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Abstract

Protein phosphorylation is a dynamic and reversible post-translational modification

that regulates a variety of essential biological processes. The regulatory role of phos-

phorylation in cellular signaling pathways, protein–protein interactions, and enzy-

matic activities has motivated extensive research efforts to understand its functional

implications. Experimental protein phosphorylation data in plants remains limited to a

few species, necessitating a scalable and accurate prediction method. Here, we pre-

sent PhosBoost, a machine-learning approach that leverages protein language models

and gradient-boosting trees to predict protein phosphorylation from experimentally

derived data. Trained on data obtained from a comprehensive plant phosphorylation

database, qPTMplants, we compared the performance of PhosBoost to existing pro-

tein phosphorylation prediction methods, PhosphoLingo and DeepPhos. For serine

and threonine prediction, PhosBoost achieved higher recall than PhosphoLingo and

DeepPhos (.78, .56, and .14, respectively) while maintaining a competitive area under

the precision-recall curve (.54, .56, and .42, respectively). PhosphoLingo and Deep-

Phos failed to predict any tyrosine phosphorylation sites, while PhosBoost achieved

a recall score of .6. Despite the precision-recall tradeoff, PhosBoost offers improved

performance when recall is prioritized while consistently providing more confident

probability scores. A sequence-based pairwise alignment step improved prediction

results for all classifiers by effectively increasing the number of inferred positive

phosphosites. We provide evidence to show that PhosBoost models are transferable

across species and scalable for genome-wide protein phosphorylation predictions.

PhosBoost is freely and publicly available on GitHub.

1 | INTRODUCTION

Protein phosphorylation is one of the most widespread and important

post-translational modifications that play a pivotal role in the regula-

tion of protein function and cellular pathways (Nishi et al., 2014), and

has been extensively studied in plants (Zhang et al., 2023). Through

the covalent addition of a phosphate group to specific amino acids,

predominantly serine (Ser, S), threonine (Thr, T), or tyrosine (Tyr, Y),

protein phosphorylation alters various aspects of protein function,

including activity, subcellular localization, stability, and interactions

with other proteins or ligands (Álvarez-Salamero et al., 2017). Its

involvement spans a wide array of cellular functions, such as cell sig-

naling, metabolism, development, and resistance to biotic and abiotic

stress (Chaudhuri et al., 2015; Dressano et al., 2020; Humphrey

et al., 2015; Kim et al., 2009; Nishi et al., 2014; Oh et al., 2009; Ryu

et al., 2007; Wang et al., 2013; Zhao & Guo, 2011). The dysregulation
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of protein phosphorylation has been closely linked to various diseases

and is also the target of effectors that can enhance pathogenic

virulence (Ardito et al., 2017; Toruño et al., 2016). Often, multiple res-

idues within the same protein will undergo phosphorylation that can

have independent, synergistic, or antagonistic functions, revealing the

existence of complex “phosphocodes” (Pejaver et al., 2014; Zhang

et al., 2023) while crosstalk between different post-translational modi-

fications can fine-tune cellular responses (Vu et al., 2018). Cross-

species and -protein family comparisons have shown that functional

phosphosites are more likely to be conserved, suggesting that phos-

phorylation information is transferable to the studies of other species

(Chaudhuri et al., 2015). Thus, protein phosphorylation has emerged

as a powerful target for developing disease treatments and manipula-

tion for enhanced crop yields (Gough & Sadanandom, 2021; Yang

et al., 2010).

Protein phosphorylation is among the most studied post-

translational modifications using high-throughput mass-

spectrometry-based methods, making a large amount of experimental

protein phosphorylation data available from a variety of species, tis-

sues, developmental stages, and conditions (Dou et al., 2021; Xue

et al., 2022; Yu et al., 2023), but is relatively understudied in plant

species besides Arabidopsis thaliana (Meng et al., 2022; Xue

et al., 2022). Conservation of phosphosites within and across species

has been observed offering a complementary approach for improving

phosphosite detection and annotation based on straightforward

sequence similarity approaches (Amanchy et al., 2007; Chaudhuri

et al., 2015; Maathuis, 2008; Tan et al., 2009). The large increase in

the amount of experimental protein phosphorylation data facilitated

the development of a variety of machine- and deep-learning-based

protein phosphorylation classifications (Luo et al., 2019; Wang

et al., 2017; Zuallaert et al., 2022). For example, classical machine

learning algorithms such as random forests (Ismail et al., 2016; Liu

et al., 2022; Wei et al., 2017), support vector machines (Dou

et al., 2014; Jamal et al., 2021), and gradient boosting trees (Maiti

et al., 2020) have been used for protein phosphorylation prediction.

More recently, deep learning algorithms such as convolutional neural

networks (Guo et al., 2020; Luo et al., 2019; Wang et al., 2017;

Zuallaert et al., 2022) and long short-term memory networks (Lv

et al., 2021; Thapa et al., 2021) enabled learning directly from protein

sequences, making substantial improvements in protein phosphoryla-

tion prediction.

In the absence of kinase specificity and targeted consensus

sequences, kinase promiscuity adds to the challenge of protein phos-

phorylation prediction (Friso & Van Wijk, 2015). Different types of

features have been used for protein phosphorylation prediction, often

derived from biophysical properties, such as solvent accessibility and

disorder score, and structural features, such as secondary structure

(Y. Dou et al., 2014; Gao et al., 2010; Jamal et al., 2021). Improve-

ments in deep learning classification methods enabled learning

directly from the sequences surrounding the phosphosites without

the need for complex feature representations (Luo et al., 2019;

D. Wang et al., 2017; Wang et al., 2022). More recently, advances

made in natural language processing enabled the development of

protein language models (pLMs). By pre-training on vast numbers of

protein sequences, pLMs learned inherent properties encoded within

protein sequences, revolutionizing multiple fields of protein research

(Bordin et al., 2023; Elnaggar et al., 2021; Ofer et al., 2021; Rives

et al., 2021). Most importantly, pLMs capture both short and long-

range functional and biophysical properties of each amino acid within

a given protein as an encoded numerical vector, known as vector

embeddings, that can be directly used by machine- and deep-learning

classifiers (Littmann et al., 2021). The utilization of pLM-based vector

embeddings has proven effective in predicting structural and bio-

chemical properties such as secondary structures, solvent accessibil-

ity, and ligand binding residues (Ilzhöfer et al., 2022; Weissenow

et al., 2022). The use of pLMs has also been used to develop new

methods with improved performance for general and kinase-specific

protein phosphorylation prediction (Zhou et al., 2023; Zuallaert

et al., 2022). Recent advances in protein phosphorylation prediction,

employing convolutional neural networks with pLM-based vector

embeddings, demonstrated the potential of pLMs in predicting general

protein phosphorylation, while also being applicable to other post-

translational modifications (Zuallaert et al., 2022).

Compared to Ser and Thr phosphorylation, the prediction of Tyr

phosphorylation poses additional challenges, partially due to a smaller

amount of experimental data leading to a relatively higher label imbal-

ance (Doll & Burlingame, 2015; La Fuente et al., 2009; Silva-Sanchez

et al., 2015). Compared to animals, plants completely lack dedicated

Tyr-specific kinases and rely on dual-specificity Ser/Thr and Tyr

kinases for all Tyr phosphorylation, leading to a particularly imbal-

anced Tyr phosphorylation data in plants (Ghelis, 2011; La Fuente

et al., 2009). Thus, while prediction of Tyr phosphorylation poses a

challenge in both animals and plants, the challenge is expected to be

more acute in plants. Despite the lack of dedicated Tyr kinases in

plants, Tyr phosphorylation is known to regulate the function of multi-

ple proteins involved in a variety of essential biological processes

(Ghelis, 2011; Mühlenbeck et al., 2021). Consequently, improving the

prediction accuracy of Tyr phosphorylation holds great potential for

identifying functional phosphosites for a better understanding of cel-

lular signaling and regulatory processes.

Here, we present the newly developed PhosBoost, a machine-

learning classification method that uses pLMs with a stacking classi-

fier composed of CatBoost (Prokhorenkova et al., 2018) gradient-

boosting tree-based ensemble base classifiers to predict protein

phosphorylation directly from protein sequences. We trained and

evaluated PhosBoost on a large set of experimentally derived protein

phosphorylation data obtained from the plant post-translational modi-

fication database, qPTMplants (Xue et al., 2022). Compared to existing

protein phosphorylation prediction methods, PhosBoost consistently

achieves higher recall, albeit at reduced or comparable precision for

Ser/Thr prediction. PhosBoost provided both higher recall and preci-

sion for Tyr prediction. PhosBoost also produces probability scores

that are more informative and better reflect the confidence in the pro-

tein phosphorylation prediction. To improve phosphosite annotation

and reduce phosphosite label uncertainty, we supplemented Phos-

Boost predictions with a DIAMOND (Buchfink et al., 2021) pairwise
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alignment analysis step that annotates phosphosites matching experi-

mentally derived data. We provide evidence to show that PhosBoost

models are transferable across species and scalable for genome-wide

protein phosphorylation predictions, allowing for the incorporation of

PhosBoost prediction results directly in the genome browser to facili-

tate accessibility. Our results show that PhosBoost is a competitive

method for protein phosphorylation predictions, particularly when

higher recall and genomic coverage of phosphosites are prioritized.

2 | RESULTS

2.1 | Overview of the protein phosphorylation
data used to develop PhosBoost

Protein phosphorylation data was obtained from qPTMplants, a com-

prehensive database for high-throughput plant post-translational

modification experimental data (Xue et al., 2022). The qPTMplants

database includes protein phosphorylation data for over 30 plant spe-

cies collected from different experiments, representing different

organs, developmental stages, and conditions (Xue et al., 2022).

Because of the predominance and relative saturation of the

A. thaliana protein phosphorylation data (Figure S1A-C), we focused

on the A. thaliana dataset for model training, hyperparameter tuning,

and performance benchmarking. After collecting all experimentally

derived positive phosphosites, the remaining Ser, Thr, and Tyr resi-

dues were collected to form the negative phosphosite dataset. Ran-

dom stratification was used on the individual Ser, Thr, and Tyr

datasets to generate the training, validation, and test sets using a

60%–20%–20% split, respectively. The Ser and Thr phosphosites

were then combined for training and testing a combined binary S/T

classification model.

2.2 | Description of the PhosBoost protein
phosphorylation classifier

All the qPTMplants phosphoprotein sequences were used as an input

for the ProtT5-XL-U50 pre-trained pLM (Elnaggar et al., 2021) that

was selected based on the improved performance when used at pro-

tein classification tasks compared to other pre-trained pLMs (Zuallaert

et al., 2022). From the encoded embedding vectors for each phospho-

protein, we extracted the Ser, Thr, and Tyr residue embedding vectors

and the protein-wise average embedding vector (Figure 1a). Phos-

Boost was designed as a machine-learning stacking classifier that

trains two separate binary classification models, one for Ser/Thr and

one for Tyr prediction, using both the residue and protein embedding

vector input data (Figure 1b). The stacking classifier consists of two

CatBoost base classifiers, one classifier using balanced class weights

based on label frequency and one CatBoost base classifier that uses

equal class weights for the positive and negative labels (Figure 1b).

The predicted probability results from the two stacked base classifiers

were used as input features for the logistic regression metaclassifier

that was trained using a 5-fold cross-validated prediction approach

(Figure 1b).

2.3 | Assessing the performance of the stacking
classifier

The performance of the PhosBoost stacking classifier was compared

to the independently trained CatBoost classifiers, one trained with

balanced class weights and one with equal class weights, trained and

evaluated on the same A. thaliana qPTMplants dataset. Considering

the S/T model, all three classifiers had a similar area under the

receiver operating characteristic (AUROC) score of .88 (Figure 1c),

while the balanced class weights CatBoost classifier had a lower area

under precision-recall (AUPRC) score of .48 compared to .53 and .54

for the equal class weights CatBoost classifier and PhosBoost, respec-

tively (Figure 1d). PhosBoost achieved a higher recall score at all prob-

ability thresholds (Figure 1e). A similar pattern was observed for the

Y-model binary classifiers. While all models had similar AUROC scores

of .70, .71, and .72 for PhosBoost, balanced class weights CatBoost

classifier and equal class weights CatBoost classifier, respectively

(Figure 1f), the balanced class weights CatBoost classifier had a lower

AUPRC score of .48 compared to .53 and .54 for the equal class

weights CatBoost classifier and PhosBoost, respectively (Figure 1g).

PhosBoost achieved a higher recall score at all probability thresholds

(Figure 1h). To provide additional support for using the PhosBoost

stacking classifier approach, we conducted a similar analysis on an

independent dataset, the Ramasamy22 protein phosphorylation data-

set, obtained from the PhosphoLingo preprint (Zuallaert et al., 2022).

As with the results obtained for the data trained on A. thaliana

qPTMplants dataset, we observed that the PhosBoost stacking classi-

fier provided an increased recall with no cost to precision for both the

S/T and Y models (Figure S3).

2.4 | Evaluation of the predictive performance of
PhosBoost in comparison to established protein
phosphorylation prediction methods

We compared the performance of PhosBoost with two other existing

protein phosphorylation classifiers, namely DeepPhos and Phospho-

Lingo (Luo et al., 2019; Zuallaert et al., 2022). The three methods were

trained and evaluated on the same A. thaliana qPTMplants dataset.

Considering the S/T model, PhosBoost performed better than Deep-

Phos but just under PhosphoLingo based on the AUROC scores (.86,

.91, and, .89, respectively) (Figure 2a, Table 1) and AUPRC scores .54,

.56, and .42, respectively, but lower than PhosphoLingo based on the

F1 score, .43, .56, and .24, respectively (Figure 2b, Table 1). Phos-

Boost only achieved a higher precision score than PhosphoLingo

when recall was below .41 (Figure 2b). PhosBoost achieved a higher

recall score than PhosphoLingo and DeepPhos, .78, .56, and .14,

respectively, and higher recall at all probability thresholds (Figure 2c,

Table 1). Considering the Y model, we observed a similar pattern on
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the AUROC scores as for the S/T model, with PhosBoost having a

higher score than DeepPhos but lower than PhosphoLingo, .72, .7,

and .73, respectively (Figure 2d. Table 1). Unlike the S/T model, Phos-

Boost performed better than PhosphoLingo and DeepPhos based on

the AUPRC scores, .14, .08, and .04, respectively, and based on the F1

score, .06, 0, and 0, respectively (Figure 2e, Table 1). Similar to the

S/T model, PhosBoost achieved higher recall at all probability thresh-

olds compared to DeepPhos and PhosphoLingo, and while the recall

score for PhosBoost was .6, both DeepPhos and PhosphoLingo did

not predict any Tyr phosphosites correctly (Figure 2f, Table 1).

Because neither PhosphoLingo nor DeepPhos correctly pre-

dicted Tyr phosphosites in the A. thaliana dataset, we decided to

conduct an additional benchmark using a different dataset, namely

the Ramasamy22 human phosphoproteomic dataset obtained from

the PhosphoLingo preprint (Zuallaert et al., 2022). To compare the

label imbalance between the two datasets, we analyzed the number of

unique positive and negative phosphosites. For the negative phospho-

sites, we found that there were approximately twice as many Ser, Thr,

and Tyr phosphosites in the A. thaliana qPTMplants dataset

(Figure S2A). For the positive phosphosites, there were approximately

twice as many Ser and Thr phosphosites in the A. thaliana qPTMplants

dataset but approximately half the number of Tyr phosphosites

(Figure S2B), explaining the observed similar label imbalance for the

Ser and Thr phosphosites but higher Tyr label imbalance in the

A. thaliana qPTMplants dataset (Figure S2C). Considering the S/T

model, PhosBoost had a lower AUROC score than DeepPhos and

PhosphoLingo, .90, .92, and .94, respectively (Figure S4A). Based on

the AUPRC score, PhosBoost performed worse than PhosphoLingo

but better than DeepPhos, .63, .71, and .51, respectively (Figure S4B).

PhosBoost achieved a higher recall score of .83, compared to .64 and

.26 for PhosphoLingo and DeepPhos, respectively, while achieving a

higher recall score at all probability thresholds (Figure S4C). Consider-

ing the Y model, PhosBoost had a higher AUROC score than Phospho-

Lingo and DeepPhos, .93, .75, and .9, respectively (Figure S4D) and a

higher AUPRC score, .55, .45, and .10, respectively (Figure S4E). Phos-

Boost achieved a higher recall score of .74, compared to .31 and .00

for PhosphoLingo and DeepPhos, respectively, while achieving a

higher recall score at all probability thresholds (Figure S4F).

F I GU R E 1 Overview of the PhosBoost
protein phosphorylation classification
workflow. (a) Protein phosphorylation data
from the qPTMplants database were
encoded by the pre-trained ProtT5-XL-U50
pLM to generate the embedding vector
data for all serine (S), threonine (T), and
tyrosine (Y) residues in addition to the
protein-wise average embedding vector. (b)
The input data for all A. thaliana
phosphosites was used to generate two
separate binary classifiers: (1) S/T model
and (2) Y model, trained using a stacking
classifier, termed PhosBoost. The stacking
classifier is composed of two CatBoost base
classifiers: (a) with equal class weights and
(b) balanced class weights. A logistic
regression metaclassifier combined the
predicted probability scores of (a) and (b) to
produce (c) PhosBoost. (c-e) The
performances of the independently trained
(a, orange) and (b, green) CatBoost
classifiers were compared with the

performance of the PhosBoost stacking
classifier (c, blue), showing the receiver
operating characteristic curve and area
under receiver operating characteristic
curve (AUROC) score, precision-recall curve
and area under precision-recall curves
(AUPRC) score, true positive rate (TPR),
false positive rate (FPR), and probability
(P) threshold, for the Ser/Thr model, and
similarly (F-H) for the Tyr model.
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2.5 | Analysis of the predicted positive
phosphosites suggests that PhosBoost provides more
confident scores and outperforms PhosphoLingo and
DeepPhos if recall is prioritized

While achieving higher performance at Tyr phosphosite prediction

(Figure 2d-e, S4D-E, Table 1), PhosBoost performance at Ser/Thr pre-

diction was better than DeepPhos but lower or comparable to Phos-

phoLingo (Figure 2b, S4B, Table 1). Despite the differences in

performance, PhosBoost consistently obtained higher recall scores

than PhosphoLingo and DeepPhos (Figure 2c, f, S4C, S4F, Table 1),

pointing to a potential tradeoff between precision and recall. First, we

plotted the confusion matrices to compare the results of the S/T

models on the A. thaliana qPTMplants test set. The results show that

the number of true positive (TP) Ser/Thr phosphosites predicted by

PhosBoost, PhosphoLingo, and DeepPhos were 16,185, 11,580, and

2,967, respectively, and the number of false positives (FP) was

38,770, 8,795, and 1,492, respectively (Figure 3a-c). Focusing on the

PhosBoost Y model results, due to the lack of correctly predicted Y

phosphosites by DeepPhos and PhosphoLingo (Figure 2f, Table 1),

the results show that 12,448 and 391 Tyr phosphosites were pre-

dicted as FP and TP, respectively (Figure S5A). Previously, we

observed that PhosBoost had higher precision than PhosphoLingo at

lower recall (Figure 2b), suggesting a difference in the distribution of

the predicted probability scores. The split violin plots show the distri-

bution of the TP and FP predicted phosphosites by PhosBoost, Phos-

phoLingo, and DeepPhos, for both the Ser and Thr phosphosites

(Figure 3d). We observed that for all three classifiers, the predicted

probability scores of the TPs were generally higher than of the FPs.

The difference between the distributions was most distinct for

PhosBoost (Figure 3d). Notably, the peak of the distribution for the

TP predicted probability scores, for both the Ser and Thr results, was

between .9 and 1 (Figure 3d). In contrast to the Ser and Thr results,

we observed a bi-modal distribution for the true positive Tyr

results, with one peak between .8 and 1 and another peak between .5

and .7 (Figure S5B). A similar pattern to the S/T results was observed

for the S/T model trained on the Ramsamy22 dataset (Figure S6A-C)

and the Y model (Figure 6d-f), although the distribution of predicted

probability values for PhosBoost and PhosphoLingo were similar for

the S/T results, with TPs having a peak approximate between .9 and

1.0 (Figure S6G), the TP Tyr phosphosites having a peak approximate

between .9 and 1.0 only for PhosBoost (Figure S6G).

While the F1 score assumes equal importance to the precision

and recall, depending on the stated objective for the classification

F I GU R E 2 Comparing the predictive
performance of PhosBoost, PhosphoLingo,
and DeepPhos. (a-c) Comparison of the
performance results for DeepPhos (teal),
PhosphoLingo (purple), and PhosBoost
(blue), showing the receiver operating
characteristic curve and area under
receiver operating characteristic curve
(AUROC) score, precision-recall curve, and
area under precision-recall curves (AUPRC)
score, true positive rate (TPR), false
positive rate (FPR), and probability
(P) threshold, for the Ser/Thr model, and
similarly (d-f) for the Tyr model.

T AB L E 1 Comparing the classification metrics of PhosBoost with other existing phosphorylation prediction methods. The different protein
phosphorylation methods were compared using different metrics, including the area under the receiver operating characteristic curve (AUROC),
precision, recall, the area under the precision-recall curve (AUPRC), and F1 scores. The scores are presented for both the S/T and Y binary
classifiers.

AUROC Precision Recall AUPRC F1

Method S/T Y S/T Y S/T Y S/T Y S/T Y

DeepPhos .86 .73 .67 0 .14 0 .42 .08 .24 0

PhosphoLingo .91 .70 .57 0 .56 0 .56 .04 .56 0

PhosBoost .89 .72 .29 0.03 .78 .60 .54 .14 .43 .06

PORETSKY ET AL. 5 of 15



method, it is possible to assess the precision-recall tradeoff using a

weighted Fβ score. The generalized Fβ-score produces an F-score for

different β values that evaluate the classifier performance under the

assumption that recall is β-times as important as precision. To com-

pare the performance of PhosBoost, PhosphoLingo, and DeepPhos,

we plotted the Fβ score over different β values for the A. thaliana

qPTMplants results. Based on this plot we showed that as the β

increases, the Fβ score for PhosBoost increases, remains relatively

uniform for PhosphoLingo, and decreases for DeepPhos (Figure 3e). A

similar observation was made for the Tyr results, whereas the β

increases, the Fβ score for PhosBoost increases (Figure S5C). Further-

more, while the F1 score of PhosphoLingo is higher than PhosBoost

and DeepPhos (Table 1), when the β is equal to 1.8 the Fβ score of

PhosBoost reaches the Fβ-score of PhosphoLingo, suggesting that if

recall is considered to be approximately twice as important as preci-

sion, PhosBoost performs better than PhosphoLingo and DeepPhos

(Figure 3e). Similar results were obtained when comparing the perfor-

mance of PhosBoost, PhosphoLingo, and DeepPhos using the Fβ

score at different β values on the Ramsamy22 dataset, but with a

slightly higher β value of 2 for the S/T model (Figure S6H) and a lower

β value of 1.6 for the Y model (Figure S6I).

2.6 | A DIAMOND pairwise sequence alignment-
based approach can be used to supplement protein
phosphorylation prediction methods to improve
phosphosite prediction and annotation

Sequence alignment-based approaches were shown to be useful for

phosphosite annotation and prediction by searching for similarity

between sequences surrounding phosphosites and experimentally

derived protein phosphorylation data (Chaudhuri et al., 2015;

Maathuis, 2008; Tan et al., 2009). Due to the higher number of pre-

dicted false positives by PhosBoost, compared to DeepPhos and

PhosphoLingo, we considered using a DIAMOND protein pairwise

alignment-based approach to both evaluate the predicted false

F I GU R E 3 Despite lower precision, the PhosBoost S/T model produces more informative predicted probability scores and achieves better
performance when recall is prioritized. (a-c) confusion matrices for the S/T model results for PhosBoost, PhosphoLingo, and DeepPhos,
respectively (N stands for negative phosphosites). (d) A split violin plot showing the distribution of the predicted probability values for all true
positive (TP) and false positive (FP) samples (predicted probability > .5) separated by serines (S) and threonines (T), for PhosBoost, PhosphoLingo,
and DeepPhos, respectively. (E) Evaluation of the PhosBoost, PhosphoLingo, and DeepPhos model performances using the Fβ measure at
different β values. All results are based on models trained on the A. thaliana qPTMplants dataset. The heatmap legend shown is shared across the
confusion matrices.
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positives and improve phosphosite annotation (Buchfink et al., 2021).

We first assessed the performance of such an approach when used as

a protein phosphorylation prediction method on the A. thaliana

qPTMplants data. Using DIAMOND, we extracted peptide sequences

of size 31 centered at the Ser/Thr phosphosites in the test dataset

and conducted pairwise alignments to identify matching experimental

phosphosites in the training and validation datasets. We were able to

correctly classify 8,852 of the 20,656 experimentally derived Ser and

Thr phosphosites, achieving a precision score of .33 and a recall score

of .43 (Figure 4a). Furthermore, we found that 17,847 Ser/Thr nega-

tive phosphosites matched experimentally derived phosphosites

(Figure 4a). For the experimentally derived Tyr phosphosites, we were

able to correctly classify 168 of the 654 sites, achieving a precision

score of .06 and recall score of .26, and found 2,444 Tyr negative

phosphosites that matched experimentally derived phosphosites

(Figure S7A).

Next, we used the DIAMOND-based pairwise alignment step to

estimate the improvement of the phosphosite annotation, focusing

on the predicted false positive sites. We aligned all false positive

Ser and Thr phosphosites predicted by PhosBoost, PhosphoLingo,

and DeepPhos to the complete qPTMplants database. Phosphosites

matching any experimentally derived phosphosite, excluding self-

matches, were relabeled as inferred positives (IP) and annotated with

the supporting information (Figure 4b). Based on this analysis, we were

able to relabel 7,543 FP Ser and Thr phosphosites predicted by Phos-

Boost, 4,082 by PhosphoLingo, and 482 by DeepPhos (Figure 4c). Thus,

in the case of PhosBoost, by combining the inferred positives with the

true positive labels, we were able to increase the number of predicted

F I GU R E 4 Using a DIAMOND-based pairwise alignment analysis improves phosphosite annotation and reduces false positive label
uncertainty. (a) A confusion matrix using a DIAMOND-based binary protein phosphorylation prediction was trained and tested on the A. thaliana
qPTMplants dataset. (b) A schema representing the workflow that uses DIAMOND to evaluate false positive (FP) sites to identify inferred
positive (IP) sites. (c) A bar graph showing the number of IP serines (S) and threonines (T) inferred from the PhosBoost, PhosphoLingo, and
DeepPhos FP results. (d) Confusion matrix for the PhosBoost S/T model results after combining true positive and IP phosphosites accounting for
the FP phosphosites. (e) A split violin plot showing the distribution of the predicted probability values for all FP and IP phosphosites (predicted
probability > .5) for the PhosBoost, PhosphoLingo, and DeepPhos results, separated by serines (S) and threonines (T). In all confusion matrices, N
stands for non-phosphorylated. The heatmap legend shown is shared across the confusion matrices.
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and inferred true positive Ser and Thr phosphosites from 16,185 to

23,728 and reduce the number of false positives from 38,770 to

31,227, while achieving a precision score of .43 and a recall score of .84

(Figure 4d). For the Tyr results, we were able to increase the number of

predicted and inferred true positive phosphosites from 391 to 1,375

and reduce the number of false positives from 12,448 to 11,464, while

achieving a precision score of .11 and a recall score of .84 (Figure S5A,

S7B). We also assessed whether the predicted probability scores for

the inferred positive Ser and Thr phosphosites differ from the false

positives in PhosBoost, PhosphoLingo, and DeepPhos. When compar-

ing the distribution of the probability scores between the false positives

and inferred positives, we observed that the largest difference between

the probability distributions, for both Ser and Thr phosphosites, was for

PhosBoost, with a distribution peak approximately between probability

scores of .9 and 1.0, while the distribution for the predicted probability

scores for the false positives and inferred positives were relatively

similar for PhosphoLingo and DeepPhos (Figure 4e). In contrast, for the

Tyr results, we found that the distribution peaks for both false positives

and inferred positives are approximately between probability scores of

.5 and .7 (Figure S7C).

2.7 | Assessing the transferability of models
trained on A. thaliana data at predicting protein
phosphorylation in other plant species

We wanted to assess the ability of the S/T and Y PhosBoost models

trained on the A. thaliana qPTMplants dataset to correctly predict

known functional phosphosites in more distantly related plant species

such as Z. mays and T. aestivum. Compared to the available experi-

mental protein phosphorylation for A. thaliana in the qPTMplants

database, a much smaller amount of data is available for other plant

species, including Z. mays and T. aestivum (Figure S1A). The resulting

lack of phosphosite saturation and higher label imbalance in Z. mays

and T. aestivum, compared to A. thaliana, suggests that the use of

standard metrics, such as precision, recall, AUPRC, and F1 scores, to

assess the performance of protein phosphorylation models are not as

informative. Therefore, to assess the transferability of models trained

on A. thaliana data, we used split violin plots to show the distributions

of the probability score predicted by the S/T and Y PhosBoost

models, across the positive and negative Ser, Thr, and Tyr phospho-

sites (Figure 5a). The observed difference in the predicted probability

scores for the positive and negative Ser, Thr, and Tyr shows that in

general, positive phosphosites were predicted with a higher probabil-

ity score than negative ones, with a peak distribution approximately

between .9 and 1, albeit a smaller peak for Thr predictions (Figure 5a).

Furthermore, we detected over 40,000, close to 20,000, and close to

10,000 inferred positive Ser, Thr, and Tyr phosphosites, respectively,

in both Z. mays and T. aestivum (Figure 5b).

For a concise prediction comparison, we compiled a short list of

functionally important phosphosites, validated in A. thaliana, involved

in the brassinosteroid (BR), ethylene (ET), and abscisic acid (ABA)

pathways. In the BR pathway, we included BRASSINOSTEROID

INSENSITIVE 1 (BRI1) Y831 and Y956 (Bojar et al., 2014; Oh

et al., 2009), BRASSINOSTEROID-INSENSITIVE2 (BIN2) S187, S203,

and Y200 (Kim et al., 2009; Xiong et al., 2017), BRASSINAZOLE

RESISTANT1 (BZR1) Thr173 and Thr177 (Ryu et al., 2007), and

BRI1-SUPPRESSOR1 (BSU1) Ser251 and Ser764 (Park et al., 2022). In

the ET pathway, we included ETHYLENE INSENSITIVE3 (EIN3)

Thr174 and Thr592 (Zhao & Guo, 2011) and ACC SYNTHASE

6 Ser480, Ser483, and Ser488 (Liu & Zhang, 2004). In the ABA path-

way, we included OPEN STOMATA1 (OST1) Ser175 (Belin

et al., 2006), SLOW ANION CHANNEL-ASSOCIATED1 (SLAC1)

Ser59 and Ser120 (Brandt et al., 2015), and ABSCISIC ACID INSENSI-

TIVE5 (ABI5) Ser42, Ser145, and Thr201 (Y. Wang et al., 2013). The

top blast hit in Z. mays and T. aestivum for each of the A. thaliana pro-

tein sequences was used to identify the reciprocal phosphosite. We

then used PhosBoost and PhosphoLingo, trained on the A. thaliana

qPTMplants dataset to generate the predicted probability scores for

each phosphosite (Figure 5c, Table S2). The prediction results show

that except for BRI1-Y956, BIN2-S187, BSU1-S251, and EIN3-T174/

T592 for PhosBoost and PhosphoLingo, and BRI1-Y831, BSU1-S764,

and ABI5-T201 for PhosphoLingo, most of the A. thaliana sites were

correctly predicted by both methods (Figure 5c). For the Z. mays and

T. aestivum, PhosBoost correctly predicted more of the phosphosites

than PhosphoLingo and with a higher predicted probability score for

most phosphosites (Figure 5c). PhosBoost also generated more con-

sistent predictions across the three species tested, with the exception

of EIN3-T174 and ABI5-T201 for PhosBoost and PhosphoLingo, and

BZR1-S173, BSU1-S764, ACS6-S483/S488, and ABI5-S42/T201

(Figure 5c).

2.8 | Using PhosBoost for genome-wide protein
phosphorylation predictions and integration within
genome browsers

In this study, we aimed to use PhosBoost as a scalable machine-

learning method for generating genome-wide protein phosphorylation

predictions. For this, we trained new S/T and Y PhosBoost models on

the complete qPTMplants datasets to be used for plant phosphosite

predictions. We then used PhosBoost to conduct genome-wide pro-

tein phosphorylation predictions in four plant species (one accession

per species): wheat (Chinese Spring), oat (Sang), barley (Morex), and

maize (B73), using one representative protein sequence for each

gene model. Additionally, the DIAMOND pairwise alignment analysis

was used to improve the annotation of all phosphosites using the

complete qPTMplants dataset as a reference. To achieve this, we

developed a straightforward approach that converts the prediction

and annotation results into a GFF3 format, allowing for direct inte-

gration within JBrowse genome browsers (Figure 6a) (Diesh

et al., 2023). In this example, the labels of phosphosites with pre-

dicted probability above .9 were marked in bold font, and labels were

color-coded as follows: blue for phosphosites inferred by DIAMOND

pairwise sequence alignment, red for phosphosites with predicted

probability scores above .5, pink if both cases apply (Figure 6a). Each
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phosphosite contains additional metadata such as the phosphosite

ID, predicted probability score and DIAMOND pairwise sequence

alignment matches (Figure 6b). These results are now accessible

through the GrainGenes (Yao et al., 2022) and MaizeGDB databases

(Woodhouse et al., 2021).

3 | DISCUSSION

Protein phosphorylation is an important and dynamic post-

translational modification that has a wide-spread effect on many bio-

logical processes by regulating protein functions and interactions

(Nishi et al., 2014). Compared to A. thaliana, experimental phosphory-

lation data for most other plant species are either not available or are

relatively small and would require additional high-throughput phos-

phoproteomic experiments to achieve a similar degree of saturation

(Figure S1A-C). Therefore, the prediction of protein phosphosites is

instrumental in elucidating possible regulatory phosphosites where

extensive experimental phosphoproteomic data is not available

(Meng et al., 2022). While the use of state-of-the-art deep learning

and pLMs for protein phosphorylation prediction improved perfor-

mance over existing methods (Zuallaert et al., 2022), classical

machine learning approaches, such as gradient boosting trees, remain

as powerful and scalable classification methods (Anghel et al., 2019;

Lyashevska et al., 2021). Furthermore, ensemble methods that com-

bine different machine-learning classification methods can improve

classification performance by learning from multiple weak classifiers

(Dietterich, 1997). Choosing appropriate class weights during training

can have a substantial effect on the performance of the trained

machine-learning classification model, including the popular use of

balanced class weights for highly imbalanced data (Cui et al., 2019;

Liu & Zhou, 2006). In designing PhosBoost, we observed that a

stacking classifier consisting of two CatBoost base classifiers, one

trained with balanced class weights and one trained with equal class

weights, outperforms both independently trained CatBoost classifiers

on two different datasets, providing an increased recall with no cost

to precision for both the S/T and Y models (Figure 1c-h,

Figure S3A-F). We hypothesize that the use of balanced class

weights to train one base classifier helps address the class imbalance

by giving more weight to the underrepresented positive class while

F I GU R E 5 PhosBoost protein phosphorylation predictions are transferable across plant species and perform better than PhosphoLingo on a
number of functionally important phosphosites. (a) A split violin plot showing the distribution of the predicted probability scores for all
phosphosites present in the Zea mays and Triticum aestivum qPTMplants database predicted using the S/T and Y PhosBoost models trained on
the A. thaliana qPTMplants dataset. The results show the probability scores for all negative phosphosites (blue) and positive phosphosites
(orange) separated by serines (S), threonines (T), and tyrosines (Y) phosphosites. (b) A bar graph showing the number of inferred positive (IP) S, T,
and Y phosphosites as detected by using DIAMOND to align the predicted false positive phosphosites by the S/T and Y PhosBoost models to the

complete qPTMplants database. (c) Analysis of the predicted probability scores for PhosBoost and PhosphoLingo on a small number of verified
functional A. thaliana phosphosites in the brassinosteroid, ethylene, and abscisic acid phytohormone pathways and the matching phosphosites in
the top blast hit in Z. mays and T. aestivum. Non-conserved sites are filled with white background.
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the base classifier trained with equal class weights captures the over-

all characteristics of the dataset, effectively learning from the major-

ity negative class, allowing the stacking classifier to synergistically

learn from these complementary approaches.

Next, we benchmarked the performance of PhosBoost and two

existing protein phosphorylation prediction methods, namely Phos-

phoLingo and DeepPhos, on two separate datasets. For the S/T

model, we observed that the performance of PhosBoost, based on the

AUPRC scores, was comparable to PhosphoLingo on the A. thaliana

qPTMplants, lower on the Ramasamy22 data, and higher than Deep-

Phos on both datasets (Figure 2b, S4B, Table 1). On the other hand,

for the Y model, PhosBoost performed better than PhosphoLingo and

DeepPhos on both datasets (Figure 2e, S4E, Table 1). Different data-

centric factors, such as dataset size and label imbalance, can have a

substantial impact on model performance (L. Dou et al., 2021;

Lyashevska et al., 2021). A comparison of the S/T and Y model perfor-

mances in relation to data size and imbalance, suggests that data size

impacted the S/T model performance and data imbalance impacted

the Y model performance when comparing the models trained on the

A. thaliana qPTMplants and Ramasamy22 datasets (Figure S2A-C, 2a-

f, S4A-F). Based on our results, we hypothesize that the performance

of PhosBoost improves when the input data increases in size, as

observed for the S/T model (Figure S2A-B), or increases in label imbal-

ance, as observed for the Y model (Figure S2C). We also demonstrate

that PhosBoost consistently achieves higher recall scores at all proba-

bility thresholds compared to PhosphoLingo and DeepPhos

(Figure 2c, f, S4C, S4F). Thus, we show that PhosBoost can be com-

petitive with existing protein phosphorylation prediction methods,

particularly when higher recall and improved predicted phosphosite

coverage are beneficial.

Despite the improved recall score, PhosBoost presents a

precision-recall tradeoff associated with an increased number of

predicted false positives compared to PhosphoLingo and DeepPhos

(Figure 3a-c, Figure S5A). We assessed the performance of Phos-

Boost, PhosphoLingo, and DeepPhos under the assumption that,

depending on the aim of the prediction method, the importance of

recall can outweigh precision. We show that PhosBoost has a higher

Fβ score when the value of the β parameter is approximately 2 for

both the A. thaliana qPTMplants and Ramsamy22 datasets, in the

S/T and Y models (Figure 3d, S6H-I). Therefore, in view of the

precision-recall tradeoff, we suggest that when a recall is prioritized

and considered to be twice as important as precision, PhosBoost

achieves higher performance than PhosphoLingo and DeepPhos on

both the A. thaliana qPTMplants and Ramasamy22 datasets. Fur-

thermore, we show that PhosBoost consistently produces predicted

probability scores that are more indicative of whether a phosphosite

are true or false positive, providing a more confident and informa-

tive predicted probability score (Figure 3d, S6G). Taken together,

our results suggest that PhosBoost achieves higher performance

than PhosphoLingo and DeepPhos when recall is prioritized over

precision while providing more confidence through more informative

predicted probability scores.

F I GU R E 6 Integrating the PhosBoost prediction results as a track within the JBrowse genome browser for better accessibility. For this
example, we generated a GFF3 file that contains all positive and inferred predicted phosphosites by PhosBoost for all protein sequences in the
H. vulgareMorex version 3 genome assembly, using one representative protein sequence for each gene model. All phosphosites were mapped to
their respective 3 bp genomic coordinates. (a) Screenshot of the PhosBoost predicted phosphosites track view for the gene HORVU.MOREX.
r3.5HG0471560.1. In this example, phosphosites were color-coded as follows: blue for phosphosites inferred by DIAMOND pairwise sequence
alignment, red for phosphosites with predicted probability scores above .5, and pink if both cases apply. The labels of phosphosites with predicted
probability scores above .9 are shown in bold font. (b) A view of one of the PhosBoost predicted phosphosites, showing the phosphosite ID,
predicted probability score, and the ID of the DIAMOND pairwise sequence alignment matches with experimentally derived phosphosites in the
qPTMplants database.
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Due to complex phosphorylation and dephosphorylation dynam-

ics and technical limitations, many phosphosites remain undetected

by high throughput phosphoproteomic approaches (Doll &

Burlingame, 2015; Gelens & Saurin, 2018; Iakoucheva, 2004). One of

the approaches used to infer if a phosphosite is positive despite the

lack of experimental data is through the identification of conserved

phosphosites with experimental evidence (Chaudhuri et al., 2015). To

partially address the problem of negative phosphosite label uncer-

tainty, we have developed a supplementary pairwise sequence align-

ment analysis step using DIAMOND to improve phosphosite

annotation. We show that this approach can be used by any protein

phosphorylation classification method to increase the number of

inferred positive phosphosites (Figure 4c), reduce the number of false

positives (Figure 4d), and provide useful information about the match-

ing experimental phosphosites. Furthermore, by comparing

the probability score distribution of the false and inferred positive phos-

phosites, we show that PhosBoost produces higher predicted probabil-

ity scores for inferred positives than false positives for Ser and Thr

phosphosites, providing a more confident and informative predicted

probability score than PhosphoLingo and DeepPhos (Figure 4e). For Tyr

phosphosites, PhosBoost was not as informative at predicting inferred

positives compared to false positives (Figure S7C), possibly due to

higher label imbalance (Figure S2C). Label uncertainty and mislabeling is

a common problem for protein phosphorylation classification methods

that could be partially addressed by improving phosphosite annotation

prior to training and testing, with a possible benefit of improved model

performance and interoperability.

One of our goals when developing PhosBoost was to develop a

method that is scalable for genome-wide protein phosphorylation pre-

diction. Because a large portion of the experimental protein phosphor-

ylation data in the qPTMplants belongs to A. thaliana phosphosites,

we assessed whether PhosBoost trained on the A. thaliana dataset

can effectively predict phosphosites in other plant species. Compari-

son of the distribution of the predicted probability scores for Ser, Thr,

and Tyr, provides compelling evidence that the S/T and Y models can

provide informative predicted probability scores that effectively dis-

tinguish between true and false positive phosphosites. We also show

that the DIAMOND pairwise alignment step can be used to improve

the phosphosite annotation of a large number of Ser, Thr, and Tyr

phosphosites, in both Z. Mays and T. aestivum. A comparative analysis

of PhosBoost and PhosphoLingo on a small number of known func-

tional phosphosites from A. thaliana with matching phosphosites from

Z. mays and T. aestivum showed that PhosBoost correctly predicted a

larger number of phosphosites with higher predicted probability

scores than PhosphoLingo. Based on these results, we trained final

the final PhosBoost S/T and Y models on the complete qPTMplants

protein phosphorylation dataset and conducted genome-wide protein

phosphorylation prediction on four plant species, Z. mays, T. aestivum,

Avena sativa, and Hordeum vulgare. To facilitate the accessibility to the

prediction data, we developed a method that converts the prediction

results and the pairwise DIAMOND alignment results into a file that

can be directly incorporated and visualized on the genome browser

(Figure 6a-b).

4 | CONCLUSION

We present PhosBoost, a general protein phosphorylation prediction

method that uses pLMs and a stacking classifier composed of Cat-

Boost gradient boosting tree base classifiers. We show evidence to

suggest that PhosBoost has improved performance when working

with large and imbalanced datasets, showing comparable results for

Ser/Thr classification and improved Tyr classification. We show that

PhosBoost consistently achieves higher recall and more informative

predicted probability scores, making PhosBoost particularly useful

when recall is prioritized over precision and a higher coverage of pre-

dicted phosphosites is beneficial. We developed a DIAMOND pair-

wise sequence alignment analysis step to reduce phosphosite label

uncertainty and improve phosphosite annotation. We show that

PhosBoost is scalable to genome-wide protein phosphorylation pre-

dictions and implement a straightforward method for integrating

prediction and annotation results directly in the genome browser to

facilitate accessibility.

5 | MATERIALS AND METHODS

5.1 | Data sources and generation of input
embedding data

The complete list of phosphorylated residues from the qPTMplants

database for protein post-translational modification was used (Xue

et al., 2022). Because the qPTMplants database does not provide the

protein sequences for the annotated phosphoproteins, protein

sequences were manually obtained from genomic databases such as

UniProt (The UniProt Consortium et al., 2023), Phytozome (Goodstein

et al., 2012), and EnsemblPlants (Yates et al., 2022), and processed

with BioPython (v.1.81) (Cock et al., 2009). Proteins that are not pre-

sent in genomic databases or contain missing or non-canonical amino-

acid sequences were discarded. The phosphorylation positions were

cross-referenced to ensure that the qPTMplants sites matched the

protein sequences, and no-matching sequences were removed. Pro-

tein sequences containing non-canonical or missing amino acids were

removed. The resulting FASTA file was used directly as the input for

calculating protein and amino acid embedding vectors using the pre-

trained ProtT5-XL-U50 pLM (Elnaggar et al., 2021). The Python code

used to generate the embeddings was obtained from the ProtTrans

GitHub repository (https://github.com/agemagician/ProtTrans) and is

based on the ProtT5 pLM architecture. The code was modified to spe-

cifically return the amino-acid embedding vectors of S/T/Y residues

and the protein-wise average embedding vector (available at https://

github.com/eporetsky/PhosBoost). The combined S/T/Y amino-acid

and protein-wise average embedding data were used, without modifi-

cation, as input data for the PhosBoost classifiers. Using the gener-

ated amino acid embedding vectors and the average protein

embedding vectors, all sites included in the qPTMplants database

were extracted as a positive phosphorylated site set, and all the

remaining S/T/Y sites were extracted as a negative phosphorylation
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set. Initial training and evaluation on predictive classification models

were conducted using the data obtained from the complete

A. thaliana phosphorylation dataset. For the training and validation of

PhosBoost, only the A. thaliana data from the qPTMplants database

was used. The complete A. thaliana dataset was randomly split into

stratified training, validation, and testing sets using a 60%–20%–20%,

split, respectively.

5.2 | Overview of the PhosBoost protein
phosphorylation classifier

A stacking classifier is a two-step ensemble learning method com-

posed of an initial stack of base classifiers followed by a final meta-

classifier that integrates the results of the base classifiers. In the first

step, the training data is used to separately train the base classifiers

specified within the stack. In the second step, the predicted probabil-

ity scores from each base classifier are used as new training data fea-

tures for training the final meta-classifier. The metaclassifier is trained

using a cross-validated prediction approach to reduce over-fitting by

not training on the same data used to train the base classifiers. Stack-

ing classifiers have been shown to often perform better than the indi-

vidual base classifiers by combining different types of classifiers that

may have complementary strengths and weaknesses while reducing

bias and variance. We implemented PhosBoost as a stacking classifier

composed of two stacked base-classifiers and a metaclassifier, using a

5-fold cross-validation approach. The stacking classifier is comprised

of two CatBoost base classifiers (v1.1.1) (Dorogush et al., 2018), one

trained using the balanced class weight parameter to modify class

weights according to label frequencies (auto_class_weights=“ba-
lanced”), and one trained using the default equal class weights param-

eters. The predicted probability scores produced by each of the two

base-classifiers were then used as input training data features for the

logistic regression metaclassifier, using the balanced class weight

parameter. The stacking classifier and logistic-regression metaclassi-

fier were implemented using the Python scikit-learn package (v1.2.1)

(Pedregosa et al., 2011). The CatBoost API is compatible with the

scikit-learn architecture, enabling direct integration of the base-

classifiers within the stacking classifier. Furthermore, to provide sup-

port for the improved performance of the stacking classifier, the

stacking PhosBoost classifier performance was compared to the

performance of the two independently trained CatBoost classifiers

outside of the stacking classifier. Hyper-parameter tuning was

conducted on the training and validation sets, using the Bayesian opti-

mization function BayesianOptimization from the bayes_opt Python

package (v1.4.2) (Nogueira, 2014). The Bayesian optimization method

was used to fine-tune the following hyper-parameters: “n_estimators”
(between 50 and 2000), “depth” (between 2 and 10), and “learnin-
g_rate” (between .05 and .5) by optimizing the F1-score metric over

100 iterations. Hyper-parameters optimization was conducted sepa-

rately for the two independent CatBoost classifiers, one trained with

equal class weights and one trained with balanced class weights, and

separately for the ST and Y models. The obtained model parameters

were then used by the two respective CatBoost base-classifiers within

the ST and Y model PhosBoost stacking classifiers. The “n_estimators”
and “depth” hyper-parameters were rounded to the nearest integer,

as instructed by the bayes_opt Python package (v1.4.2). The obtained

values for the hyper-parameters are available (Table S1).

5.3 | Evaluation of protein phosphorylation
predictive model performances

We benchmarked the performance of PhosBoost compared to two

established protein phosphorylation classification methods, namely

PhosphoLingo (v0.1.0) (Zuallaert et al., 2022) and DeepPhos (Luo

et al., 2019). All three classification methods produce two separate

binary classifiers, the S/T and Y models. PhosBoost and PhosphoLingo

used the same training and validation sets for hyperparameter tuning,

while DeepPhos used the combined training and validation sets for

internal hyperparameter tuning and training. For PhosphoLingo we

used the pre-trained ProtT5-XL-U50 pLM model to train a protein

phosphorylation model under the “full” setting. The default settings

were used in the training and testing process of DeepPhos.

5.4 | Building a DIAMOND-based inference
method to improve phosphosite annotations

To enhance phosphosite annotation, we employed a sequence-

based DIAMOND alignment step (v2.1.6) (Buchfink et al., 2021).

We extracted a peptide of length 31 for each candidate phosphosite

of Ser, Thr, and Tyr within a protein sequence, with the phosphosite

at the center of the sequence. For phosphosites positioned at the

edges of protein sequences, a peptide of length 31 was extracted

but with the phosphosite position being determined based on the

distance from either edge of the protein sequence. After obtaining

all peptide sequences, each peptide was aligned using DIAMOND

(�-masking none --ultra-sensitive --max-target-seqs 100) against all

protein sequences in the complete qPTMplants database. All pair-

wise sequence alignment results were tested for each query to

identify matches with experimentally derived phosphosites. All

query phosphosites with matches to the qPTMplants database were

labeled as inferred positives, and the matches were compiled as a

list to improve phosphosite annotation and provide additional sup-

portive information.

5.5 | Data and code availability

A detailed markdown page provides explanations for all analysis steps,

code for reproducing results and figures, and links to raw data and

results, which are available on GitHub at https://github.com/

eporetsky/PhosBoost. The protein phosphorylation data used in this

study is available for download directly from the qPTMplants data-

base (Xue et al., 2022) and PhosphoLingo GitHub repository (Zuallaert
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et al., 2022). Additionally, we assembled several helper functions to

facilitate raw data processing and conversion between different file

formats used by different protein phosphorylation prediction methods

as a python package named PTMtools that is available through the

official PyPI repository.
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