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The reaction-diffusion master equation is a stochastic model often utilized in the study of biochemical
reaction networks in living cells. It is applied when the spatial distribution of molecules is important to
the dynamics of the system. A viable approach to resolve the complex geometry of cells accurately is
to discretize space with an unstructured mesh. Diffusion is modeled as discrete jumps between nodes
on the mesh, and the diffusion jump rates can be obtained through a discretization of the diffusion
equation on the mesh. Reactions can occur when molecules occupy the same voxel. In this paper,
we develop a method for computing accurate reaction rates between molecules occupying the same
voxel in an unstructured mesh. For large voxels, these rates are known to be well approximated by the
reaction rates derived by Collins and Kimball, but as the mesh is refined, no analytical expression for
the rates exists. We reduce the problem of computing accurate reaction rates to a pure preprocessing
step, depending only on the mesh and not on the model parameters, and we devise an efficient
numerical scheme to estimate them to high accuracy. We show in several numerical examples that
as we refine the mesh, the results obtained with the reaction-diffusion master equation approach
those of a more fine-grained Smoluchowski particle-tracking model. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4975167]

I. INTRODUCTION

Spatial stochastic modeling is a tool frequently used to
study biochemical reaction networks in cells where the spa-
tial distribution of molecules is non-uniform.1–5 For instance,
reactions can be localized to only a few sites, or molecules
may take part in a sequence of reactions where the spatial cor-
relation of the newly created molecules affects the dynamics
of the whole system.6–8

The models considered when studying systems on the
scale of a living cell are often divided into three levels: the
macroscopic level, the mesoscopic level, and the microscopic
level. On the macroscopic level the system is modeled by
a deterministic partial differential equation (PDE). On the
mesoscopic level, the system is modeled by the reaction-
diffusion master equation (RDME). Exact trajectories can be
generated by the next subvolume method (NSM),9 in which
molecules diffuse between voxels at some given intensity, and
react at some given intensity when occupying the same voxel.
On the microscopic level, we track the continuous position
and movement of individual molecules, and the molecules
can react when they are sufficiently close. In this paper we
are concerned only with the mesoscopic and microscopic
levels.

The RDME is a popular model, evidenced by the num-
ber of simulation tools available. While a less detailed
model than microscopic models, it has the advantage of
being orders of magnitude faster for many biologically rel-
evant problems. Software packages implementing solvers
for the RDME include MesoRD,10 PyURDME, StochSS
(http://www.stochss.org), NeuroRD,11 E-Cell,12 and STEPS.13

Microscale simulations are suitable when high accuracy is
needed, if we need to simulate very diffusion-limited reactions,
or if reactions are localized near or on a complex geometrical

structure. Software packages implementing microscale solvers
include Smoldyn,14 MCell,15 and E-Cell.12

Many realistic biological systems exist within complex
geometries, and a tractable approach to resolving complex
geometries is to discretize space using an unstructured mesh.
This approach was studied in Ref. 16, in which the authors
devise a method to obtain accurate diffusive jump rates. The
problem of obtaining accurate reaction rates on Cartesian
meshes is well studied, see, e.g., Refs. 7, 8, and 17–19, but
the problem of obtaining accurate reaction rates for a wide
range of voxel sizes for unstructured meshes has not been as
thoroughly studied. Isaacson derives a convergent RDME in
Ref. 20 where the RDME is extended to allow nonlocal reac-
tions and where convergence is to the microscale model pro-
posed by Doi in Ref. 21. Here we consider local reactions only
and the Smoluchowski microscale model where molecules are
modeled by hard spheres22 and react according to a Robin
boundary condition.23 Most of our results could be extended
to different microscale models.

It is easy to see that for “large enough” voxels on Cartesian
meshes we get reaction rates that are simply the effective rate
scaled by the volume of the voxel,18 and it is reasonable to
assume that the same will be true on unstructured meshes. We
show in Sec. IV that this is indeed true, but also that if the
reactions are diffusion limited this may only be true for quite
large voxels (analogous to the Cartesian case), and simulations
will be inaccurate as we refine the mesh. A desirable property
of numerical methods is convergence as we refine the mesh, at
least up to some well-defined maximum spatial resolution.17–19

One approach to get around this problem is to consider
hybrid methods, where mesoscopic simulations can be per-
formed on fairly coarse meshes for most species, combined
with accurate microscopic simulations for some species whose
dynamics need to be simulated at a high spatial resolution.24–27
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In this paper we instead develop a method to efficiently
compute accurate reaction rates for the RDME on unstructured
meshes for a wide range of voxel sizes and for diffusion-limited
reactions, thus facilitating accurate simulations of biochemical
systems in complex geometries. It was shown in Refs. 17–19
that the common approach of simply scaling the bimolecular
reaction rates by the volume of the voxels leads to inaccurate
results for some systems on Cartesian meshes. We show here
that, as expected, the same holds true on unstructured meshes,
and that by following the approach outlined in this paper, the
RDME, for many problems, converges to the corresponding
microscale results.

The remainder of the paper is organized as follows. In
Sec. II we introduce the mesoscopic and microscopic model-
ing frameworks. In Sec. III we describe a method to compute
mesoscopic reaction rates, and in Sec. IV we show with numer-
ical examples first how to choose the parameters of the method
and then that the method itself yields accurate reaction rates
leading to convergence of the RDME.

II. BACKGROUND

In this section we introduce the mesoscopic RDME
and the microscopic Smoluchowski models. Throughout this

paper, we consider the accuracy of the RDME relative to the
Smoluchowski model, but note that most of the derivations in
Sec. III would be valid also for a different microscale model;
we select a specific model for convenience.

As we will see in Sec. III, to derive accurate reaction rates
for the RDME it is useful to consider individual trajectories of
the stochastic system instead of the full probability distribu-
tion. In addition to introducing the full models, we therefore
also introduce methods for generating exact trajectories of a
system.

A. Mesoscopic simulations

Consider a volume Ω divided into N non-overlapping
voxels, and a reaction network consisting of S species. We
denote the N ×S state matrix by x, where the ith row, xi ·, gives
the species copy numbers of voxel i, while the jth column, x ·j,
gives the copy numbers of species j for each voxel. Assume that
the system has M reactions. We denote the propensity function
for reaction r in voxel i by air(xi ·), and the stoichiometry vec-
tor for reaction r in voxel i by µir . We denote the propensity
function for a diffusive jump by species j from voxel i to k by
dijk(xi ·), and the associated stoichiometry vector by νijk .

Let p(x, t) be the probability of the system to be in state
x at time t. The RDME describes the time evolution of p(x, t),

d
dt

p(x, t) =
N∑

i=1

M∑
r=1

air(xi · − µir)p(x1·, . . . , xi · − µir , . . . , xN ·, t) −
N∑

i=1

M∑
r=1

air(xi ·)p(x, t)

+

M∑
j=1

N∑
i=1

N∑
k=1

djik(x ·j − νijk)p(x ·1, . . . , x ·j − νijk , . . . , x ·S , t) −
M∑

j=1

N∑
i=1

N∑
k=1

dijk(x ·j)p(x, t). (1)

The RDME is in general too high-dimensional to be solved
by direct methods; a common approach is instead to generate
statistics of the system using a Monte Carlo scheme. Exact tra-
jectories of the RDME can be generated as follows. A molecule
with diffusion rate D can jump to adjacent voxels at intensity
γD, where γD = 2dD/h2 on a Cartesian mesh in d dimensions
where h is the width of the voxels, and where γD can be deter-
mined from, e.g., a finite element discretization in the case of
unstructured meshes.16 Molecules can undergo unimolecular
and bimolecular reactions; a pair of molecules is only allowed
to react when occupying the same voxel.

The next event of a system can be determined by sam-
pling the tentative time of every possible diffusion and reaction
event; every tentative event time is assumed to be exponentially
distributed, and the smallest tentative event time determines
which event will fire next.

An efficient algorithm to generate exact trajectories is the
next subvolume method (NSM).9

B. Microscopic simulations

On the microscopic scale two molecules A and B, modeled
as hard spheres with radii σA and σB, diffuse with diffusion
constants DA and DB and react according to the Smoluchowski
equation with a Robin boundary condition at the reaction radii
σ = σA + σB. Let r = x1 � x2 be the relative position of the

two molecules (molecule A has position x1 and molecule B has
position x2). Then the equation governing the relative position
of the molecules is

∂p
∂t
= D∆p(r, t), (2)

with the Robin boundary condition23,28 given by

K
∂p
∂n

���� |r |=σ
= kap(|r| = σ, t), (3)

where

K =



4πσ2D, (3D)

2πσD, (2D)
. (4)

It can be shown that R = x1 + x2 moves according to normal
diffusion.29

A system of more than two molecules becomes an
intractable many-body problem. A popular method to simulate
such systems is the GFRD algorithm.29,30 Instead of consid-
ering the full many-body problem, the system is divided into
subsets of one-body and two-body problems by selecting a
time step ∆t during which each such subset is unlikely to
interact with any other subset of molecules. Now, during ∆t,
molecules are either propagated by normal diffusion, or in the
case of pairs of molecules, by sampling a new r and R. All
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microscale results in Sec. IV were obtained with the algorithm
developed in Ref. 31.

Another approach to simulating Smoluchowski dynamics
is to select a fixed time step during which individual molecules
are propagated by normal diffusion. Given information about
each molecule’s initial and final positions, it is possible to
compute the probabilities of molecules reacting.14,15,32

III. REACTION RATES

It has been shown in the case of structured Cartesian
meshes that it is important to choose the reaction rates carefully
to obtain accurate simulations.8,17,18 For Cartesian meshes, the
reaction rates derived in Refs. 17–19 for the standard RDME,
and in Ref. 8 for a generalized RDME, were shown to yield
accurate results down to a lower bound on the mesh resolution
on the order of a few times the reaction radius for the standard
RDME, and down to a mesh resolution on the order of the
reaction radius in the case of the generalized RDME (in which
molecules occupying neighboring voxels can react).

While Cartesian meshes are good for simple simulation
volumes, they are less suitable for complex geometries. In that
case, unstructured triangular (2D) or tetrahedral (3D) meshes
are preferable. However, the analytical expressions for the
reaction rates derived in Refs. 8 and 17–19 depend on the
assumption of a Cartesian mesh.

In this section we devise an efficient way to numerically
compute accurate reaction rates for the RDME on unstructured
meshes.

We consider a system of three species A, B, and C
undergoing the single irreversible reaction

A + B
ka
→ C

in a domain Ω, where ka is the microscopic reaction rate. The
A molecule does not diffuse, while the B molecule diffuses
with diffusion rate D. We denote the reaction radius of the A
and the B molecule byσ. Given these microscopic parameters,
we seek to obtain the corresponding mesoscopic reaction rate
kmeso

a , where kmeso
a is the rate, in units of s�1, at which molecules

react when they occupy the same voxel.
To this end, we make the assumption that the mean bind-

ing time on the microscale, τmicro(ka), and the mesoscale,
τmeso(kmeso

a ), should match. For a given ka, we want to find
kmeso

a such that

τmicro(ka) = τmeso(kmeso
a ) (5)

holds.

A. Cartesian meshes

We first briefly summarize the derivation of reaction rates
on Cartesian meshes, as some of the methodology carries over
to the case of unstructured meshes. Throughout this section the
domain will be a cube of volume V, discretized into N voxels,
and where h denotes the width of a voxel.

1. Microscopic effective binding time

The effective binding time, τmicro, can be divided into two
parts: an initial diffusion part and a reaction part. We assume

that the B molecule has a uniform initial distribution and that
the fixed A molecule is some distance away from the boundary,
and we denote the time it takes until the molecules are in
contact for the first time by τmicro

diff . The reaction part is defined
to be the time that remains until they react; that is, the time
until the molecules react given that they start in contact. We
denote the reaction part by τmicro

react . By definition we have

τmicro = τ
micro
diff + τ

micro
react . (6)

Let σ be the reaction radius, and D the diffusion constant of
the B molecule. We know that for V large enough7,18

τmicro
diff ≈




V
4πσD

, (3D)

V
{
log

(
π−1 V1/2

σ

)}

2πD
, (2D)

(7)

and that

τmicro
react ≈

V
ka

(3D, 2D). (8)

Let kCK = 4πσDka/(4πσD + ka). In 3D we obtain the well-
known expression33,34 for the mean binding time, given by

τmicro ≈
V

4πσD
+

V
ka
=

4πσD + ka

4πσDka
V =:

V
kCK

, (9)

where kCK is the Collins and Kimball rate.33 A common
approach in mesoscopic simulations is to let the mesoscopic
rate kmeso

a be the Collins and Kimball rate scaled by the volume
of the voxel, Vvox, that is kmeso

a = kCK/Vvox.

2. Mesoscopic effective binding time

The mean binding time on the mesoscopic scale can be
divided into two parts in a way analogous to the microscale
case. The diffusion part, τmeso

diff , is the average time until the B
molecule reaches the voxel that is occupied by the A molecule.
The reaction part, τmeso

react , is the time until the A and the B
molecule react, given that they start in the same voxel. Thus

τmeso = τ
meso
diff + τ

meso
react . (10)

These quantities are both known analytically on a Cartesian
mesh17,18

τmeso
diff =




C3V
6Dh

+ O
(
N

1
2

)
(3D)

V
4πD

log(N) +
C2V
4D
+ O

(
N−1

)
(2D)

(11)

and

τmeso
react =

N
kmeso

a
. (12)

Now let

Cd ≈



0.1951, d = 2

1.5164, d = 3
. (13)

By inserting (7), (8), (11), and (12) into (5), and solving for
kmeso

a , we obtain expressions for the mesoscopic reaction rate
kmeso

a ,

kmeso
a ≈

ka

hd

(
1 +

ka

D
G(h,σ)

)−1

, (14)
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where

G(h,σ) =




1
4πσ

−
C3

6h
(3D),

1
2π

log

(
π−

1
2

h
σ

)
−

1
4

(
3

2π
+ C2

)
(2D).

(15)

Note that (14) is an accurate approximation for V � h.
In Ref. 18 we showed that, in general, the most accurate

simulations in 2D and 3D are obtained for

h∗∞ =




2C3

3
πσ ≈ 3.2σ, (3D)

√
πe

3+2C2π
4 σ ≈ 5.1σ, (2D)

, (16)

where the RDME may get less accurate as the mesh is refined
further. The lower limit h∗∞ is also the smallest mesh size for
which kmeso

a > 0 as ka → ∞.
Note that by (10) and (12), the mesoscopic rate can be

written as

kmeso
a =

N
τmicro − τ

meso
diff

. (17)

If τmicro� τmeso
diff , then kmeso

a ≈ kCK/h3 in 3D, and this is an
assumption sometimes made in software implementations of
the RDME. As we will see in Sec. IV, this assumption is
not always satisfied and when not, this rate yields inaccurate
results.

B. Unstructured meshes

In the case of Cartesian meshes we have analytical expres-
sions for the reaction rates, where the derivation is based
on analytical expressions for τmeso

diff and τmeso
react . For unstruc-

tured meshes we can consider the same setup as for Cartesian
meshes, but we do not have analytical expressions for τmeso

diff
and τmeso

react , and instead we need to compute them numerically.
The quantity τmeso

diff can be computed independently of the
microscopic reaction rates, and depends only on the diffusion
rate and the mesh.

Now assume that the A molecule has diffused such that
it occupies the same voxel as the B molecule. Denote by dtot

the total diffusion rate out of the voxel, as obtained by, e.g.,
a finite element discretization of the diffusion equation. The
molecules then react with probability

pr =
kmeso

a

kmeso
a + dtot

, (18)

and diffuse apart with probability 1 �pr . The molecules, on
average, occupy the same voxel p−1

r times before they react.
Given that the molecules occupy the same voxel, the

average time until the next event will be given by

1
kmeso

a + dtot
. (19)

They react with probability pr . If they do not react, they
consequently diffuse apart, and will then occupy adjacent vox-
els. Denote by t1 the average time until the molecules again
occupy the same voxel. We can summarize the above process
as follows:

Assume that the molecules occupy the same voxel.

(1) With probability pr they react after an average time of
1/(kmeso

a + d tot).

(2) With probability 1� pr they do not react. They occupy
the same voxel once again after an average time of
1/(kmeso

a + d tot) + t1.

The molecules react after occupying the same voxel on
average p−1

r times.
We obtain

τmeso
react =

1
pr

[
pr

1
kmeso

a + dtot
+ (1 − pr)

(
1

kmeso
a + dtot

+ t1

)]
,

(20)

which, after some straightforward algebra, yields

τmeso
react =

1
kmeso

a
(1 + dtott1). (21)

Now, to satisfy τmeso = τmicro, we should find kmeso
a such

that
τmicro = τ

meso
diff + τ

meso
react , (22)

which holds if and only if

kmeso
a =

1 + dtott1
τmicro − τ

meso
diff

. (23)

Thus, to obtain the reaction rate kmeso
a for the molecules in a

voxel V i, we must compute τmeso
diff and t1.

C. Computing τmeso
diff and t1

Assume that the A molecule occupies a voxel V i. We first
compute τmeso

diff . A straightforward approach would be a simple
Monte Carlo procedure:

However, for fine mesh resolutions the naive approach
becomes computationally expensive; on a Cartesian mesh we
know that the average number of steps required to find V i

scales proportionally to the number of voxels.
Instead we propose the following algorithm: In step 2,

instead of always simulating the B molecule until it finds
V i, we note that if the B molecule has not reached V i after
some time ∆t1, where

√
2dD∆t1 ∼ |Ω|

1
d , its position can be

approximated by a uniform distribution. Thus, the average time
remaining until the B molecule finds V i, after it has been diffus-

ing for some time ∆t1 ∼
|Ω |

2
d

2dD , can be approximated by τmeso
diff .

Let τdiff
t≤∆t1

denote the average time required to find V i, given
that the B molecule reaches V i before time ∆t1. Let q denote
the probability that the B molecule finds V i before ∆t1. Then

τmeso
diff ≈ qτdiff

t≤∆t1
+ (1 − q)

(
∆t1 + τ

meso
diff

)
. (24)

By solving for τmeso
diff we obtain

τmeso
diff ≈ τ

diff
t≤∆t1

+
1 − q

q
∆t1. (25)

Thus, by letting ∆t1 = c1
|Ω |

2
d

2dD for some suitable constant c1,
we obtain an estimate of τmeso

diff by computing τdiff
t≤∆t1

and q. We
discuss how to choose c1 in Sec. IV.

We now wish to estimate t1. Again we could approach this
with a naive Monte Carlo approach:

However, again we note that if the B molecule does not

reach V i after∆t2 = c2
|Ω |

2
d

2dD , for some suitably chosen constant
c2, it will be approximately uniformly distributed on Ω. Thus,
after a time ∆t2 the time remaining can be approximated by
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τmeso
diff . Now, in step 2 above, we see that it is enough to simulate

a trajectory until time ∆t2; if the B molecule has not visited V i,
we simply add τmeso

diff to the total time.
We summarize the algorithm for computing τmeso

diff and t1

in Algorithm 3.
Note that for a given mesh we only need to compute τmeso

diff
and t1 once, even if different species have different diffusion
rates. This is because τmeso

diff and t1 are inversely proportional
to the diffusion constant.

D. Linear approximation of 1/kmeso
a

In principle we should compute kmeso
a for each voxel of the

mesh, but for a fine mesh this will be prohibitively expensive
computationally, as the number of voxels can be on the order
of 105 or more. We know that 1/kmeso

a has a nonlinear depen-
dence on the volume of the voxels, but by assuming that the
distribution of voxel volumes is not too wide, we can, assum-
ing that 1/kmeso

a is continuous, make a linear approximation
locally. That is, by assuming that the distribution of volumes
in a mesh is not too wide, we can estimate the mesoscopic
reaction rate by

(kmeso
a )−1

≈ k0 + k1Vvox, (26)

where V vox is the volume of a voxel. For (26) to be useful, we
also have to assume that for a given mesh, kmeso

a is approxi-
mately the same for two different voxels of the same volume. It
is reasonable to assume that this will be true if the distribution
of voxel volumes is similar throughout the domain. That may
not be true for very complex domains, in which case we could
compute the coefficient of determination to evaluate how good
of an approximation the linear regression provides. In Sec. IV
we show that assumption (26) is a good approximation for a
few different common geometries.

For very small voxels in a mesh we may have

Vvox < −
k0

k1
, (27)

leading to a negative estimate of kmeso
a . If this happens for many

voxels in a mesh, then the mesh is over resolved, analogously
to how a Cartesian mesh can be over resolved for h < h∗∞.
It may however happen for a few voxels in a mesh, since the
voxel volume is non-uniform, without the mesh overall being
over resolved. In this case, we somewhat arbitrarily compute
the rate for that voxel with Vvox = −

k0
k1
+ ε for some small

positive ε , to force the rate to be positive. This will introduce a
small error, but as we will see in the second example in Sec. IV,
it can be neglected even for very fine meshes.

IV. NUMERICAL RESULTS
A. Accuracy of the method

We need to determine suitable values for the constants
c1 and c2. To that end, we consider one A molecule fixed to
a single voxel near the center of a sphere of radius 1. One
B molecule reacts with the A molecule and diffuses with a
diffusion constant D = 1. Note that c1 and c2 are independent
of the specific parameters of the reaction, and only depend on
the diffusion of the B molecule.

Algorithm 1

1. Initialize the B molecule according to a uniform distribution on the mesh.
2. Simulate the system until the B molecule finds V i.
3. Repeat N1 times and compute the mean.

Algorithm 2

1. Sample the initial position of the B molecule by letting it diffuse from
V i to an adjacent voxel.

2. Diffuse the B molecule until it finds V i and record the time t.
3. Repeat (1) and (2) N2 times and compute the mean.

We first compute highly accurate approximations, t̄1 and
τmeso

diff , of t1 and τmeso
diff using Algorithms 1 and 2. We then pro-

ceed to compute approximations of t1 and τmeso
diff , t̃1 and Iτmeso

diff ,
using Algorithm 3 while varying c1 and c2. The relative errors
E1 = |t̃1 − t̄1 |/|t̄1 | and E2 = |Iτmeso

diff − τ
meso
diff |/|τ

meso
diff | are plotted

as heat maps in Fig. 1. In Fig. 2 we show that the approximate
method (Algorithm 3) gives a speed-up of up to an order of
magnitude compared to the exact approach of Algorithms 1
and 2.

We repeated the computations for a sequence of meshes
of different resolutions (utilizing the tool Gnu Parallel35), and
as we can see, c1 = 5 and c2 = 5 give errors on the order of
1%–2%, thus being reasonable choices.

It is reasonable to assume that Eqs. (13)–(15), with h sub-
stituted for V1/3

vox , where Vvox is the volume of a voxel, will agree

Algorithm 3

Assume that the A molecule occupies voxel V i.

1. Initialize the B molecule uniformly on Ω.
2. Let the B molecule diffuse until:

(a) It finds V i, or

(b) t = c1
|Ω|

2
d

2dD .

3. Repeat (1) and (2) N1 times.
4. Let q denote the proportion of trajectories that ended in 2 (a), and let

τdiff
t≤∆t1

denote the average time of the trajectories that ended in 2 (a).
Estimate τmeso

diff by

Iτmeso
diff = τ

diff
t≤∆t1

+
1 − q

q
∆t1.

5. Initialize the B molecule in a voxel adjacent to V i, proportionally to the
diffusion rates out of V i.

6. Let the B molecule diffuse until:

(a) It reaches V i after some time treac ≤ ∆t2. Let t̃1 = treac be an
approximation of t1.

(b) t = c2
|Ω|

2
d

2dD . Let t̃1 =∆t2 + Iτmeso
diff (kmeso

a ) be an approximation of t1.

7. Repeat (5) and (6) N2 times.
8. Estimate t1 with the mean of t̃1.
9. Estimate kmeso

a by

k̃meso
a =

1 + dtot t̃1

τmicro −
Iτmeso
diff

.
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FIG. 1. The errors E1 and E2 as func-
tions of c1 and c2, for four different
meshes of increasing resolution. From
top to bottom: mesh 1: 358 voxels, mesh
2: 1185 voxels, mesh 3: 22 644 voxels,
and mesh 4: 98 206 voxels. We compute
t̃1, t̄1, Iτmeso

diff , and τmeso
diff as the mean of

106 trajectories. The stochastic error is
fairly small, and as we can see, E1 and E2
are generally on the order of 1%-2% for
c1 = c2 = 5, which we therefore argue is a
reasonable choice. For some mesh sizes
it seems that smaller values of c1 and
c2 would provide a similar accuracy, but
the above choice should serve as a good
general recommendation.

quite well for spatial reactions in simpler geometries. To test
this hypothesis, as well as to show that the linearity assumption
in Sec. III D is reasonable, we let the microscopic reaction rate
be 1 and the reaction radius 5 · 10−3 and then computed the
rates numerically according to Algorithm 3. We then compared
the results with the rates computed according to (13)–(15). In
Fig. 3 we see that the rates do indeed agree quite well, while
the rates computed as kCK/Vvox become increasingly incorrect
as the mesh is refined.

Note that we cannot expect the numerical approach to
always agree with Eqs. (13)–(15). The reason is that the
formula (13)–(15) does not take into account that voxels in
an unstructured mesh may be of different sizes; the rate for
a small voxel within a mesh of mostly larger voxels may be
incorrectly approximated by (13)–(15).

We should also note that the microscopic mean binding
time for voxels close to a reflective boundary will not be given
by τmicro as computed by Eqs. (6)–(8) (the mean binding time
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FIG. 2. To the left we plot the time in seconds per trajectory for the exact method, T exact, outlined in Algorithms 1 and 2 (blue line with circles) and the time per
trajectory of the approximate method, T approx, outlined in Algorithm 3 (red line with triangles) with c1 = c2 = 5. To the right we plot the relative speed-up with
c1 = c2 = 5. As we can see, for coarse meshes the speed-up is fairly modest (about two times), but as we refine the mesh the speed-up becomes significant. For a
fine mesh consisting of 105 voxels, we obtain a speed-up of almost 15. Nevertheless, it is noteworthy that even with the exact method we can expect reasonable
execution times, often on the order of the total simulation time, if we do not need excessive amounts of samples. Thus, if very high accuracy is required, the
exact approach is computationally viable.

for a voxel far from the boundary). Thus, if very high accu-
racy is needed, we should for those voxels compute also τmicro

numerically. However, since we take a sample of voxels and
perform linear regression, the effect of that error will generally
be small, and as we show in the next example, we obtain very
accurate simulations also when neglecting this error.

B. Dissociation with fast rebinding

To demonstrate the applicability of the method, we con-
sider a system where the microscale model displays dynamics
different from the mesoscopic model. A simple example is
given by

S1
k1
−→ S11 + S12

k2
−→ S2. (28)

On the microscopic scale, following a dissociation of S1, the
products S11 and S12 are placed in contact. Thus, the probabil-
ity of S11 and S12 to rebind quickly and form the complex

S2 is higher than on the mesoscopic scale, where S11 and
S12 are assumed to be well-mixed inside a voxel immediately
following a dissociation. Note that all parameter values below
are given in SI units.

With the RDME we expect to approach the microscale
results as we refine the mesh, and ideally, for the finest mesh
sizes, we hope to reproduce the results of the microscale
simulations to high accuracy.

We simulate the system defined by Eq. (28) for 2 s, sam-
pling the state at M = 200 uniformly distributed time points
with t1 = 0.01 and t200 = 2.0, and compute the average relative
l1 error of the final product S2 as

E =
1
M

M∑
i=1

|zi − yi |

|yi |
, (29)

where zi is the average of 5000 mesoscopic trajectories at
time ti, and yi is the average of 10 000 trajectories on the
microscopic scale at time ti. The initial number of S1 molecules

FIG. 3. The inverse of the rates sampled according to Algorithm 3 (blue circles), the linear fit of these samples (dashed-dotted purple line), rates computed
according to Eqs. (13)–(15) with h = V1/3

vox (solid red line), and the effective rate scaled by the volume of the voxels (dashed yellow line). We computed 103

samples, where for each sample we place the A molecule in a random voxel, with 103 trajectories for each sample. Each voxel has a different volume Vvox.
The total execution time on a desktop computer with an Intel i7-4770 CPU at 3.50 GHz running Ubuntu 14.04 was 8 s for the coarse mesh (mesh 2, ∼ 103

voxels)), 83 s for the intermediate mesh (mesh 3, ∼23 · 103 voxels), and 339 s for the fine mesh (mesh 4, ∼105 voxels). Again, c1 = c2 = 5. As we can see, the
numerically computed rates agree reasonably well with the rates obtained with Eqs. (13)–(15) for all three mesh sizes, but the difference does increase as the
mesh is refined. For the coarser mesh we see that kCK/Vvox provides a decent approximation, but as we refine the mesh it becomes a poor approximation of
the reaction rates, in agreement with the theory outlined in Sec. II. Note that while the spread around the linear fit is quite large for the finer meshes, we do
not see a large error in actual simulations (see Fig. 5). As we estimate the rate for each voxel with only 103 trajectories, we can expect a fairly large variance
for fine meshes, but the error in the linear regression is not too large to still yield accurate enough rates for simulations of the system in Sec. IV B. We can
also see that in particular for Mesh 4, we get some estimates <0. This also introduces a small error. Since all molecules diffuse around in this example, these
errors are all small enough not to make a large impact on the overall error. If, however, we were to place a stationary molecule inside such a voxel, then we
expect the error to be more significant.
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FIG. 4. We consider three different geometries: (a) a cube, (b) a sphere, and
(c) two half-spheres connected by a cylinder. Each has a total volume of 1,
and in geometry (c) the ratio of the radius to the length of the cylinder is 3.
The geometries are discretized into tetrahedral meshes using Gmsh.36

is 100, and the initial number of S11, S12, and S2 molecules
is 0.

The microscale parameters are given by




σ1 = σ11 = σ12 = σ2 = 2.5 · 10−3

D1 = D11 = D12 = D2 = 1.0

k1 = 10.0

k2 = 1.0

, (30)

and the volume of each domain is V = 1 (see Fig. 4).
To demonstrate the flexibility of the algorithm, we con-

sider three different geometries: (a) a cube, (b) a sphere, and
(c) two half-spheres connected by a cylinder. We start out with
a coarse mesh, and then consider successively finer meshes.
In Fig. 5 we show that for the finest meshes the relative error
is on the order of a few percent, in contrast to the constant
high error when the rate is given by kCK/Vvox. We can also
see that the convergence is similar for all three geometries.
When computing the rates, we neglected the error introduced
by approximating the mean binding time close to boundaries
by τmicro, and as we can see, it did not introduce a large error
in the simulated dynamics of the system.

It is noteworthy that, for this particular system, the
microscale simulations will be fairly efficient in comparison
to the mesoscopic simulations for the finest mesh sizes. For
instance, for the finest cubic mesh (∼240 000 voxels), a single

FIG. 5. The relative error E as defined by (29), as a function of the total
number of voxels N. With the reaction rate kmeso

2 computed according to
Algorithm 3, the error decreases as we increase the resolution of the mesh
(geometry (a): blue line with stars, geometry (b): red line with squares, and
geometry (c) yellow line with circles), while we see no convergence if we
choose the reaction rate to be the effective rate scaled by the volume of the
voxel (purple line with crosses). We also see that for this problem we obtain
accurate simulations also with the rates computed according to Eqs. (13)–(15)
with h = V1/3

vox (green line with triangles).

trajectory on the mesoscopic scale (excluding the preprocess-
ing time) is more expensive to simulate than the corresponding
microscale simulation of a trajectory (7.35 s vs 5.83 s on a desk-
top computer with an Intel i7-4770 CPU at 3.50 GHz running
Ubuntu 14.04). However, this system has a fairly low number
of molecules, making it well suited for microscale simulations.
Also, the mesoscale simulations scale quadratically with the
number of voxels. Thus, for systems with more molecules or
for less resolved geometries, the RDME will be competitive.

C. Reaction close to a boundary

We consider the system given by

S1 + S2
k1
−→←−

k2

S3, (31)

S3
k3
−→ S3 + P, (32)

P
k4
−→ ∅, (33)

where we are interested in computing the population of species
P to high accuracy. The domain in 3D is a large sphere with
radius 0.8, with an inner boundary defined by a smaller sphere
of radius 0.4 (see Fig. 6). This represents a simple model of
a cell with a nucleus, where the nucleus occupies a volume
fraction of 12.5% of the cell. We let the total volume be denoted
by V.

Let k1 (volume/s), k2 (s�1), k3 (s�1), and k4 (s�1) be the
macroscopic reaction rates. Furthermore, assume that the dif-
fusion of the S2 molecule is negligible during the time interval
of interest, so that it is fixed inside a given voxel. All we
know is the rate of reaction,33 without any detailed spatial
information about the location of the S2 molecule. We let
k1/V = k2 = 0.0308 s−1. The other reaction rates are given by
k3 = 20 s−1 and k4 = 5.0 s−1. The diffusion rate of S1 is D = 1.0.
We initialize one S1 molecule according to a uniform distribu-
tion on the mesh, and fix one S2 molecule to a specific voxel
in the domain.

If the S2 molecule is located away from the boundary,
somewhere in the interior of the domain, then the analytical
approach of Refs. 17 and 18 will provide accurate estimates
of the reaction rates. By formulating the mesoscopic rates
given in Eqs. (13)–(15) in terms of the macroscopic rates, by
simply noting that the macroscopic rate will be V/τmicro, we
can accurately estimate the mesoscopic rates for this case. In
Ref. 17 we show that the mesoscopic reaction rate can be writ-
ten as N/(τmicro − τ

meso
diff ), where N is the number of voxels. If,

however, the S2 molecule happens to be located near a bound-
ary, the assumptions made in deriving Eqs. (13)–(15) are not
satisfied, and we cannot expect them to give accurate results.
Instead we will have to resort to the numerical approach of
Algorithm 3.

When the S2 molecule is fixed, it is sufficient to compute
the reaction rate for the specific voxel that it occupies. We can
therefore afford to compute the reaction rate for that voxel to
high accuracy; we compute it using 25 000 trajectories in our
estimates of t1 and τmeso

diff .
Reaction (31) is reversible, and thus we must determine

also the dissociation rate. In the case of a Cartesian mesh we
could derive the dissociation rate using analytical expressions
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FIG. 6. We fix the S2 molecule at three different locations (panel (a), to the left): away from both boundaries (green sphere, location 1) in the interior of the
domain, close to the outer boundary (red sphere, location 2), and close to the inner boundary (purple half sphere, location 3). The spheres do not mark the exact
location of the S2 molecule; they show the location of the voxel holding the S2 molecule. The nodes of the voxels coincide with the centers of the spheres. To the
right, in panel (b), we plot the average number of P molecules over time. While all versions of the system will eventually settle into the same steady state, the
transient phases do not agree. The reason is that the average binding time of the S1 and S2 molecules depends on the specific spatial location of the S2 molecule
when we use the analytical approach. When the stationary molecule is placed inside the domain, far away from the boundaries, both approaches yield accurate
results. When the stationary molecule is placed near a boundary, only the numerical approach reproduces the correct behavior.

for all quantities and matching the steady state on the meso-
scopic scale to the steady state on the microscopic scale.18 In
the case of unstructured meshes, we cannot do that since we
do not have analytical expressions for the relevant quantities.
Instead, we determine the dissociation rate by simply matching
the equilibrium constant on the mesoscopic and macroscopic
levels, yielding kmeso

d = Vkmeso
a k2/k1.

As the macroscale reaction rates are given independently
of the location of the reactive molecule (that information is
hidden in the rate), we want to see the same behavior regard-
less of where we happen to place the reactive S2 molecule. In
Fig. 6 we show that the analytical formulas fail to reproduce
the correct behavior when the reactive molecule is close to
a boundary. This is expected, since the formulas are derived
under the assumption that the reactive molecule is located suffi-
ciently far away from the boundaries. Thus, given knowledge
of the spatial location of reactive molecules, the numerical
approach may be preferable for matching a given macroscopic
reaction rate.

For reference, we also simulated the system with both
molecules diffusing freely with a diffusion rate of D/2. The
reaction rates are estimated with Algorithm 3, and the results,
as expected, agree with the case of the S2 molecule fixed to a
voxel inside the domain but a distance away from the bound-
aries. This demonstrates that the approach of Algorithm 3 with
a linear approximation in the volume yields accurate reac-
tion rates also when the surface-to-volume ratio is relatively
high.

In Fig. 7 we consider the same reactions, but now on a
2D unit disk. The macroscopic reaction rates for the reversible
reaction are k1/A= k2 = 0.1818 s−1 (where A = 1 is the area
of the disk), and all the other parameters are the same as
before. Again we see the same behavior. The population of
P is consistent regardless of where we place the stationary
molecule when we compute the mesoscopic reaction rates with
Algorithm 3, while the analytical approach fails to reproduce
the expected behavior when the stationary molecule is placed
close to the boundary.

V. DISCUSSION

It has been shown that it is crucial for the accuracy of the
RDME that reaction rates are selected with care when reac-
tions are diffusion limited or when the spatial resolution is
high. For structured Cartesian meshes, this problem has been
studied in some detail, but not for simulations on unstructured
meshes.

We have devised a method to compute accurate rates on
unstructured meshes, and shown in numerical examples that
with these rates the RDME is accurate also on unstructured
meshes, for a wide range of mesh sizes and reaction rates.
Furthermore, the method reduces to a pure preprocessing step
with a computational cost that tends to be on the order of the
total simulation time or less.

We have also shown for a few different geometries in
3D that the numerically computed rates agree well with the

FIG. 7. We simulate the system on a triangulated unit
disk (panel (a) to the left). The system displays the same
behavior in 2D as it does in 3D: when the stationary
molecule is placed near the center of the disk (Loc. 1),
we get the same result with both approaches. When the
stationary molecule is placed inside a voxel near the
boundary (Loc. 2), we get the correct number of P only
when we compute the reaction rates with Algorithm 3.
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corresponding rates on Cartesian meshes, suggesting that for
many systems the analytically derived rates on Cartesian
meshes will provide sufficient accuracy. Conversely, in some
cases where the system does not satisfy the assumptions made
in deriving the analytical expressions, the reaction rates need
to be computed numerically. We have shown that this can be
made efficiently and accurately for such a system in both 3D
and 2D geometry.

It is worth noting that the numerical approach outlined
in this paper can be generalized to other types of reactions;
we may for instance consider reactions between molecules
in 3D and complex surfaces or 1D objects. It is straightfor-
ward to extend the algorithm to such reactions where analytical
approaches are less likely to be successful.

Another interesting problem is the case when the com-
putational domain is non-static. In Ref. 37 we consider sim-
ulations on an unstructured mesh that changes over time; to
compute the reaction rates numerically in that case would,
strictly speaking, require that we recompute the rates each
time the domain changes. This would become prohibitively
expensive. Instead we will have to assume that the analytical
expressions are sufficiently accurate, but in general we cannot,
and thus the case of moving domains is a problem that requires
further study.
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7D. Fange, O. G. Berg, P. Sjöberg, and J. Elf, “Stochastic reaction-diffusion
kinetics in the microscopic limit,” Proc. Natl. Acad. Sci. U. S. A. 107(46),
19820–19825 (2010).

8S. Hellander and L. R. Petzold, “Reaction rates for a generalized reaction-
diffusion master equation,” Phys. Rev. E 93(1), 013307 (2016).

9J. Elf and M. Ehrenberg, “Spontaneous separation of bi-stable biochemical
systems into spatial domains of opposite phases,” Syst. Biol. 1(2), 230–236
(2004).

10J. Hattne, D. Fange, and J. Elf, “Stochastic reaction-diffusion simulation
with MesoRD,” Bioinformatics 21(12), 2923–2924 (2005).

11R. F. Oliveira, A. Terrin, G. Di Benedetto, R. C. Cannon, W. Koh, M. Kim,
M. Zaccolo, and K. T. Blackwell, “The role of type 4 phosphodiesterases

in generating microdomains of camp: Large scale stochastic simulations,”
PLoS One 5(7), e11725 (2010).

12M. Tomita, K. Hashimoto, K. Takahashi, T. Shimizu, Y. Matsuzaki,
F. Miyoshi, K. Saito, S. Tanida, K. Yugi, J. Craig, V. Clyde, and A. Hutchison,
“E-Cell: Software environment for whole cell simulation,” Bioinformat-
ics15(1), 72 (1999).

13I. Hepburn, W. Chen, S. Wils, and E. De Schutter, “STEPS: Efficient sim-
ulation of stochastic reaction-diffusion models in realistic morphologies,”
BMC Syst. Biol. 6(1), 36 (2012).

14S. S. Andrews and D. Bray, “Stochastic simulation of chemical reactions
with spatial resolution and single molecule detail,” Phys. Biol. 1(3), 137–151
(2004).

15R. A. Kerr, T. M. Bartol, B. Kaminsky, M. Dittrich, J.-C. Jack Chang,
S. B. Baden, T. J. Sejnowski, and J. R. Stiles, “Fast Monte Carlo simu-
lation methods for biological reaction-diffusion systems in solution and on
surfaces,” SIAM J. Sci. Comput. 30(6), 3126–3149 (2008).

16S. Engblom, L. Ferm, A. Hellander, and P. Lötstedt, “Simulation of stochas-
tic reaction-diffusion processes on unstructured meshes,” SIAM J. Sci.
Comput. 31(3), 1774–1797 (2009).

17S. Hellander, A. Hellander, and L. R. Petzold, “Reaction-diffusion mas-
ter equation in the microscopic limit,” Phys. Rev. E 85(4), 042901
(2012).

18S. Hellander, A. Hellander, and L. R. Petzold, “Reaction rates for meso-
scopic reaction-diffusion kinetics,” Phys. Rev. E 91(2), 023312 (2015).

19R. Erban and J. Chapman, “Stochastic modelling of reaction-diffusion pro-
cesses: Algorithms for bimolecular reactions,” Phys. Biol. 6(4), 046001
(2009).

20S. A. Isaacson, “A convergent reaction-diffusion master equation,” J. Chem.
Phys. 139(5), 054101 (2013).

21M. Doi, “Second quantization representation for classical many-particle
system,” J. Phys. A: Math. Gen. 9(9), 1465–1477 (1976).

22M. V. Smoluchowski, “Versuch einer mathematischen theorie der koag-
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