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Abstract

A systematic decay of the aftershock rate over time is one of the most 
fundamental empirical laws in Earth science. However, the equally 
fundamental effect of a mainshock on the size distribution of subsequent 
earthquakes has still not been quantified today and is therefore not used in 
earthquake hazard assessment. We apply a stacking approach to well‐
recorded earthquake sequences to extract this effect. Immediately after a 
mainshock, the mean size distribution of events, or b value, increases by 20–
30%, considerably decreasing the chance of subsequent larger events. This 
increase is strongest in the immediate vicinity of the mainshock, decreasing 
rapidly with distance but only gradually over time. We present a model that 
explains these observations as a consequence of the stress changes in the 
surrounding area caused by the mainshocks slip. Our results have 
substantial implications for how seismic risk during earthquake sequences is 
assessed.

Plain Language Summary

The effect of a mainshock on the size distribution of subsequent earthquakes
has not been quantified and is therefore not used in earthquake hazard 
assessment. To quantify this effect, we develop a stacking approach 
centered on the mainshock time and apply it to for 31 well‐recorded 
aftershock sequences from around the world. We found that after a 
mainshock the earthquake size distribution shifts toward relative more 
smaller events, increasing the so‐called b value by 20–30%. One of the 
consequences of our finding is that the rates of large aftershocks are 
overestimated by the currently used models. Our result is fully consistent 
with both laboratory measurements and modeling, and we present a 
conceptual model that explains our findings.

1 Introduction

Earthquakes interact with each other by changing the state of stress in their 
surroundings (Stein, 1999). The static and dynamic stress changes caused by
their instantaneous displacement decay with growing distance from the fault 
(Okada, 1992). The most noticeable consequence of this stress change is a 
dramatic increase in the seismicity rate (Ebel et al., 2000). The aftershock 
phenomenon is one of the most intensely studied properties of such events. 



Based on empirical observations of the 1891 Nobi earthquake, Omori (1895) 
described how aftershock activity decreased by K/(t + c), where K and c are 
constants that describe aftershock productivity and delay time (Utsu et al., 
1995). Utsu (1961) defined the so‐called modified Omori Formula, observing 
that aftershock sequences decay with different exponents. Alternatives to 
the Omori law have also been proposed (Mignan, 2015, 2016). Today, 
aftershock activity is typically described as part of a cascading or branching 
process, and the Epidemic‐Type Aftershock Sequence ( Ogata, 1988, 1998) 
Model is the best currently available statistical description of seismicity 
(Marzocchi et al., 2017). There is also a good physics‐based understanding, 
often derived from laboratory friction experiments (Toda et al., 2005), of how
stress changes cause the seismicity rate to increase in some regions by a 
factor of 1,000 or more, whereas, in other regions, Coulomb stress changes 
induced by a mainshock may be negative, lowering the earthquake rate 
(Gerstenberger et al., 2005; Wyss & Wiemer, 2000).

However, changes in stress should impact not only earthquake activity rate 
but also the frequency size, or frequency magnitude, distribution (FMD) of 
the subsequent earthquakes. The FMD is typically described using another 
fundamental empirical law of seismology, the “Gutenberg‐Richter 
relationship” (Gutenberg & Richter, 1944), which estimates the number of 
earthquakes N larger than or equal to magnitude M, via the formula log(N) = 
a − bM, whereby the a value is a volume productivity measure and the b 
value quantifies the FMD slope: a lower b value describes a distribution with 
a higher proportion of larger magnitudes, and vice versa. Repeated 
laboratory measurements (Amitrano, 2003; Goebel et al., 2013; Scholz, 
1968) have established that the applied differential stress to a rock sample 
determines the b value: the higher the applied differential stress, the lower 
the b value. Observations from various tectonic contexts are consistent with 
this inverse proportionality of b on differential stress (Schorlemmer et al., 
2005), indicating, for example, b values' systematic dependency on faulting 
style (Gulia & Wiemer, 2010), depth (Spada et al., 2013), and fluid pressure 
(Bachmann et al., 2012).

To date, the effect of a mainshock's differential stress change on the 
subsequent seismicity has not been systematically investigated, but 
individual case studies suggest that sometimes higher b values are observed
after a mainshock (Ogata & Katsura, 2014; Tamaribuchi et al., 2018; 
Tormann et al., 2012, 2014, 2015; Wiemer et al., 2002; Wiemer & 
Katsumata, 1999). These individual observations highlight the important 
question of whether such high postmainshock b values are characteristic of 
aftershock sequences and, if so, whether, when or how they recover. Here 
for the first time, we use a stacking approach to b value time series to 
enhance the signal‐to‐noise ratio of their changes, allowing us to extract the 
generic behavior previously masked by random variations and systematic 
biases.

2 Data and Method



Transients in b value are difficult to establish with confidence, since temporal
variation can easily be mimicked or masked by spatial activation changes 
(Tormann et al., 2013; Wiemer et al., 2002), especially when the 
completeness of recording changes dramatically over time (Wiemer & Wyss, 
2002). Consequently, any robust analysis of transients necessitates 
meticulous sequence‐specific data selection systematically applied so as not 
to introduce any biases into the analysis.

We defined a fast, homogeneous, objective, and reproducible methodology 
to select the region for analysis based on the mainshock's focal mechanism 
(FM). FMs provide all required information (strike, dip, and rake) to model a 
first‐order rectangular fault plane. By deriving a tectonic fault style (Frohlich, 
1992) and by applying empirical formulas (Wells & Coppersmith, 1994), 
source dimensions and relative uncertainties can be derived directly from 
the mainshock magnitude (Figure 1). Between the two available nodal 
planes, we consider the one with the highest number of immediate 
aftershocks (hereinafter we refer to the chosen fault plane as the box).

Figure 1

Top panel—red frame: Schematic workflow: from the FM to the fault planes and an example of the 
inferred geometry for a M7 earthquake in different tectonic styles. Top panel (A)—red frame: method 
details about the four steps to constrain the geometry of the box: from FM (n.1; lower hemisphere, in 
violet) to nodal planes (NPs in green and blue colors, n.2). By plotting the nodal planes parameters 
(strike, dip, and rake) in a Frohlich (1992) triangular diagram (Ftd, n.3), we deduce the tectonic style 
(N = normal, T = thrust, S = strike slip, C = composite) and we infer the plane dimensions (length: L 
and width: W) as function of the magnitude (M) and of the empirical formulas of Wells and 
Coppersmith (Wells & Coppersmith, 1994). The geometry of the nodal planes (dip direction in shades 
of gray) and their dimensions constrain the seismogenic boxes (n.4). Four examples for FMs with M = 7
and different tectonic styles are reported to display the planes that individuate the fault plane and the 



auxiliary one. Bottom panel (B)—green frame. On the left (map): seismicity data plot on a local high 
resolution Digital Elevation Model (DEM): mainshock (red star), earthquakes below the magnitude of 
completeness (gray), background (blue), and aftershocks (red). The fault plane (green) is also 
represented in longitudinal (A‐B) and transversal (C‐D) sections with respect to the strike. On the right,
an example: a value and b value time series and FMD for the background (blue) and the first b value 
estimated after the mainshock (red) for the M6 Parkfield quake in 2004. FMD = frequency magnitude 
distribution; FM = focal mechanism.

We processed all magnitude 6.0 or larger independent (i.e., not themselves 
aftershocks, according to Gardner & Knopoff, 1974), events available to us in
the high‐quality catalogs (i.e., local catalogs with a low magnitude of 
completeness) covering California (ANSS), Japan (JMA), Italy (Gasperini et al.,
2013), and Alaska (AEIC), giving us 58 sequences in all: 20 in California, 35 in
Japan, 2 in Italy, and 1 in Alaska. For each of these mainshocks, we construct
a box based on the FM parameters (Figure 1). In order to quickly and 
homogeneously compare worldwide sequences, all the boxes were derived 
using mechanisms from the Global Centroid Moment Tensor database 
(Dziewonski et al., 1981; Ekström et al., 2012), whereas we performed the 
temporal parameter analysis based on the local catalogs, taking advantage 
of lower completeness magnitudes and higher location accuracy. Although 
the Global Centroid Moment Tensor also provides coordinates of the FM 
centroid, we placed the box at the hypocenter listed in the corresponding 
local catalog. Sometimes, the offset between those two locations can be 
significant (tens of kilometers) because centroids are poorly constrained by 
the Moment Tensor inversion procedure (Kagan, 2003; Smith & Ekström, 
1997) and are thus unreliable in many cases. This choice can result in 
asymmetric distributions of the events with respect to their hypocenter for 
sources with strong directivity and asymmetric fault rupture. To acknowledge
variation in the spatial spread of aftershocks between different sequences, 
we estimate the density of events (immediate aftershocks, e.g., during the 
first days) calculating the ratio between the number of events at increasing 
distances from the box—from 3 to 10 km, in all the 3‐D directions—and the 
fault length. We then choose the distance that yields the highest aftershock 
density (i.e., the highest ratio). The 3 and 10 km represent, respectively, the 
uncertainty in the fault size estimation for a M6 and for a M7 due to the 
magnitude conversion and homogenization process (e.g., in the Italian 
catalog; Gasperini et al., 2013). Within this distance from the box, we select 
all events in the local catalog.

2.1 The Individual Time Series

To compute parameters, we choose a constant number of events approach, 
moving the window through the catalog event by event and plotting the data
at the end of the considered time interval (Tormann et al., 2013). Computing
the b values critically depends on the correct estimate of the magnitude of 
completeness (Mc; Mignan & Woessner, 2012; Wiemer & Wyss, 2000; 
Woessner & Wiemer, 2005) which is known to vary over time and changes 
especially strongly after large earthquakes (Wiemer & Katsumata, 1999). To 
avoid overly conservative estimates at times when smaller events were 



recorded properly, we estimate the Mc for each time interval and apply a 
four‐level approach: we first estimate the overall completeness based on the 
maximum curvature method (Wiemer & Wyss, 2000) of the premainshock 
catalog as well as the second half of the Gardner and Knopoff (1974) 
aftershock time window (when incompleteness that affects the first phase of 
the aftershock process is not considered problematic any more), assuming 
this to be the best Mc level for this region, and use the maximum of those 
two as the precutting level. We then estimate for each time window Mc via 
maximum curvature plus 0.2 (Wiemer & Wyss, 2000; Woessner & Wiemer, 
2005) to reach the data set from which we estimate the a and b values if 
more than 50 events, above the Mc, are available.

To account in addition for the short‐term aftershock incompleteness (Kagan, 
2004), we removed any events that occurred after the mainshock until the 
Mc calculated by using the mainshock magnitude‐dependent Mc estimate 
proposed by Helmstetter et al. (2006) matched the precutting level.

We adopt a window length of 150 for the events preceding the mainshock 
and 400 for events following the mainshock, due to their different 
abundances. The b value was calculated using the maximum likelihood 
method. For most earthquake sequences, numerous aftershocks are 
observed within the box, but there is only very sparse background seismicity 
before the mainshock, too little to estimate an event specific b value. In 
those cases, we estimate a regional background b value, selecting the 
closest 300 events that occurred before the mainshock and using this data 
set to compute the local reference bvalue. In such cases, the b values 
preceding the mainshocks are not represented by a time series but by a 
single point preceding the mainshock.

To assess the linearity of each FMD, we adopt the nonlinearity index (NLI; 
Tormann et al., 2014): this algorithm judges the linearity of a sample catalog
based on the b value estimates for different cutoff magnitudes, starting at 
Mc and increasing up to the highest magnitude above which 50 events are 
still observed. The NLI index is the ratio of the standard deviation of these b 
value estimates divided by the largest individual uncertainty (Shi & Bolt, 
1982) in the single b value estimates, if at least five b value estimates can 
be calculated. If NLI > = 1, the FMD is considered linear. The overall 
approach is summarized in Figure 1 for the example of the M6. Parkfield 
(California) mainshock that occurred on 28 September 2004: the time series 
of a values reveals an increase in aftershock activity of roughly a factor of 
1,000, which decreases exponentially over time. The b values increase by 
about 20%, from about 0.74 to 0.88, then gradually decrease over time. The 
respective FMDs are shown, too. In total, we can define the parameters of 
interest for 31 sequences out of 58 (15 in California, 14 in Japan, 1 in Italy, 
and 1 in Alaska).

Once the individual time series has been estimated, we normalize it by 
taking the median value of all the premainshock estimates. Then, for each 



time step (i.e., 1 day), we calculate the percentage differences from the 
reference level (100%). This allows us to stack the individual time series 
even though the absolute b values vary due to different tectonic regimes, 
magnitude scales, and other factors. Since we are interested in solving 
potential systematic changes in the parameters before and after the 
mainshock, we also shifted the time of the mainshock to zero for each 
sequence and interpolated the derived parameters on a daily scale for the 
sequence‐specific catalog length before and after the mainshock. Finally, we 
stacked all the 31 sequences: for each day we calculate the mean of the 
estimates for the individual sequences to derive the general behavior. We 
establish the uncertainty around the mean by a bootstrap technique over a 
paradata set of 10 times the number of sequences (i.e., 310).

3 Results

In Figures 2a–2d, we show the results of the time‐shifted, normalized, 
stacked time series, revealing a trend: immediately after the mainshock, the 
b value increases by about 20% (Figure 2a), a jump that is statistically 
significant and lies outside the observed premainshock variability of the 
stacked time series. The peak increase in the b value occurs at between 1 
and 2 months. The b value subsequently remains high for the next 5 years, 
decreasing only gradually. Note also the 10% decrease in b value during the 
months to days prior to the mainshock. While this anomaly is consistent with 
selected case studies and laboratory studies that have reported dropping 
precursory b values (Gulia et al., 2016; Papadopoulos et al., 2010; Tormann 
et al., 2015), the number of premainshock stacked time series is only 8.



Figure 2

Stacking the parameters of interest for the 31 sequences showing the difference in percentage to the 
reference value. Blue curves indicate daily values over the 5 years preceding the mainshock. Red 
curves chart the same values over the first subsequent 5‐year period. (a) b value. (b) a value. (c) 
Magnitude of completeness. (d) Daily probability for an event with magnitude greater or equal to the 
mainshock, calculated from the values in the subplots a and b (Pr). In black, the same probability 
estimated using the background constant b value. Gray indicates the uncertainty by bootstrap. 



Stacking b values (e–g) and a values (h–j) as a function of the distance, resampling the subcatalog and 
estimating a and b values for the events inside three different volumes. The shaded colors (red and 
blue) represent the number of sequences that have an estimation.

The stack of the a value (Figure 2b) exhibits the well‐known increase in 
activity by a factor of 1,000 after a mainshock, followed by exponential 
decay. We also show the Mc stack over time (Figure 2c) that indicates no 
systematic change in the Mc before and after the mainshock. The 
instantaneous a and b values can be used to directly compute the probability
of an earthquake of any magnitude (Gulia et al., 2016; Wiemer & Wyss, 
1997). Of special interest is the probability of a secondary event equal to or 
even larger than the mainshock itself. The curve of this normalized 
probability is plotted in Figure 2d. It shows an increase above the 
premainshock background level by a factor of 10,000 immediately after the 
mainshock and then a gradual decrease. For comparison, we also compute 
the current best practice in aftershock hazard assessment, using a constant 
b value (black line in Figure 2d): this probability exceeds the one computed 
with a temporally varying b value by a factor of at least 10 for many years.

Next, we analyze the spatial extent of the b value increase by stacking three 
different and independent sampling volumes around the mainshock fault 
volume (Figures 3e–3j): the highest increase in both b and a values is 
observed in the volume limited to up to 2 km away from the mainshock. Here
the b values increase by 30% after the mainshock. Volumes between 2 and 
15 km away from the mainshock also have higher b values, up by about 20%
and provide an enticing hint that b values in this distance range tend to 
increase during the months prior to the mainshock, a trend opposite to the 
precursory decrease observed in the immediate vicinity of the quake. In 
volumes from 15 to 25 km away, the b values increase by only about 5% 
after the mainshock, while a values rise much more sharply, indicating that 
not only the temporal recovery but also the two spatial footprint changes 
appear to be different.



Figure 3

Percentage variation of positive Coulomb Failure Stress changes as function of distance (a) and 
magnitude (b) for the three different styles of faulting. Percentage variation of differential stress 
changes as function of distance (c) and magnitude (d). Expected temporal evolution of the seismicity 
rates (e) and of stress changes recovery (f). Earthquake productivity as function of distance for 5 days 
(g) and 50 days (h) after mainshock for three different styles of faulting.

4 Modeling the Changes in Aftershocks Distribution

The occurrence of an earthquake affects the stress distribution in the area 
surrounding the fault zone. For each point of a 3‐D domain, the stress 
changes caused by a mainshock can be computed using analytical solutions 
for a dislocation in an elastic half‐space (Okada, 1992). Such computation 
provides the full stress tensor at each evaluation point, making it then 
straightforward to derive variables such as the differential stress changes 
and the Coulomb Failure Stress (CFS).

On the one hand, the variation in differential stress can be computed 
assuming an initial state (dependent on the faulting style and resulting in a 
Δσini = σ1 − σ3) and recalculating the principal stress by solving for the 
eigenvalues in the final configuration (i.e., after summing the changes 
computed by the Okada model). Then, the differential stress change in 
percentage is

The values of the initial principal stresses are chosen such that Δσini is 66, 
133, 199 MPa for normal, strike‐slip, and thrust faulting, respectively. These 
values are calculated assuming that one of the three principle stresses is 
always the lithostatic and vertical at a seismogenic depth of 9 km with rock 
density 2,500 kg/m3. The maximum and minimum principal stresses to 
calculate the differential stress for the respective cases (normal, strike slip, 



and thrust) are then calculated using ratio with respect to the vertical stress.
On the other hand, computing changes in CFS provides a first‐order 
understanding of where future aftershocks are likely to occur (Stein, 1999). 
We can calculate a scaled changes in CFS as

in which Δτ is shear stress and Δσn is the normal stress. μ is the frictional 
coefficient with a value of 0.6, with σm being the mean effective stress and B 
= 0.5 the Skempton's coefficient. We consider an elastic medium with a 
Young's modulus of 30 GPa and a Poisson's ratio of 0.3. The calculated 
variations for both stress and CFS are dependent on the assumed FM, and 
we assume that both source and receivers have the same orientation, with a 
strike of roughly 30° and a dip of 90° for the strike‐slip faults and fault 
dipping ~60° for normal faults and ~30° for thrusts, with both cases having 
strike of 0°. Such angles represent the optimal orientation if the principal 
stresses are oriented along coordinate axes.

In order to have an understanding of the stress variation in three 
dimensions, we calculate the mean spatial variation of both δΔσ and δΔCFS 
for regions at varying distances from the fault in 1‐km steps (e.g., the value 
at 3 km accounts for values at the receiver between 2 and 3 km). To avoid 
singular values, we always exclude values in the first 0.5 km.

Figures 3a and 3c show an example of the expected variation in space for an
optimally oriented fault reactivating in a Mw = 7 mainshock, with dimensions 
based on empirical relationship (Wells & Coppersmith, 1994) and top of the 
fault at 7‐km depth. The areas near the fault plane are subjected to a 
decrease in differential stress or an average larger value of CFS, which 
correlates with the observed increase in b value.

To analyze this effect as a function of magnitude, we take the average value 
of relative stress changes within the first 5 km. Figures 3b and 3d shows the 
variation of average CFS and differential stress changes as a function of 
magnitude, with percentage variation being proportional (inversely 
proportional) to the average value of positive Coulomb (differential stress). 
The model predicts a change of about 8% for CFS and 3% for differential 
stress at a distance of 5 km for the case of normal faults with magnitude Mw 
= 8.

Figures 3a–3d refer to coseismic variation; we can use a well‐established 
constitutive law for earthquake production and a classical elastic rebound 
theory for the stress to extrapolate the temporal variation of the changes in 
the seismicity rate and percentage variation of differential stress.

The temporal evolution of the earthquake productivity is calculated by 
assuming rate‐and‐state friction (Dieterich et al., 2000) according to the 
formula



where R is the expected rate of aftershocks at time t, r is the background 
rate of seismicity,tais the aftershock decay time A is a constant value, and 
σn,0 is the value of the normal effective stress. ΔS is an equivalent Coulomb 
stress, defined as

We use an equivalent friction μ = τ0/σn, 0 − α = 0.3, and the value of Aσn,0 
depends on the faulting style (0.0116, 0.0214, and 0.02 MPa, for normal, 
thrust, and strike slip, respectively—Heimisson & Segall, 2018). The temporal
evolution of differential stress is simply calculated by assuming linear elastic 
rebound theory: coseismic slip is completely recovered with a given 
recurrence time.

Figures 3e and 3f show the expected temporal evolution for a point located 1
km above the fault zone along dip. The seismicity rate increases up to 105 
earthquakes/years and decreases exponentially over time to a value slightly 
above the background level (80 events per year) after 5 years (Figure 3e). If 
the stress recovery is elastic, and assuming for example an arbitrarily 
selected 60‐years recurrence period, the CFS, for example, recovers linearly 
with little change over the first 5 years, remaining at about 5% above the 
regional value (Figure 3f). A similar trend could be extrapolated for the 
differential stress, although with negative average value in the considered 
domain. The chosen recurrence period was assumed quite short to illustrate 
that even in a case of unusually fast recovery, in a 5‐year time frame the 
stresses are still far from the background value (if assuming elastic response 
only).

Similar to stress change, the spatial distribution and amplitude of earthquake
productivity depend on the fault's orientation and faulting style. A 
comparison of the results in Figures 3g and 3a/3c shows that for the three 
different faulting styles we expect differences in seismicity and relative 
stress changes, with normal faults being the most receptive, but the general 
trends persist. While the rate of aftershocks strongly increased up to 10 km 
away from the fault (depending on the tectonic style), the stress changes are
largely confined to an area within the first 5 km from the fault.

Summing up, our simple model shown in Figure 3 suggests that areas of 
positive CFS (or average negative differential stress) exist after a mainshock,
which would explain the observed increased b value. Assuming that this 
correlation does exist, the amplitude of the bvalue increase should depend 
systematically on magnitude and faulting style. According to the model, the 
b value should recover slower and linearly with time, rather than decaying 
exponentially, as observed for aftershock rates. The b value increase should 
be confined to the immediate vicinity of the mainshocks.

Inspired by these model's predictions, we now reexamine our stacking 
results. We currently lack the resolution power necessary to analyze 



quantitatively the spatial correlation of bvalue increase with areas of positive
CFS (or negative differential stress), and we also have too limited FM 
diversity for a meaningful analysis. We first analyze the long‐term trend: in 
Figures 4a and 4b, we extend the stacks to 15 years after a mainshock 
occurrence and indeed find the recovery in b value to be very different from 
the change in a values. The rate increase decays exponentially with time, as 
expected and in accordance with Omori's law. After 15 years it almost 
reached the pre‐event background level. In contrast, the b values remain 
high through time, decreasing only slightly, in agreement with our theory.

Figure 4

 (a, b) a value and b value stacking showing the difference in percentage from the reference value. (c–
f) b value stacking and a value time series for the 20 sequences with mainshock M < 7 and for the 11 
sequences with mainshock M > =7. Percentage of the maximum a value (g) and b value (h) increase 
as a function of the distance from the box (km) over the first 3 months of aftershocks.

To investigate magnitude dependence, we compute stacks of the b values 
for events above and below magnitude 7.0 (Figures 4c and 4d). These 
confirm that events with magnitude equal or bigger than 7 experience an 
increase approaching 40%, while smaller mainshocks cause an increase of 
about 20%. Conversely, the a value increase (Figures 4e and 4f) appears 
rather independent of magnitude. The magnitude dependence of b value 



increase would be even further pronounced if stress drop depended on 
magnitude. Although it is often assumed that stress drop is independent of 
magnitude, for large strike‐slip earthquakes it was pointed out that slip 
increases with rupture length (Scholz, 1982), which has been confirmed 
more recently (Hanks & Bakun, 2002, 2008). Because these earthquakes all 
have the same width, constrained by the seismogenic thickness, then stress 
drop must increase by rupture length and magnitude.

We also study the distance decay kernels in greater detail in Figures 4g and 
4h and find that they tally with the theoretical prediction that b values 
increase is confined to the immediate vicinity of the fault, decaying rapidly 
with distance, whereas a value increases decay more gradually with distance
from the fault. Our more detailed analysis has therefore shown good 
agreement between model prediction and data.

5 Discussion and Conclusions

By using stacking of b value time series as a tool to enhance the signal‐to‐
noise ratio, our study is the first to quantify the general impact of a 
mainshock on the size distribution of subsequent earthquakes. The stacked 
signal of an increase in b value by 20–30% after a mainshock is very clear 
and highly significant (Figure 2). We document for the first time the space, 
time, faulting style, and magnitude dependency of the b values change and 
establish that the b value change transients behave distinctly different from 
the ones of aftershock rate change, as described in Omori's law. The 
differential stress change of the mainshock is a highly plausible mechanism 
explaining the empirical observations and is fully consistent with laboratory 
measurements of the b value dependence on stress.

We propose that the changes in b value as a function of time after a 
mainshock can be described using the formula:

bpost = bpre (1 + d (1 − t/Rt))where Rt is the return period of the mainshock 
and d is a constant that may depend on the magnitude of the mainshock, the
faulting style, and possible tectonic region. A default value for d, as observed
in Figure 2a, would be 0.2. The observed long‐lasting increase on the b 
values matches the fault's loading rate.

Our results address one of the open issues regarding Coulomb stress 
changes and elastic rebound theory by Reid (1911). Elastic rebound theory 
predicts that after a mainshock, it will take time to recover the strain 
released in the mainshock, so the subsequent years should be the least 
hazardous. On the other hand, Coulomb stress change models and 
operational aftershock forecasting models such as Epidemic‐Type Aftershock 
Sequence (Ogata, 1988, 1998) or STEP (Short‐Term Earthquake Probability, 
Gerstenberger et al., 2005) predict the highest rate of rerupturing on the 
same fault immediately after the mainshock. These models forecast an 
unrealistically high chance for a repeat of the mainshock rupture (Figure 2d) 
and thus substantially overestimate aftershock hazard. So far, operational 



earthquake forecasting models have—on a somewhat ad hoc basis—lowered 
the maximum magnitude or removed this mainshock fault from their 
computations (Field et al., 2017). Our results suggest that this paradox is 
resolved when considering the stress changes and their impact on the 
earthquake size distribution. While numerous small events occur near the 
mainshock fault, larger ones are far rarer than existing models predict. 
Indeed, Figure 4h suggests that the b values right on the fault plane increase
by much more than 120%, consistent with observations from individual 
sequences showing that the strongest b value change occurs near the 
patches of the largest slip (Tormann et al., 2015).

CFS analysis after significant earthquakes has been frequently conducted 
after large mainshocks, with hundreds of studies conducted since the 
groundbreaking work done on the Landers earthquake (King et al., 1994). 
The performance assessment of these aftershock forecasts has been mixed 
(Hardebeck et al., 1998; Nandan et al., 2016). Based on our modeling (Figure
3), we postulate that in the future such studies should consider not only the 
effect of CFS on earthquake rates but also the absolute value of the change 
in stress and its impact on earthquake size distribution if they are to forecast
earthquake hazard accurately.

We conclude by suggesting that stacking carefully selected, time‐shifted, 
and normalized time series of b values has proven to be a powerful approach
for gaining insights into physical processes. Our analysis has also shown 
hints of precursory signals that are consistent with preslip on the fault: 
decreasing b values in the immediate vicinity of the fault and increasing 
ones nearby (Figures 2e and 2f). Future studies covering more events may 
be able to resolve these important precursory changes using the stacking 
approach introduced here.
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