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field B = 100 ẑ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Electric fields for 3D potential well problems with uniform magnetic
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Abstract

Title: Investigation into the numerical simulation of strongly magnetized charged
particle dynamics by exponential integration
Name: Tri Nguyen
Degree: Ph.D.
University: University of California, Merced
Year: 2024
Committee Chair: Professor Mayya Tokman

The problem of solving for charged particle dynamics under the influence of elec-
tromagnetic fields is a fundamental component of particle simulation models to simu-
late plasma physics. This task - known as the particle pushing problem - is especially
challenging when the plasma is strongly magnetized due to numerical stiffness arising
from the wide range of time scales between highly oscillatory gyromotion and long
term macroscopic behavior of the system, thus calling for computationally efficient
numerical methods.

This dissertation investigates an alternative approach to numerically simulate
strongly magnetized charged particle dynamics using exponential integration tech-
niques. We first derive exponential integrators to solve strongly magnetized particle
pushing problems and implement a novel algorithm to evaluate matrix φ functions
that is computationally efficient for low dimensional problems. We then extend this
work by deriving Nytröm type exponential integrators that effectively solve the parti-
cle pushing problem in its second-order form directly. Numerical experiments compar-
ing these exponential integrators against two conventional particle pushing algorithms
demonstrate that exponential integrators are superior for linear and weakly nonlinear
problems and are competitive for nonlinear problems. In particular, the Nyström
type exponential integrators exhibit significant computational savings over the stan-
dard exponential integrators. These results demonstrate that exponential integrators
are a promising alternative to numerically solve strongly magnetized particle pushing
problems.
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Chapter 1

Introduction

Computational simulation is an essential tool in plasma physics research. Simula-
tions provide an alternative to physical experimentation, which can often be imprac-
tical or impossible. Moreover, simulations can be used to plan, design, and optimize
physical experiments before their actual implementation.

In low density regimes, a natural computational framework to simulate plasma is
by modeling it as a collection of charged particles [1,4,22], where at this microscopic
scale the dominant forces acting on the particles are due to electromagnetic fields.
A key component of this particle simulation framework is the problem of solving
for charged particle dynamics under the influence of electromagnetic fields, a task
known as the particle pushing problem. Since a large number of particles must be
modeled in order for the simulation to be realistic, the particle pushing problem is a
computationally intensive component of any particle simulation method.

In the case of strongly magnetized plasma, the particle pushing problem is partic-
ularly challenging due to multi-scale behavior of the system. At the fastest temporal
scale of the system, charged particles gyrate about magnetic field lines in highly oscil-
latory gyromotion. However, the long term macroscopic behavior of plasma evolves
on a significantly slower scale that can be orders of magnitude slower than the gyrope-
riod. As a consequence of this wide range of time scales, strongly magnetized particle
pushing problems are numerically stiff. An example of this multi-scale phenomenon is
illustrated in figure 1.1, which shows a cross-sectional view of a magnetic confinement
device called a tokamak. Here, one can see that the scale of interest is the overall
banana-shaped trajectory of the particle rather than the fast scale gyromotion.

Conventional numerical time integrators fall into two broad categories: explicit
methods and implicit methods. Explicit methods calculate the solution at the next
time step based upon already computed solutions at previous times. In other words,
the update formula for the solution is an explicit expression of known values. Implicit
methods, by contrast, calculate the solution at the next time step using not yet
computed values of the solution at the future time. Hence, the update formula is an
implicit equation with respect to the desired solution which has to be solved.

Explicit methods, although computationally cheap per time step, suffer from in-
ferior numerical stability. Consequently, stiff problems impose a severe constraint on

1
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Figure 1.1: Trapped banana orbit

the maximum allowable step size for explicit methods, thus necessitating an excessive
number of time steps and computation to approximate the solution over sufficiently
long time intervals. Implicit methods, on the other hand, have better numerical stabil-
ity properties and, thus, can take larger time steps. However, the numerical inversion
of the implicit update formula can result in being prohibitively computationally ex-
pensive. Due to these limitations, there is a continuous need for the development of
integrators with better stability properties than explicit methods and improved com-
putational efficiency with respect to implicit methods for the stiff particle pushing
problem.

This dissertation investigates an alternative approach to numerical simulation of
the strongly magnetized particle dynamics using exponential integration. Exponential
integrators form a class of numerical time stepping methods that solve linear problems
exactly and are A-stable [21, 39, 40]. With these favorable accuracy and stability
properties, exponential integration is a promising alternative to conventional methods
to mitigate numerical stiffness and deliver accurate solutions for strongly magnetized
particle pushing problems.

1.1 Background

1.1.1 Particle-In-Cell Methods

Particle-in-cell (PIC) methods have been extensively used to simulate plasmas in
low density regimes [1, 4, 22]. In the PIC approach the spatial domain is discretized
into computational cells and particle trajectories are advanced over discrete time
intervals. PIC methods treat particle motion from the Lagrangian perspective in the
sense that particle dynamics throughout the cells are computed by solving kinematic
equations of motion. The electromagnetic fields, which are a combination of (known)
externally applied fields and the self-consistent fields generated from the charged
particle motion, are computed only at the cell edges. In this respect, the computation
of the electromagnetic fields is treated from the Eulerian frame of reference. Starting
with a known initial dynamical state of the particle and the electromagnetic fields
at the cell edges, one iteration of the PIC algorithm proceeds through executing the
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following set of directives:

1. Interpolate the electromagnetic fields from the cell edges to each particle’s po-
sition.

2. Update each particle’s dynamical state (position and velocity/momentum) by
integrating the equations of motion.

3. Deposit each particle’s charge back onto the cell edges using a shape function.

4. Update the self-consistent electromagnetic fields by solving Maxwell’s equations.

Figure 1.2 shows a schematic of the PIC algorithm. Note that step two of the PIC
algorithm is the particle pushing problem.

1. Interpolate Fields 2. Update Particle

3. Deposit Charge4. Update Fields

Figure 1.2: Schematic of the PIC algorithm.

1.1.2 The Particle Pushing Problem

The equation of motion governing charged particle dynamics under the influence
of a magnetic field B and an electric field E is given by the Lorentz force

m
dv

dt
= q (E + v ×B), (1.1)

where v, q, and m are the particle velocity, electric charge, and mass, respectively.
Denoting particle position by x, equation (1.1) is equivalently expressed by the New-
tonian system of equations:

dx

dt
= v, (1.2a)

dv

dt
=

q

m
(E + v ×B). (1.2b)
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Alternatively, the particle pushing problem has an equivalent formulation in terms
of the position x and the (conjugate) momentum denoted by p. The total energy of
the system is given by the following Hamiltonian function

H(x,p) =
1

2m
∥p− qA(x)∥2 + q V (x), (1.3)

where A(x) is the magnetic vector potential and V (x) is the electric scalar potential
that respectively yield the electromagnetic fields

B = ∇x ×A(x) and E = −∇xV (x).

Hamilton’s equations then give the equations of motion:

dx

dt
= ∇pH(x,p) =

1

m

(
p− qA(x)

)
, (1.4a)

dp

dt
= −∇xH(x,p) =

q

m

(
∂A

∂x

)T (
p− qA(x)

)
+ qE. (1.4b)

Observe that both the Newtonian form (1.2) and Hamiltonian form (1.4) of the
particle pushing problem are systems of first-order differential equations.

1.1.3 Charged Particle Motion in Electromagnetic Fields

This section describes the effects of various electromagnetic field configurations
on the motion of a charged particle. In this dissertation, only the simplest types of
particle motion are discussed:

• acceleration due to an electric field E,

• gyromotion due to a uniform magnetic field B,

• the E ×B drift due to constant magnetic and electric fields perpendicular to
each other, and

• the grad-B drift due to a non-uniform magnetic field with a perpendicular
gradient term.

Focusing on these test problems will help us to thoroughly study the performance of
the new exponential numerical approach. For a discussion on particles motion due
to the effects of other types of non-uniformity in the electromagnetic fields, we direct
the reader to references [21,23,30].
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Electric Field - Acceleration

The simplest electromagnetic field configuration is one with no magnetic field and
a uniform electric field E. In this case the force acting on the particle is

m
dv

dt
= qE.

Thus, the particle experiences acceleration along the direction parallel to the electric
field. Note that the sign of the charge determines the orientation of the acceleration:
a particle with positive charge accelerates parallel to E while a particle with negative
charge accelerates anti-parallel to E.

Uniform Magnetic Field - Gyromotion

We next describe particle motion in a uniform magnetic field B and no electric
field. Here, the Lorentz force equation (1.1) reduces to

dv

dt
=

q

m
(v ×B). (1.5)

which implies that the magnetic field redirects particle velocity in a perpendicular
direction while its speed v = ∥v∥ remains constant.

To show that the particle speed is unaffected by a magnetic field, we look at the
kinetic energy of the particle:

1

2
mv2 =

1

2
m∥v∥2

=
1

2
m(v · v).

Differentiating with respect to time gives

d

dt

(
1

2
mv2

)
=

d

dt

(
1

2
m(v · v)

)
= mv · dv

dt
= mv · (v ×B).

Noting that the cross product term v ×B is perpendicular to v, we see that the dot
product term vanishes. Hence,

d

dt

(
1

2
mv2

)
= 0.

That is, the kinetic energy is constant, which implies the particle speed v remains
unchanged.
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We next show that the magnetic field redirects particle velocity in a perpendic-
ular direction. Specifically, the magnetic field rotates particle velocity in the plane
perpendicular to the field. Without loss of generality, suppose the magnetic field is
in the z direction, B = B ẑ. Decomposing equation (1.5) into x, y, z components, we
have:

dvx
dt

= ω vy, (1.6a)

dvy
dt

= −ω vx, (1.6b)

dvz
dt

= 0, (1.6c)

where ω = qB/m. Equations (1.6a) and (1.6b) imply that the magnetic field affects
particle motion in the plane perpendicular to B while equation (1.6c) states that the
velocity parallel to B is constant.

To derive particle motion in the perpendicular plane, we differentiate equations
(1.6a) and (1.6b) once more with respect to time:

d2vx
dt2

= ω
dvy
dt
,

d2vy
dt2

= −ω dvx
dt
.

Then substituting equations (1.6a) and (1.6b) into the right-hand side and after
rearrangement, we get:

d2vx
dt2

+ ω2 vx = 0,

d2vy
dt2

+ ω2 vy = 0,

These are linear second-order differential equations with oscillatory solutions. Hence,
the solutions for velocity can be written as:

vx(t) = v⊥ cos(ω t+ ϕ) (1.7a)

vy(t) = v⊥ sin(ω t+ ϕ) (1.7b)

vz(t) = v∥, (1.7c)

where v∥ and v⊥ =
√
v2x + v2y are constant speeds parallel and perpendicular to B,

respectively, and ϕ is a phase angle determined by the initial velocity.
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To obtain expressions for the particle position, we simply integrate velocity to get:

x(t) = x0 +
v⊥
ω

sin(ω t+ ϕ)− v⊥
ω

sinϕ, (1.8a)

y(t) = y0 −
v⊥
ω

cos(ω t+ ϕ) +
v⊥
ω

cosϕ, (1.8b)

z(t) = z0 + v∥t. (1.8c)

Generalizing to an arbitrary magnetic field, charged particles gyrate about magnetic
field lines in oscillatory gyromotion in the plane perpendicular to the magnetic field,
where ω = qB/m is the gyrofrequency, T = 2π/ω is the gyroperiod, and r = v⊥/|ω|
is the gyroradius. The gyromotion of a positively charged particle is illustrated in
figure 1.3.

Figure 1.3: Gyromotion of a positively charged particle in a magnetic field B.

E ×B Drift

We now examine particle motion in a constant magnetic field B with a constant
electric field E⊥ perpendicular to B. As the particle goes through gyromotion from
the B field, note that on one half of the gyro-orbit E⊥ decelerates the particle thereby
decreasing v⊥. Since v⊥ decreases, the gyroradius r decreases as well. On the other
half of the gyro-orbit E⊥ accelerates the particle so that v⊥ increases, which in turn
increases the gyroradius r. The net effect is that (in the plane perpendicular to
B) the gyromotion does not form closed orbits, but instead yields a drift motion
perpendicular to both E⊥ and B as shown in figure 1.4.

To analyze this drift motion, suppose without loss of generality that B = B ẑ and
E⊥ is a constant electric field perpendicular to B. If we conceptualize particle motion
as circular motion (gyromotion) about the average particle position (the guiding
center), then particle velocity can be expressed by

v = vr + vR,
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E⊥
B

+

Figure 1.4: Drift motion from an electric field perpendicular E⊥ to the B field.

where vr is the gyromotion velocity about the guiding center, and vR is the guiding
center velocity. In other words, the particle velocity is a superposition of the gyro-
motion velocity and the guiding center velocity. Then the total force on the particle
is

m
dv

dt
= m

(
dvr

dt
+
dvR

dt

)
= q

(
(vr + vR)×B

)
+ qE⊥

= q(vr ×B) + q(vR ×B) + qE⊥.

Decomposing into components corresponding to the gyromotion and the guiding cen-
ter, we have:

dvr

dt
=

q

m
(vr ×B), (1.9a)

dvR

dt
=

q

m
(vR ×B) +

1

m
E⊥. (1.9b)

Noting that equation (1.9a) is the gyromotion equation discussed in the previous
section, we focus our analysis on equation (1.9b). Supposing the guiding center
velocity vR is constant, we have

dvR

dt
= 0

implying that

− q

m
E⊥ = vR ×B = ΩvR, where Ω =

[
0 ω

−ω 0

]
.
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Solving for the guiding center velocity vR, we get

vR = − q

m
Ω−1E⊥

= − q

m

[
0 −1/ω

1/ω 0

] [
Ex

Ey

]
=

1

B2

[
0 B
−B 0

] [
Ex

Ey

]
=

E⊥ ×B

B2
. (1.10)

Equation (1.10) tells us that E⊥ induces a constant drift velocity in the direction
perpendicular to both E⊥ and B. Generalizing for an arbitrary constant electric
field E, let

E = E∥ + E⊥,

where E∥ and E⊥ are the components parallel and perpendicular to B, respectively.
Then

E ×B = (E∥ + E⊥)×B

= (E∥ ×B) + (E⊥ ×B)

= E⊥ ×B,

where the cross product term E∥ ×B vanishes because E∥ is parallel to B. Hence,
equation (1.10) generalizes for arbitrary constant electric field E and we see that the
drift velocity induced by an arbitrary constant electric field E is

vE =
E ×B

B2
. (1.11)

In other words, particle motion in a magnetic field and an electric field is composed
of gyromotion and drift motion called E ×B drift.

Note that the above analysis considers the special case of a constant force due to a
uniform E field. Generalizing to an arbitrary constant force F , we have the following
expression for drift motion induced by F :

vR =
1

q

(
F ×B

B2

)
. (1.12)
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Non-Uniform Magnetic Field - Grad-B Drift

We now consider particle motion in a non-uniform magnetic field. We consider
the particular case where the change in the magnetic field is very small as the particle
traverses over one gyro-orbit. Formally, we assume the gyroradius is much smaller
than the characteristic scale length of the change in the magnetic field, which is
mathematically expressed by

r∥∇B∥
B

∼ ϵ≪ 1.

Recall that the gyroradius is inversely proportional to the magnetic field strength.
Consequently, the gyroradius is smaller as the particle orbits in a region where the
magnetic field is stronger. Conversely, when the particle orbits in a region where the
magnetic field is weaker, the gyroradius is larger. Similar to the E×B drift, the net
effect is that the gyromotion does not form a closed orbit resulting in a trajectory
with drift motion perpendicular to both the magnetic field B and its gradient ∇B,
as shown in figure 1.5. This drift due to the non-uniformity of the magnetic field is
called the grad-B drift.

∇B
B

+

Figure 1.5: Grad-B drift motion

The equation of motion with a non-uniform magnetic field is expressed by a non-
linear differential equation, which in general does not admit a closed form solution.
However, under the assumption that the variation in the magnetic field is small over
the gyro-orbit, we can find an approximate solution. To analyze this grad-B drift
motion, we expand the magnetic field about the guiding center to get

B = B0 + (r · ∇)B + · · · .

Without loss of generality, let us take the origin to be at the guiding center and
suppose

B =

(
B0 + y

∂B

∂y
+ · · ·

)
ẑ.
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Note that since the guiding center is located at the origin, we have

x = xR + xr = xr,

y = yR + yr = yr,

where (xR, yR)T = (0, 0)T are the coordinates of the guiding center and (xr, yr)
T are

the coordinates of the particle gyrating about the guiding center. Then the Lorentz
force is given by

m
dv

dt
= q [(vr ×B) + (vR ×B)]

= q

[(
vr ×

(
B + y

∂B

∂y
+ · · ·

)
ẑ

)
+

(
vR ×

(
B + y

∂B

∂y
+ · · ·

)
ẑ

)]
= mω

[(
vr ×

(
1 +

y

B

∂B

∂y
+ · · ·

)
ẑ

)
+

(
vR ×

(
1 +

y

B

∂B

∂y
+ · · ·

)
ẑ

)]
.

By assumption,
r∥∇B∥
B

=
y

B

∂B

∂y
∼ ϵ≪ 1.

Hence,

m
dv

dt
=mω

[(
vr ×

(
1 +

y

B

∂B

∂y

)
ẑ

)
+

(
vR ×

(
1 +

y

B

∂B

∂y

)
ẑ

)]
+O(ϵ2)

=mω

[
(vr × ẑ) +

(
vr ×

y

B

∂B

∂y
ẑ

)
+ (vR × ẑ)

+

(
vR ×

y

B

∂B

∂y
ẑ

)]
+O(ϵ2).

We now define the averaging operator ⟨·⟩ by

⟨·⟩ =
1

T

∫ T

0

(·) dt.

Then averaging over one gyro-orbit gives us

m

〈
dv

dt

〉
=mω

[
⟨vr × ẑ⟩+

〈
vr ×

y

B

∂B

∂y
ẑ

〉
+ ⟨vR × ẑ⟩+

〈
vR ×

y

B

∂B

∂y
ẑ

〉]
+O(ϵ2)

=mω

[
(⟨vr⟩ × ẑ) +

〈
vr ×

y

B

∂B

∂y
ẑ

〉
+ (vR × ẑ)

+

(
vR ×

〈
y

B

∂B

∂y
ẑ

〉)]
+O(ϵ2).
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Observe that 〈
dv

dt

〉
=
dvR

dt
= 0, ⟨vr⟩ = 0, and

〈
y

B

∂B

∂y
ẑ

〉
= 0.

Therefore, the effective force acting on the guiding center is

m
dvR

dt
= mω

[〈
vr ×

y

B

∂B

∂y
ẑ

〉
+ (vR × ẑ)

]
+O(ϵ2). (1.13)

This implies that to a leading order

vR × ẑ = −ω
〈
vr ×

y

B

∂B

∂y

〉
Since we set the origin at the guiding center, by equations (1.7a) and (1.8b) we see
that

y = yr = −vrx
ω0

,

which gives us

dvR

dt
= −ω

(
vr ×

yr
B

∂B

∂y

)
= vr ×

vrx
B

∂B

∂y

=
1

B

∂B

∂y

[
vrxvry x̂− v2rx ŷ

]
=
v2⊥
B

∂B

∂y

[
sin(ω0 t+ ϕ) cos(ω0 t+ ϕ) x̂− cos2(ω0 t+ ϕ) ŷ

]
(1.14)

where for the components of the gyromotion velocity we made the substitutions

vrx = v⊥ cos(ω0 t+ ϕ),

vry = v⊥ sin(ω0 t+ ϕ).
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Averaging equation (1.14) over one gyro-orbit and multiplying by m, we get

m

〈
dvRx

dt

〉
= ⟨F∇x⟩

= ⟨vr × ẑ⟩x

=
v2⊥
B

∂B

∂y
⟨sin(ω0 t+ ϕ) cos(ω0 t+ ϕ)⟩

= 0,

m

〈
dvRy

dt

〉
= ⟨F∇y⟩

= ⟨vr × ẑ⟩y

= −v
2
⊥
B

∂B

∂y
⟨cos2(ω0 t+ ϕ)⟩

= − v
2
⊥

2B

∂B

∂y
,

m

〈
dvRz

dt

〉
= ⟨F∇z⟩

= ⟨vr × ẑ⟩z
= 0,

where F∇ = (F∇x, F∇y, F∇z)
T is the effective grad-B drift force. Substituting the

average of this force ⟨F∇⟩ into equation (1.12) gives the leading order approximation
for the grad-B drift velocity

vR = −
(

1

2
mv2⊥

)(
1

q B

)
∂B

∂y
x̂.

Generalizing to an arbitrary magnetic field B, the drift velocity is

v∇ = −
( 1

2
mv⊥

q

)
B ×∇B

B3

= −
(
W⊥

q

)
B ×∇B

B3
,

(1.15)

where W⊥ = 1
2
mv⊥ is the kinetic energy perpendicular to the magnetic field B.

To reiterate, the particular particle motions described above (E field acceleration,
gyromotion, E × B drift motion, and grad-B drift motion) were chosen for test
problems to validate the time integrators proposed in this dissertation.
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1.1.4 Conventional Particle Pushing Framework

The text of this section is a reprint of the material as it appears in T.P. Nguyen,
I. Joseph and M. Tokman, Exploring exponential time integration for strongly mag-
netized charged particle motion, Computer Physics Communications, 304 (2024),
109294, doi: https://doi.org/10.1016/j.cpc.2024.109294.

The standard approach to numerical particle pushing approximates the Newtonian
equations of motion (1.2) with the finite-difference model

xn+1 − xn

h
= vn+1/2, (1.16a)

vn+1/2 − vn−1/2

h
=

q

m

(
En +

vn+1/2 + vn−1/2

2
×Bn

)
, (1.16b)

where h is a fixed time step size and the subscripts n, n±1/2, n+1 denote times tn,
tn±h/2, tn+h, respectively. Position and the electromagnetic fields are computed at
integer time nodes while velocity is computed at half-integer time nodes. This stag-
gering of position and velocity by one-half time step gives a leapfrog-like, centered-
difference, time reversible scheme with second-order accuracy. Observe that the sec-
ond equation (1.16b) is implicit in vn+1/2 and, hence, numerically stable. However,
the step size h must be sufficiently small such that the electric field E and magnetic
field B are approximately constant over the time interval [tn, tn +h] to yield accurate
solutions.

It follows from equation (1.16a) that the finite-difference model approximates the
second derivative of position with the centered difference formula:

d2x

dt2
≈ xn+1 − 2xn + xn−1

h2
.

Birdsall and Langdon [1] pointed out that in order for this model to properly capture
harmonic motion, the time step size for equations (1.16a) and (1.16b) must obey the
restriction:

h <
2

|ω|
, ω =

qB

m
.

The update formula for the particle position is given by a simple rearrangement
of (1.16a):

xn+1 = xn + hvn+1/2.

For the Lorentz force equation (1.16b), note that the right-hand side is composed
of an electric push term and a magnetic rotation term due to the electric field En

and magnetic field Bn, respectively. Also observe that the updated velocity vn+1/2 is
given implicitly, which requires inversion of the equation to get an explicit expression
for vn+1/2. Two common algorithms to resolve these tasks and update the particle
velocity are the Buneman [6] and the Boris [2] particle pushers. Currently, the Boris
particle pusher is the most frequently used algorithm for PIC applications [34].
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Buneman Particle Pusher

The Buneman particle pushing algorithm decomposes the action of the electric
field E on particle velocity into components parallel and perpendicular to the mag-
netic field B. In the presence of an electric field E and a magnetic field B, the
particle experiences a so-called E ×B drift velocity (perpendicular to both fields)

vdrift =
E ×B

B2
, B = ∥B∥.

The Buneman algorithm subtracts this drift from the particle velocities at time nodes
tn−1/2 and tn+1/2 thereby defining two intermediate velocities:

v− = vn−1/2 − vdrift,

v+ = vn+1/2 − vdrift.

Substituting vn−1/2 and vn+1/2 into equation (1.16b) then yields

v+ − v−

h
=

q

m

(
E∥ +

v+ + v−

2
×B

)
.

The above formula is composed of acceleration parallel to the magnetic field (the E∥
term) and a rotation of the velocity perpendicular to the magnetic field (the cross
product term). For a uniform magnetic field with magnitude B, the angle of magnetic
rotation over time step h is

θ = hω, ω =
qB

m
.

The Buneman algorithm updates the velocity from v− to v+ by the formula

v+ = cos θ v− − sin θ

(
B

B
× v−

)
.

As a historical note, the Bunemam algorithm was introduced in 1967 [6] during which
time the evaluation of transcendental functions was computationally expensive. To
reduce computational cost, the algorithm makes use of the small angle approximation

w =
h

2

qB

m
≈ tan

(
θ

2

)
.

Then, using half-angle trigonometric identities, sin θ and cos θ are computed as fol-
lows:

s =
2w

1 + w2
= sin θ,

c =
1− w2

1 + w2
= cos θ.
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Algorithm 1: Buneman Velocity Push

Input: h, q, m, Bn, B = ∥Bn∥, En, vn−1/2

Output: vn+1/2

1: vdrift ←
En ×Bn

B2

2: v− ← vn−1/2 − vdrift

3: w ← h

2

qB

m

4: s← 2w

1 + w2

5: c← 1− w2

1 + w2

6: v+ ← cv− − s
(
Bn

B
× v−

)
7: vn+1/2 ← v+ + vdrift

Boris Particle Pusher

The Boris algorithm takes an alternative approach to the velocity update by de-
coupling the electric push and magnetic rotation in (1.16b). The discussion presented
here is taken from [1]. The algorithm defines two intermediate velocities v− and v+

by the relations

vn−1/2 = v− − h

2

q

m
En,

vn+1/2 = v+ +
h

2

q

m
En.

Substituting the above expressions into the Lorentz force equation (1.16b) cancels the
En term resulting in the magnetic rotation equation

v+ − v−

h
=

q

m

(
v+ + v−

2
×Bn

)
. (1.17)

Thus, the actions due to the electric field En and the magnetic field Bn are decoupled
and velocity is updated in a Strang-like splitting scheme as follows:
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i. First-half electric push v− = vn−1/2 +
h

2

q

m
En;

ii. Magnetic rotation
v+ − v−

h
=

q

m

(
v+ + v−

2
×Bn

)
;

iii. Second-half electric push vn+1/2 = v+ +
h

2

q

m
En.

Figure 1.6 illustrates an example of the velocity update in a configuration where the
magnetic field is pointing out of the plane of the page, the electric field points from
left to right, and the initial particle velocity vn−1/2 is perpendicular to the magnetic
field.

vn−1/2 v−

i. First-half electric push

θ ii. Magnetic rotation

v+

iii. Second-half electric push

vn+1/2

E

B

Figure 1.6: Boris velocity update

Observe that the magnetic rotation equation (1.17) is an implicit expression in v+

and, therefore, requires inversion to get an explicit expression. The Boris algorithm
achieves this inversion as follows. First, an intermediate velocity v′ is defined to be
the vector that bisects the magnetic rotation angle θ in the plane perpendicular to
the magnetic field B. Furthermore, v′ is specified such that a right triangle is formed
with v′ as the hypotenuse and v− as one of the legs. This implies that there exist a
scalar w such that the other leg of the triangle is given by

v− × w B̂,

where B̂ is the unit vector in the direction of B; see figure 1.7. Letting α = θ/2, we
see that

tanα =
|v− × wB̂|
|v−|

=
|v−|w
|v−|

= w.
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Hence, by straightforward vector addition

v′ = v− + v− × tanα B̂, α =
θ

2
=
h

2

qB

m
.

v+

v−

α = θ
2

α = θ
2

v− × w B̂

v′ B

Figure 1.7: Vector v′ bisects the magnetic rotation angle θ. A right triangle is formed
by the vectors v−, v′, and v− × w B̂ for some scalar w.

The algorithm next solves for the vector v+ − v− by making use of the fact that
it is perpendicular to both v′ and B. Hence, there exist some scalar u such that

v+ − v− = v′ × u B̂.

To find the value of u, refer to figure 1.8 and observe that

sinα =
1
2
|v′ × u B̂|
|v+|

=
|v′|u
2|v+|

.

Solving for u gives

u =
2|v+| sinα
|v′|

.

Substituting v′ = v− + v− × tanαB̂ and making use of the fact |v+| = |v−| (v+ is
v− rotated by angle θ), we get

u =
2 sinα√

1 + tan2 α
=

2 tanα

1 + tan2 α
.

Thus, the update from v− to v+ is given by the formula

v+ = v− + v′ × 2 tanα

1 + tan2 α
B̂.

Similar to the Buneman algorithm, the Boris algorithm was introduced at a time
(1970) when the evaluation of transcendental functions was computationally expen-
sive. Therefore, implementations of the Boris algorithm typically use the small angle
approximation

w = α ≈ tanα

in step 2 of algorithm 2.
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v+

v−

α
v′

α

v′ × u B̂ = v+ − v−

B

Figure 1.8: Vector v′×u B̂ is equal to v+−v− and perpendicular to both v′ and B.

Algorithm 2: Boris Velocity Push

Input: h, q, m, Bn, B = ∥Bn∥, En, vn−1/2

Output: vn+1/2

1: v− ← vn−1/2 +
h

2

q

m
En

2: w ← h

2

qB

m

3: v′ ← v− + v− × 1

B
wBn

4: v+ ← v− + v′ × 1

B

2w

1 + w2
Bn

5: vn+1/2 ← v+ +
h

2

q

m
En

Other Particle Pushing Algorithms

The investigation of computationally efficient numerical particle pushers continues
to be an active research field. Notable among the more recent developments are the
energy-conserving, asymptotic preserving scheme [35] and the filtered Boris algorithm
[19]. The first method is a modified implicit Crank-Nicolson scheme that converses
energy and incorporates an effective force in the velocity update that captures the
leading order grad-B drift motion in non-uniform magnetic fields. This effective force
is carefully chosen such that it approximates the grad-B force acting on the guiding
center in a gyro-averaged sense. The filtered Boris algorithm, on the other hand,
modifies the standard Boris pusher by introducing so-called filter functions to more
accurately resolve the fast oscillations in particle velocity due to strong magnetic
fields. Different choices of filter functions and choices of the positions where the
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magnetic field is evaluated yield different variants of the filtered Boris algorithm. It
is interesting to note that for problems with constant magnetic and electric fields, the
filtered Boris algorithm reduces to a type of exponential integrator that solves the
problem exactly. However, this dissertation shall demonstrate that the exponential
integrators proposed herein are exact solvers for problems with a constant magnetic
field and electric fields that are linear functions of the particle position in addition
to constant electric fields. Both the modified Crank-Nicolson scheme and the filtered
Boris algorithm (for the general case of arbitrary magnetic fields) are implicit methods
and are more complex to implement than the standard Boris algorithm. Hence, they
have the advantage of allowing for larger time step sizes for problems with non-uniform
electromagnetic fields, but at the cost of being more computationally expensive than
the standard Boris pusher.

1.2 Dissertation Structure

The organization of this dissertation is as follows. Chapter 2 explores exponential
integration as a novel numerical particle pushing method. A framework for deriv-
ing an exponential integrator is presented along with two specific example schemes
from the Exponential Propagation Iterative methods of Runge-Kutta type (EPIRK)
class [39, 40]: a second-order Exponential Propagation (EP2) method and a third-
order Exponential Propagation method of Runge-Kutta type (EPRK3). A key to
the efficiency of our numerical approach is the use of the Lagrange-Sylvester Inter-
polation Polynomial formula to compute the exponential-like φ matrix functions.
For low dimensional problems such as simulating charged particle dynamics, evalua-
tion of the exponential matrix functions outperforms the common Krylov subspace
projection-based techniques. Results of numerical experiments comparing the expo-
nential integrators against the conventional Boris and Buneman pushers show that
exponential integrators yield superior performance for linear and weakly nonlinear
problems, and are competitive with the conventional pushers for strongly nonlinear
problems.

Chapter 3 builds upon the previous chapter by taking the standard exponen-
tial integration framework as a template to derive even more computationally effi-
cient Nyström type exponential methods that integrate the particle pushing problem
in its second-order form (1.1) directly instead as a system of first-order equations.
In particular, we derive a second-order Exponential Propagation method of Runge-
Kutta-Nyström type (EPRKN2) and a third-order Exponential Propagation method
of Runge-Kutta-Nyström type (EPRKN3). Results of numerical experiments are pre-
sented showing a significant improvement in the computation speeds of the EPRKN2
and EPRKN3 methods over the standard EP2 and EPRK3 schemes.

The final chapter discusses, summarizes and concludes the work presented in this
dissertation. Directions for future research are also outlined.



Chapter 2

Exploring exponential time
integration for strongly magnetized
charged particle motion

The text of this chapter is a reprint of the material as it appears in T.P. Nguyen,
I. Joseph and M. Tokman, Exploring exponential time integration for strongly mag-
netized charged particle motion, Computer Physics Communications, 304 (2024),
109294, doi: https://doi.org/10.1016/j.cpc.2024.109294.

2.1 Introduction

Solving for charged particle dynamics is a key problem in particle-in-cell (PIC)
simulations of plasma physics, a task known as the particle pushing problem. Since
realistic simulations call for the modeling of a vast number of particles, the problem
is computationally intensive. This task is especially challenging when the plasma
is strongly magnetized in which case charged particles gyrate about magnetic field
lines in highly oscillatory gyromotion. In contrast, the macroscopic evolution of the
system occurs on a time scale orders of magnitude slower. The presence of such
a wide range of time scales in the system results in the numerical stiffness of the
equations modeling the dynamics. Moreover, accuracy requirements of simulations
typically demand resolution at the scale of the gyromotion, which necessitate small
time steps for conventional time integration schemes. These difficulties, therefore,
call for computationally efficient numerical particle pushing methods.

The standard approach to solving the particle pushing problem numerically is
to discretize the equations of motion with a finite-difference model from which the
dynamical state of the particle is advanced by a time stepping algorithm [1,22]. Two
well-known examples of this conventional approach are the Boris [2] and Buneman [6]
particle pushers. Both methods stagger particle position and velocity by one-half
time step resulting in a leapfrog-like centered-difference scheme that gives second-
order accuracy in time. The Boris algorithm, in particular, currently enjoys status
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as the de facto particle pusher [34]. A fundamental requirement in this framework
is that electromagnetic fields be approximately constant over each time step size.
Consequently, problems with large field gradients demand small step sizes to maintain
accurate solutions, which results in excessive computational expense.

The investigation of computationally efficient numerical particle pushers continues
to be an active research field. For example, investigation into numerical methods that
address this time step size restriction include [3, 10, 11,13,14,17,19,35,41].

This chapter explores an alternative approach to numerical particle pushing using
a technique called exponential integration. Exponential integrators approximate the
solution of a nonlinear dynamical system in terms of exponential-like functions of
matrices which are either Jacobians of the system or their approximations. Expo-
nential methods offer several desirable features. By construction, exponential time
integrators solve the linear portion of the particle pushing problem exactly thus ac-
counting for the electric field gradient component of the solution. While traditional
particle pushers such as the Boris and Buneman algorithms assume that the electric
field gradient is nearly zero over the course of the time step, exponential integration
methods allow for a non-zero gradient and enable larger time steps to be taken. In
addition, since computing individual particle trajectories is a low dimensional prob-
lem, it is possible to evaluate the exponential-like functions of the Jacobians required
by exponential methods with relatively low computational cost. In this chapter we
exploit the good stability properties of the exponential integration methods and the
low-dimensionality of the particle pushing problem to propose exponential integra-
tors for calculating the dynamics of particles under the influence of a strong constant
magnetic field and spatially varying electric fields. Similar to the modified Crank-
Nicolson scheme [35] and the filtered Boris algorithm [19], the exponential integrators
presented here can compute accurate solutions using larger step sizes but are more
complex and computationally expensive than conventional particle pushers. How-
ever, these exponential integrator particle pushers are explicit methods in contrast
to the Crank-Nicolson and filtered Boris pushers. We emphasize that since this is an
initial exploration into the relatively novel approach of numerical particle pushing by
exponential integration, this study focuses on problems with a uniform magnetic field
as a first step and defer investigation into problems with non-uniform magnetic fields
for future work.

The organization of this chapter is as follows: Section 2 describes the equations
of motion of the particle pushing problem. Section 3 presents exponential integra-
tors used for solving these equations. A computational technique to evaluate the
exponential-like matrix functions which constitutes the main computational expense
of an exponential integrator is discussed in section 4. Numerical experiments for sev-
eral test problems comparing exponential integrators with the Boris and Buneman
algorithms are presented in section 5. Finally, section 6 summarizes and concludes
this chapter. A proof of the theorem justifying our method to compute matrix func-
tions is presented in an appendix.
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2.2 Exponential Integrator Particle Pusher

Observe that if the particle state is known at time t = tn, then the particle pushing
problem is of the form

du

dt
= f(u), un = u(tn), (2.1)

where f(u) is the right-hand side function of the equations of motion. Taking a
first-order Taylor expansion of the right-hand side function of (2.1) about the known
state un, we get

du

dt
= f(un) + An(u− un) + r(u), (2.2)

where

An =
∂f

∂u

∣∣∣∣
u=un

is the Jacobian matrix and

r(u) = f(u)− f(un)−An(u− un) (2.3)

is the nonlinear remainder term. Multiplying equation (2.2) by the integrating factor
exp(−tAn) and then integrating over the time interval [tn, tn + h], we obtain the
integral equation

u(tn + h) = un + hφ1(hAn)f(un) +

tn+h∫
tn

eAn(tn+h−t)r(u(t)) dt, (2.4)

where φ1(hAn) is a matrix function defined by the MacLaurin series expansion of the
scalar analytic function

φ1(z) =
ez − 1

z
=

1∫
0

ez(1−τ) dτ

applied to the matrix argument hAn. Letting t = tn + τh, equation (2.4) is equiva-
lently expressed by

u(tn + h) = un + hφ1(hAn)f(un) + h

1∫
0

ehAn(1−τ) r(u(tn + τh)) dτ. (2.5)

Equation (2.5) is a starting point from which an exponential integrator can be derived
as follows. Let un be a numerical solution obtained at a previous integration step and
let h be a specified time step size. Then formula (2.5) gives the exact solution at the
next time step u(tn + h). To approximate u(tn + h) we can construct an exponential
integrator by accomplishing the following two tasks:
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(i) Develop a quadrature rule to approximate the nonlinear integral term

h

1∫
0

ehAn(1−τ)r(u(tn + τh)) dτ ;

(ii) Construct a technique to compute exponential-like matrix functions, called φ
functions.

The Exponential Propagation Iterative Methods of Runge-Kutta-type (EPIRK)
framework has been shown to allow construction of efficient exponential methods that
reduce computational cost per time step compared to other exponential integrators
[39, 40]. These methods have been shown to be computationally efficient for several
applications including MHD modeling [12]. Thus, this is the first class of exponential
methods we will explore for solving the particle pushing problem.

The formulation for a general EPIRK method is given by the following ansatz:

Ui = u0 + ai1ψi1(gi1hA0)hf(u0) +
i∑

j=2

aijψij(gijhA0) ∆(j−1)r(u0), (2.6a)

i = 1, 2, . . . , s−1,

u1 = u0 + b1ψs1(gs1hA0)hf(u0) +
s∑

j=2

bjψsj(gsjhA0)h∆(j−1)r(u0), (2.6b)

where the matrix ψij functions are defined by the scalar functions

ψij(z) =
s∑

k=1

pijk φk(z)

with

φk(z) =

1∫
0

ez(1−τ) τ k−1

(k − 1)!
dτ, k = 1, 2, . . . ,

and the vectors ∆(j−1)r(u0) are the j−1th forward differences of the nonlinear re-
mainder function (2.3) computed on the nodes u0,U1,U2, . . . ,Us−1. Here, the first
through the j−1th forward differences of the nonlinear remainder function are defined
by:

∆r(u0) = r(U1)− r(u0),

∆2r(u0) = ∆r(U1)−∆r(u0)
= r(U2)− 2r(U1) + r(u0),

...
...

...

∆j−1r(u0) = ∆j−2r(Uj−1)−∆j−2r(u0)

=

j−1∑
i=0

(−1)i
(
j−1

i

)
r(Uj−1−i), where U0 = u0.
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The coefficients aij, gij, bj, pijk are determined by satisfying the desired order condi-
tions. This procedure has been used to derive the following two methods:

• Second-order exponential propagation method [40]

un+1 = un + hφ1(hAn)f(un), (EP2)

• Third-order exponential propagation, Runge-Kutta type method [37]

U1 = un + hφ1

(
3
4
hAn

)
f(un),

R1 = f(U1)− f(un)−An(U1 − un),

un+1 = un + hφ1(hAn)f(un) + 2hφ3(hAn)R1.

(EPRK3)

Note that in principle exponential integrators solve linear differential equations
exactly. As a consequence, the region of stability for exponential integrators is the
left-half of the complex plane; i.e. exponential integrators are A-stable.

2.3 Computing the Matrix Functions

In any exponential integration scheme the most computationally expensive step
is the evaluation of each action of an exponential-like matrix function φ. For small
matrices, approximation techniques such as a finite Taylor polynomial, Padé approxi-
mation, or scaling and squaring have been common approaches to compute the matrix
function φ(A). However, these methods are quite computationally expensive and are
usually only used when the computational cost of evaluating matrix functions is not
important. (For a detailed discussion on the computational issues of various methods
to evaluate the exponential of a matrix, see [28,29].) Other methods include the Leja
method [8] and Krylov subspace projection methods. Krylov subspace projection
methods, in particular, have been shown to be computationally efficient techniques
to approximate the action the matrix φ function on a vector when the matrix is
large [16,31].

The particle pushing problem, however, is a low dimensional problem. Even in
three dimensions only six equations of motion have to be integrated simultaneously
to advance a particle’s trajectory. Exploiting this low dimensionality, we propose an
alternative approach to compute the matrix φ functions by means of evaluating a
finite degree matrix polynomial that yields an analytic result. We show that this
direct analytic method is computationally efficient for such small problems.

The following theorem [5,15,38] asserts that any analytic matrix function has an
exact expression in terms of a finite degree matrix polynomial.

Theorem 1 (Lagrange-Sylvester Interpolation Polynomial Formula). Let A be an
N × N matrix and let f be a scalar function analytic in a domain containing the
spectrum of A. Then there exists a unique polynomial p of (at most) degree N−1
such that:
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1. If the eigenvalues of A are all distinct, then p is the polynomial that interpolates
f on the spectrum of A;

2. If A has repeated eigenvalues, then p is the polynomial that interpolates f on
the spectrum of A. In addition, for each eigenvalue λj with multiplicity rj,
the polynomial p also satisfies rj−1 osculating conditions in the sense that all
derivatives up to order rj−1 of both p and f agree with each other at the inter-
polation node λj. In other words:

p(λj) = f(λj) interpolation condition,

p′(λj) = f ′(λj) 1st osculating condition,

p′′(λj) = f ′′(λj) 2nd osculating condition,
...

...
...

...

p(rj−1)(λj) = f (rj−1)(λj) rj−1th osculating condition,

where the superscript denotes the order of the derivative with respect to λ.

In either case, the polynomial p applied to the matrix argument A is equivalent to the
matrix function f(A). That is,

p(A) = f(A).

Proof. See appendix A.

Our method applies this theorem to calculate the matrix exponential-like φk func-
tions, which is presented in Algorithm 3. Note that the numerical computation of the
scalar φk(z) functions for k ≥ 1 is subject to catastrophic cancellation for small argu-
ment values z = hλj. To overcome this issue, we employ the Cauchy integral formula
suggested by Kassam and Trefethen [25]. Furthermore, our particular implementa-
tion of the Lagrange-Sylvester formula employs Newton divided differences [7, 26] to
calculate the interpolation polynomial. That is, we seek the polynomial of the form

p(λ) = b0 + b1(λ− λ1) + b2(λ− λ1)(λ− λ2) + . . .

+ bN−1(λ− λ1) · · · (λ− λN−1)

that agrees with the φk function on the eigenvalues λ1, λ2, . . . , λN , where the polyno-
mial coefficients are given by the Newton divided differences:

b0 = φk[λ1],
b1 = φk[λ1, λ2],

b2 = φk[λ1, λ2, λ3],
...

...
...

bN−1 = φk[λ1, . . . , λN ],

.
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Here, the Newton divided differences on the right-hand side are defined as follows.
The zeroth divided difference is

φk[λi] = φk(λi).

The first divided difference is

φk[λi, λi+1] =


φ′(λi+1) if λi = λi+1,

φk[λi+1]− φk[λi]

λi+1 − λi
otherwise.

The second divided difference is

φk[λi, λi+1, λi+2] =


1

2!
φ′′
k(λi) if λi = λi+1 = λi+2,

φk[λi+1,i+2]− φk[λi, λi+1]

λi+2 − λi
otherwise.

By recursive definition, the jth divided difference is

φk[λi, . . . , λi+j]

=


1

j!
φ
(j)
k (λi+j) if λi, . . . , λi+j are all equal,

φk[λi+1, . . . , λi+j]− φk[λi, . . . , λi+j−1]

λi+j − λi
otherwise,

where the superscript denotes the order of the derivative of the φk function with
respect to λ. Thus, our algorithm is a generalization of Method 10 in [28, 29], which
computes the matrix exponential, using an interpolation polynomial calculated with
Newton divided differences.

To illustrate the computational efficiency of Algorithm 3 we compared two im-
plementations of the second-order EP2 and third-order EPRK3 exponential integra-
tors using (i) a Krylov subspace projection method called KIOPS [16], and (ii) the
Lagrange-Sylvester formula in MATLAB. Both implementations of the exponential
integrators are used to solve the Hamiltonian equations of motion over the time in-
terval [0, 100] for a particle of unit mass and unit charge in a uniform magnetic field
B = 100 ẑ with electric fields

E = −100

3

[
x3

y3

]
for the two-dimensional model

and

E = −1

3

100x3

100y3

10z3

 for the three-dimensional model.
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Algorithm 3: Lagrange-Sylvester Formula to compute the matrix function
φk(hA)

1: Solve for the eigenvalues of A.
2: Solve for the interpolation polynomial p such that for each eigenvalue λj:

p(λj) = φk(hλj),

p′(λj) = φ′
k(hλj),

p′′(λj) = φ′′
k(hλj),

...
...

...

p(rj−1)(λj) = φ
(rj−1)
k (hλj),

where rj ≥ 1 is the multiplicity of λj and the superscript denotes the order of
the derivative with respect to λ.

3: Evaluate the matrix polynomial p(A), which is equal to φk(hA).

The computed solutions were compared against a reference solution obtained by the
MATLAB ode113 solver with error tolerances set to 10−12 for RelTol (relative error
tolerance) and 10−12 for AbsTol (absolute error tolerance). Relative error of the
exponential integrator solution is defined as

error =
∥x∗ − x∥
∥x∗∥

,

where x∗ is the particle position of the reference solution and x is the particle position
of the exponential integrator solution, both evaluated at the final time t = 100, and
∥ · ∥ denotes the Euclidean norm.

Figure 2.1 shows precision diagrams (CPU time vs error) comparing two imple-
mentations of the EP2 and EPRK3 integrators. As we can see from the figure, the
Lagrange-Sylvester formula enables significant computational savings for exponential
integration compared to the KIOPS methods (with iteration convergence tolerance set
to 1e−9). For the two-dimensional test problem, the EPI2 integrator using KIOPS
takes on average seven times longer than the EP2 integrator using the Lagrange-
Sylvester formula to compute the final solution. Similarly, the EPIRK3 integrator
using KIOPS takes on average 2.7 times longer than the EPRK3 integrator using the
Lagrange-Sylvester formula to compute the final solution for the two-dimensional test
problem. For the three-dimensional test problem, the EPI2 integrator using KIOPS
takes on average four times longer than the EP2 integrator using the Lagrange-
Sylvester formula to compute the final solution. Likewise, the EPIRK3 integrator
using KIOPS takes on average 2.8 times longer than the EPRK3 integrator using the
Lagrange-Sylvester formula to compute the final solution for the three-dimensional
test problem. This is expected since the KIOPS technique is designed for large scale
problems and we expect the Lagrange-Sylvester formula to be more efficient for these
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low-dimensional systems.
We note that the Jacobian matrices of the problem possess some structure. For

example, the Newtonian formulation of the problem yields a zero block matrix and an
identity block matrix inside the Jacobian. Symmetries also exist in the Hamiltonian
form of the Jacobian as well. It is possible that additional computational savings
can be derived for both the Lagrange-Sylvester and KIOPS algorithms. We will
investigate this direction in the future.
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Figure 2.1: Precision diagram showing performances of 2nd and 3rd order exponential
integrators subspace projection (dotted lines) and Lagrange-Sylvester formula (solid
lines) for step sizes h = 0.01, 0.001, 0.0001 over the time interval [0, 100].

2.4 Numerical Experiments

To assess the performance of exponential integrators for the particle pushing prob-
lems we used a series of test configurations and compare these integrators to the widely
used Boris and Buneman algorithms. We selected the second and third order expo-
nential methods EP2 and EPRK3 to integrate the Hamiltonian form of the equations
of motion (1.4). Both exponential integrators are implemented with the Lagrange-
Sylvester interpolation formula to compute the matrix φ functions as described in
Algorithm 3.

The test problems under examination model a particle of unit mass and unit charge
in a uniform in time and space magnetic field aligned in the z direction, B = 100 ẑ,
and a non-uniform electric field E resulting in anisotropic drift motion of particles
along periodic orbits. Specifically, the test problems are set up with electric fields
characterized by electric scalar potential wells and hills (in the xy plane) of quadratic,
cubic, and quartic forms. To enable comparison across the different potentials, the
configurations of the potentials are such that the largest absolute eigenvalue of the
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Hessian matrix for each potential form (quadratic, cubic, and quartic) is set to the
same value at the initial particle position. Our reasoning is that the largest absolute
eigenvalue, which we denote by |V ′′|, gives a measure of the gradient of the electric
field and also is a rough estimate of the electric oscillation frequency. The ratio
of this eigenvalue to the magnetic field strength defines an ordering parameter that
determines different regimes of particle motion [24]. Thus, we conduct numerical
experiments for several values of this ratio, i.e. |V ′′|/B = 1/100, |V ′′|/B = 1/10, and
|V ′′|/B = 1. The equations were solved over the time interval of [0, 100] which is
equivalent to just nearly 1,600 gyroperiods.

To get an estimate of the error in our numerical experiments, we computed ap-
proximations to the solutions of test problems using the MATLAB ode113 integrator
with error tolerances set to 10−12 for RelTol (relative error tolerance) and 10−12 for
AbsTol (absolute error tolerance) and designated it as the reference solution. The
relative error of the numerical solution is defined by

error =
∥x∗ − x∥
∥x∗∥

,

where x∗ is the particle position of the reference solution, x is the particle position
of the solution of the particle pusher, and ∥ · ∥ denotes the Euclidean norm.

We also examined the particle energy over the longer time interval of [0, 20000]
corresponding to over 3.18× 105 gyroperiods. Each electric scalar potential is config-
ured such that at the initial condition the particle energy is unity. Since the particle
pushing problem is a Hamiltonian system, energy is a conserved quantity and, there-
fore, any error in the computed energy gives an indication of the long term accuracy
of the particle pusher under examination. The experiments were first performed with
all particle pushers using the same step size set to the minimum of h = 0.01 or the
largest step size such that the energy error is within 10% of the true value. That is,

h = min{0.01, h},

where

h := max

{
h > 0: 0.9 ≤ energy ≤ 1.1 and

20000

h
∈ N

}
.

The experiments were then repeated for the exponential integrators using the largest
step such that relative energy error of the EP2 solution is within 10% of the true
energy.

For the two dimensional models, we also included two additional experiments.
The first experiment examines the performances of the particle pushers for a simple
non-uniform magnetic field problem called the grad-B drift problem. The second
experiment examines the computed gyroradius of each particle pusher for a linear
E ×B drift problem.

All experiments in this section were run on a PC with an Intel Core i7-1255U
processor at clock speed 1.7 GHz and 16 GB of RAM and implemented in C++
using the Eigen C++ template library for linear algebra [18] with the exception of
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the grad-B drift problem and the gyroradius experiments, which were implemented
in MATLAB. All computations were calculated with double precision floating point
operations.

2.4.1 Two Dimensional Model

All two-dimensional test problems set initial particle position and velocity at
x0 = (1, 0) and v0 = (0,−1), respectively. Table 2.1 lists the configurations for
the electric scalar potential wells and their corresponding electric fields. Configura-
tions for electric scalar potential hills and the corresponding electric fields are shown
in table 2.2.

Plots of the reference solution orbits and precision diagrams for test problems
with |V ′′|/B = 1/100, |V ′′|/B = 1/10, and |V ′′|/B = 1 are shown in figures 2.2,
2.3, and 2.4, respectively. They show that the performances of the particle pushers
are roughly similar between the potential well problems and the potential hill prob-
lems. For the test problems with quadratic potentials, the exponential integrators
exhibit superior performance as expected, because the problems are linear for which
exponential integrators solve exactly. For the nonlinear test problems with cubic and
quartic potentials the computational advantage of the exponential methods is not as
dramatic but they are still competitive with the Boris and Buneman particle pushers.

Figures 2.5, 2.6, and 2.7 show the energy plots for test problems with |V ′′|/B =
1/100, |V ′′|/B = 1/10, and |V ′′|/B = 1, respectively. Note that the exponential inte-
grators compute the exact energy in one single time step for linear test problems with
quadratic potentials. For the nonlinear test problems with cubic and quartic poten-
tials, we point out several key observations. Since these exponential integrators have
not been designed to preserve energy exactly, their computed energies are expected to
drift over the time interval. However, the errors in energy of the exponential methods
remains within the same bounds of the errors for the Boris and Buneman algorithms
for comparable time step sizes. For large step sizes, the drift causes the energy to
eventually exceed those bounds. It is also important to note that the EPRK3 integra-
tor performs better than the EP2 integrator in two respects: the EP2 energy drifts are
larger than the EPRK3 energy drifts and there is wider variation in the EP2 energies
compared to the EPRK3 energies. These results indicate a possibility of construction
of higher order exponential methods that can yield sufficient accuracy within the time
interval of interest and, if they are carefully designed, could still remain competitive
from the efficiency standpoint. We will pursue development of such techniques in our
future publications.
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|V ′′| = 1 |V ′′| = 10 |V ′′| = 100

Quadratic
Well

V 1
2
(x2 + y2) −9

2
+ 5(x2 + y2) −99

2
+ 50(x2 + y2)

E −
[
x
y

]
−10

[
x
y

]
−100

[
x
y

]

Cubic
Well

V
−2

3
+ x2 + y2 −19

6
+ 3(x2 + y2) −95

2
+ 47(x2 + y2)

+1
6
(x3 + y3) +2

3
(x3 + y3) +x3 + y3

E −
[
2x− 1

2
x2

2y − 1
2
y2

]
−
[
6x− 2x2

6y − 2y2

]
−
[
94x+ 3x2

94y + 3y2

]

Quartic
Well

V 5
12

+ 1
12

(x4 + y4) −1
3

+ 5
6
(x4 + y4) −47

6
+ 25

3
(x4 + y4)

E −1
3

[
x3

y3

]
−10

3

[
x3

y3

]
−100

3

[
x3

y3

]
Table 2.1: Electric scalar potential wells and corresponding electric fields for 2D model
test problems



33

|V ′′| = 1 |V ′′| = 10 |V ′′| = 100

Quadratic
Hill

V 1− 1
2
(x2 + y2) 11

2
− 5(x2 + y2) 101

2
− 50(x2 + y2)

E

[
x
y

]
10

[
x
y

]
100

[
x
y

]

Cubic
Hill

V
4
3
− x2 − y2 25

6
− 3(x2 + y2) 97

2
− 47(x2 + y2)

+1
6
(x3 + y3) −2

3
(x3 + y3) −x3 − y3

E

[
2x− 1

2
x2

2y − 1
2
y2

] [
6x− 2x2

6y − 2y2

] [
94x+ 3x2

94y + 3y2

]

Quartic
Hill

V 7
12
− 1

12
(x4 + y4) 4

3
− 5

6
(x4 + y4) 53

6
− 25

3
(x4 + y4)

E 1
3

[
x3

y3

]
10
3

[
x3

y3

]
100
3

[
x3

y3

]
Table 2.2: Electric scalar potential hills and corresponding electric fields for 2D model
test problems
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Figure 2.2: Results for 2D test problems with |V ′′|/B = 1/100: potential well ref-
erence solution orbits (first row), potential well precision diagrams (second row),
potential hill reference solution orbits (third row), and potential hill precision di-
agrams (fourth row). Boris/Buneman step sizes are h = 10−2, 10−3, 10−4, 10−5,
10−6 for quadratic potential problems and h = 10−3, 10−4, 10−5, 10−6, 10−7 for cu-
bic/quartic potential problems. EP2/EPRK3 step sizes are h = 100, 10, 1, 10−1,
10−2 for quadratic potential problems and h = 10−1, 10−2, 10−3, 10−4, 10−5 for cu-
bic/quartic potential problems.
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Figure 2.3: Results for 2D test problems with |V ′′|/B = 1/10: potential well reference
solution orbits (first row), potential well precision diagrams (second row), potential
hill reference solution orbits (third row), and potential hill precision diagrams (fourth
row). Boris/Buneman step sizes are h = 10−2, 10−3, 10−4, 10−5, 10−6 for quadratic
potential problems and h = 10−3, 10−4, 10−5, 10−6, 10−7 for cubic/quartic potential
problems. EP2/EPRK3 step sizes are h = 100, 10, 1, 10−1, 10−2 for quadratic
potential problems and h = 10−1, 10−2, 10−3, 10−4, 10−5 for cubic/quartic potential
problems.
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Figure 2.4: Results for 2D test problems with |V ′′|/B = 1: potential well reference
solution orbits (first row), potential well precision diagrams (second row), potential
hill reference solution orbits (third row), and potential hill precision diagrams (fourth
row). Boris/Buneman step sizes are h = 10−2, 10−3, 10−4, 10−5, 10−6 for quadratic
potential problems and h = 10−3, 10−4, 10−5, 10−6, 10−7 for cubic/quartic potential
problems. EP2/EPRK3 step sizes are h = 100, 10, 1, 10−1, 10−2 for quadratic
potential problems and h = 10−1, 10−2, 10−3, 10−4, 10−5 for cubic/quartic potential
problems.



37

Potential Wells, |V ′′|
B

= 1
100

Quadratic Cubic Quartic

0 5000 10000 15000 20000

time t

0.90

0.95

1.00

1.05

1.10

E
n
e
r
g
y

Step Size = 0.01

Boris
Buneman
EP2
EPRK3

0 5000 10000 15000 20000

time t

0.90

0.95

1.00

1.05

1.10

E
n
e
r
g
y

Step Size = 0.01

Boris
Buneman
EP2
EPRK3

0 5000 10000 15000 20000

time t

0.90

0.95

1.00

1.05

1.10

E
n
e
r
g
y

Step Size = 0.01

Boris
Buneman
EP2
EPRK3

0 5000 10000 15000 20000

time t

0.90

0.95

1.00

1.05

1.10

E
n
e
r
g
y

Step Size = 20000

EP2
EPRK3

0 5000 10000 15000 20000

time t

0.90

0.95

1.00

1.05

1.10

E
n
e
r
g
y

Step Size = 25

EP2
EPRK3

0 5000 10000 15000 20000

time t

0.90

0.95

1.00

1.05

1.10

E
n
e
r
g
y

Step Size = 312.5

EP2
EPRK3

Potential Hills, |V ′′|
B

= 1
100

Quadratic Cubic Quartic

0 5000 10000 15000 20000

time t

0.90

0.95

1.00

1.05

1.10

E
n
e
r
g
y

Step Size = 0.01

Boris
Buneman
EP2
EPRK3

0 5000 10000 15000 20000

time t

0.90

0.95

1.00

1.05

1.10

E
n
e
r
g
y

Step Size = 0.01

Boris
Buneman
EP2
EPRK3

0 5000 10000 15000 20000

time t

0.90

0.95

1.00

1.05

1.10

E
n
e
r
g
y

Step Size = 0.01

Boris
Buneman
EP2
EPRK3

0 5000 10000 15000 20000

time t

0.90

0.95

1.00

1.05

1.10

E
n
e
r
g
y

Step Size = 20000

EP2
EPRK3

0 5000 10000 15000 20000

time t

0.90

0.95

1.00

1.05

1.10

E
n
e
r
g
y

Step Size = 25

EP2
EPRK3

0 5000 10000 15000 20000

time t

0.90

0.95

1.00

1.05

1.10

E
n
e
r
g
y

Step Size = 312.5

EP2
EPRK3

Figure 2.5: Energy of 2D test problems with |V ′′|/B = 1/100
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Figure 2.6: Energy of 2D test problems with |V ′′|/B = 1/10
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Figure 2.7: Energy of 2D test problems with |V ′′|/B = 1
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Non-Uniform Magnetic Field, Grad-B Drift Problem, 2D Model

In this experiment we considered a prototype non-uniform magnetic field config-
uration with the so-called grad-B drift problem. This problem has a non-uniform
magnetic field with linear spatial variation in which the length scale of spatial varia-
tion is of much longer than the gyroradius. Formally, we assume

r∥∇B∥
B

≪ 1,

where r is the gyroradius, B = ∥B∥, and ∇B is the magnetic field gradient. Under
this assumption, the particle experiences a drift velocity [9,23,30] approximately given
by

v∇B =
1

2

v2⊥
ω

B ×∇B
B2

,

where v⊥ is the particle speed in the plane perpendicular to the magnetic field and
ω = qB/m is the gyrofrequency.

The test problem for this experiment was configured with zero electric field and
magnetic field set to

B = (100 + δB y)ẑ.

Similar to the previous experiments in this section, the grad-B drift experiment con-
siders a particle of mass m = 1 and charge q = 1 with initial conditions x0 = (1, 0)
and v0 = (0,−1). Solutions were obtained by integrating the equations of motion
over the time interval [0, 100]. Figure 3.3 shows plots of the reference solution orbits
and the precision diagrams for δB = 0.1, 1, 10.
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Figure 2.8: Results for grad-B drift problem: reference solution orbits (top row),
and precision diagrams (bottom row). Boris/Buneman step sizes are h = 10−2, 10−3,
10−4, 10−5. EP2/EPRK3 step sizes are h = 10−1, 10−2, 10−3, 10−4.
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Gyroradius, 2D Model

This experiment examines the gyroradius of the solutions computed by the numer-
ical particle pushers. Since the Boris algorithm is known to compute an artificially
enlarged gyroradius when using large step sizes relative to the gyroperiod [33], it is
of interest to see how the exponential integrators perform in this regard. Here, the
term ”large step size relative to the gyroperiod” (or simply ”large” step size) is de-
fined by ωh ≫ 1, where ω = |q|B/m is the gyroperiod and h is the time step size.
Conversely, the term ”small step size relative to the gyroperiod” (or simply ”small”
step size) is defined by ωh≪ 1. Here we consider a linear E ×B drift problem with
electromagnetic fields

B = 100 ẑ and E = −
[

0
1 + y

]
.

The gyroradius is r = 0.01 for this particular configuration. Using a particle of mass
m = 1 and charge q = 1 with initial conditions x0 = (1, 0) and v0 = (0,−1), we
integrated the equations of motion over the time interval [0, 100] using a ”small” step
size h = 0.001 and a ”large” step size h = 0.1. For the ”small” and ”large” step sizes,
these yield ωh = 0.1 < 1 and ωh = 10 > 1, respectively. Results of the experiment
are shown in figure 3.2. Observe that all the numerical particle pushers accurately
computed the correct gyroradius for the ”small” step size h = 0.001. However, for the
”large” step size h = 0.1 both Boris and Buneman algorithms compute a drastically
enlarged gyroradius while the exponential integrators compute the correct gyroradius.
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Figure 2.9: Plots of computed trajectories for the E×B drift problem. Solutions for
step size h = 0.001 are solid blue and solutions for step size h = 0.1 are dotted red.
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2.4.2 Three Dimensional Model

All three-dimensional test problems set the initial particle position at x0 = (1, 0, 0)
and the initial particle velocity at v0 = (0,−1, 1). Configurations for the electric
scalar potential wells and their corresponding electric fields are shown in table 2.3.
Configurations for the electric scalar potential hills and the corresponding electric
fields are shown in table 2.4.

Figures 2.10, 2.11, and 2.12 show plots of the reference solution orbits and precision
diagrams for test problems with |V ′′|/B = 1/100, |V ′′|/B = 1/10, and |V ′′|/B = 1,
respectively. Note that overall the comparative performance of the exponential meth-
ods with traditional particle pushers is similar for three-dimensional problems com-
pared to two-dimensional cases. As in the two-dimensional experiments the expo-
nential methods perform well in the linear case and remain competitive for cubic
and quartic potentials. A minor difference for the linear case performance between
two-dimensional and three-dimensional is in the slight increase of the error for the
largest steps sizes. This is the result of finite precision computations of large ana-
lytic formulas involved in evaluation of the eigenvalues of the Jacobian matrix and
the polynomials in the Lagrange-Sylvester formula. This error can be reduced or
eliminated, if needed, if the calculations are performed using software packages that
double the precision of the calculations.

The energy plots for the test problems with |V ′′|/B = 1/100, |V ′′|/B = 1/10,
and |V ′′|/B = 1 are shown in figures 2.13, 2.14, and 2.15 are also similar to the
two-dimensional case. As in the two-dimensional experiments, the accuracy of the
energies of the system computed with the exponential integrators drifts over long time
intervals and the magnitude of the drift depends on the time step size. Again, the
EPRK3 integrator performs better than the EP2 integrator by exhibiting both less
drift and less variation in the computed energies indicating that higher order methods
indeed yield more accurate solutions. Thus, comparative performance of all methods
is consistent across two- and three-dimensional problems and the numerical results
are aligned with theoretically expected performance.
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Table 2.3: Electric scalar potential wells and corresponding electric fields for 3D model
test problems
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|V ′′| = 1 |V ′′| = 10 |V ′′| = 100
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Table 2.4: Electric scalar potential hills and corresponding electric fields for 3D model
test problems



47

Potential Wells |V ′′|
B

= 1
100

Quadratic Cubic Quartic

10-4 10-2 100 102

CPU time, s

10-10

10-8

10-6

10-4

10-2

100

R
e
l
 
E
r
r
o
r
,
 
P
o
s
i
t
i
o
n

Boris
Bunem
EP2
EPRK3

10-4 10-2 100 102

CPU time, s

10-8

10-6

10-4

10-2

100

102

R
e
l
 
E
r
r
o
r
,
 
P
o
s
i
t
i
o
n

Boris
Bunem
EP2
EPRK3

10-2 100 102

CPU time, s

10-10

10-8

10-6

10-4

10-2

100

102

R
e
l
 
E
r
r
o
r
,
 
P
o
s
i
t
i
o
n

Boris
Bunem
EP2
EPRK3

Potential Hills |V ′′|
B

= 1
100

Quadratic Cubic Quartic

10-6 10-4 10-2 100 102

CPU time, s

10-10

10-8

10-6

10-4

10-2

100

R
e
l
 
E
r
r
o
r
,
 
P
o
s
i
t
i
o
n

Boris
Bunem
EP2
EPRK3

10-3 10-2 10-1 100 101 102

CPU time, s

10-8

10-6

10-4

10-2

100

102

R
e
l
 
E
r
r
o
r
,
 
P
o
s
i
t
i
o
n

Boris
Bunem
EP2
EPRK3

10-4 10-2 100 102 104

CPU time, s

10-12

10-10

10-8

10-6

10-4

10-2

100

102

R
e
l
 
E
r
r
o
r
,
 
P
o
s
i
t
i
o
n

Boris
Bunem
EP2
EPRK3

Figure 2.10: Results for 3D test problems with |V ′′|/B = 1/100: potential well
reference solution orbits (first row), potential well precision diagrams (second row),
potential hill reference solution orbits (third row), and potential hill precision di-
agrams (fourth row). Boris/Buneman step sizes are h = 10−2, 10−3, 10−4, 10−5,
10−6 for quadratic potential problems and h = 10−3, 10−4, 10−5, 10−6, 10−7 for cu-
bic/quartic potential problems. EP2/EPRK3 step sizes are h = 100, 10, 1, 10−1,
10−2 for quadratic potential problems and h = 10−1, 10−2, 10−3, 10−4, 10−5 for cu-
bic/quartic potential problems.
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Figure 2.11: Results for 3D test problems with |V ′′|/B = 1/10: potential well ref-
erence solution orbits (first row), potential well precision diagrams (second row),
potential hill reference solution orbits (third row), and potential hill precision di-
agrams (fourth row). Boris/Buneman step sizes are h = 10−2, 10−3, 10−4, 10−5,
10−6 for quadratic potential problems and h = 10−3, 10−4, 10−5, 10−6, 10−7 for cu-
bic/quartic potential problems. EP2/EPRK3 step sizes are h = 100, 10, 1, 10−1,
10−2 for quadratic potential problems and h = 10−1, 10−2, 10−3, 10−4, 10−5 for cu-
bic/quartic potential problems.
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Figure 2.12: Results for 3D test problems with |V ′′|/B = 1: potential well reference
solution orbits (first row), potential well precision diagrams (second row), potential
hill reference solution orbits (third row), and potential hill precision diagrams (fourth
row). Boris/Buneman step sizes are h = 10−2, 10−3, 10−4, 10−5, 10−6 for quadratic
potential problems and h = 10−3, 10−4, 10−5, 10−6, 10−7 for cubic/quartic potential
problems. EP2/EPRK3 step sizes are h = 100, 10, 1, 10−1, 10−2 for quadratic
potential problems and h = 10−1, 10−2, 10−3, 10−4, 10−5 for cubic/quartic potential
problems.
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Figure 2.13: Energy of 3D test problems with |V ′′|/B = 1/100
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Figure 2.14: Energy of 3D test problems with |V ′′|/B = 1/10
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Figure 2.15: Energy of 3D test problems with |V ′′|/B = 1
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2.5 Conclusion and Future Work

In this chapter we proposed an alternative approach to the numerical simulation
of charged particle dynamics using exponential integrators. An integral part of this
algorithm is taking advantage of the low dimensionality of the particle pushing prob-
lem and using an analytic method to compute matrix φ functions needed at each step
of an exponential scheme. We showed that exponential integrators can be competitive
compared to traditional particle pushers when the problem is strongly magnetized. As
expected, exponential integrators offer dramatic computational advantages for cases
where electric fields are generated by quadratic electric potentials. Since the problem
is linear in this case, an exponential integrator with accurate evaluation of matrix φ
functions computes a very accurate solution with the error coming primarily from the
finite-precision computation of φ that involves the eigenvalue solver and the interpo-
lation polynomial of the function. Compared to the traditional Boris and Buneman
algorithms, for these linear problems, we showed that exponential integrators could
bring approximately six orders of magnitude gains in computational speed and three
orders of magnitude improvements in accuracy simultaneously. For nonlinear prob-
lems with the cubic electric potentials we still saw significant computational savings,
though not as dramatic as for quadratic problems. To obtain the solution at the
same accuracy level, exponential integrators exhibited savings in computation time
of about two orders of magnitude for two-dimensional problems and at least an order
of magnitude for three-dimensional problems compared to traditional methods. The
quartic potentials yielded comparable performance between the exponential integra-
tors and the Boris and Buneman schemes. We also see that higher order exponential
methods can improve the computational performance. These points indicate that for
highly nonlinear problems like those with a quartic electric potential, it is important
to pay particular attention to approximation of the nonlinear integral in the exact
solution (2.5) when constructing an exponential integrator. This is further evidenced
by the grad-B drift experiments. Exploring different approximations of the nonlin-
ear integral to develop better performing exponential methods for highly nonlinear
problems will be one of the research directions we plan to pursue in the future.

Of course, the exponential methods we used have not been designed to be energy
preserving and, indeed, a drift in energy is observed in the numerical results. However,
we showed improvements in the accuracy of the computed energy as the order of an
integrator is increased. This result warrants further research into development of
exponential methods of higher order that would potentially exhibit better energy
preservation.

Additionally, we showed that for a linear E × B drift problem the exponential
integrators accurately compute the gyroradius regardless of the step size value as
expected. By contrast, both the Boris and Buneman pushers artificially enlarge the
gyroradius for a large step size relative to the gyroradius.

Investigating the performance of the exponential particle pushers as they are em-
bedded within an overall PIC integrator is another research direction we plan to
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pursue. For example, low order spatial discretizations of the electric field can result
in the potentials dominated by the quadratic terms. It would be interesting to study
whether the computational advantages of exponential integrators for such quadrat-
ically dominated potentials would persist even if we account for the redefining of
potentials as the particles cross the cell boundaries.

To summarize, we have shown preliminary results that offer some evidence of
the numerical advantages of the new numerical approach we propose. This work
also highlighted possible directions for improving the exponential integration-based
methods making them more suitable for highly nonlinear particle pushing problems
and we plan to pursue these directions in our future research.



Chapter 3

Nyström type exponential
integrators for strongly magnetized
charged particle motion

3.1 Introduction

In the previous chapter, we investigated exponential integration as an alternative
approach to numerical solve strongly magnetized particle pushing problems. Results
from our numerical experiments demonstrate that exponential integrators yield su-
perior performance for linear and weakly nonlinear problems and are competitive for
strongly nonlinear problems when compared to the conventional Boris and Buneman
schemes. Thus, exponential integration was shown to be a promising approach to
solving numerically stiff particle pushing problems in strongly magnetized plasma.

This chapter builds upon the previous results and presents new integrators that
allow further improvement in the computational efficiency of exponential methods
for particle pushing problems. Specifically, we take the standard exponential inte-
gration framework as a starting template and derive Nyström-type methods induced
by partitioning the standard exponential integrators into components corresponding
to particle position x and velocity v. These Nyström-type exponential integrators
exploit the mathematical structure of the Newtonian formulation of particle push-
ing problem yielding computationally efficient methods that effectively integrates the
equation of motion as a second-order problem.

The organization of this chapter is as follows. Section 2 reviews the equations
describing charged particle motion in electromagnetic fields. Section 3 discusses the
standard exponential integration framework. Section 4 presents our approach to
deriving Nyström-type exponential integrators. Numerical results are presented in
section 5. Finally, we summarize our results, present conclusions, and discuss future
research.

55
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3.2 Newtonian Equations of Motion

Recall that the dynamics of a particle of mass m and charge q moving under the
Lorentz force exerted by a magnetic field B and an electric field E is given by

m
dv

dt
= q (E + v ×B). (3.1)

Making the observation that velocity v is simply the time derivative of the position
x, the Newtonian form of the particle pushing problem is equivalently expressed by
the first-order system 

dx

dt
= v,

dv

dt
=

q

m
(E + v ×B).

(3.2)

3.3 Exponential Integration Framework

This section reviews the framework to derive a standard exponential integrator.
Consider an initial value problem of the form:

du

dt
= F (u), un = u(tn). (3.3)

We take a first-order Taylor expansion of the right-hand side function about the initial
condition un to obtain

du

dt
= Anu + r(u), (3.4)

where An = ∂F
∂u

∣∣
u=un

is the Jacobian matrix (evaluated at u = un) and

r(u) = F (u)− F (un)−An(u− un) (3.5)

is the nonlinear remainder term. We now multiply equation (3.4) by the integrating
factor exp(−tAn) and integrate from t = tn to t = tn + h to obtain the variation of
constants formula

u(tn + h) = un + hφ1(hAn)F (un) + h

∫ 1

0

eh(1−τ)Anr(u) dτ, (3.6)

where φ1(hAn) is a matrix function defined by

φ1(z) =
ez − 1

z
=

∞∑
j=0

1

(j + 1)!
zj.

Observe that if we let un denote a solution at time t = tn and let h be a specified
time step size, then equation (3.6) is an exact analytic formula for the solution at
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the next time step u(tn + h). Hence, a numerical approximation to the variation
of constants formula (3.6) yields an exponential integrator. For specific details on
deriving exponential integrators, reference [39] discusses multistep type exponential
integrators and references [39,40] describes Runge-Kutta type exponential integrators.

For the purpose of integrating the particle pushing problem, this chapter considers
exponential integrators from a class of methods called the Exponential Propagation
Iterative methods of Runge-Kutta type (EPIRK) [39]. The EPIRK class of expo-
nential integrators has has shown to be more computationally efficient per time step
compared to other types of exponential integrators for numerous applications includ-
ing magnetohydrodynamics (MHD) [12].

In this chapter we consider two specific examples from the EPIRK class. The first
integrator is the second-order Exponential Propagation method [39]

un+1 = un + hφ1(hAn)F (un). (EP2)

The second integrator is the third-order Exponential Propagation method, Runge-
Kutta type [37,40]

U1 = un + hφ1

(
3
4
hAn

)
F (un),

R1 = F (U1)− F (un)−An(U1 − un),

un+1 = un + hφ1(hAn)F (un) + 2hφ3(hAn)R1.

(EPRK3)

We conclude this section by pointing out that exponential integrators solve linear
problems exactly, which makes them A-stable.

3.4 Nyström Methods

For the particular cases of mechanical systems governed by Newton’s second law of
motion in which the force acting on an object is proportional to the second derivative
of its position, the governing equation of motion is given by a second-order initial
value problem of the form:{

x′′(t) = f (x,x′) ,

x(t0) = x0, x′(t0) = x′
0,

where the prime notation denotes the derivative. Conventional numerical ODE solvers
typically integrate first-order initial value problems. Therefore, applying these con-
ventional methods to solve second-order problems requires transforming them to an
equivalent first-order system expressed by

d

dt

[
x
x′

]
=

[
x′

f(x,x′)

]
,

[
x(t0)
x′(t0)

]
=

[
x0

x′
0

]
,

However, Nyström [32] discovered a computationally efficient approach to construct
integrators that solve second-order problems directly. These methods are accordingly
called Nyström methods.
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3.4.1 Nyström Type Exponential Integrators

Following Nyström’s approach, we exploit the mathematical structure of the New-
tonian formulation of the particle pushing problem and derive a Nyström-type expo-
nential integrator. In particular, we employ the idea of using partitioned Runge-Kutta
methods to induce Runge-Kutta-Nyström (RKN) integrators [20, 27, 36] and adopt
this approach to derive Nyström-type exponential integrators induced by the parti-
tioned exponential schemes.

We start by defining the function

fL = Ωv +
q

m
E, (3.7)

where Ω is the skew-symmetric matrix such that

Ωv =
q

m
v ×B.

Then equation (3.2) in the context of a particle pushing problem becomes
dx

dt
= v,

dv

dt
= fL(x,v).

Next we define the following vectors:

u =

[
x
v

]
, F (u) =

[
v

fL(x,v)

]
, and u0 =

[
x(t0)
v(t0)

]
.

This allows us to express the particle pushing problem in the form given by equation
(2.1).

We now partition the standard exponential integration framework to derive a
partitioned exponential integrator scheme. Partitioning the vectors of the problem
into x and v components gives us

u =

[
x
v

]
, F (u) =

[
v

fL(x,v)

]
, and r =

[
rx
rv

]
.

Likewise, we partition the matrices of the problem into d × d block components
corresponding to x and v, where d is the dimension of x and v:

A =

[
O I
H Ω

]
, φk(A) =

[
Ψk(A) Υk(A)
Ψk(A) Υk(A)

]
.

Here O and I are the zero and identity matrices, respectively; H = ∂fL/∂x is the
Jacobian matrix of fL with respect to particle position x; and Ψk, Υk, Ψk, and Υk
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are block matrix functions. Expressing the variation-of-constants formula (3.6) in
vector form, we have[

x(tn + h)
v(tn + h)

]
=

[
xn

vn

]
+ h

[
Ψ1(hAn) Υ1(hAn)
Ψ1(hAn) Υ1(hAn)

] [
vn

fL(xn,vn)

]
+ h

∫ 1

0

[
Ψ0(h(1− τ)An) Υ0(h(1− τ)An)
Ψ0(h(1− τ)An) Υ0(h(1− τ)An)

] [
rx
rv

]
dτ,

where[
Ψ0(h(1− τ)An) Υ0(h(1− τ)An)
Ψ0(h(1− τ)An) Υ0(h(1− τ)An)

]
= φ0(h(1− τ)An) := exp(h(1− τ)An).

In other words, the analytic solutions for x and v at time t = t0 + h are:

x(tn + h) = xn + hΨ1(hAn)vn + hΥ1(hAn)fL(xn,vn) (3.8a)

+ h

∫ 1

0

Ψ0(hAn)rx dτ + h

∫ 1

0

Υ0(hAn)rv dτ,

v(tn + h) = vn + hΨ1(hAn)vn + hΥ1(hAn)fL(xn,vn) (3.8b)

+ h

∫ 1

0

Ψ0(hAn)rx dτ + h

∫ 1

0

Υn(hAn)rv dτ.

Similar to deriving a standard exponential integrator, we now let xn and vn denote
the numerical solutions at time t = tn for position and velocity, respectively, and let
h be a specified time step size. Then applying appropriate quadrature rules to the
nonlinear integral terms in (3.8) gives us numerical approximations to the solutions
x and v at the next time step. In other words, we derive Nyström-type exponential
integrators induced by partitioning the standard exponential integration framework.

Since we already have formulas for second-order and third-order exponential inte-
grators, we can readily derive schemes for second-order and third-order Runge-Kutta-
Nyström-type exponential integrators. Decomposing the second-order EP2 method
into x and v components gives the second-order Nyström type exponential integrator
EPRKN2 particle pusher:

xn+1 = xn + hΨ1(hAn)vn + hΥ1(hAn)fL(xn,vn),

vn+1 = vn + hΨ1(hAn)vn + hΥ1(hAn)fL(xn,vn)
(EPRNK2)

Likewise, decomposing the third-order EPRK3 exponential integrator into x and v
components gives us the third-order Runge-Kutta-Nyström type exponential integra-
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tor particle pusher:

X1 = xn + hΨ1

(
3

4
hAn

)
vn + hΥ1

(
3

4
hAn

)
fL(x,v),

V1 = vn + hΨ1

(
3

4
hAn

)
vn + hΥ1

(
3

4
hAn

)
fL(x,v),

Rv = (Ω1 −Ωn)V1 +
q

m

(
E(X1)−E(xn)

)
−Hn(X1 − xn),

xn+1 = xn + hΨ1(hAn)vn + hΥ1fL(xn,vn) + 2hΥ3(hAn)Rv,

vn+1 = vn + hΨ1(hAn)vn + hΥ1(hAn)fL(xn,vn) + 2hΥ3(hAn)Rv,

(EPRKN3)

where Ω1 = Ω|x=X1 , Ωn = Ω|x=xn , and Hn = H|x=xn .

3.4.2 Computing the Block Matrix Functions

The formulas described above require computable expressions for each of the block
matrix functions. To this end, we invoke the Lagrange-Sylvester Interpolation Polyno-
mial formula. Recall from the previous chapter, the formula asserts if φ is a function
analytic on a domain containing the spectrum of the N × N matrix A, then there
exists a unique N−1 degree polynomial p such that p(A) = φ(hA). Specifically, we
choose the polynomial to be of the form

p(λ) = a0 + a1λ+ a2λ
2 + . . .+ aN−1λ

N−1,

where N = 4 for the two dimensional model and N = 6 for the three dimensional
model. Then by the Lagrange-Sylvester formula p(λ) is the polynomial of (at most)
degree N−1 that interpolates φ(hλ) on the eigenvalues λ1, λ2, . . ., λN of A. The
interpolation problem is equivalent to solving the linear system

p(λ1) = a0 + a1λ1 + · · · + aN−1λ
N−1
1 = φ(hλ1)

p(λ1) = a0 + a1λ2 + · · · + aN−1λ
N−1
2 = φ(hλ2)

...
...

...
...

...
...

...
...

p(λN) = a0 + a1λN + · · · + aN−1λ
N−1
N = φ(hλN)

(3.9)

for the unknown polynomial coefficients a0, a1, . . ., aN−1. If the eigenvalues λ1,
λ2, . . ., λN are all distinct, then the interpolation problem is a system of N linearly
independent equations in N unknowns, which is guaranteed to have a unique solution.
However, if any eigenvalue is repeated, i.e. λj has multiplicity rj > 1, then rj−1
equations are redundant for λj. In this case, for each repeated eigenvalue λj we
modify system (3.9) by replacing the rj−1 redundant equations with the following



61

rj−1 osculating conditions:

p′(λj) = φ′(hλj),

p′′(λj) = φ′′(hλj),

...
...

...

p(rj−1)(λj) = φ(rj−1)(hλj),

where the superscript denotes the order of the derivative with respect to λ. This
modification ensures a system of N linearly independent equations in N unknowns
for which there is a unique solution. (A proof of the Lagrange-Sylvester Interpolation
Polynomial formula is presented in appendix A.) Applying this formula, the matrix
function φk(hA) has the polynomial expression

φk(hA) = p(A) = a0IN×N + a1A + . . .+ aN−1A
N−1.

Each block matrix function can then be expressed by an (at most) N−1 degree
matrix polynomial in terms of the blocks of A. To see this, observe that the powers
of A are given by the recursive formula

Aj =

[
O I
H Ω

]j
=

[
R(j−1) S(j−1)

S(j−1)H R(j − 1) + S(j−1)Ω

]
j = 1, 2, . . . ,

where R(0) = O and S(0) = I. Then for the two dimensional model, A is a 4 × 4
matrix with the matrix function φk(hA) given by

φk(hA) =

[
Ψk(A) Υk(A)
Ψk(A) Υk(A)

]
= a0I + a1A + a2A

2 + a3A
3

= a0

[
I O
O I

]
+ a1

[
O I
H Ω

]
+ a2

[
H Ω
ΩH H + Ω2

]
+ a3

[
ΩH H + Ω2

(H + Ω2)Ω ΩH + (H + Ω2)Ω

]
,

where O, I,H ,Ω are 2× 2 matrices. This gives the following explicit expressions for
the block matrix functions of the two dimensional model:

Ψk(hA) = a0I + a2H + a3ΩH ,

Υk(hA) = a1I + a2Ω + a3(H + Ω2),

Ψk(hA) = a1H + a2ΩH + a3(H + Ω2)H ,

Υk(hA) = a0I + a1Ω + a2(H + Ω2) + a3(ΩH + (H + Ω2)Ω).
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For the three dimensional model, A is a 6×6 matrix and the matrix function φk(hA)
is given by

φk(hA) =

[
Ψk(A) Υk(A)
Ψk(A) Υk(A)

]
= a0I + a1A + a2A

2 + a3A
3 + a4A

4 + a5A
5

= a0

[
I O
O I

]
+ a1

[
O I
H Ω

]
+ a2

[
H Ω
R(2) S(2)

]
+ a3

[
R(2) S(2)

R(3) S(3)

]
+ a4

[
R(3) S(3)

R(4) S(4)

]
+ a5

[
R(4) S(4)

R(5) S(5)

]
,

where O, I,H ,Ω are 3× 3 matrices and

R(j) =

{
H , j = 1
S(j−1)H , j = 2, 3, . . .

S(j) =

{
Ω, j = 1
R(j−1) + S(j−1)Ω, j = 2, 3, . . .

This gives the polynomial expressions for the block matrix functions of the three
dimensional model:

Ψk(hA) = a0I + a2H + a3R
(2) + a4R

(3) + a5R
(4),

Υk(hA) = a1I + a2Ω + a3S
(2) + a4S

(3) + a5S
(4),

Ψk(hA) = a1H + a2R
(2) + a3R

(3) + a4R
(4) + a5R

(5),

Υk(hA) = a0I + a1Ω + a2S
(2) + a3S

(3) + a4S
(4) + a5S

(5).

Observe that by our choice of setting the interpolation polynomial to be of the
form

p(λ) = a0 + a1λ+ a2λ
2 + . . .+ aN−1λ

N−1,

the Lagrange-Sylvester formula exploits the recursive structure of the powers of the
block matrices resulting in computationally efficient polynomial expressions. Also no-
tice that by this particular form of the polynomial, solving the interpolation problem
(3.9) is an ill-conditioned (Vandermonde) linear system. To overcome this issue, we
employ Cramer’s rule to derive analytic expressions for the coefficients a0, a1, a2, . . .,
aN−1 in our implementations of the Nyström exponential integrators yielding addi-
tional computational savings, see appendix B. As a final note, the analytic expressions
for the coefficients a0, a1, . . ., aN−1 are in general subject to catastrophic cancellation
for small argument values z = hλ. Thus, for small z = hλ we compute each coeffi-
cient using a five-term Taylor polynomial approximation for any problematic analytic
expression.
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3.5 Numerical Experiments

In this section, we compare the computational performances of the Runge-Kutta-
Nyström-type exponential integrators EPRKN2 and EPRKN3 against the standard
EP2 and EPRK3 exponential integrators. The Boris and Buneman algorithms are
also included to evaluate how well these exponential integrators perform against con-
ventional particle pushers.

All numerical experiments model a particle of unit mass and unit charge in a
strong magnetic field orientated in the z direction. The specific configurations for
each test problem are described in the next two subsections below. For reference, we
computed highly accurate solutions to each test problem using the MATLAB ode113

integrator with error tolerances set to 10−12 for RelTol (relative error tolerance) and
10−12 for AbsTol (absolute error tolerance). The relative error of each particle particle
pusher is defined by

error =
∥x∗ − x∥
∥x∗∥

,

where x∗ is the particle position of the reference solution, x is the particle position of
the solution of the particle pusher, and ∥·∥ denotes the Euclidean norm. Experiments
with the electric potential well problems were implemented in C++ using the Eigen
C++ template library for linear algebra [18]. Experiments with the gyroradius and
grad-B drift problems were implemented in MATLAB. All computations in these
experiments were calculated with double precision floating point operations.

3.5.1 Two Dimensional Model Configurations

The initial conditions for all two dimensional model test problems are x0 = (1, 0)
and v0 = (0,−1). Each test problem is integrated over the time interval [0, 100].

• Electric Potential Well Problems: These test problems consider parti-
cle motion in a strong uniform (constant in time and space) magnetic field
B = 100 ẑ and a non-uniform (in space) electric field E. The electric field
E is given by an electric potential well such that the resulting anisotropic drift
motion forms a closed orbit on temporal and spatial scales much larger than the
gyromotion. The experiments are conducted with three specific electric fields
given by a quadratic potential, a cubic potential, and a quartic potential. The
electric field for each electric potential well test problem is specified in table 3.1.

• Gyroradius Problem: This experiment examines the gyroradius of the solu-
tions computed by the numerical particle pushers. A known issue with the Boris
pusher [33] (as well as with many other conventional particle pushers such as the
Buneman pusher) is that in problems with an E ×B drift motion it computes
an artificially enlarged gyroradius when using large step sizes relative to the
gyroperiod. In this context, a step size h is considered ”small” when ωh ≪ 1
and ”large” when ωh ≫ 1, where ω = qB/m is the gyroperiod. For strongly
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magnetized problems, this can impose a severe restriction on the step size for
many conventional particle pushers if accuracy requirements of the simulations
demand resolution at the scale of the gyroradius. We include this experiment to
study how well the exponential integrators are able to correctly resolve the gy-
roradius. The test problem under consideration is a linear E×B drift problem
with electromagnetic fields

B = 100 ẑ and E = −
[

0
1 + y

]
,

which has a gyroradius of r = 0.01. The problem is integrated using a ”small”
step size h = 0.001 and a ”large” step size h = 0.1.

• Grad-B Drift Problem: This experiment examines the so-called grad-B drift
problem. The test problem has a non-uniform magnetic field with a gradient
term in which the length scale of the spatial variation is much longer than the
gyroradius. In other words, the variation in the magnetic field that the particle
experiences is ”small” over the gyro-orbit. This is formally stated by

r∥∇B∥
B

≪ 1,

where r is the gyroradius, B = ∥B∥, and ∇B is the magnetic field gradient.
Under this condition, the particle experiences an approximate drift velocity
of [9, 23,30]

v∇B =
1

2

v2⊥
ω

B ×∇B
B2

,

where v⊥ is the particle speed in the plane perpendicular to the magnetic field
and ω = qB/m is the gyrofrequency. The electromagnetic fields for this test
problem are

B = (100 + δB y)ẑ and E = 0.

Quadratic Well Cubic Well Quartic Well

Potential V (x): 50(x2 + y2) 47(x2 + y2) 25
3

(x4 + y4)
+x3 + y3

Electric Field E(x): −100

[
x
y

]
−
[
94x+ 3x2

94y + 3y2

]
−100

3

[
x3

y3

]
Table 3.1: Electric fields for 2D potential well problems with uniform magnetic field
B = 100 ẑ
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3.5.2 Three Dimensional Model Configurations

All three dimensional test problems are electric potential well configurations with
a uniform magnetic field B = 100 ẑ and a spatially non-uniform electric field E.
Similar to the two dimensional model, we examine three specific electric fields given
by a quadratic potential, a cubic potential, and a quartic potential. Configurations
for the electric scalar potential wells and their corresponding electric fields are shown
in table 3.2. The initial conditions are x0 = (1, 0, 0) and v0 = (0,−1, 1). Each test
problem is integrated over the time interval [0, 100].

Quadratic Well Cubic Well Quartic Well

Potential V (x):
50(x2 + y2) 47(x2 + y2) 25

3
(x4 + y4)

+5z2 +x3 + y3 +5
6
z4

+ 1
10

(47z2 + z3)

Electric Field E(x): −

100x
100y
10z

 −

94x+ 3x2

94y + 3y2
47
5
z + 3

10
z2

 −1
3

100x3

100y3

10z3


Table 3.2: Electric fields for 3D potential well problems with uniform magnetic field
B = 100 ẑ

3.5.3 Two Dimensional Model Results

Results of Electric Potential Well Problems

Figure 3.1 displays plots of the experiment results. Plots of the reference solution
are in the top row. Work-precision diagrams are in the bottom row. Results for
the quadratic, cubic, and quartic potential problems are in the left, center, and right
columns, respectively.

Note that for the quadratic potential well problem the exponential integrators
exhibit superior performance as expected, since this is a linear problem. For the
cubic potential well problem, all of the exponential integrators compute solutions
more accurately and efficiently than the Boris and Buneman pushers. For the quar-
tic potential well problem, the exponential integrators are at least competititve if not
better than the Boris and Buneman particle pushers. In particular, the Nyström-type
exponential integrators consistently outperform both standard exponential methods
and the Boris and Buneman pushers for all levels of accuracy yielding significant im-
provements in efficiency. Table 3.3 quantifies this gain in computational efficiency by
showing the average ratios of the CPU times of the standard exponential integrators
to the Nyström-type exponential integrators for each test problem.
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Quadratic Cubic Quartic
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Figure 3.1: Results for 2D potential well test problems: reference solution orbits (first
row) and precision diagrams (second row). Boris/Buneman step sizes are h = 10−3,
10−4, 10−5, 10−6 for the quadratic potential problem and h = 10−4, 10−5, 10−6, 10−7

for the cubic/quartic potential problems. Exponential integrators step sizes are h =
100, 10, 1, 10−1 for the quadratic potential problem and h = 10−2, 10−3, 10−4, 10−5

for the cubic/quartic potential problems.

Quadratic Well Cubic Well Quartic Well

EP2/EPRKN2 7.56 16.97 29.50

EPRK3/EPRKN3 36.86 22.46 84.73

Table 3.3: Average CPU time ratios of standard exponential integrators to Nyström
type exponential integrators for 2D potential well problems.

Results of Gyroradius Problem

Figure 3.2 shows the experiment results for the gyroradius problem. For the
”small” step size h = 0.001, all particle pushers compute the gyroradius accurately.
However for the ”large” step size h = 0.1, both the Boris and Buneman algorithms
compute an artificially enlarged gyroradius while all the exponential integrators com-
pute the correct gyroradius.
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Boris Buneman
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Figure 3.2: Plots of computed trajectories for the gyroradius E ×B drift problem.
Solutions for step size h = 0.001 are solid blue and solutions for step size h = 0.01
are dotted red.
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Results of Grad-B Drift Problem

Figure 3.3 shows plots of the reference solution orbits and the precision diagrams
for δB = 0.1, 1, 10. Again the Nyström-type exponential integrators compute much
faster than the standard exponential integrators. Table 3.4 shows the average ra-
tios of the CPU times of the standard exponential integrators to the Nyström-type
exponential integrators.
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Figure 3.3: Results for grad-B drift problem: reference solution orbits (top row),
and precision diagrams (bottom row). Boris/Buneman step sizes are h = 10−2, 10−3,
10−4, 10−5. EP2/EPRK3 step sizes are h = 10−1, 10−2, 10−3, 10−4.

δB = 0.1 δB = 1 δB = 10

EP2/EPRKN2 2.03 2.04 4.19

EPRK3/EPRKN3 3.57 3.60 5.24

Table 3.4: Average CPU time ratios of standard exponential integrators to Nyström
type exponential integrators for the grad-B drift problems.
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3.5.4 Three Dimensional Model Results

Figure 3.4 shows plots of the reference solution orbits and the work-precision dia-
grams for the three dimensional electric potential well problems. As expected, all the
exponential integrators exhibit superior performance for the quadratic potential well
problem. For the cubic potential well problem, the exponential integrators outperform
the Boris and Buneman algorithms in terms of computation speed for comparable lev-
els of accuracy. For the quartic potential well problem, the exponential integrators are
competitive with the Boris and Buneman algorithms. For all of the test problems, the
Nyström type exponential integrators compute faster than the standard exponential
integrators and outperform the Boris and Buneman integrators. The average CPU
time ratios of the standard exponential integrators to the Nyström-type exponential
integrators are shown in table 3.5.
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Figure 3.4: Results for 3D potential well test problems: reference solution orbits (first
row) and precision diagrams (second row). Boris/Buneman step sizes are h = 10−3,
10−4, 10−5, 10−6 for the quadratic well problem, h = 10−4, 10−5, 10−6, 10−7 for the
cubic/quartic potential problems. Exponential integrators step sizes are h = 100, 10,
1, 10−1 for the quadratic potential problem and h = 10−2, 10−3, 10−4, 10−5 for the
cubic/quartic potential problems.

Quadratic Well Cubic Well Quartic Well

EP2/EPRKN2 1.85 2.32 2.18

EPRK3/EPRKN3 2.18 12.57 15.16

Table 3.5: Average CPU time ratios of standard exponential integrators to Nyström
type exponential integrators for 3D potential well problems.
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3.6 Conclusion

3.6.1 Summary

In this chapter we derived Nyström-type exponential integrators induced by parti-
tioning standard exponential methods. In particular, we partitioned the second-order
EP2 and the third-order EPRK3 methods corresponding to the x and v components
to construct second-order EPRKN2 and the third-order EPRKN3 methods that ef-
fectively solve the particle pushing problem as a second-order differential equation.
These Nyström-type exponential integrators exploit the mathematical structure of
the Newtonian formulation of the particle pushing problem to improve computa-
tional efficiency. Numerical experiments demonstrate that the Nyström exponential
integrators exhibit significant improvements in computation times compared to the
standard exponential integrators for the same level of accuracy for both the two di-
mensional and three dimensional models. This work shows that Nyström exponential
integrators are a promising alternative to solve strongly magnetized particle pushing
problems.

3.6.2 Future Work

While the exponential integrators we constructed offer improvements in the ac-
curacy of the solution, they are not specifically designed to preserve any geometric
properties of the solution exactly. In our future work we will investigate whether
exponential schemes that preserve phase space volume or energy can be constructed.
Such volume- or energy-preserving methods are desired when integration over very
long time intervals has to be done. Additionally, our numerical experiments showed
that the computational savings offered by the new exponential methods are larger for
linear or weakly nonlinear problems compared to strongly nonlinear configurations
such as the quartic potential and the grad-B drift problems. A possible approach
we plan to investigate to address this issue is to develop a better quadrature for the
nonlinear integral terms in the variation of constants Volterra integral equation which
serves as the starting point for construction of an exponential integrator. We also plan
to conduct numerical experiments with more complex electromagnetic configurations
for more realistic test problems. Finally, a thorough evaluation of these exponential
integrators requires comparing them against the more advanced conventional parti-
cle pushers such as the modified Crank-Nicolson scheme [35] and the filtered Boris
algorithm [19].



Chapter 4

Conclusion

In this dissertation, we investigated exponential integration as an alternative ap-
proach to numerically simulate charged particle dynamics in the presence of elec-
tromagnetic fields. This problem is particularly important in the context of solving
the particle pushing problem for PIC simulations of strongly magnetized plasma. We
have developed a numerical approach which combines ideas of exponential integration
and interpolation as a method to evaluate matrix functions to constuct effective expo-
nential methods. In chapter 2, we presented second-order and third-order numerical
particle pushing schemes using the second-order EP2 and third-order EPRK3 Runge-
Kutta type exponential integrator methods, respectively. The use of the Lagrange-
Sylvester Interpolation Polynomial formula to compute the matrix exponential-like
φ functions required in these exponential integration schemes allowed us to create
numerical methods that offer significant computational savings compared to widely
used numerical particle pushers. Our numerical experiments comparing the new ex-
ponential integrators against the conventional Boris and Buneman algorithm showed
that exponential integrators are superior for linear and weakly nonlinear problems
and are competitive for strongly nonlinear configurations. This work offered evidence
that exponential methods present an efficient alternative to standard particle push-
ers and justified further research in this area. In fact, we were able to move further
in this direction by constructing integrators with improved computational efficiency
compared to standard exponential schemes not particularly adapted for the particle
pushing problems.

In chapter 3, we derived Nyström-type exponential integrators that take advan-
tage of the structure of the particle pushing problem to deliver better computational
savings compared to standard exponential schemes. The exponential Nyström-type
methods effectively solve the Newtonian formulation of the particle pushing problem
as a second-order initial value system directly. Construction of such methods was ac-
complished by partitioning the standard exponential integration framework from the
EPIRK class of methods into components corresponding to particle position x and
particle velocity v resulting in partitioned exponential integrators. Our numerical
experiments showed significant improvements in the computational efficiency of these
Nyström-type exponential integrators when compared to the standard exponential
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integrators, thus delivering even better computational savings against the Boris and
Buneman schemes.

In summary, this dissertation demonstrates the proof of concept of using expo-
nential integrators to solve strongly magnetized particle pushing problems. The novel
developments presented in this dissertation include:

• Derivation of exponential integrators to solve strongly magnetized particle push-
ing problems.

• Discovering the Lagrange-Sylvestor Interpolation Polynomial formula as a com-
putationally efficient method to compute the matrix φ functions for low dimen-
sional problems.

• Development of Runge-Kutta-Nyström type exponential integrators that ex-
ploit the mathematical structure of the Newtonian form of the particle pushing
problem for improved computational efficiency.

Results from numerical experiments illustrate that exponential integration is a promis-
ing alternative to solving strongly magnetized particle pushing problems.

This work opened a number of promising directions in development of efficient
numerical methods for particle pushing problems. In particular, our future plans
include construction of geometric exponential integrators that preserve the mathe-
matical structure of the exact solution such as phase space volume or energy con-
servation. Methods with these properties are of a particular interst for applications
where very long time computation of the particles trajectories is needed. Another im-
portant research direction we plan to pursue is development of exponential schemes
that are better suited for the integration of strongly nonlinear problems. Construct-
ing quadrature approximations that model the nonlinearity more accurately could
yield both more efficiency and accuracy and lead to even more computational sav-
ings. In addition, the new integrators have to be tested on a wider range of problems
with more complex electromagnetic field configurations and incorporated into widely
used PIC codes. We also plan to compare the exponential methods with other ad-
vanced integrators such as the modified Crank-Nicolson scheme and the filtered Boris
algorithm.



Appendix A

Proof of Lagrange-Sylvester
Interpolation Polynomial Formula

The text of this appendix is a reprint of the material as it appears in T.P. Nguyen,
I. Joseph and M. Tokman, Exploring exponential time integration for strongly mag-
netized charged particle motion, Computer Physics Communications, 304 (2024),
109294, doi: https://doi.org/10.1016/j.cpc.2024.109294.

Case: A has N distinct eigenvalues.

If A has N distinct eigenvalues λ1, λ2, . . . , λN , then its characteristic polynomial
satisfies

det(λI −A) = (λ− λ1)(λ− λ2) · · · (λ− λN)

= λN + αN−1λ
N−1 + . . . + α1λ + α0

= 0.

Solving for λN gives

λN = −αN−2 λ
N−1 − . . . − α1 λ

2 − α0 λ. (A.1)

In other words, λN can be expressed in terms of λ, λ2, . . . , λN−1, i.e. a polynomial of
(at most) degree N−1th.
Multiplying equation (A.1) by λ gives

λN+1 = −αN−2 λ
N − . . . − α1 λ

3 − α0 λ
2.

Substituting equation (A.1) into the right-hand side and grouping powers of λ yields

λN+1 = α
(1)
N−1 λ

N−1 + α
(1)
N−2 λ

N−2 + . . . + α
(1)
2 λ2 + α

(1)
1 λ,
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for some coefficients α
(1)
1 , α

(1)
2 , . . . , α

(1)
N−1. It follows from induction that for any k =

0, 1, 2, . . .,
λN+k = α

(k)
1 λ + α

(k)
2 λ2 + . . . + α

(k)
N−1 λ

N−1. (A.2)

That is, λN+k can always be expressed in terms of λ, λ2, . . . , λN−1, i.e. a polynomial
of (at most) degree N−1th.

Since f(λ) is an analytic function, it has a convergent series expansion:

f(λ) = c0 + c1 λ + c2 λ
2 + . . .

= c0 + c1 λ + . . . + cN−1 λ
N−1 + cN λ

N + . . . + cN+k λ
N+k + . . .

= c0 + c1 λ + . . . + cN−1 λ
N−1 +

∞∑
k=0

cN+k λ
N+k.

From equation (A.2), each term inside the summation can be expressed by a polyno-
mial of (at most) N−1th degree. Making the substitutions and grouping powers of λ
gives the polynomial

p(λ) = a0 + a1 λ + . . . + aN−1 λ
N−1 = f(λ),

for some coefficients a0, a1, . . . , aN−1. In other words, f(λ) can be expressed by some
polynomial p(λ) of (at most) degree N−1.

To find an explicit expression for this polynomial, observe that

p(λj) = f(λj) (A.3)

must hold true for each eigenvalue λj. This yields a system of N linearly independent
equations in N coefficients a0, a1, . . . , aN−1. Hence, p(λ) is the unique polynomial
that interpolates f(λ) on the spectrum of A.

Extending the series representation of f(λ) to the matrix argument A, we have

f(A) = c0 I + c1A+ c2A
2 + . . . .

This implies that

p(A) = a0 I + a1A + . . . + aN−1A
N−1 = f(A).

Case: A has repeated eigenvalues.

For the case when A has repeated eigenvalues, suppose A has eigenvalues

λ1, λ2, . . . , λm

with respective multiplicities
r1, r2, . . . , rm,

where
m ≤ N and r1 + r2 + . . . + rm = N.
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Then the characteristic polynomial of A satisfies

det(λI −A) = (λ− λ1)r1 (λ− λ2)r2 · · · (λ− λm)rm

= λN−1 + αN−2 λ
N−2 + . . . + α1 λ + α0

= 0.

Following the same argument as in the previous case, for any k = 0, 1, . . . λN+k can
be expressed by a polynomial of (at most) N−1 degree polynomial in λ. Hence, f(λ)
can be expressed by a polynomial of (at most) degree N−1:

p(λ) = a0 + a1 λ + . . . + aN−1 λ
N−1 = f(λ)

for some coefficients a0, a1, . . . , aN−1.
For each eigenvalue λj with multiplicity rj, we make the observation that

p(λj) = f(λj) interpolation condition,

p′(λj) = f ′(λj) 1st osculating condition,

p′′(λj) = f ′′(λj) 2nd osculating condition,
...

...
...

...

p(rj−1)(λj) = f (rj−1)(λj) rj−1th osculating condition,

(A.4)

where the superscript denotes the order of the derivative with respect to λ. This estab-
lishes a system of N linearly independent equations in N coefficients a0, a1, . . . , aN−1.
Hence, p(λ) is the unique interpolation polynomial that satisfies rk−1 osculating con-
ditions for each eigenvalue λj of multiplicity rj. Consequently,

p(A) = a0 I + a1A + . . . + aN−1A
N−1 = f(A).



Appendix B

Lagrange-Sylvester Interpolation
Polynomial Coefficients

This appendix describes the analytic expressions for the coefficients of the Lagrange-
Sylvester interpolation polynomial for the test problems discussed in this dissertation.
Recall that the Jacobian matrix of the Newtonian form of the particle pushing prob-
lem is

A =

[
O I
H Ω

]
,

where O and I are the d × d zero and identity matrices, respectively, H = ∂fL/∂x
is the Jacobian matrix of fL with respect to x, and Ω is the d × d skew symmetrc
matrix such that Ωv = q

m
v ×B. Here, d = 2 for the two dimensional model, and

d = 3 for the three dimensional model.

B.1 Two Dimensional Model

For the two dimensional model,

H =
∂fL

∂x
=

[
H11 H12

H21 H22

]
and Ω =

[
0 ω
−ω 0

]
, ω =

qB

m
.

The characteristic polynomial of A is

det(λI4×4 −A) = λ4 + λ2P + λQ+R,

where

P = ω2 −H11 −H22,

Q = ω(H12 −H21),

R = H11H22 −H12H21.

Note that all particle pushing problems under consideration in this dissertation are
strongly magnetized, which implies P ̸= 0.
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B.1.1 Electric Potential Well and Gyro-radius Problems

For these test problems H is a diagonal matrix, hence Q = 0 and the characteristic
polynomial reduces to

λ4 + λ2 P +R.

To determine the polynomial coefficients for the interpolation problem

a0 + a1λ+ a2λ
2 + a3λ

3 = φk(hλ),

there are several cases to consider.
If either R = 0 or P 2 = 4R, then the eigenvalues of A are

λ = 0, 0,±i µ,

where µ =
√
P . For φk = φ1 the polynomial coefficients are:

a0 = 1,

a1 =
h

2
,

a2 = h2
hµ− sin(hµ)

(hµ)2
,

a3 = h3
cos(hµ)− 1 + (hµ)2/2

(hµ)6
.

For φk = φ3 the polynomial coefficients are:

a0 =
1

6
,

a1 =
h

24
,

a2 = h2
sin(hµ) + (hµ)3/6− hµ

(hµ)5
,

a3 = h3
1− (hµ)2/2 + (hµ)4/24− cos(hµ)

(hµ)6
.

If R ̸= 0, then the eigenvalues of A are

λ = ±i µ,±i ν,

where

µ =

√
P +
√
P 2 − 4R

2
and ν =

√
P −
√
P 2 − 4R

2
.



78

For φk = φ1 the polynomial coefficients are:

a0 =
1

ν2 − µ2

(
ν2

sin(hµ)

hµ
− µ2 sin(hν)

hν

)
,

a1 =
1

ν2 − µ2

(
ν2

1− cos(hµ)

hµ
− µ2 1− cos(hν)

hν

)
,

a2 =
1

ν2 − µ2

(
sin(hµ)

hµ
− sin(hν)

hν

)
,

a3 =
1

ν2 − µ2

(
1− cos(hµ)

hµ
− 1− cos(hν)

hν

)
.

For φk = φ3 the polynomial coefficients are:

a0 =
1

h2(ν2 − µ2)

(
ν2

µ2

(
1− sin(hµ)

hµ

)
− µ2

µ2

(
1− sin(hν)

hν

))
,

a1 =
1

h2(ν2 − µ2)

(
ν2

µ2

(
h

2
− 1− cos(hµ)

hµ

)
− µ2

µ2

(
h

2
− 1− cos(hν)

hν

))
,

a2 =
1

h2(ν2 − µ2)

(
1

µ2

(
1− sin(hµ)

hµ

)
− 1

µ2

(
1− sin(hν)

hν

))
,

a3 =
1

h2(ν2 − µ2)

(
1

µ2

(
h

2
− 1− cos(hµ)

hµ

)
− 1

µ2

(
h

2
− 1− cos(hν)

hν

))
.

B.1.2 Grad-B Drift Problem

For the grad-B drift test problem, R = 0 and the characteristic polynomial reduces
to

λ4 + λ2 P + λQ = λ(λ3 + λP +Q).

Hence, the eigenvalues of A are

λ = 0, µ, ν, ν,

where µ is the real root and the conjugate pair ν, ν are the complex roots of the cubic
polynomial λ3 + λP +Q. The polynomial coefficients are thus:

a0 = φk(0),

a1 =
|ν|4φk(hµ)Im(ν) + µ2Im(ν3φk(hν)) + µ3Im(ν2φk(hν))

µ|ν|2Im(ν)(|ν|2 − 2µRe(ν) + µ2)
,

a2 = −µ Im(ν3φk(hν)) + 2|ν|2φk(hµ)Re(ν)Im(ν)− µ3Im(νφk(hν))

µ|ν|2Im(ν)(|ν|2 − 2µRe(ν) + µ2)
,

a3 =
µ Im(ν2φk(hν))− µ2Im(νφk(hν)) + |ν|2φk(hµ)Im(ν)

µ|ν|2Im(ν)(|ν|2 − 2µRe(ν) + µ2)
,



79

where Re(z) and Im(z) denote the real and imaginary parts of the complex argument
z, respectively.

B.2 Three Dimensional Model

For the three dimensional electric potential well test problems, the block matrices
H and Ω are given by

H =
∂fL

∂x
=

H11 0 0
0 H22 0
0 0 H33

 and Ω =

 0 ω 0
−ω 0 0

0 0 0

 , ω =
qB

m
.

The characteristic polynomial of A is

det(λI6×6 −A) = λ6 + λ4 P + λ2R + T

where

P = ω2 −H11 −H22 −H33,

R = H11H22 +H11H33 +H22H33 − ω2H33,

T = −H11H22H33.

Again we assume strongly magnetized particle pushing problems implying P is always
nonzero. To determine the polynomial coefficients, we next examine the various cases.

If R = T = 0, then the characteristic polynomial reduces to

λ6 + λ4 P = λ4(λ2 + P ).

Thus, the eigenvalues of A are

λ = 0, 0, 0,±i µ,

where µ =
√
P . Hence, for φk = φ1 the polynomial coefficients are:

a0 = 1,

a1 =
h

2
,

a2 =
h2

6
,

a3 =
h3

24
,

a4 =
1

µ4

(
sin(hµ)

hµ
− 1 +

(hµ)2

6

)
,

a5 =
1

µ5

(
1− cos(hµ)

hµ
− hµ

2
+

(hµ)3

24

)
.
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For φk = φ3 the polynomial coefficients are:

a0 =
1

6
,

a1 =
h

24
,

a2 =
h2

60
,

a3 =
h3

120
,

a4 =
1

µ4

(
hµ− sin(hµ)

(hµ)3
− 1

6
+
hµ

60

)
,

a5 =
1

µ5

(
(hµ)2/2 + cos(hµ)− 1

(hµ)3
− hµ

24
+

(hµ)2

120

)
.

If R ̸= 0 and T = 0, then the characteristic polynomial reduces to

λ6 + λ4 P + λ2R = λ2(λ4 + λ2 P +R).

In this case, the eigenvalues are

λ = 0, 0,±i µ,±i ν,

where

µ =

√
P −
√
P 2 − 4R

2
and ν =

√
−P +

√
P 2 − 4R

2
.

For φk = φ1 the polynomial coefficients are:

a0 = 1,

a1 =
h

2
,

a2 =
ν2S1(hµ)− µ2S1(hν)

µ2 − ν2
,

a3 =
ν2C1(hµ)− µ2C1(hν)

µ2 − ν2
,

a4 =
S1(hµ)− S1(hν)

µ2 − ν2
,

a5 =
C1(hµ)− C1(hν)

µ2 − ν2
,
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where

S1(z) =
h2

z2

(
1− sin(z)

z

)
and C1(z) =

h3

z3

(
z2

2
− 1− cos(z)

z

)
.

For φk = φ3 the polynomial coefficients are:

a0 =
1

6
,

a1 =
h

24
,

a2 =
1

µ2 − ν2

(
µ2

ν2

(
1

6
− S3(hν)

)
− ν2

µ2

(
1

6
− S3(hµ)

))
,

a3 =
1

µ2 − ν2

(
µ2

ν3

(
hν

24
− C3(hν)

)
− ν2

µ3

(
hµ

24
− C3(hµ)

))
,

a4 =
S3(hµ)− S3(hν)

µ2 − ν2
,

a5 =
1

µ2 − ν2

((
hν

24
− C3(hν)

)
−
(
hµ

24
− C3(hµ)

))
,

where

S3(z) =
z − sin(z)

z3
and C3(z) =

z2/2 + cos(z)− 1

z3
.

If R, T ̸= 0, then the characteristic polynomial can be expressed as a cubic form

w3 + w2 P + wR + T, where w = λ2.

Let −µ2,−ν2,−ξ2 be the three roots of the cubic polynomial above. Then the eigen-
values of A are

λ = ±i µ,±i ν,±i ξ.
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The interpolation polynomial coefficients are:

a0 =
1

∆1∆2∆3

(
ν2ξ2∆3

sin(hµ)

hµ
− µ2ξ2∆2

sin(hν)

hν
+ µ2ν2∆1

sin(hξ)

hξ

)
,

a1 =
1

∆1∆2∆3

(
ν2ξ2∆3

1− cos(hµ)

hµ
− µ2ξ2∆2

1− cos(hν)

hν
+ µ2ν2∆1

1− cos(hξ)

hξ

)
,

a2 =
1

∆1∆2∆3

(
(ν4 − ξ4)∆3

sin(hµ)

hµ
− (µ4 − ξ4)∆2

sin(hν)

hν
+ (µ4 − ν4)∆1

sin(hξ)

hξ

)
,

a3 =
1

∆1∆2∆3

(
(ν4 − ξ4)∆3

1− cos(hµ)

hµ
− (µ4 − ξ4)∆2

1− cos(hν)

hν

+ (µ4 − ν4)∆1
1− cos(hξ)

hξ

)
,

a4 =
1

∆1∆2∆3

(
∆3

sin(hµ)

hµ
−∆2

sin(hν)

hν
+ ∆1

sin(hξ)

hξ

)
,

a5 =
1

∆1∆2∆3

(
∆3

1− cos(hµ)

hµ
−∆2

1− cos(hν)

hν
+ ∆1

1− cos(hξ)

hξ

)
,

where ∆1 = µ2 − ν2, ∆2 = µ2 − ξ2, and ∆3 = ν2 − ξ2.
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