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Abstract 

This work presents the derivation of the first and second moments of the nearest neighbor 

distances and their mean in one-dimesion. Five methods of edge effects correction are 

described and the means of the corrected nearest neighbor distances are compared to the 

uncorrected one using large scale computer simulations. 
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1.1 Introduction 

Since its initial presentation by Clark and Evans [1], nearest neighbor analysis for 

spatial randomness has gained considerable popularity in fields as diverse as geography, 

ecology, archaeology, cell biology, forestry, meteorology, and epidemiology. 

Epidemiologists are often interested in determining whether disease cases are ckstered, 

dispersed, or randomly distributed, since different patterns of disease incidence over time 

or space can provide clues to the etiology of the disease. Ari. environmental hazard or a 

transmissable agent can produce a cluster of disease events, i.e. a set of events occuring 

unusually close to each other in time, space, or both time and space. 

In spite of its wide applicability, few attempts have been made to adapt the nearest 

neighbor method to the analysis of points distributed along a line. 

_ Clark and Evans [2, 3] presented an extension of the nearest neighbor method to cover 

distributions of points in dimensions other than two. This approach involves calculating 

the proportion of points which form reflexive pairs, i.e. pairs of points which are each 

other's nearest neighbors. For one dimension, if two-thirds of the points are paired, the 

pattern is assumed to be random. Smaller proportion indicates clustering while a larger 

proportion indicates a uniform distribution of the points. This technique was introduced 

into geographical literature by Dacey [4] who analysed the distribution of river towns. 

Pinder and Witherick [5, 6] claimed that th·e formula for mean nearest neighbor 

in two dimensions can be easily modified to fit the one dimension situation. They carried 

out a small scale computer simulation to verify their claim. Unfortunately, the modified 

formula gives reasonable results only for large number of points. 

Young [7] assumed that the contributions from the two extreme points to the sum 

of nearest neighbor distances are either the distance to the neighbors or the distance to the 

end of the line, whichever is the smaller. As it will be shown later, this approach corresponds 

to a specific alternative way to overcome the boundary problem, which arises in situations 

where at least one of the two extreme points is closer to the end-point of the line than to 

its neighbor. 

Selkirk and Neave [8, 9, 10] were the first to recognize the boundary problem in the 

one .dimension case and suggested three alternative ways which they considered as possible 

solutions. The first method was to consider a situation where n points are distributed 

around a circle (or any closed curve), a situation in which, according to Selkirk and Neave, 
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the boundary problem disappears. They claimed that while this situation is relatively less 

frequent in geographical examples, data which is in angular form can be analysed in this 

way, as well as data which is periodic in time. As it will be shown, a simple modification 

of their technique allows its use as an edge effects correction in situations where the points 

are distributed along a straight line. 

Another approach suggested by Selkirk and Neave was to consider n + 2 points 

which are distributed along a straight line, including two at the boundaries of the line. In 

this case, data points necessarily occur at the end-points of the line, or part of the line. 

Selkirk and Neave claimed that this may arise in a number of ways; e.g. the extent of the 

line may be unknown or infinite and the investigator chooses that part of it terminating with 

two particular data points, or the line may be naturally defined by two data end-points .. 

The third solution presented by Selkirk and Neave was to consider the contriuution 

of the two extreme points to the sum of nearest neighbor distances to be the distances to 

their neighbors. Actually, this approach does not involve any correction for the boundary 

problem and relates to what is defined in this paper as the uncorrected mean nearest 

neighbor distance. 

This report outlines the theoretical derivation of the moments of the mean nearest 

neighbor distance in the one dimension case and the correction of its expected value in order 

to overcome the boundary problem. Section 2 presents the derivation of the moments of 

order statjstics, for specific sample sizes and for the general case. These results are then 

used in Section 3 for the derivation of the moments of nearest neighbor distances, and in 

Section 4 for the derivation of the moments of the mean nearest neighbor distance. Section 

5 presents the boundary problem and examines five alternative ways to compensate for it 

in the calculation of the expected value of the mean nearest neighbor distance. Section 

6 presents the results from a large scale computer simulation which compares the various 

correction methods. 
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1.2 Moments of Order Statistics 

1.2.1 A Random Sample of 2 Points from a Uniform Distribution 

Let x1 and x2 be independent identically distributed random variables from a 

U(O, 1) distribution, which represent a random sample of two points on a line of length 

L = 1. Let x(l) ::; x(2) denote the order statistics of the x's, which represent the position of 

the points on the line. 

The joint density function of the two order statistics is: 

The marginal density function of X(i)' where i = 1, 2, can be obtained from the joint 

density function by integrating out the other variable. Following the procedure suggested 

by Tsuji (11], who derived the expected value of x(i)' the marginal density function can then 

be used to calculate both the expected value and the variance of x (i). 

Expected Value of X(l) 

Let 

g(x) =-(1-xjlll2 

g'(x) =(1- x(1))
1 

fo1 
x(I)f(I)(x(l))dx(l) 

2! {
1 11 

x(l)i(x(1))f(x(2))dx(2)dx(l) 
lo x<1> 

2! lal X(1)(1- X(1))
1

dX(l) 

h(x) =x(l) 

h'(x) = 1 

Integrating over dx(l) by parts gives 



Variance of :Z:(l) 

E(x(1)) 11 

x(1)f(1)(X(1))dx(1) 

Let 

g(x) =-(1-11))2 

g'(x) =(1- X(I))1 

2! {
1 11 

x(1)f(x(1))f(x(2))dx(2)dx(1) lo x(l) 

= 2! 11 

x(1)(1- x(1))1dx(1) 
0 . 

h(x) =x(l) 

h'(x) =2x(1) 

Integrating over dx(I) by parts gives 

Let 

g(x) =-(1-illf 

g'(x) =(1- X(I))2 

h(x) =x(1) 

h'(x) = 1 

Integrating over dx(l) by parts gives 

2' 2 1 [ o + r 1 c 1 - x (1) 13 d l 
· 2 lo 3 X(1) 

1 1 [ 1 . 
= 2! 2 2 3 Jo (1- X(l))

3
dx(1) 

2 2 
= 3. 4 12 

The variance of x(l) is then 

8 



Expected Value of Z(2 ) 

Let 

g( X) =- (1-~(2))1 

g'(x) =(1- x(2))
0 

E(x(2)) = la1 
x(2)f(2)(x(2))dx(2) 

-· 2! {
1 

{

1 
X(2)f(x(1)f(x(2))dx(2)dx(l) Jo lx(l) 

2! {
1 

{

1 
X(2)(1- X(2))

0
dx(2)dX(1) 

Jo lx(l) 

h(x) =x(2) 

h'(x) =1 

Integrating over dx(2) by parts gives 

2! {
1 

[ X(1)(1- X(1)) + {
1 

(1 - X(2))dx(2)J dX(l) Jo lx(l) 

E(x(l)) + 2! {
1 11 

(1- x(2))dx(2)dx(1) 
lo x< 1 l 

E(x(1)) + ~ 
1 1 2 
-+-=-
3 3 3 
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Variance of :Z:(2) 

Let 

g( X) =- (1-~(2))1 

g'(x) =(1- x(2))
0 

11 xf2)f(2)(x(2))dx(2) 

2! {
1 11 

xf2)f(x(1))f(x(2))dx(2)dx(1) 
lo x< 1l . 

2! {
1 11 

x(2)(1- x(2))0dx(2)dX(1) 
lo x< 1l 

h(x) =x(2) 

h'(x) =2x(2) 

Integrating over dx(2) by parts gives 

= 2! {
1 

[ x(l)(1- X(l)) + 211 
X(2)(1- X(2))dx(2)] dx(1) lo x(l) 

= E(xf1)) + 2! 2 {
1 11 

x(2)(1- x(2))1dx(2)dx(1) lo x(l) . 

Let 

g( X) =- (1-12))2 

g'( X) = (1 - X(2)) 1 

h(x) =x(2) 

h'(x) = 1 

Integrating over dx(2 ) by parts gives 

3. 4 12 

The variance of X(2) is then 

10 
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1.2.2 A Random Sample of 3 Points from a Uniform Distribution 

Let xb x 2 , x3 be independent identically distributed random variables from a 

U(O, 1) distribution, which represent a random sample of three points on a line of length 

L = 1. Let x (1) :s; x (2) :s; x (3) denote the order statistics of the x 's, which represent the 

position of the points on the line. 

The joint density function of the three order statistics is: 

The marginal density function of X(i), where i = 1, 2, 3, can be obtained from the joint 

density function by integrating out the other variables, and then be used to calculate the 

expected value and the variance of X(i)· 

Expected Value of a:(1) 

Let 

g(x) =-(1-xjll)3 

g'(x) =(1- x(1))
2 

h(x) =x(1) 

h'(x) = 1 

Integrating over dx(l) by parts gives 



Variance of a::(l) 

Let 

g(x) =-(1-ill)3 

g'(x) =(1- x(1))
2 

h(x) =x~1 ) 

h'(x) =2x(1) 

Integrating over dx(1 ) by parts gives, 

Let 

g(x) =-(1-~1))4 

g1
( X) = (1 - X(lj)3 

h(x) =x(1) 

h'(x) =1 

Integrating over dx(l) by parts gives 

1 1 {1 (1- X(1))
4 

] 
3! 2 2 3 [ 0 + lo 4 dx(1) 

1 1 1 11 

3! 2 - - - (1 - x(1))4 dx(1) 
2 3 4 0 

2 2 
4. 5 20 

The variance of x (1) is then 

f 
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Expected Value of z(2 ) 

E(x(2)) = fo1 

x(2)f(2)(x(2))dx(2) 

Let 

g(x) =-(1-~(2))2 

g'(x) =(1- x(2))
1 

3! [
1 ·11 11 

x(2)f(x(l))f(x(2))f(x(3))dx(3)dx(2)dX(l) lo X(l) X(2) 

= 3! [I 11 

X(2)(1- X( 2))
1

dX(2)dX(1) 
lo x(l) 

h(x) =x(2) 

h'(x) =1 

Integrating over dx(2) by parts gives 

13 



Variance of :Z:(2) 

E(xf2)) 11 
xf2)f(2)(x(2))dx(2) 

Let 

g( X) =- (1-~(2))2 

g'(x) =(1- x(2))1 

3! [
1 11 11 

xf2/(x(1))f(x(2))f(x(3))dx(3)dx(2)dx(1) lo X(l) X(2) 

= 3! [
1 11 

xf2)(1- x(2))
1
dx(2)dx(l) 

lo xc 1J 

h(x) =xf2) 

h'(x) =2x(2) 

Integrating over dx(2 ) by parts gives 

Let 

g(x) =-(1-~(2))3 

g'(x) =(1- x(2))2 

h(x) =x(2) 

h'(x) =1 

Integrating over dx(2 ) by parts gives 

The variance of x(2) is then 

14 



Expected Value of x(3 ) 

Let 

E(x(3)) = fo1 

X(3)!(3)(x(3))dx(3) 

= 3! f
1 

f
1 

{

1 

X(3)f(x(1))f(x(2))f(x(3))dx(3)dX(2)dX(1) . Jo lx(l) lxw 

= 3! t {1 11 

X(3)(1- X(3))
0

dX(3)dX(2)dX(1) Jo lx(l) x(2 ) 

g(x) =-(1-~(3))1 

g'(x) =(1- X(3))0 

h(x) =x(3) 

h'(x) = 1 

Integrating over dx (3) by parts gives 

= 3! f
1 

{
1 

[ x(2)(1- x(2)) + 11 
(1- X(3))dx(3) )dx(2)dX(1) Jo lx(l) x(2 ) 

= E(x(2)) + 3! [
1 

{

1 11 

(1- x(3))dx(3)dx(2)dx(1) Jo lx(l) x( 2) · 

1 
= E(x( 2 )) + 4 

1 1 
= E(x(1)) + 4 + 4 

1 1 1 3 
= 4+4+4=4 

15 



Variance of Z(3 ) 

Let 

g(x) =- (1-~(3))1 

g'(x) =(1- x(3))0 

h(x) =x(3) 

h'(x) =2x(3 ) 

Integrating over dx(3 ) by parts gives 

Let 

g( X) =- (1-13))2 

g'(x) =(1- x(3 ))
1 

h(x) =x(3) 

h'(x) =1 

Integrating over dx(3 ) by parts gives 

4. 5 20 

The variance of x(3) is then 

2 ) 2 12 13)2 3 Var(x3) = E(x(3) - (E(x(3))) = 
20

-\4 = 
80 

16 
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1.2.3 A Random Sample of 4 Points from a Uniform Distribution 

Let x 11 x2, X3, x 4 be independent identically distributed random variables from a 

U(O, 1) distribution, which represent a random sample of four points on a line of length 

L = 1. Let X(l) ::; x(2) ::; x(3) ::; x(4) denote the order statistics of the x's, which represent 

the position of the points on the line. 

The joint density function of the four order statistics is: 

The marginal density function: of X(i), where i = 1, 2, 3, 4, can be obtained from the joint 

density function by integrating oti.t the other variables, and then be used to calculate the 

expected value and the variance of X(i). 

Expected Value of a:(l) 

Let 

g(x) =-(1-~1))4 

g'(x) =(1- X(1))3 

h(x) =x(1) 

h'(x) = 1 

Integrating over dx(1 ) by parts gives 

1 1 f 1 (1- X(1))
4 

1 = 4! 2 3 [ 0 + Jo 4 dx(l) 

1 1 1 11 

4! - - - (1- X(l))
4dx(1) 

2 3 4 0 

1 
5 



Variance of a:(l) 

E(x(l)) 

Let 

g(x) =- (1-~1))4 

g'(x) =(1- X( 1))
3 

h(x) =x(1) 

h'(x) =2x(1) 

Integrating over dx(l) by parts gives 

Let 

g(x) h(x) =x(1) 

h'(x) = 1 

Integrating over dx(1) by parts gives 

111 [ 1 (1-X(1))
5 

4! 2 2 3 4 [ 0 + lo 5 dx(l)] 

1 1 1 1 [ 1 ( )5 
4! 2 2 3 4 5 lo 1 - x(1) dx(1) 

2 2 
= 5. 6 = 30 

The variance of x(1 ) is then 

2 2 2 1 )2 4 Var(xi) = E(x(1))- (E(x(1))) = 
30 

~ (5 = 
150 

18 
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Expected Value of Z(2 ) 

1 . 

E(x(2)) = fa x(2)f(2)(~(2))dx(2) 

= 4! [
1 11 11 11 

x(2)f(x(1))f(x(2))f(x(3))f(x(4))dx(4)dx(3)dx(2)dx(1) lo X(l) X(2) X(3) 

= 4! [
1 11 11 

x(2)(1- x(3))dx(3)dx(2)dx(1) lo X(l) X(2j 

= 4! !:_ [
1 ·11 

x(2)(1- x(2))
2
dx(2)dx(1) 

2 lo x(l) . 

Let 

g(x) ~-(1-7p>l3 

g'(x) =(1- x(2))
2 

h(x) =x(2) 

h'(x) =1 

Integrating over dx(2) by parts gives 

19 



Variance of ::c(2) 

E(xf2)) = 11 

xf2/(z)(X(z))dx(2) 

Let 

= 4! {
1 11 11 11 

xf2)f(x(1))f(x(2))f(x(3))f(x(4))dx(4)dx(3)dx(2)dx(1) lo X(!) X(2) X(3) 

= 4! {
1 11 11 

x[2)(1 - x(3))dx(3)dx(2)dx(l) 
lo X(!) X(2) 

= 4! ~ {
1 11 

x[2)(1- x(2))2dx(2)dx(1) 
2 lo x< 1l 

g(x) =-(1-.lp))3 

·z g'(x) =(1- X(z)) 

h(x) =x[2) 

h'(x) =2x(2) 

5. 6 30 

The variance of x(2) is then 

h(x) =X(z) 

h'(x)=l 

20 



Expected Value of :~:( 3 ) 

E(x(3)) = 11 

X(3)!(3)(x(3))dx(3) 

= 4! f
1 1.1 

f
1 1.1 

x(3)f(x(l))f(x(2))f(x(3))f(x(4))dx(4)dx(3)dx(2)dx(1) Jo x( 1 ) 1x( 2 ) x(3) 

= 4! {
1 1.1 t X(3)(1- X(3))

1
dx(3)dX(2)dX(l) Jo x(l) 1x(2 ) 

Let 

g( X) =- (1-~(3))2 

g'(x) =(1- x(3))1 

h(x) =x(3 ) 

h'(x) = 1 

Integrating over dx(3) by parts gives 

21 



-Variance of a:(3 ) 

E(x(3 )) 11 

x(3/(3)(x(3))dx(3) 

4! {
1 11 11 11 

x(3)f(x(l))f(x(z))f(x(3))f(x(4))dx(4 )dx(3)dx(z)dx(1) lo X(l) X(2) X(3) 

= 4! /
1 11 1.1 

x(3)(1- x(3))
1
dx(3)dx(z)dx(1) 

lo X(l) X(2) . 

Let 

g(x) =- (1-13))2 

g'(x) =(1- x(3))1 

h(x) =x(3) 

h'(x) =2x(3) 

Integrating over dx (3) by parts gives 

Let 

g(x) =-(1-7?))3 

g'(x) =(1- x(3))
2 

5. 6 30 

The variance of x(3) is then 

h(x) =x(3) 

h'(x) =1 

Var(x3) = E(x2(3))- (E(x(3)))2 = 
12

- (~)2 = ~ 
30 5 150 

22 



Expected Value of :~:(4) 

E(x(4 )) '= 11 
x(4)f(4)(x(4))dx(4) 

= 4! 11 11 11 11 

x(~)f(x(l))f(x(2))f(x(3))f(x(4))dx(4)dx(3)dx(2)dx(1) 
0 X(l) X(2) X(3) , 

= 4! {
1 

{l {
1 

{l X(4)(1- X(4))0dx(4)dX(3)dX(2)dX(1) 
Jo lx(l) Jx(2 ) Jx(3) 

Let 

g(x) =-(1-~(4))1 

g'( X) = (1 - X(4))0 

h(x) =x(4) 

h'(x) = 1 

Integrating over dx(4 ) by parts gives , 

= 4! rl {1 
· l [ x(3)(1- x(3)) + 11 

(1- X(4))dx(4)] dX(3)dX(2)dX(l) Jo lx(l) Jx(2 ) x(3 ) 

= E(x(3)) + 4! t 11 11 11 

(1- x(4))dx(4)dx(3)dx(2)dx(l) 
lo X(l) X( 2) X(3) 

1 
= E(x(3)) + 5 

1 1 
= E(x(2)) + 5 + 5 

1 1 1 
= E(x(l)) + 5 + 5 + 5 

1 1 1 1 4 
= 5+5+5+5=5 
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Variance of :z:(4 ) 

E(x(4)) = fo1 
x(4/(4)(x(4))dx(4) 

= 4! [
1 

1
1 

1
1 

1
1 

x(4)f(x(1))f(x(2))f(x(3))f(x(4))dx(4)dx(3)dx(2)dx(1) lo X(l) X(2) X(3) 

= 4! r 1· 
1 

1
1 

1
1 

x(4)(1- X(4))0dX(4)dX(3)dX(2)dX(l) 
lo X(l) X(2) X(3) · 

Let 

g( X) =- (1-~(4))1 

g'(x) =(1- x(4))
0 

h(x) =x(4) 

h'(x) =2x(4) 

Integrating over dx(4 ) by parts gives 

4! t 1
1 

1
1 

[ x(3)(1- x(3)) + 21
1 

x(4))(1-:- x(4))dx(4)] dx(3)dx(2)dx(1) lo X(l) X( 2) X(3 ) 

E(x(3)) + 4! 2 [
1 

1
1 

1
1 

1
1 

x(4))(1- x(4))1dx(4)dx(3)dx(2)dx(1) 
lo X(l) X( 2) X(3) 

Let 

g(x) =-(1-i4l)2 

g'(x) =(1- x(4))
1 

h(x) =x(4) 

h'(x) = 1 

Integrating over dx(4 ) by parts gives 

24 

E(x(3)) + 4! 2 [
1 11 11 

[ x(3) (
1

- ;(3)? + 11 
(
1

- ;(4))
2 

dx(4)] dx(3)dx(2)dx(1) 
lo X(l) X( 2) X( 3) 

E(x(3)) + E(x(3))- E(x(2)) + 4! 2 ~ r 11 11 11 
(1- X(4))

2
dx(4)dx(3)dX(2)dx(1) lo X(l) X(2) X(3) 

2 2 2 4·5 2 
2E(x(3))- E(x(2 )) + E(x(1)) = 2 E(x(1)) 

4. 5 20 
5. 6 = 30 

The variance of x(4 ) is then 

( 2 ( ) 2 20 4 )2 4 Var(x4) = E x(4))- (E x(4)) = 
30

- (5 = 
150 
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1.2.4 The General Case 

A Random Sample of n Points from a Uniform Distribution 

Let x1 , ... , Xn be independent identically distributed random variables from a 

U(O, 1) distribution, which represent a random sample of n points on a line of length L = 1. 

Let x(l) ~ ... ~ X(n) denote the order statistics of the x's, which represent the position of 

the points on the line. The joint density function of the n order statistics is: 

f(l), ... ,(n)(X(l)' ... , X(n)) = n! 0 ~ X(l) ~ ... ~ X(n) ~ 1 

· The marginal density function of x(i), where i = 1, ... , n, can be obtained from the joint 

density function by integrating out the other variables. 

n!f(x(i)) 

r(i) r(i-1) {X(3) {X(2) 

Jo Jo ... Jo Jo f(x(l)) ... f(x(i-l))dx(l) .. . dx(i-l) 

11 11 .. ·11 .11 J(x(i+l)) .. . f(x(n))dx(n) .•. dx(i+l) 
X(i) X(i+l) ' X(n-2) X(n-1) 

Then it can be used to calculate the expected value and the variance of x(i)· 

Expected Value of :Z:(i) 

n! 11 11 11 11 11 11 2 4 - . . . . . . X(i)(1- X(n-2)) dx(n-2). · .toX(l) 
2 0 X(!) X(i-1) X(i) X(i+l) X(n-3) 

n' il 11 11 11 11 11 -.-· · . . . . . . X(i)(1- X(n-3)?dx(n-3) ... dx(1) 
2 3 0 X(!) X(i-1) X(i) X(i+l) X(n-4) 

= n! ) {
1 

•• ·11 
x(i)(1- X(i))(n-i)dx(i) ... dx(1) 

2 · 3 · ... · ( n- i lo x(i-l) 
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Integrating over dx(i) by parts gives 

n! 11 11 (1 - X(i-1))(n-i+l) 11 (1- X(i))(n-i+1) 
= 2. 3. . ( - ') . . . [x(i-1) - . + 1 + - . 1 dx(i)] .. . dx(1) . . . n z o x(i-2 ) n z x(i- 1 ) n z + 

' 11 11 n. (n-i+I) 
E(x(i-1)) + 2 . 3 . . ( _ '). ( _. 1) . . . (1- x(i)) dx(i) .. . dx(1) 

. . . n z n z + o x(i- 1 ) 

' 11 11 n. · (n-i+2) 
E(x(i-1)) + 2 . 3 . . ( _ . 1). ( _ . 2) . . . (1- X(i-1)) dx(i-1) ... dx(1) 

. . . n z + n z + o x(i-2) 

n! 
E(x(i-1

)) + 2. 3 ..... (n- i) · (n- i + 1) · (n- i + 2) .. . (n + 1) 

Applying this relation successively gives 

= 

i-2 
E(x(i-(i-2)) + n + 1 

i -1 
= E(x(1)) + n + 1 

1 i- 1 
= n+1+n+1 

= 
n+1 
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Variance of Z(i) 

n! [1 11 .. ·11 11 11 .. ·11 Xfi)dx(n) ... dx(1) 
lo X( 1) X(i-1) X(i) X(i+1) X(n-1) 

, 11 11 n. 2 (r..-i) 

2
. 
3

. . ( _ .) . . . x(i)(1- X(i)) dx(i) •.. dx(1) 
. . . n z o xci-1) 

Integrating over dx(i) by parts gives 

___ n_! -:----:- [1 11 
2 · 3 · ... · ( n- ,i) lo xci-2) 

2 (1- X(i-1))(n-i+1) 11 (1- X(i))(n-i+l) 
[ x(i-1) . 1 + 2 X(i) . dx(i) ] .. . dx(1) 

n - z + xc;-1) n- z + 1 

2 2n! . 11 11 )( i+1) E(x ) + X(i)(1- X(i) n- dx(i) ... dx(l) 
(i-1) 2·3· ... ·(n-i)·(n-i+l) o ··· xc;-1) 

Integrating over dx(i) by parts gives 

( 2 ) 2n! [1 11 
Ex(i-1 ) + 2·3· ... ·(n-i)·(n-i+1) Jo ··· xci-2) 
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2 
' 11 11 n. (n-i+2) 

+ 2. 3. . ( _ · 1). ( _ · + 2) · · · (1- X(i)) dx(i) ... dx(1) 
. . . n z + . n z o x(i-IJ 

2n! 11 11 ( )(n-i+3)d d + 2. 3 . . ( - . + 2) . ( - . + 3) . . . 1 - X(i-1) X(i-1) . . . X(1) . . . n z n z o x(i-2 ) 

= 

Applying this relation successively gives 

E(x(i)) = 2E(x(i-1))- E(x(i-2)) + E(x(1)) 

= 3E(x(i-2))- 2E(x(i-3)) + 3E(x(1)) 

= 4E(x(i-3))- 3E(x(i-4)) + 6E(x(l)) 

= 

. ( 2 ) . ) 2 ( i - 2)( i- 3) 2 
= (z- 2)E x(i-(i-3)) - (z- 3 E(x(i-(i- 2))) + 2 E(x(1)) 

• 2 . 2 (i-1)(i-2) 2 = (z-1)E(x(2))-(z-2)E(x(1))+ 
2 

E(x(1)) 

= 3(i-1)E(x(1))-(i-2)E(x(1))+ (i- 1~i- 2) E(x(1)) 

= i( i + 1) E( 2 ) 
. 2 x(1) 

i( i + 1) 
= 

(n+1)(n+2) 

The variance of X(i) is then 

Var(xi) = E(x(i))- (E(x(i)))2 

i( i + 1) i 2 

= (n+1)(n+2)-((n+1)) 

= 
( (n!l) )( 1 - (n!1)) 

n+2 
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Covariance of Z(i) and Z(j) 

ZJ 
(n + 1)2 

The calculation of the product moment E( X(i)X(j)) involves the joint density function 

f(i),(j)( X(i)' X(j))· This density can be obtained by considering the joint density function of all 

n order statistics and then integrating out the oth~r variables, (x(1), ... , x(i-1)), (x(i+I)' ... , xu-1)), 

and (x(j+I), .... ,X(n)) 

( i-1) ( . . 1) ( ") 
I X(i) (x(j)- X(i)) J-•- (1- X(j)) n-J 

= n.(i-1)! (j-i-1)! (n-j)! 

The product moment of x(i) and x(j) is then 

E(xixj) = (i _ 
1

)! (j _ .~~ l)! (n _ j)! fo1 

fox(j) xti)(x(j)- X(i))(j-i-l)X(j)(l- x(j))(n-j)dx(i)dx(j) 

n! i! (j- i- 1)! {1 j _ . (n-j) . 
= (i- 1)! (j- i- 1)! (n- j)! j! lo x(j)(1 X(J)) dx(J) 

n! i! (j- i -1)! (j + 1)! (n- j)! 
(i-1)!(j-i-1)!(n-j)! j! (n7-2)! 

i (j + 1) 
= (n+1)(n+2) 
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and the covariance of x(i) and x(j) is 

· Cov(xi,Xj) = E(xiXj) - E(xi) E(xj) 

= 
i(j + 1) ZJ 

(n+1)(n+2) (n+1)2 

= 
( (n~l) )(1 - (nil)) 

n+2 
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1.2.5 The Homogeneous Poisson Process 

In the previous sections the derivations of the moments of the order statistics were 

based on the model which postulates that n points are placed at random along an interval 

according to a uniform probability distribution. Those familiar with the areal nearest 

neighbor analysis will recall that a different model, the homogeneous Poisson process, is 

used to obtain the distribution of the nearest neighbor distances. According to the model, 

the number of points falling in a region with area A is assumed to have a Poisson distribution 

with expected number of points >.A, where >. is the rate of the Poisson process. 

A similar assumption can be made in the one dimension case. That is, the number 

of points falling on an interval of length L has a Poisson distribution with expect,ed number 

of points >.L, where >.is the rate of the Poisson process. At first glance this model does not 

appear to be related to the previous one, which postulates that the points are independent 

identically distributed random variables from a uniform distribution. However, a fundamen­

tal property of the homogeneous Poisson process is conditional uniformity. That is, given 

the number of points falling on an interval of specified length, and regardless of the rate >., 
the conditional distribution of the ordered points is that of order statistics engendered by 

independent random variables, each uniformly distributed on the interval. This property 

allows the use of the theory of order statistics in the calculations of the moments of the 

nearest neighbor distances of random points from a one-dimensional homogenous Poisson 

process. The derivations of the expected value and the variance of the nearest neighbor 

distances and of their mean are described in the next two sections. 
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1.3 Moments of Nearest Neighbor Distance 

As before, let x(1) ::; ... ::; X(n) denote the order statistics of n independent identi­

cally distributed random points from aU(O, 1) distribution or from an homogeneous l\Jisson 

process, conditioning on n. 

0 ::; li ::; 1, i = 2, .. . ,n -1 

Let di =min[ (x(i)- x(i-1)), (x(i+l)- X(i))] be the nearest neighbor distance of x~i~ 

Then, according to Tsuji [11], given x(i-1) and x(i+l)' there is no preferred position for 

X(i). That is, the conditional probability distribution of x(i) is constant within the region li. 

Therefore, given li, the conditional distribution of di is also uniform within li and defined 

as 

f(d;f l;) = u if 0 < d· < !..i.. - z- 2 

otherwise 

Expected Value of di 

Using the conditional distribution of di, its conditional expectation is 

E(di lli) 

and the expected value of di is 

E(di) = E[E(di lli)] 

r!l. 
}

0 

2 

di f( di lli) d di 

1 1!1. 
-

2 
d· d d· I· z z ! 0 

2 1 {li)2 
----

E(!i_) 
4 

= l E(li) ' 

1 
= 4 E(x(i+l)- x(i-1)) 

~(i+1_i-1) 
4 n+1 n+1 

1 

2(n + 1) 

• 
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Variance of di 

The marginal density function of d; can be derived by considering the joint density function 

of di and l; and then integrating out l;. The joint density function of d; and l; is no more 

than the product of the marginal density function of l; and the conditional density function 

of d;, given li, which is uniform within li. 

Since li is a range of two order statistics, its marginal density function can be easily obtained 

from the basic theory of order statistics. It is well known that if Wj,k = X(k)- X(j) is a range 

of two order statistics from n independent identically distributed U(O, 1) random variables, it 

has a Beta(k-j, n-k+j+1) distribution, and hence depends only on k-j and not on k and 

j individually. Especially, if k = i + 1 and j = i- 1, then w(i-1),(i+l) = li = X(i+l) - X(i-1) 

has a Beta(2, n- 1) distribution. 

It follows that the marginal density function of l; is 

f(li) = n (n- 1) li (1 -li)(n-2) for 0:::; l;:::; 1 

and the joint density function of di and 
0 

li is 

f(di lli) f(li) 

~ n (n- 1) li (1- li)(n- 2
) 

2n (n- 1) (1 -li)(n-2 ) 

Integrating out li from the above joint density function gives the marginal density function 

of d; ' 

J(di) rl J(di,zi) dzi 
}2di 

= {
1 

2 n (n- 1) (1- l;)(n-2)d li 
}2di 

2 n (n- 1) {
1 

(1 -li)(n-2)d li 
}2di 

2 n (1- 2 di)(n-1) 
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The variance of di is then 

1 
{2 2 1 2 

= lo di f(di) ddi- ( 2(n+ 1)) 
1 

= {2 2nd~ (1- 2 di)(n-l)dd·-
1 

lo 1 1 4(n+1)2 

= 2 n rt d~ (1- 2 di)(n-l)dd·- 1 ' 
lo 1 

' 
1 

4( n + 1 )2 
1 1 

2(n + 1)(n + 2) 4(n + 1)2 
n 

= 4(n + 1)2(n + 2) 



Covariance of di and dj 

Cov(di,dj) E(didj) 

= E(didj) 

E(di) E(dj) 

1 2 
(2(n+1)) 
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There are two possible cases for which E(didj) gets different values, and therefore Cov( di, dj) 

gets different values. 

Case 1: j(i)- (j)l2:: 2, i.e. li and lj do not overlap 

r--------------, r---------, 
I I I I 

0 X(i-1) X(j-1) X(j+1) 1 

Case 2: l(i)- (j)l = 1, 1.e. li and lj overlap. 

l· J 

~---------~------~-------, 
I, : I 

0 X(i-1) X(j-1) = X(i) 1 

' 
In both cases, the calculation of the product moment E( didj) involves the joint density 

function of four order statistics x(i-1), X(i+1), xu_1) and xu+1)· As before, this density can 

be obtained by considering the joint density function of all n order statistics and then 

integrating out the other variables, (x(l)' ... , X(i-2)), X(i)' (x(i+2), ... , xu-2)), X(j)' and 

(x(j+2), ... ,X(n)) 



= n! 

((i-1)-1) 
x(i-1) 

((i-1)-1)! 

( )((i+l)-(i-1)-1) 
X(i+1) - X(i-1) 

( ( i + 1) - ( i - 1)- 1 )! 

(x(j-1)- x(i+l))((j-1)-(i+l)-1) 

( (j - 1) - ( i + 1) - 1)! 

(x(j+l)- X(j-1))((j+l)-(j-1)-1) 

((j + 1)- (j- 1)- 1)! 

(1- X(j+l))(n-(j+1)) 

(n-(j+1))! 

36 

'. 



n! 
= 

(i- 2)!(j- i _,.. 3)!(n- j- 1)! 

(i-2)( )( )(j-i-3)( )(1 )(n-j-1) X(i-1) X(i+~)- X(i-1) X(j-1)- X(i+l) X(j+1)- X(j-1) - X(j+1) 

Case 1: l(i)- (j)l > 2 

Since li and lj do not overlap, ( di lli = l1) and ( dj llj = l2) are independent. 

This implies that 

= E(di Iii= l1)E(dj llj = 12) 
it 12 = 4 4 
1 

= 
16 

(x(i+1)- X(i-1))(x(j+l)- x(j-1)) 

The conditional expectation can then be used to calculate the product moment. 

For simplicity, let 

xu_1)=a 

X(i+l)=b 

X(j-1)=C 

X(j+l)=d 

( i- 1) = ( i) 

(i + 1) =(j) 

(j- 1)= (k) 

(j+1)=(l) 

then solving the last equation gives 

1 lal lad lac lab - (b- a) ( d- c) f(i),(j),(k),(I)( a, b, c, d) da db de dd 
16 0 0 0 0 

37 
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1 n! 
= 16 (i- 1)! (j- i- 1)! (k- j- 1)! (l- k- 1)! (n -l)! 

1 n! ( i - 1 )! (j - i)! 
= 16 (i-1)!(j-i-1)!(k-j-1)!(l-k-1)!(n-l)! j! 

1 n! (i-1)!(j-i)!j!(k-j_-1)! 
= 16 (i- 1)! (j- i- 1)! (k- j- 1)! (l- k- 1)! (n -l)! j! k! 

1 n! (i- 1)! (j- i)! j! (k- j- 1)! k! (l- k)! 
= 16 (i- 1)! (j- i- 1)! (k- j- 1)! (l- k- 1)! (n- l)! j! k! (l + 1)! 

1 n! (i- 1)! (j- i)! j! (k- j- 1)! k! (l- k)! (l + 1)! (n -l)! 
= 16 (i- 1)! (j- i- 1)! (k- j- 1)! (l- k- 1)! (n -l)! j! k! (l + 1)! (n + 2)! 

= 
1 (j-i)!(l-k)! 
16 (n+1)(n+2) 

Switchi';lg back to (i -1), (i + 1), (j.- 1), and (j + 1) gives 

1 
E [ E(didj lli = l1, lj = l2)] = 4 (n + 1) (n + 2) 

Substituting into the covariance formula yields 

1 l 
= 4(n+1)(n+2) 4(n+1)2 

1 
= 
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Case 2: l(i)- (j)l = 1 

In this case the four order statistics are actually x(i-I)' X(i)' X(i+I)' and X(i+2), where X(i) 

was previously x(j-I) and X(i+2) was previously x(j+I)· Since li and lj overlap, (di lli = 11) 

and ( dj llj = l2) are not independent. 

The joint density of the four order statistics is 

' . . 
+ ( · ) n. (z-2)( _ . )(n-i-2) 
J(i-l),(i),(i+l),(i+2) X(i-l),X(i),X(i+l),X(i+2) = (i _ 2)! (n _ i _ 2)! X(i-1) 1 X(z+2) 

· Furthermore, di · dj can get four different values as follows 

Similarly to the calculation for Case 1, let 

X(i-I)=a 

X(i) =b 

X(i+I)=C 

X(i+2)=d 

This implies that 

(b- a)(c- b) if (2b- c)< a and (2c- d)< b 

(b- a)(d- c) if (2b- c)< a and b < (2c- d) 

( c- b)( c- b) if a < (2b- c) and (2c- d) < b 

(c-b)(d-c) ifa<(2b-c)andb<(2c-d) 

The product moment of di and dj is then 

E(d·d·) = n. d·d·a(i..,- 2)(1-d)(n-i-2)dadbdcdd I lal ld lac lab 
z 3 ( i - 2)! ( n- i - 2)! o o o o z 

3 
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= nl 11lad 1c 1b 
0 • 0 I((2c- d)< b) 

( 2 - 2)~ ( n- 2 - 2)! 0 0 0 max(0,(2b-c)) 

a(i-2) (b- a) ( c- b) (1- d)(n-i-2) da db de dd 

n' 11 lad lac 1b + . · 0 I(b < (2c- d)) 
( Z - 2)! ( n - Z- 2)! 0 0 0 max(0,(2b-c)) . 

a(i-2) (b- a) (d- c) (1- d)(n-i- 2) dadbdcdd 

n! 11 ld lc 1(2b-c) +C )'( 0 )'I((2c-d)<.b)I(0.<(2b-c)) 2-2. n-2-2. 0 o o o o 

a(i-2) (c- b) (c- b) (1- d)(n-i- 2) da db de dd 

. n! ( [d r [(2b-c) 
+ (i- 2)! (n- i- 2)! I(b < (2c- d)) I(O < (2b- c)) Jo lo lo lo 

a(i-2) ( c- b) ( d- c) (1 - d)(n-i- 2) da db de dd 

= 
n! 1 [1 [d 1c 

(i-2)!(n-i-2)! (i)(i-1) Jo Jo max((2c-dM) 

{ bi - [ (2b- c)(i-1)(2b- c- bi + ci)]} ( c- b )(1- d)(n-i- 2) db de dd 

7l' 1 c 11 1d 1 ~ + 0 " 0 0 0 I((2c-d)<-) 
(2-2)!(n-2-2)! (2)(z-1) 2 o o max(0,(2c-d)) 

( c- b) bi (1 - d)(n-i-2) db de dd 

n' 1 c 11 lad l(2c-d) + 0 • • 0 0 I (- < ( 2c - d)) · 
(z-2)!(n-z-2)! (z)(z-1) 2 o o ~ 

{bi- [ (2b- c)(i-1)(2b ~ c- bi + ci) ]}(d- c) (1- d)(n-i- 2 ) db de dd 



n! 1 {1 rd rmin((2c-d),~) 

+ ( i- 2)! ( n- i- 2)! ( i)( i- 1) Jo lo lo ,. 

bi (d- c) (1- d)(n-i-2) db de dd 

n! i {1 rd r 
+ (i- 2)! (n- i- 2)! (i)(i- 1) Jo Jo lmax((2c-d),~) 

(c- b)2 (2b- c)(i-1) (1- d)(n-i- 2) db de dd 

n! i c {1 rd [(2c-d) 

+(i-2)!(n-i-2)!(i)(i-1) 1(2<(2c-d))Jo }0 }~ 

(c- b) (2b- c)(i-1) (d- c) (1- d)(n-i-2) dbdcdd 

= 

1 
= 

3(n+1)(n+2) 
' 

Substituting into the covariance formula yields 

Thus, for both cases, 1 and 2, 

= E(didj) - E(di) E(dj) 
1 1 

= 

= 

3(n+1)(n+2) 4 (n + 1)2 

n-2 
12(n+1)2(n+2) 

12 (n+1)2 (n+2) 

if l(i)- (j)l ~ 2 

if l(i)- (j)( = 1 

41 
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1.4 Moments of Mean Nearest Neighbor Distance 

Let x(1) :$ ... :$ X(n) denote the order statistics of n independent identically 

distributed random points from a U(O, 1) distribution or from an homogeneous Poisson 

process, conditioning on n. The mean nearest neighbor distance can be calculated as follows: 

_ 
1 

n-1 
d = - { (x(2)- X(l)) + L min[ (x(i)- X(i-1)), (x(i+1)- X(i))] + (x(n)- X(n-1))} 

n i=2 

Expected Value of if 

E(d) 
1 

n-1 · 

- E { (x(2)- X(l)) + L min[ (x(i)- X(i-1)), (x(i+l)- X(i))] + (x(n)- x(n-1))} 
n i=2 

1 n-1 
- { E(x(2)- X(1)) + E( L min[ (x(i)- X(i-1)), (x(i+I)- X(i))]) + E(x(n)- X(n-1))} 
n ~2 

1 (2-1) n-2 (n-(n-l)) 
;;, { ( n + 1) + 2( n + 1) + ( n + 1) } 
1 1 n-2 1 
;;, { ( n + 1) + 2( n + 1) + ( n + 1) } 

n+2 
2n(n + 1) 

Variance of d 

Let d1 = X(2) - X(1) and dn = X(n) - X(n-1) 

Var(d) 
1 n-1 

2 Var { d1 + L min[ (x(i)- x(i-1)), (x(i+I)- X(i))] + dn} 
n i=2 . 

1 n-1 

n2 { Var(d1) + l:Var(di) + Var(dn) 
i=2 

n-1 
+ 2 L Cov(dbdi) + 2 Cov(d1,dn) 

i=2 

n-1 
+2 L Cov(di,dj) 

i=2,i<j 

n-·1 

+ 2 L Cov(di,dn)} 
i=2 



Var(d1) = Var(x(2)-X(1))· 

= Var(x(1)) + Var(x( 2))- 2 Cov(x(l)•x(2)) 

= n + 2(n -1) _ 2(n- 1) 
(n+1)2(n+2) (n+1)2 (n+2) (n+1)2(n+2) 

n 
= (n + 1)2 (n+ 2) • 

Var(dn) = Var(x(n)-.X(n-1)) 

= Var(x(n-1)) + Var(x(n))- 2 Cov(x(n-1)• X(n)) 
2(n- 1) n 2(n- 1) 

= (n + 1)2 (n + 2) + (n + 1)2 (n + 2) - (n + 1)2 (n + 2) 
n 

= (n+1)2(n+2) 

Cov(dbdi) 

The covariance of d1 and di has two different values, for i = 2 and for 3 ~ i ~ n - 1. 

Fori= 2 

Cov(d1.d2) = E(d1d2)- E(d1)E(d2) 

= E(d1d2)- E(x(2)- X(l)) E( min[ (x(2)- X(l)), (x(3)- X(2))]) . 
1 . (_ 

= E(d1d2)- 2(n + 1)2 

The joint density function of x(1), x( 2) and x(3) is 

Here~ 

As before, let 

x(1 ) =a 

X(2) =b 

x(3) =c 

43 



This implies that 

{ 
(b-a)(b-a) if(2b-c)<a 

d1. d2 = 
(b-a)(c-b) ifa<(2b-c) 

The product moment of d1 and d2 is then 

E(d1d2) = n(n-1)(n-2)la
1 

foe fob d1d2(1-c)(n-3 )dadbdc 

= n(n-1)('n-2) {
1 r fb (b-a) 2 (1-c)(n-3)dadbdc 

Jo Jo lmax(0,(2b-e)) 
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{1 r {(2b-e) 
+n(n-1)(n-2)I(0<(2b-c))J

0 
Jo Jo (b-a)(c-b)(1-c)(n-3 )dadbdc 

= n(n-1)(n-2){
1 r b

3 
(1-c)(n-3)dbdc 

lo 1~ 3 
2 

= 

= 

= 

- n(n -1)(n- 2) fo1 
he b2 (2b- c) (1- c)(n-"-3) db de 

. 2 

+ n(n- 1)(n- 2) fo
1 

he b (2b- c? (1- c)(n-3
) db de 

2 

- n(n- 1)(n- 2) t r (2b- c)
3 

(1- c)(n-3) db de 
· lo 1~ 3 

2 

1 ~ b3 
+ n(n -1)(n- 2) f f - (1- c)(n-3 ) db de 

lo lo 3 

+ n(n -1)(n- 2) 11 
he b (c- b) (2b- c) (1- c)(n-3) db de 

2 

11 le (2b- c)2 -n(n-1)(n-2) (c-b) (1-c)(n-3)dbdc 
0 .£ 2 

. 2 

24 n ( n - 1) ( n - 2) 
32 (n- 2) (n- 1) n (n + 1) (n + 2) 

3 
4(n+1)(n+2) 



Substituting into the covariance formula yields 

= 

= 

E(d1d2) - E(d1)E(d2) 
3 1 

4(n+l)(n+2) 
n-1 

2 (n + 1)2 

4(n+1)2(n+2) 

For 3 ~ i ~ n- 1 

Cov(dbdi) = E(d1di)- E(d1)E(di) 

= E(d1di)- E(x(2)- X(1)) E( min[ (x(i)- X(i-1)), (x(i+l)- X(i))]) 

1 
= E(d1di)- 2(n + 1)2 

The joint density function of X(l)' x(2), x(i-1), x(i) and x(i+l) is 

Here 

f(1),(2),(i-1),(i),(i+l)(X(t)' X(2)' X(i-1)' X(i)' X(i+1)) 

n! ( )(i-4)( 1 )(n-i-1) 
= (i- 4)! (n- i- 1)! X(i-1)- X(2) - X(i+l) 

d
1 

·.di = { (x(2)- X(1))(x(i)- X(i-1)) if (2X(i)- X(i+l)) < X(i-1) 

(x(2)- X(t))(x(i+1)- X(i)) if X(i-1) < (2X(i)- X(i+l)) 

As before, let 

X(1) =a 

X(2) =b 

X(i-1)=C 

X(i) =d 

x(i+l)=e 

This implies that 

d
1

·di= { (b-a)(d-c) if(2d-e)<c 

(b- a)( e- d) if c < (2d- e) 

The product moment of d1 and di is then 

E(d1di) 
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= . n! . f
1 re rd rc rb didj(c-b)(i-4)(1-e)(n-i-1ldadbdcddde 

(2-4)~(n-z-1)! Jo Jo lo Jo lo 



= . n! . I((2d-e)<c) f 1 r fd rc fb 
(z-4)!(n-z-1)! lo lo lo lo lo 

(b- a)(c- b)(i-4)(d- c)(l- e)(n-i-1)dadbdcddde 

n! {1 r {d r {b 
+(i-4)!(n-i-l)!J(c<(2d-e))Jo lo lo lo lo 

(b- a)(c- b)(i-4\e- d)(l- e)(n-i-1)dadbdcddde 

= n! . J((2d- e) < c) {
1 re {d rc 

(i-4)!(n-z-1)! lo lo lo lo 

= 

= 

= 

b
2 

(c- b)(i-4)(d- c)(l- e)(n-i-1)dbdcddde 
2 

n! {1 r {d rc 
+ (i- 4)! (n- i- 1)!J(c < (2d- e)) lo lo lo lo 

b
2 

(c- b)(i-4)(e- d)(1- e)(n-i-1)dbdcddde 
2 

(i+2)!(n-i-1)!n! 
2 (i + 2)! (n- i- 1)! (n + 2)! 

1 

2(n+1)(n+2) 

Substituting into the covariance formula yields 

= 

= 

E(d1di) - E(d1)E(d2) 
1 1 

2(n+l)(n+2) 
1 

2 (n + 1)2 

2 ( n + 1 )2 ( n + 2) 
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Cov(dbdn) 

Following similar procedure gives the product moment E(d1dn)· 

Substituting into the covariance formula yields 

" E( d1dn) - E( d1)E( dn) 
1 1 

= 
(n+1)(n+2) (n+1)2 

1 
= (n+1)2(n+2) 

Cov(di, dn) 
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Similar to the covariance of d1 and di, the covariance of d: and dn has two different values, 

fori= n- 1 and for 2 ~ i ~ n- 2. 

Fori= n -1 

E(dn-1dn)- E(dn-1)E(dn) 

E(dn-ldn)- E( min[ (X(n-1)- X(n-2)), (x(~)- X(n-1))]) E(x(n)- X(n-1)) 

3 1 
4(n+1)(n+2) 2(n+1)2 

n-1 
4(n+1)2(n+2) 

For 2 ~ i ~ n- 2 

Cov(di,dn) = E(didn) - E(di)E(dn) 

E( min[ (x(i)- X(i-1)), (x(i+l)- x(i))]) E(x(n)- X(n-1)) 

1 1 
= 2(n+1)(n+2) 2(n+1)2 

1 
= 2(n+1)2(n+2) 



Finally, substituting all the above results into the formula of the V ar( d) gives 

Var(d) 
1 n-1 

= 2 Var { d1 + 2:::: min[ (x(i)- X(i-1)), (x(i+l)- X(i))] + dn} 
n i=2 

1 n n(n-2) n 
= n2 { (n+1)2(n+2) + 4(n+1)2(n+2) + (n+1)2(n+2) 

= 

2(n-1) 2(n-3) 
+ 4 ( n + 1 )2 ( n + 2) - 2 ( n + 1 )2 ( n + 2) 

2 (n- 2) (n- 3) 2 (n-3)t-4) 

+12(n+1)2(n+2)- 4(n+1)2 (n+2) 

2 (n- 1) 
+ 4 ( n + 1 )2 ( n + 2) 

1 2 n2 + 17 n + 12 
n2 12(n+1)2(n+2) 

2 ( n- 3) 
2(n+1)2(n+2)} 

2 

(n+1)2 (n+2) 

48 
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1.5 Edge Effects Correction 

In Section 1 A the calculation of the mean nearest neighbor distance was based 

on the assumption that the contributions from the two extreme points are the distances to 

their neighbors. This can be readily seen in the formula for d, 

Unfortunately, these contributions may be biased due to the edge effects. 

The edge effect, which is also known as the boundary problem, arises whenever at least 

one of the two extreme points is closer to the end-point of the line than to its neighbor. 

In this case, the distance from the extreme point in one direction is tru!lcated and cannot 

be compared to the distance to its neighbo:r on the study interval. This implies that the 

nearest distance may be smaller than the one that was used in the calculation of the mean 

nearest neighbor distance. Cop.sequently the contribution of this extreme point to the mean 

is larger than it should be. The figure below illustrates these two possible situations. 

Y(L) X(n-1) 1 Y(R) 

The smallest point, X(l)' is closer to the interval border than to its neighbor x(2). The dis­

tance to the point on the other side of the border, Y(L), is smaller than the distance to x(2)· 

Thus the contribution of x(1) to the mean nearest neighbor distance is larger than i~ should 

be. On the other hand, although the largest point, X(n)' is closer to the border than to 

its neighbor, X(n-1), there is no need for correction. As it is shown, the distance froi:n this 

point to its neighbor is smaller than the distance to the point outside the interval. 
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Since there is no information on the location of the points outside the interval 

boundaries the correction for the edge effects relies either on the information about the 

location of the random points on the study interval, or on the assumption that the same 

processes responsible for the location of the points on the interval are operating beyond its 

boundaries. 

There are five possible methods which can be used to correct for the edge effects: 

the 'Circle' method, the 'Boundary' method, the 'Mirror' method, the 'Expected Value' 

method, and the 'Random Points' method. The 'Boundary' and the 'Expected Value' 

methods are based only on the information from the given set of random points and their 

~ distribution along the interval. The other three. correction methods are based on the as­

sumption that the points pattern inside the interval is the same as the one out~ide its 

boundaries. These methods are described in the following sections. 
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1.5.1 The 'Circle' Method 

One way to compensate for the edge effects is based on the conversion of the 

straight line (or any other non closed curve) to a circle (or any other closed curve) by join­

ing together its opposite edges. On the circle, the previously two exterme order statistics, 

x(1) and X(n)' become candidates for being each other's nearest neighbor. The basic as­

sumption is that the same processes responsible for the location of the points on the unit 

interval are operating beyond its boundaries. Therefore, these two points are assumed to 

be representatives of the other points outside the interval. 

Another useful way to think about it is to consider n + 2, instead of n, order statistics 

X(o) < X(l) ::; X(2) ::; ... ::; X(n-1) ::; X(n) < X(n+l) 

.• where X(o) = -(1- X(n)) and X(n+l) = 1 + X(1) 

X(O) = X(n) - 1 0 X(n-1) X(n) 1 X(n+1) = 1 + X(1) 

The corrected expected value of d can be calculated following the same procedure which 

had been used in Sections 1.3 and 1.4 

Let li = (x(i)- x(i-1)) + (x(i+1)- x(i)) = x(i+1)- X(i-1) 

Let di =min[ (x(i)- X(i-1)), (x(i+1)- X(i))] 

In particular, 

/1 = X(2)- X(o) = 1 + X(2)- X(n) 
/ 

ln = X(n+1) - X(n-1) = 1 + X(l) - X(n-1) 

0 ::; li ::; 1, 

0 ::; di .::; ~' 

d1 =min[ (x(1)- X(o)), (x(2)- X(lj)] =min[ (1 + X(1)- X(n)), (x(2)- X(1))] 

i = 1, .. . ,n 

i = 1, .. . ,n 

dn =min[ (x(n)- X(n-1)), (x(n+1)- X(n))] =min[ (x(n)- X(n-1)), (1 + X(l)- X(n))] 

Then, 
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The expected values of d1 and dn can then be calculated using their conditional expectations, 

given h and ln. 

E(d1) = E[E(d1 I h)] 

Similarly, 

E(dn) = E[E(dn lln)] 

4(n +1) 

= E(ln) 
4 

1 
4 E(1 + X(1)- X(n-1)) 

1 n+1 1 n-1 
4 { n + 1 + n + 1 - n+ 1 } 

3 
4(n + 1) 

The corrected expected value of J is then 

E(d) = 
1 n-1 
- E { d1 + L min[ (x(i)- X(i-1)),(x(i+1)- x(i))] + dn.} 
n i=2 . 

1 n-1 
- { E(d1) + E( L min[ (x(i)- x(i-1)), (x(i+1)- X(i))]) + E(dn)} 
n i=2 

1 3 n-2 3 
;, { 4( n + 1) + 2( n + 1) + 4( n + 1) } 

1 
2n 

Furthermore, it is possible to calculate the difference between the uncorrected and the 

corrected mean nearest neighbor distance. 

DIFFERENCE = 

= 

n+2 
2n(n + 1) 

1 
2n(n + 1) 

1 
2n 
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1.5.2 The 'Boundary' Method 

An alternative way to overcome the boundary problem is to consider the distance 

from each extreme point to the nearest border as its possible nearest neighbor distance. 

Since there is no information on the point pattern outside the unit interval, this method 

relies only on the one available, that is, the location of the extreme points and there dis·· 

tance to the interval boundaries. The 'Boundary' method can be easily generalized to two 

dimensions, even when the shape of study area is irregular. 

This method implies that there are n + 2, instead of n, order statistics 

X(o) ::::; X(l) ::::; X(2) ::::; ... ::::; X(n-1) ::::; X(n) ::::; X(n+1) 

where x(o) = 0 and X(n+l) = 1 

x(o) = 0 

The corrected expected value of d can then be calculated as before 

Let 

h = X(2) -:- X(o) = X(2) 

ln = X(n+l) - X(n-1) = 1 - X(n-1) 

d1 =min[ (x(l)- x(o)), (x(2)- X(l))] =min[ (x(1)), (x(2)- X(lj)] 

dn =min[ (X(n)- X(n-1)), (x(n+l)- X(n))] =min[ (x(n)- X(n-1)), (1- X(n))] 

The expected values of d1 and dn are then 

= 

4 n+ 1 
1 

2(n + 1) 



Similarly, 

E(dn) = E[E(dn lln)] = E(ln) 
4 

1 
= 4 E(l- X(n-1)) 

= ~{n+l_n-1} 
4 n+1 n+1 

1 
= 2(n + 1) 

The corrected expected value of d is then 

E(d) 
1 n-1 

= - E { d1 + L min[ (x(i)- X(i-t)), (x(i+1)- X(i))] + dn} 
n i=2 

1 n-1 . . 

= - { E(dt) + E( L min[ (x(i)- X(i-1)), (x{i+l)- X(i))]) + E(dn)} 
n i=2 

1 1 n-2 1 
= -:;;, { 2( n + 1) + 2( n + 1) + 2( n + 1) } 

1 
= 2(n + 1) 
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The difference between the uncorrected and the corrected mean nearest neighbor distance 

is then 

DIFFERENCE = 

= 

n+2 
2n(n + 1) 

1 

n(n + 1) 

1 
2(n + 1) 
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1.5.3 The 'Mirror' Method 

Another way to overcome the edge effects is to assume that on the other side of 

the border there is a point which is located at the same distance from it as the extreme 

point. Thus, a distance, which is exactly twice the distance to the border, becomes a possi­

ble nearest neighbor distance. As in the 'Circle' methods, the assumption is that the same 

processes responsible for the location ofthe points on the unit interval are operating beyond 

its boundaries. The 'Mirror' method, as the 'Boundary' method, can be easily generalized 

to a two-dimensions situation, even if the shape of study area is irregular, while the 'Circle' 

method can be generalized to two dimensions only if the study area has a rectangular shape. 

Another way to think about it is to consider again n + 2 order statistics 

X(o) < X(l) ~ X(2) ~ ... ~ X(n-1) ~ X(n) < X(n+l) 

where x(o) = -x(1) and x(n+l) = 1 + (1- x(n)) 

0 1 X(n+1) = 1 + 1 - X(n) 

Let 

[ 1 = X(2)- X(o) = X(2) + X(1) 

ln = X(n+1) ~ X(n-1) = 2 - X(n) - X(n-1) 

d1 =min[ (x(l)- x(o)), (x(2)- x(1))] =min[ (2x(l)), (x(2)- X(l))] 

dn =min[ (g:(n)- X(n-1)), (x(n+l)- X(n))] =min[ (x(n)- X(n-1)), (2- 2 X(n))] 

Note that given Zt, the conditional distbbution of d1 is uniform (0, ~ x(2)) 

and given ln, the conditional distribution of dn is uniform (0, ~ (1- X(n-1))) 

.'Then, 
2.r(2) . 2.r(2) 

l 3 1 l 3 X(2) 
E(dt lit) = dt f(dt lit) ddt= -2 - d1 ddt= -

3 0 ~ 0 
3 

and the expected value of dt is 

E(d1) = E[E(dt llt)] E X(2) .:... 2 
( 3 )- 3(n+1) 



Similarly, 

and the expected value of dn is 

E( dn) = E[E( dn lln)] 
1- X(n-1) 2 

E( 3 )=3(n+1)· 

The corrected expected value of d is 

E(d) = 1 n-1 . 

- E { d1 + L min[ (x(i)- X(i-1)), (x(i+l)- X(i))] + dn} 
n i=2 

1 n-1 

= - { E(d1) + E( L min[ (x(i)- X(i-1)), (x(i+1)- X(i))]) + E(dn)} 
n i=2 

= 

1 2 n-2 2 
;, { 3(n + 1) + 2(n + 1) + 3(n + 1)} 

3n+2 
6n(n + 1) 
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The difference between the uncorrected and the corrected mean nearest neighbor distance 

is then 

DIFFERENCE = 

= 

n+2 
2n(n + 1) 

2 

3n(n + 1) 

3n+ 2 

6n(n + 1) 
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1.5.4 The 'Expected Value' Method 

An alternative solution the boundary problem is to consider the expected value 

of the nearest neighbor distances for a unit interval as a possible distance of each of the 

extreme points. This method, like the 'Boundary' method, relies only on information about 

the distribution of the set of points on the interval. The major advantage of this method 

over the others is that the correction factor is a constant which depends only on the number 

of points and not on their location. Furthermore, it is based on information from all the 

points while the others are based only on the two extreme order statistics. 

The 'Expected Value' method implies having n + 2 order statistics 

X(o) < X(l) :::; X(2) :::; ... :::; X(n-1) :::; X(n) < X(n+l) 
. 1 1 

where X(o) = X(l) - 2(n+I) and X(n+l) = X(n) + 2(n+l) 

Let 

l1 = X(2)- X(O) = X(2) -X(!)+ 2(;+1) 

ln = X(n+l) - X(n-1) = X(n) - X(n-1) + 2(n~l) 
d1 =min[ (x(l)- x(o)), (x(2) -- .'t(l))] =min[ ( 2 (n~ 1 j), (x(2)- x(l))] 

1 
X(n+l) = X(n) + 2(n+1) 

dn =min[ (x(n)- X(n-1)), (x(n+l)- X(n))] =min[ (x(n)- X(n-1)), ( 2 (n~l))] 
The expected values of d1 and dn are then 

8(n+ 1) 

'·. 



Similarly, 

= E(ln) 
4 

1 1 
= 4E(x(n)-X(n-1)+ 2(n+ 1)) 

1 n n-1 1 
= 4 { n + 1 - n + 1 + 2( n + 1) } 

3 
= 8(n + 1) 

The corrected expected value of d is then 

1 n-1 
E(d) = - E { d1 + L min[ (x(i)- X(i-1)), (x(i+l)- X(i))] + dn} 

n i=2 

1 n-1 
- { E(dl) + E( L min[ (x(i)- X(i-1)), (x(i+l)- X(i))]) + E(dn)} 
n i=2 

1 3 n-2 3 
= ;- { 8(n+ 1) + 2(n+ 1) + 8(n+ 1)} 

2n -1 
= 4n(n + 1) 
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The difference_ between the uncorrected and the corrected mean nearest neighbor distance 

is then 

DIFFERENCE = 

= 

n+2 
2n(n + 1) 

5 
4n(n + 1) 

2n -1 

4n(n + 1) 
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1.5.5 The 'Random Points' Method 

An alternative strategy for overcoming the boundary problem is to distribute ran­

dom points on both sides of the study interval with the same intensity as the one on the 

interval. This can be done by considering two more unit length intervals, which are located 

on its both sides, and n independent uniformly distributed random points on each of them. 

After ordering the points, the largest one on the left hand side interval becomes a candi­

date for being X(l)'s nearest neighbor, and the smallest one on the right hand side intervals 

becomes a candidate for being x(n) 's nearest neighbor. 

Another useful way to think about it is to consider n + 2 order statistics 

X(o) < X(l) ::; X(2) ::; ... ::; X(n-1) ::; X(n) < X(n+1) 

where X(o) is the largest order statistic on the left hand side interval and X(n+I) is the small­

est order statistics on the right hand side interval. 

-1 0 
X£(1) .. _x(o) = X£(n) • X(n) 

1 2 
X(n+l) = XR(1) ... :..~R(n) 

This implies that the expected location of x(o) with respect to 0 is the same as the expected 

location of X(n) with respect to 1. Furthermore, the expected location of X(n+I) with re­

spect to 1 is the same as the expected location of X(l) with respect to 0. Thus, X(o) can be 

considered as -(1 - X(n)) and X(n+1) can be considere~ as 1 + X(l)· That is, the expected 

location of X(o) and X(n+l) is the same as their location in the 'Circle' method: In other 

words, over many trials the results from the 'Random Points' method will agree with those 

from the 'Circle' method. The advantage of ~he 'Circle' method is that it is not sensitive to 

random fluctuations outside the study interval and the correction factor depends only on 

the data set and not on additional random processes. 
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1.5.6 Summary of the Correction Methods 

Table 1 below summarizes the differences between the expected values of the un­

corrected and corrected means of nearest neighbor distances, which were derived in Sec­

tions 1.5.1 through 1.5.4. 

Table 1: Differences Between Expected Values 

-

Method of Correction Expected Value Difference 

'Circle' 1 1 1 
2n 2 n(n+1) 

'Mirror' 3n+2 2 1 
6n(n+1) 3 n(n+1) 

'Boundary' 1 1 
2(n+l) n(n+l) 

'Expected Value' 2n-1 5 1 
4n(n+1) 4 n(n+1) 

The differences between the expected values are of magnitude n(!+t). This implies that 

they decrease as the sample size increases. Since the correction procedures are applied to 

two nearest neighbor distances at most, their effect on the expected mean value gets smaller 

as the number of points gets larger. Furthermore, all differences are in the same direction 

and are greater than zero. This reflects the process of the edge effects correction. While 

the uncorrected nearest neighbor distance is the distance between the extreme point and 

its neighbor, the corrected distance is the minimum between that distance and a correction 

factor. Consequently, the expected value of the corrected mean can be equal to or smaller 

than the expected value of the uncorrected mean. 
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The 'Circle' method yields a corrected expected value which is the most similar 

to the uncorrected one. The 'Expected Value' method yields the least similar corrected ex­

pected value. A further investigation of these expected values and their standard deviations 

is needed in order to evaluate which correction method gives the best results . 

.. 
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1.6 Simulation Results 

The simulations were conducted using a prescribed number of random points ( n) on 

a unit length line between 0 and 1. The set of points was then used to calculate n nearest 

neighbor distances and the uncorrected mean nearest neighbor distance. The corrected 

nearest neighbor distances and their mean were calculated using four different methods of 

correction: the 'Circle', the 'Boundary', the 'Mirror', and the 'Expected Value'. 

The process was simulated 10,000 times for each value of n. Then the overall uncorrected 

and corrected means and their standard deviations were calculated. 

The 'Random Points' method was applied differently. For each set of n random 

points on a unit length line between 0 and 1, two new sets of n random points were generated. . . 
One set on a unit length line between -1 and 0, and the other on a unit length line between 

1 and 2. The largest point from the left hand side set and the smallest point from the 

right hand side set became candidates for being nearest neighbors. The corrected mean 

nearest neighbor distance was then calculated. This proccess was repeated 100 times for 

each set of n random points and the overall mean was calculated. After repeating the 

process 100 times, a new set of random points was generated and the whole process was 

repeated another 100 times. This procedure was conducted 1000 times for each n and the 

overall corrected mean and its standard deviation were then calculated. 

The results of the simulations are summarized in Table 2 on the next page. The 

table's rows correspond to the different methods of correction and its columns correspond 

to four sample sizes, n = 5, 10, 100, 200. For each sample size, the table presents the 

uncorrected and the five corrected means of nearest neighbor distances, together with their 

standard deviations. 

The differences between the uncorrected and the corrected means and between the 

various corrected means get sMaller as the sample size gets larger. This result corresponds 

with the calculations which are shown in Table 1 and indiCate that those differences are 

of magnitude n(n'+I). The dependence of those differences on the sample size reflects the 

fundamental property of the mean. As it is well known, the mean is a summary statistic 

which is sensitive to the contributions of all random points. However, as explained in Sec­

tion 1.5.6, the effect of a change in one or two nearest neighbor distances decreases as the 

sample size increases. 
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Table 2: Simulation Results for the Correction Methods 

Sample Size 

-
Method of n=5 n = 10 n = 100 n =200 

.Correction Mean Std.Dev. Mean Std.Dev. Mean Std.Dev . Mean Std.Dev .. 

'Circle' 0.099801 0.033005 0.050098 0.012229 0.004998 0.000407 0.002500 0.000144 

'Boundary' 0.083148 0.028466 0.045527 0.011447 0.004947 0.000404 0.002487 0.000143 

'Mirror' 0.094232 0.032919 0.048561 0.012296 0.004981 0.000408 0.002496 0.000144 

'Expected Value' 0.076858 0.027920 0.043687 0.011629 0.004927 0.000404 0.002482 0.000143 

'Random Points' 0.101118 0.036059 0.050247 0.012848 0.004998 0.000408 0.002499 0.000144 

No Correction 0.116456 0.043828 0.054594 0.014630 0.005048 0.000414 0.002512 0.000145 

For each sample size, the uncorrected mean nearest neighbor distance is larger tl' :t.n all 

corrected means. This result reflects the process of correction. While the uncorrected 

nearest neighbor distance is the distance between the e_xtreme point and its neighbor, the 

corrected distance is the minimum between the above distance and a correction factor. 

This implies that the corrected mean can be equal to or lower than the uncorrected one. 

Similarly, for each sample size, the standard deviation of the uncorrected mean 

nearest neighbor distance is larger than the standard deviations of the corrected means. 

A comparison of the different correction methods reveals that two of them, the 
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'Circle' and the 'Random Points', yield similar values of the mean nearest neighbor, even for 

small sample sizes. This result corresponds to the similarity between these methods, as was 

explained in Section 1.5.5. That is, the expected location of the two candidates for being 

the extreme points' nearest neighbors are the same in both methods. Consequently, the 

means of the nearest neighbor distances are expected to be similar. However, the standard 

deviation of the mean nearest neighbor distance in the 'Circle' method is smaller than the 

one in the 'Random Points' method. This reflects the advantage of the 'Circle' method 

where the mean depends only on the data set and not on additional random processes 

outside the study interval. 

Another correction method, the 'Mirror' inethod, also gives similar values of the 

mean nearest neighbor distance, especially as the sample size increases. An important result 

is that the standard deviation ofthe mean is smaller than the one from the 'Random Points' 

method, and similar to the one from the 'Circle' method. Consequently, the 'Mirror' method 

can be assumed a possible alternative to the 'Circle' method. This assumption is especially 

important for the two-dimensions case since the 'Mirror' method can be easily generalized 

to two dimensions, even if the shape of study area is irregular, while the 'Circle' method 

can be generalized to two dimensions only if the study area has a rectangular shape. 

The 'Expected Value' and the 'Boundary' methods yield the smallest values of the 

mean nearest neighbor distance and its standard deviation. Those values of the standard 

deviations correspond to the common characteristic of the two methods. Both methods, 

unlike the others, rely only on information from the given set of random points. The 

'Boundary' correction factor is based on the distance to the interval boundaries and the 

'Expected Value' correction factor is based on the number of random points on the interval. 

The other correction methods rely on the assumption that the same processes responsible 

for the location of the points on the interval are operating beyond its boundaries. The 

calculation of the correction factors introduce additional variablity which affects the values 

of the mean's standard deviation. 
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