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The hose instability of the drive beam constitutes a major challenge for the stable operation of
plasma wakefield accelerators (PWFAs). In this work, we show that drive beams with a transverse
size comparable to the plasma blowout radius generate a wake with a varying focusing along the
beam, which leads to a rapid detuning of the slice-betatron oscillations and suppresses the instability.
This intrinsic stabilization principle provides an applicable and effective method for the suppression
of the hosing of the drive beam and allows for a stable acceleration process.

In plasma wakefield accelerators (PWFAs), highly rel-
ativistic particle beams are used to excite plasma wakes
which carry extreme accelerating fields [1]. The acceler-
ating gradients surpass those produced in today’s con-
ventional particle accelerators by orders of magnitude
and therefore, PWFAs constitute an attractive solution
for the miniaturization of the future particle acceleration
technology and its derived applications.

Operating PWFAs in the blowout regime [2] enables
injection methods for the production of high-quality wit-
ness beams [3-8] and the efficient acceleration within the
plasma wake [9, 10]. However, due to the extreme fo-
cusing fields in the blowout plasma cavity, the drive and
witness beams in PWFAs are subject to transverse insta-
bilities with large growth rates. In particular, the hose
instability (HI) of the drive beam constitutes a major
challenge for the optimal operation of PWFAs [11]. The
HI is initiated by a transverse deviation of the centroid of
the drive beam which causes a displacement of the cen-
ter of the focusing ion-channel, which in turn feeds back
into the trailing part of the beam, leading to the reso-
nant build-up of the transverse centroid oscillations. It
was recently shown that the inherent drive beam energy
loss detunes the betatron oscillations of beam electrons
and thereby mitigates the HI [12]. Still, for drive beams
with a substantial hosing seed, beam break-up can occur
before this mitigation mechanism becomes effective.

In this Letter, we show by means of analytical theory
and particle-in-cell (PIC) simulations with HIPACE [13],
that drive beams with a transverse size comparable to
the plasma blowout radius generate a wake with a vary-
ing focusing along the drive beam, which causes a rapid
detuning of the centroid oscillations and suppresses the
HI. Still, the plasma blowout is completely formed in re-
gions behind the drive beam, and therefore, the witness
beams can be efficiently accelerated with no emittance
degradation. The damping effect caused by head-to-tail
variations of the betatron frequency is well known in ra-
dio frequency accelerators [14-16], and it has been re-
cently shown to apply in the linear regime of plasma
wakefield acceleration [17, 18] for the mitigation of the
HI. In this work, we show for the first time that this stabi-

lization principle is compatible with the blowout regime
for sufficiently wide, high-current and moderate-length
drive beams. The blowout regime is the most common
regime in PWFAs, and therefore, this work is of crucial
interest to understand why the hosing of the drive beam
was avoided in FACET [19] and how it can be further
suppressed in future PWFA experiments [20-22].

We start by considering a relativistic electron beam
entering an initially neutral and homogeneous plasma.
As the beam propagates through the plasma, it expels
plasma electrons by means of its space-charge fields, gen-
erating in this way a plasma wakefield which propagates
at the velocity of the beam. The generated wakefields
exert a force p = —eW on the beam electrons, where p
is the momentum of a beam electron, e the elementary
charge, W = (E, —cBy, E, +cB,, E.) the wakefield and
¢ the speed of light. Expressions for the wakefield W
have been derived in the linear [23, 24] and the blowout
regime of PWFAs [25, 26], for axisymmetric drivers and
assuming a quasi-static plasma response. The quasi-
static approximation assumes that the fields and cur-
rents of the beam are frozen, or quasi-static, during the
plasma evolution in the comoving frame, i.e. 0y >~ —c 0
for these quantities, with ( = z — ct, denoting the comov-
ing variable. Under this approximation, it is found from
Maxwell equations that the wakefields satisfy the follow-
ing relations, ,W, = W, ~ —(mw2/e) (jp.c/n0¢),
and 9, W, =~ (mw?/2e)(1 — ny/ng + jp,=/noc), with
wp = /noe?/mep the plasma frequency, ng and n, the
unperturbed and perturbed plasma electron density, re-
spectively, and j, . (jp) the longitudinal (transverse)
plasma electron current. Ions are assumed to be immo-
bile and the transverse beam current to be negligible.
Beams with an electron density n, higher than ny ex-
pel essentially all plasma electrons near the propagation
axis forming a homogeneous ion cavity, delimited by a
sheath of plasma electrons. The maximum distance of
this sheath with respect to the beam propagation axis is
commonly referred as the blowout radius, r,,. Inside this
ion cavity (or blowout) we have that ,W, = 0: W, =0
and 0, W, = mwz /2e, and the equation of motion for the



beam-electrons can be written as
& K
i+ —t+—2=0, (1)
Y Y

where both the focusing strength, K = (e/m) 9, W,,, and
the rate of energy change, & = 4 = —(e/mc) W,, are
constant for beam electrons at a fixed (-position, and
v ~ p,/mc. When n;, < ng the blowout is not complete
and the charge of the ions is partially screened by the
plasma electron density, i.e. K =~ w? (1 — (ny/n0))/2,
for a non-relativistic plasma response in the region of
the beam. Assuming n, constant with the radius for re-
gions sufficiently close to the propagation axis, Eq. (1)
is still applicable to the beam-electrons within a partial
blowout, where now K obtains a (-dependency through
n,(¢). Eq. (1) describes the transverse betatron oscil-
lations of the beam-electrons, with a frequency wg(t) =
VK /y(t). Given that wg is a slowly varying function [27],
ie. wg/w% = £/2v/Kvy < 1, analytical solutions to
Eq. (1) can be given in the following form

2(t) = 20 A cos ¢ + —> A sin ¢, 2)
o.)g’o

with &9 = pg0/my, the initial transverse velocity of
the electron, wgo = +/K/v, the initial betatron fre-
quency, A(t) ('yo/*y( )14, the amplitude modulation,
and ¢(t) fo wp(t') dt’, the phase advance. When K(()
and £(¢) do not change with time, the phase advance can
be written explicitly as

o) =22 (- ). 3)
which for & — 0 yields ¢ ~ wg ot. We now consider an in-
finitesimal (-slice of the drive beam, with an initial phase-
space distribution fo(20,pz.0,7%) = fa(T0,Pz0)0(70)-
Since y(t) = o0 + &t for all electrons within the (-
slice, it is straightforward to find an equation for the
transverse centroid Xy(t) = [ (t)fadzodps,o, by tak-
ing corresponding averages of Eq. (2). The resulting
equation for X; has the same functional dependence as
Eq. (2), and therefore, the beam centroids also describe
betatron oscillations with frequency wg(t) and ampli-

tude A(t \/X

Xb70 = f:vo ) fzdzodp,,0 denote the initial transverse
displacement and velocity of the centroid, respectively.
When the drive beam has a small offset in the z di-
rection, X;, the resulting wakefields develop an asym-
metry in the transverse direction. At first order per-
turbation, the modified wakefields W/ (x) can be consid-
ered identical to the axisymmetric case, but with a cer-
tain offset, X., with respect to the propagation axis, i.e.
W.(z) = Wy(xz — X.). In the blowout regime of PWFA
a differential equation for X, was derived in [11], for a

Xb 0/wg0)?, where X o and

sufficiently narrow drive beam, completely embedded in
the ion-cavity:

RXe+ k2 (Xe— X)) =0. (4)

where k. = kp\/cy(Q)er(€)/2, and kp = wp/c. The coeffi-

cients ¢y (¢) and ¢, (¢) account for the relativistic motion
of electrons in the blowout sheath and for a (-dependence
of the blowout radius and the beam current [11]. Eq. (4)
describes the oscillations of X, driven by the beam cen-
troid displacements X;. In turn, the displacement X,
couples back to X} according to
Xb+§Xb+E(Xb—XC):O. (5)
v Y
This set of coupled equations (4) and (5) has been studied
earlier in the ion-channel regime (with k. = k,/+/2 and
& =0) [28, 29], and for the blowout regime of PWFA [11],
assuming perfectly monoenergetic beams and no energy
change (£ = 0). These cases are characterized by an
exponential growth of X3 and X, in time and towards the
tail of the beam. The HI of the drive beam is initiated
by a finite centroid displacement of the drive beam Xj g,
which is amplified due to a coherent coupling of different
(-slices of the beam through the plasma. The effect of
a (-dependent energy change in the drive beam, £(¢),
has been recently studied in Ref. [12]; it was shown that
hosing saturates as soon as the centroid oscillations of
various (-slices become detuned owing to a differing rate
of energy change and/or an initial energy spread.

In this work we extend the study of the HI of the drive
beam in PWFAs, from earlier considerations with narrow
beams, to cases where the initial transverse dimensions
of the drive beams are comparable to the blowout ra-
dius. For this analysis we combine PIC simulation results
with theoretical considerations, so as to demonstrate that
by controlling the width of the drive beam at the en-
trance of the plasma, it is possible to generate a longi-
tudinally varying focusing strength along the drive beam
only, which rapidly detunes the centroid oscillations of
different beam slices, thereby suppressing the HI on a
short time scale, on the order of the betatron oscillation

period.
For the PIC simulations, we consider perfectly
monoenergetic, highly relativistic drive beams with

an initially tilted Gaussian electron distribution,
which provides a well defined seed to the HI: n;, =
m0 exp [~C2/20%] exp (— (@ — Xoo(C))? — 47)/202 o).

The beams propagate through a homogeneous plasma
with a density such that k,0, = 1. At this density, the
plasma blowout radius is approximately given by [26]
k‘p’l“bo ~ 2 «/Ab70, with Ab70 = 2[1,)0/[14, Iy = 17.05 kA
the Alfven current and I the peak current of the
beam. In all the simulations I o = 2.5 kA, for which
kprio A 1.1. The transverse (rms) size 0 is varied from
0.1 to 0.9 k;l, and accordingly ns.0/n0 = Apo/(kpoz0)?
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Figure 1. PIC simulations for a narrow beam with k0.0 =
0.1 (a) and a wide beam with k,o.0 = 0.5 (b), immedi-
ately after entering the homogeneous plasma. (Top) Plasma
electron density n, and beam electron density n,. (Middle)
Rate of energy change, £ = —(e/mc) E.. (Bottom) Focusing
strength, K = (e/m) 0;W5. Red curves represent the corre-
sponding lineouts on the propagation axis. The centroids of
the beam X;(¢) and the focusing channel X.(¢) are shown in
white and purple lines, respectively.

goes from 29 to 0.36. For the narrow cases (0,0 < o)
the beam is initially overdense (npo > ng), while
for the wide cases (0z0 ~ Tbo) it is underdense
(npo S np). When 040 = b0 then nyo/ng = 1/4. See
the Supplemental Material [30] for additional simulation
parameters.

Fig. 1 shows the central ( — x plane in the beginning
of the propagation in the plasma, for two exemplary sim-
ulation runs: Case C, with k0,0 = 0.1 and case C}
with kpoz0 = 0.5. In case Cy, 050 < Tho and most of
the slices of the drive beam are completely embedded in
the blowout cavity (Fig. 1 (a) - top). In case Cj, the
beam is wider and initially underdense, and therefore,
the blowout formation is only partial in the region of the
beam (Fig. 1 (b) - top). The energy change along the
beam £(¢) is similar for both cases (Fig. 1 - middle).
The focusing strength K({) along the beam is perfectly
uniform for the narrow beam case C,, but it substantially
varies for the wide beam case Cj, (Fig. 1 - bottom), where
a finite plasma electron density in the region of the beam
alters the focusing field associated with the ion channel.

The beam and plasma electron densities at w,t = 2045
for the cases C,, and Cj, are shown in Fig. 2(a) and (b), re-
spectively. After some propagation, the wide drive beam
(Cp) is transversely compressed by the self-generated fo-
cusing field, enhancing in this way the plasma blowout
formation (Fig. 2(b)). The average centroid position X
within a central region of the drive beam with length
kpA¢ = 1, is shown as a function of the propagation
time in Fig. 2(c), for five different initial values of the
transverse size (rms). It is apparent that the average
centroid oscillations are rapidly suppressed for the cases
with a wide beam. As we explain below, this effect is
primarily associated to a quick decoherence between the

(a) wpt = 2045 (b) wpt = 2045
kpOx,0=0.1 kp0x,0=0.5
kp€x,0=0.02 kp€x,0=0.02

koOxo —0.3 —0.7

0.3} —0.1 —05 0.9

Figure 2.  PIC simulation results for (a) a narrow beam
with kpoz o = 0.1 and (b) a wide beam with k,o.,0 = 0.5
(b), after some propagation in the plasma. Average centroid
oscillations within the central region ky,A¢ = 1 of the drive
beam as a function of the propagation time, for five cases with
different initial transverse size.

oscillations of the slices within the central beam region
due to a non-uniform focusing strength along the drive
beam.

We further investigate the stability of the PWFA in
the PIC simulations by studying the evolution of a low-
current witness beam, initially placed on the propaga-
tion axis at comoving position k,{ = —4. The simula-
tions with a narrow drive beam are affected by the HI
and the witness beam breaks up after a short propaga-
tion distance. Only for the wide drive beam cases with
kpoyo0 = 0.7 and 0.9, where the HI is rapidly suppressed,
the witness beams are efficiently accelerated with no
slice emittance degradation. Remarkably, the accelera-
tion performance is barely affected, dropping only by 10%
and 15%, respectively, when compared to an ideal narrow
drive beam case unaffected by hosing. Extended infor-
mation about the PIC simulation results can be found on
the Supplemental Material [30].

The decoherence rates owing to longitudinal variations
of the betatron frequency can be estimated by consider-
ing an infinitesimal (-slice with constant I and &, to-
gether with the solutions of Eq. (5). Taking partial
derivatives of Eq. (3), we obtain the differential phase
advance along the beam

NCUﬁ)Qt 8</C78C’70 7((.«]@015)2 0c€
%0==3 (’C Yo 4 wpov’ (©)

where we have included the contribution from a (-
dependent initial energy variation in the beam. Eq. (6)
is valid up to leading order in t/tqp, with tap = v0/|€]
the energy depletion time. For an early time, ¢t < t4p,
the phase advance difference between different (-slices is
dominated by either the relative variation of the focusing



strength along the beam, k = 9:K/K, and/or an initial
relative energy chirp, which is identically 0 in the hereby
considered cases. The differential phase advance caused
by the variation of £ only appears at second order in
t/tap.

We now consider a beam region with length A¢, an
uniform current and with a linear variation of K and &.
The decoherence time for this beam region can be defined
by the time at which the head-to-tail difference of the
phase advance is on the order of w, which correspond
to opposite oscillation states. Thus, we use Eq. (6) to
estimate the decoherence time when either only 0.K #
0, ie. wpotarx = 2m/KkA¢, or when only 0. # 0, ie.
wg,otd,e = 2+/m/eA¢. The centroid oscillations of various
(-slices along the beam region A, are detuned after the
respective decoherence times and the impact of the beam
region onto the focusing channel deviation, which leads
to hosing, is strongly suppressed. As a consequence, the
oscillation amplitude of the individual (-slices is expected
to saturate and the average centroid displacement within
the beam region, X; = Ac_l fAc Xp(€) d¢, to be strongly
damped after the decoherence time.

This model is used to evaluate the decoherence of the
centroid oscillations within a central beam region with
length k,A¢ = 1 through the quantity X, for two exem-
plary cases C!, and Cj, that resemble the PIC simulation
cases Cy, for a narrow beam with k,o, 0 = 0.1, and C,
for a wide beam with k,0,0 = 0.5, respectively. For
simplicity, we assume a fixed channel centroid X. = 0,
and k,X;0 = 0.1, Xb70 = 0 for all the (-slices in the
cases C; and Cj. In Fig. 1 we show the values of £(()
and K(¢) for the PIC simulation cases C, and C} in the
beginning of the propagation in plasma. We adopt the
central values and derivatives of these quantities in the
analytical calculation of the model cases C}, and C}. In
addition, we perform a numerical integration of the exact
equation of motion p = —eW, for a set of 10° particles
representing the considered beam region. This numerical
approach allows to account for non-linear effects in the
motion of the beam electrons with a higher oscillation
amplitude, which otherwise would not be included in a
purely analytical calculation. The non-uniformity of K
and & for |z| 2 rp, is also accounted for by adopting the
values from the PIC simulations (cf. Fig. 1).

In Fig. 3 we show the centroid oscillations for 50
(-slices along the considered beam region A, (colored
curves), together with their average X; obtained from the
numerical approach (black line) and as a result of the an-
alytical model (red dashed line). For case C, (Fig. 3 (a)),
K ~ 0 within the considered beam region and the deco-
herence occurs predominantly from a differential energy
change along the beam. In this case, the decoherence
time is approximately ¢4 =~ 8000/w,, which is compa-
rable to the energy depletion time tq, =~ 9000/w,. The
analytical model is in excellent agreement with the nu-

0 2000 4000 6000 8000
wpt
Figure 3.  Centroid displacements of 50 equally spaced (-

slices within the beam region k,A, = 1 for a narrow beam
with kyo.0 = 0.1 (case C}) (a) and a wide beam with
kpos0 = 0.5 (case Cy) (b). The centroids are calculated by
numerical integration of the equations of motion for a set of
10° particles composing the beam region. Yellow curves re-
fer to slices near the front and blue curves slices at the back
of the beam region. The black curve shows the average cen-
troid displacement of the beam region, X;. The red dashed
curve represents the analytical calculation for X, when just
Eq. (5) with X. = 0 for the beam centroid displacements is
considered.

merical calculation for this narrow beam scenario. For
case C} (Fig. 3 (b)), x # 0 and the decoherence from
a variation of the focusing strength along the beam re-
gion dominates. Hence, the decoherence time can be
estimated by tq, =~ 800/w,, which is on the order of
the initial betatron period of the beam electrons Tz o =
27 /wg,o =~ 590/w,. In this case, the model predicts that
decoherence is reached on a much shorter time scale than
for the narrow beam case C’, in good qualitative agree-
ment with the behavior observed in the PIC simulation
cases C, and Cj.

We note that for the wide beam case Cj, the non-linear
effects on the motion of the electrons with a higher os-
cillation amplitude cause additional decoherence through
intra-slice phase mixing, and consequently, a damping of
the centroid oscillation amplitude of the different (-slices.
As a result, the numerical calculation predicts a slightly
higher damping of X} than the analytical model in case
C; (Fig. 3 (b)). From the comparison between the an-
alytical and the numerical approaches, we identify the
decoherence caused by a finite 9:K as the main effect re-
sponsible for the fast suppression of the HI observed in
PIC simulations with wide drive beams.

In conclusion, we show that the HI in PWFAs is rapidly
suppressed for drive beams with an initial transverse size
comparable to the blowout radius. The intrinsic varia-
tion of the focusing strength in the beam region for sce-
narios with initially wide and underdense drive beams
leads to a quick decoherence between the centroid oscilla-
tions of various slices along the beam, and consequently,



to the suppression of the instability. Still, behind the
drive beam the blowout formation is complete and the
witness beams are efficiently accelerated with no emit-
tance degradation. This intrinsic stabilization principle
provides an applicable and effective method for the sup-
pression of the HI of the drive beam and will allow for a
stable acceleration process in future PWFA experiments.
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Simulation Setup

For the PIC simulations, the quasi-static code
HiPACE [S1] is used together with the following phys-
ical setup. We consider perfectly monoenergetic, highly
relativistic drive beams with 79 = 1 GeV/mc? and with
the following electron density profile:

where npo/no = (2Ip0/14) /(kpos0)?, with Lo =
2.5 kA, the peak current of the beam and 4 = 17.05 kA,
the Alfven current. The beam-centroid is initially lin-
early tilted in the x direction, starting at ( = o,, such
that X3 ¢(¢) = —0.1(¢—o0;) for ( < 0, and X; o = 0 oth-
erwise. The spatial tilt in the x direction provides a well
defined seed to the hosing instability. The initial trans-
verse phase-space distribution of the beams is Gaussian
in both z and p,. The initial transverse (rms) size of the
beam, o0, is varied in the simulations from 0.1 k, 1

to 0.9 k!, in combination with its initial emittance,

€x0 = \/<x3>(pi,0> — (zops,0)?/me, which ranges from

0.02 k;l to 0.32 kzjl. Initially, the beams are at waist, i.e
(o pz,0) = 0. In addition, a short, k,o, ¢ = 0.1, narrow,
kpogzo = 0.1 and perfectly mono-chromatic low-current
witness beam is added to the simulations, in order to test
the acceleration performance. The considered witness
beam has the same initial energy and emittance as the
drive beam and it is initially placed on the propagation
axis at comoving position k,{ = —4. The simulations use
a moving window propagating at c¢. The dimensions of
the simulation box are 9 x 7 x 7k, 3. The simulation box
is divided into 512 x 256 x 256 cells, which gives cell sizes
of k,A( = 0.0176 and kyAz = k,Ay = 0.0273. Each cell
contains 2 x 2 x 2 simulation particles for the beam elec-
trons and 1 x 2 x 2 particles for the plasma electrons. The
time step for the calculation of the electromagnetic fields
is At =5w, 1 which is much smaller that the inverse of
the maximum betatron frequency of the beam electrons

1 _ _
W3 max = V270 Wy L~ 62w, L

Extended Results

In this section we present a series of figures showing
extended information from PIC simulations. In addition
to Fig. 1, which shows the central { — x plane in the
beginning of the propagation in the plasma, for two ex-
emplary simulation runs: Case C, with kyo,;0 = 0.1 and
case Cp with k,0,0 = 0.5, both with kye; o = 0.02, we
have added here Fig. S1, which shows the transverse line-
outs of the focusing field W, for five comoving positions
along the drive beam (top panel), and the longitudinal
lineouts of £ and K along the propagation axis (bottom
panel). The energy change along the beam £(¢) is simi-
lar for both cases. The focusing strength /(¢) along the
beam is perfectly uniform for the narrow beam case C,,
but it substantially varies for the wide beam case Cj.

Fig. S2 shows the central ( — x plane after a propaga-
tion time wyt = 2000, for the same exemplary simulation
runs C, and Cp. It is apparent that, due to the self-
generated focusing field, the wide drive beam is trans-
versely focused, and therefore, the blowout formation is
enhanced. Fig. S3 shows the beam and plasma densities
after a propagation time w,t = 2000 for five simulation
cases with kpe, 0 = 0.02 (left column) and five simula-
tion cases with kpe, o = 0.32 (right column). The initial
transverse size (rms) of the drive beam is increased from
top to bottom, ranging from k,0, 0 = 0.1 to k,0,0 = 0.9
in steps of 0.2. Here we see again that the blowout forma-
tion behind the driver is complete, also for the initially
wide drive beams, barely differing from the narrow cases.

Fig. S4 shows the average centroid oscillations of the
central region of the drive beam when its initial emittance
is increased with respect to the narrow case considered
in the article, i.e. with kpe; 0 = 0.02. For the wide drive
beam cases with k,0,0 2 0.5, the average transverse os-
cillations of the beam are strongly damped after a short
propagation time, for any of the considered values of the
initial emittance. The effect of a higher initial emittance
is only relevant for the narrow drive beam cases. We ob-
serve that, for the narrow beam case with k,0,0 = 0.1
and kpe; 0 = 0.32, the head of the beam expands trans-
versely (cf. Fig. S3 upper-right corner) and, after few
betatron oscillations, the central beam region is affected
by the decoherence associated to a non-uniform /C, caus-
ing the damping of the average centroid oscillations.



Fig. S5 shows the average slice emittance of the witness
beam as a function of the propagation time, for five PIC
simulation cases with different initial emittance and same
initial transverse size of the drive beam, which ranges
from k,oz0 = 0.1 to kpozo = 0.9 (from top to bot-
tom). Fig. S6 shows the time evolution of the average
sliced emittance (top panel), the average energy (mid-
dle panel) and the relative energy spread (bottom panel)
of the witness beam, for five cases with increasing ini-
tial drive beam size. Only for the initially wide beam
cases with k,o,0 = 0.7 and k0,0 = 0.9, the hosing
instability could be rapidly suppressed and the witness
beams could be efficiently accelerated with no emittance
growth. The acceleration performance in terms of the
achieved energy gain in the witness beam is 10% less
for the case with k,0,0 = 0.7 and 15% less for the case
with k,050 = 0.9, with respect to a reference case with
kpogo = 0.1 and no initial tilt (i.e. no hosing seed).

The relative energy spread of the witness beam after a
propagation time w,t = 4500 is 2.82% for the case with
kpogo = 0.7, 2.53% for the case with k,0,0 = 0.9 and
3.37% for the reference case with kpo,9 = 0.1 and no
initial tilt.

We have also included in the Supplemental Material
online two PIC simulation movies showing the beam and
electron densities as a function of the propagation time,
for two exemplary cases with a narrow beam k,0, 0 = 0.1
(case C,) and a wide beam k,040 = 0.5 (case Cy).
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Figure S1. (Top) Transverse wakefield (W, = E, — cB,) for five different (-slices along the drive beam. (Bottom) Focusing

strength K (purple line) and rate of energy change £ (blue line) along the drive beam in the beginning of the propagation in
plasma, for a narrow beam with kpo.0 = 0.1 (dashed lines) and a wide beam with kpo, 0 = 0.5 (solid lines).
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Figure S2.  PIC simulations for a narrow beam with kpo,0 = 0.1 (a) and a wide beam with kpo.0 = 0.5 (b), after a
propagation time wpt = 2000. (Top) Plasma electron density n, and beam electron density ny. (Middle) Rate of energy
change, £ = —(e/mc) E.. (Bottom) Focusing strength, K = (e/m) 0, W,. Red curves represent the corresponding lineouts on
the propagation axis. The centroids of the beam X3({) and the focusing channel X.({) are shown in white and purple lines,
respectively.
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Figure S3. PIC simulation results after a propagation time wpt = 2000. Beam (red) and plasma (blue) electron density for
five simulation cases with kpe; 0 = 0.02 (left column), and for five simulation cases with kpe;,0 = 0.32 (right column), ranging
from kpoz,0 = 0.1 to kpog,o = 0.9 (from top to bottom).



—0.3 0.7

—0.5 0.9 1

0.2
0.1

\ _ keOxo —0.3 —0.7
0.3} kP’Xb‘ kotx0=0.04 TN 05 09

Ko€xo = 0.08

—0.3 0.7

—0.5 0.9 7

kaX,O = O 1 6

kpr,O
—0.1

—0.3 0.7

—0.5 0.9 7

% _ keOxo —0.3 —0.7
o.s-kp|Xb‘ kpexo=0.32 —po.ﬁ —05 09 ]
0.2t
0.1 e ]

0 1000 2000 3000 4000
wpl

Figure S4. Average centroid oscillations within the central region k,A¢ = 1 of the drive beam as a function of the propagation
time, for five PIC simulation cases with different initial transverse size and same initial emittance, which ranges from kpe; 0 =
0.02 to kpez,0 = 0.32 (from top to bottom).
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Figure S5. Average slice emittance of the witness beam as a function of the propagation time, for five PIC simulation cases
with different initial emittance and same initial transverse size, which ranges from kpog,0 = 0.1 to kposo = 0.9 (from top to
bottom).
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Figure S6. (Top) Average slice emittance, (middle) average energy and (bottom) relative energy spread of the witness beam
as a function of the propagation time, for five PIC simulation cases with different initial driver transverse size and same initial
emittance kpez 0 = 0.02. An ideal narrow case unaffected by hosing (with no initial tilt) is also included as a reference.
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