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REVIEW

Motor simulation theories of musical beat perception
Jessica M. Rossa, John R. Iversenb and Ramesh Balasubramaniam a

aCognitive and Information Sciences, University of California, Merced, CA, USA; bSwartz Center for Computational Neuroscience, Institute for Neural
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ABSTRACT
There is growing interest in whether the motor system plays an essential role in rhythm perception. The
motor system is active during the perception of rhythms, but is such motor activity merely a sign of
unexecuted motor planning, or does it play a causal role in shaping the perception of rhythm? We
present evidence for a causal role of motor planning and simulation, and review theories of internal
simulation for beat-based timing prediction. Brain stimulation studies have the potential to conclusively
test if the motor system plays a causal role in beat perception and ground theories to their neural
underpinnings.
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Introduction

A tight relationship between movement and auditory rhythm
perception is evident in human motor system response and
motor involvement during music listening and rhythm tasks
(Iversen & Balasubramaniam, 2016; Janata, Tomic, &
Haberman, 2012; Repp, 2005a; Repp, 2005b; Ross,
Warlaumont, Abney, Rigoli, & Balasubramaniam, 2016), and
can be observed in neural response to music early in infant
development (Kuhl, Ramirez, Bosseler, Lin, & Imada, 2014).
How we move to music has by itself become a systematic sub-
field of inquiry (Ross et al., 2016) that often focuses on body
synchronization with music. Some have suggested that the
link between auditory and motor involvement in music could
be similar to that found in language (Patel, Iversen, &
Rosenberg, 2006).

Music often impels us to move in time with a perceived
pulse or beat, implying a forward connection between audi-
tory and motor systems that enables sound to guide move-
ment planning and execution. Auditory training has been
shown to improve motor performance (Stephan, Heckel,
Song, & Cohen, 2015) and has even been explored for move-
ment rehabilitation in patients with Parkinson’s disease
(Nombela, Hughes, Owen, & Grahn, 2013; Thaut et al., 1996)
and recovery after stroke (Altenmuller & Schlaug, 2013).
Interestingly, motor planning regions are active even when
merely listening to music with a beat and not moving along.
This raises the question: is the motor system necessary for
beat perception, or is such motor activity a consequence of
beat perception, reflecting unexecuted movement? The for-
mer view, perhaps surprising at first if one considers “the beat”
to be a property of the music itself, is consonant with the idea
that perception and movement are intimately coupled in a
continuously interacting bidirectional perception–action rela-
tionship (Gibson, 1966). This perception–action relationship
depends upon sensory perception to inform motor planning,
but suggests that the motor system may influence active

perceptual processes, and this bidirectional causality is a char-
acteristic of the models and theories reviewed here. While
there is a long history of study in how the sensory systems
inform action, there is now growing evidence that internal
forward models make predictions about the sensory conse-
quences of motor acts (Prinz, 1997; Wolpert & Flanagan, 2009).
These predictions are thought to contribute to sensory per-
ception and error assessments used for making corrections for
discrepancies between expected and actual sensory input. An
important task for music neuroscience is to understand to
what extent there is a bidirectional relationship between audi-
tory perception and action during not only performance but
perception.

In this review, we focus on the particular relationship
between motor planning and musical beat perception. We
examine neural and behavioral evidence for active motor
involvement in auditory rhythm perception, and contrast this
with other general “motor” theories of action, and with motor
theories of speech perception. In particular, we examine the-
ories that posit the role of the motor system as “shadowing” or
“mirroring” the auditory system and others that suggest that it
may play a more causal or “predictive” role without which
human musical beat perception would be impaired. In addi-
tion, we discuss theories that move beyond the more literal
prediction of sensory consequences of motor acts to a more
abstract role of the motor system in generating temporal
predictions. We propose causal methods, such as using tran-
scranial magnetic stimulation (TMS) protocols, as a necessary
experimental step to further define the causal role of the
motor system in auditory rhythm perception.

Beat perception

Beat perception refers to the detection of a regular pulse
underlying a rhythmic input stream. Beats can be stressed, or
accented, in regular patterns to help structure the pulse in a
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predicable way, and this structure is referred to as meter
(Lerdahl & Jackendoff, 1983; London, 2004). The auditory
stream may be as simple as a metronome or as complex as a
highly layered and time-varying musical work, but the human
brain seems to almost automatically seek a simple regularity,
the beat, or pulse, which can serve to organize our move-
ments (as in dance, or tapping your foot to music), but also
can organize our perception of time (Hannon, Snyder, Eerola,
& Krumhansl, 2004; Palmer & Krumhansl, 1990). Two types of
timing that are involved in rhythm perception are interval-
based (absolute) timing and beat-based (relative) timing (Dalla
Bella et al., 2016; Grube, Lee, Griffiths, Barker, & Woodruff,
2010; Iversen & Balasubramaniam, 2016). Interval-based timing
is common to humans and non-human primates (Merchant &
Honing, 2014; Zarco, Merchant, Prado, & Mendez, 2009). Beat-
based timing may be uniquely human among primates (e.g.,
Merchant & Honing, 2014), and has other properties that make
it of special interest for motor theories of timing (Grube et al.,
2010; McAuley & Jones, 2003; Patel & Iversen, 2014).

A number of findings support the notion that motor activ-
ity may play an active role in shaping beat perception. In
particular, as reviewed in the following, it has been suggested
that beat-based timing relies on the establishment and main-
tenance of an internal predictive model, and there is support
for this in demonstrations of anticipation in motor synchroni-
zation, tempo flexibility, the susceptibility of beat perception
to willful control, and improved perceptual acuity of events
that occur on the beat.

Many empirical studies have concluded that beat percep-
tion is anticipatory in nature (Miyake, 1902; Repp, 2005b;
Woodrow, 1932). Analyses of finger tapping movements that
are synchronized with an auditory rhythm demonstrate that
taps often temporally precede the beat, an effect called nega-
tive mean asynchrony; humans spontaneously generate
expectations of the timing of rhythmic components
(Aschersleben, Gehrke, & Prinz, 2001; Drewing, Hennings, &
Aschersleben, 2001). Another property of beat-based timing is
flexibility in tempo. Rhythms can speed up or slow down and,
despite these temporal fluctuations, people perceive an
underlying rhythmic structure. In contrast to synchronous
sound production in other species, which is not as demon-
strably flexible, humans can entrain movements to a range of
tempi between 94 and 176 BPM (Hanson, Case, Buck, & Buck,
1971; London, 2004; McAuley, Jones, Holub, Johnston, & Miller,
2006; Patel & Iversen, 2014; van Noorden & Moelants, 1999).

An important feature of musical beat is that it is a percep-
tual construct, influenced by but not uniquely determined by
rhythms. It is susceptible to conscious control and active
metrical interpretation on the part of the listener (Iversen,
Repp, & Patel, 2009); the sense of beat actively shapes the
perception of rhythm. In the aforementioned study (Iversen
et al., 2009), when asked to impose different metrical inter-
pretations onto a rhythmically ambiguous phrase, subjects’
magnetoencephalography (MEG) recordings reflected ima-
gined metrical structures despite physical stimulus invariance.
Metrical interpretation influences early evoked neural
responses in the beta range, with a stronger response on the
imagined beat, and these patterns resemble those of non-
imagined physical accents (Iversen et al., 2009).

Finally, beat perception is subject to influence by motor
behavior. Overt body movement can improve perception of
timing (Manning & Schutz, 2013) and influence perceptual
interpretation of ambiguous rhythms (Phillips-Silver &
Trainor, 2005, 2007). Overt and covert motor activities are
associated with changes to perceptual acuity. Recent studies
have shown improvements in beat-perception and finger-
tapping entrainment to music when subjects were instructed
to search for the pulse by moving their bodies (Su & Pöppel,
2012). Further research has shown that demonstrations of
accelerating motion lead to faster perceived tempo of musical
excerpts (Su, 2012; Su & Jonikaitis, 2011). Taken together,
these results provide evidence that beat and meter perception
are shaped by motor activity. However, in this review we will
focus largely on the less explored role of the motor system in
beat perception when no overt movement is involved.

Motor system activation during passive listening

A second strand of evidence suggesting the potential for a
motor role in beat perception comes from neuroimaging,
which has repeatedly shown that parts of the motor planning
system are active during rhythm perception, even in the
absence of overt movement, particularly for rhythms that
evoke a strong sense of beat. In particular, beat perception
engages dorsal premotor cortex, supplementary motor area
(SMA), pre-SMA, basal ganglia, and lateral cerebellum
(Bengtsson et al., 2009; Chen, Penhune, & Zatorre, 2008;
Grahn & Brett, 2007; Stupacher, Hove, Novembre, Schütz-
Bosbach, & Keller, 2013). Although these activations are dis-
tributed across multiple regions, they are all in areas of the
brain associated with motor preparation and support that beat
perception engages both motor and secondary motor
structures.

What is motor activity doing when listening without mov-
ing? A parsimonious interpretation of this coactivation of
motor regions while listening to rhythm is that it is related
to anticipatory movement preparation. Consistent with this
“mere” motor-preparation view, corticospinal excitability is
modulated by listening to music with a strong beat.
Stupacher et al. (2013) measured motor excitability during
passive listening using TMS and demonstrated that excitability
was time locked to the beat, and the degree of excitability
reflected auditory–motor training, being greater in trained
musicians. Motor excitability in amateur pianists while listen-
ing to a piano piece increases after learning to play that piece
of music on the piano (D’Ausilio, Altenmüller, Belardinelli, &
Lotze, 2006), and motor excitability is sensitive to differences
in rhythmic properties between musical excerpts (Stupacher
et al., 2013).

However, accumulating evidence suggests motor system
activation while listening to rhythms may not merely be an
epiphenomenon of suppressed movement, but may also play
a causal role in shaping rhythm perception. One clue comes
from cases where dysfunction of motor regions impairs
rhythm perception. Patients with impaired basal ganglia func-
tion due to Parkinson’s disease (PD) show impairments in a
rhythm discrimination task compared with age-similar control
subjects (Grahn & Brett, 2009). In the abovementioned study,
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both PD and healthy participants were presented with a dis-
crimination task using beat-based rhythms or non-beat-based
rhythms. While there was no difference in discrimination abil-
ity between the groups for non-beat-based rhythms, discrimi-
nation of beat-based rhythms was reduced in the PD group
suggesting that the basal ganglia are important for perception
of musical beat, perhaps for generating an internal beat struc-
ture (Grahn & Rowe, 2013). Although further research is
needed to determine how direct and causal the basal ganglia’s
involvement is in beat perception, recent work of Kotz, Brown,
and Schwartze (2016) suggests that the basal ganglia’s role in
beat perception might stem from some aspect of motor pre-
paration or planning.

Additional support for motor planning involvement in audi-
tory perception can be found in MEG and electroencephalo-
graphy studies of beta band neural oscillations. Beta band
modulation is thought to be related to anticipatory proces-
sing, as beta activity decreases just after tone onset but its
rebound may reflect sequence tempo (Fujioka, Trainor, Large,
& Ross, 2012). The same study found coactivation of auditory
and motor cortical areas, even without a motor response,
although causality could not be addressed. Other results sug-
gest that auditory beta-band modulation is influenced by top–
down processes: voluntary metrical interpretation of rhythms
modulates beta-band responses to sound (Iversen et al., 2009).
Such modulation is suggested to reflect ongoing motor plan-
ning processes.

Motoric basis of sensory prediction

A third field of discourse that relates to the role of the motor
system in beat perception is extensive work on internal motor
models. From the perspective of this work, putative internal
models used for auditory expectation could be understood as
either forward or inverse. Forward internal models, such as
efference copies, are used to predict sensory outcomes result-
ing from motor behavior. Inverse internal models are used to
plan motor behavior based on desired sensory outcomes
(Miall, 2003; Pfordresher, 2011; Tian & Poeppel, 2010). We
can illustrate these types of models and their roles in coordi-
nating action and perception with studies of singing. Studies
of internal models involved in singing have used the impact of
altering perceptual feedback to perturb ongoing production,
presumably through the mismatch with an existing forward
internal model and a disrupted inverse internal model crea-
tion. This has been shown with internal models for vocal pitch
(Pfordresher, 2011) and volume production, known as the
Lombard effect (Lombard, 1911; Zollinger & Brumm, 2011),
and fingertip force production (Therrien, Lyons, &
Balasubramaniam, 2012). Disruption of the process involving
inverse internal models is thought to be the reason some
people consistently sing pitches that are too high or low
when trying to match pitch (Pfordresher, 2011). This phenom-
enon is referred to as poor-pitch singing, and has been shown
to not be attributable to perceptual deficits in pitch percep-
tion, motor deficits, or pitch memory deficits (arguably, as
outlined in Hutchins & Peretz, 2012). The majority of the
general population can carry a tune with pitch and timing
proficiency, but a small percentage cannot reliably match

pitch even if they show no impairment in pitch discrimination
tasks (Dalla Bella, Giguère, & Peretz, 2007). Pfordresher’s (2011)
explanation for poor-pitch singing is a deficit in creating an
inverse internal model from perception of a pitch that can then
be used for pitch production. This vocal imitation weakness
has also been demonstrated in intonational speech
(Pfordresher & Mantell, 2009). Accurate predictions about
internal and external sensory effects of action are needed for
skilled movement (Wolpert & Flanagan, 2009), including those
underlying the articulatory processes in singing. In addition,
predictions cannot be static but instead allow for online
updating; errors between predictions and sensory conse-
quences are continuously translated into changes in the inter-
nal model (Wolpert & Flanagan, 2015, 2009; Wolpert & Kawato,
1998; Yang, Wolpert, & Lengyel, 2016). Mere shadowing does
not support this informative and flexible interchange between
action and perceptual consequences via error-based modifica-
tion to the internal model. There are clear advantages to
having a bidirectional predictive basis to connect the auditory
and motor systems.

Other domain-general frameworks have been developed,
including ideomotor theories (Shin, Proctor, & Capaldi, 2010)
and common-coding. Common-coding approaches present
perception and action as having common representation
(Prinz, 1997), thus making claims about the predictive nature
of the relationship between the auditory and motor system.
According to the common-coding accounts, actions are coded
as the perceived effects of those actions (action effects). Thus
viewing another person moving activates these action-
perception representations, allowing for perceptual prediction
generation. The theory is supported by evidence showing
shared neural substrate for perceived and actualized move-
ments, and by interference when the two try to access this
representation simultaneously (Prinz, 1997), reminiscent of
Gibson’s (1966) account of perception being in service of
generating opportunities for action and vice versa.

In a recent article, Press and Cook (2015) argued that
domain-general motor contributions to perception undermine
the theory that motor activation while watching human move-
ment is for action simulation: that it is only shadowing. They
describe a number of domain-general motor contributions to
perception, including recognition of simple movement para-
meters (direction, position, velocity), timing, inference about
human motion in masked point-light displays, mental rotation,
and visual search. The authors classify these as domain-
general because they are not necessarily related to complex
motor actions such as grasping; these contributions could be
understood as generically relating to movement. However,
this evidence does not negate that these contributions are
used to form sensory predictions.

Although there is considerable evidence for (Rizzolatti &
Craighero, 2004) and controversies surrounding mirror neuron
theories (Hickok, 2009), it has been argued that mirror neurons
might play an important role in generating inverse and forward
internal models (Miall, 2003). Mirror neurons are best known
for their activity during visual observation, but can also
become active when hearing an action without seeing the
action (Kohler et al., 2002). Although there are obvious paral-
lels between the theories of motor simulation and mirror
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neurons (Koelsch, 2012), the mirror neurons associated with
the ventral premotor area do not appear to be related directly
to more dorsal premotor areas that are associated with beat
perception.

Contrary to the mere shadowing accounts, the idea that
the motor system may influence auditory cognition has been
present in the literature for some time (Bolton, 1894), and has
recently been discussed by a number of authors (Arnal, 2012;
Jeannerod, 2001; Prinz, 1997; Rauschecker, 2011; Repp, 2005b;
Schubotz, Friederici, & von Cramon, 2000; Sperry, 1952; Vuust,
Ostergaard, Pallesen, Bailey, & Roepstorff, 2009; Zatorre, Chen,
& Penhune, 2007). Recent accounts of sensory gain during
movement support top–down motor influences on sensory
state (Niell & Stryker, 2010; Nozaradan, Schönwiesner, Caron-
Desrochers, & Lehmann, in press; Wekselblatt & Niell, 2015).

Andy Clark, Karl Friston and colleagues propose a predic-
tive coding model that describes motor behavior as a way of
selecting sensory input (Clark, 2015). In this framework, infor-
mation flow is driven by top–down sensory predictions about
proprioception and other sensory effects, and the only bottom
up information is in the form of prediction errors. This active
inference, or action-oriented predictive processing, proposes
that downward connections from motor cortex (as from sen-
sory cortex) carry predictions of sensory effects that are only
met with bottom up prediction errors. This framework puts
forth a forward model that is corrected when confronted by
unexpected sensory consequences. It bypasses the need for
inverse models and efference copies in favor of error modu-
lated corollary discharge (encoded sensory predictions), and is
a low cost strategy with minimal computational demands
(Clark, 2015).

Another theory, the “ASAP” (Action Simulation for Auditory
Prediction) hypothesis of Patel and Iversen (2014) makes a
strong claim for a necessary predictive role of the motor system:
activity in the motor planning system is necessary for beat-
based perception, and fundamentally shapes our perception of
events via connections in the dorsal auditory pathway enabling
premotor, parietal and temporal cortices to interact. The ASAP
hypothesis suggests that the motor planning system uses the
same neural machinery involved in simulation of body move-
ment (e.g., periodic movement patterns) to generate or entrain
its neural activity patterns to the beat period, and that these
patterns are communicated from motor planning regions to
auditory regions where they serve as a predictive signal for the
timing of upcoming beats and shape the perceptual interpreta-
tion of rhythms. This hypothesis expands on an earlier sugges-
tion by Iversen et al. (2009) that in beat perception the motor
system affects the auditory system by injecting precisely-timed
beat related modulations, which itself was based on earlier
psychological suggestion that the beat may involve “covert
action” (Repp, 2005b). In contrast to “mirroring” theories, and
to the motor theory of speech perception (discussed below),
under ASAP the putative motor planning timing signals may,
but need not, be related to imagery of movements of the type
that would be required to create the perceptual input. Instead,
they may be purely abstract timing, possibly, but not necessarily
coupled to a specific action.

The central neuroscientific claim of the ASAP hypothesis is that
beat perception involves temporally precise two-way

communication between auditory regions and motor planning
regions. This is related to the concept of reentry, “a process of
temporally ongoing parallel signaling between separate maps
along ordered anatomical connections” (Edelman, 1989).
According to ASAP, (1) neural signals from auditory to motor
planning regions provide information about the timing of audi-
tory events; (2) these signals influence the timing of periodic
motor planning signals in motor regions, and (3) these planning
signals flow from motor regions back to auditory regions to
provide a signal that predicts upcoming beat times. In forward
models such as predictive coding, primary information processing
operates on predictions of sensory consequences, but in simula-
tion-based models such as ASAP, top–down (anticipatory) and
bottom–up (reactive) processes work in parallel, continuously
influencing each other.

Other extant models of beat perception that posit top–
down influences on auditory processing include dynamic
attending theory where attention is modulated with temporal
event structure (Jones, 1976), and hypotheses relating motor
influence on auditory processing to active suppression during
vocalization (Arnal, 2012). Nonlinear oscillator models suggest
one way this might be achieved by entrainment of hypothe-
sized neural oscillations with rhythmic auditory events with
reciprocal interactions among several layers of the network
required to predict the beat (Large, Herrera, & Velasco, 2015;
Large & Jones, 1999; Large & Snyder, 2009).

The path ahead

The evidence reviewed above can be organized into two
perspectives: motor system activation while listening to
rhythms is (1) only shadowing or (2) it also has a predictive,
causal role in beat perception. Much of the evidence is
suggestive of a causal role, but many questions remain
that need to be answered to move forward with this work.
How might we make further progress on these questions?
Below we remark on other motor theories of perception and
how they do and do not contribute to advancing support of
either of these perspectives. We then make experimental
suggestions for causal studies needed to test the validity
of these perspectives. Further work is required to clearly
elucidate the role of the motor planning regions in the
auditory dorsal stream that could also help distinguish
between how the brain responds differentially to music
and other acoustic stimulation like speech (Hickok,
Buchsbaum, Humphries, & Muftuler, 2003).

Motor simulation theories

There is a long history of discussing motor involvement in
speech perception, and we might turn to it for comparison
and contrast. Much as there is motor activation when listening
to rhythms, numerous studies show neuroimaging evidence of
motor activation while participants listen to speech (Skipper,
Nusbaum, & Small, 2005; Wilson, Saygin, Sereno, & Iacoboni,
2004). In addition, there is a range of evidence to suggest that
speech effector muscles show facilitation when listening to
speech (Fadiga, Craighero, Buccino, & Rizzolatti, 2002). MEG
analysis of infants at ages 7–11 months supports that motor
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activation while listening to speech is present in infants that
are just learning to make pre-speech sounds (Kuhl et al., 2014).
It would appear that this multisensory and multimodal rela-
tionship is present very early in speech development, and that
it is likely an integral part of speech perception.

Some accounts of speech perception, such as the Motor
Theory of Speech Perception (Galantucci, Fowler, & Turvey,
2006; Liberman & Mattingly, 1985) and Analysis by Synthesis
(Stevens & Halle, 1967), propose that speech perception relies
on motor estimation or expectation. The Motor Theory of
Speech Perception was proposed to address the problem of
perceptual invariance (Liberman & Mattingly, 1985), which
makes its motivation quite distinct from motor simulation
theories of rhythm perception. Invariance is the observation
that a speech signal can have considerable acoustic variation
due to context, the speaker’s gender and vocal qualities, and
noise but listeners are still able to group speech sounds into
meaningful categories such as phonemes. Liberman and col-
leagues proposed that speech sound categories are derived by
inferring the neural representation of the gestures that pro-
duced the sound (Liberman & Mattingly, 1985).

The Motor Theory of Speech Perception has been criticized
for a number of reasons including its relation to theories of
speech modularity and lack of specification about how acous-
tic signals are mapped to gestures (Sussman, 1989). Another
criticism of the Motor Theory of Speech Perception and motor
theories in general is that patients with damage to the motor
system can exhibit normal action recognition (Stasenko,
Garcea, & Mahon, 2013), and normal phonemic discrimination,
although explicit labeling of speech sounds is impaired
(Stasenko et al., 2015). Stasenko et al., posit a more nuanced
view that motor representations may be called upon when
other language cues are not present (such as semantics or
context).

Although there are similarities between motor theories for
speech perception and motor theories for beat perception,
there are also many clear differences. Perhaps foremost, in
motor theories of speech, sounds are mapped to motor repre-
sentations the perceiver would use to produce the same
sounds. In complex music, at least for non-musicians, such a
direct mirroring is inconceivable. Speech perception relies on
linguistic context in a way that beat perception does
not. Second, as mentioned above, the motivations behind
the theories are distinct. Motor activity in speech perception
was proposed as a mechanism for creating speaker invariance
of speech perception, whereas motor involvement in rhythm
perception is proposed as a source of temporally precise
signals to modulate rhythmic expectation and grouping, as
well as implement the observed willful endogenous influences
on rhythm perception. Third, the neural circuits implicated in
motor theories of speech are distinct from those proposed by
motor simulation theories of beat perception. Speech listening
has been shown to be accompanied by bilateral activations in
superior ventral premotor cortex, which are associated with
speech motor production, and in primary motor cortex (Wilson
et al., 2004). Although there is activation during passive
speech listening in motor areas (Wilson, Molnar-Szakacs, &
Iacoboni, 2008; Wilson et al., 2004), this does not provide
support for bidirectional predictive auditory–motor processes

in the dorsal auditory stream. In addition, the temporal reg-
ularity of rhythmic contexts could enable prediction in a way
that naturalistic speech might not. Beats have a more predict-
able structure in a way that speech, with all its irregularities,
does not. For this reason, beat perception might allow for
more motor simulation than speech perception, and beat
perception paradigms might be more ideal for investigations
of perceptually relevant motor recruitment.

Causal studies of neural circuits during beat
perception

TMS is a technique that uses magnetic field pulses applied to
the surface of the scalp to cause functional changes in the
electrical neural activity in superficial cortical regions (Huang,
Edwards, Rounis, Bhatia, & Rothwell, 2005). TMS protocols use
parameters such as magnetic field power and pulse frequency
to induce temporary excitement or disruption to target corti-
cal regions, and therefore can be used to change cortical
activity during or before asking participants to do behavioral
experiments to see if changing cortical activation leads to
changes in behavior (Huang et al., 2005).

TMS protocols have been used to explore motor theories of
speech. TMS-induced disruption of premotor cortex has been
shown to disrupt speech perception (Meister, Wilson, Deblieck,
Wu, & Iacoboni, 2007), but Stasenko and colleagues argue that
the spread of TMS-induced changes might lead to disruption
of sensory regions in addition to premotor targets. Figure
eight TMS coil designs advertise focal stimulation, but the
spread of activation is not well understood. However, even
in studies of clinical lesions we see support of motor theories.

There is some existing work with TMS showing, using
causal designs, the neural substrate involved with timing abil-
ities. Low-frequency repetitive TMS applied over left dorsolat-
eral premotor cortex (dPMC) can interfere with accuracy on a
finger tapping synchronization task to an auditory metro-
nome, and this disruption in accuracy occurs whether the
participant is tapping with their right or left hand (Pollok,
Rothkegel, Schnitzler, Paulus, & Lang, 2008). Because synchro-
nization employs beat-based predictive timing mechanisms, it
may be concluded that left dPMC is involved in beat-based
timing. Continuous theta burst stimulation (cTBS), a TMS pro-
tocol that down-regulates cortical activity at the focal target
location (Huang et al., 2005), interferes with interval-based
timing when applied over medial cerebellum, but does not
interfere with beat-based timing (Grube et al., 2010). This
supports a functional dissociation between interval and beat-
based timing, and suggests that cerebellum is involved in
interval, but not beat-based, timing.

Although there is a scarcity of causal work on neural con-
tributors to beat-based timing, the weight of these studies is
considerable due to strengths of the causal designs. Additional
causal work is needed to explore the current motor theories of
beat perception, and to ground these theories to their neural
underpinnings. TMS protocols provide powerful causal metho-
dology that can temporarily alter cortical activity in focal motor
and premotor regions, either by exciting or suppressing activity
(Huang et al., 2005), and this can be used to test theories that
claim that the role of the motor system is obligatory for beat-
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based timing. For example, disruption of the internal model/
simulation mechanisms for beat perception should lead to
declines in accurate rhythm perception and auditory–motor
synchronization. Thus, manipulating motor planning activity
and internal model generation in a rhythm task should lead to
changes in accurate rhythm perception and production.

Conclusions

The theories related to speech perception suggest that
motor activation during speech listening could be mirror-
ing/shadowing used for auditory processing. The long his-
tory of motor theories of speech provide beat perception
theories with frameworks in which to operate, but do not
meet the standard of proof for theories that propose that
motor activation during music listening reflects predictive
processes. Beat-perception and entrainment paradigms,
internal model frameworks, and demonstrations of func-
tional connectivity are contributing to mounting evidence
for predictive simulations in motor networks. However,
these methodologies can only provide suggestive evidence.
Extending these paradigms using causal methodology is
needed in order to conclusively show that motor networks
not only shadow speech and music but also provide pre-
dictive models that can be actively updated and main-
tained. Direct tests of a causal role of the motor system in
beat perception are needed that perturb the motor system,
either through dual task paradigms or through direct neu-
rostimulation. Motor theories of perception, such as predic-
tive coding and the ASAP hypothesis, propose that motor
simulation is likely integral to auditory beat-based timing.
Beat perception studies have been used to demonstrate the
strong relationship between motor activation and listening
to repetitive sounds, and this relationship has possible
implications for understanding evolutionary origins of
music and its relation to language. Tests of the theories of
motor involvement for speech perception provide support
for robustness of the link between motor system activation
and auditory processing, and with evidence from beat-
perception and internal model paradigms, provide sugges-
tive evidence for predictive simulation. Further research
should implement causal studies to directly test for predic-
tive motor models in beat perception. TMS is a technique
that can be used non-invasively to investigate the causal
relationship between motor simulation and beat-based tim-
ing, and more generally help explore beat perception as a
specific example of an action-based perceptual system, pro-
viding an example of how the study of music and brain can
address general mechanisms of brain function.
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