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Abstract

Understanding and Facilitating Human-AI Teaming for Real-World Computer Vision

Tasks

by

Chengyuan Xu 许程远

Recent machine learning research has demonstrated that many task-specific AI models

now reach or surpass human performance on static benchmarks. However, in real-world

applications where human users collaborate with, or rely on AIs, key questions remain:

Do these advancements in AI models inherently improve the user experience or augment

users’ capabilities? When and how should we partner users with AI to form effective

human-AI teams? This dissertation explores new forms of human-AI collaboration in

the context of real-world computer vision tasks. We demonstrate different user roles in

diverse AI-assisted workflows – from passive recipients of AI model outputs to active

participants who steer the shaping of the model. 1) We developed intuitive user inter-

faces to make deep learning accessible to end users, in this case astrophysicists, without

requiring knowledge in machine learning. The end-to-end model enhances the accuracy

of automated processing of daily space observations from 20+ telescopes globally. The

streamlined interface injects confidence into researchers’ AI-supported analysis of scien-

tific imagery. 2) We proposed the concept of “restrained and zealous AIs” to harness the

complementary strength in human-AI teams. Insights from a month-long user study in-

volving 78 professional data annotators suggest that recommendations from ill-suited AI

counterparts may detrimentally affect users’ skills. 3) Finally, we brought a novel concept

of “in-situ learning” to augmented reality, where the user interacts with physical objects

to train spatially-aware AI models that can remember the personalized environment and

vii



objects for various tasks. Each project brings the end user to a more active and engaged

role in the inference, training, and evaluation processes of human-in-the-loop machine

learning. In summary, this dissertation provides insights into good practices for teaming

humans with AI for real-world collaboration, informing the design of future AI-assisted

systems.
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Chapter 1

Introduction

1.1 Why study human-AI teaming

Computers are good at fast, complex, and repeated computations. When sufficient

data and computational power are available, machine learning (ML), or artificial intelli-

gence (AI), is becoming a pervasive solution for many well-formulated problems. On the

other hand, humans have the intelligence to recognize hard-to-formulate patterns with

just a small amount of data, solving complex problems with their human heuristics, life

experience, or domain knowledge. Humans can also provide additional information or

real-time feedback to correct machine mistakes, customize AI models, and guide a sys-

tem to behave according to the user’s personal preferences or immediate needs. These

observations naturally point to human-AI teaming, a collaborative partnership that can

provide better team performance or user experience than either party working alone.

Human-AI teaming has been a vision for many years. Licklider’s 1960 Man-Computer

Symbiosis [1] predicted the very close coupling between humans and computers “to coop-

erate in making decisions and controlling complex situations”. Since then, this vision has

gradually taken shape. Sam Altman, the leading figure behind the later revolutionary
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Introduction Chapter 1

ChatGPT, commented in 2014 that “Computers and humans are very good at very dif-

ferent things. A computer doctor will out-crunch the numbers and do a better job than

a human on looking at massive amounts of data, but on cases that require judgments,

creativity, or empathy, we are nowhere near any computer system that is any good at

this”1. Recent huge leaps in computer vision foundation models, large language models

(LLMs), and generative AI made us reconsider our assumptions about the limitations of

AI in various human-like processes, reshaping our perspectives and expectations.

Human-AI teaming aims to harness the advantages of both while at the same time

overcoming their respective limitations. The collective intelligence has been shown to

improve the clinical diagnostic accuracy in cases of pneumonia [2] and metastatic breast

cancer [3], assist our driving [4], increase efficiency in crowdsourcing [5] and large-scale

citizens’ science projects like Galaxy Zoo [6]. Additionally, it assists in decision making in

many relatively low-stakes decisions such as writing suggestions2, moderates social media

comments [7], improves better game plays [8], and even supports more robust business

decisions [9].

There is no doubt that AI models will be more versatile, powerful, and accurate, but

it is also clear that humans should remain in control, especially in the decision-making

process for high-stakes tasks. The question that remains, which is also the central theme

of this dissertation, is how to make AI work better for human users by forming effective

human-AI teams. In this dissertation, we shape a research space where users play different

roles in diverse AI-assisted workflows – from passive recipients of AI model outputs to

active participants who steer the shaping of the model through four concrete topics that

contribute to the overarching theme in the following chapters:

1) End-to-End Models for Autonomous Image Processing

1WSJ Tech Live 2023: https://www.youtube.com/watch?v=byYlC2cagLw
2Grammarly https://www.grammarly.com/
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2) Human-in-the-loop Image Processing

3) Forming Human-AI Teams for High-Stakes Tasks

4) In-Situ Learning for User-Guided Personal AI

From an end-to-end model for autonomous image processing to fully user-guided per-

sonal AIs through in-situ learning, the research projects discussed in this thesis naturally

formed a progressive path in which each project elevates the end user to a more active

and engaged role in the inference, training, and evaluation processes of human-in-the-

loop machine learning, gradually deepening the level of collaboration between the user

and AI models.

Thus this dissertation reflects my journey of understanding human-AI teaming in real-

world computer vision tasks, as well as my contributions to enabling teaming through

various research projects carried out during my Ph.D. studies. I believe the following

background information is useful to help readers better understand the works that we

will discuss in this thesis:

• The projects in this thesis provide computer vision and human-AI collaboration

solutions across various real-world tasks, many of which result from partnerships with

industry or research organizations that are keen to solve challenging problems with AI.

• Each project adds uniquely to the overarching theme, offering contributions such as

new datasets, AI models, tools, or novel interfaces that facilitate human-AI collaboration

and the interactive training of machine learning systems.

• Throughout the various chapters of this thesis, we make reference to users with di-

verse backgrounds, ranging from domain experts such as astrophysicists, machine learning

practitioners, and human-computer interaction (HCI) researchers, to the general public

like users of augmented reality (AR) headsets.

• The projects presented in this thesis, while diverse in their contributions, are unified

in their use of computer vision as the underlying technological discipline, encompassing

3



Introduction Chapter 1

tasks such as semantic segmentation, object detection, classification, 3D reconstruction,

and scene understanding.

1.2 From end-to-end training to interactive learning

Building end-to-end machine learning models is a valuable contribution to computer

vision (CV) research. They are particularly useful for fully autonomous CV tasks that

require high throughput, such as detecting product defects in a production line, or contin-

uous observation and alerts, such as security cameras. From the end user’s perspective,

i.e., when the model is deployed and used for inference, an end-to-end model requires

minimal manual input for pre-processing or post-processing, making the AI model more

accessible to users who do not have machine learning knowledge and easier integration

into a larger system. The model can be seen as a black box that takes raw data, such

as images, as input and outputs predictions that are ready for downstream tasks or

decision-making. These predictions can include classification (e.g., identifying dog im-

ages), detection (e.g., locating a dog in an image by bounding box), segmentation masks

(e.g., labeling pixels that belong to the dog), and more. We visualize a few of such

examples in Figure 1.1.

While end-to-end ML models are incredibly powerful in certain use cases, it also means

that little or no human input or feedback is taken into account during both the model

training and the inference processes. Conventionally, ML experts and engineers train AI

models in a rather automatic workflow. When models are in use, the end users hardly

play any active role other than passively waiting for the model to produce the results.

These predictions can sometimes be unexpected in real-world scenarios. Many factors can

lead to surprising, especially failing results: insufficient training data, overfitted models,

out-of-distribution inference data, etc.

4
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Figure 1.1: Examples of classic computer vision tasks [10]. For end users and down-
stream tasks, end-to-end models can be treated as a black box that produces the result
but provides end users with little knowledge or control to steer, update, or improve
the model’s behavior.

The shaping of a typical machine learning model can generally be divided into four

main stages: 1) preparing data and models, 2) training the model, 3) evaluating model

performance, and 4) deploying the model, with specific tasks within each stage [11], as

illustrated in Figure 1.2. In conventional ML research and development, the workflow

requires one or more ML experts’ efforts, but end users rarely participate in this pro-

cess. For instance, a customer who uses a photo editing app that recognizes faces for

virtual makeup or detects persons for bokeh effects is guaranteed that the newly taken

photograph was never used to train the face/person segmentation model.

Specifically, in the context of data-driven machine learning, “data collection” and

“feature selection” are the most critical tasks that determine the feasibility of an ML

model. If the end users are domain experts whose domain-specific knowledge is neces-

sary to define the model’s objective, This early stage is an opportunity for such end users

5
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Figure 1.2: From left to right, it generally takes four main stages to design, train,
evaluate, and deliver a conventional end-to-end machine learning model. Within each
stage, there are multiple specific tasks that involve ML specialists, but rarely can the
model’s end users participate in the process.

to get involved by providing task specifics and training data in collaboration with ML ex-

perts [12]. Another opportunity for domain experts’ involvement is in the later stages by

providing feedback on the model’s performance evaluation. Once the model architecture,

the objective function (loss function), and the training strategy (supervised, unsuper-

vised, self-supervised, etc.) are confirmed, the “model steering”, “quality assessment”,

and “termination assessment” stages, an iterative process that is generally referred to as

“model training”, are determined by the data and carried out automatically. An algo-

rithm or an ML expert assesses the evaluation results periodically to determine if and

when to stop the training.

From the human-computer interaction perspective, it’s a missed opportunity not to

leverage human insights and user guidance to correct the model’s mistakes in exceptional

cases. If appropriately designed, user input can improve the AI model’s performance

(benchmark evaluation) or the collaborative human-AI team’s performance (user evalu-

ation) in an interactive fashion. When a large annotated dataset is not available or hard

to collect, input and feedback from the users become even more valuable when building

6
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AI models for collaboration.

Given the aforementioned constraints of end-to-end model training, researchers saw

opportunities to introduce user input and feedback into a new learning paradigm and

proposed interactive machine learning (IML). Ware et al. [13] showed that training models

in an interactive fashion have the potential to produce accurate classifiers in the hands of a

domain expert with help from an interface that improves domain knowledge integration

into the model-building process. Fails and Olsen [14] demonstrated the IML model

(Figure 1.3) with a more visually appealing application – image segmentation to show

that IML can help designers, users need not have profound knowledge in machine learning

or image processing, to incorporate intelligence into perceptual interface designs. As

illustrated in Figure 1.4, users were able to directly draw on the image to provide the

training data, the ground truth, as well as the user’s objective to the model; in the

meantime, they also evaluate the system’s current state using predictions shown on the

same image and provide guidance for improvement in an iterative fashion. The simple

and intuitive interface insulates the user from knowing the underlying machine learning

mechanisms.

These early efforts formulated the basic interactions and collaborations paradigm

between humans and the IML system, which Dudley and Kristensson [11] illustrated in

a structural breakdown of four key components in Figure 1.5: the user, the data, the

model, and the interface. The user is the main driving force of the iterative learning

process. A user’s interaction with the model may be implicit (modifying data to update

the model) or explicit (directly modifying the model parameters), and sometimes both,

depending on the application setting.

The change of end user’s role in the AI model’s training and inference

process marks the core difference behind interactive machine learning in con-

trast to the end-to-end training we discussed earlier. We showed that the general

7
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Figure 1.3: The interactive machine learning (IML) model proposed by [14]. In con-
trast to the conventional machine learning training that we showed in Figure 1.2, Fails
and Olsen replaced the Feature Selection in static data pre-processing with users’ man-
ual correction as dynamic input to feature rapid “train-feedback-correct” cycles.

Figure 1.4: The process of creating a classifier using Crayons [14].

8
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Figure 1.5: Structural breakdown of a generic interactive machine learning system
[11] (with our edits in red).

public users have nearly zero input in the shaping of conventional machine learning mod-

els, which are largely carried out by skilled ML practitioners. In applied ML workflows

involving specialized domains, even the domain expert end users often have limited in-

volvement in the model training process. They often relied on skilled ML practitioners

because of the intricacies of building ML systems. A domain expert’s inputs are of-

ten limited to providing data, answering domain-related questions, and giving feedback

about the learned model [12]. In the meantime, ML practitioners try to “understand and

translate” the end user’s intention into equations, code, and eventually a model, with

the risk of a less optimal design due to the lack of expertise in the application domain.

IML approaches model training by placing the end user, along with their domain

knowledge, at the center of the stage. By shielding end users from the algorithms behind

the machine learning system, domain experts or end users can focus on the applica-

tion task – providing feedback and steering model development through an interface,

all without the need for an in-depth understanding of the technical details in machine

learning.

Interactive machine learning shares some core values in human-centered AI (HCAI),

AI systems that amplify and augment rather than displace human abilities. As an um-

9
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brella of specific learning approaches, IML and HCAI both seek to preserve human control

in a way that ensures AI meets our needs while also operating transparently, delivering

equitable outcomes, and respecting privacy 3.

In an ideal IML workflow, humans (especially end users) play a central and active

role by providing training data (e.g., domain knowledge or user preference) to the model,

reviewing the model’s current state, and taking appropriate action (e.g., more training

samples or positive/negative feedback) in an iterative fashion. The benefits of such

collaboration are even more evident in situations in which highly personalized AI models

are preferred – physicians or astrophysicists who have specialized data that are not trained

by mainstream AI models, or AR users who work in diverse personal spaces where the

generalized scene understanding models perform poorly. In our time of exponentially

increasing volume of data, such scenarios are becoming more common as machine learning

is being applied in many aspects of society and more disciplines of scientific research for

problem-solving.

A wide range of ML applications have taken advantage of the ideas behind interactive

machine learning. Modern recommender systems harvest data through user interactions.

For instance, TikTok learns highly customized video flows that fit users’ personal likings

based on their proactive tagging like “heart” or passive cues like time spent on different

types of videos (each video has been fully analyzed to represent many sophisticated

quantitative features). Popular social media platforms have replaced the conventional

time-based news feed with “smart” recommendations based on algorithms that maximize

user activity. The key difference that makes this type of user participation different from

the focus of this dissertation is that in these products, end users often contribute to the

model-building process unknowingly, while the human-AI teaming we propose requires

users to actively drive the AI’s learning process.

3https://research.ibm.com/blog/what-is-human-centered-ai

10
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1.3 Teaming opportunities

A dive into the concrete construction process of a machine learning model can help

identify at which stage ML experts or end users can participate in an AI-assisted workflow

or influence the shaping of the model, i.e., the human-AI teaming opportunities. Dud-

ley and Kristensson [11] proposed a generalized workflow of interactive machine learning

models based on distinct user activities and interactions, shown in Figure 1.6. We extend

the workflow with an extra task of “data collection” at the very beginning since multiple

projects in this dissertation contributed on this front. The workflow is helpful in anchor-

ing user participation to seven concrete activities. As we already did in Figure 1.2, we

can map the seven activities to the following stages:

Preparation: Data Collection, Feature Selection, Model Selection

Model Training: Model Steering, Quality Assessment, Termination Assessment

Deployment: Transfer

In Figure 1.7 and Figure 1.8, we visualize how each chapter in this dissertation con-

tributes to the different activities or stages of the IML workflow and human-AI teaming.

Specifically:

Chapter 2 In this chapter, we present the Cosmic-CoNN framework for accurate

detection of cosmic rays (CRs) in astronomical images, showcasing the power of deep

learning to address a long-time challenge in astrophysics. By building a large and diverse

CR imagery dataset from Las Cumbres Observatory, along with innovations in network

architecture and loss functions, this framework not only achieves high precision and

recall in CR detection but also demonstrates robustness across new unseen telescopes

and imaging conditions. Cosmic-CoNN’s main contributions lie in high accuracy and

robust autonomous processing. The framework’s design and implementation pave the

way for more interactive and collaborative models of human-AI interaction in scientific

11
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Figure 1.6: A generalized interactive machine learning workflow as a behavioral break-
down in distinct user activities [11].

Figure 1.7: Based on the IML workflow model proposed by Dudley and Kristensson
[11], we align Chapters 2, 3, and 4 with specific activities that each work contributes
to in the model construction process.

12
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research.

This project, while initially focused on autonomous computer vision in a scientific

context, sets the stage for exploring real-world AI applications where domain expertise

plays a critical role. The insights gained from working closely with astrophysicists during

the development of Cosmic-CoNN have highlighted a gap between AI capabilities and

user engagement. Future efforts could explore interfaces that allow scientists to adjust

parameters, influence training processes, or interactively refine AI predictions, moving

towards a human-AI team that enhances both the AI’s utility and the scientific insights

it can generate.

Chapter 3 This chapter introduces an interactive segmentation and visualization

toolkit designed to address the specific challenges associated with detecting minuscule

contaminated pixels in large, multi-megapixel high-dynamic-range (HDR) images, in this

case, cosmic ray (CR) detection in astronomical images. The toolkit integrates model

inference, HDR visualization, and segmentation mask inspection and editing within a

single, user-friendly graphical user interface (GUI). By consolidating these processes into

a streamlined interface, the toolkit democratizes computer vision model’s capabilities

and simplifies the scientific imagery analysis workflow, thus facilitating more accurate

scientific interpretation of imagery data.

The toolkit exemplifies how advanced computer vision technologies can be made

accessible to domain experts without requiring deep technical knowledge in machine

learning, by providing interactive tools that allow users to adjust and refine AI-generated

segmentation masks. The toolkit supports a human-in-the-loop approach, enabling users

to directly impact the AI’s behavior. This human-in-the-loop collaboration enhances

the black-box AI’s utility while also allowing for human expertise to play a crucial role,

ingesting confidence into the user’s interpretation of the AI’s behavior and fostering

an effective partnership between human users and AI-assisted systems in the field of
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astronomical research and beyond.

Chapter 4 In this chapter, we investigate the impact of AI assistance in human-

AI collaboration, focusing particularly on how variations in AI recommendations’ recall

and precision influence human performance and team performance in high-stakes, recall-

demanding tasks. The research introduces a pair of novel AI concepts: a “restrained”

AI designed for high-precision recommendations, and a “zealous” AI optimized for high

recall. We conducted a large-scale, month-long user study to assess their impact on 78

professional annotators engaged in a video anonymization task. Insights from analyzing

over 3,000 person-hours of annotation work demonstrate that carefully designing an AI

system’s attributes while considering the complementary strengths of humans and AI can

effectively enhance the overall team performance. We further found that collaborating

with an ill-suited AI teammate for just a couple of weeks can detrimentally affect user

skills if annotators lose AI support again, highlighting the importance of aligning AI

capabilities with user strength and the demands of the task at hand.

The findings of this study contribute to improving human-AI teaming by illustrating

that the interaction between human cognitive abilities and AI-assisted tools is complex

and deeply affected by the specific design of the AI system. Particularly, the results

indicate that AI systems designed with an understanding of the task’s priority and the

inherent strengths and weaknesses of human collaborators can lead to improved team

performance. When AI assistance is later withdrawn, the observations around negative

training effects provide crucial insights for designing sustainable human-AI collaborative

environments that augment rather than diminish human skills over time. This research

complements the dissertation’s theme by providing a concrete example of how AI design

and deployment in teamwork settings can significantly influence human-AI teaming, em-

phasizing the need for thoughtful integration of AI systems into human-centric workflows.

Chapter 5 Finally, combining everything we have learned, we facilitate real-world

14
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human-AI teaming by proposing a novel concept of “in-situ” machine learning, based on

the core idea of encoding real-time user-collected data and feedback into a neural network,

such that the network itself serves as both the knowledge container and decision-making

unit for downstream tasks. We demonstrate the effectiveness of in-situ learning through

three diverse use cases: 1) A pose estimation model that learns a user’s unique poses in

less than a minute and can be used as a personalized physical therapy trainer; 2) Flexible

segmentation models that can learn user-defined abstract concepts in both 2D and 3D

with simple strokes as model guidance; and 3) A full-fledged augmented reality system

that utilizes in-situ learning for physical environments learning. The user interacts with

physical objects to train spatially-aware AI models that can remember the personalized

environment and objects in real time. In conjunction with a custom 3D reconstruction

pipeline that infuses neural vision-language features into the 3D representations of the

environments and individual objects, users achieved the highest level of interactive learn-

ing – throughout their AR interaction via the AR headset interface, they provide the

training data and select the important features, assess the model’s quality to decide if

more samples or training are needed, and utilize the personalized AI that is specifically

trained for their own spaces for tasks like tracking the object changes.

In summary, each project featured in the described chapters plays a crucial role

in enhancing user involvement in human-in-the-loop machine learning processes. By

elevating the end user to a more active and engaged role in the core stages of inference,

training, and evaluation, these projects contribute to the advancement of human-AI

teaming. Higher levels of collaboration not only improve the utility and performance of

AI applications but also foster a deeper understanding of human user’s collaboration with

AI-assisted systems. Ultimately, this leads to more robust, effective, and user-centered

AI solutions across various domains, providing insights for future human-AI teaming

research and application.
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Figure 1.8: Chapters 5 pushes human-AI teaming to the next level as the proposed
“in-situ” learning enabled end users to participate in all key activities in the AI model
construction process except for model selection. We will discuss in detail the user’s
role in data collection, guiding the AI training, and quality assessment in this chapter.

16



Chapter 2

End-to-End Models for Autonomous

Image Processing

Figure 2.1: This chapter’s project, Cosmic-CoNN [15], is a real-world AI for science
application that provides a large-scale dataset, a novel lost function that improves the
training for space observations, and evaluation benchmarks for cosmic ray detection
in ground-based telescopes. Thus, discussions in this chapter touched upon most of
the above human activities in shaping a model while no end-user input was considered
in the end-to-end model.
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We introduce Cosmic-CoNN [15], a deep learning framework that features a break-

through in both the accuracy and robustness of autonomous cosmic ray artifacts detection

in astronomical telescope observations. As a real-world computer vision application that

is designed for autonomous batch image processing, the model’s end users, in this case,

astrophysicists, are passive recipients of the AI model’s result with limited control over

the model’s behavior. However, our close collaboration with astrophysicists has brought

a profound understanding of scientific AI applications where domain expertise plays a

critical role. It contributes to the vision of human-AI teaming by highlighting the gap

between AI capabilities and user engagement in real-world applied ML workflows.

Cosmic-CoNN: A Cosmic-Ray Detection Deep-learning

Framework, Data Set, and Toolkit1

Rejecting cosmic rays (CRs) is essential for the scientific interpretation of CCD-

captured data, but detecting CRs in single-exposure images has remained challenging.

Conventional CR detectors require experimental parameter tuning for different instru-

ments, and recent deep learning methods only produce instrument-specific models that

suffer from performance loss on telescopes not included in the training data. We present

Cosmic-CoNN, a generic CR detector deployed for 24 telescopes at the Las Cumbres Ob-

servatory, which is made possible by the three contributions in this work: 1) We build a

large and diverse ground-based CR dataset leveraging thousands of images from a global

telescope network. 2) We propose a novel loss function and a neural network optimized

for telescope imaging data to train generic CR detection models. At 95% recall, our model

1The contents of this chapter have been previously published in The Astrophysical Journal [15]:
C. Xu, C. McCully, B. Dong, D. A. Howell, and P. Sen, “Cosmic-CoNN: A Cosmic-Ray Detection
Deep-learning Framework, Data Set, and Toolkit,” ApJ, vol. 942, no. 2, p. 73, Jan. 2023, doi:
10.3847/1538-4357/ac9d91
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achieves a precision of 93.70% on Las Cumbres imaging data and maintains a consistent

performance on new ground-based instruments never used for training. Specifically, the

Cosmic-CoNN model trained on the Las Cumbres CR dataset maintains high precisions

of 92.03% and 96.69% on Gemini GMOS-N/S 1x1 and 2x2 binning images, respectively.

3) We build a suite of tools including an interactive CR mask visualization and editing

interface, console commands, and Python APIs to make automatic, robust CR detection

widely accessible by the community of astronomers. Our dataset, open-source codebase,

and trained models are available at https://github.com/cy-xu/cosmic-conn.

2.1 Introduction
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Figure 2.2: Cosmic rays (CRs), labeled with red circles, and other artifacts can be
identified by comparing a pixel’s deviation from the pixel location’s median value in
a stack of aligned exposures taken minutes apart. Our deep-learning model predicts a
probability map P where Pij ∈ [0, 1] indicating the likelihood of a pixel being affected
by CR using a single frame.

Cosmic rays (CRs) are a key source of artifacts in data from astronomical observations

using charge-coupled devices (CCDs). These charged particles excite electrons in the
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detector, creating artifacts that can be mistaken for astronomical sources. Space-based

instruments like the Hubble Space Telescope (HST ), which are not protected by Earth’s

atmosphere, are heavily affected by CR, with an average flux density of 0.96 CR/s/cm2

[16]. Ground-based instruments are also affected but at a rate about five orders of

magnitude lower, typically of ∼ 0.00001 CR/s/cm2 in thin CCDs, as observed in Las

Cumbres Observatory (LCO) global telescope network imaging data. CCD thickness is

another factor that affects an imager’s sensitivity to CRs.

Detecting CRs is straightforward when multiple exposures of the same field are avail-

able (see example in Fig. 2.2). By comparing the deviation of a pixel from the mean or

median value in a stack of aligned images, CRs (and other artifacts) can be effectively

identified [17, 18, 19, 20, 21]. However, multiple exposures may not be available, espe-

cially for spectroscopic observations. Variations in image quality (e.g., seeing) can also

complicate this procedure, so robust detection of CR pixels on individual images is still

necessary.

CRs do not travel through the telescope’s optical path nor do they follow the point

spread function (PSF): they are not blurred by the atmosphere and are therefore sharper

than a real PSF. Furthermore, they can come in any incidence angle to have less sym-

metrical morphologies than real astronomical sources. Several algorithms leverage this

feature, like adapted PSF convolution [22], histogram analysis [23], fuzzy logic-based

algorithms [24], and Laplacian edge detection [25]. These methods and the IRAF task

like xzap by M. Dickinson often require adjusting one or more hyper-parameters experi-

mentally to obtain the best result per image. Machine learning algorithms like k-nearest

neighbors, multilayer perceptrons [26], and decision-tree classifiers [27] showed promising

results on small HST datasets, but lacked generality when compared to image-filtering

techniques like LA Cosmic [25].

Machine-learning methods have been widely adopted in astronomical research recently
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Figure 2.3: Table 1: LCO science imagers covered in the CR dataset.

(see [28] for a review). [29] used a convolutional neural network (CNN) to identify CR

contaminated pixels in Hubble Space Telescope (HST) ACS/WFC images, in a method

called deepCR. In contrast to using the Laplacian kernel [30] for edge detection as is in

LA Cosmic, CNNs learn the intrinsic characteristics of the CR artifacts, enabling it to

detect CRs of arbitrary shapes and sizes.

The deepCR model outperforms the state-of-the-art method LA Cosmic without man-

ual parameter tuning, demonstrating the promise of deep learning for CR detection.

However, its neural network architecture is an adaptation from U-Net [31] which was

originally designed for biomedical imagery tasks that focus on different features than

a generic model for astronomical observations from different instruments, specifically

ground-based data with variable conditions from multiple instruments. Furthermore, the

low CR rates in ground-based data: a ∼1:10,000 ratio between CR and non-CR pixels

leads to an extreme class-imbalance issue [32] that provides too few CR pixels for spatial

convolution, rendering the training on LCO data more difficult comparing to HST data.

To address these issues, we present Cosmic-CoNN, a deep-learning framework de-

signed to train generic CR detection models for ground-based instruments by explicitly

addressing the class-imbalance issue and optimizing the neural network for the astro-

nomical images’ unique spatial and numerical features. Cosmic-CoNN also generalizes

to other types of data like space-based and spectroscopic observations.

We leverage the publicly available data from Las Cumbres Observatory (LCO) to
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build a large, diverse CR dataset. LCO ’s BANZAI data pipeline [33] ensures data from

different telescopes is not dominated by instrumental signature artifacts. It allows us to

label CRs consistently in thousands of observations taken across a wide variety of sites

with diverse scientific goals. The LCO CR dataset promises the rich feature coverage

required for a generic CR detection model that would work for a variety of ground-based

instruments.

This paper is organized as follows: we present the LCO CR dataset in §2.2 and discuss

the deep-learning CR-detection framework in §2.3. Extensive evaluations on various types

of observations are presented in §2.4. We introduce the toolkit and the software APIs in

§2.5, and conclude the paper with a discussion in §2.6.

2.2 LCO CR Dataset

Deep-learning models are data driven. A robust and generic CR-detection model

requires a large number of diverse observations from various instruments and the CRs

need to be labeled accurately and consistently across different instruments. With this

in mind, we build a custom Python CR-labeling pipeline to generate a large cosmic ray

ground-truth dataset, leveraging some unique characteristics of Las Cumbres Observatory

(LCO) global telescope network.

Our CR-labeling pipeline stacks consecutive images of the same field to identify cosmic

rays. To limit artifacts due to variations in CCD response, we only selected sequences

that have at least three repeated observations with identical exposure time and filter.

The LCO CR dataset consists of over 4,500 scientific images from LCO ’s 23 globally

distributed telescopes. About half of the images are 4K × 4K pixels resolution and the

rest are 3K×2K or 2K×2K. To the best of our knowledge, this is the largest cosmic ray

dataset that identifies CRs in science images across various ground-based instruments.

22



End-to-End Models for Autonomous Image Processing Chapter 2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

200

400

600
Im

ag
es

0.4 m
1 m
2 m

Figure 2.4: LCO CR dataset sample distribution by month and telescope class, from
November 2018 to December 2019. Diverse source densities sampled around the year
help improve model robustness.

Each sample in our dataset is a multi-extension FITS file including three images, the cor-

responding CR masks, and ignore masks. We encoded hot pixels, pixels with no data, and

astronomical sources in the ignore masks to reject false-positive CR pixels. The imple-

mentation of our ground-truth CR-labeling pipeline is presented in Appendix 2.8.1. The

LCO CR dataset is available for download at https://zenodo.org/record/5034763.

The dataset covers a variety of CCD imagers with different pixel scales, field of views,

and filters used in LCO ’s global telescopes network (Table 2.3). From a deep-learning

perspective, diverse data greatly benefits model generality. But having ground-truth

CRs labeled consistently on different instruments is not a trivial task. The BANZAI data

reduction pipeline [33] performed instrumental signature removal (bad-pixel masking,

bias and dark removal, flat-field correction), making LCO data suitable for building such

a dataset. Instrument artifacts exist as two identical CCDs could have different response

curves after years of bombardment by photons and cosmic rays. The standardized data

reduction is key to allow our CR-labeling pipeline to consistently and accurately label

CRs across various instruments.

We chose images from across three telescope classes and across the year as shown in

Fig. 2.4. Images from different times of the year sampled a variety of source densities for
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Figure 2.5: Cosmic-CoNN’s neural network architecture is based on U-Net. The
symmetric design concatenates high-resolution features from the downsampling path
to the upsampling path via skip connections (blue arrows), allowing the network
to propagate contextual information to higher resolution layers, thereby producing
pixel-level classification predictions on CRs of arbitrary shapes and sizes.

different sets of scientific goals. The varying source density proved to be of great impor-

tance to robust CR detection [34]. In the task of CR detection, diversified real objects

provide rich features for the negative class, which greatly improves model robustness.

We further constrained a sequence of exposures to come from the same scheduling

unit: the frames are typically separated by just a few minutes. Repeated exposures in a

short period of time help mitigate the PSF variation induced by atmospheric attenuation

but PSF wings still cause noticeable false positive labels adjacent sources. We reject

CRs that are overlapping with astronomical sources so that variations in the PSF do not

create artifacts in the training samples.

Of all CR pixels, 1.21% were rejected in an effort to tackle the PSF-variation-induced

artifacts. This trade-off ensures the remaining 98.79% CR pixels are labeled at higher

confidence. Therefore, models trained with this dataset focus on distinguishing CRs from

real sources, and it is anticipated that CRs overlapped with sources will not be detected.

Training on raw images with arbitrary PSFs also guarantees consistent performance at

inference time. In future versions we will model the PSF explicitly to make sure that we
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do not bias our training sample.

Our dataset is not affected by transient sources that evolve at a timescale of hours

or longer because of the very tight space between exposures. At this timescale, near-

Earth objects (NEOs), satellites, and airplanes could still cause false-positive labels in

the stack-based CR masks. Large satellite or airplane trails are rejected by our CR-

labeling pipeline automatically. A very small fraction of false-positive labels from NEOs

and satellites exist but we have manually verified every single mask to ensure their impact

is negligible.

2.3 Deep-learning framework

Cosmic-CoNN’s neural network architecture is inspired by the recent success of deepCR

[29], a U-Net [31] based deep-learning framework that identifies CR-contaminated pixels

in imaging data. In contrast to the unique Laplacian kernel used in LA Cosmic [25], a

deep CNN model optimizes millions of kernel parameters during training and outputs a

pixel-level probability map directly. The U-shaped architecture (Fig.2.5) convolves the

image at multiple scales, creating a larger receptive field in deeper layers of its hierar-

chical architecture to capture not only CRs’ morphological features (edges, corners, or

sharpness) but also the contextual features from peripheral pixels, allowing it to predict

CRs of arbitrary shapes and sizes.

deepCR demonstrates the promise of using CNN-based model for CR detection on

HST ACS/WFC observations. However, training on ground-based images exposes a

number of network architecture and data-sampling limitations it inherited from the U-

Net [31]. First, it is worth noting that U-Net was initially proposed to solve biomedical

image segmentation problems. The higher dynamic range and extreme spatial variations

found in astronomical images need to be addressed explicitly in order to optimize the
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neural network for these special features in astronomical data. In addition, the high

CR rates in HST ACS/WFC data does not reflect the extreme class-imbalance issue

observed in LCO imaging data. The low CR rates make it difficult for deepCR to train

and converge on the ground-based LCO imaging data.

In deepCR, [29] adopted a two-phase training design to address some of these issues.

Assuming correct data statistics are learned in the initial phase, the model freezes feature

normalization parameters in the second phase in order to converge. This design works

when the inference data shares the same statistics with training data, i.e., an instrument-

specific model could be learned. But it works against our goal of a generic CR detection

model that works for a wide variety of ground-based instruments with varying data

statistics.

Cosmic-CoNN adopted the U-shaped architecture and proposed: (§2.3.1) a novel loss

function that specifically addresses the class-imbalance issue, and (§2.3.2) adopted data

sampling, augmentation, and feature normalization approaches that are more suitable for

ground-based data that work jointly to improve model generality and training efficiency.

2.3.1 Median-weighted loss function

The CR-detection task is in essence a pixel-wise binary classification problem. Our

goal is to learn a function f which takes an image I as input and outputs P , the proba-

bility map of each pixel being affected by CR:

P = f(I), Pij ∈ [0, 1], where ij is the pixel coordinate. The user could then apply an

appropriate threshold on P to acquire the binary CR mask.

Binary cross entropy (BCE) is commonly used to optimize classification models, which

can also be used to calculate the loss between the prediction P and the ground-truth CR
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mask Y :

BCE(P, Y ) = −(Yij log(Pij)+

(1− Yij) log(1− Pij))

(2.1)

where the ground-truth mask Y is defined as Yij = 1 for CR pixels and Yij = 0 for

non-CR pixels. The first term Yij log(Pij) measures the loss for CR pixels and second

term for non-CR pixels. The optimization objective is to minimize their sum to account

for both CR and non-CR classes.

The low CR rates in LCO data causes the non-CR loss to dominate the total loss.

Training on LCO imaging data, the observed losses from the two terms in Equation 2.1

have a ratio of ∼1:6300 (averaged over 10 random experiments), with the second term

(non-CR loss) dominating the optimization objective. This verifies the class-balance

issue.

Furthermore, background pixels are the culprit for an extra layer of imbalance within

the non-CR class. From dark background to bright sources, the non-CR class often covers

the image’s entire dynamic range (see example in Fig. 2.6a,b). Although both labeled as

0 in Y (Fig. 2.6c), the lopsided numerical difference between background and sources in

fact creates two sub-classes within the non-CR class to introduce inconsistency, making

the training path even more convoluted.

The class imbalance and the numerical imbalance within the non-CR class are clear

indications that we should directly focus on learning to distinguish between CRs and

sources. It inspired us to create an adaptive per-pixel weighting factor that prioritizes

on CR and source pixels by down-weighting the less useful yet dominant loss from back-

ground pixels.

Since we already acquired a sequence of consecutive exposures building the LCO CR

dataset, we could use the CR-free median frame (Fig. 2.6b) as an unique ground-truth

to separate sources from the background. The brightness variation between different
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Figure 2.6: 3D visualization of the median-weighted mask. (a) An image stamp that
includes sources, CR affected pixels, and background. (b) The ground-truth CR mask
shows the imbalance between CR and non-CR pixels. (c) 3D visualization of the
CR-free median image shows the non-CR pixels can be further split into two sub-
-classes: sources and background, while the background pixels may be dominant in
quantity. We transform (b) to acquire (d), the median-weighted mask (M) by normal-
izing the brightness variation between sources. M in Eq. 2.2 adaptively down-weight
background pixel loss in the proposed median-weighted loss function. In this figure,
Mij ∈ [0.2, 1.0].

sources makes it hard to use the median frame as a weight mask directly, so we perform a

series of transformations (sky subtraction, clipping between one and five robust standard

deviations, 5× 5 kernel with σ = 2 Gaussian smoothing, unit normalization, and finally

clamping with a lower-bound parameter α) to separate sources from the background to

acquire the median-weighted mask (M) shown in Fig. 2.6d. We apply M to the non-CR
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loss term in BCE to get the novel median-weighted loss function (LM):

LM(P, Y,M) = −(Yij log(Pij)+

Mij(1− Yij) log(1− Pij))

(2.2)

where Mij ∈ [α, 1]. Pixel by pixel, M adaptively down-weights the loss from background

by scaling with the lower bound α, mitigating the extreme imbalance between the two

loss terms and redefines the optimization objective to directly learning to distinguish

between sources and CRs.

With M applied to the second term in BCE, it immediately reduces the observed

CR to non-CR class losses to ∼1:300 in Equation 2.2, comparing to the ∼1:6300 using

Equation 2.1 (in identical conditions). Although this ratio can be further reduced with

a more aggressive weight mask, the median-weighted mask preserves all real sources

without introducing inconsistency. After training with 500 images, the observed loss of

the two terms further reduce to ∼1:6 using LM , comparing to ∼1:110 using BCE loss.

In Fig. 2.7, we show that the deepCR model optimizes sooner and to a better minimum

with LM while holding other variables constant.

The median-weighted loss function (LM) makes use of the median frame’s unique CR-

free property as a robust weighting factor to effectively suppresses the dominating loss

from background pixels, at the same time prioritizes on learning to distinguish between

CRs and sources by maintaining their weighting factor at 1.0. As training progresses,

the lower bound α linearly increases the weight for background pixels from 0.0 to 1.0 so

the model could learn a clear boundary for CRs.

We could also cap α at less than 1 to learn a model that produces CR prediction with

soft edges, leaving more control to the user-defined threshold when a binary CR mask is

needed. We choose to increase α to 1 so that LM converges to the BCE loss, working
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Figure 2.7: Using deepCR as baseline, we demonstrate our proposed improvements’
effects to the model performance as a function of training progress. All variant models
are initialized with the same random seed, trained on an identical set of LCO data,
and evaluated with identical validation images using same model-input dimension.
Performance is measured by the Sørensen-Dice coefficient [37] (henceforth, the Dice
score) to gauge the similarity between the model’s prediction and the ground-truth
CR mask. Here we plot (1 - Dice score) in logarithmic scale, lower is better. Models
without using group-normalization (GN) were trained in two phases, thus the delayed
optimizations that start after 500 epochs. The median-weighted loss help deepCR
to achieve better performance, while the larger 10242 pixels stamps proved to be
vital for models using GN. The proposed median-weighted loss function, increased
stamp size, and GN work jointly to allow Cosmic-CoNN to converge rapidly and to a
better minimum. Quantitative results are presented in Table. 2.15 in ablation study
(Appendix 2.8.2).

with the standard Sigmoid function [35, 36] at the last layer of our network to produce

a theoretical best classification boundary of around 0.5. We also experimented using a

loss function based on Sørensen-Dice coefficient that is robust for imbalanced data [37]

but the model learned a strong bias to avoid CRs near real objects, making the more

interpretable BCE-based loss a better choice for optimization.

2.3.2 Data sampling and normalization

Large-scale deep-learning models are often optimized using stochastic gradient descent

[38], motivated by stochastic methods’ efficiency benefits, at the same time constrained by
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the ever-growing dataset size and limited GPU memory (usually on the order of 10 GB)

for parallel computation. Model parameters are iteratively optimized over a small batch

of data, colloquially known as a mini-batch, randomly sampled from the full dataset. If

iterating over all N samples in a dataset is considered an epoch, then training a model

with n samples in a mini-batch means the model updates about ⌊N
n
⌋ times in an epoch

[39].

By slicing HST ACS/WFC images into 2562 pixel stamps, deepCR [29] samples a

mini-batch from a dataset of fixed stamps. However, this approach is unsuitable for

ground-based astronomical images featuring much lower CR rates: a small 2562 stamp

might not include a single CR, making many of the samples less useful for training.

Recall that each sample in the LCO CR dataset is a multi-extension FITS including

three images between 2K×2K and 4K×4K pixels. This design empowers a more flexible

data-sampling strategy than having the dataset stored in a fixed size. The Cosmic-

CoNN framework could crop a stamp of any size, up to the entire image from each FITS,

ensuring a reasonable number of CRs in every mini-batch. The sparsity of source and

CR in ground-based astronomical data motivated us to increase the sampling stamp size

to 10242 pixels. A larger area is more likely to include all three types of features: sources,

CRs, and background in a single stamp and also provides more spatial and contextual

information for the convolution operations in CNN models.

One consequence of the increased stamp size is the decreased number of samples in

a mini-batch, given the same amount of GPU memory. Increasing the stamp width and

height by m times will reduce the batch size n to ⌊ n
m2 ⌋, e.g., the memory that fits a mini-

batch of 16× 2562 pixel images can only fit a single 10242 pixel image. The accuracy of

batch normalization (BN) [40], an important feature-normalization method widely used

in deep CNN architectures, including in deepCR, decreases rapidly when the batch size

becomes too small, so adopting the proposed larger stamp size alone might even hurt
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model accuracy, as shown in Fig. 2.7. We adopt group normalization (GN) [41], whose

computation is independent of batch size to address the accuracy loss in BN. Unlike BN

which normalizes over all feature channels across all samples in a mini-batch, GN divides

feature channels into groups and computes the normalization statistics for each sample.

We used GN as a remedy for the decreased batch size but found it playing a major role

in improving training efficiency on astronomical imaging data.

The high dynamic range, high variance, low source density, and low CR rates in

ground-based astronomical images make it difficult to learn accurate per-sample nor-

malization statistics from small stamps: one sample could include a bright source but

another could be entirely dark. By pairing GN with the proposed stamp size of 10242

pixels, the learned per-sample normalization is more accurate because of the extra spatial

and contextual information from the wider field of view.

As a common practice in deep-learning research, we conduct an ablation study to

demonstrate the individual and combined effects of median-weighted loss, 10242px sam-

pling size, and GN. The results are presented in Fig. 2.7 and Appendix 2.8.2. Controlled

experiments show applying GN alone improves training efficiency but not model perfor-

mance. By pairing GN with the increased 10242 stamps, it dramatically improves perfor-

mance and model generality, while the proposed new loss function provides Cosmic-CoNN

a better convergence path to further improve the model’s performance and generality on

both LCO and Gemini instruments (see Table. 2.15).

Finally, in addition to randomly cropping image stamps form a large image, we per-

form weak data augmentation like random rotations as well as horizontal and vertical

mirroring, allowing the model to learn invariance to pose variation in astronomical obser-

vations [42]. Strong augmentations like elastic deformations adopted by [31] have proved

to be effective to improve performance on a small dataset but we avoided such deforma-

tion as it could change real CRs’ sharp profiles. Given the large number of diverse samples
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(c) LCO Precision-Recall

Cosmic-CoNN
recall 95.0, precision 93.70
recall 99.0, precision 80.20
deepCR
recall 95.0, precision 89.46
recall 99.0, precision 68.72

Figure 2.8: Evaluating three CR detectors with ROC and Precision-Recall curves on
LCO imaging data. It is desirable to have a higher true-positive rate (TPR) at fixed
false-positive rates (FPR) in ROC (Equation 2.3,2.4). As illustrated in (a) and (b),
Cosmic-CoNN outperforms other methods with higher TPRs overall. The margin of
its lead further increases in more strict low FPRs, showing Cosmic-CoNN’s robust
performance. Circle markers on the Precision-Recall curves in (c) show when 95%
of the CR pixels are found (95% recall), Cosmic-CoNN’s prediction is over 4% more
accurate than deepCR (precision). At 99% recall, Cosmic-CoNN’s lead increases to
∼11%.
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(b) Gemini Precision-Recall (1x1 binning)

Cosmic-CoNN
recall 95.0, precision 92.03
recall 99.0, precision 77.06
deepCR
recall 95.0, precision 76.27
recall 99.0, precision 59.01
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(c) Gemini Precision-Recall (2x2 binning)

Cosmic-CoNN
recall 95.0, precision 96.69
recall 99.0, precision 84.99
deepCR
recall 95.0, precision 81.87
recall 99.0, precision 49.89

Figure 2.9: We trained both deepCR and Cosmic-CoNN on LCO data and evalu-
ate their performance on new images from previously unseen Gemini GMOS-N/S
telescopes. Comparing Gemini data’s Precision-Recall curves (Fig.7bc) with LCO’s
(Fig.6c) shows the Cosmic-CoNN model maintains similar performance while deepCR
has visible performance loss (see precision gain/loss in Table. 2.3.2). The consistent
performance shows that the Cosmic-CoNN trains a more generic and robust CR de-
tector.

in LCO CR dataset, we found weak augmentations sufficient. With pose augmentation,

we also saw more stabilized training and improved performance on HST ACS/WFC data,

showing that weak augmentation is effective in increasing model robustness.
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Figure 2.10: Table 2: We evaluated three CR detection methods on LCO imag-
ing data (§2.4.1). The two deep-learning models deepCR and Cosmic-CoNN trained
on LCO images are further evaluated on new images from previously unseen Gemini
GMOS-N/S telescopes (§2.4.2), with their relative performance loss on the new instru-
ments indicated in italic parentheses. Corresponding to the Precision-Recall curves
in Fig. 2.8c and Fig.2.9bc, the Cosmic-CoNN model has little or no performance loss,
making it a more generic CR detector for new instruments.

2.4 Results

We trained and evaluated the Cosmic-CoNN framework on various types of instru-

ments and data to access its generalization capabilities. Most importantly, we evalu-

ated the LCO-trained model on new imaging data from Gemini Observatory’s GMOS-

North/South telescopes [43] to understand how well the model generalize to other unseen

ground-based instruments. The results are presented in the following structure:

• Ground-based imaging data

– Training and evaluation on LCO data (§4.1)

– Evaluating LCO-trained models on Gemini GMOS-North/South data (§4.2)

• Space-based imaging data (§4.3)

• Ground-based spectroscopic data (§4.4)

We first use receiver operating characteristic (ROC) curves as an evaluation metric

to compare different detectors’ performance at varying thresholds. A ROC curve depicts
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relative tradeoffs between benefits (true-positive rate, TPR) and costs (false-positive rate,

FPR) [44]. In the context of CR detection:

TPR =
CR pixels correctly found

All CR pixels
(2.3)

FPR =
Non-CR pixels mistaken as CR

All non-CR pixels
. (2.4)

Simply put, a higher TPR is desirable at a fixed FPR. While ROC provides a model-

wide evaluation at all possible thresholds, standard ROC can be misleading for datasets

that feature different CR rates (e.g., space- vs. ground-based data). Thus it is not suitable

to directly compare a model’s TPR given the same FPR between different instruments.

The Precision-Recall curve, on the other hand, is a more robust metric for imbalanced

datasets [45]. While recall is equivalent to TPR, in the context of CR detection, precision

is defined as:

Precision =
CR pixels correctly found

All CR pixels predicted by model
. (2.5)

Unlike FPR, precision is determined by the proportion of correct CR predictions given

by the model, which is less sensitive to the ratio between CR and non-CR pixels in an

image, i.e., it is also less sensitive to the varying CR rates between different datasets.

Given a fixed proportion of real CRs correctly discovered (e.g., 95% recall), the better

model should make less mistakes, thus a higher precision. It also helps us to understand

how well a model performs on two different datasets given the same recall, or vice versa.

The Precision-Recall curve can also be used as an indicator of prediction confidence.

We used this property to provide supplementary evidence that helped [46] determine a

candidate progenitor to be a new type of stellar explosion – an electron-capture supernova.

We rule out the presence of cosmic-ray hits at or around the progenitor site to determine
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the peak pixel is an actual stellar PSF with > 3σ confidence by plotting deepCR’s [29]

predicted score on the corresponding Precision-Recall curve.

2.4.1 Training and evaluation on LCO data

For ground-based imaging data, we randomly sampled and withheld ∼10% of images

from the LCO CR dataset as the test dataset. We first analyzed the testset using the

filtering-based CR detector Astro-SCRAPPY [47] for reference. We used objlim=2.0

for LOC 1.0- and 2.0-meter telescopes’ data and objlim=0.5 for 0.4-meter for optimal

performance in different telescope classes. sigfrac=0.1 is held constant for all telescope

classes and we produce the ROC curves by varying the sigclip between [1, 20]. Both

Cosmic-CoNN and deepCR [29] models are trained with identical data and settings.

They are evaluated by varying the threshold t. Details of the training environment and

experiment settings are presented in Appendix 2.8.3.

The Cosmic-CoNN model achieves 99.91% TPR at a fixed FPR of 0.01%, outperform-

ing other methods, as illustrated in Fig. 2.8a,b. The Precision-Recall curves in Fig. 2.8c

shows for both deep-learning models to discover 95% of the real CR pixels (95% recall),

the predictions given by Cosmic-CoNN is over 4% more accurate than deepCR’s (93.70%

vs. 89.46% in Precision). If we continue to lower the threshold to allow 99% of the CR

pixels being found, Cosmic-CoNN’s lead increases to ∼11%. Quantitative results are

presented in Table 2.3.2.

2.4.2 Evaluating LCO-trained models on

Gemini GMOS-North/South data

The goal of this work is to produce a generic ground-based CR detection model.

In order to understand how well the models trained on LCO CR dataset perform on

36



End-to-End Models for Autonomous Image Processing Chapter 2

unseen instruments, we produced a test dataset consisting of 98 images from the Gemini

Observatory’s GMOS North and South telescopes [43]. The ground-truth CR masks are

reduced by the DRAGONS software [48] with hsigma=5.0 to match the setting we used to

produce the LCO training data.

As shown in Fig. 2.9 and Table 2.3.2, at 95% Recall the deepCR-trained model

has −13.19% and −7.59% loss in Precision on Gemini’s 1×1 and 2×2 binning images,

respectively, comparing to its performance on LCO images, while the Cosmic-CoNN

model has consistent precisions of −1.67% and +2.99%. It shows that the Cosmic-

CoNN framework is superior in producing more generic models for unseen instruments

not included in the training data.

Examples of detection discrepancy are shown in Fig. 2.11. The Cosmic-CoNN model

is better at detecting complete CRs of arbitrary shapes, especially the “worm-shaped”

CRs that frequently appear in the GMOS-N/S images.

The Cosmic-CoNN model’s consistent performance on other CCD imagers also shows

the large, diverse LCO CR dataset produces rich cosmic-ray feature coverage that could

be effectively generalized to other ground-based instruments. Fig. 2.12 (top row) shows

the robust detection result of a heavily CR-contaminated image from Gemini GMOS-N.

Bhavanam et al. [49] recently tested Cosmic-CoNN on DECam data [50] and showed

it generalizes well to yet another unseen instrument - our Cosmic-CoNN model trained

on the LCO CR dataset achieved a precision of 96.60% at 95.0% recall, a similar perfor-

mance as in Gemini’s 2×2 binning images (Table 2.3.2). Their improvement of adding

attention gate modules [51] only brought marginal performance gain: 0.12% higher in

true positive rate at 0.01% false positive rate and 0.07% higher in precision at 95.0%

recall than training with the original Cosmic-CoNN framework. We argue potentially

better performance from Cosmic-CoNN as [49] incorrectly trained on 2562 pixel patches,

which is against our training strategy discussed in Sec. 2.3.2.
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Figure 2.11: deepCR and Cosmic-CoNN were both trained on LCO data and tested on
GMOS-N/S images that were never used for training. While they perform comparably
on most CRs, we illustrate some examples that caused deepCR’s performance loss on
Gemini images (deepCR’s 76.27% & 81.87% vs. Cosmic-CoNN’s 92.03% & 97.69% in
Table 2.3.2). Both models used the theoretical best threshold of 0.5 for binary masks.
Incorrect or missing CR pixels are marked in red.
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Figure 2.12: A pair of CR detection examples that shows both the Cosmic-CoNN
model’s generality and the framework’s broad applicability. (Top) Cosmic-CoNN’s
generic ground-imaging model was trained entirely on LCO data yet all visible CRs
in a new Gemini GMOS-N 1×1 binning image stamp are correctly detected regardless
of their shapes or sizes. (Bottom) The Cosmic-CoNN framework also trains well on
spectroscopic images and detects CRs over the spectrum robustly on a LCO NRES
image. The horizontal bands in the left image are the spectroscopic orders, which are
left out of the CR mask.

2.4.3 Space-based imaging data

We also trained Cosmic-CoNN on [29]’s HST ACS/WFC F606W dataset consisting

of extragalactic field, globular cluster, and resolved galaxy observations to demonstrate

the framework’s broad applicability. The Cosmic-CoNN-trained model has better perfor-

mance in all three types of observations comparing to the deepCR model (version 0.1.5),

as shown in Table. 2.13. When testing model robustness on augmented images with ran-

dom mirroring and rotation [42], we found more robust performance from Cosmic-CoNN

39



End-to-End Models for Autonomous Image Processing Chapter 2

Figure 2.13: Table 3: We reproduced deepCR’s results on HST ACS/WFC images
to compare with Cosmic-CoNN. To test model robustness, we randomly rotated and
mirrored the images and indicated each method’s performance loss in italic parenthe-
ses.

with little or no performance loss, especially in resolved galaxy data (italic parentheses

in Table. 2.13).

Unlike the LCO CR dataset which releases full-size images in FITS format, the

F606W dataset sliced and stored images as 2562 pixel stamps in Numpy arrays, so we

were not able to test the effect of increased sampling stamp size on these data. [52]

recently trained an all-filter HST ACS/WFC deepCR model on an extended dataset

covering the entire spectral range of the ACS optical channel. Cosmic-CoNN sup-

ports loading deepCR models to use with our toolkit, instructions are available at

https://github.com/cy-xu/cosmic-conn.

2.4.4 Ground-based spectroscopic data

Finally, we expand the Cosmic-CoNN framework to detecting CRs in single-exposure

spectroscopic images, a task that has remained challenging for conventional methods. [53]

was able to detect as many as 80% of the CRs in single-exposure, multi-fiber spectral

images. Based on two-dimensional profile fitting of the spectral aperture, their method
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takes about 20 minutes to process a 4K × 4K pixel image. Cosmic-CoNN detects nearly

all CRs in about 25 seconds on CPU and less than 5 seconds with GPU acceleration.

To prepare the data for deep-learning training, we modified our custom CR-labeling

pipeline (Appendix 2.8.1) and produced a dataset of over 1, 500 images using repeated

observations from the four instruments of LCO ’s Network of Robotic Echelle Spectro-

graphs (NRES ) located around the world. We randomly sampled and reserved 20% of

the data as the test set and used the rest for training and validation.

Cosmic-CoNN reaches 97.40% TPR at 0.01% FPR with a precision of 94.4% at 95%

recall. Considering the high CR rates in spectroscopic images because of the 15 minutes

or longer exposure time, the NRES model in fact demonstrates exceptional performance.

A detection result example is shown in Fig. 2.12 (bottom row). We consider these results

preliminary because the focus of this paper is on a generic ground-based imaging model

and we will conduct thorough comparison with other methods in a future work. Never-

theless, the versatility of Cosmic-CoNN framework potentially paves a way for solving

the CR detection problem in the accuracy-demanding spectroscopic data.

2.5 Toolkit

We have built a suite of tools to democratize deep-learning models in order to make

automatic, robust, and rapid CR detection widely accessible to astronomers. The toolkit

includes console commands for batch processing FITS files, a web-based app providing

CR mask preview and editing capabilities, and Python APIs to integrate Cosmic-CoNN

models into other data workflows.

The Python toolkit package is released on PyPI. We host the open-source Cosmic-

CoNN framework on GitHub https://github.com/cy-xu/cosmic-conn with complete

documentation including toolkit manual, developer instructions on using the LCO CR
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Figure 2.14: The interactive web app streamlines the workflow of CR detection, vi-
sualization, and mask editing into a single interface [54]. This tool is also useful to
help users find the suitable threshold for new data. Users could adjust the threshold,
apply morphological dilation, or perform pixel-level manual editing on the CR mask
to acquire the desirable results for downstream analysis.

dataset and training new models. We also released the LCO CR dataset and the code

used to generate the results to facilitate reproducibility.

Console commands are the most convenient way to perform batch CR detection on

FITS files directly, e.g.,

$ cosmic-conn -i input -m ground imaging

utilizes the generic ground_imaging model and the user can replace the argument with

NRES or the path to a new model trained with Cosmic-CoNN for other types of data.

The result is attached as a FITS extension. In terms of speed, Cosmic-CoNN provides

more accurate prediction than conventional methods in comparable time on the CPU.

Processing a 2K × 2K pixels image takes ∼7.5s on a AMD Ryzen 9 5900HS laptop pro-
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cessor. With GPU-acceleration, it takes only ∼0.8s on a high-end Nvidia Tesla V100

GPU, and ∼1.2s on an entry-level Nvidia GTX 1650 laptop GPU.

The $ cosmic-conn -a command starts an interactive CR detector in the browser,

as shown in Fig. 2.14. We adopt the interface layout and controls from the SAOImageDS9

[55]. In addition, we provide an array of CR thumbnails for quick navigation and the

ability to edit CR masks in real time. The JavaScript-backed web app provides neces-

sary tools for users to fine-tune the appropriate post-processing parameters for different

instruments. The preview window supports various scaling methods like the zscale for

better visualization.

Cosmic-CoNN is designed to be integrated in custom data pipelines. Let image be a

two-dimensional float32 array:

Our Python APIs allows other facilities to integrate rapid CR detection into their data

reduction pipeline. The framework checks if the host machine supports GPU-acceleration

and prioritizes computation on GPU. Then it optimizes the detection strategy (full image

or slice-and-stitch using smaller stamps) based on available memory without human

intervention.

We are planning to deploy the web app on the cloud to provide GPU-accelerated CR

detection as a free service. This will allow users to upload their failure cases to us to

expand the training set and improve the model. In the current release, the web app is a

local instance which does not collect or upload any user information.
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2.6 Conclusion

In this work, we presented an end-to-end solution to help tackle the CR detection

problem in astronomical images. The large, diverse LCO CR dataset produces rich fea-

ture coverage, allowing deep-learning models to achieve state-of-the-art CR detection on

single-exposure images from Las Cumbres Observatory. The Cosmic-CoNN deep-learning

framework trained generic CR detection models that maintain consistent performance on

unseen instruments. Extensive evaluation showed the framework’s broad applicability in

ground- and space-based imaging data, as well as spectroscopic data. Finally, we released

a toolkit to make the deep-learning CR detection easily accessible to astronomers.

Using the generic Cosmic-CoNN model as a pre-trained initialization, other facilities

could fine-tune a model optimized for their own CCD imager with a lot less data. The

LCO CR dataset also lays the foundation for a potential universal solution. By expand-

ing our dataset with more instruments from other facilities, we are confident to see an

universal CR detection model that achieves better performance on unseen ground-based

instruments without further training.

The Cosmic-CoNN framework and the toolkit will be a valuable resource for the com-

munity to develop future deep-learning methods for source extraction, satellite detection,

near-Earth objects detection, and more. These topics are not the focus of this paper but

our improvements to the neural network made Cosmic-CoNN a suitable deep-learning

architecture for these tasks, as we have seen in some preliminary experiments.

With the current Cosmic-CoNN model rejecting CRs that could be falsely recognized

as astronomical sources, we could better profile the point spread functions in order to

address the ∼1.21% excluded CR pixels in the next release of our dataset. We expect to

see further improvement in the Cosmic-CoNN model.

As large surveys like the Vera Rubin Observatory ’s Legacy Survey of Space and Time

44



End-to-End Models for Autonomous Image Processing Chapter 2

(LSST ) [56] go online, we will see an explosion of new data that requires automatic,

robust, and rapid CR detection. With GPU-acceleration, deep-learning methods like

Cosmic-CoNN will likely be the solution for future data reduction pipelines that is needed

to process the over 100 terabytes of data produced each night from LSST and many

follow-up facilities.

2.6.1 Facilities and Software Used

Facilities: LCOGT, HST(ACS/WFC), Gemini:Gillett, Gemini:South

Software: Astropy [57, 58], Astro-SCRAPPY [47], Cosmic-CoNN [59, 60], DRAGONS

[48], reproject [61], Matplotlib [62], NumPy [63], scikit-image [64], SExtractor [65],

PyTorch [66]
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2.8 Appendix

2.8.1 CR Labeling Pipeline

The ground-truth CR-labeling pipeline starts with searching for successive exposures

of the same field. We acquire the publicly available scientific observations from LCO ’s

Science Archive2 and filter the number of visits users requested (more than three but no

more than twelve). It is unlikely a cosmic ray will hit the same pixel location twice, so

every three consecutive exposures are saved as a sequence into a multi-extension FITS file

for alignment and CR labeling, while maintaining all the header information for future

community research. For higher signal-to-noise ratio and higher CR rates, we only used

images with an exposure time of 100 seconds or longer. We further constrained the

consecutive images to be taken within the same schedule molecule, the minimal LCO

scheduler unit. Images from the same molecule ensure intervals between exposures are

minutes or less, which minimize the variations in seeing conditions and point spread

function (PSF). We reject a sequence whose background varies over σ > 5 between

frames, as they are not stable enough to robustly identify cosmic rays.

2https://archive.lco.global/
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We then reproject to align each frame in the sequence with astropy/reproject [68]

using nearest-neighbor interpolation to ensure CRs are not distorted during re-sampling.

Fig. 2.2 shows an image stamp from an aligned sequence. LCO ’s BANZAI [33] data

reduction pipeline have bias and dark frame subtracted to remove instrument signature,

allowing us to use one CR-labeling pipeline across all LCO instruments. Let I be an

image in the sequence then I’s noise uncertainty σI is simplified to:

σI =
√

|I|+N2
R +NS (2.6)

where NR is the CCD read noise, NS is the sky background noise, which corrects for the

background variation between exposures. We then approximate the median frame un-

certainty Σ by performing median filtering at each pixel location across the uncertainties

from the three frames I1, I2, and I3 in order to reject the variance from the CR pixels:

Σ =
Median(σI1 , σI2σI3)√

3
. (2.7)

We update each frame I with sky subtraction I := I −Median(I) before calculating

the median frame MI . We then define a deviation score that calculates how much each

frame deviates from the median frame represented in Gaussian distribution:

Deviation score =
I −MI√
(σI)2 + Σ2

. (2.8)

Pixel locations with a deviation score > 5.0 are identified as bright CR pixels and

labeled in a preliminary outlier mask. A morphological dilation of five pixels is applied to

the outlier mask, and we use a lower threshold of > 2.5 to include the dimmer peripheral

pixels around the CRs.

A key step to acquire the final CR mask is to remove false-positive outliers caused by
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PSF wings and isolated hot pixels. We perform source extraction with SEP [69] on the

CR-free median frame to acquire a robust source catalog. We then perform windowed

background estimation to include the astrophysical source pixels in an ignore mask to

reject false-positive outlier from PSF wings [70].

BANZAI provided a mask for permanent dead CCD pixels but we also noticed a very

small fraction of remaining standalone hot pixels that are more likely to be Poisson noise

or persistent pixels due to over saturation in previous exposures. Thus our last step is

to reject isolated (single) hot pixel events to acquire the final CR mask. Different types

of artifacts and rejected pixels, including 100 pixels ignored around CCD boundaries

are coded and included in the ignore mask. Instruction on using the data pipeline, the

LCO CR dataset, and the ignore mask coding rules can be found in the documentation

https://github.com/cy-xu/cosmic-conn.

2.8.2 Ablation Study

An ablation study helps us understand how a building block or a design choice affects a

machine learning system’s overall performance. It applies or removes a single component

in a controlled experiment while holding other parameters constant. We evaluate the

proposed improvements discussed in Sec. 2.3 through variant models corresponding to

Fig. 2.7 and present the quantitative results in Table. 2.15.

The complete ablation study (combining quantitative results from Table. 2.15 with

training visualizations in Fig. 2.7) shows applying the proposed Median-Weighted loss

function to the baseline method improves model performance on LCO data from 89.19%

to 92.98%, at the same time improves training efficiency from 2980 to 2080 epochs, which

validates that the new loss function does indeed provide a better model convergence path

discussed in §2.3.1.
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Figure 2.15: Table 4: Cosmic-CoNN ablation study on LCO and Gemini imaging
data. All variant models are evaluated with identical validation images and the same
input stamp size. We gauge training efficiency by the number of epochs a model takes
to reach a Dice score > 0.85 [37] during training, corresponding to convergence curves
in Fig. 2.7. We discussed in Sec. 2.4 that Precision is less sensitive to the varying CR
rates between different datasets than TPR at fixed FPR, thus we measure a model’s
Precision at 95% Recall on LCO andGemini data to evaluate how well it generalizes to
unseen data, corresponding to a model’s performance at epoch 4000 shown in Fig. 2.7,
higher is better.

While the Median-Weighted loss alone does not produce a more generic model, all

variant models trained with the larger 10242 pixel sampling stamps demonstrated better

model generality on the unseen Gemini data, especially the 10242px + group normaliza-

tion (GN) combination that we discussed in §2.3.2. GN alone does not improve perfor-

mance but mainly contributes to training efficiency, which is better visualized in Fig. 2.7

when compared with models that adopt the two-phase training.

The proposed Median-Weighted loss further provided the (10242px + GN) variant

model a better convergence path to produce the Cosmic-CoNN model that excels in

both training efficiency (from 2980 to 380 epochs) and performance on not only LCO

instruments which were used for training (from 89.19% to 93.40%) but also Gemini

instruments that were not included in training data (from 79.59% to 86.80% on 1 × 1

binning & from 84.88% 94.37% on 2× 2 binning) among all variant models.

The ablation study shows each of our proposed improvements affects certain aspects

of the machine learning system and their joint effect contributes to the generic and

best-performing Cosmic-CoNN model suitable for the CR-detection task in ground-based

astronomical data with variable conditions from multiple instruments.
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2.8.3 Training Details

We implement the Cosmic-CoNN framework in PyTorch 1.6.0 [66] with Adam op-

timizer [71]. Models for the same type of observation are trained with identical data,

random seed, and hardware. We use the Nvidia Tesla v100 32GB GPU for training.

The large GPU memory allows us to maximize the batch size n in each iteration. All

training settings are identical unless it is clearly specified for a variant model. Scripts to

reproduce our experiments are included in the source code.

For LCO imaging data, we randomly sampled and withheld 20% of the training set

for validation. An initial learning rate of 0.001 was used for all models. During training,

we monitor the validation loss for each model and manually decay the learning rate by

0.1 when the loss plateaus. In the ablation study, we reduce the learning rate to 0.0001 at

epoch 3,000 for all models. Models using group normalization adopt a fixed group=8 for

all feature layers. For the median-weighted loss we linearly scale the lower bound α from

0 to 1 over 100 epochs. We re-implemented deepCR with identical network and adopted

the two-phase training that [29] used to train deepCR models. The Cosmic-CoNN batch

normalization (BN) variant model also adopted the two-phase training. In order to make

fair comparisons, all Cosmic-CoNN and deepCR models were carefully tuned, the best

models were used for evaluation.

The Cosmic-CoNN model and variant models with 10242 pixels sampling stamp size

used a batch size of n = 10 in the ablation study. deepCR and its variant models adopt

2562 pixels stamp size with n = 160 to ensure the model sees the same amount of pixels in

a mini-batch. For a dataset of N samples, models trained with batch size n = 10 updates

⌊N
10
⌋ times in an epoch but models trained with n = 160 only update ⌊ N

160
⌋ times, which

leads to unfair comparisons on training efficiency. We addressed this issue by sampling

a subset of ⌊N
16
⌋ samples as an epoch for models with batch size n = 10.
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For HST ACS/WFC imaging data, the Cosmic-CoNN model is trained on identical

data as deepCR [29] but with a new PyTorch data loader that added random rotation

and mirroring while sampling images. The larger GPU memory allowed us to use 2562

pixels sampling stamp size with n = 160.

For LCO NRES spectroscopic data, the neural network is identical to the Cosmic-

CoNN ground-imaging model. We used a stamp size of 10242 pixels with n = 8, an initial

learning rate 0.0001, and manually monitor and decay the learning rate.
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Chapter 3

Human-in-the-loop Image

Processing

Figure 3.1: This chapter focuses on an AI-integrated interactive segmentation tool [54]
that democratizes the computer vision detection capability and makes deep learning
models accessible to scientists’ image analysis workflow, improving user experience in
real-world deployment. The thresholding visualization, pixel-level model confidence
score, and direct output manipulation contribute to the quality assessment during
training.
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We present an interactive segmentation and visualization toolkit [54] that integrates

deep learning model inference, HDR visualization, and segmentation mask inspection

and editing within a single, user-friendly graphical user interface (GUI). The streamlined

interface exemplifies how advanced computer vision technologies can be made accessible

to domain experts without requiring deep technical knowledge in machine learning. For

researchers who rely on the AI model’s predictions for decision-making or downstream

analysis, the AI-integrated interface provides additional information like the pixel-level

confidence score and the ability to directly adjust AI’s output with thresholding or manual

editing. This human-in-the-loop collaboration enhances the black-box AI’s utility while

also allowing for human expertise to play a crucial role, ingesting confidence into the

user’s interpretation of the AI’s behavior and fostering an effective partnership between

human users and AI-assisted systems in the field of astronomical research and beyond.

Interactive Segmentation and Visualization for Tiny

Objects in Multi-megapixel Images1

We introduce an interactive image segmentation and visualization framework for

identifying, inspecting, and editing tiny objects (just a few pixels wide) in large multi-

megapixel high-dynamic-range (HDR) images. Detecting cosmic rays (CRs) in astronom-

ical observations is a cumbersome workflow that requires multiple tools, so we developed

an interactive toolkit that unifies model inference, HDR image visualization, segmenta-

tion mask inspection and editing into a single graphical user interface. The feature set,

1The contents of this chapter have been previously published in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). © 2022 IEEE. Reprinted,
with permission, from C. Xu, C. McCully, B. Dong, D. A. Howell, P. Sen, and T. Höllerer, “Interactive
Segmentation and Visualization for Tiny Objects in Multi-megapixel Images [54],” CVPR Demo Track,
2022, pp. 21447-21452
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initially designed for astronomical data, makes this work a useful research-supporting

tool for human-in-the-loop tiny-object segmentation in scientific areas like biomedicine,

materials science, remote sensing, etc., as well as computer vision. Our interface features

mouse-controlled, synchronized, dual-window visualization of the image and the segmen-

tation mask, a critical feature for locating tiny objects in multi-megapixel images. The

browser-based tool can be readily hosted on the web to provide multi-user access and

GPU acceleration for any device. The toolkit can also be used as a high-precision anno-

tation tool, or adapted as the frontend for an interactive machine learning framework.

Our open-source dataset, CR detection model, and visualization toolkit are available at

https://github.com/cy-xu/cosmic-conn.

3.1 Introduction

Semantic segmentation is not only a common computer vision task, but also a decades-

old problem in astronomy. For astrophysicists whose research relies on observing the

universe with optical telescopes and charge-coupled device (CCD) imagers, identifying

cosmic rays (CRs) in their observations has been a challenging task[72, 73, 74, 47]. Tele-

scope images can be a few megapixels or up to 3,200 megapixels [75], in contrast, CR-

contaminated pixels are often just a few pixels wide. Because these bright pixels can

be mistaken for real astronomical sources, it is necessary to reject them before further

scientific interpretation of the data (see CR detection examples in Fig. 3.2 (5)).

Identifying tiny CRs in multi-megapixel images is only the first step. Astronomy

telescope imagers are often cooled to operate below freezing temperature to minimize

detector dark current and other noise sources [67], and these highly sensitive CCD sensors

produce 16-bit floating point high dynamic range (HDR) images that require special

software for visualization. Without a scientific visualization tool that supports native
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(A)

①
③

④ ⑤

②
(B)

(C)

Figure 3.2: Our segmentation framework provides three user interfaces for different
application scenarios: (A) the visualization toolkit has a graphical user interface (GUI)
for model inference, interactive visualization, and mask editing, (B) clean Python li-
brary APIs for integration with user’s data pipeline, and (C) a command-line interface
for batch processing. GUI components: (1) File input and output; (2) Whole-image
preview and navigation; (3) Thumbnails shortcuts to detected objects ranked from
large to small; (4) Image window with various mapping (scale) algorithms and man-
ual controls to visualize 16-bit floating point images; (5) Segmentation mask window
with synchronized field of view with the image. The highlighted pixels are detected
CRs. The user can adjust the visualization of the HDR data on the left while inter-
actively editing the segmentation mask on the right.

integration with popular deep-learning frameworks, the detection and mask verification

are divided into separate steps that involve exporting and reading files between different

tools.

Given existing tools, the workflow of segmentation, image visualization, human in-

spection, and possible editing of the mask is a cumbersome process involving switching

between multiple tools or software, making it worthwhile to develop a dedicated tool to

streamline this workflow. In our video demonstration, we show an interactive process

that involves continuous adjustments to both the science image and the segmentation

mask to acquire the accurate coverage of a CR that might affect the analysis of an ad-
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jacent stellar object. This level of seamless interaction was previously impossible if one

were switching between different tools after each adjustment.

Computer vision researchers can integrate this visualization toolkit with other seg-

mentation models to provide end users, especially domain experts who are not machine

learning researchers, an interactive graphical user interface (GUI) (Fig. 3.2) in produc-

tion. The streamlined workflow enables the user to do real-time segmentation, HDR

image visualization, and interactive mask inspection and editing without switching tools.

The GUI toolkit allows any user to benefit from deep-learning-powered tools without

having to know programming. The browser-based tool can be readily hosted on a graph-

ics processing unit-ready (GPU) server so users in the private/public network can enjoy

GPU acceleration from any device (Section 3.3.2).

In addition, future tiny-object or high-precision segmentation tasks can adopt the

interactive interface as an annotation tool for pixel-level labeling in multi-megapixel im-

ages, especially for HDR data. The Python backend allows native integration with pop-

ular deep-learning frameworks, with the potential to be an interface for Active Machine

Learning and Interactive Machine learning (Sec. 3.5).

The discussion of detection algorithms is not the focus of this paper so we briefly

introduce Cosmic-CoNN [76], our deep-learning segmentation framework deployed at

Las Cumbres Observatory (LCO) for identifying cosmic rays in astronomical images. We

curated a large, diverse dataset [77] of over 4,500 scientific observations from LCO’s 23

globally distributed telescopes2 [67]. In this dataset we discovered an extreme 1 to 10,000

class imbalance between CR and non-CR pixels that presented a challenge for previous

machine-learning models. We proposed a novel loss function, and other improvements, to

address this issue and increase model generalization. Our model achieved 99.91% true-

2LCO has 25 telescopes around the world now. Our research, started in 2020, used data from all 23
then-operational instruments. https://lco.global/
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positive rate at a fixed false-positive rate of 0.01% on LCO instruments and maintains over

96.40% true-positive rate on data from another observatory, acquired with instruments

that were never used for training (see [76] for details). Our CR detector has become

part of LCO’s BANZAI data reduction pipeline that processes hundreds of astronomical

observations every day [78].

Figure 3.3: When the model or the default threshold does not produce ideal results
(left), the user can adjust the HDR image mapping for better visualization, at the same
time edit the mask interactively (right). The probability threshold and morphological
dilation allow for global mask manipulation, while the pencil tool allows pixel-level
mask editing. Pixels that are manually added/deleted by the user are marked in green
or red, which will override the global manipulations.

Here we summarize the main contributions of our interactive visualization toolkit:

• We provide a streamlined workflow for CR detection, improving quality by enabling

human-in-the-loop segmentation, and reducing the overall time cost of astronomical

image analysis and interpretation.

• We address a use case that is common in scientific imaging, but not well-supported

by existing tools: interactive segmentation in large, multi-megapixel HDR images

with tiny objects.

• We release our software as an open-source package that can be deployed off-the-

shelf with diverse image types and segmentation models, and can facilitate imaging

research across many scientific disciplines.
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In addition, we found the tool useful during the development of our tiny-object seg-

mentation model. The interactive visualization provides timely feedback for changes to

the image processing pipeline, making it a useful research-support tool in computer vision

as well.

3.2 Usage

The visualization toolkit shown in Fig. 3.2 A is the key component to unify model

inference, image visualization, segmentation mask inspection and editing into a single

interface. It can visualize 2-dimensional NumPy arrays [63] and directly read FITS3

files. It takes only 3 seconds to detect and render a 4-megapixel (2,000 by 2,000 pixels)

16-bit floating point image on a consumer laptop with a low-power NVIDIA RTX 3060

GPU.

The image window and segmentation mask window are always synchronized to an

identical field of view (Fig. 3.2 (4) & (5)). This design provides a very useful reference for

close inspection of tiny objects in large images. The user can navigate and zoom-in/out

with mouse controls in any of the image windows, including the overview image (2).

Thumbnail shortcuts (3) allow the user to quickly jump to and inspect detected objects,

making it a unique design especially useful for locating tiny objects in very large images.

The image window (Fig. 3.3) provides multiple mapping algorithms to map (e.g.,

clip or normalize) 16-bit floating point data to 8-bit unsigned integers, including linear,

logarithmic, and square-root scaling, as well as IRAF’s zscale4, an algorithm preferred

by astronomers. The modular design of the image processing pipeline (Sec. 3.3.1) allows

new mapping algorithms to be added easily. In addition, a user can manually assign

3FITS is an image and table format widely used for astronomical data https://fits.gsfc.nasa.

gov/fits_documentation.html
4A reliable source for IRAF’s zscale

https://docs.astropy.org/en/stable/api/astropy.visualization.ZScaleInterval.html
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the minimum and maximum range to read from raw data for the versatility especially

needed in HDR images. The bottom left corner of each window shows the mouse cursor’s

pixel-location value in original data and the predicted mask’s confidence.

In the segmentation mask window (Fig. 3.3), a user can raise or lower the default

0.5 threshold to acquire a binary mask from the deep-learning model’s predicted prob-

ability map ∈ [0, 1]. The user can then apply morphological operations like dilation

to manipulate the mask globally, or use the pencil tool to manually edit the mask at

pixel-level.

In the context of CR detection, the Download button will append the edited segmen-

tation mask to the FITS file. This behavior can be changed based on the application. We

can also change the communication mechanism with the deep-learning framework so the

user can initiate the iterative labeling and training process in an active learning setting.

Figure 3.4: The interaction visualization toolkit’s data flow architecture between the
client and the server.

3.3 System Design

The visualization toolkit is powered by a Flask backend and JavaScript frontend

(Fig. 3.4). The Python-based backend allows seamless integration with popular deep-
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learning frameworks. We can run the server’s instance locally or hosted on a cloud server

for remote user access. The server-end only handles model inference and user instance

management while the image processing pipeline happens entirely in the browser at the

client-end. This design avoids overloading the server when hosted for multi-user access.

The communication between the client and the server only happens at file uploading and

downloading using a custom data steam to reduce the network delay.

3.3.1 Image Processing Pipeline

We adopt a modular design in the image processing pipeline to maximize the flex-

ibility to add or remove image operations in the pipeline. The science image and the

segmentation mask go through an ordered sequence of operations, and the modular de-

sign reduces computation and shortens the response time as the image is buffered after

each operation – an adjustment in the middle of the pipeline will only trigger later stages

to reprocess the image.

In the context of astronomical data, the pipeline will first apply user’s manual min-

max clipping to the raw data, then apply a three-sigma clipping to remove outliers (over

saturation and dead pixels). By default the previously mentioned zscale algorithm is

applied to map the 16-bit image to 8-bit before rendering in the browser.

The segmentation mask’s pipeline is simpler as only one scalar threshold is applied to

the probability mask to to acquire the binary mask. We use a separate mask to track the

user’s manual edits and combine with the binary mask before rendering in the browser.

3.3.2 Multi-user Support

Unlike many machine learning researchers, most of the real-world model end users do

not have access to GPUs. With this in mind, we designed the GUI toolkit as a web-based
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Figure 3.5: Frontend and backend architecture for multi-user interaction.

application to support GPU acceleration and multiple-user access from any device. In a

large-scale deployment, additional cloud GPU resources could be recruited as necessary

to support a higher number of users.

Fig. 3.5 illustrates our system architecture, which supports multi-user interaction via

secure user sessions. In addition to user’s IP address, a universally unique identifier

(UUID) is sent to the server to identify each detection request, either through the upload

request or the download request. A unique request key is constructed and the server will

maintain a map of the key and temporary path of the uploaded files with the segmentation

mask appended. When the user is done with editing the image and requests to download

the combined results, the key is used to retrieve the correct file. In this way, we avoid

race conditions when multiple users interact with the same deployed application.

3.4 Advantages Over Existing Tools

Our interactive segmentation and visualization toolkit has the following key features:

61



Human-in-the-loop Image Processing Chapter 3

• A synchronized dual-window design (Fig. 3.2 A) and thumbnail-based image navi-

gation (Fig. 3.2 (3)) enable inspecting and editing tiny objects in large images;

• Computer vision researchers can inspect the results interactively via the GUI toolkit

to better understand the model’s behavior and assist their research. They can also

deploy a GUI segmentation tool for end users in production environment with little

effort;

• The browser-based application can be hosted on the cloud or internal GPU server

to support multi-user access and GPU acceleration from any device;

• The Python and Flask backend allow seamless integration with popular deep-

learning frameworks. Researchers can adapt this GUI for high-precision annotation

or Active/Interactive Machine Learning.

SAOImageDS9 [79] is a powerful FITS image visualization tool widely used in the

astronomical community. DS9 inspired us to develop the GUI components in our toolkit.

It supports various multi-frame layouts like tiling, blinking, and coordinates aligning.

Despite active development, it remains primarily focused on visualization and we do not

see an easy solution to integrate this standalone software with popular deep-learning

frameworks.

ImageJ [80] is an image analysis program extensively used in the biological sciences.

ImageJ2 [81] is a rewrite for multidimensional image data. It provides powerful image

processing functionalities but requires a third-party plug-in to synchronize two image

windows, and we haven’t found a solution to make tiny object searching in large images

as easy as the thumbnail shortcuts provided in our toolkit. ImageJ is versatile and

general-purpose. Based on ImageJ, the later developed AstroImageJ [82] provides an

astronomy specific image display environment and tools for astronomy specific image
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calibration and data reduction. However, both tools were not optimized for the deep-

learning segmentation workflow.

DeepImageJ [83] is a plugin to support the use of pre-trained deep-learning models in

ImageJ. It provides access to various models in a biomedical model repository (BioImage

Model Zoo), and allows basic deep-learning model inference. But it also carries over

ImageJ’s disadvantages we discussed above and is hard to integrate with popular deep-

learning frameworks, especially for researchers who need interactive data analysis during

the research stage.

ITK-SNA [84] is well known for 3D medical image segmentation, providing powerful

functionalities from community contributions. But it lacks the support for deep-learning

methods and the standalone software is hard to integrate with other frameworks.

3.5 Discussion

This demonstration highlights our three-in-one toolkit (segmentation, visualization,

and editing) which streamlines the CR detection workflow and enables human-in-the-

loop, interactive tiny-object segmentation in large, multi-megapixel, HDR images. In

the future, we anticipate that user interfaces such as this one will be instrumental in

the development of Interactive Machine Learning (IML) systems. Such systems are a

promising approach for machine learning in domains where unlabeled data are abun-

dant but annotations are expensive or difficult to obtain. The IML learning paradigm

is especially beneficial in areas where domain knowledge is required, like biomedicine,

astronomy, material science, etc., in which it is helpful for domain experts to steer the

model training process. IML also reduces the overhead for scientists in various disciplines

to train machine learning models [12]. Our interactive frontend and backend architecture

is a step towards that direction.
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Our dataset, CR detection model, and interactive visualization toolkit are open source

and available at https://github.com/cy-xu/cosmic-conn. New features, such as in-

stance segmentation and multi-file interface, are under consideration. We look forward

to other computer vision researchers joining the open-source project to make this toolkit

more useful for its various applications in astronomy, computer vision, interactive ma-

chine learning, and other research areas.

We appreciate the helpful discussion and feedback from Prof. Jennifer Jacobs, Jiax-

iang Jiang, Alex Rich, Kuo-Chin Lien, and members from the Expressive Computation

Lab of University of California, Santa Barbara.
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Chapter 4

Forming Human-AI Teams for

High-Stakes Tasks

Figure 4.1: The two AI teammates, zealous and restrained AIs, discussed in this
chapter are designed for a data collection task, specifically, video anonymization. The
insights we learned from closely observing human annotators working and the user
study provided guidance on model selection or optimization for human-AI teaming
settings.
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We introduce the concept of “Zealous and Restrained AI Recommendations” to har-

ness the complementary strengths of human-AI collaboration and significantly enhance

team performance. This research aims to generate new knowledge to assist AI researchers

in selecting and designing machine learning models tailored for human-AI collaborative

tasks, particularly in high-stakes scenarios such as video anonymization. Insights from a

month-long study involving 78 full-time data annotators indicate that recommendations

from off-the-shelf AI that is designed for autonomous workflows can adversely affect users’

skills. This study provides a real-world exploration of how both novice and experienced

users perform when paired with different types of black-box AI systems, examining the

impacts of AI recommendations that prioritize either precision or recall on user perfor-

mance. In addition, we propose a robust multi-object tracking algorithm that has been

proven to be more suitable for human-AI teams in recall-demanding settings.

Comparing Zealous and Restrained AI Recommenda-

tions in a Real-World Human-AI Collaboration Task1

When designing an AI-assisted decision-making system, there is often a tradeoff be-

tween precision and recall in the AI’s recommendations. We argue that careful ex-

ploitation of this tradeoff can harness the complementary strengths in the human-AI

collaboration to significantly improve team performance. We investigate a real-world

video anonymization task for which recall is paramount and more costly to improve.

We analyze the performance of 78 professional annotators working with a) no AI assis-

tance, b) a high-precision “restrained” AI, and c) a high-recall “zealous” AI in over 3,466

1The contents of this chapter have been previously published in Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, 1–15. CHI ’23. New York, NY, USA:
Association for Computing Machinery. https://doi.org/10.1145/3544548.3581282
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person-hours of annotation work. In comparison, the zealous AI helps human teammates

achieve shorter task completion time and higher recall. In a follow-up study, we remove

AI assistance for everyone and find negative training effects on annotators trained with

the restrained AI. These findings and our analysis point to important implications for

the design of AI assistance in recall-demanding scenarios.

Figure 4.2: In video anonymization, face annotation and blurring is a high-stakes
task that requires humans to check every frame. It demands high recall because
one missed face can reveal a person’s identity in the entire video. We can improve
recall and reduce task completion time by forming a human-AI team. We may have
two AIs with the same (F1) performance as shown in (c) but provide different sets
of recommendations (a & b). A “zealous” AI would prioritize recall by suggesting
more detections, even low-confidence ones. A “restrained” AI would only provide
high-precision recommendations. Which AI teammate can help the human annotators
finish in less time and with higher recall?

4.1 Introduction

Machine-learning-based artificial intelligence (AI) systems have exceeded human per-

formance in certain applications. But in high-stakes domains where fully-autonomous

AI is not at peak performance or not permitted, such as in clinical decision-making

[85, 86, 3, 87, 88] or driver assistance [89, 90, 91], forming a human-AI team is a viable

strategy to improve both efficiency and accuracy. AI can provide recommendations while

human users maintain agency and control over the final decisions. Studies have shown the

human-AI team is expected to achieve “complementary team performance” – the team
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performance being better than either one alone [92, 93, 94]. But there are more questions

than answers on which exact factors in the AI system affect the team performance and

how.

Bansal et al. recently showed in simplified binary classification problems that the

most accurate AI is not necessarily the best teammate unless it helps to

improve the team utility [92]. But how about in more complex problems where the

AI teammate is not simply better or worse for its accuracy? For example, in many

computer vision problems, people determine the best-performing algorithms based on

combination metrics such as the F1 score [95, 96], which can be broken down into two

metrics – precision and recall [97, 98, 99]. Researchers can either balance the two metrics

or prioritize one over the other to identify the best model for their application [100, 101].

Two AI systems can have the same F1 score but provide very different recommendations

with different measures of recall (see a, b in Figure 4.2). The tradeoff between precision

and recall puts them on different parts of the same F1 isoline (see Figure 4.2 c). Without

additional context, one might argue that there is no better or worse between these two

AIs.

In order to capitalize on complementary strengths of humans and AI when presented

with tradeoffs in AI precision and recall, we need to be able to answer two questions:

1) for a given task, can we clearly identify if either high precision or high

recall is more important than the other, and 2) independent of importance, is

it vastly easier or harder for humans to improve either precision or recall.

Consider for example a pedestrian detection task in a driver assistance system: prior-

itizing the detection model towards either precision or recall will hurt the other. Human

instinct tells us the risk of a missing detection could be lethal, so we should tune the

AI system to prioritize recall, i.e., towards a “zealous” AI that provides more detections

(recommendations), even the low-confidence ones, at the risk of more false positive er-
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rors. In this context, the opposite “restrained” AI would only provide high-confidence

detections and prioritize precision, but at the risk of more false negative errors.

In this work, we investigate how a high-recall zealous AI and a high-precision re-

strained AI can affect human-AI team performance in a real-world scenario. Compared

to, say testing pedestrian detectors on the road, video anonymization is a similar but

easier-to-test recall-demanding task. We set up a face annotation task for personally

identifiable information (PII) protection that blurs human faces in a real-world video

dataset [102]. PII protection is a critical task with increasing demand for both ethical

research and abiding by regulatory requirements2. Similar to pedestrian detection, where

the cost of a missing detection is very high, one unlabeled face in a single frame can reveal

a person’s identity in the entire video, if not the entire dataset.

This paper focuses on the common yet critical human-AI collaboration setting, in

which recall is more important than precision. As for our second question, “is it vastly

easier or harder for humans to improve either precision or recall?”, an in-depth analysis of

the video annotation workflow shows that improving recall is more costly than precision in

this task since it is much harder for human annotators to draw a bounding box accurately

than rejecting an incorrect one (see Section 4.3.2 & 4.3.3 for a full discussion).

The answers to our two questions for our task reveal an optimization opportu-

nity: the AI recommendation tradeoff between precision and recall can be

used to exploit complementary strengths of the human and the AI in such

collaborative tasks. We posit that similar optimization opportunities exist for many

other human-AI collaboration tasks. In addition, locating faces is a human instinct3

that requires no specific training or domain expertise to get started, making face detec-

2E.g., The General Data Protection Regulation (EU) or The California Consumer Privacy Act of
2018 (CCPA)

3Here we refer to the ability to find human faces in a given image. We do not refer to recognizing
people by face, which can be affected by Prosopagnosia (face blindness).
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Figure 4.3: Data processing workflow for Part 1 of the study and the annotation tool
user interface. The two AI teammates share the same face detector, which generates
bounding box face detections for each frame independently. The ByteTrack tracker
[103] and our proposed false-positive-robust (FPR) tracker define the restrained or
zealous AI recommendations – they track the per-frame detections temporally to
pre-annotate the videos as shown above. For the human-only workflow, annotators
must manually draw a box and adjust its size and location across many frames.

tion a good candidate task to study the effects of different AI recommendations. The

relatively small inter-personal differences also make the task a good representative of

recall-demanding human-AI collaboration tasks.

Our large-scale empirical study had 78 professional data annotators spend over 3,466
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person-hours4 to submit a total of 2780 annotated 30-second videos. The between-

subjects study split the annotators into three 26-people treatment groups. Detailed

worker profiles ensured similar average experience between the groups (details in Sec-

tion 4.4.2). Each participant annotated human faces in 36 real-world videos of a variety

of activities (see examples in Figure 4.5). We measure each group’s annotation quality

and task completion time. Any improvement in time is very meaningful for annotation

tasks not only because of the cost. Fatigue induced by long working hours may also cause

a decline in quality.

In Part 1 of the two-part study, the three groups of annotators processed the same

24 videos, each with a) no AI assistance, b) pre-annotated bounding boxes recommended

by the restrained AI, or c) the zealous AI. Figure 4.3 summarizes the treatment groups

and shows the annotation tool’s interface. In Part 2, the three groups annotated another

12 videos but all without the AI’s help. This design allows us to learn how prior

human-AI collaboration experience can affect user skills, should they lose access

to AI recommendations in the future. The two-part experiment aims to answer the

following research questions:

Q1 Can the human-AI teams achieve “complementary team performance” in this task?

Q2 Which AI helps annotators be more efficient, i.e. save time?

Q3 Which AI helps annotators achieve higher recall?

Q4 Will collaborating with an AI improve or hurt user skills?

We will answer each of the research questions in Section 4.5. Here we summarize this

work’s contributions:

4Our system logged 3,466 person-hours of annotation work, which does not include pilot studies,
training sessions, and answering multiple questionnaires. On average it took the 78 annotators three to
four weeks to finish the entire study.
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• We propose the concept of restrained and zealous AI recommendations to compare

the tradeoff between precision and recall in tuning AI-assisted decision-making

systems and investigate how they affect human-AI team performance in high-stakes

recall-demanding tasks.

• We design a large empirical study to compare the restrained and zealous AI on a

face annotation task for video anonymization with 78 professional data annotators.

The two-part experiment yielded significant findings to inform future AI assistance

design for recall-demanding tasks.

• The analysis of 3,466 person-hours of annotation work reveals significant findings:

– Our study serves as a real-world case study of complementary team perfor-

mance (cf. [9, 6, 2, 7]).

– Identifying the complementary strengths of both human and AI teammates

for a task is key to better team performance. The recall-demanding task and

the higher cost of improving recall motivated us to propose the zealous AI,

which provides high-recall recommendations and leads to significantly better

task completion time and recall.

– The follow-up study demonstrates that naively pairing humans with an AI

system designed for autonomous settings without optimizing it for the task at

hand or for the human-AI workflow could potentially have a negative training

effect on the users.

4.2 Related work

Factors affecting human-AI team performance. While human-AI teams have

been studied extensively from various perspectives like in crowdsourcing settings [6, 5],
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computer vision tasks [6, 3, 2], high-stakes tasks [2, 104, 105, 106], and real-world tasks

[6, 9, 2, 107, 108, 7, 88], we still have more questions than answers on exactly which

factors affect team performance and how. Researchers have looked into factors like users’

mental models [109, 104], user expectations [110, 111, 112], cognitive biases [113], model

updates during collaboration [105], model accuracy [111, 92], model interpretability or

explanations [114, 115, 116, 8, 117, 118, 93], as well as the tradeoff between accuracy and

interpretability [86]. Studying user’s trust and appropriate or inappropriate reliance on

AI [119, 85, 120, 121, 122, 106] is another important direction.

This paper is aligned with works that focused on the tradeoff between precision and

recall in AI recommendations and its effect on team performance. Kay et al. [110]

introduced the acceptability of accuracy as a new measure and survey instrument to

connect classifier evaluation to users’ subjective perception of accuracy. Kocielnik et

al. [123] compared two 50%-accurate AI-powered scheduling assistants – one avoids false

positive errors, and one avoids false negative. This is a similar design as for our restrained

and zealous AIs – their study found that false positive errors are more acceptable by

participants, which corroborates the overall better performance we observed in the zealous

AI group, who also dealt with more false positive errors.

Balancing precision and recall to compare two real-world AI systems in a human-AI

collaboration task is not easy, previous works derived insight from hypothetical systems

or manually balanced recommendations [110, 123]. In this work, we provide a real-

world user study by observing how 78 professional users would interact with two high-

performance face tracking AI systems that are tuned to truthfully portray the realistic

tradeoff between high-precision and high-recall on a recent egocentric video dataset.

Face detection. The annotation platform we used has a built-in face detector, Reti-

naFace [124], integrated for autonomous workflows. Our literature search found Reti-

naFace remains a top-ranking method on the WIDER FACE benchmark [125]. Because
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more recent methods do not provide significant performance improvement, we continue

to use RetinaFace as a consistent baseline to compare with our algorithmic improvements

in tracking.

Multi-object tracking. In the AI-assisted face annotation task, the AI teammate

provides annotation recommendations for users to review. Conventionally a face detector

provides per-frame face bounding boxes and a multi-object tracking (MOT) algorithm

produces continuous tracks of the same object across frames. This is known as tracking-

by-detection. Recent MOT methods like TransTrack [126], DETR [127], Deformable

DETR [128], TrackFormer [129], and TransMOT [130] etc. all move toward the end-

to-end Transformer-based [131] architecture. However, these black-box MOTs share the

same drawback as they are designed for fully-autonomous settings. Similar to Caruana

et al.’s observation that modular system provides better transparency [86], the two-part

tracking-by-detection frameworks actually provide us the interpretability and flexibility

to steer the output recommendations as needed, so we can produce restrained and zealous

AI recommendations for comparison. We reviewed state-of-the-art methods in related

multi-object tracking benchmarks [132, 133, 134] in search of a multi-object tracker suit-

able for a human-in-the-loop annotation workflow. ByteTrack [103] is a conventional

tracker that outperforms numerous Transformer-based trackers mentioned earlier.

Video annotation. While there are various public video annotation platforms or

tools to choose from [135, 136, 137, 138], we use a proprietary video annotation tool to

gain access to professional data annotators who are already familiar with the specific tool

from their past project experience. This tool has Linear Interpolation [136] activated by

default, which provides semi-automatic assistance by linearly interpolating a box between

two manually annotated key frames. In this study, all participants, including annotators

who review AI’s annotation recommendations have access to this functionality. Linear

Interpolation is also an ideal baseline as all participants have sufficient experience using
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it. We will refer to this basic setup as human only, the baseline method, or the manual

method in the rest of the paper.

4.3 Algorithm choices and pilot studies

4.3.1 Precision and recall in multi-object tracking

Precision, recall, and F1 are important performance metrics that can describe the

characteristics of a model and are central concepts in this work and other human-AI

research [110, 123]. Specifically, in the context of annotating and tracking faces with

bounding boxes in videos:

Precision =
TP

TP + FP
=

Face boxes correctly drawn

All boxes drawn by the user (or the AI)
(4.1)

Recall =
TP

TP + FN
=

Face boxes correctly drawn

All ground truth face boxes
(4.2)

F1 =
2 · precision · recall
precision + recall

(4.3)

where the TPs are true positives, face boxes that were correctly drawn. The FPs are

false positives, boxes drawn by the AI or user which did not match real faces properly.

The FNs are false negatives, where there is a real face, but the box is missing.

The F1 score is the harmonic mean of the precision and recall (Equation 4.3). We

visually introduced the concept of this function using three methods that have the same

F1 score in Figure 4.2 (c). Put simply, a video pre-annotated by a high-recall method

(zealous AI) would have more false-positive boxes – the user will make more rejections but

add fewer missing boxes. A video pre-annotated by the high-precision method (restrained

AI) would provide mostly correct boxes but the user will need to add more missing boxes.

We are interested in how users will perform differently given restrained or zealous AI

recommendations in an AI-assisted face annotation task. While it is easy to generate
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high-precision annotations by simply avoiding low-confidence detections, it is hard for

trackers to produce high-recall results while maintaining a similarly high F1 score at the

same time. This motivates us to propose a tracking algorithm that pushes recall to the

limit, but aims to maintain a similar level of F1 score. We take advantage of the fact

that our tracking results will be reviewed by human annotators, allowing us

to make targeted optimizations. We test our ideas of a user-friendly tracker with

professional annotators through pilot studies. Observing how users work with trackers

allows us to further improve the algorithm.

4.3.2 Pilot studies

We conducted two pilot studies to observe how professional data annotators work

with AI recommendations. Annotators were tasked to draw bounding boxes around

potentially moving or blurred faces of any size in a 1,200-frame video sequence of a busy

shopping scene in both sessions (similar to hard videos in the formal study). We provided

training material on how to review recommendations from the AI for the face annotation

job. The annotation tool user interface is shown in Figure 4.3. With their consent, we

recorded their screens to keep track of mouse movements and other user habits. Each

session included ten different users with above-average experience. Both pilot studies

concluded with a survey about experiment design and their experience. The two pilot

sessions were spaced two weeks apart to test algorithm and design improvements.

Users’ screen recordings helped us observe the following user habits and behaviors

that are not possible to be identified solely from the results:

• Certain bad recommendations cost most of the human review efforts. Following

the Pareto Principle [139], annotators in fact spent most of their time and effort

amending a small fraction of AI recommendations. The tiny bounding boxes (see
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examples of three tiny faces in Figure 4.2), duplicate detections (often clustered),

and temporally sparse detections (short tracks) are the most costly recommenda-

tions. Addressing these issues allows annotators to have better continuity in their

workflow.

• Model explanation should not increase task complexity. Initially, we offered model

explanations using “Certain” and “Uncertain” labels based on the face detector’s

confidence, hoping this can assist users’ decision-making. But video recordings

and user feedback revealed that the extra information in fact increased the task

complexity and caused unnecessary confusion. This design was eventually not con-

sidered in the formal experiment.

Observing how human annotators review AI recommendations (bounding box pre-

annotations) in multi-object detection and tracking tasks inspired us to break the com-

plex workflow into three fundamental user actions: accept, reject, or solve, each

coming with a higher cost in time. Figure 4.4 explains each action’s time complexity. We

can connect these three actions with our two main objectives (time and recall) to make

a simple deduction to identify the human-AI complementary strengths in this

task:

1 reject improves precision and solve improves recall. A correct accept improves

both.

2 It takes the AI constant time to solve additional cases (give more recommenda-

tions) with a downside of more false-positive boxes for humans to reject.

3 Humans are faster at reject ing a false-positive (incorrect) box than to solve a

false-negative (missing) box.

4 We also know recall is more important than precision in video anonymization tasks.

77



Forming Human-AI Teams for High-Stakes Tasks Chapter 4

Figure 4.4: When reviewing the AI teammate’s recommendations (green bounding
boxes), a user takes one of the three actions for each box: accept, reject, or solve.
In video annotation, because the boxes are temporally tracked across many
frames, each action’s time complexity is drastically different, note the two
types of Solve in frame 0 can come at different cost, too.

ID:1 – A user can accept the true-positive track ID:1 boxes without any action.
ID:2 – The entire false-positive ID:2 track can be rejected with two mouse clicks

by deleting the ID in any of the frames, which is O(1) in time complexity.
ID:3 – False-positive recommendations, like track ID:3, are the most time-consum-

ing to solve : the user can delete and redo this face, or manually adjust every frame
until the AI’s pre-annotation becomes acceptable with ≥ n mouse clicks, O(n) where
n is the number of frames.

ID:4 – In frame 0, to solve the false-negative missing box for the left-most person,
a user needs to manually draw a box and adjust its location and size until the AI-sug-
gested box ID:4 comes in with ≤ n mouse clicks, O(n).

5 Thus, a clear path to better human-AI team performance is to delegate

more solve actions to the AI, so the human’s overall effort is reduced by

doing more easy rejecting and only solving the most challenging faces.

4.3.3 The false-positive-robust (FPR) tracker

We adopted a tracking-by-detection system to produce face pre-annotations (Sec-

tion 4.2), the two-part system design allows us to feed the same per-frame face detection

from RetinaFace [124] to different downstream multi-object trackers like the ByteTrack

[103] or our own designs for a fair comparison. Learning from our pilot studies ob-
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servations, we propose the false-positive-robust (FPR) tracker that specifically provides

user-friendly annotation recommendations. We use the following unconventional

strategies to design the FPR tracker that can take overwhelmingly noisy detections

with a high false positive rate as input but outputs “clean” tracks for a human-in-the-

loop workflow:

• To improve the AI’s recall, we apply an extremely low threshold (t ≥ 0.01, t ∈

[0, 1]) on the face detector’s confidence score to keep any potentially useful

detected boxes. This is not a viable solution for Autonomous AI systems but we

are working in conjunction with a human.

• The consequence of such a low face detector threshold is clusters of overlapping

boxes on small faces. Our solution: for each cluster, we perform non-maximum

suppression [140] by only keeping the single bounding box with the highest confi-

dence score because in most cases they are duplicate detections on one true face.

This step also improves the AI recommendations’ precision.

• Finally, based on our observation that the majority of temporally sparse de-

tections are false positives induced by the low threshold, we remove any tracks

that are shorter than m consecutive frames so they do not interrupt users’ conti-

nuity. We used m = 10 in the FPR tracker. Although some true-positive faces are

also removed, users are much faster at solving an unlabeled face from scratch than

filling the gaps between temporally sparse detections.

To design the experiment, we also need a restrained AI that generates recommenda-

tions of similar performance (F1 score) but with high precision. This is done by using

only the high-confidence (t ≥ 0.8, t ∈ [0, 1]) face detections with ByteTrack. To ensure

fair comparison and reduce moving parts in our systems, we use the same face detection
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Figure 4.5: Screenshot examples of Ego4D videos [102] used in our face annotation ex-
periment. Easy videos include about one face to annotate in each non-empty frame.
Medium videos include about two faces. Hard videos include three or more faces.
Videos with more faces are expected to take longer time to finish. The study results
show shorter to longer completion times for Easy, Medium, and Hard videos in both
parts (see Figure 4.7 and Figure 4.8), demonstrating that our video difficulty catego-
rization is reasonable and performed as expected. We also considered scene diversity,
box size (smaller faces are harder), and camera movement intensity (more movement
is harder) to ensure a balanced difficulty distribution in selecting the specific videos.

model RetinaFace [124] for both AI teammates. It is the two different (fully transparent)

trackers we apply that push the AI recommendations towards either high-precision or

high-recall (Figure 4.2).

Note that we were only able to optimize the FPR tracker and ByteTrack through pilot

studies because the ground truth data was not available for the 36 videos used in the user

study. After the study, we aggregated the annotations from all 78 participants (2,780

submissions in total) to form an expert-reviewed consensus to serve as the ground truth.

It turns out the zealous AI recommendations (FPR tracker) yielded an F1 score of 90.9%

and the restrained AI (ByteTrack) had an F1 score of 93.4%. While the two AIs did not

provide identical initial performance for their human teammates, we achieved the goal

of two distinctive high-recall and high-precision AIs (Figure 4.6). The performance gap

also provided us additional evidence to support our previous deduction on the zealous

AI being the superior choice for this task, which we will discuss in Section 4.5.1.
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4.4 Experiments

In this work, we aim to investigate how restrained and zealous AI recommendations

will affect human-AI team performance. We are also curious if the collaboration experi-

ence with an AI teammate can affect users’ skills, should they lose access to AI assistance

in the future. We design a two-part empirical study to test the restrained and zealous

AIs in a recall-demanding high-stakes task.

4.4.1 The task and data.

Face annotation for video anonymization is a perfect example of recall-demanding

tasks – a missing face in a single frame can reveal a person’s identity in the entire video.

The high-stakes nature requires humans to annotate or verify every frame, yet the manual

process will become the throughput bottleneck. The tedious process and long hours may

also fatigue annotators and cause a decline in quality. In addition, because the task

of locating faces requires no specific training or domain expertise, it should

help the generalizability of our observations to other AI-assisted annotation tasks

or even to other recall-demanding human-AI collaboration tasks.

In our human-AI collaboration setting, the AI teammate provides recommendations

in the form of bounding boxes (see examples in Figure 4.3), and a user reviews each of

the AI’s pre-annotations to make one of the three decisions shown in Figure 4.4. We

evaluate users’ performance on the two most important metrics for face anonymization:

task completion time and recall.

To test different AI recommendations in a real-world setting, we curate 36 first-person

videos from a large-scale egocentric video dataset Ego4D [102]. Privacy has always been

a major concern for datasets collecting human activities so first-person videos are ideal

for this study. The videos we selected include various indoor social activities that are
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suitable for benchmarking face detection and annotation tasks. Each video clip is 30

seconds long, or 900 frames. We estimate each video takes about 30 minutes to one hour

to fully annotate, depending on its difficulty.

The different annotation methods (without or with different AI recommendations)

adopted by the three treatment groups are the first level of independent variables that

we will discuss in the next section. The second level of independent variables that can

affect users’ performance is the difficulty of the videos. We divide the videos into Easy,

Medium, and Hard categories based on the average number of people one needs to track

simultaneously in non-empty frames (see examples in Figure 4.5). We also considered

factors like scene diversity, bounding box size, and camera movement intensity that affect

the annotation difficulty in a more subtle way. Based on this overall difficulty ranking

distribution, we ensure Part 1 and Part 2 videos are not only similar in content but also

consistent in annotation difficulty.

We generate the bounding box ground truth by aggregating the crowd’s annotations

to reach a consensus, which is further reviewed and refined by a domain expert. We used

an equal number of manual and AI-assisted submissions for each video to generate an

unbiased ground truth.

On task completion time, annotators are advised to finish each video without

taking breaks longer than five minutes but we still need to reject outlier video com-

pletion times caused by a known limitation of the annotation tool – the timer continues

if an ongoing task window was left idle, or the timer will reset if the annotator continues

from previously saved progress. We adopted median absolute deviation (MAD) [141]

by comparing each video’s completion time within each group to reject 420 out of 2780

(15.11%) completed videos, including completion times that are less than six minutes

(the minimum time needed to verify each frame) or longer than median + 3 * MAD. The

rejected videos also include all 36 submissions from one particular problematic user, see
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GroupNoviceVeteran Part 1 method Submissions Part 2 Submissions
A 11 14 Human only 602 Human only 299
B 14 12 Restrained AI + Human 619 Human only 304
C 13 13 Zealous AI + Human 621 Human only 299

Table 4.1: In the two-part study, the three treatment groups use different methods in
Part 1, but we remove all AI assistance in Part 2. The novice and veteran workers
represent a balance of different user expertise in each group. The submission numbers
are the 30-second annotated videos each group finished. Note that Group A is one user
short as a particular worker was later rejected because of repeated bad submissions.

Section 4.6.2.

4.4.2 Participants and three treatment groups.

A total of 78 in-house professional data annotators completed our study. It is im-

portant to note that in this project they are paid at their regular hourly rate, so

participants are not motivated by compensation to work faster.

In the between-subjects experiment, participants were evenly split into three 26-

people treatment groups to annotate identical sets of videos. The annotators’ profiles

ensure similar average experience between the groups. The assignments also considered

people’s day/night shifts and computer setup to ensure a fair comparison.

The participants have at least two months or up to five years of data annotation

experience, with an average experience of 20.9 months. We use the median experience

of 17 months to split the user expertise factor so each group has about half novice and

half veteran workers (see Table 4.1). All annotators were aware of participating in a

study testing new AI-assisted annotation algorithms and were free to leave the study

at any time. The Human Subjects Committee (HSC) approved our procedure and each

participant was provided a consent form during the survey session.

Group A servers as the baseline, they use an efficient annotation tool that supports

linear interpolation [136] but solely relies on manual annotation in both parts of the

83



Forming Human-AI Teams for High-Stakes Tasks Chapter 4

study. Groups B and C work with their AI teammates in Part 1 of the study. They use

the same tool as Group A but the AI will have pre-annotated the videos (see example

in Figure 4.3). Group B reviews the restrained AI recommendations that prioritize

precision. Group C reviews the zealous AI recommendations that prioritize recall (see

a, b in Figure 4.2). The treatment groups are summarized in Table 4.1 or Figure 4.3.

We informed the participants in Groups B and C that they are working with an AI that

provides recommendations to assist their annotation work, but they do not know the

difference between the two human-AI groups.

4.4.3 Experiment procedure of the two-part study.

Before beginning the study, we organized a video conference training session with each

treatment group to calibrate the task background and requirements. All participants

were also asked to review the instruction text and a training video on the landing page.

Previous pilot study users become supervisors in each group to ensure all participants

have finished the training and the surveys before processing to the next step. We also

created three instant messaging (IM) groups to answer questions and send out reminders

when necessary. The overall procedure can be summarized as follows:

Training → Survey 0 →

Part 1 (24 videos, different methods) → Survey 1 →

Part 2 (12 videos, same method) → Survey 2

In Part 1, all participants from Groups A, B, and C each annotated 24 videos using

different methods. For each annotator, the videos were assigned in random order by the

annotation platform. We also reminded all participants to avoid taking breaks longer

84



Forming Human-AI Teams for High-Stakes Tasks Chapter 4

than five minutes before finishing a video, so the timing is more accurate. Depending on

the method and individual pace, it took all groups on the order of two to three weeks

to finish Part 1. In Part 2, all participants annotated another 12 videos from similar

scenes. But we took away the AI assistance from the two human-AI teams B and C in

order to find out if their previous human-AI collaboration experiences trained them in

any way so that they would perform differently on manual annotations from here on out.

A post-task survey was administered after each part of the study. Survey 0 was set

to “repeat until perfect”, this was to verify that the participants were clear about the task

requirements before they could start the actual annotation. Survey 1 focused on getting

people’s immediate feedback on their experience working with the AI they were paired

with. Questions include the correctness and consistency of the AI recommendations, and

if the AI made their job easier. This allows us to compare if participants’ subjective

feelings match the different AI recommendations’ underlying personae (high-precision

vs. high-recall). Survey 2 focused on comparing the annotators’ preference between

AI-assisted and human-only methods after they had experienced both workflows on the

same task.

4.5 Results

In this section, we present our study results and analysis by answering each research

question presented in Section 4.1. For statistical analysis, we ran one-way ANOVA or

one-way Welch ANOVA tests, depending on the underlying assumptions being satisfied,

followed by Pairwise Tukey-HSD or Games-Howell post-hoc tests, respectively. To exam-

ine interactions between factors, we conducted two-way ANOVAs followed by Pairwise

Tukey-HSD or Bonferroni-corrected post-hoc tests. We adopted Type III sums of squares

in ANOVA to address unbalanced data.
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Research questions Q1, Q2, and Q3 focus on results from Part 1 of the study (Fig-

ures 4.6, 4.7, 4.9, and 4.11a), in which Groups B and C collaborated with restrained and

zealous AIs. Question Q4 focuses on results from Part 2 (Figures 4.8, 4.10, and 4.11b)

to examine how the prior human-AI collaboration experience could affect the users.

Figure 4.6: Visualizing each group’s overall annotation quality on the precision-recall
plot with F1 scores (Part 1). Group A manually annotates all videos and without
surprise, they are the slowest (Figure 4.7) with a quality better than Autonomous AI
alone but worse than the two human-AI groups’ team effort. Annotators in Groups
B & C had to accept, reject, or solve the face boxes pre-annotated by the restrained
or zealous AIs to improve the human-AI team performance. The arrows show how
much humans improved from the AIs’ initial annotation.

4.5.1 Q1: Can the human-AI teams achieve “complementary

team performance” in this task?

Bansal et al.[93] defines complementary team performance as the human-AI team

performance exceeding both the human-only and AI-only performance.
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Figure 4.7: Average annotation time for a single video in Part 1. Lower is better.
Error bars represent the 95% confidence interval. Treatment Group A used a baseline
manual method and the annotators in Groups B and C reviewed restrained and zealous
AI recommendations in Part 1. Groups B & C included the GPU time used to calculate
the AI recommendations.

Figure 4.8: Average annotation time for a single video in Part 2. After working 2-3
weeks on Part 1, every worker annotated another 12 videos in Part 2 but all used
the same manual tool without AI recommendations. We no longer see a significant
difference between Groups A & C but Group B is now slower in hard videos, mainly
caused by novice workers.
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Figure 4.9: The recall distribution of annotated videos in Part 1. For the purpose
of visualization clarity, we plot the 75-100% range in all recall distributions, which
omits maximally 2% of outlier cases. Higher recalls and a “shorter tail” are better.
The average recall is marked with a darker diamond. The recall distribution reveals
the likelihood of having a higher quality result, an insight needed to analyze
results from crowdworkers. E.g., in hard videos (right), annotations from “zealous
AI + Group C” have a shorter tail than other methods, as expected, the high-recall
zealous AI recommendations make it easier for more people to achieve higher recalls
especially when people’s attention are pushed to the limit when there are three or
more faces to track across many frames simultaneously.

Figure 4.10: The recall distribution of annotated videos in Part 2. The previously hu-
man-AI collaborative Groups B & C no longer have access to the AI recommendations
so they used the same manual method that Group A have been using. The overall
subplot (left) shows visible longer tails from these two groups, especially Group C in
hard videos (right), indicating a discrepancy in individuals’ performance now without
the help from AIs.
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(a) Part 1 (different methods between groups)

(b) Part 2 (same method: human only)

Figure 4.11: Recall distribution of annotated videos split by user expertise. Figure
(a) shows both human-AI Groups B & C gained advantage over the manual method
Group A mainly through veteran workers. The longer tails in Figure (b, novice)
provide a new perspective to interpret Group C’s long tails in Figure 4.10 (Overall)
that the performance discrepancy is mostly caused by novice workers after they lost
access to AI recommendations.
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Figure 4.6 shows the two human-AI teams B & C reached comparable F1 scores of

96.9% & 96.8%, respectively, significantly better than the human-only Group A that

reached 94.5% (Welch F2,1151 = 18.2, p < 0.0001). Both human-AI teams improved F1

accuracy and recall significantly compared to their human-only counterpart.

Because the high-stakes nature of this task rules out autonomous AI as a viable

option, we really only need to compare the human-AI team performance with human-only

performance in Part 1 of our study. However, to verify complementary team performance,

we also verify that the two human-AI teams achieved higher performance in terms of F1

scores and recall than their respective AI’s initial standalone performance.

Comparing each human-AI team with their perspective AI teammates’ initial perfor-

mance – Group B annotators improved the restrained AI from 93.4% to 96.9% (Welch

F1,1228 = 178, p < 0.0001), Group C annotators improved the zealous AI from 90.9% to

96.8% (Welch F1,837 = 169, p < 0.0001). Both human-AI teams improved significantly

from their respective AI teammate’s solo performance.

It is understandable that Bansal et al. only considered accuracy and did not compare

task completion time in complementary performance, since the human-AI teamwork will

undoubtedly add more time than AI alone. As we discussed, task completion times

directly affect the operation cost as people are paid at an hourly rate, making it a

critical metric for annotation tasks, so we additionally compare the human-AI teams’

task completion times with the human-only team.

We saw overall significant differences between all three groups on task completion

time (Welch F2,1039 = 48.6, p < 0.0001), as shown in Figure 4.7, left. As a baseline, on

average it took 1.05 hours for Group A to manually annotate a 30-second video of 900

frames. Group B took a significantly shorter time of 0.91 hours (Games-Howell p < 0.001)

to review the restrained AI recommendations. Group C only used 0.73 hours to review

zealous AI’s recommendations, also significantly shorter than the human-only Group A
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(Games-Howell p < 0.0001).

It is also worth noting that Group C, the zealous human-AI team, had an overall

significantly worse starting point than Group B in terms of F1 score: 90.9% vs. 93.4%

(Welch F1,854 = 35.32, p < 0.0001) as shown in Figure 4.6. However, annotators working

with the zealous AI managed to achieve a significantly higher improvement in F1 score

of +5.9% vs. +3.5% (Welch F1,934 = 45.02, p < 0.0001) in significantly less time! This

disadvantage for Group C provided the opportunity to demonstrate that our deduction

in Section 4.3.3 was correct – a human-AI team can do better in both time and quality

(in terms of F1 improvement) by asking the human to reject more false positives and

only solve the most challenging faces, i.e., the high-recall zealous AI.

In summary, we have not only verified complementary team performance on accuracy,

but also showed human-AI teams could achieve significantly shorter task completions time

in a real-world case study.

4.5.2 Q2: Which AI helps annotators be more efficient, i.e. save

time?

We mentioned that the professional annotators are paid at their fixed hourly

rate in this task, which means 1) they are not necessarily motivated to work faster, and

2) from the business perspective, their task completion time directly impacts operation

costs. We discussed in Section 4.5.1 that overall, both human-AI teams have significantly

shortened task completion time compared to the baseline Group A (Figure 4.7 left).

Specifically, the zealous AI recommendations help annotators use 20% less time than the

restrained AI recommendations with statistical significance (0.73 hours vs. 0.91 hours,

Games-Howell p < 0.0001).
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Video difficulty.

Figure 4.7 (middle) plots task time by video difficulty and saw a significant interac-

tion between group and video difficulty on task completion time (ANOVA F4,1577 = 5.37,

p < 0.0001, η2p = 0.016, small). Specifically, Group C which reviewed zealous AI rec-

ommendations used significantly less time than both Group A and B in medium videos

(Bonferroni p < 0.0001 & p < 0.0001), as well as in hard videos (Bonferroni p < 0.0001

& p < 0.01). But no significant difference was found for easy videos among the three

groups.

This observation matches very well with our expectations to different video difficulties:

the built-in linear interpolation tool for manual annotation is very efficient in tracking a

single face continuously, but AI recommendations can dramatically reduce task

time when tracking multiple faces simultaneously in medium and hard videos.

This finding allows the system designer to optimize efficiency further: if we know a certain

portion of the data has one or fewer people in each frame, it would be reasonable to bypass

the AI pre-annotation to save on the GPU budget.

User expertise.

When solely considering the user expertise factor, we were surprised that veteran

workers are overall significantly slower than novice workers in both parts of the study

(Welch, Part 1: F1,1380 = 85.6, p < 0.0001, Part 2: F1,665 = 22.2, p < 0.0001)! However,

if we consider how people are paid, this result would be a reasonable optimization given

the incentives – veteran workers know the acceptable work pace, so they do not need to

work faster than necessary. We further discussed worker’s incentives in Section 4.6.2.

When we consider the group and user expertise factors at the same time, as shown in

Figure 4.7 (right), both novice and veteran workers in Group C who reviewed the zealous
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AI recommendations were significantly faster than the baseline (Bonferroni p < 0.0001 &

p < 0.0001), while only the veterans in Group B finished faster (Bonferroni p < 0.0001).

This allows us to infer that, unlike the restrained AI that helps veterans more, the

zealous AI can consistently improve user completion time for both novice

and veteran annotators.

4.5.3 Q3: Which AI helps annotators achieve higher recall?

From the F1 scores in Figure 4.6 we know that both AI-assisted methods yield signif-

icantly higher-quality annotations than the baseline method (compared in Section 4.5.1),

yet we saw no clear winner between the two human-AI teams. Because recall is paramount

in video anonymization tasks, we analyze Group B and C’s recall performance in detail.

Figure 4.9 shows that Group C, the annotators who reviewed zealous AI recommen-

dations, have an overall significant advantage over Group B, which reviewed restrained

AI recommendations (Games-Howell p < 0.01). Interestingly, we noticed a visible

shorter tail in Group C’s recall distribution in hard videos (Figure 4.9, right). This

observation matches the very nature of zealous AI – giving more recommendations, even

low-confidence ones, so the human teammate is less likely to miss a face. This strategy is

especially effective in hard videos because tracking too many faces simultaneously pushes

the user’s attention to its limit. Zealous AI’s superfluous recommendations allow

the user to focus on the action of reject, rather than searching for missing

faces and then solve .

Taking user expertise into account, Figure 4.11 (a) reveals that while both AIs im-

proved the veterans’ recall performance compared to the baseline Group A (Bonferroni

A/B: p < 0.0001, A/C p < 0.0001), for novice workers, we only saw a significant ad-

vantage of Group C over Group A (Bonferroni p < 0.048). It corroborates our previous
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finding on completion time that “the zealous AI can consistently improve both novice

and veteran annotators” and extends the statement to higher recalls percentages as well.

4.5.4 Q4: Will collaborating with an AI improve or hurt user

skills?

Should the annotators lose access to their AI teammates in the future, how will they

perform? While we are interested in improving human-AI team performance, we should

also seriously consider how the prior human-AI collaboration experience would affect

people’s skills in the long run before deploying a new system.

To find out, we removed AI recommendations from Groups B and C in Part 2, so

all groups now work with the manual tool that they have always been using for other

projects. It took most annotators two to three weeks to complete Part 1 of the study. For

the sake of interpreting the results of Part 2, we can consider this period a training period

and their performance in Part 2 showcasing the effect of this medium-term training effort.

Both Groups B & C collaborated with their perspective AI teammates for 2-3 weeks,

but the restrained-AI-trained annotators in Group B performed worse than

their peers in different ways – the novice workers were significantly slower than both

A & C, especially in hard videos. The veteran workers’ annotations had lower recall

percentages than the zealous-AI-trained workers in Group C.

Completion time.

Figure 4.8 shows the task completion time of Part 2’s 12 new videos without AI

recommendations. In all video difficulties, Group C, annotators who previously worked

with the zealous AI in Part 1, managed to finish as quickly as Group A, the annotators

who were trained using the very manual method now in deployment for all groups. It
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shows that training with zealous AI recommendations does not negatively affect users’

task completion time on subsequent manual tasks.

However, we were surprised to see that Group B annotators trained with the restrained

AI became overall significantly slower than Groups A & C (Tukey-HSD A/B: p < 0.021,

B/C: p < 0.01), and more specifically in hard videos (Bonferroni A/B: p < 0.044, B/C:

p < 0.013). Figure 4.8 (right) shows that the effects stem mainly from the novice users

(Bonferroni A/B: p < 0.0001, B/C: p < 0.01).

Recall.

On annotation quality, Figure 4.10 shows the Groups B annotators, trained by the

high-precision restrained AI now produce lower-recall annotations (Games-Howell p <

0.05) than Group C which was trained with the high-recall zealous AI. The user expertise

breakdown shows the effect mostly comes from the veteran workers (Bonferroni p <

0.028).

What caused the negative training effect from the restrained AI?

We would think that annotators in Group B should perform better in Part 2 of the

study now that they have to manually annotate – they practiced more on manually adding

missing faces (solve) working with the restrained AI recommendations. In contrast,

Group C which trained with the zealous AI focused on rejects . However, the experiment

results show otherwise. Why was only Group B negatively affected? We believe there

are two main factors in play:

1) Not optimizing the AI teammate for the human-in-the-loop workflow.

Despite the fact that both AIs used the same face-detection model to generate the un-

tracked bounding boxes in each frame for the tracker to process, the restrained AI recom-

mendations were produced by ByteTrack [103] which is designed for autonomous tasks
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rather than for human-AI collaboration. We observed various issues using that tracker

directly in pilot studies, so we proposed the FPR tracker specifically for a human-in-

the-loop workflow with many optimizations with human users in mind (discussed in

Section 4.3.3). Given the fact that only novice users became much slower in Part 2 of our

study while veterans, who are more familiar with the annotation tool, were unaffected, we

strongly believe that the negative transfer effect can be linked back directly to training

with the restrained AI.

2) Not optimizing the AI teammate for the task. Recommendations from the

high-precision restrained AI are naturally lower in recall than the zealous AI, i.e., the

restrained AI missed more faces. Users who worked with such an AI for 2-3 weeks might

actually have gotten used to the AI’s pre-annotated videos (in Part 1) as “acceptable

quality”, thus matching their annotation effort with the less optimal recall when working

on their own in Part 2. On the other hand, the zealous AI recommendations – the high-

recall AI more exhaustively demonstrated all faces that should be annotated, potentially

raising the quality standard for the task.

In conclusion, various pieces of evidence from Part 2 of our study showed that despite

decent human-AI team performance when working with the AI, naively deploying an

AI system into a human-AI setting without considering the nature of the task or with-

out optimizing it for the human teammates could lead to negative effects and potential

deskilling of the users.
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4.6 Discussion

4.6.1 The key to forming a strong human-AI team

We propose the restrained AI and the zealous AI to depict the tradeoff between

precision and recall as two characteristics that have the potential of becoming advantages

in human-AI teams if used properly. By actually using the annotation tools and watching

annotators’ screens for many hours, we observed that annotators need much less effort

in improving precision than recall in a model-assisted annotation task, i.e., rejecting an

incorrect box is much easier than adding a missing box, thus we should delegate more

effort in improving recall to the AI so human only handles the most difficult boxes that

the AI missed (Figure 4.2c).

We think an important insight from this study is that it is worthwhile

to identify the complementary strengths of both human and AI teammates

through an in-depth analysis of the task at hand. While our observations can

improve real-world object detection and tracking annotation tasks, in which correcting

false-positive errors are easier for human, another task with a higher cost in correcting

such errors could lead to different or even opposite optimizations. Working closely with

end users can inspire us to decompose the AI’s different properties (in our case precision

and recall) and turn them into advantages to complement human skills. We hope this

study can motivate fellow researchers to rethink existing AI assistance designs or at least

the design for other video annotation tasks.
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Figure 4.12: Survey 1 (post-Part 1). We normal-
ize each group’s five-point Likert scale responses to
100%. 0% indicates no preference. In Part 1’s be-
tween-subject study, annotators from Groups B &
C only worked with a single AI they were assigned
to, so we do not compare the responses between B
with C.

Figure 4.13: Question S1-6 in Survey 1 indicates
significant result. The five-point Likert scale re-
sponses are converted to [-2, 2] with mean and 95%
CI plotted.

Figure 4.14: A System Usabil-
ity Scale (SUS) survey was ad-
ministered at the conclusion of
Part 1 of the study. But we saw
no significant difference between
the groups. Similar to Survey 1
in Figure 4.12, participants tend
to provide neutral feedback.

Figure 4.15: Survey 2. Unlike
Survey 1 in which annotators an-
swered questions without com-
parison, Groups B & C have
used both AI-assisted and Man-
ual methods at the end of Part
2. Thus this part of the study is
close to a within-subject design
where the independent variables
are the AI-assisted and Manual
method.
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4.6.2 Can AI teammates set the quality lower bound in a crowd-

sourcing setting?

We identified and rejected a single veteran user who submitted the majority of the low-

quality annotations. This is an unexpected yet not surprising finding in a crowdsourcing

setting: when paid at a flat hourly rate, people are not necessarily motivated to work

faster. When lacking a quality-based performance evaluation mechanism, people are not

necessarily motivated to push for “better-than-sufficient” quality.

However, could there be other users not making an effort in Groups B or C as well but

not being identified? Because the two AIs have pre-annotated the videos in decent quality

(F1 > 90%), it’s hard to tell if someone is actually happy with the AI’s recommendations

or is not pushing for even better quality.

What we know for sure is that such low-quality submissions, intentional or uninten-

tional, will certainly appear in other real-world crowdsourcing tasks. However, in absence

of ground truth, we won’t be able to identify them in a real-world setting. It is also very

costly to identify bad submissions – ImageNet asks 10 votes for each image [142], and

Microsoft COCO asks 3-5 workers to judge each segmentation [99].

Could the AI recommendations have played a critical role in preventing low-quality

submissions, i.e., setting a lower bound for the annotation quality? While not verified

in our study, this observation could provide yet another strong motivation for human-AI

collaboration in a crowdsourcing setting. We encourage fellow researchers to consider

this in future experiment designs.

4.6.3 Seemingly contradictory survey results

Figure 4.12 shows user responses to the Survey 1 questions, with each group’s five-

point Likert scale responses normalized to 100%. 0% indicates no preference. Specifically,

99



Forming Human-AI Teams for High-Stakes Tasks Chapter 4

question S1-6 (Figure 4.13) indicates that users from both human-AI teams, B and C,

think that working with the AI makes the task easier than annotating manually. However,

in Survey 2 (Figure 4.15), after users have tried both the AI-assisted and the Manual

methods on the same task of similar videos, they express higher preference towards the

Manual method regarding multiple aspects. As users took each survey immediately after

Part 1 and Part 2 respectively, they might prefer the method they just used, but these

responses from Groups B & C are in conflict with their continued higher recall in Part 2.

Comparing Figure 4.9 (left) with Figure 4.10 (left), we observe that the Group B

& C annotators who had shorter tails in recall distribution than Group A in Part 1

ended up with longer tails in Part 2 after they lost the AI’s assistance. It shows that

a fraction of low-performing users were apparently held at a higher standard by the AI

recommendations, and when the AI teammate was gone, they returned to their preferred

standard.

This observation might help explain the higher performance with the AI-assisted

method but higher user preference for the Manual method. It also reminds us to take

users’ incentives into account when designing user preference questions in empirical stud-

ies – It is well-known that the most favorable method is not necessarily the best perform-

ing method. We administered the System Usability Scale (SUS) survey and saw a trend

to support this point in Figure 4.14, but the results are not significant.

4.6.4 Limitations and Future Work

What are the conditions for which our findings hold?

This study investigated a single high-stakes task that met the two aforementioned

conditions: 1) either recall or precision is far more important than the other, and 2)

the complementary strengths of human and AI can be identified and the precision-recall
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tradeoff can be exploited to improve the important metric for the given task. We proposed

and observed that delegating more recall effort to the zealous AI can significantly improve

team performance, which was mainly motivated by our observation that reject is much

easier than solve for humans in AI-assisted annotation. Will our findings still hold if

reject is easier than solve in a different task? What about precision-demanding tasks?

We would love to see more HCI and AI researchers conduct latitudinal studies in multiple

recall- or precision-demanding tasks to test and refine our findings.

Tasks without high-performance models.

Face detection is a well-studied problem with high-performance AI models. While we

showed in Figure 4.6 that the AI and human can reach similar performance in this task to

achieve complementary team performance, will our findings stand if either the human’s

performance or the AI’s recommendations are much worse than the other? What is the

lower bound F1 score limit for either the human or the AI to maintain complementary

team performance? What are the F1 or precision/recall conditions for other researchers

to reproduce our findings?

Limitation from data and participants.

We used a subset of realistic, egocentric video dataset [102] in this study to measure

with the skill of locating faces – a human instinct that comes with relatively small inter-

personal differences. However, could our findings still play a major role if the task

was to identify and track other objects that could have larger inter-personal differences?

Furthermore, working with amateurs via crowdsourcing platforms would introduce larger

variances between individuals than with the professional workers employed in this study.

Researchers would need to put more effort into benchmarking or measuring the human

factor in such follow-up studies.
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Incentives for users to actively perform better.

We discussed in Section 4.6.3 observations that methods with better performances

are not necessarily favored by the users. I.e., the users were involuntarily pushed to have

higher performance by their AI teammates. From a system designer’s perspective, the

AI teammate should help users to voluntarily perform better given the right incentives.

4.7 Conclusion

In this work, we look beyond the accuracy of AI recommendations to explore a new

direction to improve human-AI team performance – the tradeoff between precision and

recall in model tuning. We propose the concept of restrained and zealous AIs for high-

precision and high-recall recommendations and conduct an experiment with 78 profes-

sional annotators to compare if and how the different AI recommendations can affect

team performance in high-stakes human-AI collaboration. This work serves as a new

example of complementary team performance in a large-scale realistic setting.

An in-depth analysis of the task helped us identify an optimization opportunity to

harness complementary human and AI strengths utilizing the tradeoff between precision

and recall in the AI model tuning – given the importance of recall in face anonymization

and the higher cost for humans to improve the recall in video annotation. We showed

that the proposed high-recall zealous AI helps annotators achieve significantly better

performance than the high-precision restrained AI in the video annotation task. Our

follow-up study removed AI assistance and observed potentially negative training effects

to the users – if an AI is naively paired with humans without optimizing it for the task at

hand or for the human-AI workflow. We feel these findings have important implications

for the design of AI assistance in recall-demanding scenarios. We hope this work can also

inspire researchers to look for additional directions in model tuning to improve human-AI
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team performance.
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Chapter 5

In-Situ Learning for User-Guided

Personal AI

Figure 5.1: Combining what we have learned, we propose “in-situ” learning that aims
to take the user’s input during every stage of the model shaping process to produce
personalized AI models.
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In Chapter 2 and Chapter 3 we have shown that AI system designers can help improve

the utility of end-to-end models by working closely with users to identify gaps and oppor-

tunities for user input and design interfaces with the target users in mind. In Chapter 4,

we showed that sustainable human-AI teaming requires a thorough understanding of the

team’s complementary strengths and the priorities of the task.

In this chapter, combining insights from previous works, we propose a novel ap-

proach to real-world human-AI collaboration. We introduce a different machine learning

paradigm called “in-situ” machine learning, which encodes real-time user data into mod-

els for personal knowledge storage and for human-AI teaming assistance.

5.1 Motivations for in-situ machine learning

We discussed in Section 1.2 that in an ideal interactive machine learning workflow,

end users should play a central and active role by providing training data (e.g., domain

knowledge or user preference) to the model, reviewing the model’s current state, and

taking appropriate action (e.g., more training samples or stop the training) in an iterative

fashion. This is because highly personalized AI models are preferred or required in certain

situations, and the AI model’s end users, or their satisfaction with the AI’s performance,

are often the critical benchmark for such personalized models. Thus it is important to

identify the situations in which user-guided personalized AI models are desirable, which

help clarify the motivation and best use cases for “in-situ” learning:

• The model in need does not exist. Today’s computer vision AI models are still

predominantly trained for specific tasks, following the generalized workflow outlined

in Section 1.2. For domain experts, such as physicians or astrophysicists, who

possess specialized data and the knowledge necessary to annotate the date or have

unique task objectives that mainstream AI models have not yet accommodated,
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suitable models often do not exist. In such cases, providing an accessible means

for end users to train or personalize AI models using their own data and tailored

objectives is essential.

• The generic model performs poorly. For common tasks that utilize generic

models, the performance of these models may vary due to the inherent limitations of

training on fixed, albeit large, datasets. For instance, a generic scene understanding

model that excels in benchmark scenarios might struggle with the diversity and

complexity of real-world environments in augmented reality (AR) applications.

• Personalize AI models for individual users. Users’ inputs and demands for

the same task can vary between individuals. This variability greatly affects users’

satisfaction with the AI models. In such scenarios, generic models often do not

adequately meet personal needs or preferences, even if the model is capable of

performing the task. For such scenarios, we propose to take advantage of the output

from other computer vision models or the compact and meaningful representations

from foundation models to personalize AI with real-time training guided by the end

users. We will demonstrate several such use cases later in this chapter.

• The need for data privacy. As AI models grow more powerful and larger, it

is now common for some models to be hosted on GPU servers and only accessible

over the internet. Transmitting user data to online servers present risks to user’s

privacy. Thus, the small, personalized models that we propose to train locally and

operate offline provide valuable data security for certain applications.
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“In-situ” is a Latin term meaning “in position” or “on-site.” The “in-situ” nature

of our proposed concept is characterized by the following observations for human-AI

teaming in real-world tasks:

• Raw data. We discussed in Section 1.2 that in conventional machine learning

workflows,large and diverse datasets are collected for end-to-end training. How-

ever, as we live in a complex and constantly evolving world, the offline-collected,

static datasets can become outdated and fail to reflect our dynamic or personal en-

vironments. To address this observation, we propose to collect dynamic training

data at the location and at the time when the user interacts with the AI in the

environment for the specific task.

• Ground truth. End users’ individual preferences are often not captured by the

generalized consensus in large-scale datasets. Furthermore, user preferences and

their perceptions of the environment can be moving targets that change over time,

which is why we emphasize the user-defined ground truth in in-situ learning

that gathers individual’s most recent preferences, defines the model for different

users, and changes over time.

• The model. AI models evaluated on fixed benchmarks are models optimized for

static datasets, not for the end users. These models will suffer the same biases or

constraints as the static datasets on which they were trained. Similar to interactive

machine learning, in-situ learning values user satisfaction over model performance.

Thus, an in-situ model’s performance is evaluated by user satisfaction

instead of by fixed benchmarks. It’s at the user’s discretion to decide if the model

is sufficiently optimized, or else they can provide more data to continue the training

or provide user feedback to fine-tune the model.
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The above use cases and observations motivate us to propose a novel inter-

active and online machine learning paradigm for real-world human-AI team-

ing, termed “in-situ machine learning.” This concept represents a system

design philosophy where real-time user-collected data, such as the task envi-

ronment and user input, is encoded into a personalized neural network in real

time. This network functions both as a repository of the user’s accumulated

knowledge and as a decision-making assistant tailored to support real-world

human-AI teaming. This approach aims to enhance the relevancy and efficacy

of AI support in complex, real-world settings by ensuring that the learning

process is closely integrated with the user’s current context and feedback.

It is important to mention that we do not propose in-situ learning to replace con-

ventional AI models designed for general use cases, i.e., the models for everyone. In

fact, in several real-world demos in this chapter, we take advantage of the prediction

outputs from generic pose estimation models, vision-language models, foundation com-

puter vision models, and their compact latent representations to optimize a much smaller

in-situ model as the personalized AI for individual users. In-situ learning serves as the

user-facing AI that aims to extract and store user’s knowledge or preferences for later

assistance.

5.2 In-situ learning proof-of-concept prototypes

In the remainder of this chapter, we will demonstrate four real-world use cases for the

proposed in-situ learning, including proof-of-concept prototypes and a prototype system

for spatially aware reasoning. These diverse applications adopt the in-situ learning design

philosophy and utilize various computer vision models to train highly personalized AI

systems:
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Section 5.2.1 A pose estimation model that learns a user’s unique poses in less than

a minute and can be used as a personalized physical therapy training assistant;

Section 5.2.2 Flexible segmentation models that can learn user-defined abstract

concepts with simple strokes as the interface for user input and model guidance;

Section 5.3 A full-fledged augmented reality system that utilizes in-situ learning for

AI-powered reasoning involving physical environments.

5.2.1 In-situ learning for personalized pose detection

Why is in-situ learning beneficial in this use case

The author of this dissertation, who relies on physical therapy (PT) training to man-

age knee pain, found it challenging to consistently maintain his training at home due

to the complexity of remembering numerous poses and simultaneously tracking the ac-

curate poses and timing for each session. On the other hand, while pose estimation AI

models are becoming more accurate than ever, similar training applications only support

the classification/detection of a fixed number of pre-trained poses. In addition, existing

applications that use pose estimation perform poorly based on the author’s experience,

and they often lack the ability to register personalized PT exercises.

Compared to the pre-trained generic pose prediction models, the key challenge in this

task is to learn personalized pose classification models that can capture an individual

user’s unique physical conditions and constraints. For instance, given the same exercise

pose, the different heights or movement limitations (e.g., from injuries) between users can

lead to very different pose estimation results. Pre-trained models can fail to correctly

classify the pose because of these interpersonal differences.

109



In-Situ Learning for User-Guided Personal AI Chapter 5

Figure 5.2: The in-situ learning workflow and interface for a personal physical therapy
(PT) trainer application. From left to right: 1) The user demonstrates the target
poses for real-time, personalized data collection; 2) Without requiring any knowledge
of machine learning, an in-situ model is trained in the user’s browser in 20 seconds;
3) Once trained, the system checks if the user’s pose matches one of the earlier PT
training demonstrations, and tracks the progress with a timer.

What can in-situ learning offer in this use case

As an engineer keen on solving real-world problems, the author developed a prototype

of a PT trainer application with in-situ learning driving its underlying human-AI teaming

components. This application not only assists the user with the exercises at home but

also serves as a proof of concept for the in-situ learning idea.

The interface and workflow of the application are illustrated in Figure 5.2. As the user

demonstrates each of the specific exercise poses, their body joint information is produced
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by a pose estimation model, which serves as the training data for the personalized pose

classification model. When trained on real-time collected pose information that considers

a user’s physical attributes and limits, the in-situ model learns to classify the particular

poses just demonstrated by the user. However, the same pose needs frequent updates as

the user’s physical constraints can improve over time. Another advantage of the in-situ

model is its ability to gradually adapt to the user’s progress over time. Compared to con-

ventional pre-trained models that require careful finetuning, the low data collection and

training cost makes it easy for users to redefine their models based on their satisfaction

with the AI, based on the visualization and prediction feedback.

The application is written in JavaScript and deployed in browsers. The in-situ model

adopts a simple multi-layer perceptron design. Thus, it can be easily optimized on a

consumer laptop in just 20 seconds. The user needs no knowledge of machine learning to

train a personalized model. Once trained, the timer starts and stops based on detecting

the targeted pose to achieve the PT trainer’s assistance. Furthermore, suppose the

model behaves poorly in the future (e.g., different lighting, clothing, or improved physical

limits). In that case, users can easily update the model by demonstrating the poses again.

5.2.2 In-situ learning for learning abstract concepts

Why is in-situ learning beneficial in this use case

Classification, detection, and segmentation are common computer vision problems

that generally follow the end-to-end training workflow we discussed in Section 1.2 – ma-

chine learning models are trained and evaluated on a static dataset that is offline collected

and annotated. In addition to the issues we discussed in the three observations on the

“in-situ” nature of our proposed method (Section 5.1), training on the pre-annotated

datasets optimizes the model to the predefined object classes, while users play little role

111



In-Situ Learning for User-Guided Personal AI Chapter 5

in providing their insights or preferences in shaping the AI model they need for less

common tasks.

Producing a robust, generic classification, detection, or segmentation model that

works for most scenarios comes at a high cost in both the data collection and model op-

timization stages and it requires knowledge and experience in machine learning. In other

words, it is not practical or easy for the end user to make their own unique models that

detect or segment uncommon objects with conventional approaches. Thus, an accessible

means that allows end users to train personalized models is needed.

What can in-situ learning offer in this use case

In this use case, we demonstrate how in-situ learning can help end users who have no

knowledge of machine learning to quickly train a segmentation model for any arbitrary

concepts with only a dozen images and a few strokes. We show in Figure 5.3 a proof-of-

concept application that reads a video file for users to query and visualize objects and

concepts with natural language. This is made possible as we preprocess the input video

frames with CLIP [143], a multimodal model that maps both vision and language input

into the same latent space. By comparing the cosine similarity between the vision embed-

dings and text query embeddings, we can visualize CLIP feature’s native segmentation

performance.

Figure 5.3 (1, 2, 3) show that it is possible to achieve open-language detection or seg-

mentation on images through vision-language embeddings, while the probability heatmap

visualization (bottom-right of the interface) is not accurate even for simple concepts such

as “rabbit,” “horse,” or “unicorn.” In Figure 5.3 (4, 5, 6), our interface allows users to

draw simple strokes to highlight objects or concepts. The unicorn toy is a challenging

concept as it sits between two similar concepts of rabbits (similar in appearance) and

horses (similar in semantics).
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In this binary segmentation example, users annotate objects with green strokes for

positive samples or red strokes for negative samples to guide the in-situ model to learn

the concept, as shown in Figure 5.3 (4, 5, 7). Specifically, in subfigure (5), the overfitted

model falsely detected both the unicorn and the rabbit, since they are both white toys,

so the user can naturally provide a negative example of the rabbit with a red stroke.

Subfigure (6) shows an optimized in-situ model that identifies a much more accurate

unicorn than the unoptimized CLIP features.

Another strong advantage of in-situ models is their flexibility. The user can fine-

tune the model instantaneously to learn another arbitrary concept. For instance, in

Figure 5.3 (7), we add the additional concept of “wall” to the model that is already

optimized for unicorn. With just a few more positive and negative strokes, we can train

a new model that detects the arbitrary concept of “unicorn + wall” in subfigure (8).

In conclusion, the binary segmentation prototype powered by CLIP embaddings [143]

and in-situ learning demonstrates the important characteristics of real-time data collec-

tion, user-defined ground truth, and user-satisfaction-based model evaluation. In the

next section, we present an augmented reality system that adopted the similar in-situ

learning philosophy in facilitating human-AI teaming in an intelligent object inventory

AR application.
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Figure 5.3: Training a segmentation model for arbitrary concepts with in-situ learning.
Here we show a new segmentation model for unicron, a rare concept for existing
segmentation models, or even for an arbitrary concept like “unicorn + wall” which
can be trained with only a few interactive strokes from the user. Details of the
workflow are described in the text.
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5.3 Multimodal 3D Fusion and In-Situ Learning for

Spatially Aware AI

Contents in this section are part of a paper submission currently under review. Au-

thors include C. Xu, R. Kumaran, N. Stier, K. Yu, and T. Höllerer.

Seamless integration of virtual and physical worlds in augmented reality benefits

from the system semantically “understanding” the physical environment. AR research

has long focused on the potential of context awareness, demonstrating novel capabilities

that leverage the semantics in the 3D environment for various object-level interactions.

Meanwhile, the computer vision community has made leaps in neural vision-language

understanding to enhance environment perception for autonomous tasks. In this work,

we embed both semantic and linguistic knowledge into the geometric scene representation,

enabling user-guided machine learning involving physical objects. We first present a fast

multimodal 3D reconstruction pipeline that brings linguistic understanding to AR by

fusing CLIP vision-language features into the environment and object models. We then

propose “in-situ” machine learning, which, in conjunction with the multimodal semantic

representation enables new tools and interfaces for users to interact with physical spaces

and objects in a spatially and linguistically meaningful manner. We demonstrate the

usefulness of the proposed system through two real-world AR applications on Magic

Leap 2: a) spatial search in physical environments with natural language and b) an

intelligent inventory system that tracks object changes over time. We also make our

full implementation and demo dataset available to encourage further exploration and

research in spatially aware AI.
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Figure 5.4: We propose a multimodal 3D reconstruction pipeline that prepares physi-
cal spaces for vision-language perception and object-level interactive machine learning.
Within a few minutes after a user scans the environment, they can search the space
with abstract natural language queries or interact with physical objects for spatially
aware AI applications through novel AR interfaces.

5.3.1 Introduction

3D scene understanding of physical environments is crucial for context-aware aug-

mented reality (AR). Research and industry endeavors have been steadily advancing the

sensing and sensemaking capabilities of mobile computational platforms [144, 145]. Mod-

eling and understanding basic geometric configurations such as room size, solid surfaces,

and occlusions enable realistic virtual content placement and interactions [146, 147, 148].

A good semantic understanding and 3D segmentation can reveal the what and where of

common objects in an environment to enable complex interactions and deeper blending

of the virtual with the physical [149, 150, 151, 152, 153, 154]. Leveraging the power of

recent large multimodal models (LMMs) and large language models (LLMs), we can even

perform simple spatial and linguistic reasoning in complex real-world scenes [155, 156].

If we continue to push the envelope, what new forms of scene understanding and

reasoning are in store for context-aware AR and its applications? We believe a promising

holistic approach to probe this direction is to build and test a pipeline that integrates

the geometric, semantic, and linguistic information of a real-world environment into

its 3D environment model and every object in that environment. To this end, we im-

plemented a TSDF-based [157] 3D reconstruction and segmentation pipeline that fuses

neural vision-language features (e.g., OpenCLIP [158]) from AR input frames into the
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3D representations of the physical space and individual objects.

The 3D fusion of neural vision-language features automatically enables linguistically

meaningful spatial computing. While previous AR spatial search tasks are constrained

by limitations of close-set detection or segmentation models, it is now possible to search

for arbitrary objects, or even respond to abstract natural language queries in a physical

space. We show in Figure 5.4 and Figure 5.7 Application 1 that a heat map responding

to the query “Things that might be dangerous to babies” highlights the most probable

areas through the AR headset. The physical environment, imbued with vision-language

features, can provide valuable information about itself via AR interfaces.

We fuse context-relevant vision-language features into the 3D scene at the abstrac-

tion levels of scene voxel, vertex, and individually segmented physical object. Such mul-

timodal fused and semantically indexed objects create more intelligent “virtual twins”

than previous 3D representations, and become even more powerful when we add user-

in-loop interactive machine learning controlled by AR interfaces. The user’s interactions

with physical objects provide valuable model steering instructions to train a personalized

machine learning model, e.g. for intelligent inventory management.

Imagine a space-constrained cluttered environment full of mission-critical tools, equip-

ment, and notes, such as the International Space Station. A spatially-aware-AI AR com-

panion could help astronauts keep tabs of all the items being used and stowed by the

various crew members. It could provide assistive AR guidance for navigation, search,

and task support, providing essentially a physical space version control system.

A good use case for demonstrating the advantages of pairing the proposed multimodal

3D fusion with a user-guided machine learning mechanism, which we dubbed “in-situ”

learning, is to track the changes of physical objects in the real world. Unlike a conven-

tional version control system (e.g., Git [159]) that can compare the difference between

two saved states, if we move a specific red coffee mug from one desk to another, the
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simple spatial translation alters an object’s orientation or volumetric representation, yet

no change would occur semantically. In order to provide users with useful information,

the item needs to be identified as the same entity. In office spaces where shared objects

rarely stay at the same place or orientation, naive mesh comparison only produces noise.

What is needed is a user-trainable classifier that can learn to remember arbitrary physical

objects and quickly optimizes for users’ changing needs and the task at hand.

To this end, we present a proof-of-concept intelligent object inventory system, demon-

strating the ability to remember and re-identify objects in physical environments enabled

by multimodal 3D fusion and in-situ learning. The demos run on Magic Leap 2 and work

in complex real-world spaces. Once trained with simple user guidance, the system can

reveal objects that are missing or remain unchanged over time in a tracked space. In

Figure 5.7 Application 2, we show that when a colleague’s rolling chair was removed

from the tracked scene, we can travel back in time to reveal the disappeared chair at its

previously recorded location.

Our contributions can be summarized as follows:

• We present a custom multimodal 3D reconstruction workflow that fuses neural

vision-language features into the 3D volumes of the environment and automati-

cally segments objects, unlocking novel context-aware AR interfaces for physical

environments and objects.

• We demonstrate the enhanced effectiveness of the fusion pipeline when coupled

with in-situ learning in real-world spaces with two novel AR applications on Magic

Leap 2: a) spatial search with natural language and b) an intelligent inventory

prototype that can track physical object changes.

• We share system design details and open source our implementation and example

dataset to help fellow researchers develop future spatially aware AI applications
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based on our system.

This paper is organized as follows: Section 5.3.2 discusses the related work. Sec-

tion 5.3.3 describes the design decisions and technical details of the fusion pipeline, in-

situ machine learning, and the scene manager, which connects the two components with

the AR headset user. Section 5.3.4 demonstrate two real-world application scenarios of

the proposed system.

5.3.2 Related Work

Our work is broadly inspired and germane to topics in mixed reality, computer vision,

machine learning, and HCI. In this section, we discuss related work in the areas of AR

Scene Understanding, AR Scene Authoring, Physical Interaction in AR, Interactive and

Online Machine Learning, Open-Vocabulary 3D Perception, and Version Control for Non-

traditional Media.

Augmented Reality Scene Understanding

Scene understanding gives semantic meanings to the reconstructed 3D models of the

physical environment, allowing AR headsets to know not only the geometry but also

the what and where of objects in the space, which is needed to unlock context-aware

AR and interactions. SLAM++ [160] generates an object-level scene description relying

on prior knowledge. However, the requirement of a library of known objects prevents

this system from generalizing to arbitrary scenes. “FLARE” [146] generates AR object

layouts consistent with the geometry of the physical environment. SnapToReality [147]

aligns virtual content to real-world 3D edges and surfaces. The Spatial Mapping and

Scene Understanding APIs in Microsoft HoloLens [148] and similar AR APIs can infer

semantic surfaces such as walls, floors, platforms, and ceilings.
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Recent leaps in computer vision, foundation models, large language models (LLMs),

and large multimodal models (LMMs) provide new directions in tackling object-level

scene understanding tasks. Chen et al. [161], PanopticFusion [162], and Panoptic Multi-

TSDFs [163] went beyond geometric-based AR by combining semantic segmentation with

dense 3D reconstruction to achieve object-level 3D understanding, removing some of the

constraints that SLAM++ was beholden to. Retargetable AR [152] builds a 3D-directed

graph characterizing the scene context, such as the location and orientation of objects,

so that virtual content can be placed and interactions with the physical environment

become more realistic. Pucihar et al. [164] explore how machine learning techniques

can automatically detect, recognize and segment scene objects in an intelligent way that

allows the system to annotate unprepared environments automatically.

In a more challenging open-vocabulary setting, Yoffe and Sharma proposed OCTO-

PUS and OCTO+ [165, 156] to automatically place arbitrary objects on the most suitable

surface in AR. They chained up a series of state-of-the-art ML methods to build a Mix-

ture of Experts System. They used Segment Anything Model (SAM) [166] to identify

individual objects, CLIP and clip-text-decoder [143, 167] to generate object labels, and

ViLT [168], CLIPSeg [169], Grounding DINO [170] to verify object guesses. Like many

mixture of experts systems, they used LLMs or LMMs such as GPT-4, GPT-4V [171],

and LLaVA [172] as the “brain” to reason about the appropriate location for object

placement based on the curated text and image inputs from various upstream models.

Compared to their work, which focuses entirely on the question on how to place

content in 2D image frame observations of 3D scenes, we tackle the much more general

problem of embedding the semantic features within the 3D geometric representation,

enabling additional levels of spatial reasoning.
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Augmented Reality Scene Authoring

Authoring tools complement automatic scene understanding by allowing content cre-

ators or end users to assign semantic meaning or information to the reconstructed scene

even in absence of fully reliable automatic detection and segmentation. Early author-

ing systems relied on designers to manually attach information to the environment. In

Columbia’s “touring machine” [144] the information augmenting the university campus

with building and department information was manually placed, whereas the follow-up

MARS system utilized offline and online authoring tools[173]. Mann [174] overlaid text

on certain recognized objects in head-worn displays. The “WorldBoard” vision [175]

aimed for planetary-scale information placement.

Immersive authoring [176] in AR allowed users to parse things or objects from the

reconstructed 3D model while moving around in the actual physical space. Semantic-

Paint [177] is an interactive online system that continuously learns from the user’s seg-

mentation input to predict object labels for new unseen voxels as the user captures the

environment. Semantic Paintbrush [178] tackles a similar problem with novel hardware

and software solutions that take the user’s precise input from a laser pointer. SceneC-

trl [150] combined Hololens’ plane detection with user input to identify objects for flexible

and plausible scene editing. Huynh et al. proposed In-Situ Labeling [179] to facilitate

more effective language learning in AR settings. HoloLabel [180] provides a user-in-the-

loop 3D labeling system on HoloLens.

Unlike the above scene authoring tools that require careful interactive operations on

voxels or meshes, this work has individual physical objects segmented and labeled auto-

matically during the 3D reconstruction process. Users interact with the densely labeled

scene at the object level by directly selecting individual objects for personalization, or

merging multiple semantically meaningful mesh blocks for correction, without having to
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deal with voxels or meshes.

Interacting with Physical Objects in AR

Going beyond geometric-based AR, recent context-aware AR focuses on novel inter-

faces that interact with the virtual twins of physical objects in the environment, creating

illusions that tightly blend the physical and the virtual. Annexing Reality [149] uses

physical objects as proxies for virtual content to reduce the visual-haptic mismatch.

SceneCtrl [150] on the Microsoft HoloLens provides coarse part-based object selection so

users can select, delete, move, or copy virtual twins of real objects to manipulate the

physical environment as a virtual but visually plausible scene. Remixed Reality [151]

applied a taxonomy of spatial, appearance, viewpoint, and temporal manipulations and

interactions on a live 3D reconstruction of the environment, captured by multiple depth

cameras. RealitySketch [153] captures user sketchings to create virtual elements bound to

physical objects and dynamically respond to real-world changes. TransforMR [181] can

replace real-world humans and vehicles with pose-aware virtual object substitutions to

produce semantically coherent MR scenes. Kari et al. [154] demonstrated the concept of

Scene Responsiveness which maintains visuotactile consistency in situated MR through

visual illusions that hide, replace, or rephysicalize real objects with virtualized objects

and characters.

Our work is related to the above research as we provide novel interfaces for users to

interact with the physical room, in our case through natural language and by tracking

physical objects’ changes over time. It differs from the above works in that we integrate

deep vision-language features into the 3D models to automatically identify (segment and

label) and remember individual objects for the application scenarios.
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Interactive & Online Machine Learning for AR

Interactive ML and online ML are distinct learning paradigms that often go hand

in hand in real-world interactive AR/MR applications. In these applications, training

data becomes available in the form of a stream during the user’s interaction with the

environment.

To learn from previous user gestural and verbal input to predict the segmentation

and object labels for new unlabeled parts of the 3D scan, SemanticPaint [177] proposed

a streaming random forests algorithm that trains on voxel-oriented patches (VOPs),

which are geometric and color features computed from raw TSDF volumes. Semantic

Paintbrush [178] adopted the same VOPs as object features (RGB, surface normal vector,

and 3D world coordinate) to train a similar streaming decision forests. ScalAR [182] also

used a decision-tree-based algorithm to learn from the user’s demonstration input.

Unlike previous interactive AR systems that trained decision trees on low-level fea-

tures, this work utilizes deep vision-language models to generate semantic and linguis-

tically meaningful deep latent features for the environment and individual objects. We

combine an object’s geometric representation (voxels), appearance (RGB), and vision-

language features (CLIP) to produce meaningful object graph representations that are

robust against issues that low-level features suffer from, such as changing lighting con-

ditions, orientation, and over-simplified semantics. We do propose our own version of

interactive online ML, dubbed “In-Situ Machine Learning” (see Section 5.3.3), to re-

fine and improve the performance of our automatic semantic segmentation and object

recognition.
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Open-Vocabulary 3D Perception

The attribute “open-vocabulary” describes a system that can recognize objects match-

ing a free-text description, which may contain arbitrary natural-language descriptors (e.g.

“a chair whose color is somewhere between blue and green”) or abstract concepts (e.g.

“what can I use to prop open a door?”). This is a much more flexible, intuitive, and

ultimately more useful paradigm in many scenarios compared to the traditional computer

vision approach of classifying objects into a pre-determined semantic taxonomy, which is

inflexible and cannot be exhaustive.

Several works have presented open-vocabulary systems for 2D image segmentation

and understanding, either at the level of patches or entire images [143, 183, 184], while

others have focused on dense, per-pixel representations [185, 186, 187]. These systems

became possible because of the massive amount of paired images and text available on

the internet that were used as training data for vision-language foundation models. In

contrast, for 3D data, it is more difficult to directly develop the 3D-language connection,

due to the lack of large datasets of paired geometry and text. To address this, a number

of works have attempted to bootstrap 3D open-vocabulary perception by distilling or

otherwise lifting 2D open-vocabulary models to operate on 3D data [155, 188, 189, 190,

191].

Our system, specifically the Spatial Search with Natural Language feature, belongs to

this latter category, lifting CLIP features into 3D by back-projecting them into a voxel

grid, using a modification of the popular TSDF fusion algorithm. Our system is primarily

differentiated by its design to support interactivity in AR. Most importantly, it operates

with low latency, without requiring expensive components such as 3D convolutional neu-

ral networks or training neural radiance fields. This enables a smooth and familiar AR

scanning workflow. In addition, our system builds an implicit surface mesh represen-
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tation rather than relying on point clouds or density volumes. This is more amenable

to downstream processing and rendering with the traditional graphics pipeline, meaning

that it can easily be integrated into existing AR platforms and applications.

Version Control for Novel Media

One of our demonstration applications, intelligent object inventory, tracks certain

object changes that are akin to the behaviors in version control systems. Software devel-

opers are most familiar with text-based version control systems (VCSs) such as Git [159]

that keep track of changes in source code. The research community has explored version

control interfaces and techniques on novel media other than text editing. Time-Machine

Computing [192] tracks computer desktop states and allows users to visit a previous state.

MeshGit [193] proposed a mesh edit distance to measure the dissimilarity between two

polygonal meshes in 3D modeling workflows. SceneGit [194] tracks object-level element

changes in a 3D scene as well as finer granularity changes at the vertex and face level.

The Who Put That There system [195] records virtual objects’ spatial trajectories from

the user’s direct manipulation in 3D virtual reality scenes.

VRGit [196] facilitates synchronous collaboration for manipulating and comparing

VR object layouts immersively. While the system provides well-defined spatial versioning

features, it operates on a library of predefined models because of its VR nature. Research

with physical artifacts in mind, such as Catch-Up 360 [197] and works by Letter et al.

[198] focused on the changes of a single object rather than room-size environments like

in VRGit. AsyncReality [199] used external devices to volumetrically capture physical

events for later immersive playback.

Our work differs substantially from the above version control research in that physical

objects change in ways different from source code or 3D models – spatial translation,

deformation of non-rigid objects, and appearance changes based on lighting conditions.
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Naive comparison between two mesh models only introduces counterproductive noises,

even if they are perfectly aligned. This work, however, maintains object identity by

relying on deep vision-language features embedded in the reconstructed 3D environment.

We demonstrate one of the first intelligent inventory systems that automatically track

basic object changes (missing/unchanged) in real-world environments in Section 5.3.4.

5.3.3 System Overview

At the heart of our spatially aware AI system that informs the AR user interfaces in

this paper is a custom 3D reconstruction pipeline with integrated vision-language fusion

and 3D segmentation workflow. The pipeline starts with capturing a physical space – a

user walks around with an RGBD device that captures registered RGB images and depth

maps to reconstruct the 3D model with geometric, semantic, and linguistic understanding

(see Figure 5.4). Figure 5.5 shows the system overview. The accompanying video also

demonstrates the interactive possibilities and flow of the system. We will discuss the

design of the main components in this section.

Multimodal 3D Scene Model Fusion

Our multimodal scene volume is represented by a multi-channel voxel grid defined

over the scene. The channels of this volume are organized into three components: ge-

ometry, language, and semantics. The geometric component is a single-channel TSDF

volume produced using the typical TSDF fusion algorithm [157] according to the following

running-average update rule:

Di+1(x) =
Di(x)Wi(x) + di+1(x)wi+1(x)

Wi(x) + wi+1(x)
, (5.1)

126



In-Situ Learning for User-Guided Personal AI Chapter 5

where Di(x) is the accumulated TSDF estimate over all past views for voxel x at time i,

and di(x) is the TSDF estimate for voxel x from the current view at time i. w represents

a per-view weight, and W is the total accumulated weight (we refer the reader to Curless

& Levoy [157] for further details).

We then propose a simple mechanism to extend the scene volume with additional

channels, which are populated by fusing feature vectors from image-aligned 2D feature

maps as follows:

Fi+1(x) =
Fi(x)Wi(x) + fi+1(x)wi+1(x)

Wi(x) + wi+1(x)
, (5.2)

where fi(x) is a feature vector sampled from view i by perspective projection from voxel

x, and F is the generated multi-channel feature volume. The main advantage of fusing

features in this manner is that by averaging across views we develop a more accurate

multi-view feature and label estimate over time.

We leverage this extension to build the semantic and language components of the vol-

ume by fusing in two additional sets of 2D feature maps. The first one (object semantics)

is a per-pixel class probability distribution, computed using the panoptic segmentation

from k-means Mask Transformer [200]. The second one (language) is a per-pixel CLIP

feature computed using OpenCLIP [158]. Since CLIP’s feature output for a given image

is only a single feature vector with no spatial dimensions, we tile each image into over-

lapping patches to produce a coarse 2D CLIP feature map. We then define a continuous

CLIP feature across the image using bilinear interpolation. While the parameters can

vary among capture devices and scenes, our setup resizes input frames to 1024× 768 px

and uses 2562 px patches with a stride of 128 px.

Finally, the fusion process results in a per-voxel TSDF estimate, class probability

distribution, and CLIP feature, that we use to support downstream applications (Fig-

ure 5.5 left). This process exhibits two properties that make it highly amenable to AR
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Figure 5.5: System overview.

applications: 1) all three volume components are constructed using a running average

update rule, so the process is incremental and can accept new input views at any time

without needing to revisit earlier views; 2) no iterative optimization is required, leading

to fast online reconstruction. We perform the reconstruction on a local server with a

single NVIDIA RTX 3090 GPU, which also trains the in-situ learning model and streams

the application results to the AR device for visualization. With our current system design

and configuration, it typically takes two minutes to process a 3m× 3m space.
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Post-processing and Scene Manager

Following the 3D scene fusion, we perform three post-processing tasks to support

downstream applications.

1) Mesh extraction. We run Marching Cubes [201] to extract a triangle mesh from

the TSDF volume. This allows for convenient rendering and integration with existing

AR graphics pipelines. Figure 5.4 shows various mesh visualizations rendered in AR

headsets.

2) 3D semantic segmentation. To create useful spatial awareness for AR, we are

interested in going beyond per-voxel semantic information to delineate full objects that

users can more easily select and manipulate. We therefore build on the class probability

volume developed in Section 5.3.3 by first labeling each voxel with the class for which it

has the highest predicted probability, and then segmenting consecutive volumes according

to those labels using a custom 3D flood fill implementation. Similar to classic 2D flood-fill

algorithms that find connected regions on images [202], our 3D method clusters voxels

of the same segmentation class in the 3D volume grid to parse individual objects in the

user’s surroundings, extracting the complete object boundary, shape, and identity, with

no user intervention required (see Figure 5.5 semantic volume).

3) Intelligent object inventory. During the object parsing process, the Scene

Manager creates an intelligent object inventory by associating the per-voxel CLIP features

with the individual objects. The scene manager, as shown in Figure 5.5, is the central

communication hub that a) manages multiple versions of environment models, b) sends

and receives data between the AR user interface via HTTP requests, and c) utilizes the

in-situ machine learning engine to “remember and re-identify” unique objects for the

intelligent object inventory.

After these post-processing steps, users can then easily interact with physical ob-

129



In-Situ Learning for User-Guided Personal AI Chapter 5

jects through the virtual pointer on AR devices (see Figure 5.5 user input). Compared

to conventional 3D reconstruction focusing on user manipulation of the object model’s

mesh or volume representation, the proposed multimodal pipeline associated the object

identity, metadata, and vision-language features with objects in the intelligent inventory.

With CLIP features attached to objects, novel spatially-aware-AI interfaces are unlocked

through interactive machine learning, which we will discuss in the next section.

“In-Situ” Machine Learning for Intelligent Object Inventory

We previously defined “in-situ” machine learning in Section 5.1. In this section, we

show how it can be used to improve AR experience in complex real-world environments.

Since we have attached rich multimodal features to individual objects, one practical

optimization objective for the in-situ learning model is to learn to remember and re-

identify individual objects across different scans. We define in-situ learning as the process

of encoding real-time data into a neural network, such that the network itself serves as

both the knowledge container and decision-making unit for downstream tasks, e.g., as a

probe to identify changes such as new or missing objects. This is related to AR works

discussed in Section 5.3.2 and works that perform online neural scene encoding (Feng

et al. NARUTO [203], Sandstrom et al. Point-SLAM [203]), but we introduce the

additional temporal dimension to enable differencing across multiple time points (room

scans on different days) in the second application scenario.

The “in-situ” (Latin for “in position” or “on site.”) nature of our machine learning

concept is characterized by the following observations:

1. As we live in a complex and constantly evolving world, the neural vision-language

features that represent objects and contexts also change dynamically. These un-

labeled training data are only generated at the moment when the user captures
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the physical space.

2. Novel ground truth samples that guide the supervised learning (e.g., personal-

ized object names and merged segments) are generated only when the user interacts

with the environment. Unlike offline-collected large-scale datasets that present a

universally accepted ground truth of our world [142, 99], the ground truth in in-situ

learning varies among users and over time.

3. Similar to typical interactive machine learning, themodel’s performance is eval-

uated by the user instead of by a fixed benchmark. It’s at the user’s discretion

to decide if the model is sufficiently optimized, or else they can provide more train-

ing data by re-scanning the space or re-labeling incorrectly classified objects to

fine-tune the model.

4. Also similar to interactive machine learning, the model always immediately reflects

the user’s latest annotations and preferences, which is in contrast to the

typical batch processing and incorporation of user feedback necessitated by large

offline-trained models.

In addition to the interactive user guidance, we convert an object’s irregularly shaped

volume representation to a graph representation to optimize for online machine learn-

ing. Unlike previous scene authoring AR work that trained on low-level TSDF features

alone [177, 178, 182], the multimodal 3D fusion allows us to create a novel graph repre-

sentation that combines the geometric, semantic, and vision-language features for every

object in the scene. As shown in Figure 5.6, we treat every voxel as a node pointing to the

object’s centroid, which converts an object’s irregular voxel representation into a dense

graph representation. For efficiency and data augmentation, we stochastically sample 30

voxels from the dense representation in each training iteration to generate a sparse graph,
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Figure 5.6: During the real-time in-situ training, we sample a sparse graph from an
object’s voxel representation stochastically, with the voxel location’s CLIP feature as
the node attribute. This design choice converts the challenging irregular 3D object
classification problem into a simpler graph classification problem, which enables us to
identify physical objects across multiple scans of the space. The sofa graph above is
oversimplified for visualization purposes.

whose node attribute is the voxel location’s OpenCLIP [158] vision-language feature,

which we found sufficient to re-identify objects and reveal object changes (Section 5.3.4)

without having to align the scene models for naive mesh comparison. Additional prop-

erties, such as RGB values, the geometric 3D vector pointing at the object’s centroid,

and relative spatial relationships to other objects can also be integrated as node or edge

attributes based on specific task needs.

In other words, we turn a hard 3D object classification task into an easier graph

classification task, which maintains its effectiveness even if the object or the environment

changes dynamically (spatial translation, non-rigid deformation, varying lighting condi-

tions). Additionally, the in-situ model is incrementally fine-tuned as the user provides

new inputs from subsequent scans. Specifically, to learn the graph-based objects, we

adopt a dynamic graph CNN [204] as the backbone of the in-situ model to train a graph
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classifier that predicts if the graph belongs to a class label previously trained on, or an

unknown class (e.g., background objects not marked by user). A single in-situ model is

trained for a specific space – it can be tailored by one user for personalization or shared

between a group of users for collaboration and information exchange.

To summarize, in-situ learning’s novelty lies in the “just-in-time” user-generated data

and the evaluation metric that is based on user satisfaction. In real-world applications,

system designers should choose the specific type of machine learning paradigm (e.g.,

supervised or self-supervised), the model architecture, and the training strategy that

best supports the task at hand.

Figure 5.7: Two prototype applications developed on Magic Leap 2 AR headset,
demonstrating the potential of the proposed multimodal 3D fusion pipeline and “in-
-situ” machine learning for real-world scenarios.

5.3.4 Prototype Applications

In this section, we showcase two real-world Magic Leap 2 AR prototype applications

to demonstrate the potential of the proposed multimodal 3D fusion pipeline and new

tools and interfaces for users to interact with physical spaces and objects when used in

conjunction with “in-situ” machine learning.
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Spatial Search with Natural Language

We foresee a future of sophisticated real-virtual interactions, requiring deep under-

standing that goes beyond discrete objects with labels. By fusing 3D vision-language

features into the 3D models, our system permits spatial search in a physical space us-

ing natural language. The user may issue complex, even abstract queries, for example,

“things that might be dangerous to babies.” The system responds by highlighting match-

ing regions in the user’s surroundings, as shown in Figure 5.7 Application 1, including

unstable objects, potential falling hazards, and power outlets. Figure 5.9 illustrates more

example queries and results.

This search capability is built on the language component of our scene volume, com-

posed of a multi-channel CLIP feature volume. CLIP is key to this process as it embeds

images and text into a shared feature space. Thus we can cast natural language search

as building a map over the scene of the similarity between scene CLIP features and the

CLIP embedding of a user-supplied text query. To enable this, we first resample the CLIP

feature grid using trilinear interpolation to obtain a CLIP feature at each mesh vertex.

We then compute the similarity of each vertex feature to the query feature, relative to

a set of negative queries, following the search method of CLIP Surgery [205]. However,

CLIP Surgery uses a long, fixed list of negative queries to identify redundant features

that come at the cost of longer computation time and higher memory load, which exceed

the acceptable limits for real-time interactive AR applications. We build the negative

query list as the union of all class names extracted by our 3D semantic segmentation

step. Our list is therefore shorter and more relevant, allowing us to produce heatmap

outputs to the query similarity efficiently while filtering out noisy responses across the

scene.

Leveraging this spatial search ability in AR applications can provide users with an
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enhanced understanding and navigation of unfamiliar spaces. It can also enable them

to explore complex environments faster than they would manually. Our Magic Leap

2 prototype application, as demonstrated in the accompanying video and Figure 5.7,

overlays the response heatmap on top of the environment and physical objects via the

optical-see-through display to provide an immersive user experience.

Intelligent Object Inventory

We imagine an intelligent AI AR companion that keeps a “temporal and spatial

inventory” of objects for real-world environments, helping users keep track of the objects

in their space. Integrating geometric and semantic knowledge into the joint 3D space

makes it possible to automatically parse individual 3D objects from the environment for

an object-centric user interface. As shown in our accompanying video and Figure 5.7 Day

1, the “magical” instantaneous highlighting and selection of physical objects in optical-

see-through AR displays from any viewpoint provides an intuitive and direct interface

for users to edit or personalize their space.

Our main goal with this application is to show that when coupled with in-situ learning,

the multimodal-feature-fused environment models can unlock novel spatially-aware AI

user interfaces. For instance, having access to intelligent virtual twins of every physical

object in the room makes it feasible to train a machine-learning model to “learn and

remember” physical objects, maintain object identities, and track object changes without

aligning any noisy unstructured mesh models. To this end, we introduce a basic intelligent

inventory system to visually present one interpretation of object changes in real-world

environments.

We briefly discussed in Section 5.3.2 that the concept of “changes” from text-based

version control systems does not automatically translate to the spatial, morphological,

or appearance changes in physical objects. While the “true removal” of an object or
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a paragraph of text is similar, naively comparing different scans of a space captured on

different days yields counterproductive noise and does not maintain object identities. The

ability to re-identify an arbitrary physical object is critical for effective user assistance.

Learning to remember and re-identify an object relies on the in-situ learning model, which

we introduced in Section 5.3.3. We will now discuss how it is used to reveal unchanged or

missing objects in AR. This proof-of-concept AR demonstration does not yet constitute

a full inventory system.

We offer three actions to collect user input to determine which objects to track and

train on:

1) Merge. Users can merge multiple mesh segments into one if a single object was

fragmented during the 3D reconstruction process, e.g., false boundaries introduced by

shadows. This change is picked up by in-situ learning, leading to the recognition of

segmented parts as the same object in future scans of this space.

2) Rename. Users can also customize the automatically generated object labels (e.g.,

“bottle:2” to “Joe’s thermos”) to improve their utility. This feature proves particularly

beneficial in collaborative environments, such as a shared office, where it can help specify

the ownership of items more clearly. In collaborative settings where multiple users might

adjust the same space at different times, user-specified labels naturally reduce confusion.

The accompanying video showcases an actual office setting in AR, where objects are

distinctly tagged with their respective owner’s names (in the review version of the video,

real names are blurred to maintain anonymity).

3) Remember. Users can direct the system to track certain objects in the environment

without further editing actions. The same objects should be re-identified with their cur-

rent properties. This design provides a quick and easy way to collect “positive samples”

that will be used to optimize the in-situ learning model for object classification.

The user’s object-level personalization input provides the ground truth to guide the
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learning objective. The in-situ learning model is trained to classify arbitrary objects

based on their neural features from randomly sampled sparse graphs, which improves

robustness across different scans and avoids overfitting. Specifically, objects that are

merged, renamed, or remembered are flagged as “positive” samples with a unique label

and assigned a class index in the classifier’s ground truth. Through various design ex-

periments, we arrived at a training strategy that classifies all other “non-personalized”

objects as a “null” class with an index of zero. We sample null class features from all

other voxels that do not belong to any of the personalized objects. While it performs

robustly for re-identifying objects, this strategy limits the ability to differentiate newly

introduced objects from the null objects, which we will discuss in Section 5.3.6. The user

triggers the training after they finish personalization. The training stops automatically

after the model reaches its peak accuracy (over 95% in our demon scene) plus certain

cool-down epochs. Other strategies, such as adaptive learning rate, can also be used

when users label new objects and fine-tune a trained model. In our office demo scene,

we set the cool-down epochs to 10 and the total in-situ model training takes less than 8

seconds.

In pseudocode Figure 5.8, we describe how successive scans of a tracked space are

processed and compared to analyze which objects have been removed or remained in

the space. When a previously optimized in-situ model m is available, new semantically

parsed voxel clusters (object segments or objects) from the new 3D scan F are first

converted into a graph representation in data loader g and then sent to the in-situ model

for classification, i.e., to check if it matches any object that was merged, renamed, or

marked to remember by the user in previous scans (m.labels).

As we show in Figure 5.7 Application 2, scans from two different days of a tracked

scene are akin to “git commit” states. The timestamps and chronology of the scans

naturally form a version history. To easily inspect this history, our system renders a
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Figure 5.8: Pseudocode describing how the Scene Manager and the user can build
an intelligent object inventory with the in-situ learning model. After multimodal 3D
fusion and post-processing, individual objects are passed through the in-situ model to
re-identify previously existing objects and eventually reveal missing objects.
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“volumetric diff”, visualizing the different object inventory states over time:

1) Unchanged objects. Highlighting objects that were previously edited or marked by

the user and can still be found in the current version of the environment. Additionally,

objects that were previously merged or moved can still be recognized with their person-

alized names.

2) Missing objects. Revealing all objects that were present in the previous scan of the

space but are now missing from the current version of the environment. Visualizing miss-

ing objects in red hollow contours in the current space lends users additional temporal

awareness of their space. In the future, this new time dimension could be the substrate

for novel and more complex AR interactions.

Critically, we produce the volumetric diff unlike any other methods discussed in Sec-

tion 5.3.2. It is the automatically segmented objects and their vision-language features

that are being compared by a neural network rather than versions of the reconstructed

3D model – misalignment in object or environment models will produce counterproduc-

tive noise instead of useful object tracking. In this proof-of-concept implementation, we

manually aligned various scans to the physical room solely for the unchanged/missing

objects’ contours visualization. Re-identifying objects and listing which ones are un-

changed or missing require no spatial alignment, which is not the focus of this work and

is solvable through fiducial marker tracking algorithms (ARTag [206]) or model matching

methods (3DMatch [207]).

5.3.5 In-situ learning and large language models

We introduced multimodal 3D fusion in Chapter 5 and showcased that fusing CLIP

vision-language features into the environment and object models allows users to search in

a physical space with natural-language queries. This language-infused 3D model has the
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Figure 5.9: From object names to abstract natural-language queries, we show more
examples of spatial search in a real-world environment.

obvious use case of quickly finding objects based on their description, but it can also be

used creatively, leading to emergent utility, such as inspecting properties for damage or

hazards, requesting decor advice, or mapping the layout of specific task-relevant items.

Furthermore, this capability can serve as the backbone of future context-aware interaction

systems, by identifying the virtual manipulations that are appropriate for each object in

a flexible and open-ended way.

While working on the multimodal fusion pipeline and in-situ learning applications

in AR 5.3.4, we experimented extensively with LLM APIs and local open-source LLMs.

In this work, for the consideration of building a portable backpack system for real-time

AR interactions, we decided against their use for the following reasons: a) The most

capable LLMs remain cloud-based, making them problematic for privacy-sensitive AR

applications; b) Although the throughput of LLM services is approaching real-time [208],

the requirement of network traffic and added latency add friction to real-world AR use

cases.

5.3.6 Limitations and Future Work

We implemented our in-situ learning for AR system with several deep-learning models

that can run simultaneously on a single NVIDIA RTX 3090. The PC + Magic Leap 2

setup can easily be configured to a modern version of a portable backpack system such
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as the “touring machine” [144]. Despite the encouraging results, these design choices: 1)

constrained the linguistic understanding demonstration to spatial search in response to

text queries instead of “actual conversations with physical spaces”, and 2) limited the

system’s 3D object segmentation and object inventory feature to the 100 categories of

common stuff and things defined in the COCO dataset [99, 209].

To achieve true open-vocabulary 3D object segmentation to support the tracking of

any physical objects, adding the capability to recognize and train on any object not lim-

ited by pre-defined categories is straightforward. One viable solution is to adopt Segmen-

tAnything [166] to identify object boundaries and then use LMMs such as LLaVA [172]

or GPT-4V [171] for neural vision-language feature extraction and rich image description,

labeling, or captioning.

Our current multimodal 3D scene model fusion approach opens new possibilities for

context-aware AR interactions, such as responding to a natural-language query with a

heatmap in AR (see Figure 5.9). Looking into the future of pervasive AR and human-AI

teaming, we believe the ability to have a “back-and-forth conversation” with a physical

space would be an attractive application for spatial computing. Think about asking your

AR/AI system where in your backyard the best spots are to hang a hammock, or imag-

ine you are a property manager and your conversational logging agent will proactively

point out areas where closer inspection is needed based on previous findings spotted

automatically during your current walk-through.

Conversing with LLMs in text (and even images) is now as easy as texting, thanks to

open-source and commercial solutions [210, 171, 211]. However, unlike short conversa-

tions, conversing with physical spaces requires us to “tokenize the 3D model” and feed a

large amount of “tokens” or feature representations into LMMs/LLMs to get a spatially

meaningful response. This vision is theoretically possible with several tweaks based on

our current implementation, yet there are several challenges worth considering:
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• What is the best approach to “tokenize a 3m × 3m space” that can maintain

its spatial meaning and at the same time keep a good balance between accuracy

(spatial and linguistic) and efficiency (fewer tokens)?

• Existing LLMs have a limited context window, the number of tokens a model

can accept as the context for a response. Even with Google Gemini’s seemingly

large 1 million tokens window size [212], sending the entire 3D context to an LLM

repeatedly is not yet a feasible approach.

• The throughput of LLM services (the number of output tokens per second) is

approaching real-time for short contexts [208]. Yet, considering the number of

tokens required for 3D contexts, it remains a challenging task for the real-time AR

applications we pursue and demonstrated.

Our current intelligent object inventory implementation was designed to only recog-

nize objects that are missing or unchanged in the physical world, but identifying “in-

sertions” or previously unseen new objects could be a useful feature for real-world use

cases. We discussed earlier that this limitation comes about because the training strat-

egy is optimized for high accuracy for objects that appeared in previous 3D models.

While we have seen more false positives than true positives in new object detection in

ongoing experiments, inspirations from out-of-distribution detection [213] research could

point us to potential solutions. Differentiating two or more identical objects poses a sig-

nificant challenge for both humans and machines. By applying everyday human tricks,

such as utilizing relative spatial relationships between objects, we may teach machines

to enhance such capabilities. Our open-source implementation highlights areas that may

benefit from future improved solutions and quantitative evaluations.
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5.4 Implications of in-situ learning

In-situ machine learning empowers end users by placing them at the center of the

AI-assisted system, including user inputs at various stages during the shaping of AI

models – from user-led data collection that defines the AI’s objective, to the user’s direct

evaluation of the AI’s performance that determines the training process. This approach

is particularly useful for non-expert users who can produce personalized AIs without the

requirement for machine learning knowledge. The design of real-time collected data and

continuously renewed user feedback also takes us a step closer to highly personalized AIs

that adapt to the diverse preferences of different users.

In this chapter, we used three distinctive applications to showcase the real-world ben-

efits of in-situ learning. The personalized pose detection system (Section 5.2.1) demon-

strates the potential of flexible AI assistance that adapts to individuals’ physical limi-

tations and personal needs. The same system can be applied to other use cases beyond

personal care. The segmentation tool that learns abstract vision or linguistic concepts

(Section 5.2.2) not only reproduced a classic interactive machine learning example with

more powerful capabilities, but also set the foundation for the intelligent object inventory

system in our AR use case.

The new context-aware AR interfaces and intelligent object inventory system dis-

cussed in Section 5.3 were made possible by an in-situ learning AI system that trains

on the spatially aware features from a custom multimodal 3D fusion pipeline that inte-

grates neural vision-language features into the geometric and semantic representations

of physical spaces. The intelligent inventory system re-identifies physical objects in AR

and holds the promise to enhance personal space management, team collaboration and

information exchange, and even asset management. The heightened temporal awareness

of the physical spaces could potentially help tackle the issue of “change blindness” [214].
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The ability to perform spatial searches using natural language within a 3D environment

provides a glimpse into a more natural and intuitive AR interface – conversing with phys-

ical spaces for interior design suggestions, safety inspection visualizations, or personalized

navigation.

We believe future human-AI teaming will feature highly personalized, rapidly opti-

mized, and continuously improving AI teammates that understand the user and provide

the right amount of assistance when needed in our daily lives. In-situ learning and our

demonstrated use cases are our small contributions to this vision. We expect to see more

potential for this human-AI system design philosophy in terms of applications and capa-

bilities, particularly with the development of more powerful vision and vision language

models that fundamentally enhance machines’ sensing capabilities of our physical world.
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Summary and Discussion

Figure 6.1: We identify the end-user activities that the various human-AI teaming
projects have discussed and facilitated in this dissertation, corresponding to the ML
model-building stages and activities.

6.1 Summary of contributions

One succinct summary of this dissertation’s contribution is that we identified and

facilitated various human-AI teaming opportunities for end users to participate and in-

fluence the model output and the shaping of the AI in real-world computer vision tasks.

We discussed each chapter’s contribution in terms of their application as well as their sig-

nificance in facilitating human-AI teaming in Section 1.3. We also mapped each chapter
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Figure 6.2: Mapping each chapter’s contribution in terms of the end-user activities
they facilitated during human-AI teaming.

to the AI system designer’s activities in the model-building workflow [11].

Corresponding to these model machine learning building activities, in Figure 6.1, we

further extend this workflow with human-AI teaming activities that are performed by end

users. This complete overview from both the system designer’s and end user’s perspec-

tives forms the basis for our summary discussion of these teaming opportunities. Let’s

revisit each chapter’s significance in understanding and facilitating human-AI teaming in

terms of end-user activities:

Chapter 2: Working closely with scientists highlights the critical role of their domain

knowledge in applied machine learning, which helps identify the gaps between AI capa-

bilities and user input in end-to-end models, pointing to a streamlined interface as an

opportunity to interactively refine AI predictions.

Chapter 3: A streamlined interface can help democratize AI’s capabilities and sim-

plify the scientific imagery analysis workflow. The interactive model inference and edit-

ing allow users to better interpret and refine AI’s prediction. The human-in-the-loop

partnership enhances the black-box model’s utility and the insights generated from the

human-AI team. In this form of human-AI teaming, end users can evaluate the model’s
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Figure 6.3: We propose the concept of in-situ learning in Chapter 5, which contributes
to human-AI teaming as our proposed learning paradigm maximizes end user’s par-
ticipation and influence on the entire process during the shaping of ML models.

performance based on their domain knowledge, expertise, or personal subjective pref-

erences. Such interfaces also paved the way for users to provide feedback for model

improvement.

Chapter 4: An AI-assisted system carefully designed with an understanding of the

task’s priority and the inherent strengths and weaknesses of human collaborators can lead

to improved team performance. On the contrary, naively partnering ill-suited AIs with

humans can diminish human skills over time. Closely observing end users’ behaviors,

especially the unexpected ones, while working with an AI teammate can help AI system

designers identify the optimizations to enhance the overall team performance and avoid

hurting user skills (sustainable human-AI teaming).

Chapter 5: For real-world human-AI teaming, we propose in-situ learning to encode

real-time user-collected data into a personalized neural network for knowledge storage

147



Summary and Discussion Chapter 6

and real-world human-AI teaming assistance. The proposed learning paradigm is in-

spirational to future human-AI teaming, as it involves end users at every step of the

model development process. Although this approach may currently be suitable for only

a limited set of real-world applications, it significantly enhances the level of interaction

between humans and AI, bringing them closer together than ever before.

6.2 Human-AI teaming for creative applications

Human-AI teaming is not only useful for tasks that require domain expertise or high-

stakes decision making, as discussed earlier in this dissertation, it can also play a positive

role in creative applications. Powerful text-to-image generative models like DALL·E [215]

and Adobe Firefly1 are now capable of generating high-quality images based on user’s

text descriptions of a scene. We demonstrate an example generated by Adobe Firefly

in Figure 6.4. It is worth noting that human-AI teaming in text-to-image tasks creates

opportunities for users to provide various forms of inputs to control or personalize the

produced image, for example, by selecting specific areas for natural modification or using

reference images that guide the expected look and layout of the output.

We show that by applying a purple cloud style reference image to the generated

image in Figure 6.4, the user can achieve the expected purple sky effect. However,

applying the reference style also altered many other components in the generated scene,

such as the layout of objects, building size, material and the direction of the sun. This

behavior highlights an important research topic: maintaining user control and accurately

predicting user preference in generative models. Researchers often approach the problem

with better user interface designs, enhanced visual-language modality alignment, etc.

1Adobe Firefly https://firefly.adobe.com
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Figure 6.4: The example images are generated with Adobe Firefly Image 3 (preview)
model (https://firefly.adobe.com) with the prompt of “Beautiful cozy fantasy stone
cottage in a spring forest aside a cobblestone path and a babbling brook. Stone wall.
Mountains in the distance. Magical tone and feel.” Based on the first generated image,
we applied a reference-style image of purple clouds (middle) to produce the second
image.

149



Summary and Discussion Chapter 6

We believe the interactive, iterative human-AI teaming approach that learns from the

user, as described in in-situ learning (Chapter 5), and the lessons learned in this disserta-

tion could provide a valid direction that helps artists maximize the utility of generative

models while maintaining user control over the preferred elements and qualities. This is

a future research direction in which the author of this dissertation is interested.

6.3 Human-AI teaming and the growing model size

In the context of interactive machine learning, it is critical to maintain the interactive

“train-feedback-correct” cycles [14] to narrow the Gulf of Evaluation [216]. This also

applies to human-AI teaming as timely feedback helps users learn the system’s limitations

and capabilities. Fiebrink et al. [217] made the observations that by evaluating results

from the model, the users are developing effective strategies to build working systems

– the system is also training the user to take appropriate actions to improve the joint

performance.

Early interactive machine learning systems were able to steer the model on the fly

with sparse input data from the user and provide instant feedback, thanks to the efficient

and carefully chosen statistical learning algorithms for each of the specific use cases.

Our literature research shows Support Vector Machines (SVM), Perceptron, Naive Bayes

Classifiers, Decision Trees, and ensemble methods like AdaBoost, Random Forest, etc.,

are among the most frequently adopted algorithms in conventional IML applications.

Many works also put strict constraints on the number of features for input data and

model parameters to improve training efficiency and model transparency. Dimensionality

reduction methods like principal components analysis (PCA), multidimensional scaling,

and clustering are often used as ways to reduce input size, visualize model weights,

or assist prediction interpretation. However, conventional statistical machine learning
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methods are falling behind with the emergence of deep learning methods in complex

computer vision tasks.

We witnessed the birth of deep neural networks, algorithms that formed the founda-

tion of modern computer vision research, such as AlexNet [218], ZFNet [219],

GoogLeNet [220], VGGNet [221], and ResNet [222] during the eight years of ImageNet

Large Scale Visual Recognition Challenge (ILSVRC, 2010-17) [223]. Accelerated by the

parallel computation on graphics processing units (GPUs), these deep learning models

push the limit of ImageNet [224] classification task from 2011’s ∼ 25% top-5 error rate

to less than 1% in less than ten years, exceeding human-level performance (5.1%) on the

ImageNet dataset [225].

As computer vision models became more accurate, we also saw the growing size (num-

ber of trainable parameters) accompanying the improved model performance. Building on

the achievements during the ImageNet era, computer vision research continues to evolve

with the emergence of foundation models such as CLIP [143], DINO [226], Segmen-

tAnything [166], and multi-modal language models like LLaVA [172] and GPT-4V [171].

These foundation models extend the capabilities of traditional vision systems, showcas-

ing superior adaptability to diverse and complex scenes. However, they also further push

the definition of large-scale models to the level of hundreds of millions of parameters to

billions of parameters, making it impossible to finetune for real-time human-AI teaming.

In the age of billion-parameter models, it is now common to take many GPUs work-

ing in parallel for days, if not weeks, to optimize a large foundation model. If naively

adopting modern large-scale deep neural networks in interactive machine learning or

personalized human-AI teaming tasks, the prolonged training time will harm a user’s

effective evaluation of feedback provided or a change made to the system, i.e., a larger

gap in the Gulf of Evaluation.

In response to the challenges posed by the increasing model size, we proposed in-
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situ learning (Chapter 5) that utilizes compact features derived from foundation models

to maintain the rapid “train-feedback-correct” cycles [14] even in complex vision tasks

that required large-scale neural networks. By integrating these distilled features into

smaller, task-specific models, in-situ learning allows for rapid model updates and adap-

tations based on user feedback or changing conditions without the overhead of extensive

retraining. This method significantly accelerates the speed at which modifications can

be evaluated and applied, effectively narrowing the Gulf of Evaluation, and making the

system more responsive and efficient.

Nonetheless, with its own limitations like the requirements for real-time data col-

lection and affordable user assessment for model quality evaluation, in-situ learning is

not a universal solution for all human-AI teaming tasks. The increasing capabilities in

foundation models and vision language models will continue to push AI system designers

to tackle more complex tasks involving human-AI collaboration. Future research aimed

at efficient feature extraction methods and effective model updates will be crucial for

maximizing the potential of human-AI teaming systems.
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[42] R. E. González, R. P. Muñoz, and C. A. Hernández, Galaxy detection and
identification using deep learning and data augmentation, Astronomy and
Computing 25 (Oct., 2018) 103–109, [arXiv:1809.0169].

156

http://xxx.lanl.gov/abs/1811.0416
http://xxx.lanl.gov/abs/astro-ph/0506476
http://xxx.lanl.gov/abs/1606.0483
http://xxx.lanl.gov/abs/1809.0169


[43] F. C. Gillett, M. Mountain, R. Kurz, D. A. Simons, M. G. Smith, and
T. Boroson, The Gemini Telescopes Project (Invited Paper), in Revista Mexicana
de Astronomia y Astrofisica Conference Series (E. Falco, J. A. Fernandez, and
R. F. Ferrero, eds.), vol. 4 of Revista Mexicana de Astronomia y Astrofisica
Conference Series, p. 75, Nov., 1996.

[44] T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett. 27 (2006),
no. 8 861–874.

[45] T. Saito and M. Rehmsmeier, The Precision-Recall Plot Is More Informative than
the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets, PLoS
ONE 10 (Mar., 2015) e0118432.

[46] D. Hiramatsu, D. A. Howell, S. D. Van Dyk, J. A. Goldberg, K. Maeda, T. J.
Moriya, N. Tominaga, K. Nomoto, G. Hosseinzadeh, I. Arcavi, C. McCully,
J. Burke, K. A. Bostroem, S. Valenti, Y. Dong, P. J. Brown, J. E. Andrews,
C. Bilinski, G. G. Williams, P. S. Smith, N. Smith, D. J. Sand, G. S. Anand,
C. Xu, A. V. Filippenko, M. C. Bersten, G. Folatelli, P. L. Kelly, T. Noguchi, and
K. Itagaki, The electron-capture origin of supernova 2018zd, Nature Astronomy 5
(June, 2021) 903–910, [arXiv:2011.0217].

[47] C. McCully, S. Crawford, G. Kovacs, E. Tollerud, E. Betts, L. Bradley, M. Craig,
J. Turner, O. Streicher, B. Sipocz, T. Robitaille, and C. Deil,
astropy/astroscrappy: v1.0.5 zenodo release, Nov., 2018.

[48] K. Labrie, K. Anderson, R. Cárdenes, C. Simpson, and J. E. H. Turner,
DRAGONS - Data Reduction for Astronomy from Gemini Observatory North and
South, in Astronomical Data Analysis Software and Systems XXVII (P. J.
Teuben, M. W. Pound, B. A. Thomas, and E. M. Warner, eds.), vol. 523 of
Astronomical Society of the Pacific Conference Series, p. 321, Oct., 2019.

[49] S. Bhavanam, S. Channappayya, P. Srijith, and S. Desai, Cosmic ray rejection
with attention augmented deep learning, Astronomy and Computing 40 (2022)
100625.

[50] B. Flaugher, H. T. Diehl, K. Honscheid, T. M. C. Abbott, O. Alvarez,
R. Angstadt, J. T. Annis, M. Antonik, O. Ballester, L. Beaufore, G. M.
Bernstein, R. A. Bernstein, B. Bigelow, M. Bonati, D. Boprie, D. Brooks, E. J.
Buckley-Geer, J. Campa, L. Cardiel-Sas, F. J. Castander, J. Castilla, H. Cease,
J. M. Cela-Ruiz, S. Chappa, E. Chi, C. Cooper, L. N. da Costa, E. Dede,
G. Derylo, D. L. DePoy, J. de Vicente, P. Doel, A. Drlica-Wagner, J. Eiting, A. E.
Elliott, J. Emes, J. Estrada, A. F. Neto, D. A. Finley, R. Flores, J. Frieman,
D. Gerdes, M. D. Gladders, B. Gregory, G. R. Gutierrez, J. Hao, S. E. Holland,
S. Holm, D. Huffman, C. Jackson, D. J. James, M. Jonas, A. Karcher, I. Karliner,
S. Kent, R. Kessler, M. Kozlovsky, R. G. Kron, D. Kubik, K. Kuehn,

157

http://xxx.lanl.gov/abs/2011.0217


S. Kuhlmann, K. Kuk, O. Lahav, A. Lathrop, J. Lee, M. E. Levi, P. Lewis, T. S.
Li, I. Mandrichenko, J. L. Marshall, G. Martinez, K. W. Merritt, R. Miquel,
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