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PHYSICAL REVIEW A VOLUME 39, NUMBER 11 JUNE 1, 1989

Reduced radiation losses in a channeled-beam x-ray laser by Bragg reAection coupling

M. Strauss* and N. Rostoker
Department of Physics, Uniuersity of California, Iruine, California 9271 7

(Received 19 December 1988)

The effects of radiation losses and atomic motion in a distributed feedback induced by Bragg
reflections in an electron-beam-channeling x-ray laser are investigated. Standing-wave fields with
nodes in the atomic sites are generated in this cavity-mirror structure in single crystals, thereby re-
ducing the losses located close to the atomic sites. An explicit expression for the low-threshold gain
is derived which depends on the absorption, temperature, and on the order of Bragg reflection. It is
noted that diffraction from several sets of atomic planes which satisfy the Bragg condition simul-

taneously may further reduce the threshold gain. These distributed-feedback schemes have possible
application in reducing beam high-current requirements by many orders of magnitude.

I. INTRODUCTION

A relativistic electron beam propagating through pla-
nar or axial channels in a crystal free of imperfections
may populate bound transverse-energy eigenstates. '

Spontaneous dipolar transitions between these discrete
eigenstates have been shown experimentally to yield
narrow-width, highly polarized, and intense x-ray radia-
tion which is strongly forward peaked. One of the im-
portant issues in the possibility of using the channeling
mechanism as a coherent x-ray source depends on future
progress in creating sufficient gain from induced emis-
sion. this paper is related to the issue of identifying an
efficient scheme for gain optimization in crystal channel-
ing. Previous estimates suggest that in a one-passage
amplification scheme even modest gains may require
currents of the order of MA/cm for energies near 10
MeV. The aim should be to suggest a mechanism to
reduce this high-current requirement by many others of
magnitude, thereby bringing one aspect of the channeling
x-ray laser closer to experimental reach.

An efficient scheme to significantly reduce the gain re-
quirements for a channeling x-ray laser was proposed
based on the concept of a distributed-feedback (DFB)
laser which is supplied by multiple Bragg reflections of
the radiation. This scheme was very useful for atomic
emitters in the optical range and was extended later on
to the x-ray range. The advantages in using DFB lasers
include the intrinsic compactness and high degree of
spectral selectivity available without the need for cavity
mirrors. The channeling DFB concept is favorable due
to the possibility of radiation tunability. By adjusting the
electron-beam energy the Doppler up-shifted radiation
can be tuned onto a line in the DFB-mode spectrum near
the Bragg-reflection frequency. In Ref. 6 the threshold-
gain condition for a DFB x-ray laser was obtained taking
into account only reflections and neglecting the radiation
losses in the crystal ~ The main loss mechanism is the
photoelectric absorption by tightly bound electrons locat-
ed close to the atomic sites in the crystal. Furthermore,
the atomic motion in the crystal was ignored, which may

influence the absorption and the reflections of the radia-
tion.

This paper considers the channeling DFB scheme in-
cluding the effects of absorption and atomic motion on
the threshold-gain condition and spectral selectivity. We
find that the formation of a standing-wave field with
nodes on atomic sites, where absorption takes place,
reduces drastically the effect of absorption. This effect is
related to the Borrmann anomalous-transmission effect
where standing-wave generation makes x-ray losses
small. ' The effects of atomic motion on increasing ab-
sorption and reducing reflections are considered. This
effect is due to the zero-point motion at low temperatures
and due to the thermal motion at higher temperatures
relative to the Debye temperature. The atomic-motion
effect can be expressed in terms of a Debye-Wailer fac-
tor. ' ' ' This effect limits the applicability of the DFB
scheme to temperatures that are very low compared to
the Debye temperature. We further consider the effect of
the order of Bragg reflections on the threshold-gain con-
dition. In spite of the limitations introduced by the radi-
ation losses the DFB mechanism does reduce drastically
the high-current requirements. However, the main
threshold condition is dictated by the absorption.

It is pointed out that it is possible to further reduce the
threshold gain by diffraction from several sets of atomic
planes which satisfy the Bragg condition simultaneous-
ly. ' ' In this case standing waves are generated in
several directions relative to an atomic site, generating a
larger nodal region in the radiation field and reducing the
effects of radiation losses.

In Sec. II we present the DFB x-ray laser model in-
cluding absorption but neglecting the atomic motion in
the crystal. The inclusion of atomic motion is considered
in Sec. III. In Sec. IV we obtained the threshold and
selectivity conditions. Numerical results and discussion
are presented in Sec. V.

II. THE DFB X-RAY LASER MODEL

We characterize the set of channeling transverse eigen-
states in the x direction as a two-level system with states
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~1) and ~2), where W and ficoo=e2 —c. ) are the popula-
tion and energy differences, respectively. The directions
of beam channeling and Bragg reAections are taken in the
z direction. The Doppler up-shifted electromagnetic
wave frequency tv=(vo/(1 —v/c) =2@ coo in the forward
direction is chosen to closely match the n-order Bragg
frequency, co-neo~, where U is the channeling-electron
speed, co~=~c/a and a is the the periodic reAection-
plane spacing. Typically A~o is a few electron volts in the
laboratory frame so that for the relativistic factor y on
the order of 20, Ace is on the order of several keV. Conse-
quently, the channeling-electron energy may be tuned to
satisfy the Bragg-reAection condition and induce distri-
buted feedback in the channeling crystal.

The behavior of the electric E field of the electromag-
netic wave and the polarization P of the beam electrons
are related by the Maxwell's wave equation:

B~+ ~ B~++— + ( tu+ i K) e~
Bz c Bt

BE ] BE
+e '"' — + — +(p+iK)e

Bz c Bt

[e'"'(1—v /c)P ~ +e '"'(1+v /c)P ],c

(4)

where k =tv/c and second-order derivatives are ignored
because B c. /Bt «~Bc/Bt and B' ./Bz' « kBc/Bz.

Equation (4) must be supplemented by the equation for
P+ and is readily determined from a density-matrix ap-
proach obeying the Bloch equation ''

P+ +v P+ =i b+P+ —i (I+ v /c)d ni, We+/fi
Bt Bz

B2 E-
BZ2

B2 E= — P+cVXM+J, (1) —rP

where M =P X v/c is the magnetization due to the beam
electrons and transverse-field effects are not considered.
The induced current J=J„,,+J~„„where J„,is the oscil-
latory part and J~„, is the dissipative current. We approx-
imate J„,.=n, ev, and ((l/t3t )J„,=e n, E/m„where n,
is the spatially modulated atomic-electron density. ' The
current J„,provides coupling between the forward- and
backward-propagating waves and is mainly due to the
outer cloud of atomic electrons. The current J~„=o.E,
where o. is the modulated dissipative conductivity, and
represents the photoelectric absorption of the radiation
by the tightly bound electrons close to the atomic sites. '

The induced current J in the right-hand side of Eq. (1)
can be represented as

c—J=
Bt 277

BEEKE+p Bt
(2)

~ ( r) ( r)
—its(t —zlc)

( r )
—

t t~( t + z/c) ~ (3a)

p( r) p ( r)
—t u(t —z/cc)

where K =2~e n, /cm ~ is the reAection function,
p=2~o. /c is the absorption function, and an average is
carried out over the transverse direction p=(x, y). In
this section the atomic motion is neglected so that K and

p are periodic functions in the z direction.
The electric E and polarization P fields are taken in the

x direction and are defined in term of forward- and
backward-traveling waves,

P+ = id nb
—We+(I —v/c)/RI (6)

In this limit b, -cu, 6 ))I", and in the case of low gain,
P can be ignored in Eq. (4). We now define the scalar
gain g =2ircv(d, ) ni, W/A tc, where d, =d(1 —v /c).
Substituting Eq. (6) in Eq. (4) we obtain

B l Be' ' e++ ——e++(p+iK)e+ —g+ e+
Bz c Bt

—i I-z 1

Bz c Bt
+——e +(p+iK )e —g

where the forward gain factor g+ =g and the backward
gain factor g =0.

In the following we obtain the equation of motion for
DFB x-ray laser by using the resonance parts of Eq. (7).
Notice that K and p are the periodic functions, i.e.,
K(z)=K(z+a) and)M(z)=p(z+a). For a periodic func-
tion f (z) =f (z +a) we can use the Fourier-series expan-
sion

where d=e( 1 ~x ~2) is the electric dipole moment, nb is
the beam number density, I is the phenomenological
damping constant related to the channeling coherence
length v/I, b, +=co(1-+v/c) —

coo is a detuning frequen-
cy, and U /c represents a magnetic dipole interaction
correction. In the limit of short coherence v/I the left-
hand side of Eq. (5) is small and Eq. (5) simplifies

P+ -idnb W(de+/A')(1+ v/c)/(id+ —I ) .

Near resonance co-2y mo and b+ /I « 1 giving

+P (z, t)e """+' '+c.c. , (3b)
f(z)= g fie

where c.+ and P+ are slowly varying envelope fields. In-
serting Eqs. (3a), (3b), and (2) in Eq. (1) we obtain where kz =co&/c =~/a and
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(9)

We insert the Fourier expansion Eq. (8) for K and p in
Eq. (7). For the case the radiation frequency is close to
the n-order Bragg-reAection condition k -nkvd and ignor-
ing highly oscillatory terms we obtain from Eq. (7)

a &
a

s++ — + (go+ iK0 )E+
Bz c Bt

+ (p„+iK„)E e =g+ s~, (10)

Bc,
E +— + (go+ iKO )e

Bz c Bt
2i(k —nk~ jz+ (p „+iK „)E+e =g

where to obtain Eq. (10) and Eq. (11) we divide Eq. (7) by
exp(ikz) and exp( ikz)—, respectively, and keep only the
resonance terms. Finally we redefine c+ as
e+ exp[ + i ( k —nkii )z ] and get

ik(z —R' ' —U )f(z)= gg V(k, )e (15)
j k

where R" and U" are the z components of R and U,
respectively. Here k, is the z component of the Fourier-
series expansion.

In order to find the ensemble average of f we use the
average relation for a harmonic crystal'

ik U(e ' ' ) = exp[ —k, ((U)~') )/2] (16)

and obtain
Qo

where in Eq. (17) we use the fact that for f (z) periodic
the only contribution is for k, =kl —=2lk~ and I is an in-
teger.

To find the ensemble average (( U'") ) we use the pho-
non representation for U . For simplicity we consider a
monatomic crystal of atomic mass I and with N unit
cells, '

a l ~~+
e+ + — —(g+ i 5 po

—iK—
O )c+-

z c

+(p„+iK„)s =0, (12)

U = 1

v'~, , 2M „ (C, +C, )e, (q)e

(18)

E + — —(g —i 5 po i—KO)s-
Bz c Bt

+(p„'+iK„")e+=0, (13)

where 5=nk~ —k is the detuning from the n-order Bragg
reAection. We have assumed that K and p are real func-
tions, i.e. , K =K* and p =@*.Equations (12) and
(13) are a coupled set of equations of motion for the DFB
x-ray laser. In Sec. III we include the average effect of
the atomic motion in the crystal on Eqs. (12) and (13).

where C, ( C, ) is the creation (annihilation) operator of
a phonon with momentum q, frequency co „polarization
vector e., (q), and a, (q) =a,*(—q). The sum s in Eq. (18)
is over all the possible phonons bands. Using the
ensemble-average relations

(c,+, c„)=n„, (C„C,+, )=n„+1, (c„c„)=o,
where nq, is the occupation number of the phonon qs and
depend on the temperature of the system, we obtain

III. ATOMIC MOTION EFFECTS
ON THE DFB EQUATIONS

&(U,'")'& =—g
q, s qs

(2nq, +l)[a, (q) z] . (19)

To include the atomic motion effects in an approximate
manner we introduce the reAection function K and ab-
sorption function p as an ensemble average over a set of
realizations of atomic displacements,

K(z) = (K(z) ~, p(z)= (P(z) ),

Equation (19) is independent of the specific location j.
We define the Debye-Wailer factor'

IVI =ki ((U,") )/2 and use Eq. (19) to obtain

2(1k~ )2

IVi = g (2nq, +1)[a,(q) z]N, 2M',

as

(20)

where K(z) and P(z) are the refiection and absorption
functions, respectively, for a given realization averaged
over the transverse direction p. To carry out the averag-
ing procedure on K and p we consider a general function
f (z) such that f (z)= (f(z) ), where f (z) is a periodic
function f (z) =f(z +a). We can write f as

From Eqs. (19) and (20) we can rewrite Eq. (17) as a series
expansion,

(21)

f(z) = g I V(r —R —U) ) I i, (14) where

where V(r —R —U ) is the contribution at r=(p, z) of
the atom located close to site R with an atomic displace-
ment U, . Here [ V]i is an average over the transverse
direction. Applying a Fourier-series expansion and
averaging over the transverse direction we obtain

—2ilk R '"
fI = g V(21k~)e

J

Comparing Eqs. (21) and (8) we find that the inclusion of
the atomic motion is by replacing fI by a Debye-Waller-
dependent term fr exp( —8'I ).
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Following the above ensemble averaging procedure for
K and p the atomic-motion effect can be included in the
equations of DFB x-ray laser, Eqs. (12) and (13), by re-
placing K„and p„by K„exp( —W„) and p„exp( —W„),
respectively,

A. ——+i6+iK +p + k ———i6—iK —p0 0 0 0

)( —2XL 0 (29)

a 1 a
e+ + e+ (g+ l5 po /K() )E~

Bz c Bt

+ e "(p„+iK„)s =0, (22)

A formal solution of allowed resonance frequencies 6
and threshold values g can be obtained by inserting Eqs.
(26) and (27) in Eq. (24),

1+ ——e —(g —i6 —p„—iKO )e
0z c dt

+e "(p,*, +iK„*)e+=0, (23)

k=+(iK„+p„)e "sinh(AL),

i 5 =—(iK„+po)+(iK„+p„)e " cosh(XL ) .
2

(30)

(31)

where we use that 8'0 =0.
The inclusion of the atomic motion by a Debye-Wailer

factor was verified experimentally in anomalous transmis-
sion of x-rays by multiple diffraction (the Borrmann
effect). ' '' From Eq. (20) we find that even at zero tem-
perature, where n, =0, W&WO and the zero-point motion
inffuences Eqs. (22) and (23). In the Sec. IV, Eqs. (22) and
(23) will be used to analyze the threshold conditions of
DFB x-ray laser. + [p2+e (nK2 2 )]1/2 (32)

Equation &30) determines A. . Substitution of X into Eq.
(31) and equating real and imaginary parts yields the al-
lowed 6 and g.

Approximate formulas can be obtained in the limit of
strong reflections: (K„L) ))(gL) + I and ~AL

~
&(l.

Upon expanding Eq. (30) in this limit and using the ex-
pression for A. we find for the first resonance that

IV. THRESHOLD AND SELECTIVITY CONDITIONS and the threshold gain condition g, is

We now find the effect of absorption and atomic
motion on the threshold gain and selected resonance fre-
quency. The system at threshold is presented by the solu-
tion of Eqs. (22) and (23) at steady state, 2po+

W
6K, e —2 W„—2e "K„p,(K'+ )L'

[po+e "(K„—p„)]'
(33)

d —w„
e+ —(g+ —i o —p„—iKo )e+ + e "(p„+iK„)e =0,

dz

(24)

d
n—(g i 5 p— o

i—KO ) e + e "(p„*+iK„*)e+z 6= —Ko+K„e (34)

Equations (32) and (33) can be simplified for the typical
case of stronger reflection compared to absorption:
K, &)po,p, . For this case,

=0, (25)

c+(z) =eg'~ sinh[A(z +L /2)],
c. (z) =+e '~' sinh[A. (z L /2)], —

(26)

(27)

where

2

g —2W——i6 —iKO —po +e "(K„—i p„)
1/2

and the dispersion relation is

where g is identified as a threshold gain and 6 as the
selected frequency.

The coupled waves Eqs. (24) and (25) describe the spa-
tial variation of transmitted- and reflected-wave ampli-
tudes in a beam-channeling DFB medium. For a slab of
length I, centered at z =0, the accompanying boundary
conditions read: c+( L/2)=e (L—/2)=0 and no exter-
nal radiation sources are assumed. The corresponding ei-
genvalue solutions to Eqs. (24) and (25) for the case that
K, and p„are real numbers are found directly,

6e

n

'p. )- (35)

The threshold gain in Eq. (35) includes two independent
terms; the first term is due to reflection, the second one
is due to absorption. In a one-passage amplification sys-
tem (with no refiections) the absorption is with the aver-
age absorption coefficient po which is large for x rays,
po ) 10 cm '. " In the Bragg-reflection coupling system,
standing waves are generated with nodes on the atomic
sites and the absorption, located mainly near the atomic
sites, is strongly reduced. For this case at low tempera-
ture compare to the Debye temperature, where
exp( —W„)—1, p„ is of the order of po and g, due to ab-
sorption is strongly reduced compared to po. As the tem-
perature increases the atomic displacement and the ab-
sorption increases, the reflectivity of the atomic planes
K„ is reduced to K„exp( —W„); thus the threshold-gain
condition is increased. Section V is devoted to numerical
results and discussion of the threshold-gain condition in
Eq. (35).
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V. DISCUSSION

We first consider the threshold-gain condition by
neglecting the atomic motion exp( —W„)=1. From Eq.
(35) we can write g, =6/(K„L )+2(po —p„). As a nu-
merical example let us consider a periodic absorption
function p(z) =p(z +a ) defined by

(a/b)p, ~z~
& b/2

p(z) =
0, b /2 &

~ z~ & (a b) /—2, (36)

where b is the region of absorption around an atomic site
located at z =0 and b «a. We use the Fourier expan-
sion Eq. (8) to obtain

si n(nlrb/ a).p„p (37)

From Eq. (37) as b/a ~0, p, „~po for all n and the ab-
sorption po

—p„ is drastically reduced. Standing waves
are generated with nodes on the atomic sites reducing the
absorption located on the atomic sites and the threshold
gain. As the order of Bragg reflection n increases, p„de-
creases relative to po and g, due to absorption is in-
creased. Thus the lowest threshold is obtained for the
first-order Bragg reflections, n =1. From numerical cal-
culation of the anomalous absorption in a germanium sin-
gle crystal the value of 1 —p„ /po can be of the order of
10 '. ' Thus, using Eq. (37) for n =1, a =3 A gives
b =0. 1 A and the absorption is mainly due to the tightly
bound electrons located very close to the atomic sites.

The threshold-gain condition due to reflection can be
evaluated using the refiection function K (z) with a modu-
lated atomic electron density: n„(z ) = n o [1
+ cos(2kzz)]. Applying the Fourier expansion, Eq. (8),
for K(z) we obtain K0=2me nolcmco~ and

K& =+Ko/2. Typically I| o is on the order of 10 cm
in a number of crystalline samples used in channeling
studies, for example, silicon and diamond, where no is ap-
proximately the crystal bound-electron density. For
first-order Bragg reflections n =1 and L =0. 1 cm the
value of g, due to reflection is 2X10 cm '. In crys-
tals with low atomic numbers, e.g. , LiH, po-10 cm
and for 1 —p, /po-10 ' the value of g, due to absorption
is 10 cm '. Thus, the main contribution here to the
threshold-gain condition is absorption. But as L de-
creases below 200 pm the reflection contribution to g,
exceeds the absorption one.

It is shown in Refs. 15 and 16 that by applying a
diffraction scheme from several sets of atomic planes
which satisfy the Bragg condition simultaneously, it is
possible to reduce the absorption of the radiation. In this
method, called the multibeam Borrmann effect, standing
waves are generated in several directions relative to the

atomic site, generating larger nodal regions in radiation
fields and the absorption for some of the radiation modes
can be reduced by a factor of 10 . ' For this case and
po-10 cm ', g, due to absorption can be reduced to
10 'cm

The inclusion of the atomic motion in Eq. (35) is
through the Debye-Wailer factor and is related to the
average displacement U, where U =((U") ) decreases
with the increase in the Debye temperature TD. For a
crystal with a high Debye temperature 8„due to the
zero-point motion can be as slow as 8'„—10 n . '

Thus, for n =1 and temperatures T « TD the zero-point
motion does not change g, appreciatively. But as the
temperature increases above the Debye temperature the
phonon occupation numbers in Eq. (20) introduce in 8'&

a temperature dependence proportional to 1+2T/TL, .
This thermal motion has a strong effect on g, due to ab-
sorption which takes the form of 2po[1 —exp( —W„)] for
p„-p„, and for large 8' the absorption is 2po. The
thermal motion reduces the reflectivity of the atomic
planes to K„exp( —W„) and the total g, is increased.
Thus, in the DFB scheme of x-ray laser one should con-
sider temperatures T « TD with n =1. Furthermore, by
applying the multibeam Borrmann effect together with
the DFB scheme the atomic-motion effect and the
threshold-gain condition can be further reduced.

For the case the gain g is larger than the threshold gain
g, the radiation fields c+ increase with time as
exp[(g —g, )ct /2] in the linear range. Thus, an
amplification factor (g —g, )ct/2 —1 is obtained for a
beam-pulse duration of 50 ns, L =0. 1 cm, and p„-10
cm ' for g —10 cm ' in the DFB scheme and by in-
cluding multibeam Borrmann effect for g —2 X 10
cm '. These results should be compared to the gain
(g —po)L —1 obtained in a one passage amplification,
wherefore L =0. 1 cm and po-10 cm ', g-20 cm
Thus, in spite of the limitations on g, due to the absorp-
tion, in terms of beam-current requirements the DFB
mechanism in beam channeling has possible application
in reducing current requirements by many orders of mag-
nitude.

In the present paper we pointed out that the combined
effects of DFB mechanism and multibeam Borrmann
anomalous transmission can be useful in reducing radia-
tion absorption. Threshold conditions for these com-
bined effects for specific geometry of reflection planes re-
quire further study.
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