
Lawrence Berkeley National Laboratory
LBL Publications

Title
CosmoFlow: Using Deep Learning to Learn the Universe at Scale

Permalink
https://escholarship.org/uc/item/6g4145rq

Authors
Mathuriya, Amrita
Bard, Deborah
Mendygral, Peter
et al.

Publication Date
2018-11-01

DOI
10.1109/sc.2018.00068

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6g4145rq
https://escholarship.org/uc/item/6g4145rq#author
https://escholarship.org
http://www.cdlib.org/

CosmoFlow: Using Deep Learning to Learn the
Universe at Scale

Amrita Mathuriya∗, Deborah Bard†, Peter Mendygral‡, Lawrence Meadows∗, James Arnemann§,
Lei Shao¶, Siyu He∗∗†‖, Tuomas Kärnä∗, Diana Moise‡, Simon J. Pennycook¶,

Kristyn Maschhoff‡, Jason Sewall¶, Nalini Kumar¶, Shirley Ho∗∗†‖, Michael F. Ringenburg‡, Prabhat† and Victor Lee¶
∗Intel Corporation, 2111 NE 25th Ave, JF5, Hillsboro, OR 97124, USA. Email: amrita.mathuriya@intel.com
†Lawrence Berkeley National Laboratory, 1 Cyclotron Road, M/S 59R4010A, Berkeley, CA 94720, USA

‡Cray Inc., 901 Fifth Avenue, Suite 1000, Seattle, WA 98164, USA
§ U.C. Berkeley, Berkeley, CCA 94720, USA

¶Intel Corporation, 2200 Mission College Blvd., Santa Clara, CA 95054, USA
‖McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

∗∗Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York, NY 10010, USA

Abstract—Deep learning is a promising tool to determine
the physical model that describes our universe. To handle the
considerable computational cost of this problem, we present
CosmoFlow: a highly scalable deep learning application built
on top of the TensorFlow framework. CosmoFlow uses efficient
implementations of 3D convolution and pooling primitives, to-
gether with improvements in threading for many element-wise
operations, to improve training performance on Intel® Xeon
Phi™ processors. We also utilize the Cray PE Machine Learning
Plugin for efficient scaling to multiple nodes.

We demonstrate fully synchronous data-parallel training on
8192 nodes of Cori with 77% parallel efficiency, achieving 3.5
Pflop/s sustained performance. To our knowledge, this is the
first large-scale science application of the TensorFlow framework
at supercomputer scale with fully-synchronous training. These
enhancements enable us to process large 3D dark matter distri-
bution and predict the cosmological parameters ΩM , σ8 and ns

with unprecedented accuracy.
Index Terms—Cosmology, Deep Learning, Machine Learning,

TensorFlow, High Performance Computing

I. OVERVIEW

A. Deep Learning for Science

Deep Learning is a powerful technique for learning the
relationships between variables in complex data. It has been
widely developed and adopted in commercial applications to
solve classification and regression problems. Many science
areas face similar classes of problems, with complex data
that contains features that cannot be readily extracted through
traditional statistical methods. Deep learning techniques are
poised to have a major impact on many scientific domains [1].
However, deep learning with scientific data has unique chal-
lenges that are typically not faced in the commercial world.
Scientific data is often complex (multi-dimensional (3D, 4D)
with several channels) and voluminous (TB-PBs in size). To
be relevant for scientific problems and allow fast turnaround
of the exploration of ideas, deep learning frameworks need to
efficiently process multi-dimensional data at scale.

B. Deep Learning for Cosmology

The nature of dark energy is one of the most exciting and
fundamental questions facing scientists today. Dark energy is
the unknown force that is driving the accelerated expansion of
the universe, and is the subject of several current and future
experiments that will survey the sky in multiple wavelengths
(for example LSST1, DESI2, DES3, WFIRST4). We cannot
measure dark energy directly - we can only observe the
effect it has on the observable universe. The interplay of
gravity (pulling matter together) and dark energy (expanding
space itself) is encoded in the distribution of matter in the
universe. Cosmologists typically characterize this distribution
using statistical measures of the structure of matter - measures
of its “clumpiness” - in the form of two- or three-point
correlation functions [2] or other reduced statistics. Methods
that capture all features in the distribution of matter (such as
deep learning networks) could give greater insight into the
nature of dark energy.

C. Contributions

The CosmoFlow project aims to process large 3D cos-
mology datasets on modern HPC platforms. Our specific
contributions are as follows:
• We adapt the deep learning network described by Ra-

vanbakhsh et al. (2017) [3] to a scalable architecture for
a larger problem size of 1283 voxels and predict three
cosmological parameters. We perform simulations and
generate the cosmology dataset used in this work with
the 3 parameter variations.

• We implement efficient primitives in MKL-DNN [4]
for 3D convolutional neural networks, which are used
in an optimized TensorFlow [5] framework for CPU
architectures.

1https://www.lsst.org/
2http://desi.lbl.gov/
3https://www.darkenergysurvey.org/
4https://wfirst.gsfc.nasa.gov/

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 ©2018 IEEE

ar
X

iv
:1

80
8.

04
72

8v
2

 [
as

tr
o-

ph
.C

O
]

 9
 N

ov
 2

01
8

Fig. 1. Example simulation 256Mpc/h3, 1283 voxel sub-volume, used as
input to the CosmoFlow network. This sub-volume is taken from the full
512Mpc/h3 simulation of dark matter in the universe, evolved over 3 billion
years to a redshift of 0 (i.e. today).

• We utilize the Cray Programming Environments Machine
Learning Plugin (CPE ML Plugin) to efficiently scale
deep learning training on supercomputers via MPI.

• We demonstrate for the first time fully synchronous data
parallel training with high efficiency at supercomputer
scale and achieve sustained 3.5 Pflop/s single precision
performance on 8192 Cori Intel® Xeon Phi™ processor
(KNL) nodes. We discuss the training methodology at
2048 and 8192 nodes for convergence and trained model
predictions. The single node and scaling performance
improvements enable us to process a large 3D dark matter
distribution and predict the cosmological parameters ΩM ,
σ8 and ns with unprecedented accuracy.

II. STATE OF THE ART

A. Deep Learning in Cosmology

In recent years deep learning methods have started to be
used in astronomy, including for the prediction of galaxy
morphology [6] and generating models for galaxies images [7].
Today, deep learning is starting to gain traction in cosmology,
as the ability of these algorithms to learn features in the
universe becomes apparent. For example, deep learning is
being used in cosmology simulations to reduce the compu-
tational load of expensive simulations of the universe. Deep
Learning was used by Lucie-Smith et al. (2018) [8] to predict
whether regions of an initial density field of dark matter will
collapse into dark matter halos and therefore form galaxies.
Generative Adversarial Networks were used by Mustafa et
al. (2017) [9] to generate 2D mass maps of the sky (via
gravitational lensing [2]) for specific cosmological models,
indistinguishable by all standard statistical metrics from maps
produced by full-scale N-body simulations.

We base this paper on the work presented by Ravanbakhsh
et al. (2018) [3], which was the first attempt to learn cos-
mological parameters directly from the distribution of matter.
The authors address a regression problem, where the best-
fit cosmological parameters are estimated given an observed
three-dimensional dark matter distribution. This work was the
first to demonstrate that deep learning can be used to signif-
icantly improve cosmological parameter estimation, seeing a
reduction in relative error of up to a factor of 3 compared to
traditional statistical metrics.

Others have used deep learning to estimate the parameters
which describe the physical model of the universe from
2D data. Schmelzle et al. (2017) [10] used deep learning
with data from 2D mass maps to address a classification
problem in estimating two cosmological parameters, for 5
specific cosmological models. The authors found that the
deep convolutional neural network (CNN) they developed
did significantly better at estimating the cosmological model
behind the mass maps than traditional metrics, indicating that
their network identified useful features in these maps beyond
those traditionally defined by scientists. They also addressed
the issue of training networks to deal with noise in real
scientific data, an aspect which we expect will accrue more
attention as the use of advanced machine learning techniques
is increasingly applied to noisy, complex scientific data.

We also note that the Schmelzle et al. (2017) [10] required
500 wall-clock hours to train their network on 12,500 2D
maps, using a single NVIDIA P100 GPU. This is a common
hindrance in the use of deep learning methods for scientific
analysis; a turnaround time of 20 days does not enable the
rapid development and testing of research ideas. HPC can be
used to address this issue and speed time to discovery.

B. Deep Learning on single Node

In deep neural networks (DNN), the most compute in-
tensive calculations occur in the convolution kernels, which
are similar in nature to matrix-matrix multiplication (and in
some prior works, SGEMM has been used for computing
convolutions [11]). Device manufacturers have been augment-
ing programmable processors (such as CPU and GPU) with
accelerators to speed up convolution operations [12]–[14].
These accelerators are capable of providing > 1012 AIOps/sec
compute with specialized libraries such as MKL-DNN [4] or
CuDNN [15]. However, training a complex DNN requires up
to an Exaflop of compute [16] and these accelerators do not
have the energy efficiency to solve this training problem at
large scale (with limited power budget).

TensorFlow [5] is an open source software library for
numerical computation using data-flow graphs, operating on
multidimensional data arrays referred to as ‘tensors’. It is
commonly used for machine learning applications, and is
widely popular among the scientific community. We focus
our work on accelerating 3D CNNs for CPU architecture in
TensorFlow framework, optimizing not just the convolutional
kernels but all stages involved in the full network topology.

C. Deep Learning on multiple nodes

Deep learning is inherently computationally demanding.
HPC systems and methods are being adopted in two ways to
reduce time-to-solution and to scale to larger problems sizes.

In one approach, HPC is used to enable a massively-parallel
hyperparameter search. For example, Young et al. (2017) [17]
scanned the possible space of network hyperparameters, using
up to 18,000 GPUs. In this approach, each node in the
HPC system independently trains a different network, and
aggregates the results to determine which network design in
the ensemble gives the best results.

In the second approach, an HPC system can be used to
train a single network. In a model-parallelism method different
nodes optimize different parts of the same network using the
same data. This method is important if the model size is too
large or too complex to fit on a single compute node. In a
data-parallel training method (which we utilize in this paper),
different nodes train the same model on different subsets of the
data. After every training step the nodes pool their results to
decide what should happen in the subsequent step. The global
batch size is, therefore, the sum of batch sizes over all compute
nodes. This data-parallel method is particularly suitable for
datasets that are either too large to fit in the memory of a
single compute node or will take too long to train using a
single node, for example in Kurth et al. (2017) [18].

Synchronous approaches for multi-node deep learning use
collective global reductions to force the ensemble of nodes to
perform every parameter update at the same time. Attempts
to scale synchronous methods have found that the scalability
slows after a few hundred nodes [19]–[22]. This is due to a
number of factors, including the observation that large batch
sizes can slow down convergence without careful tuning of the
optimizer, or that a single slow node can significantly reduce
the aggregate performance. In this work, we further explore
the impact of IO variability on this “straggler” effect.

In an asynchronous approach, by contrast, each node inde-
pendently contributes to a central parameter server [18], [23]–
[25]. Such systems need more iterations-to-solution, since each
node is always working on a slightly out-of-date version of the
best parameter estimates, resulting in training inefficiencies.

TensorFlow by default uses the GRPC5 protocol for com-
munication. This implements a centralized master-slave-based
algorithm for an AllReduce operation of gradients. Mathuriya
et al. (2017) [26] showed that this approach and implemen-
tation does not scale to large node counts due to algorithmic
inefficiencies and socket-based communication. The CPE ML
Plugin, used in this work, uses MPI-based scalable algorithms,
specifically designed and optimized for DL workloads, to
overcome this issue. An alternative parallelization framework
is Horovod [27]. It uses general purpose MPI collectives
for gradient aggregation. Horovod is an option for scientists
looking for portability to any system that supports MPI.

To the best of our knowledge, this work is the first large
scale science application of the TensorFlow framework to

5https://grpc.io/docs/

efficiently run at supercomputer scale with fully-synchronous
training and is also the first to process 3D spatial data volumes
at this scale.

III. INNOVATIONS

In this work we present CosmoFlow, a highly optimized
and scalable deep learning application that predicts the cos-
mological parameters that describe the nature of the universe
given the 3D matter distribution. Our deep learning stack
uses Python as the front-end and is built on top of the
TensorFlow framework. We optimize 3D CNN performance in
MKL-DNN [4] and TensorFlow for KNL processors. In this
section, we describe the methods employed to accomplish our
performance goals.

A. 3D convolutional network and dataset

Our work is based upon the pioneering work done by
Ravanbakhsh et al. (2017) [3], where the authors demonstrated
that a convolutional neural network can learn cosmological pa-
rameters using 3D data. That work used 643-voxel simulation
volumes as training data and predicted two parameters. Scaling
up the network presented a computational bottleneck. The aim
of this paper is to predict three cosmological parameters by
adapting the network topology developed by Ravanbakhsh et
al. (2017) [3] and scale the problem to a dataset an order of
magnitude larger in physical volume (i.e. 1283 voxels), and
an additional order of magnitude increase in training samples.
Details of the datasets we generated and the cosmology
parameters are described in section IV-C.

CosmoFlow’s network topology consists of 7 convolution
layers and 3 fully-connected (FC) layers, as shown in Figure 2.
Similar to the topology presented by Ravanbakhsh et al.
(2017) [3], our network contains convolution layers followed
by average pooling layers with stride of (2,2,2) to reduce the
spatial dimensions of the inputs, while doubling the number
of output channels. Increasing the spatial dimension of inputs
directly impacts the number of input neurons in the first FC
layer, which in turn can increase the number of parameters in
the network significantly. To cope with the problem size going
from 643 to 1283 pixels, we include an additional convolution
layer, doubling the number of output channels, and an average
pooling layer which down-samples the inputs with the stride
of (2,2,2). This allows us to keep the overall topology the same
while keeping the number of network parameters manageable
with the increased problem size. We also update the number
of output neurons in the last FC layer to 3 corresponding to
the three cosmological parameters predicted. All convolution
and FC layers use leaky Relu as their activation function.

In addition, we optimize CosmoFlow’s topology in two
ways for performance considerations.
• We increase the number of output channels for all convo-

lution layers to be a multiple of 16 to allow for efficient
vectorization over the channel dimension.

• We remove batch-norm layers from the topology for
efficient scaling and compute performance. We use a

batch size of one for all our experiments, and do not
see accuracy degradation with batch-norm removal.

B. SGD Optimizer

We use fully synchronous training for each of the runs. All
runs use a batch size of 1 for each MPI rank, which gives
an effective batch equal to the number of MPI ranks with 1
MPI rank per node. For all training runs, we use Adam [28]
as our base optimizer with β1 = 0.9, β2 = 0.999, ε̂ = 10−8.
We combine Adam with the Layer-wise Adaptive Rate Control
(LARC) [29] technique and a polynomial (power=1) learning
rate decay schedule. LARC is a variant of Layer-wise Adaptive
Rate Scaling (LARS) [30]. LARS/LARC adjust the magnitude
of the update with respect to the weight norm for each layer
for better control of training speed and stability. On top of
LARS, LARC includes a clip operation for each layer such
that the effective learning rate will not exceed the nominal
learning rate for Adam.

The polynomial learning rate decay enables larger learning
rates early in training, and thus faster training, but slows
training down to aid in convergence to a local minima to
overcome the training difficulty typically observed at large
effective batch sizes. Parameters ~vl,t in a layer l at step t
with gradients ~gl,t are updated according to

ηt = (η0 − ηmin)× (1− t

tdecay
) + ηmin

vl,t = ||~vl,t||2, gl,t = ||~gl,t||2

η∗l,t =

{
0.002

vl,t
gl,t

, for vl,t 6= 0 and gl,t 6= 0

6.25× 10−5 otherwise

η†l,t = min(η∗l,t, 1)

~g∗l,t = η†l,t~gl,t

~vl,t+1 = Adam(~vl,t, ~g
∗
l,t, ηt),

where ηt and η†l,t is global learning rate at step t and the
clipped local learning rate for layer l at step t, respectively
and η0 = 2× 10−3, ηmin = 10−4.

C. Single-node optimizations

To improve single-node performance, we analyze the
CosmoFlow topology with the Intel® VTune™ Amplifier
2018 [31] update 2 profiler. We identify the primary compu-
tational hotspots, which include 3D convolution and pooling
operators. We optimize these operators within the MKL-DNN
library. Subsequently identified hotspots include element-wise
operations in TensorFlow, for which we implement simple
loop-level parallelism with OpenMP. This makes the threading
scheme used in TensorFlow more compatible with MKL-
DNN’s OpenMP threading.

We use a direct convolution algorithm, where the compu-
tation of each output element involves a 4-dimensional inner-
product over the weight array and input channels. We opti-
mize 3D convolution operators by vectorizing the innermost
loops, applying cache- and register blocking, and threading.
Algorithm 1 outlines the forward convolution procedure for

Algorithm 1 Pseudocode for 3D forward convolution DST =
conv(SRC,W). The input (SRC) and output (DST) arrays
have been blocked by 16 channels. The weight array (W)
has been blocked by 16 input and output channels. Variables
s, d, w are pointers to an element in the larger arrays. For the
sake of simplicity we assume that stride is one and output
width is a multiple of 28 voxels.
Require: SRC ∈ RICB×ID×IH×IW×16

Require: DST ∈ ROCB×OD×OH×OW×16

Require: W ∈ ROCB×ICB×KD×KH×KW×16×16

1: for ocb = 1 · · ·OCB do // Output channel block
2: for icb = 1 · · · ICB do // Input channel block
3: for od = 1 · · ·OD do // Output depth
4: for oh = 1 · · ·OH do // Output height
5: for owb = 1 · · ·OWB do // Output width block
6: d← DST [ocb, od, oh, 28owb, 0]
7: for kd = 1 · · ·KD do // Kernel depth
8: for kh = 1 · · ·KH do // Kernel height
9: for kw = 1 · · ·KW do // Kernel width

10: s← SRC[icb, od+ kd, oh+ kh, 28owb+ kw, 0]
11: w ←W [ocb, icb, kd, kh, kw, 0, 0]
12: for ow = 1 · · · 28 do // Output width
13: for oc = 1 · · · 16 do // Output channel
14: for ic = 1 · · · 16 do // Input channel
15: d[16ow + oc]← w[16ic+ oc]s[16ow + ic]

layers where the number of input and output channels is
a multiple of 16. The input, output, and weight arrays are
blocked by channels. Block size is set to 16 to match the
target machine’s single-precision SIMD width. Additionally,
we block the output width dimension by 28 voxels. This results
in three innermost loops with sizes 28, 16, and 16. These
loops are completely unrolled and vectorized with AVX512
SIMD instructions, making use of all the 32 SIMD registers
available. We employ a just-in-time-assembly framework [32]
to generate the desired AVX512 instructions for the inner
loops. Thread decomposition is done over the output voxel
space, each thread writing to a separate block.

The backward propagation pass involves two operators: the
backward data operator that propagates the difference signal to
the input layer, and backward weight operator that computes
the weight difference signal. These operators are optimized
with a similar strategy by blocking the channels and using
SIMD vectorization.

The backward weights operator is equivalent to a forward
convolution with large inputs and kernels and produces a
small output tensor. When the number of channels is small,
threading is done over the output image voxels: each thread
operates on a distinct region of the output image. Threads
accumulate weights in thread-private scratch arrays before
combining them all at the end via a parallel reduction. On
layers with sufficiently many input/output channels, we divide
work amongst threads to minimize the reduction overhead:
channel blocks are first assigned to teams of threads, then
voxels are assigned to threads in the team. In cases where
there are a sufficient number of channel blocks (e.g. the last
few layers of the CosmoFlow topology), we do not parallelize

Fig. 2. CosmoFlow network topology, showing the different network layers and data sizes at each layer.

across voxels at all and are able to skip the reduction entirely.
Average pooling is a special case of the convolution op-

erator: each channel is averaged separately, and the weights
array is a constant (each element being 1/(KS)3 for a kernel
of size KS). The lower arithmetic intensity results in the
pooling operator being bandwidth-bound. Our optimizations
include the aforementioned 16 channel blocking, AVX512
vectorization, and just-in-time-assembly. Threading is done
over the output voxel space.

D. Multi-node scaling

The CPE ML Plugin6 (available for Cray systems) is an
MPI-based, framework-independent plugin for parallelizing
the training of deep learning networks. It includes easy-to-use
C/Python interfaces and provides highly optimized communi-
cation primitives designed for deep learning workloads. The
API and communication algorithms in the CPE ML Plugin are
specifically designed and optimized for deep learning training.

Data-parallel training is an ideal approach for this work
due to the volume of training data. Our approach is fully syn-
chronous training (hereafter Synchronous Stochastic Gradient
Descent or SSGD) as given in Algorithm 2.

Algorithm 2 Pseudocode for data-parallel synchronous train-
ing algorithm. The CPE ML Plugin is represented by mc, and
the gradient aggregation function is mc.gradients().
Require: N = total number of epochs
Require: n = total number of training samples
Require: k = number of MPI ranks

1: for epoch = 1 · · ·N do
2: for step = 1 · · ·n/k do
3: gstep ←compute gradients(local batchstep)
4: Gstep ←mc.gradients(gstep)
5: lossstep ←apply gradients(Gstep)

The CPE ML Plugin reduces the “straggler” effect in SSGD
by using non-blocking MPI communication to hide timing

6The CPE ML Plugin is included with the Cray Urika®-XC package.

imbalances across processes through the stages of the reduc-
tion. There are no unique processes (e.g. parameter servers,
backup workers) in its parallel design. Every MPI rank is
a worker computing gradients. This eliminates redundant or
wasted resources, simplifies its usage and requires little to no
extra tuning by the user.

The CPE ML Plugin uses a pool of helper threads for
communication. Threads can be organized into teams where
each team progresses a gradient aggregation independently.
The number of teams and threads per team is tuned by the user
when initializing the CPE ML Plugin. Each thread in a team
progresses a portion of gradient aggregation independently
with infrequent synchronization across threads. Using multiple
threads for communication can increase network utilization, in
particular on Intel® Xeon Phi™ processor architectures [33],
[34]. Four helper threads in a single team are used for the runs
on Cori and two helper threads in a single team are used for
Piz Daint runs in this work.

For this work no modifications are made to the TensorFlow
source to make use of the CPE ML Plugin. Instead we include
calls to it in the Python training script. The CPE ML Plugin
adds itself to the TensorFlow graph with a custom TensorFlow
operation7. This allows direct access to TensorFlow memory
and minimizes unnecessary copies of gradient data.

IV. SYSTEMS AND DATASETS

In this section we describe the dataset configurations that
were used to perform the scaling measurements. We also
describe the two HPC systems – Cori and Piz Daint – on
which these computations were performed.

A. Description of the Cori System

The CosmoFlow code is run on the Cori system at the Na-
tional Energy Research Scientific Computing Center (NERSC)
at Lawrence Berkeley National Laboratory. Cori is a Cray
XC40 system featuring 2,004 nodes of Intel® Xeon® Processor

7Documentation on custom TensorFlow operations is found at https://www.
tensorflow.org/extend/adding an op.

https://www.tensorflow.org/extend/adding_an_op
https://www.tensorflow.org/extend/adding_an_op

E5-2698 v3 (“Haswell”) and 9,688 nodes of Intel® Xeon Phi™
Processor 7250 (KNL). All computations presented here are
performed on KNL nodes. Each of these nodes contains 68
cores (each supporting 4 simultaneous hardware threads), 16
GB of on-package, multi-channel DRAM (“MCDRAM”), and
96 GB of DDR4-2400 DRAM. Cores are connected in a 2D
mesh network with 2 cores per tile, and 1 MB cache-coherent
L2 cache per tile. All measurements reported in this work are
performed with the MCDRAM in “cache” mode (configured
as a transparent, direct-mapped cache to the DRAM). Each
core has 32 KB instruction and 32 KB data in L1 cache. The
nodes are connected via the Cray Aries interconnect.

In addition, the Cori system contains 288 nodes as part of
the Cray DataWarp system (also known as the “Burst Buffer”).
Each DataWarp node contains 2×3.2TB SSDs, giving a total
of 6.4TB per node and a system total of roughly 1.8PB of SSD
storage. The Burst Buffer is measured to give up to 1.7TB/sec
read/write performance and over 28M IOP/s, making it one of
the fastest IO systems in the world. We stripe our data over
125 DataWarp nodes with the default stripe size of 8MB.

Cori also has a Sonnexion 2000 Lustre filesystem, which
consists of 248 Object Storage Targets (OSTs) and 10,168
disks, giving nearly 30PB of storage and a maximum of
700GB/sec IO performance. We stripe our data over 64 OSTs
on Cori Lustre with the default stripe size of 1 MB.

B. Description of the Piz Daint system

Piz Daint is a Cray XC50 system located at the Swiss Na-
tional Supercomputing Center (CSCS) with 1,431 dual socket
nodes populated with Intel® Xeon® E5-2695 v4 processors,
and 5,320 hybrid nodes each with one Intel® Xeon® E5-2690
v3 processor and one NVIDIA P100 (PCIe) GPU. It has a
theoretical peak of more than 25 Pflop/s. The work presented
here uses the hybrid nodes, which each have 64 GB of DRAM
and 16 GB of high bandwidth memory (HBM) on the GPU.

The Piz Daint Sonexion 3000 Lustre filesystem consists of
40 OSTs, has a capacity of 6.2 PB and an aggregate peak
bandwidth of 112 GB/s. In all of our tests we striped training
data over 16 OSTs. Piz Daint also has a DataWarp filesystem,
but we do not make use of it for this work due to availability
issues.

C. Simulation Data

We train the CosmoFlow network using dark matter N-
body simulations produced using the MUSIC and pycola
packages. MUSIC8 [35] (MUlti-Scale-Initial-Conditions) is
used to create the initial conditions for the simulations. A
slightly modified version of pycola9 [36], [37] is used to
create the dark matter simulations. pycola is a multithreaded
Python/Cython N-body code, implementing the Comoving
Lagrangian Acceleration (COLA) method in the temporal
and spatial domains. The COLA approach preserves N-body
accuracy at large scales, but is significantly faster to run than
a traditional N-body simulation code. This allows us to run

8https://www-n.oca.eu/ohahn/MUSIC/
9https://bitbucket.org/tassev/pycola/

a large suite of fast but accurate simulations to be used as
training data.

We use simulation volumes of 512h−1Mpc3 containing
5123 dark matter particles, which are evolved from the random
density fluctuations provided by the MUSIC initial conditions
to a redshift (z) of zero (i.e. to the present day). We use
the z = 0 snapshot for our training dataset. We run 12,632
simulation boxes, varying ΩM , σ8 and ns. ΩM describes
the proportion of matter in the universe. We assume a flat
geometry for universe, i.e. the sum of the contributions of
matter and dark energy to the energy density of the universe
ΩM + ΩΛ = 1. σ8 defines the amplitude of mass fluctuations
in the universe at a distance scale of 8Mpc/h, and effectively
sets the scale of the matter density distribution we see in the
universe today. ns is the scalar spectral index of the spatial
curvature of a comoving slicing of the space-time. The best
estimates of these parameters come from a combination of
observations. We base the parameter ranges we use in our work
on the measurements made by the Planck collaboration from
the Cosmic Microwave Background [38], which give ΩM =
0.3089±0.0062, σ8 = 0.8159±0.0086, ns = 0.9667±0.0040.
Accordingly, we use an evenly sampled set of random param-
eters in the ranges (0.25 < ΩM < 0.35), (0.78 < σ8 < 0.95),
(0.9 < ns < 1.0) in our simulations.

Each of our 512h−1Mpc3 simulations cubes contains 5123

particles. This volume is histogrammed into a 2563-voxel
3D histogram of particle counts using the python function
numpy.histogramdd, and then split into 8 sub-volumes. This
gives us 8×1283-voxel sub-volumes per simulation (each
256h−1Mpc3 in spatial extent), for a total of 101,056 sub-
volumes. An example of this volume is shown in Figure 1.
We choose this simulation size based on the scale of the
physical structures in the simulations. Galaxy clusters, which
are widely regarded as sensitive cosmological probes, are
typically around 10h−1Mpc3 in size and separated by around
50h−1Mpc3 [39]. Our data volumes of 256h−1Mpc3 (with a
resolution of 2h−1Mpc3) represent a volume of space that
allows multiple clusters to be present at a resolution that will
include features such as dark matter filaments.

We set aside 150 simulations (i.e. 1200 sub-volumes) to
hold as the validation data, and 50 simulations (i.e. 400 sub-
volumes) to hold as the test data. This leaves us with 99,456
sub-volumes for the training dataset which we duplicate once
to augment our training dataset.

The TFRecord file format is a simple record-oriented binary
format commonly used in TensorFlow. We randomly assign
the training sub-volumes to TFRecord files for training. We
do not randomize or repeat the validation and test TFRecords.
Each TFRecord contains 64 samples and is 512MB in size.
The total amount of TFRecord data is 1.4TB.

D. Libraries and Environment

The TensorFlow code used in this work is an extension
of the 1.5 release (r1.5) branch [40]. On Cori, TensorFlow
is compiled with the GNU compiler gcc 7.2.0, using bazel
version 0.11.1 and MKL-DNN with the -config=mkl

flag. Bazel copt flags are “mfma, mavx2, O3, ggdb3,
march=broadwell and DINTEL_MKL_DNN” and we use
the cxxopt option is D_GLIBCXX_USE_CXX11_ABI=0. We
run TensorFlow with inter_op and intra_op thread
settings equal to one. We use the Intel® VTune™ Am-
plifier 2018 [31] update 2 profiler to identify primary
computational hotspots on Cori. Our MKL-DNN develop-
ment is based on the master branch (tag [41]). On Cori,
at run time, we use the Intel® distribution for Python
version 2.7, unset OMP_NUM_THREADS variable, and set
the thread affinity using “KMP_AFFINITY=compact” and
“KMP_HW_SUBSET=64C@2, 1T ”. We use the CPE ML Plu-
gin version 1.1.0 along with Cray MPICH version 7.6.2. We
run the code with 1 MPI process per compute node. We also
run CosmoFlow on Piz Daint, where we use cuDNN v7 [15]
and CUDA 8 with publicly available TensorFlow r1.5 version
for NVIDIA P100 (PCIe) GPUs with 1 MPI rank per node.
We use four and two helper threads of CPE ML Plugin on
Cori and Piz Daint respectively.

V. EXPERIMENTS AND RESULTS

A key objective of this work is to achieve convergence
at extreme scale with high compute and scaling efficiency.
Convergence of the deep learning algorithm is directly affected
by the global batch size, which is the summation of mini-
batch size processed by each node, and which increases
proportionally with the node count. We therefore process a
mini-batch size of one on a single node to keep the global
batch size manageable at the full supercomputer scale.

In this section, we describe the methodology used for cal-
culating the floating point operations rate (flop/s) and present
results and analysis of single node and scaling runs. We also
describe our full-scale runs on Cori, which are targeted for
high performance with convergence.

A. Workflow and Network’s FLOP rate computation

As stated in Section III, the CosmoFlow network consists
of 7 convolution and 3 fully-connected layers, together with
three average pooling layers. The last four convolution layers
have relatively little computation due to the smaller input
sizes. The network consists of slightly more than seven million
parameters. Both the input dataset and the weights use 32-bit
single precision floating point format. With a mini-batch size
of one, the total amount of computation in the network is 69.33
Gflop, and the network requires 28.15 MB of parameters.

The execution of CosmoFlow starts with python and the
supporting TensorFlow library being launched on each com-
pute node. Once the neural network is constructed in Tensor-
Flow, the initial model parameters are broadcast from rank 0 to
all other ranks. This ensures all ranks start with the identical
model as required for data parallel training. Each rank then
enters a loop over epochs, where an epoch consists of training
and validation loops. The number of iterations of each loop
is defined by Niters = Nsamples/nranks, where Nsamples is
the number of either training or validation samples. Dedicated
I/O threads in each rank buffer randomly selected samples

TABLE I
CONVOLUTION LAYER PERFORMANCE, SHOWING THE TIME AND

PERFORMANCE OF EACH LAYER FOR FORWARD DATA (FWD), BACKWARD
WEIGHTS (BWW), AND BACKWARD DATA (BWD)

Layer Time(ms) TF/Sec
Fwd Bww Bwd Fwd Bww Bwd

Conv3D 1 1.14 0.74 1.52 2.32
Conv3D 2 4.04 6.20 6.76 3.51 2.28 2.09
Conv3D 3 2.32 2.65 2.84 2.22 1.95 1.82
Conv3D 4 0.40 0.39 0.42 0.25 0.25 0.22
Conv3D 5 0.32 0.29 0.40 0.35 0.37 0.31
Conv3D 6 0.22 0.29 0.30 0.10 0.08 0.09
Conv3D 7 0.18 0.22 0.21 0.04 0.03 0.05
Total 8.62 10.78 10.94 2.47 1.97 1.79

into memory from disk for both training and validation.
The training loop consists of gradient calculation, gradient
averaging via MPI communication, and model update from
the globally averaged gradients. The validation loop consists
of loss calculation and global averaging.

B. Single-node results

We first present our analysis of single-node performance on
one KNL node of the Cori system with a single MPI rank and
batch size of one. As we scale, communication starts taking
more and more time, but the compute fraction of the profile
on a node at scale should stay similar to the single-node one
because we keep mini-batch size per node fix. We enable the
CPE ML plugin even at the single node and run with real data
from the burst buffer. We used the profiler to collect sampling
data for 100 iterations, starting at iteration 10 and ending at
iteration 109 (thus allowing for warmup). The average elapsed
time per iteration is 145 ms (profiling adds 15 ms overhead).

The majority of the floating-point operations occur in the
forward and backward convolution layers. Table I shows the
performance of each convolution layer; the larger convolutions
achieve well over 1 TFlop/Second. Many of the smaller
convolutions do not, but their contribution to the total time is
also less. The convolutions were timed with print statements
and this caused noticeable overhead on Cori, so the total time
shown in Table I is greater than the time shown in Figure 3.

Figure 3 shows the time breakdown by computational units
of the single node run. The run used 64 OpenMP threads
(including the master thread), 6 I/O threads, and 4 CPE ML
Plugin threads. The three bars represent compute profiles of
master, worker and communication threads respectively. In this
single-node run, only one of the I/O threads was active, and the
plugin threads spent most of their time spinning (since there
is no actual communication in this case). Since the node has
only 68 hardware cores, some cores were assigned more than
one thread. Linux scheduling worked well for this application
and scheduled the active I/O thread and the OpenMP master
thread on the same core. This is the Master column in the
figure. The 63 OpenMP worker threads, shown as Worker,
and the 4 plugin threads, shown as Comms, were also given
separate cores.

The CosmoFlow network executes many element-wise and
data reordering operations which are not compute intensive

Fig. 3. Profile of time spent in various stages of the CosmoFlow application
on a single KNL node. The stages are OpenMP spin time and overhead, non-
convolutional computational time, 3D convolutions, CPE ML Plugin, other
time, Linux kernel time, and TensorFlow framework time.

and adds very little to the flops count. Source of the element-
wise operations are the forward and backward passes of leaky
Relu, (which involves calling two Relu and ReluGrad oper-
ations), the Adam+LARC optimizer with polynomial decay,
and loss calculations. Each of these functions are threaded
separately using loop-level parallelism with OpenMP. A load
imbalance is created among OpenMP threads due to the
low compute load in these functions, and the speedup from
OpenMP is less than the ideal case. Also, data reordering
between the blocked and non-blocked layout occur at various
stages of the graph execution.

We achieve 535 Gflop/s performance on a single KNL node
including the overhead of I/O and the CPE ML Plugin. We
also note that the corresponding performance on a single GPU
node f Piz Daint system is 388 Gflop/s.

C. Multi-node scaling results

We perform scaling runs on Cori and Piz-Daint systems
described in figure 4. As we scale on multiple nodes, batch size
per node is kept constant at one. Therefore, global batch size
is equal to the number of nodes. The performance of the multi-
node scaling runs is measured in terms of throughput (walltime
per epoch). Reported speedups are the walltime speedups
relative to the time taken in a single epoch for training on one
node. This includes training loop and loss averaging across
MPI ranks at the end of the epoch. The average epoch time is
taken from 8 epochs in a 10 epoch run. The first two epochs
are not included in the average. These measurements capture
the end-to-end capability of the system and software, including
the single node optimizations, efficiency of the communication
approach, I/O and interconnect subsystems.

1) Cori: The first set of throughput measurements on Cori
are with the training data staged on the Lustre filesystem. The
right plot of Figure 4 shows poor scaling beyond 512 nodes

with efficiency dropping to less than 58% at 1024 nodes. To
investigate this scaling drop, we perform tests with dummy
data (i.e. data not read from a filesystem and instead generated
during compute) which suggest that I/O causes significant
scaling drop.

To overcome the read bandwidth bottleneck, the training
data is next placed on the DataWarp “burst buffer” (BB)
filesystem on Cori. With higher read bandwidth from the BB
filesystem, we see improved scaling efficiency for all the node
count as shown in the left part of figure 4. We achieve scaling
efficiency of 77% on 8192 KNL nodes as shown in the figure.

2) Piz Daint: The throughput measurements are repeated
on Piz Daint. The right plot of Figure 4 shows the results with
training samples placed on the Piz Daint Lustre filesystem.
Just as was observed on Cori, a probable read bottleneck is
encountered at 512 nodes and beyond. The scaling efficiency
drops to 44% at 512 node count. This is in-line with the scaling
drop seen on Cori with the data on Lustre filesystem. Similar to
Cori, the Lustre filesystem is a heavily used shared resource on
Piz Daint. The DataWarp filesystem on Piz Daint is expected
to give better scaling, which we will investigate in future work.

D. Full scale run

Our biggest run uses 8192 KNL nodes of Cori, completing
a total of 130 training epochs. At this scale, every process sees
20 samples per training epoch. The Cori system remains highly
stable throughout the run, with the an average epoch time
of 3.35 seconds with a standard deviation of ±0.32 seconds
(not counting the first epoch). The entire run took roughly
9 minutes total with 8 minutes of training time. We achieve
an average sustained performance of slightly over 3.5 Pflop/s
single precision for 8192 nodes with a parallel efficiency of
77% relative to a single node (6324X speedup). This speedup
is based on the timing of a full epoch. We achieved 80%
scaling efficiency using only the step time (excludes validation
and loop overheads).

We also perform a convergence run on 2048 nodes, with a
sub-set of the dataset used to train the 8192-node attempt. Our
efficient and scalable software stack allows us to tune hyper-
parameters such as base learning rate, minimum learning rate
and decay epochs for both of these runs and experiment with
variations in datasets. The loss function for both the 2048-node
and 8192-node runs are shown in figure 5. The network clearly
converges with fewer number of epochs in the 2048-node run.
We discuss the implications of this result for convergence at
scale in Section VII-A.

VI. DISCUSSION

A. I/O

Comparing the scaling performance between training data
staged on Lustre and then on DataWarp, we can examine
the read performance needed to obtain high efficiency. The
CosmoFlow code uses the QueueRunner and coordinator
features of TensorFlow to read and buffer training samples in a
pipeline behind gradient computation. Ideally this should hide
the cost of I/O as long as there is sufficient read bandwidth.

Fig. 4. Scaling of fully synchronous training on Cori and Piz-Daint based on epoch timing. Right figure is a zoomed-in version of the left one, highlighting
the scaling efficiency drop from Lustre file system.

We can estimate the minimum read bandwidth necessary to
hide I/O costs from

BWmin(MB/s/node) =
b× S(MB)

t(s)
, (1)

where b is the mini-batch size per process, S is the sample
size in MB, and t is the step time at that batch size. With
b = 1, S = 8 MB and t ≈ 0.129 seconds, the minimal
required read bandwidth per compute node is 62 MB/s. With
a maximum bandwidth of 700 GB/s for 248 OSTs on Cori
Lustre filesystem, each OST should be capable of 2.8 GB/s
and be able to feed 46 compute nodes fast enough for
CosmoFlow. We find that absolute performance is 16% better
using DataWarp at 128 MPI ranks, which suggests I/O is
already a bottleneck at that scale.

The step time at 128 nodes is 150 ms using DataWarp
and 179 ms using Lustre. Assuming I/O from Lustre limits
performance, Equation 1 predicts an average of 90 MB/s from
each of the 64 OSTs. There are several reasons to expect less
than peak bandwidth from each OST including read location
on each spinning disk, diversity of OSTs used in a moment
across all nodes, and that it is a shared resource on the system.
We suspect there is a wide range in bandwidth actually being
delivered across the OSTs and that the measured performance
is limited by the lowest bandwidth or significant contention.

B. Communication

We can estimate the latency of the gradient aggregation
communication with the CPE ML Plugin by comparing the
step time at 1024 nodes to 1 node on Cori. A single node
with training samples read from DataWarp achieves 7.72
samples/sec or a step time of 129 ms. At 1024 nodes, each
node achieves 6.19 samples/sec or a step time of 162 ms.
The latency from gradient aggregation is 33 ms assuming
that it alone accounts for the difference in step times. Noting
that the reduction algorithm communicates twice the message
length for large MPI rank counts, an estimate for the achieved
bandwidth from communication is (2×28.15 MB) / 0.033 sec
= 1.7 GB/s/node. Each node for the 8192 node job achieved

Fig. 5. Loss function for the training dataset (left) and validation dataset
(right), for 2048 and 8192 node runs. Note that the datasets used in the two
runs are not same and of different size, so the loss function and epoch time
cannot be directly compared.

5.96 samples/sec or a step time of 168 ms. The estimated
performance of the CPE ML Plugin at 8192 nodes is therefore
1.42 GB/s/node.

The Aries interconnect is capable of ≈ 10 GB/s/node
unidirectional between any two endpoints. These results show
the CPE ML Plugin can achieve a high bandwidth even with
math operations interleaved and global communication. It also
shows the effectiveness of the CPE ML Plugin at hiding any
“straggler” effects.

VII. IMPLICATIONS

A. Cosmology results

Figure 6 shows the parameter estimates from the 2048-
and 8192-node runs for the CosmoFlow network predicting
three cosmological parameters. We calculate the average rel-
ative error of the parameter estimation using (|ΩM,model −
ΩM,true|)/ΩM,model (where ΩM,model is the model estimate
and ΩM,true is the true value). We obtain relative errors of
(0.0022, 0.0094, 0.0096) for (ΩM , σ8, ns) with the 2048-
node run. This is comparable to the best experimental un-
certainty [38], [42] for ΩM and σ8, and almost 5× smaller
for ns. These relative errors are significantly lower than those
obtained by Ravanbakhsh et al. (2017) [3] using their CNN
where they only predicted two parameters. We attribute this
improvement in accuracy to the larger simulation volume, de-

Fig. 6. Estimates of ΩM , σ8 and ns from the 2048- and 8192-node runs.

spite the network being asked to infer an additional parameter.
We note that experimental observations using the dark matter
distribution are generally not able to measure ns accurately;
this work demonstrates that such a measurement can be made
possible using advanced machine learning techniques.

It is clear that the 8192-node run, although learning, is not
converged to the same accuracy as the 2048 node target run.
However we still see good parameter estimation, obtaining a
relative uncertainty of (0.052, 0.014, 0.022) for (ΩM , σ8, ns),
within a factor of 2 of today’s best experimental results [38],
[42]. We believe that with additional hyper-parameter and
optimizer tuning at 8192 nodes, it is possible to achieve similar
accuracy levels as the 2048 node target run.

B. Implications on the application and future hardware

With the current CosmoFlow framework, we achieve rea-
sonably accurate predictions on 8192 nodes in just a few min-
utes. This opens up new avenues for exploration of extended
cosmological problems. For example, extending the network
to predict more cosmological parameters, designing optimized
hyperparameter searches, extending the network to multiple
redshift snapshots or combining multiple experimental probes
are now within the reach. CosmoFlow enables fast, efficient
exploration of the possibilities deep learning can offer cosmol-
ogy, and indeed other science areas with 3D data.

With the large amount of data being processed for deep
learning applications, efficient I/O hardware and software
becomes critical piece for obtaining performance. Our scaling
experiments clearly demonstrated a significant efficiency drop
on the Lustre file system, which we are able to compensate
by using a high bandwidth SSD-based file system.

Besides the I/O challenge, deep learning also poses a
supercomputing challenge at Exascale. The three-parameter
estimation problem using 1283 voxel dataset size would
require more than 60 days of execution time on a single
node to converge to a model at an acceptable loss. Training
times of this scale are impractical, which is why developing
efficient HPC-based techniques for scaling deep learning is
critical. There are limitations to the methods described in
this work, however. Data parallel training methods, such as
SSGD, are fundamentally limited by the size of the training
dataset. The dataset must have substantially more samples
in it than the target level of concurrency (i.e. MPI ranks).
Furthermore, multiple runs are required to tune the hyper-
parameters in the problem. With these challenges, the only way
to continue pursuing scientific discoveries with deep learning

is to develop highly efficient single node and scalable software
for supercomputing resources. Applying HPC optimization
techniques, we are able to optimize single-node performance
at high compute efficiency and scale the training problem to
8192 nodes on Cori with 77% scaling efficiency.

VIII. CONCLUSIONS

In this paper, we presented an optimized and highly scalable
deep learning application CosmoFlow, which is built on top
of the TensorFlow framework and predicts 3 cosmological
parameters. We optimize the full software stack which in-
cludes network design, I/O processing pipeline, communica-
tion, TensorFlow framework and 3D CNN primitives in MKL-
DNN for our 3D convolutional neural network on the Cori
supercomputer. We discuss the importance of I/O hardware
and software stack for deep learning applications with the
scaling runs on both the Cori and Piz-Daint systems. We also
highlight challenges in achieving convergence at scale with a
fully synchronous SGD algorithm. We processed over 1.4TB
of data on 8192 nodes, reaching 535 Gflop/s on a single KNL
node and sustaining 3.5 Pflop/s in aggregate on Cori. The
configuration shows good scaling with 77% parallel efficiency
on up to 8192 nodes. We achieve full convergence at 2048
nodes with best in-class scientific results. We also achieve
close–to–converged results on 8192 nodes, which produce
reasonable scientific predictions.

The success of deep learning for scientific problems will
hinge upon our ability to develop and optimize algorithms and
implementations that can handle the complexity of scientific
data efficiently. In this work we address the issue of multi-
dimensional data, using 3D simulations of matter distribution
to solve a pressing problem in cosmology - how to determine
the parameters that describe the nature of the universe. Our
scaling and performance improvements have enabled us to
achieve an unprecedented level of accuracy in our estimation
of cosmological parameters - in particular, we are able to
accurately estimate ns using only the dark matter distribution.

DISCLAIMERS

Software and workloads used in performance tests may have been optimized
for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions.
Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more complete information
visit www.intel.com/benchmarks.
Performance results are based on testing as of April 13, 2018 and may not
reflect all publicly available security updates. See configuration disclosure for
details. No product can be absolutely secure.
Configurations: Testing on Cori (see §IV-A) was performed by NERSC, with
the spectre v1 and meltdown patches. Testing on Piz Daint (see §IV-B) was
performed by Cray.
Intel does not control or audit third-party benchmark data or the web sites
referenced in this document. You should visit the referenced web site and
confirm whether referenced data are accurate.
Intel, VTune, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation
or its subsidiaries in the U.S. and/or other countries.

REFERENCES

[1] M. P. et al., “Deep learning for science,” https://www.oreilly.com/ideas/
a-look-at-deep-learning-for-science, 2017.

[2] S. Dodelson, Modern cosmology, 2003.
[3] S. Ravanbakhsh, J. Oliva, S. Fromenteau, L. C. Price, S. Ho, J. Schnei-

der, and B. Poczos, “Estimating Cosmological Parameters from the Dark
Matter Distribution,” ArXiv e-prints, Nov. 2017.

[4] “Intel(r) math kernel library for deep neural networks (intel(r) mkl-dnn),”
https://github.com/intel/mkl-dnn.

[5] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[6] S. Dieleman, K. W. Willett, and J. Dambre, “Rotation-invariant con-
volutional neural networks for galaxy morphology prediction,” Monthly
Notices of the Royal Astronomical Society, vol. 450, pp. 1441–1459,
Jun. 2015.

[7] S. Ravanbakhsh, F. Lanusse, R. Mandelbaum, J. Schneider, and B. Poc-
zos, “Enabling Dark Energy Science with Deep Generative Models of
Galaxy Images,” ArXiv e-prints, Sep. 2016.

[8] L. Lucie-Smith, H. V. Peiris, A. Pontzen, and M. Lochner, “Machine
learning cosmological structure formation,” ArXiv e-prints, Feb. 2018.

[9] M. Mustafa, D. Bard, W. Bhimji, R. Al-Rfou, and Z. Lukić, “Creating
Virtual Universes Using Generative Adversarial Networks,” ArXiv e-
prints, Jun. 2017.

[10] J. Schmelzle, A. Lucchi, T. Kacprzak, A. Amara, R. Sgier, A. Réfrégier,
and T. Hofmann, “Cosmological model discrimination with Deep Learn-
ing,” ArXiv e-prints, Jul. 2017.

[11] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[12] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture.
ACM, 2017, pp. 1–12.

[13] “Intel® nervana™ neural network processors
(nnp) redefine ai silicon,” https://ai.intel.com/
intel-nervana-neural-network-processors-nnp-redefine-ai-silicon/.

[14] “Nvidia tensorrt programmable inference accelerator,” https://developer.
nvidia.com/tensorrt.

[15] “cudnn,” https://developer.nvidia.com/cudnn.
[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[17] S. R. Young, D. C. Rose, T. Johnston, W. T. Heller, T. P.
Karnowski, T. E. Potok, R. M. Patton, G. Perdue, and J. Miller,
“Evolving deep networks using hpc,” in Proceedings of the
Machine Learning on HPC Environments, ser. MLHPC’17. New
York, NY, USA: ACM, 2017, pp. 7:1–7:7. [Online]. Available:
http://doi.acm.org/10.1145/3146347.3146355

[18] T. Kurth, J. Zhang, N. Satish, E. Racah, I. Mitliagkas, M. M. A. Patwary,
T. Malas, N. Sundaram, W. Bhimji, M. Smorkalov et al., “Deep learning
at 15pf: supervised and semi-supervised classification for scientific data,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2017, p. 7.

[19] F. N. Iandola, K. Ashraf, M. W. Moskewicz, and K. Keutzer, “FireCaffe:
near-linear acceleration of deep neural network training on compute
clusters,” ArXiv e-prints, Oct. 2015.

[20] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan,
D. Kalamkar, B. Kaul, and P. Dubey, “Distributed Deep Learning Using
Synchronous Stochastic Gradient Descent,” ArXiv e-prints, Feb. 2016.

[21] X. Pan, J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
Distributed Synchronous SGD,” ArXiv e-prints, Feb. 2017.

[22] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu,
“Asynchronous Stochastic Gradient Descent with Delay Compensation,”
ArXiv e-prints, Sep. 2016.

[23] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812, Sep
1986.

[24] F. Niu, B. Recht, C. Re, and S. J. Wright, “Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” in Proceedings
of the 24th International Conference on Neural Information Processing

Systems, ser. NIPS’11. USA: Curran Associates Inc., 2011, pp. 693–
701. [Online]. Available: http://dl.acm.org/citation.cfm?id=2986459.
2986537

[25] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V.
Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang,
and A. Y. Ng, “Large scale distributed deep networks,” in
Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1, ser. NIPS’12. USA: Curran
Associates Inc., 2012, pp. 1223–1231. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2999134.2999271

[26] A. Mathuriya, T. Kurth, V. Rane, M. Mustafa, L. Shao, D. Bard, V. W.
Lee et al., “Scaling grpc tensorflow on 512 nodes of cori supercomputer,”
arXiv preprint arXiv:1712.09388, 2017.

[27] https://eng.uber.com/horovod/, Horovod.
[28] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

ArXiv e-prints, Dec. 2014.
[29] B. Ginsburg, I. Gitman, and O. Kuchaiev, “Layer-Wise Adaptive Rate

Control for Training of Deep Networks,” in preparation, 2018.
[30] Y. You, I. Gitman, and B. Ginsburg, “Large batch training of convolu-

tional networks.” arXiv preprint arXiv:1708.03888, 2017.
[31] “Intel® vtune™ amplifier 2017,” https://software.intel.com/en-us/

intel-vtune-amplifier-xe.
[32] “Xbyak 5.63; jit assembler for x86(ia32), x64(amd64, x86-64) by c++,”

https://github.com/intel/mkl-dnn.
[33] D. Doerfler, B. Austin, B. Cook, J. Deslippe, K. Kandalla, and

P. Mendygral, “Evaluating the networking characteristics of the
cray xc40 intel knights landingbased cori supercomputer at nersc,”
Concurrency and Computation: Practice and Experience, vol. 30,
no. 1, p. e4297. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpe.4297

[34] P. J. Mendygral, N. Radcliffe, K. Kandalla, D. Porter, B. J. O’Neill,
C. Nolting, P. Edmon, J. M. F. Donnert, and T. W. Jones, “WOMBAT: A
Scalable and High-performance Astrophysical Magnetohydrodynamics
Code,” Astrophysical Journal Supplement Series, vol. 228, p. 23, Feb.
2017.

[35] O. Hahn and T. Abel, “Multi-scale initial conditions for cosmological
simulations,” Monthly Notices of the Royal Astronomical Society, vol.
415, pp. 2101–2121, Aug. 2011.

[36] S. Tassev, M. Zaldarriaga, and D. J. Eisenstein, “Solving large scale
structure in ten easy steps with COLA,” Journal of Cosmology and
Astroparticle Physics, vol. 6, p. 036, Jun. 2013.

[37] S. Tassev, D. J. Eisenstein, B. D. Wandelt, and M. Zaldarriaga, “sCOLA:
The N-body COLA Method Extended to the Spatial Domain,” ArXiv e-
prints, Feb. 2015.

[38] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ash-
down, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G.
Bartlett, and et al., “Planck 2015 results. XIII. Cosmological parame-
ters,” Astronomy and Astrophysics, vol. 594, p. A13, Sep. 2016.

[39] H. J. Mo, Z. G. Deng, X. Y. Xia, P. Schiller, and G. Boerner, “Typical
scales in the distribution of galaxies and clusters of galaxies from
unnormalized pair counts,” Astronomy and Astrophysics, vol. 257, pp.
1–10, Apr. 1992.

[40] “Tensorflow code, github commit: aa729b1aac8a2a4939fd3b208510caea645ddd87,”
https://github.com/tensorflow/tensorflow/tree/r1.5.

[41] “Mkl-dnn code, github commit: df9daade839b45c2b44a43dd90a2a46828d98d4a),”
https://github.com/intel/mkl-dnn.

[42] DES Collaboration, “Dark Energy Survey Year 1 Results: Cosmological
Constraints from Galaxy Clustering and Weak Lensing,” ArXiv e-prints,
Aug. 2017.

https://www.oreilly.com/ideas/a-look-at-deep-learning-for-science
https://www.oreilly.com/ideas/a-look-at-deep-learning-for-science
https://github.com/intel/mkl-dnn
https://ai.intel.com/intel-nervana-neural-network-processors-nnp-redefine-ai-silicon/
https://ai.intel.com/intel-nervana-neural-network-processors-nnp-redefine-ai-silicon/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/cudnn
http://doi.acm.org/10.1145/3146347.3146355
http://dl.acm.org/citation.cfm?id=2986459.2986537
http://dl.acm.org/citation.cfm?id=2986459.2986537
http://dl.acm.org/citation.cfm?id=2999134.2999271
http://dl.acm.org/citation.cfm?id=2999134.2999271
https://eng.uber.com/horovod/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://github.com/intel/mkl-dnn
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4297
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4297
https://github.com/tensorflow/tensorflow/tree/r1.5
https://github.com/intel/mkl-dnn

	I Overview
	I-A Deep Learning for Science
	I-B Deep Learning for Cosmology
	I-C Contributions

	II State of the Art
	II-A Deep Learning in Cosmology
	II-B Deep Learning on single Node
	II-C Deep Learning on multiple nodes

	III Innovations
	III-A 3D convolutional network and dataset
	III-B SGD Optimizer
	III-C Single-node optimizations
	III-D Multi-node scaling

	IV Systems and Datasets
	IV-A Description of the Cori System
	IV-B Description of the Piz Daint system
	IV-C Simulation Data
	IV-D Libraries and Environment

	V Experiments and Results
	V-A Workflow and Network's FLOP rate computation
	V-B Single-node results
	V-C Multi-node scaling results
	V-C1 Cori
	V-C2 Piz Daint

	V-D Full scale run

	VI Discussion
	VI-A I/O
	VI-B Communication

	VII Implications
	VII-A Cosmology results
	VII-B Implications on the application and future hardware

	VIII Conclusions
	References

