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Abstract: Due to the limit in computing power arising from the Von Neumann bottleneck, computational
devices are being developed that mimic neuro-biological processing in the brain by correlating the
device characteristics with the synaptic weight of neurons. This platform combines ionic liquid gating
and electrowetting for programmable placement/connectivity of the ionic liquid. In this platform,
both short-term potentiation (STP) and long-term potentiation (LTP) are realized via electrostatic and
electrochemical doping of the amorphous indium gallium zinc oxide (aIGZO), respectively, and pulsed
bias measurements are demonstrated for lower power considerations. While compatible with resistive
elements, we demonstrate a platform based on transitive amorphous indium gallium zinc oxide (aIGZO)
pixel elements. Using a lithium based ionic liquid, we demonstrate both potentiation (decrease in device
resistance) and depression (increase in device resistance), and propose a 2D platform array that would
enable a much higher pixel count via Active Matrix electrowetting.

Keywords: electrowetting; neuromorphic; ionic liquid; biasing; device; platform; transistors; TFT;
TFTs; IGZO; indium gallium zinc oxide; microfluidics; electrochemical; electrostatic

1. Introduction

Conventional computational devices are designed after Neumann’s model, in which
preprogrammed circuits receive and transfer input repeatedly between the memory unit and the logic
unit, and subsequently output information based upon the logic unit in the programming. This model
has a limited increase in computing power due to the von Neumann bottleneck, which arises because
the device cannot both fetch instructions and perform data operation at the same time. To overcome
this, neuromorphic computing concepts are being developed that use analog devices to mimic the
neuro-biological information processing that occurs in the brain [1–3]. Traditional neuromorphic
concepts modify the device resistance, forming a correlation between device characteristics and
the synaptic weight of neurons. Here, based on our previous work on ionic liquid (IL)-aIGZO
electrochemical and electrostatic modulation [4–6], we demonstrate a platform via ionic liquid gating
of thin film transistors and show that the integration of electrowetting elements can enable the ability
to program the position/connectivity of the ionic liquid (IL).

IL gating of metal oxide semiconductor devices has been studied extensively because of the
intriguing properties of the electric double layer at the IL/solid interface. This electric double
layer generates an extremely high electric field and induces large carrier densities at its interface.
This generated electric field has been used to tune the electric properties via carrier concentration
modulation in VO2 [7], Bi2Se33 [8], few-layer graphene [9], and the magnetic properties of certain
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materials [10,11]. The electric field can also extract or intercalate ions out of or into the solid, respectively.
Intercalation of hydrogen and hydroxyl ions via a hydrated IL has been observed in WO3 [12], ZnO [13],
and MoOx [14], and intercalation of O2 has been observed in SrTiO3 [15], WO3 [16], and TiO2 [17],
among others. Electrostatic electron doping [4] and electrochemical oxygen extraction [5] has also
been demonstrated in amorphous indium gallium zinc oxide (aIGZO) thin film transistors (TFTs).
Combining these phenomena in an aIGZO transistor active layer allows us to tune the electrical and
chemical properties, creating both short-term potentiation or plasticity and long-term potentiation
or plasticity. Short-term potentiation (STP) is generally defined as a brief, reversible, and repeatable
change in synaptic strength between two neurons, usually in the range of a few milliseconds to a few
seconds. Here, STP is demonstrated via the electrostatic effects of the IL. Long-term potentiation has
a greater, more permanent effect on synaptic strength, and is realized here via the electrochemical
doping of the aIGZO TFTs. While neuromorphic computing platforms rely on, for instance, crossbars
of variable resistive states, we utilize, for convenience, changes in the aIGZO transfer characteristics to
demonstrate the programmable platform. Note that resistive elements are easily integrable with the
proposed platform.

2. Materials and Methods

In this study, we combined the electrical tuning of a TFT active layer with a pixelated electrowetting
on dielectric (EWOD) array as a programmable neuromorphic device platform. Figure 1 overviews (a)
the device architecture and (b–f) illustrates the various functionalities of the platform. As shown in
Figure 1a, the device architecture consisted of a top and bottom plate. The bottom plate contained
a 2D array of pixels, where each pixel contained an integrated dual gate thin film transistor and an
electrowetting on dielectric electrode. The top plate was a pixelated electrode array, which acted as the
top gate for the long-term potentiation of the device. See Supplementary Materials Information S1 for
a detailed description of the device synthesis. A key feature of the device is the programmability of the
IL network over the 2D pixel array via electrowetting. As illustrated in Figure 1b–e, electrowetting of
the IL was accomplished via activating the (b) left pixel, which contained the IL, and thus inducing a
lowering of the hydrophobicity of the IL, which caused spreading. (c) By activating the right pixel,
spreading was directed to this pixel. After the IL had spread to this right pixel, the left pixel was
turned off (d), thus increasing the hydrophobicity, which caused the drop to dewet from the left pixel.
Clearly, any neuromorphic application will require long-term electrowetting stability. Interestingly,
while many electrowetting lab-on-chip applications have been proposed, relatively little work has been
devoted to studying long-term stability of these devices. In a study done by Dhindsa et al., a study was
done with a dip-coated fluoropel layer where over 300 cycles were achieved without any significant
change to the contact angle or degradation of the hydrophobic layer [18]. Similarly, work done by
Mibus and Zangari showed that, for a TaOx/spin coated Cytop insulator/hydrophobic layer stack,
stable electrowetting of up to 350 cycles was achieved at a 20 V bias [19]; however, severe degradation
occurred at 25 V applied bias. As will be demonstrated, the presence of the IL on the aIGZO active
layer changed the transfer characteristics and thus realized STP. LTP was realized by applying a top
gate bias (f) to the IL, which electrochemically extracted/intercalated ions out/into the active layer and
changed the electrical properties of the aIGZO. See Supplementary Materials Video S1 for the full
device concept video.
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transferred to the neighboring right pixel by initially actuating the left pixel, which decreases the 
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pixel, the right pixel is then turned off (e), which completes the cycle. Short-term plasticity is realized 
when a transistor is measured with IL present on the pixel. Long-term plasticity is realized by 
applying a bias on the ionic liquid via the top plate (f), which electrochemically alters the composition 
of the material by extracting oxygen ions, permanently altering its electrical resistance (see 
Supplementary Materials Video S1 for full video). 

3. Results 

Figure 2a shows back gate transfer characteristics with and without the presence of IL on the 
active layer, which illustrates that STP (volatile memory) was realized via electrowetting the IL over 
the desired aIGZO TFT pixel. Note: Current values below 1e-14 amps were truncated due to 
instrument sensitivity. For this experiment, diethylmethyl (2-methoxyethyl) ammonium 
bis(trifluoromethyl sulfonyl)imide (DEME) was chosen as the ionic liquid. The TFT transfer 
characteristics changed dramatically, as noted by an ~580× increase in the Ids when Vg was equal to 
zero. This electrostatic effect was only present while the IL/solid interface was formed, and could 
thus be combined with electrowetting of the IL to create a programmable STP device. Combining this 
effect with an active matrix array of transistors [18,19] could result in a neuromorphic platform that 
could be scaled to very high pixel counts. 

Non-volatile memory, or LTP, was induced by electrochemically altering the chemical 
composition in the active layer via a positive top gate bias. To characterize this LTP effect, Figure 2b–
d illustrates a series of electrical measurements taken on the IGZO active layer. For this experiment, 
both DEME and LiClO–PEO were used. DEME electrochemically dopes the IGZO active layer by 
extracting oxygen ions under a positive gate bias, and thus decreasing the device resistance. The 
electrochemical effect of the DEME is permanent but, unlike several other oxide materials, is non-
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depression (increase in device resistance), the electrostatic and electrochemical effects of DEME were 
compared to another ionic liquid, LiClO–PEO. Rather than extracting oxygen, LiClO–PEO 

Figure 1. (a) Schematic of programmable electrofluidic neuromorphic device, with critical components
labeled. See Supplementary Materials Figure S1 for a detailed and labeled 2D cross-section of device.
(b–e) Schematic illustration demonstrating the electrofluidic control of the ionic liquid (IL). In (b),
the ionic liquid is present initially over the left pixel and is electrofluidically transferred to the
neighboring right pixel by initially actuating the left pixel, which decreases the surface energy and
causes the IL to spread. Next, (c) the neighboring right pixel is actuated, which causes the IL to
selectively spread to this pixel. The left pixel is then turned off (d), which increases the surface energy,
and thus the ionic liquid migrates over to the right pixel. After movement to this pixel, the right pixel
is then turned off (e), which completes the cycle. Short-term plasticity is realized when a transistor is
measured with IL present on the pixel. Long-term plasticity is realized by applying a bias on the ionic
liquid via the top plate (f), which electrochemically alters the composition of the material by extracting
oxygen ions, permanently altering its electrical resistance (see Supplementary Materials Video S1 for
full video).

3. Results

Figure 2a shows back gate transfer characteristics with and without the presence of IL on the
active layer, which illustrates that STP (volatile memory) was realized via electrowetting the IL over the
desired aIGZO TFT pixel. Note: Current values below 1e-14 amps were truncated due to instrument
sensitivity. For this experiment, diethylmethyl (2-methoxyethyl) ammonium bis(trifluoromethyl
sulfonyl)imide (DEME) was chosen as the ionic liquid. The TFT transfer characteristics changed
dramatically, as noted by an ~580× increase in the Ids when Vg was equal to zero. This electrostatic
effect was only present while the IL/solid interface was formed, and could thus be combined with
electrowetting of the IL to create a programmable STP device. Combining this effect with an active
matrix array of transistors [18,19] could result in a neuromorphic platform that could be scaled to very
high pixel counts.

Non-volatile memory, or LTP, was induced by electrochemically altering the chemical composition
in the active layer via a positive top gate bias. To characterize this LTP effect, Figure 2b–d illustrates
a series of electrical measurements taken on the IGZO active layer. For this experiment, both DEME
and LiClO–PEO were used. DEME electrochemically dopes the IGZO active layer by extracting oxygen
ions under a positive gate bias, and thus decreasing the device resistance. The electrochemical effect
of the DEME is permanent but, unlike several other oxide materials, is non-reversible. To create a
device capable of both potentiation (decrease in device resistance) and depression (increase in device
resistance), the electrostatic and electrochemical effects of DEME were compared to another ionic liquid,
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LiClO–PEO. Rather than extracting oxygen, LiClO–PEO intercalates (positive gate bias) or extracts
(negative gate bias) lithium ions into the near surface region of the aIGZO active layer, which in turn
decreases or increases device resistance, respectively [20–22]. To demonstrate the LTP, after the ionic
liquid is actuated over the pixel, a top gate bias of +2 V was applied to the IL/active layer for various
time intervals (10, 10, 30, 50, and 100 s) for a total of 200 s (see Ids measurements during top gating
in Supplementary Materials Figure S2). Figure 2b,c show the back gate transfer characteristics for
the DEME and LiClO–PEO ILs (respectively) measured in between each time interval, where the ILs
induce higher conductance in the aIGZO channels. After a cumulative bias time of 200 s, a negative
bias (Vg = −2 V) was applied to both devices, indicated by the dashed line in Figure 2b,c; note that the
DEME channel inexplicably continued to decrease the channel resistance, whereas the −2 V bias for
the LiClO-PEO IL increased the channel resistance. To demonstrate the purely electrochemical change,
Figure 2d illustrates the currents at Vg = 0 V for each transfer measurement plotted as a function of top
gate bias time and normalized with respect to the current at zero gate voltage before biasing (note that off

state current for the DEME is much lower than that of the LiClO–PEO). For both ILs, the electrochemical
effect of positive biasing tended to saturate after 100 s. TFT resistance under DEME biasing changed
by over two orders of magnitude in under a minute, promoting fast writing/programming time in
a neuromorphic device. While the electrochemical effect of the DEME was much more pronounced,
applying a negative bias further decreases device resistance; the LiClO–PEO IL, however, when biased
at −2 V, increased the resistance and thus demonstrated reversible transport modulation.
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Figure 2. (a) Back gate transfer characteristics of a thin film transistor (TFT) pixel both with and
without the presence of the DEME ionic liquid. After electrowetting the ionic liquid over the TFT pixel,
the transfer characteristics shifts due to the presence of the IL. (b,c) illustrates the back gate transfer
characteristics after each IL bias time, which demonstrates the electrochemical long-term potentiation
(LTP) due to biasing of DEME and LiClO–PEO, respectively. After a cumulative 200 s positive bias,
a −2 V bias for 300 s was then applied to both ILs in an attempt to reverse the characteristics; note only
the LiClO–PEO IL exhibits some recovery of the high-resistance state. The Ids at zero gate voltage as a
function of IL biasing is shown in figure (d) as a function of cumulative bias time. In (a–d), Vds was 1 V.
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Since low power computation is a significant driving force for neuromorphic computing,
we explored short pulse biasing with the DEME IL. Figure 3a illustrates three series +2 V 50 ms gate
bias pulses (15, 50, and 100 pulses, respectively) where the Ids (Vds = 1 V) was measured during the
IL gate bias. Figure 3b is a magnified view of seven pulses of the 100 pulse series. The electrostatic
IL effect was clear as the on-current increased over six orders of magnitude. To measure a residual
electrochemical effect, after each series of pulses, Ids was allowed to decay to a pseudo-saturation point,
allowing any remnant electrostatic effect to decay. Figure 3c is a plot of Ids after each pulse series,
which illustrates that the change in remnant current increased with an increase in the number of pulses.
Figure 3d shows the remnant Ids current measured two seconds after each pulse, demonstrating a
permanent and incremental decrease in the channel resistance.
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Figure 3. (a) Ids as a function of time for a series of +2 V, 50 ms top gate pulses (15, 50, and 100,
respectively) applied to the active layer. (b) Magnified view of seven pulsed cycles from (a). (c) Remnant
Ids values (red squares in (a)) after each pulse series, where the relaxation time after the last pulse was
630 s. To illustrate the cumulative effect of each +2 V 50 ms bias pulse, the Ids versus pulse number is
plotted for each series after a relaxation time of 2 s per pulse. In (a–d), Vds was 1 V.

The proposed programmability of the neuromorphic platform was realized via electrowetting
of the IL. Electrowetting has been used in the development of Lab on a Chip [18,23,24], flexible and
transparent displays [25], as an aid in medical and chemical analysis [26,27], and novel device concepts,
such as an aerosol sampler [28] and a micro conveyor system [29]. The electrowetting of the IL is
governed by the Young-Lippmann equation, γLGcos(θ) = γSG – γSL + (1/2)CV2, where θ is the wetting
angle, γSG is the surface tension between the substrate and air (or oil), γLG between the IL and air (or oil),
γSL between the solid and IL, C is the capacitance per unit area, and V is the applied electric voltage.
As the capacitance of the electrowetting dielectric is critical to the performance, we used a 100 nm
SiO2 electrowetting dielectric with a specific capacitance of 39.4 pF/cm2. The electrowetting behavior
of many different ionic liquids have been observed, with voltages required to achieve electrowetting
ranging from 25 to 190 V [30,31]. The contact angle saturation in ionic liquids have been studied [30],
and the voltage range for saturation is shown to be 40 to 70 V. In an optimized neuromorphic platform,
low-voltage electrowetting would be critical for low-power consumption, and thus contact angle
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saturation should not limit device functionality. Furthermore, to lower the EW voltage, nanostructured
EW electrodes could also be employed to enhance the hydrophobicity. Thus, we characterized the
basic electrowetting characteristics of DEME via a series of actuation tests of the IL (relative to a
standard yellow ink) as a function of increasing voltage, as detailed in the Supplementary Materials
Information S2. To combine the electrowetting platform with the TFT pixel array, a transparent top
electrode plate was patterned via indium tin oxide (ITO) sputtering and lift-off. This top plate acts as a
common ground during EW actuation of IL droplet, and as the programmable IL gate electrode during
biasing. To form a channel, a DEME reservoir was dispensed onto the electrowetting platform via a
micropipette next to the electrowetting array, as shown in Figure 4a. Subsequently, the electrowetting
pixels 1–8 were progressively activated by applying a 20 V bias to each pixel. Figure 4b is a still
image of the early stage channel formation, where just EWP1 was biased. Figure 4c shows the
channel formation after the first five pixels had been activated, which took approximately 10 s for the
viscous IL to cover. Full channel formation, Figure 4d, took approximately 24 s (see Supplementary
Materials Video S2 for full video); however, channel retention was only maintained for as long as
the bias was applied. Similarly, agile droplet motion is also achievable via sequential pixel biasing,
as schematically illustrated in Figure 1 and demonstrated in Figure 4f–h. Initial actuation/biasing of
the original IL pixel (Figure 4f) caused the drop to spread and directed spreading was accomplished by
simultaneously addressing the appropriate neighboring pixels (g). After the droplet spread over both
pixels, de-activating the original pixel (h) caused the drop to dewet from the original pixel (see full
video in Supplementary Materials Video S3). Full 2D channel formation and droplet motion was
possible, leading to a deterministic pattern of the IL on the pixelated array.
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By combining the electrochemical doping of the aIGZO TFTs and the device programmability 
described above, we could now realize multi-pixel programming, which would lead to an 

Figure 4. (a) Photograph of programmable electrofluidic neuromorphic device with the circular ionic
liquid reservoir shown to the left (slight yellow tint) of the 1D electrowetting array. Overlaid in (a) are
the rectangular pixels and the labels for the back gate contact lines (BG 1–8) and electrowetting pixel
contact lines (EWP 1–8). (b) Channel formation with only EWP1 turned on. (c) Channel formation after
EWP1–5 have been powered (10 s) and (d) channel formation of IL after all EWP1–EWP8 are powered
(24 s). Electrowetting voltage in (b–d) and (f–h) was 20 V. (e) Plot of electrowetting speeds of DEME
compared to a standard aqueous based yellow ink as a function of applied voltage. (f–h) illustrate IL
droplet motion, similar to schematically illustrated in Figure 1 (see text for details).

4. Discussion

By combining the electrochemical doping of the aIGZO TFTs and the device programmability
described above, we could now realize multi-pixel programming, which would lead to an exponential
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decrease in both programming time and required power. Since the electrochemical gating was applied via
a uniform top gate across the entire device (see Supplementary Materials Information S1), any and all TFTs
with IL present would be biased, thus dramatically reducing the number of bias runs needed to program
a full device. Figure 5 shows a conceptual 8 × 8 TFT array demonstrating multi-pixel programming via
multiple IL droplets over multiple pixel arrays, with the pixels being programmed highlighted in red.
By combining these device concepts with active matrix electrowetting, a programmable electrofluidic
neuromorphic platform with very high pixel count could be realized. Multi-dimensional channel formation
is envisioned via a large 2D array of pixels, and channel retention without bias (non-volatility) is possible
if combined with so-called “Laplace Barrier” posts on the top plate [32].
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In conclusion, by mimicking the neuro-biological processing via an ionic liquid neuromorphic
platform, we demonstrated both short- and long-term potentiation, as well as reversibility of the device
resistance. Short-term potentiation was achieved by electrowetting the IL over the desired TFT/TFTs,
and long-term potentiation was achieved by electrochemically doping the TFT. We showed successful
doping of the aIGZO via oxygen extraction using DEME, and reversible intercalation of lithium ions
using LiClO–PEO. Short pulsed biasing was performed as a way to minimize power. IL channel
formation and droplet mobility were both demonstrated and characterized in order to move towards a
multi-pixel biasing scheme.
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