons Classification AUC (Area Under

ROC curve) Measures

Features/Method LR SVM KNN RF DT Bayes NN

β̄,∆β
0.557

±0.107

0.571

±0.107

0.578

±0.104

0.524

±0.108

0.536

±0.107

0.538

±0.106

0.528

±0.106

β̄,∆β, Ln,rel

0.552

±0.106

0.579

±0.103

0.462

±0.104

0.500

±0.105

0.593

±0.102

0.587

±0.103

0.578

±0.104

β̄,∆β, Ln,max

0.813

±0.260

0.813

±0.287

0.688

±0.343

0.813

±0.287

0.750

±0.298

0.938

±0.118

0.500

±0.000

β̄,∆β, Ln,avg

0.750

±0.325

0.938

±0.118

0.375

±0.381

0.688

±0.374

0.750

±0.097

0.875

±0.204

0.875

±0.204

Although there might be observable distinctions based on our parameters, specifically for

the image based data, we are limited by the limited amount of data available at the precision
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Figure C.2. D1 versus D2 MSN 2D and 3D Feature Spaces, Raw Data
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Figure C.3. D1 versus D2 MSN, Image-based Cell Summary Data with Maximum and

Average Leaf Numbers
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required for this analysis. As we can see, the uncertainty for the AUC measures are high.

Upon collecting larger datasets, it might be fruitful to continue to attempt to distinguish

these cells.
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APPENDIX D

Data Availability

Here, we detail the sources of data we used from NeuroMorpho.Org [10], including the file

names of the cells we analyzed, the cell type, region, species, and archive from which the

data were taken.

Tables D.1-D.5 are the data sources used for Chapters 2 and 3. Table D.1 details the

sources of data for the Golgi cell dendrites. Table D.2 details the sources of data for the

Purkinje cell dendrites. Table D.3 details the sources of data for the Motoneuron dendrites.

Table D.4 details the sources of data for the axons. Table D.5 details the sources of data for

the Peripheral Nervous System dendrites.

Tables D.6 - D.15 are the data sources used for Chapter 4. Table D.6 details the sources

of data for axons. Table D.7 details the sources of data for Astrocytes. Table D.8 details the

sources of data for Microglia. Table D.9 details the sources of data for Motoneurons. Table

D.10 details the sources of data for Purkinje Cells. Table D.11 details the sources of data

for D1-expressing Medium Spiny Neurons. Table D.12 details the sources of data for the

D2-expressing Medium Spiny Neurons. Table D.13 details the sources of data for Control

Pyramidal Cells. Table D.14 details the sources of data for Tumor Pyramidal Cells. Table

D.15 details the sources of data for Epilepsy Pyramidal Cells.

The code used to analyze this data can be accessed at the GitHub repository:

https://github.com/pahelidc/scalingtheoryneurons
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Table D.1. Data Sources for Golgi Cells

Cell Type Region Species Archive Name File Name

Golgi cells Cerebellum Giraffa Jacobs 185-4-4dw

Golgi cells Cerebellum Giraffa Jacobs 186-4-7dw

Golgi cells Cerebellum Giraffa Jacobs 187-4-1dw

Golgi cells Cerebellum Homo Sapiens Jacobs 189-1-21dw

Golgi cells Cerebellum Homo Sapiens Jacobs 189-1-25dw

Golgi cells Cerebellum Homo Sapiens Jacobs 189-1-29dw

Golgi cells Cerebellum Loxodonta africana Jacobs 155-1-2Gol

Golgi cells Cerebellum Loxodonta africana Jacobs 155-2-6Gol

Golgi cells Cerebellum Loxodonta africana Jacobs 155-4-5Gol

Golgi cells Cerebellum Megaptera novaeangliae Jacobs 202-2-18nj

Golgi cells Cerebellum Megaptera novaeangliae Jacobs 202-2-21nj

Golgi cells Cerebellum Megaptera novaeangliae Jacobs 202-2-44nj

Golgi cells Cerebellum Neofelis nebulosa Jacobs 195-4-8nj

Golgi cells Cerebellum Pan troglodytes Jacobs 205-2-16nj

Golgi cells Cerebellum Pan troglodytes Jacobs 205-2-21nj

Golgi cells Cerebellum Pan troglodytes Jacobs 205-2-31nj

Golgi cells Cerebellum Panthera tigris Jacobs 194-4-19nj

Golgi cells Cerebellum Panthera tigris Jacobs 194-4-22nj

Golgi cells Cerebellum Panthera tigris Jacobs 194-4-4nj

Golgi cells Cerebellum Mus musculus Vervaeke 210710C0

Golgi cells Cerebellum Mus musculus Vervaeke 240710C0

Golgi cells Cerebellum Mus musculus Vervaeke Golgi-cell-051108-C0-cell1



Table D.2. Data Sources for Purkinje Cells

Cell Type Region Species Archive Name File Name

Purkinje cells Cerebellum Cavia porcellus Dendritica v e purk1

Purkinje cells Cerebellum Cavia porcellus Dendritica v e purk2

Purkinje cells Cerebellum Cavia porcellus Dendritica v e purk3

Purkinje cells Cerebellum Mus musculus Hess 180524 E4 KO

Purkinje cells Cerebellum Mus musculus Dusart Purkinje-slice-ageP35-1

Purkinje cells Cerebellum Mus musculus DeMunter SDM Purkinje WT3

Purkinje cells Cerebellum Mus musculus Martone e1cb4a5

Purkinje cells Cerebellum Rattus Buffo 1-2-2 18

Purkinje cells Cerebellum Rattus Buffo 1-2-8 6

Purkinje cells Cerebellum Rattus Martone alxP

Purkinje cells Cerebellum Rattus Dendritica p19

Purkinje cells Cerebellum Rattus Dendritica p20



Table D.3. Data Sources for Motoneurons

Cell Type Region Species Archive Name File Name

Motoneurons Spinal Cord Danio rerio Morsch
1 180107 mnx1 mVenus

taken160715

Motoneurons Spinal Cord Danio rerio Morsch
2 180107 mnx1 mKO2CX

taken160808

Motoneurons Spinal Cord Danio rerio Morrice
NeuronStudio VehicleControl

48hpf1

Motoneurons Spinal Cord Felis Catus Burke v e moto1

Motoneurons Spinal Cord Felis Catus Burke v e moto4

Motoneurons Spinal Cord Felis Catus Burke v e moto5

Motoneurons Spinal Cord Mus musculus Leroy 04-04-MN9

Motoneurons Spinal Cord Mus musculus Leroy 06-04-MN4

Motoneurons Spinal Cord Mus musculus Leroy 06-09-MN

Motoneurons Spinal Cord
Oryctolagus

cuniculus
Quinian KQa11-12-2015-tracing

Motoneurons Spinal Cord
Oryctolagus

cuniculus
Quinian KQa29-3-2016360

Motoneurons Spinal Cord
Oryctolagus

cuniculus
Quinian KQa8-4-2016-tracing

Motoneurons Spinal Cord Rattus Alvarez Alvarez-Control-Cell-2

Motoneurons Spinal Cord Rattus Alvarez Alvarez-Control-Cell-3

Motoneurons Spinal Cord Rattus Alvarez Alvarez-Regen-Cell-4

Motoneurons Spinal Cord Testudines Chmykhova 2T-CMOT

Motoneurons Spinal Cord Testudines Chmykhova 5Tmn1

Motoneurons Spinal Cord Testudines Chmykhova 5Tmn2



Table D.4. Data Sources for Axons

Cell Type Region Species Archive Name File Name

Target-Selective

Descending
Ventral Nerve Cord Anisoptera Peng C150

Target-Selective

Descending
Ventral Nerve Cord Anisoptera Peng C168

Target-Selective

Descending
Ventral Nerve Cord Anisoptera Peng C201

Columnar Optic Lobe Brachyura Bengochea
Me-LoP columnar

Type1 3

Columnar Optic Lobe Brachyura Bengochea
Me-LoP columnar

Type1 5

Columnar Optic Lobe Brachyura Bengochea
Me-LoP columnar

Type2 3

Uniglomerular

projection
Antennal lobe

Drosophila

melanogaster
Jefferis 12070404c1

Uniglomerular

projection
Antennal lobe

Drosophila

melanogaster
Jefferis CT12T2

Uniglomerular

projection
Antennal lobe

Drosophila

melanogaster
Jefferis LHC6R

Shepherd’s crook

neuron
Mesencephalon

Gallus gallus

domesticus
Marin IMc

Shepherd’s crook

neuron
Mesencephalon

Gallus gallus

domesticus
Marin IPc

Shepherd’s crook

neuron
Mesencephalon

Gallus gallus

domesticus
Marin ShCr Soma

Undefined Neocortex Rattus Almeida cm-ctx-e

Undefined Neocortex Rattus Almeida cm-ctx-f

Undefined Neocortex Rattus Almeida ctr-ctx-3-b



Table D.5. Data Sources for Peripheral Nervous System Neurons

Cell Type Region Species Archive Name File Name

Dendritic

arborization

Peripheral

Nervous System

Drosophila

melanogaster
Ye

021804-2b ddaC-3

-cd8 ch00

Dendritic

arborization

Peripheral

Nervous System

Drosophila

melanogaster
Ascoli,Cox

11CL-IVxAnk2IR

ddaC

Dendritic

arborization

Peripheral

Nervous System

Drosophila

melanogaster
Bellemer 36775-3

Sensory Peripheral Nervous System Mus musculus Canavesi control-contact-2

Sensory Peripheral Nervous System Mus musculus Canavesi control-noncontact-1

Sensory Peripheral Nervous System Mus musculus Canavesi diabetic-contact-4

Sensory Peripheral Nervous System Mus musculus Yorek image002

Sensory Peripheral Nervous System Mus musculus Yorek image008

Sensory Peripheral Nervous System Mus musculus Yorek image025 1

Somatic Peripheral Nervous System Mus musculus Badea
Badea2012Fig6A

-C-R

Somatic Peripheral Nervous System Mus musculus Badea Badea2012Fig6B

Somatic Peripheral Nervous System Mus musculus Badea
Badea2012Fig6E

-I-R

Touch

receptor
Peripheral Nervous System Mus musculus Lumpkin 01-09-TD4

Touch

receptor
Peripheral Nervous System Mus musculus Lumpkin 1-09-TD1-v3

Touch

receptor
Peripheral Nervous System Mus musculus Lumpkin 1-09-TD4-v2



Table D.6. Data Sources for Axons - Machine Learning Classification

Cell Type Region Species Archive Name File Name

sensory Peripheral Nervous System mouse Badea Badea2012Fig6A-C-L

sensory Peripheral Nervous System mouse Badea Badea2012Fig6A-C-R

sensory Peripheral Nervous System mouse Badea Badea2012Fig6B

sensory Peripheral Nervous System mouse Badea Badea2012Fig6E-I-L

sensory Peripheral Nervous System mouse Badea Badea2012Fig6E-I-M

sensory Peripheral Nervous System mouse Badea Badea2012Fig6E-I-R

sensory Peripheral Nervous System mouse Badea Badea2012Fig6G

sensory Peripheral Nervous System mouse Badea Badea2012Fig6H

sensory Peripheral Nervous System mouse Badea Badea2012Fig6J

sensory Peripheral Nervous System mouse Badea Badea2012Fig6L

sensory Peripheral Nervous System mouse Badea Badea2012Fig7C



Table D.7. Data Sources for Glia - Astrocytes - Machine Learning Classification

Cell Type Region Species Archive Name File Name

astrocyte hippocampus rat King A1-CA1-L-C63x1zACR2

astrocyte hippocampus rat King A1-CA1-L-F63x1zACR1

astrocyte hippocampus rat King A2-CA1-L-A63x1zACR5

astrocyte hippocampus rat King A2-CA1-L-D63x1zACR1

astrocyte hippocampus rat King A2-CA1-R-H63x1zACR2

astrocyte hippocampus rat King A3-CA1-L-A63x1zACR3 1

astrocyte hippocampus rat King B4-CA1-L-A63x1zCell4ACR

astrocyte hippocampus rat King B4-CA1-L-C63x1zCell1ACR

astrocyte hippocampus rat King C6-CA1-L-D3x1zACR4

astrocyte hippocampus mouse Zheng PS19-C3aR-KO-astrocytes1

astrocyte hippocampus mouse Zheng PS19-C3aR-KO-astrocytes2

astrocyte hippocampus mouse Zheng PS19-astrocytes

astrocyte neocortex mouse Hernandez-Garzon S11 2 1

astrocyte neocortex mouse Hernandez-Garzon S2 3 1 2

astrocyte neocortex mouse Hernandez-Garzon S5 1 2

astrocyte neocortex mouse Hernandez-Garzon S7 1 2

astrocyte neocortex mouse Hernandez-Garzon S8 2 2

astrocyte neocortex mouse Hernandez-Garzon S9 2 2

astrocyte basal ganglia mouse Hernandez-Garzon Series027 1ok

astrocyte basal ganglia mouse Hernandez-Garzon Series029 3ok



Table D.8. Data Sources for Glia - Microglia - Machine Learning Classification

Cell Type Region Species Archive Name File Name

microglia hippocampus mouse Bilkei-Gorzo 2 48

microglia hippocampus mouse Bilkei-Gorzo 2 50

microglia hippocampus mouse Bilkei-Gorzo 3 40

microglia hippocampus mouse Bilkei-Gorzo 6 41

microglia spinal cord mouse Morara
A11aCSF Iba1-

Z 32-26

microglia spinal cord mouse Morara
A20CGRP Iba1-

Z 103-11

microglia hypothalamus rat Althammer PVN10 microglia 10

microglia hypothalamus rat Althammer PVN10 microglia 15

microglia hypothalamus rat Althammer PVN10 microglia 19

microglia hypothalamus rat Althammer PVN10 microglia 27

microglia hypothalamus rat Althammer PVN11 microglia 12

microglia hypothalamus rat Althammer PVN9 microglia 26

microglia hypothalamus rat Althammer PVN9 microglia 8

microglia Central Nervous System mouse Abdolhoseini Kluge cell001 GroundTruth

microglia Central Nervous System mouse Abdolhoseini Kluge cell004 GroundTruth

microglia Central Nervous System mouse Abdolhoseini Kluge cell006 GroundTruth

microglia Central Nervous System mouse Abdolhoseini Kluge cell010 GroundTruth

microglia neocortex rat Roysam farsight1083

microglia neocortex rat Roysam farsight1102

microglia hippocampus mouse Bilkei-Gorzo tgLPSF1684Iba1o 7



Table D.9. Data Sources for Motoneurons - Machine Learning Classification

Cell Type Region Species Archive Name File Name

motoneurons spinal cord rat Alvarez Alvarez-Control-Cell-3

motoneurons spinal cord rat Alvarez Alvarez-Regen-Cell-4

motoneurons spinal cord mouse Branchereau Cattaert
BranchereauCattaert Scienfic

Report2016 E17 5MN x60

motoneurons spinal cord mouse Branchereau Cattaert
MartinNeurobiolDesease2013

E17 5MN SOD1G93A x60

motoneurons spinal cord mouse Branchereau Cattaert
MartinNeurobiolDesease2013

E17 5MN WildType x60

motoneurons spinal neurons cat Burke v e moto1

motoneurons spinal neurons cat Burke v e moto2

motoneurons spinal neurons cat Burke v e moto3

motoneurons spinal neurons cat Burke v e moto4

motoneurons spinal neurons cat Burke v e moto5

motoneurons spinal neurons cat Burke v e moto6



Table D.10. Data Sources for Purkinje Cells - Machine Learning Classification

Cell Type Region Species Archive Name File Name

purkinje cerebellum mouse Dusart Purkinje-slice-ageP35-1

purkinje cerebellum mouse Dusart Purkinje-slice-ageP35-2

purkinje cerebellum mouse Dusart Purkinje-slice-ageP35-3

purkinje cerebellum mouse Dusart Purkinje-slice-ageP35-4

purkinje cerebellum mouse Dusart Purkinje-slice-ageP37-5

purkinje cerebellum mouse Dusart Purkinje-slice-ageP43-6

purkinje cerebellum mouse Watt SCA6 P10 C1

purkinje cerebellum mouse Watt SCA6 P10 C5

purkinje cerebellum mouse Watt SCA6 P11 C2

purkinje cerebellum mouse Watt SCA6 P11 C3

purkinje cerebellum mouse Watt SCA6 P12 C4



Table D.11. Data Sources for D1-type dopamine receptor-expressing Medium Spiny

Neuron (MSN) - Machine Learning Classification

Cell Type Region Species Archive Name File Name

D1 MSN basal ganglia mouse Luebke Apr12IR2a

D1 MSN basal ganglia mouse Luebke Apr12IR2a

D1 MSN basal ganglia mouse Luebke Apr26IR2e

D1 MSN basal ganglia mouse Luebke Apr29IR2a

D1 MSN basal ganglia mouse Luebke Apr29IR2b

D1 MSN basal ganglia mouse Luebke May24IR2b

D1 MSN basal ganglia mouse Luebke May5IR2a

D1 MSN basal ganglia mouse Luebke May9IR2a

D1 MSN basal ganglia mouse Luebke May9IR3b

D1 MSN basal ganglia mouse Luebke May9IR3d

D1 MSN basal ganglia mouse Luebke Nov3IR2c

D1 MSN basal ganglia mouse Luebke Nov8IR3a

D1 MSN basal ganglia mouse Luebke Nov9IR2a

D1 MSN basal ganglia mouse Luebke Nov9IR3c

D1 MSN basal ganglia mouse Luebke WT-D1-Jul19IR3d-stitch

D1 MSN basal ganglia mouse Luebke WT-D1-Jun19IR2a-whole-cell

D1 MSN basal ganglia mouse Luebke WT-D1-Jun27IR3b-whole-cell

D1 MSN basal ganglia mouse Luebke WT-D1-Jun5IR3b-whole-cell



Table D.12. Data Sources for D2-type dopamine receptor-expressing Medium Spiny

Neuron (MSN) - Machine Learning Classification

Cell Type Region Species Archive Name File Name

D2 MSN basal ganglia mouse Luebke Apr12IR1b

D2 MSN basal ganglia mouse Luebke Apr12IR3a

D2 MSN basal ganglia mouse Luebke Apr12IR3b

D2 MSN basal ganglia mouse Luebke Apr19IR3f

D2 MSN basal ganglia mouse Luebke Apr26IR1a

D2 MSN basal ganglia mouse Luebke Apr29IR1c

D2 MSN basal ganglia mouse Luebke Apr29IR3a

D2 MSN basal ganglia mouse Luebke Nov3IR2a 1

D2 MSN basal ganglia mouse Luebke Nov3IR2d

D2 MSN basal ganglia mouse Luebke Nov3IR2e

D2 MSN basal ganglia mouse Luebke Nov3IR3b

D2 MSN basal ganglia mouse Luebke Nov8IR2b

D2 MSN basal ganglia mouse Luebke Nov9IR3b

D2 MSN basal ganglia mouse Luebke WT-D2-Jun19IR3a-whole-cell

D2 MSN basal ganglia mouse Luebke WT-D2-Jun27IR3c-whole-cell

D2 MSN basal ganglia mouse Luebke WT-D2-June19IR2c



Table D.13. Data Sources for Pyramidal Control Cells - Machine Learning Classification

Cell Type Region Species Archive Name File Name

pyramidal neocortex human Allen Cell Types H16-03-003-01-18-01 556380191 m

pyramidal neocortex human Allen Cell Types H16-03-008-11-11-02 601947643 m

pyramidal neocortex human Allen Cell Types H16-03-008-11-11-03 606347920 m

pyramidal neocortex human Allen Cell Types H16-06-004-01-04-01 538906745 m

pyramidal neocortex human Allen Cell Types H16-06-004-01-04-05 556380170 m

pyramidal neocortex human Allen Cell Types H16-06-004-01-13-02 538906639 m

pyramidal neocortex human Allen Cell Types H16-06-004-01-13-03 539990522 m

pyramidal neocortex human Allen Cell Types H16-06-004-02-13-04 538906871 m

pyramidal neocortex human Allen Cell Types H17-03-002-11-04-02 596792557 m

pyramidal neocortex human Allen Cell Types H17-03-002-11-04-04 603514410 m

pyramidal neocortex human Allen Cell Types H17-03-002-11-06-05 603514429 m

pyramidal neocortex human Allen Cell Types H17-06-003-11-05-01 605485079 m

pyramidal neocortex human Allen Cell Types H17-06-004-11-05-04 599474134 m

pyramidal neocortex human Allen Cell Types H17-06-004-11-05-05 605857665 m

pyramidal neocortex human Allen Cell Types H17-06-004-11-05-06 605851449 m

pyramidal neocortex human Allen Cell Types H17-06-005-12-10-07 605485535 m

pyramidal neocortex human Allen Cell Types H17-06-005-12-16-03 606347962 m

pyramidal neocortex human Allen Cell Types H17-06-006-11-08-04 585893370 m

pyramidal neocortex human Allen Cell Types H17-06-006-11-08-08 601946464 m

pyramidal neocortex human Allen Cell Types H17-06-006-11-09-04 591274508 m

pyramidal neocortex human Allen Cell Types H17-06-009-11-04-04 614429153 m



Table D.14. Data Sources for Pyramidal Tumor Cells - Machine Learning Classification

Cell Type Region Species Archive Name File Name

pyramidal neocortex human Allen Cell Types 576110753 transformed

pyramidal neocortex human Allen Cell Types 576118161 transformed

pyramidal neocortex human Allen Cell Types 576134298 transformed

pyramidal neocortex human Allen Cell Types 576140393 transformed

pyramidal neocortex human Allen Cell Types 665713811 transformed

pyramidal neocortex human Allen Cell Types 716918890 transformed

pyramidal neocortex human Allen Cell Types 716929071 transformed

pyramidal neocortex human Allen Cell Types 768819569 transformed

pyramidal neocortex human Allen Cell Types 768848167 transformed

pyramidal neocortex human Allen Cell Types 768867010 transformed

pyramidal neocortex human Allen Cell Types 768885440 transformed

pyramidal neocortex human Allen Cell Types 768904007 transformed

pyramidal neocortex human Allen Cell Types 769228370 transformed



Table D.15. Data Sources for Pyramidal Epilepsy Cells - Machine Learning Classification

Cell Type Region Species Archive Name File Name

pyramidal neocortex human Allen Cell Types 541557114 transformed

pyramidal neocortex human Allen Cell Types 571732727 transformed

pyramidal neocortex human Allen Cell Types 592532014 transformed

pyramidal neocortex human Allen Cell Types 595572609 transformed

pyramidal neocortex human Allen Cell Types 596898838 transformed

pyramidal neocortex human Allen Cell Types 677088033 transformed

pyramidal neocortex human Allen Cell Types 689306818 transformed

pyramidal neocortex human Allen Cell Types 695521538 transformed

pyramidal neocortex human Allen Cell Types 720828444 transformed

pyramidal neocortex human Allen Cell Types 720862326 transformed

pyramidal neocortex human Allen Cell Types 737089555 transformed

pyramidal neocortex human Allen Cell Types 737134157 transformed

pyramidal neocortex human Allen Cell Types 767433014 transformed

pyramidal neocortex human Allen Cell Types 767829778 transformed

pyramidal neocortex human Allen Cell Types 770255008 transformed

pyramidal neocortex human Allen Cell Types 774420848 transformed

pyramidal neocortex human Allen Cell Types 774620186 transformed

pyramidal neocortex human Allen Cell Types 787239157 transformed

pyramidal neocortex human Allen Cell Types 794276683 transformed

pyramidal neocortex human Allen Cell Types 832627767 transformed
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