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Abstract: Fragile X syndrome (FXS) is a global neurodevelopmental disorder caused by the expansion
of CGG trinucleotide repeats (≥200) in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene.
FXS is the hallmark of Fragile X-associated disorders (FXD) and the most common monogenic cause
of inherited intellectual disability and autism spectrum disorder. There are several animal models
used to study FXS. In the FXS model of Drosophila, the only ortholog of FMR1, dfmr1, is mutated
so that its protein is missing. This model has several relevant phenotypes, including defects in
the circadian output pathway, sleep problems, memory deficits in the conditioned courtship and
olfactory conditioning paradigms, deficits in social interaction, and deficits in neuronal development.
In addition to FXS, a model of another FXD, Fragile X-associated tremor/ataxia syndrome (FXTAS),
has also been established in Drosophila. This review summarizes many years of research on FXD in
Drosophila models.

Keywords: Fragile X syndrome; FXTAS; FMR1 gene; FMRP; Drosophila melanogaster

1. Introduction

When Morgan (1910) began his pioneering experiments in genetics in the early 1900s
while working with fruit flies, he probably had no idea how important they would become
over time, including studying the molecular pathogenesis of human diseases. As a model
system, many advantages of the fruit fly, D. melanogaster, have made it the most important
eukaryotic organism for understanding basic genetic principles, inheritance mechanisms,
chromosomes and genes, and mutagenesis. These advantages include a small body size
(2–3 mm), easy and inexpensive cultivation and maintenance in the laboratory, a large
number of offspring per mating (~100 eggs per day), and a rapid life cycle (about ten
days at 25 ◦C) [1]. In addition, the fruit fly, D. melanogaster, is an excellent example of
the 3R principle (Replacement, Refinement, Reduction), which replaces the use of higher
laboratory animals in research studies [2]. The 3R principle is based on the belief that
animal species have a certain degree of intrinsic value that must be considered in order to
adequately consider animal welfare [3].
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The genome of D. melanogaster was sequenced and published in 2000 [4,5]. It has a
size of about 180 Mb, of which about 120 Mb is euchromatin [4,6]. The predicted num-
ber of protein-coding genes is more than 14,000, together with about 3000 non-coding
genes [7,8]. About 60% of all human genes and 75% of genes related to human diseases
have their homologues in the fruit fly [9,10]. Although fruit flies and humans possess
completely different anatomical features, they share similar and important cellular and
molecular processes and biological pathways [11,12]. These highly conserved pathways
are membrane excitability, synaptic plasticity, and neuronal signaling. In addition, classes
of neurotransmitters, such as adrenergic, dopaminergic, serotonergic, and histaminergic,
are highly conserved, too [13,14]. Some structures in the Drosophila brain also have their
counterparts in mammals, such as the mushroom bodies involved in learning and memory,
which correspond to the mammalian hippocampus [15]. Furthermore, because the fruit fly
brain is compact and consists of more than 100,000 neurons involved in various behaviors,
it is used as a model for “screening therapeutic drugs for various human neuropathies” [16].

Evolutionary conservation of gene functions has shown that some mechanisms in
fruit flies apply to more complex versions of human behavioral processes [17]. In addition,
the conservation of these genetic processes has also provided important insights into
the underlying mechanisms of human diseases due to the alteration of typical neuronal
functions [18,19]. Recent studies are also directed toward mechanisms involved in rare
diseases [20]. Finally, Drosophila is an indispensable model organism for the study of the
Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene triplet repeats expansion in humans,
clinically known as Fragile X syndrome (FXS) [21]. The Drosophila model has proven useful
for early-stage pharmacological screening of drug candidates identified in the fly that need
to be tested in a mammalian model of FXS [22].

2. Fragile X Syndrome

The FMR1 gene, which encodes the FMR1 protein (FMRP), is located on chromosome
Xq27.3, and there are between 5 and 44 CGG trinucleotide repeats in the normal promoter
region of the FMR1 gene [23–25]. The expansion of the CGG triplet repeats (≥200) in the
5′ untranslated region (UTR) of the FMR1 gene is a full mutation (FM). It causes FXS, the
most common form of inherited intellectual disability (ID), and is a monogenic cause of
autism spectrum disorder (ASD) [26]. Hypermethylation triggered by the FM of the FMR1
gene results in transcriptional silencing and a reduction or absence of FMRP [27,28]. FXS
affects approximately 1 in 5000 males and 1 in 8000 females [29].

The product of the FMR1 gene, FMRP, is produced mainly in neurons (particularly
in the cortex, Purkinje cells, and hippocampus) and testes and plays an important role in
normal brain development [30]. FMRP is an RNA-binding protein that is mainly localized
in the cytoplasm and carries a Nuclear Localization Signal (NLS) and a Nuclear Exportation
Signal (NES) [31]. Fragile X Related 1 (FXR1) and Fragile X Related 2 (FXR2) are two
paralogues that are highly homologous to FMRP [32]. FMRP has a specific mechanism of
action: it enters the nucleus, interacts with pre-messenger ribonucleoprotein complexes (pre-
mRNP), and brings them into the cytoplasm. The FMRP-mRNP complexes are associated
with polyribosomes and play an important role in the translation of proteins in the neuronal
soma and dendritic spines [33]. This protein also plays a role in post-transcriptional
regulation and is a component of stress granules and P-bodies (reviewed in [34]). The FMRP-
mRNPs complexes are also a component of RNA granules, where they mediate binding
between mRNAs and kinesins and play a role in cell transport [35]. In the last decade, other
FMRP targets have also been identified, and studies have shown that FMRP also plays a
role in the microRNA (miRNA) and Piwi-interacting RNA (piRNA) pathways [21,36,37].
Some of these targets are involved in neurodevelopmental disorders such as idiopathic
ASD and other neuronal pathologies [21].

As mentioned above, FMRP deficiency is associated with a wide range of neurobehav-
ioral clinical features of FXS, which include physical, cognitive, and behavioral abnormal-
ities (i.e., 50–60% are diagnosed with ASD) [38]. Characteristic physical features such as



Genes 2023, 14, 87 3 of 14

an elongated face, large or protruding ears, a high-arched palate, joint hypermobility, and
macroorchidism at and after puberty are present in most individuals with FXS [39]. Behav-
ioral features include shyness, social anxiety, attention deficits, hyperactivity, disturbed eye
gaze, sensory overexcitation, aggressive behavior, sleep problems, hand flapping, repetitive
behaviors, and obsessive-compulsive disorder [26,40–43]. Seizures occur in about 15–20%
of people with FXS [44], while obesity and gastrointestinal dysfunction are diagnosed in
over 30% of patients [45]. Men with FXS have an average Full Scale IQ (FSIQ) between 40
and 50 and are more severely affected than women with FXS, who have an average FSIQ
between 70 and 80, although 1/3 have an IQ below 70 [46].

3. Drosophila Model for the Study of Fragile X Syndrome

Numerous animal models of FXS include Fmr1 knock-out (KO) mice (discovered more
than 20 years ago), rats, the D. melanogaster model of FXS, and Fmr1 KO zebrafish [21,47].
All these models are based on the disruption or KO of the FMR1 gene homologue. However,
there are no naturally occurring animal models for FXS [22]. This review focuses on using
the Drosophila FXS model to study FXS.

The FMR1 homolog in Drosophila was identified in 2000 and designated dfmr1 [48]. In
the meantime, there have been a few different names for this homolog (for more details,
please visit flybase.org, accessed on 1. December 2022), and the current official name is Fmr1.
Nevertheless, in this review, we mark it as dfmr1 to avoid confusion and to distinguish it
from the human FMR1 gene. dfmr1 is 8.7 kb long, and all of its functional domains are
highly conserved, with two KH domains being 35% identical and 60% similar between
dfmr1 and human FMR1 [48]. The encoded protein, dFMRP, is found in adults’ brains, eyes,
and mushroom bodies [21,49–52]. Some studies have also described dFMRP in Drosophila
embryos and larvae [21]. The function of dFMRP in neuronal physiology, development,
and structure is extensively studied in fruit fly larvae and adults. According to FlyBase data,
dFMRP is involved in more than 50 biological processes with neuronal and non-neuronal
functions in Drosophila [21]. The most important of these is its critical role in synaptic
plasticity [21]. dFMRP plays an important role in aging, apoptosis, phagocytosis, and
many other processes, too [21]. Figure 1 shows a schematic representation of the main
localizations and the functions of dFMRP.
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The range of genetic tools available when using Drosophila is greater than for any
other multicellular organism, and there is a wide repertoire of available genetic manipula-
tions [12]. Point mutations in dfmr1 or the absence of all or most of the coding region of
the dfmr1 gene form the basis of the Drosophila FXS model [49,50,53–55]. Therefore, the first
dfmr1 mutant, i.e., the Drosophila FXS model, was generated by inaccurately excising a P
element upstream of the dfmr1 locus [49].

dfmr1 mutants exhibit defective neuronal architecture and synaptic function. Fur-
thermore, these mutants exhibit abnormally organized synapses in the peripheral and
central nervous systems. The absence of dFMRP causes marked synaptic overgrowth at the
neuromuscular junctions of Drosophila larvae [49,52,56,57]. The larval crawling pattern is
also altered in Drosophila FXS models [58]. In another study, dfmr1 larvae showed reduced
motility during reorientation but normal motility during active crawling [59]. In addition,
dfmr1 mutants show altered behaviors such as irregular circadian rhythms, decreased
male courtship activity, increased locomotion, learning and memory deficits, autism-like
behaviors such as abnormal grooming, and social deficits [50,60–63]. Since the symptoms
of FXS may be linked to the phenotypes of dfmr1 mutants [21], the fruit fly model of FXS
(Figure 2) is a robust model for studying FXS [22].
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Here we have discussed the pathological phenotype observed in humans with FXS.
Figure 3 shows the main behavioral phenotypes in humans with FXS and the overlapping
loss-of-function phenotypes in dfmr1 mutants.
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dfmr1 mutants.

3.1. Impaired Circadian Rhythms and Sleep Problems in FXS

Sleep problems are common in individuals with FXS. To illustrate, between 23%
and 46% of individuals (predominantly younger males) with FXS have relatively mild
sleep difficulties [43]. Another study found that the prevalence of sleep problems in
individuals with FXS and ASD is about 80% higher than in the general population [64].
These problems may lead to circadian fluctuations and altered glucose homeostasis in
individuals with FXS [65]. A consistent behavioral abnormality in the FXS model of
Drosophila is altered circadian rhythm behavior (reviewed in [21]). The altered circadian
rhythm in this animal model potentially mimics the sleep abnormalities observed in patients
with FXS [50]. Circadian rhythms in Drosophila models manifest in locomotor activity,
sleep/wake patterns, and various physiological and metabolic processes. Xu and colleagues
(2012) described a role for dfmr1 in miRNA pathways, pointing to the altered expression
of selected miRNAs in the circadian abnormalities associated with the loss of dfmr1 in
flies [66]. Furthermore, Bushey and colleagues described that dfmr1 regulates sleep needs
in Drosophila FXS models [67].

A study by Dockendorff et al. (2002) showed that pupae from Drosophila larval control
groups retained their ability to eclose. They were kept under 12 h of light/12 h of darkness
conditions (for five days and then in complete darkness for six days), mostly locked into
their circadian gap early in the morning with a duration of 23.5 h. In contrast, Drosophila
FXS models under these conditions generally locked in later in the day and had a longer
eclosion time with lower amplitude [54]. In another study, eclosion time in the dfmr1
mutant remained dependent on the circadian rhythm, which was delayed by 6–8 h [50]. In
contrast, Inoue et al. (2002) showed that the emergence of dfmr1B55 pupae was dependent
on the circadian rhythm, with a similar phase and amplitude to wild type (wt) [53]. This
inconsistency could be explained by the discovery made by Sekine et al. (2008) that the
variations in eclosion time in FXS model flies are a consequence of the genetic background
and not the deletion itself. When dfmr1B55 mutants were backcrossed to Canton S (CS) and
yellow white (YW) flies, mutants with the same deletion from different genetic backgrounds
were produced. These mutants did not exhibit eclosion abnormalities, suggesting that the
eclosion deficit was due to the genetic background [68]. In addition, another study showed
that several different types of Drosophila FXS models often do not survive because they fail
to eclose. This phenomenon was particularly dominant in the dfxr∆50 and dfxr∆113 alleles,
where 99% of flies failed to hatch [50].
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To investigate circadian rhythms in more detail, the investigators conducted similar
studies to see if the FXS flies exhibited circadian defects in locomotor activity. Interest-
ingly, the locomotor activity of the Drosophila FXS models under 12 h light/12 h dark
was similar to that of the control groups. However, once the flies in the control groups
became accustomed to the regular alternation of day and night, they could maintain their
rhythmic locomotor behavior for a certain period, even when walking freely in complete
darkness. In contrast, the FXS models lacked this ability [4,50,53,69]. Notably, 20–30% of
FXS models remained rhythmic despite constant darkness [68]. When dfmr1B55 mutants
were backcrossed to CS and YW Drosophila strains for seven generations, the mutants
maintained arrhythmic behavior in both genetic backgrounds, demonstrating that in this
case, the genetic background does not affect circadian defects [68]. Nevertheless, a recent
study challenged previous findings on circadian rhythms, suggesting that they may be
influenced by excessive grooming in FXS Drosophila [70].

Drosophila FXS models have prolonged sleep compared to wt primarily due to an
increased number of sleep episodes. On average, females slept 3 h longer and males 4 h
longer than flies from control groups. After the end of the dark period, they woke up later
than the control groups and slept longer during the day. In addition, their sleep was deeper,
and they were less likely to wake up briefly [67]. Even their naps during the day were
unusually deep and resembled night sleep [71]. In addition, null mutants showed defects
in recovery from sleep deprivation by having shorter sleep episodes and a lower amount
of recovered sleep. In contrast, overexpression of dfmr1 results in shorter sleep [67].

Nowadays, there are a variety of software and systems for tracking locomotor activity
and circadian rhythms in small model organisms such as Drosophila. The circadian rhythms
of flies may be measured by recording their locomotor activity over time, and they are
normally entrained by light intensity. Such advanced systems can be used to measure the
activity of experimental models and also control (and change) the lighting regime. Figure 4
shows an example of tracking Drosophila in one of these types of software.
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Depending on experimental needs, the plates can be 24-, 48-, or 96- well. The flies were placed
individually in each well, and an air-permeable cover was put over the top of the well plate. The flies
were then individually housed in a humid environment with some available nutrition. The well plate
was loaded with flies and inserted into the system’s chamber. The software was set up to control
the environment (temperature and lighting) and the measure of the distance traveled by each fly.
The white cycles show the flies as software targets in 24 wells. The activity (measured as distance
traveled) is measured and recorded as data during the experiment.

3.2. Hyperactivity and Attention Deficit/Hyperactivity Disorder in FXS

Attention deficit/hyperactivity disorder (ADHD) is one of the most common behav-
ioral problems in individuals with FXS [39,72]. Thus, hyperactivity of locomotion has been
used to assess drug efficacy in preclinical studies with animal models of FXS. In addition,
hyperactive locomotion/climbing in a Drosophila model can mimic hyperactivity or ADHD
in individuals [73–75].

The measurement of overall activity in the Drosophila FXS model has been inconsistent
across studies. According to Dockendorff et al. (2002), total activity in Drosophila FXS
models was not significantly different from control groups [54], but in another study,
Morales et al. (2002) found that it decreased [50]. Another study showed lower locomotor
activity in the dfmr1B55 mutant than in the wt. dfmrB55 by covering the space less well overall
and making more stops (mostly at specific points) than the wt. In the same study, dfmr13

covered the space more evenly but had more stops than the wt [62]. In addition, Drosophila
FXS models had defects in flight ability, which were measured in the flight experiment [49].
An interesting finding linking Drosophila FXS models to FXS in humans and its model
in Fmr1 KO mice was relatively high bursts of activity. This behavior in Drosophila may
correspond to the hyperactivity in the Fmr1 KO mouse and humans with FXS [54].

One study examined changes in climbing ability in Drosophila FXS models with aging.
Flies with a deletion in dfmr1 were compared with two strains commonly used for labora-
tory purposes and one strain specific for its longevity. The climbing performance of the
Drosophila FXS models decreased dramatically with age. Interestingly, the fastest 5-day-old
Drosophila FXS models showed the same performance as other genotypes studied, but their
climbing ability dramatically reduced at 25 days of age after eclosion. In contrast, the other
genotypes gradually declined with age. Drosophila FXS models were found to be poor
climbers at all ages in population studies and had the highest failure rate in completing the
task among the flies studied [75].

3.3. Other Autistic-Like Behaviors in FXS

It is known that 50–60% of boys and 20% of girls with FXS are diagnosed with
ASD [72,76]. Here we have discussed additional behavioral phenotypes that occur in
the Drosophila FXS model that overlap with autistic phenotypes in individuals with FXS.

Social interaction in the Drosophila FXS model. Impaired social interactions are a charac-
teristic feature of ASD [77]. The study’s results examining social interaction between two
female Drosophila FXS models and their interaction with the wt model indicated normal
receptive but altered expressive social behavior in the Drosophila FXS models. One possible
explanation is that the models do not exhibit appropriate motor behavior or chemical
signals necessary for social interaction [62]. Interestingly, dfmr13 did not spend much time
at the boundary, regardless of whether the other chamber contained a mutant fly of the
same type or the wt fly. Measuring the distance between the flies and the possibility that
two flies were less than 5 mm apart confirmed these results [62].

Grooming in the FXS model of Drosophila. Excessive grooming in dfmr1 mutant flies appears
to reflect the hyperactive and ASD-like features of FXS observed in mice and humans [78].

According to the study data, the frequency and duration of grooming were signifi-
cantly higher in 1-day-old mutants than in wt. The grooming index, i.e., the time spent
grooming during a given time interval, was also significantly increased. The grooming
pattern was altered such that the mutants groomed the posterior parts excessively, while the
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grooming of the anterior parts was similar to wt [70]. In another study, grooming increased
progressively with age [78]. Moreover, excessive grooming was found to be persistent and
structured. Namely, in the mutants, the switching between grooming pairs was excessively
repeated during a run. Moreover, these FXS flies tended to start another grooming session
with the same body part they had finished in the last session. Perseverative grooming
corresponds to repetitive and stereotypical behaviors characteristic of ASD [70].

Courtship behavior in the FXS model of Drosophila. Inappropriate courtship behavior
is described in individuals with ASD [79]. Naive courtship behavior is also altered in
Drosophila FXS models [54,80–83]. Indeed, courtship in Drosophila consists of several phases
leading to copulation. The male orients himself toward the female and follows her, then
taps her with his legs, vibrates with his wing, licks her genital region, and finally attempts
copulation [84]. Naive courtship behavior is estimated by the courtship index (CI), the
percentage of time the male spends courting the female. In the Drosophila FXS models,
the CI index was reduced, and they could not sustain courtship sufficiently to achieve
more advanced phases of courtship, such as wing vibration, genital licking, and copulation
attempts [54]. In the normal Drosophila population, other males sometimes court immature
males. Still, FXS males courted immature males for less time than the control groups and
persisted for less time in advanced phases [54]. The fact that immature male pheromones
differ from female pheromones led to the conclusion that the courtship defect is not
the result of specific sensory defects that may be present in Drosophila FXS models [54].
Furthermore, in one study, naïve courtship was impaired in both young and aged Drosophila
FXS models, but the difference from the control groups was less marked in aged Drosophila.
The explanation for this finding is naïve courtship also decreases with age in wt flies [80].

3.4. ID in FXS and Learning and Memory Impairment in the FXS Model of Drosophila

It is known that FXS is the leading cause of the inherited form of ID, and the deficit/
absence of FMRP has been described as the core cause of ID in FXS. Although the relation-
ship between FMR1 expansion, gene methylation, and FMRP deficit is well known, the
relationship between FMRP and ID needs more studies [85,86]. Only some assays exist to
study learning and memory in Drosophila FXS models.

Almost 20 years ago, McBride and colleagues (2005) were the first to study learning
and memory in Drosophila dfmr1 mutants. They used the courtship paradigm to study
associative memory. The complicated procedure of the experiment involved one hour of
training a virgin male with an unresponsive female. Continuous rejection should teach
memory-intact males to stop courting. Time spent courting was reduced in dfmr1 mutants
and control groups, implying that FXS flies can learn during training. This form of memory
is a mixture of associative and non-associative memory [82]. Although learning is preserved
in young FXS flies, FXS models lose this function at 20 days of age when tested in the
same assay [80]. To examine only associative memory, these researchers placed flies that
had learned to be rejected in the chamber with receptive females. Tests were performed
immediately after training. The results showed that the males in the Drosophila FXS models
forgot what they had learned and attempted to copulate as often as the control groups.
This study was the first to identify defects in immediate recall memory, memory lasting
0–2 min after training, and short-term memory that lasts up to one hour after training in
FXS Drosophila [82]. Long-term memory can also be examined using tests based on the
courtship paradigm. Using this test, Banerjee et al. (2010) demonstrated that long-term
training memory is impaired in FXS models of Drosophila [81].

Another popular method for assessing memory in Drosophila is based on classical
conditioning. In this test, flies were exposed to two odors. The first odor was followed by
an electric shock, while the second was not. The trained flies were then placed in a T-maze
to choose between the previously exposed odors. Learning and memory were assessed in
the next step by measuring the percentage of flies in the chamber with an odor that was
not followed by the electric shock. Learning was assessed immediately after training, and
memory after a while, depending on the type of memory [69]. Caffe et al. (2012) found that
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learning ability decreased significantly in FXS models of Drosophila compared to wt [87].
This test could estimate long-term memory when performed repeatedly. When the training
was performed ten times without interruption, a decremental cycloheximide-insensitive
memory (ARM) was formed. The same procedure, with a 15-min break between training
sessions, would also develop ARM, but non-decremental cycloheximide-sensitive long-
term memory (LTM) was also developed. The latter form of memory was dependent on
protein synthesis. When Drosophila FXS models were placed in the T-maze one day after
repeated training, they showed defects in LTM but not ARM. Finally, silencing of dfmr1
only in mushroom bodies showed the same results [61].

4. D. melanogaster as a Model Organism to Study Fragile X-Associated Tremor/Ataxia
Syndrome (FXTAS)

As described above, the normal range of CGG repeats in the human FMR1 gene is
between 5 and 44. The premutation range (PM) of the FMR1 gene is characterized by
55–200 CGG repeats, and those carriers typically do not present with FXS symptoms. How-
ever, they are associated with three other disorders: Fragile X-associated primary ovarian
insufficiency (FXPOI) [88], Fragile X-associated tremor/ataxia syndrome (FXTAS) [89,90],
and Fragile X-associated neuropsychiatric disorders (FXAND) [91].

FXTAS is a progressive neurodegenerative disorder that occurs in approximately 40%
of males and 16% of female carriers. Individuals diagnosed with FXTAS present with
a progressive intention tremor, difficulty with ambulation, ataxia, deficits in executive
function, and brain atrophy associated with elevated FMR1 mRNA levels [90,92]. The
prevalence of FXTAS increases with age. A study of PM men showed that 17% were
affected at age 50, 38% at age 60, 47% at age 70, and 75% at age 80 [93]. In contrast to FM of
FMR1, which results in transcriptional silencing of FMR1 mRNA and a concomitant loss
of FMRP, in FXTAS, there are normal FMRP levels or a modest reduction in the high PM
repeat range. However, in PM carriers, there is a dramatic increase in FMR1 mRNA levels,
leading to mRNA toxicity and the pathogenesis of FXTAS [72,94]. Elevated mRNA levels
lead to increased Ca2+ levels in the neuron and subsequent mitochondrial dysfunction.
Proteins and RNAs are sequestered in inclusion bodies. The formation of R-loops leads to
DNA damage. RAN translation leads to the production of toxic polyglycine-containing
(FMRpolyG) proteins [72,94].

Jin and colleagues first described the Drosophila model of FXTAS in 2003. The PM range
in dfmr1 alone is sufficient to cause neurodegeneration [95]. Therefore, FXTAS has been
modeled in Drosophila by overexpressing 90 CGG repeats fused with a green fluorescent
protein (GFP), resulting in neuron-specific degeneration and inclusion formation [95,96].
Notably, FMRpolyG is toxic and directly influences the toxicity of CGG repeat constructs in
Drosophila [97]. In addition, Jin and colleagues described that the CGG-induced neurode-
generative phenotype in the Drosophila FXTAS model could be rescued by overexpression
of purα [98]. Other studies identified some tropomyosin and RNA-binding proteins as
genetic modifiers of neurodegeneration in the Drosophila FXTAS model [98,99].

Flies with modest PM in dfmr1 (rCGG90 repeats) exclusively in neurons do not reach
adulthood. Lethality occurs mainly during embryonic development prior to larval forma-
tion [95]. This model shows deficits in locomotion and retinal degeneration [95].

5. Conclusions and Future Perspectives

Currently, there is no cure for FXS in patients, but the studies of medication use in
Drosophila have been helpful in initiating medication core modifier clinical trials that work
well in the fly and transitioning such treatments to humans with FXS. Examples of this
include the minocycline studies in flies that were translated to humans, demonstrating
behavioral benefits [100]. Another example is the benefit of metformin in flies [101], which
led to clinical trials in humans with FXS [102–105]. This review has emphasized the
simplicity and cost-effectiveness of preclinical trials in flies to encourage young researchers
to further the studies of new targeted treatments in flies that can be translated to patients
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with FXS. Since the lack of FMRP has profound effects on many systems paralleled in flies
and humans, this animal model will be utilized many times in the future to guide new
treatments for FXS and possibly FXTAS.
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