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Abstract 

Humans have a remarkable capacity to feel and enact care for others. But this capacity is 

not universally expressed: decades of research have elucidated the contextual, social, cognitive-

affective, and relational factors that limit the tendency to experience empathy and engage in 

prosocial action. Buddhist contemplative traditions have long been concerned with the 

alleviation of suffering and expanding the boundaries of those who we hold in our circle of care. 

Recent years have seen a growth of interest in contemplative approaches to cultivating 

compassionate responses to suffering. This dissertation explores contemplative approaches to 

training compassion, focusing on the question of whether we can, with volitional training, 

expand the boundaries of our circle of care. 

Chapter 1 draws on contemporary research from cognitive, affective, and social 

psychology to provide an integrative review of empirical studies of compassion training. I 

consider what constitutes compassion training and offer a summary of current meditation-based 

approaches. I then provide an overview of the empirical evidence for a relationship between 

compassion training and changes in socioemotional processes, prosocial behavior, and 

physiological stress responses to the perception of others’ suffering. I further address challenges 

in interpreting data from these studies, considering training-related mechanisms of change and 

how compassion-relevant processes might develop over time. I conclude by outlining key 

theoretical challenges for future research. 

Chapters 2 and 3 empirically investigate two key issues in contemplative approaches to 

training compassion: the generalization of training effects, and the volitional expansion of the 

circle of care. Leveraging EEG data collected as part of the Shamatha Project—a multimethod 

study of the psychobiological effects of intensive meditation retreat training—these chapters 
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work to contribute to the understanding of the neurocognitive consequences of intensive 

contemplative training. 

Establishing whether effects instantiated through meditation training generalize to other, 

non-meditative states is an essential link in understanding how contemplative training may 

influence behavior—including responses to suffering—outside of the meditative context. In 

Chapter 2, I examine retreat-related changes in the resting brain. I show that rest is not a static 

baseline but rather indexes behaviorally meaningful effects of retreat training. Notably, the 

training-related changes in the resting brain observed in Chapter 2 closely mirror patterns of 

change observed in these same participants when they actively practiced mindfulness of 

breathing meditation. This offers support for the idea that changes instantiated during meditation 

practice may generalize to other, non-meditative contexts, providing key evidence for the 

generalization of meditation-related change. 

In Chapter 3, I explore whether brain activity recorded during compassion meditation 

provides evidence that contemplative training can extend the circle of care. Using microstate 

analysis, I first show that the general patterns of retreat-related change observed during 

compassion meditation are similar to those of the resting brain. This finding establishes global 

shifts in brain dynamics as a core consequence of intensive meditation training. I next use 

sequence analysis to compare temporal patterns of brain activity during compassion meditation 

when a close other, a difficult other, and all others are taken as the object of compassion. I 

hypothesize that the mental representations of these various others—reflected in the ongoing 

activity of the brain—should become more similar with training. I find consistent differences in 

microstate sequences as a function of the target of compassion. I do not, however, find any 

evidence that these sequences become more similar with training. Thus Chapter 3 establishes 
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microstate sequence analysis as a viable method for distinguishing target-based differences in 

brain activity during compassion meditation, but does not offer evidence for the extension of the 

circle of care. 

As a whole, this dissertation grapples with how we can understand and measure the 

consequences of contemplative practice. The empirical studies offer two small contributions to 

the greater project of understanding if and how we can collectively expand our circles of care. 
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In grateful memory of the life and teachings of H. H. Getse Rinpoche, for the benefit of all. 

“Ground your practice in compassion. The rest will follow…” 
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Introduction 

We live in a world that is increasingly interconnected—through our economic and trade 

systems, our environmental policies, ease of travel and communication, and global media reach. 

This confluence of factors places humans in an unprecedented situation wherein we are ever 

more aware of the suffering occurring around the world. We can immerse ourselves in the stories 

of refugees through virtual reality, view personal cellphone videos of war, and watch cities 

crumble in earthquakes and tsunamis or reel from terrorist attacks. We cannot escape the 

evidence of how our consumption choices affect the lives of countless other species. This 

increased global exposure to the suffering of others presents us with a challenge: we can—in 

despair—become disillusioned and overwhelmed by our own powerlessness in its wake, or we 

can focus on building capacities that allow us to engage with this onslaught skillfully and 

adaptively. Increasing our capacity for compassion is one such way to alter how we engage with 

suffering. 

Contemplative traditions have long been concerned with questions of human suffering 

and the development of compassion (e.g., Salzberg, 2004; Wallace, 1999). More recently, 

researchers and clinicians in Western psychological traditions have incorporated aspects of these 

contemplative traditions into their evolving understanding of compassion. The potential for 

drawing on contemplative traditions—particularly meditation practices—to train compassion has 

been of special interest. While this area of research is rapidly growing, the field is still in its 

infancy and many core questions remain unanswered. This chapter, and the Handbook section 

that follows, will explore some of what we know, and what we do not, about the training of 

compassion using contemplative approaches.  
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First, we consider what constitutes compassion training and offer an overview of current 

research approaches to investigating the training of compassion. Next, we provide an 

introductory overview of the empirical evidence for the relationship between compassion 

training and compassion-relevant processes in psychological research contexts, with a 

consideration of how these processes might develop over time and a focus on addressing 

challenges of interpretation. Lastly, we outline two core issues with which the field has yet to 

grapple: characterizing subtle forms of suffering, and the possibility of compassion without 

action. 

What Constitutes Compassion Training? 

Approaches to studying the training of compassion within the psychological literature can 

be usefully divided into: (1) studies of expert or adept meditators with extensive training in 

compassion meditation practices (who are often compared to novice meditators on experimental 

outcomes of interest), and (2) longitudinal studies of individuals undergoing compassion-training 

interventions. Although the interventions described in this chapter and the accompanying 

Handbook section are all classified as “compassion training,” extant training programs vary on a 

range of factors—perhaps most notably in the length and intensity of training and the 

pedagogical and design components they include. While many studies of compassion training 

emphasize procedural aspects of specific meditation techniques, these programs generally also 

include lectures, discussion, and the social support of a group of individuals working towards a 

common goal. The existence of these multiple facets of training frequently complicates 

interpretations of the potential mechanisms underlying any observed effects. Furthermore, for 

novice or beginning practitioners, the experience of undergoing such programs presumably 

differs greatly from the life experience of expert meditators (most frequently Buddhist monks). 
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Although the focus of this chapter is on training programs that incorporate compassion-based 

meditation practices oriented towards developing compassion for others, it is important to note 

that there are training approaches aimed at enhancing empathy and compassion that do not 

include meditation (see Weisz and Zaki, Chapter 16 in this volume for examples), programs that 

emphasize other types of meditation without an explicit focus on compassion (e.g., mindfulness-

based stress reduction; Kabat-Zinn, 1990), and programs that include meditation but primarily 

focus on cultivating compassion for one’s self (mindful self-compassion; Albertson, Neff, & 

Dill-Shackelford, 2015; Neff & Germer, 2013; see also Neff and Germer, Chapter 27 in this 

volume) each of which might presumably influence the development of compassion-relevant 

processes (Kabat-Zinn, 2011). Finally, although our focus here is on compassion training 

methods drawn primarily from Buddhist traditions, the teaching of compassion appears across 

varied religious and secular humanist traditions (for an example from Christianity, see Rogers, 

2015; for an example from secular humanism, see Becker, 2012, and other articles in that journal 

issue), and there exist interventions based on these traditions (e.g., gratitude; see Bono & 

McCullough, 2006; Gulliford, Morgan, & Kristjánsson, 2013, for reviews) that share 

considerable conceptual overlap with Buddhist-derived compassion-training programs. 

In the section that follows, we overview current approaches to studying Buddhist-derived 

compassion-training programs by examining two primary dimensions on which such trainings 

commonly vary: (1) the length and intensity of training, and (2) the multiple training components 

(e.g., instructional, ethical, motivational) that comprise these programs. For illustration, we 

provide exemplars of several classes of studies that have been conducted; specific results will be 

discussed in the “Survey of Compassion Training Outcomes” section of this chapter. 
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Length and Intensity of Training 

Many early studies on the training of compassion attempted to capitalize on the 

experience gained over a lifetime of practice by studying expert meditators (typically Tibetan 

Buddhist monks) as compared to novice or beginning meditators (e.g., Engen & Singer, 2015b; 

Lutz, Brefczynski-Lewis, Johnstone, & Davidson, 2008; Lutz, Greischar, Perlman, & Davidson, 

2009). Although these studies do not take a directed-intervention approach, they do offer insight 

into changes in compassion-related processes that may be cultivated through extensive training. 

Other studies have employed either long-term and/or intensive training (e.g., full-time, 

daily practice), tracking participants over the course of a given training program. The ReSource 

Project, for example, is a study on the effects of contemplative training on cognitive-affective 

regulation and psychosocial functioning that was conducted over the course of one year (Lumma, 

Kok, & Singer, 2015; Singer, Kok, Bolz, Bornemann, & Bochow, 2016). The intervention 

included three intensive three-day retreats, which occurred at the beginning of each of three 

consecutive 13-week training modules; between these brief retreats, participants went about their 

typical day-to-day lives while practicing daily at-home meditation and attending weekly 

meditation groups. Another study, The Shamatha Project, was conducted by our laboratory in 

2007 (with ongoing follow-up data collected through 2014), and was designed as a multi-method 

study on the cognitive, affective, and neurobiological effects of intensive meditation training in a 

formal retreat setting. Participants lived onsite at Shambhala Mountain Center, a remote retreat 

center in Colorado, and meditated approximately six to eight hours per day over the course of a 

three-month training period (e.g., Jacobs et al., 2013; MacLean et al., 2010; Rosenberg et al., 

2015). Intensive and long-term designs such as these provide a higher “dosage” of training 

elements and thus are ostensibly more likely to yield measurable effects of training. Because of 
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this high dose, intensive training also increases the likelihood of obtaining measurable 

differences between interstitial assessment points (e.g., from the onset to the midpoint of a given 

training period). 

In contrast to such intensive designs, the vast majority of intervention studies have 

employed non-intensive training protocols (i.e., typically less than one hour of practice per day; 

up to several hours of instruction per week), often six to nine weeks in length. The most 

prominent programs of this type incorporate Buddhist meditation practices that are adapted for 

non-religious contexts. Of the training programs that explicitly focus on compassion, the two 

most studied are Compassion Cultivation Training (CCT; Jinpa, 2010) and Cognitively-Based 

Compassion Training (CBCT; Ozawa-de Silva et al., 2012). Other compassion-focused studies 

employ training protocols of similar lengths that include many of the same training elements as 

standardized programs such as CCT or CBCT, but are customized to specific populations or 

study aims (e.g., Condon, Desbordes, Miller, & DeSteno, 2013). There has also been recent 

growth in the availability of online tools and applications (apps) for training mindfulness and 

compassion. Headspace (www.headspace.com), one such mindfulness training tool developed by 

Andy Puddicombe and his colleagues, was recently used as the training method in a study 

investigating the effects of mindfulness training on prosocial behavior (Lim, Condon, & 

DeSteno, 2015). 

Currently, there is not a large enough body of work on intensive or long-term training to 

allow us to draw clear conclusions regarding the effects of different training lengths and 

intensities. As such, in the remainder of this chapter, we will collectively review findings from 

expert meditators, intensive interventions, and non-intensive interventions. While this approach 

allows for a general overview of the state of knowledge, it may also gloss over potentially 
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important variables that differ across training methods and with varying levels of participant 

meditation expertise. 

Training Components 

Compassion interventions often consist of multiple training components. Common 

features include group meditation practice, individual meditation practice, didactic instruction, 

group discussion, individual writing or reflection, and an organizing ethical framework (e.g., 

Jinpa, 2010; Ozawa-de Silva et al., 2012; Singer et al., 2016). In addition, individuals may differ 

widely in their personal motivations for undertaking a particular training or practice. In the 

absence of studies explicitly controlling for these multiple components, it is impossible to 

determine their separate, additive, or interacting influences on commonly measured outcomes: 

any or all of these components may contribute substantively to observed training-related 

changes. Notably, while most training studies measuring compassion-relevant outcomes include 

an explicit focus on compassion, it is not clear that this emphasis is an essential element of 

effective compassion training. Studies that employ training either primarily (e.g., Rosenberg et 

al., 2015) or exclusively (e.g., mindfulness group in Condon et al., 2013; Lim et al., 2015) 

centered on attention-training or mindfulness practices have reported changes in responses to 

suffering as a function of training. However, such focused attention and mindfulness training 

may include compassion-relevant themes. For instance, while the primary training focus of the 

Rosenberg et al. (Shamatha Project) study was intensive practice of focused-attention meditation, 

participants engaged in supportive practice of meditations centered on beneficial aspirations for 

themselves and others, explicitly including compassion, for approximately 45 minutes each day. 

This “supportive” practice time is generally comparable to the total time dedicated to 

contemplative practice in many non-intensive compassion-training programs. In the case of the 
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Condon et al. (2013) and Lim et al. (2015) studies, which included training programs that 

exclusively focused on mindfulness practice, both reported improvements in prosocial behavior. 

These findings suggest the somewhat counter-intuitive possibility that an explicit emphasis on 

compassion need not be an essential component of programs that nevertheless result in 

measureable changes in engagement with suffering and prosocial responding. In all of these 

studies, there are likely to be additional unknown contributions of ethical frameworks (whether 

provided by teachers, traditional texts, or brought in by participants) that may account in part for 

observed training-related effects. 

What Is the Relationship Between Compassion Training and Compassion? 

A core assumption of compassion-training programs is the idea that compassion can, 

indeed, be trained. Early evidence from studies employing compassion-training programs has 

provided support for the general efficacy of compassion training in enhancing compassion, but 

many questions regarding specific outcomes and precise mechanisms of change remain 

unanswered. As other chapters in this volume provide extensive reviews of specific compassion-

training programs and studies, we offer here a brief survey of the compassion training literature 

in non-applied, non-clinical settings. We first outline compassion-relevant findings from studies 

employing compassion-training programs and studies of expert meditators. We next offer a 

theoretical discussion of potential mechanisms of change involved in such training programs. 

Finally, we point out several key challenges in interpreting findings from studies of training 

compassion. 

Survey of Compassion Training Outcomes 

Compassion has been broadly defined throughout this volume as an affective response to 

the perception of another’s suffering that motivates the desire to relieve that suffering (Goetz, 
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Keltner, & Simon-Thomas, 2010). The intentional development of this motivation may be 

supported by inquiry into the nature and causes of suffering—both in one’s self and in others—

the understanding of which can inform a grounded and situationally appropriate response (e.g., 

Gilbert, 2015; Halifax, 2012). From a cognitive and social psychology perspective, there is a 

multitude of component processes that underlie compassionate behaviors and motivational states 

(Batson, Ahmad, & Lishner, 2009; Zaki, 2014; Zaki & Ochsner, 2012), many of which may be 

influenced and developed by compassion training (e.g., Ashar et al., 2016). In this section, we 

discuss key findings from the compassion training literature across several compassion-relevant 

domains, including affect, stress physiology, recognition of emotion and responsiveness to 

suffering, aversion and related social-evaluative processes, and prosocial behavior. 

Affect and Compassion  

The relationship between feeling states, their regulation, and compassion training is 

complex. Although extensive research has been conducted on compassion and related processes 

outside of the Buddhist-informed perspective offered here (see chapters by Batson and Weisz & 

Zaki, Chapter 16 in this volume; Singer & Klimecki, 2014), there remain gaps in our 

understanding. One such gap relates to the precise role of emotion in the generation of a 

compassionate response to suffering. For example, while emotion regulation is probably critical 

in the generation of such compassionate responses (e.g., Decety & Jackson, 2006; Eisenberg, 

2000), the over-regulation of affect can be prosocially maladaptive, reducing prosocial 

engagement with witnessed suffering (e.g., Dovidio & Gaertner, 1991). In two studies, Cameron 

and Payne (2011) found that two groups of participants—those who were naturally skilled at 

regulating their emotions and those who were instructed to actively down-regulate their 

emotions—showed reductions in reported compassion as the number of individual suffering 
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victims increased in salient descriptions of suffering in others. Participants who were unskilled at 

emotion regulation, or who were instructed to simply “experience” their emotions during the 

task, did not demonstrate a concomitant decrease in compassion (for more on motivational 

influences on compassion, see Cameron, C.D., Chapter 20 in this volume). The emotion 

regulation strategy employed when witnessing suffering also appears to matter: reliance on 

suppression as an emotion regulation technique has been linked to reduced empathic concern and 

willingness to engage in helping behaviors, whereas engaging in reappraisal does not seem to 

carry these same consequences (Lebowitz & Dovidio, 2015). 

Within the compassion training literature, CCT has been reported to enhance self-

reported feelings of compassion towards one’s self and others (Jazaieri et al., 2013), to increase 

self-reported mindfulness and happiness, and to reduce self-reported worry and emotional 

suppression in adults (Jazaieri et al., 2014; see Goldin and Jazaieri, Chapter 18 in this volume for 

a review of studies employing CCT). Despite the improvements in self-reported mindfulness and 

happiness, and the decreased worry reported in Jazaieri et al. (2014), the training did not result in 

observed changes in self-reported perceived stress; therefore the authors interpreted this 

reduction in worry absent changes in perceived stress as indicative of improved adaptive coping 

following CCT. In adolescents, a Buddhist compassion training based on the New Kadampa 

Tradition (Gyatso, 2003; Lopez, 1998) evidenced similar decreases in self-reported worry, as 

well as improvements in the environmental mastery and personal growth facets of self-reported 

well-being (Ryff & Keyes, 1995), but showed no changes in self-reported positive affect (Bach 

& Guse, 2015). The authors of this study suggest that these reported changes in well-being may 

reflect a change in personal perspective—that happiness can be achieved through cultivating 

benevolent states of mind, particularly in situations where external events cannot be easily 
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controlled. Compassion training may also alter an individual’s perspective on what constitutes 

happiness and what is valuable in life (Ricard, 2008), such that psychological well-being is no 

longer primarily grounded in hedonic states or pleasant experiences but rather in the ability to 

live a meaningful life (Ryan & Deci, 2001). This change in perspective may in turn increase 

individuals’ sense of efficacy in regulating their own emotional state. Together, these findings 

support the view that compassion training may influence how one relates to potentially negative 

or distressing events, such that events may be framed as less aversive or overwhelming. 

Biomarkers of Stress and Inflammation  

If compassion training influences how individuals report that they cope with stress and 

challenging experiences, one might expect to see these changes mirrored in the domain of stress 

physiology. Across a series of studies, CBCT has been found to reduce markers of stress and 

inflammation in undergraduate students (Pace et al., 2009; Pace et al., 2010), and inflammation 

in adolescents in the foster care system (Pace et al., 2013). In the former studies, greater time 

spent practicing meditation at home over the course of CBCT was associated with a reduction in 

deleterious biological markers. However, a later study on a larger sample of adults conducted by 

this same group failed to replicate any of these outcomes and found no effect of CBCT on any 

relevant behavioral or biological measures (unpublished data; see Mascaro, Negi, and Raison, 

Chapter 19 in this volume for further discussion). This highlights the potential variability in 

psychobiological responses to compassion training, and the need for replication studies and the 

careful consideration of differences in contextual factors between studies (e.g., Van Bavel, 

Mende-Siedlecki, Brady, & Reinero, 2016). 
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Recognition of Emotion and Responsiveness to Suffering 

Expert meditators—Tibetan Buddhist monks with a range of 10,000–50,000 lifetime 

hours of meditation experience in a tradition strongly emphasizing compassion (e.g., Jinpa, 2015; 

Dalai Lama & Ekman, 2008)—demonstrate increased pupil dilation and activation in the insula 

and cingulate cortex (Lutz et al., 2008), and increased coupling between cardiac rate and BOLD 

(blood-oxygen-level–-dependent) activity in the somatosensory cortex (Lutz et al., 2009) in 

response to sounds of suffering as compared to novice meditators. These findings suggest 

increased responsiveness to signals of suffering in others. Consistent with these findings, novices 

trained in CBCT have demonstrated improved empathic accuracy as measured by the ability to 

infer what emotion an individual is feeling from a picture of only their eyes (Mascaro, Rilling, 

Negi, & Raison, 2012). This improvement in empathic accuracy was accompanied by increased 

activation in the inferior frontal gyrus and dorsomedial prefrontal cortex, brain regions 

previously associated with theory of mind (for more on this study, see Mascaro et al., Chapter 19 

in this volume). In a separate study employing CBCT, training participants demonstrated a trend-

level increase in activation in the amygdala to negative images from the International Affective 

Picture Set (IAPS; Lang, Bradley, & Cuthbert, 2008), which was significantly correlated with 

decreases in depression scores (Desbordes et al., 2012). While the amygdala has long been 

associated with negative affect and fear-relevant processing, it is more broadly implicated in 

salience detection and general affect processing (Janak & Tye, 2015). Other researchers have 

also observed increased amygdala activation during the generation of compassion, as compared 

to cognitive reappraisal in expert meditators viewing film clips of individuals in distress (Engen 

& Singer, 2015b). Experts in this same study also demonstrated greater activation in the ventral 

striatum and medial orbitofrontal cortex (part of a network implicated in positive affect and 
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reward processing), as well as the mid-insula (interpreted as supporting feelings of affiliation), 

and had greater self-reported positive affect when asked to generate compassion while viewing 

the films of distress, as compared to when they were asked to view these films in a neutral 

“watch” condition or to engage in cognitive reappraisal of the films (see also Klimecki and 

Singer, Chapter 9 in this volume). 

Together, these findings suggest that compassion training may enhance perceptual 

accuracy and alter the salience of social-emotional stimuli, and that these changes may be 

supported by identifiable differences in associated neural activity following training. Both 

shorter-term interventions (e.g., CCT, CBCT) and long-term expertise appear to enhance 

emotional responsiveness to depictions of others’ emotional states. One possibility proposed by 

Engen and Singer (2015) is that enhanced responsiveness related to compassion training may 

have a protective effect, mitigating empathic distress and burnout by increasing positive affect in 

the face of emotional challenge. It will be important for researchers to unpack the specific 

functional or informational qualities of increased positive affect. For example, positive feelings 

associated with the active deployment of compassion in the face of suffering need to be 

dissociated from states of self-congratulation for feeling compassion for others or engaging in 

helping behavior. 

It is important to note that physiological responses often demonstrate complex or 

nonlinear relationships with outcomes of emotional experience and behavior. For example, while 

higher levels of cardiac vagal activity—an indirect measure of parasympathetic nervous system 

activity (see Porges, S.W., Chapter 15 in this volume)—are associated with positive affect and 

have been shown to predict higher levels of self-reported compassion (Stellar, 2013; Stellar, 

Cohen, Oveis, & Keltner, 2015), cardiac vagal activity has also been demonstrated to show an 



14 
 

inverted U-shaped relationship with prosociality, suggesting that very high levels of vagal 

activity may be associated with reduced prosocial responding (Kogan et al., 2014). As another 

example, post-training increases in functional connectivity between the dorsolateral prefrontal 

cortex and the nucleus accumbens have been linked to increases in altruistic behavior in 

participants who underwent compassion training, but to decreases in altruistic behavior in 

participants who underwent reappraisal training (Weng et al., 2013). Thus, interpretation of 

physiological data absent of accompanying experiential or behavioral measures may be 

uninformative or even misleading. 

Aversive Responding and Social-Evaluative Processes 

It is likely that increased responsiveness to the suffering of others is subserved by 

decreased aversion to those who are suffering (see Weng, Schuyler, and Davidson, Chapter 11 in 

this volume), and that this is a core capacity trained by compassion interventions. Supporting this 

possibility, several studies have reported reductions in aversive responses to suffering in others, 

or to stigmatized groups following training (e.g., Kang, Gray, & Dovidio, 2014; Kemeny et al., 

2012; Rosenberg et al., 2015). 

As part of the Shamatha Project, participants were asked to watch emotionally evocative 

film clips of human suffering before and after an intensive meditation retreat (Rosenberg et al., 

2015). Participants’ facial expressions were unobtrusively recorded and subsequently coded 

using the Facial Action Coding System (Hager, Ekman, & Friesen, 2002) to identify expressions 

of emotion, including sadness, as well as aversive emotional expressions (i.e., anger, contempt, 

and disgust) termed “rejection emotions.” Expressions of rejection emotions were conceptualized 

as indicating aversion or defensiveness towards the graphic depictions of suffering contained in 

the films. After a three-month focused-attention (shamatha; Wallace, 2006) meditation retreat, 
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training participants were more likely than matched waitlist-controls to show facial expressions 

of sadness in response to depictions of suffering. Training participants also displayed fewer 

instances of facial expressions of rejection emotions. Importantly, in the training group, self-

reported experiences of sympathy—but not of sadness or distress—in response to the post-

training film were positively related to facial expressions of sadness, and were negatively related 

to facial displays of rejection emotions. These findings suggest that intensive meditation training 

that includes both shamatha (concentrated attention) and “four immeasurables” (beneficial 

aspirations: loving-kindness, compassion, empathetic joy, and equanimity) practices promotes 

engagement with the suffering of others. It also appears that training reduces defensive 

responding to suffering, which was operationalized as reduced expression of rejection emotions. 

It is important to note that while Shamatha Project participants did practice compassion 

meditation (~45 minutes/day across all four immeasurables practices), the core practice of the 

retreat was shamatha meditation, which aims to develop stability of attention (MacLean et al., 

2010; Sahdra et al., 2011; Zanesco et al., 2013). Overall, these findings highlight the need for 

continued research into the direct or indirect consequences of attention-based training on the 

development of compassionate responses to suffering. 

In a related finding, when compared to waitlist controls, participants trained in 

Cultivating Emotional Balance (CEB—a training program that includes compassion-focused and 

contemplative elements; Kemeny et al., 2012) demonstrated faster implicit access to 

compassion-related concepts in a lexical decision task after subliminal exposure to images 

depicting suffering, even when these images included elements designed to elicit feelings of 

disgust (Kemeny et al., 2012). For suffering images that did not include an element of disgust, 

participants appeared to take more time to access disgust-related concepts in a lexical decision 
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task than did controls. This finding once again points to a possible decrease in aversive reactions 

to suffering following compassion-relevant training. 

Sometimes, resistance to feeling or enacting compassion may stem, not from aversion to 

suffering itself, but from an aversion to the individual who is suffering. Hence another core aim 

of compassion training is to broaden the circle of individuals toward whom we may respond 

compassionately. We tend to feel more compassion for those we perceive as being similar to 

ourselves, and experimental manipulations of perceptions of similarity have been shown to 

increase feelings of compassion and prosocial behavior towards others (DeSteno, 2015). On the 

other hand, individuals frequently feel less concern for, or even celebrate, the suffering of 

members of a social out-group (e.g., Cikara, Bruneau, & Saxe, 2011). In line with this premise, 

Kang et al. (2014) reported that training in loving-kindness meditation (a practice that aims to 

enhance feelings of affective care and well-wishing towards others) was related to decreased 

implicit bias against stigmatized groups. After training, a group of participants who were 

randomly assigned to a loving-kindness meditation training demonstrated significant reductions 

in implicit bias (Greenwald & Banaji, 1995) as measured by the Implicit Association Test 

(Greenwald, Nosek, & Banaji, 2003) against both blacks and homeless people (two commonly 

stigmatized groups), as compared to controls. Participants’ explicit attitudes (i.e., what they say 

about their beliefs and feelings), however, did not change. These findings suggest that training in 

loving-kindness meditation influenced implicit reactions to stigmatized groups, which the 

authors suggest may result from increased feelings of connectedness towards others. 

Taken together, the findings reviewed in this section suggest that compassion-related 

training may decrease aversive responses to witnessing suffering, as well as widen the scope of 

individuals towards whom one may experience compassion. 
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Prosocial Behavior  

In the previous section, we considered evidence suggesting that compassion training may 

adaptively modulate social-evaluative processes that presumably underlie enactment of 

compassionate responses in the face of suffering. Here we consider a key question in evaluating 

the training of compassion: Do changes in emotional experience and reactivity to suffering 

translate into changes in overt helping behavior (see also “behavioral transfer” in Weng et al., 

Chapter 11 in this volume)? One common method of testing prosocial behavior in a laboratory 

setting is through the use of economic games. In two independent studies, both (1) long-term 

meditators (individuals with over 40,000 hours of lifetime practice hours; McCall, Steinbeis, 

Ricard, & Singer, 2014) and (2) novices trained using a two-week home-based compassion 

intervention (Weng et al., 2013) offered more money to compensate victims of unfair treatment 

in an economic game than did controls. In the study by McCall et al. (2014), when expert 

meditators were themselves the victims of unfair treatment, they punished the player who had 

treated them unfairly with less severity than did controls. However, when others were the victims 

of unfair treatment, the expert meditators’ punishment of players who had behaved unfairly was 

equal to that of the controls, suggesting a stronger motivation to enforce fair treatment of others 

than of themselves. Despite equal ratings of perceived unfairness as compared to controls, 

experts also reported experiencing less anger at the unfair behavior (McCall et al., 2014). These 

findings support the idea that both short- and long-term compassion training may encourage 

altruistic action to relieve witnessed inequity. 

In one of the few studies of real-world, ecologically valid helping behavior, Condon and 

colleagues (2013) found that participants who underwent an eight-week non-intensive training 

program in either mindfulness or compassion meditation were significantly more likely to offer 
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their seat to a confederate in apparent suffering (grimacing on crutches), as compared to waitlist 

controls who received no training (see also Condon and DeSteno, Chapter 22 in this volume). 

However, the type of meditation training (mindfulness or compassion) had no significant effect 

on the probability of helping: both groups were equally likely to offer their seat. The findings 

from this study were recently replicated (though with lower reported effect sizes) using a mobile 

app-based mindfulness intervention (Headspace) as the training program, when compared to an 

active control condition based on cognitive skills training (Lim et al., 2015). Thus, the 

willingness to offer one’s seat may not be a compassion training–specific effect, but rather a 

more generalized effect of contemplative training. One possibility is that skillful, experienced 

teachers may implicitly communicate and foster ethical views that uphold compassion as an 

important personal value, even in non–compassion-specific trainings. To this point, while 

Headspace is presented as a mindfulness training application, the platform’s primary teacher, 

former Buddhist monk Andy Puddicombe, has stated: “I never teach meditation in isolation. . . . I 

always teach View, Meditation, and Action. You can’t teach the View without altruism” 

(Widdicombe, 2015, http://www.newyorker.com/magazine/2015/07/06/the-higher-life). This 

quote emphasizes the inadequacy of referring to classes of training types by using the non-

qualified terms “compassion” or “mindfulness,” as each class of training will nearly always 

contain aspects of the other. It should also be noted that, even in the context of the presumably 

small personal sacrifice of giving up one’s seat, these trainings did not result in universal 

altruism: in the in-person meditation-trained groups, 51% of participants failed to give up their 

seat (compared to 84% of controls), while in the Headspace study, 63% failed to give up their 

seat (compared to 86% of active controls). Nonetheless, the demonstration of increased incidence 

of helping behaviors in real-world situations following training is noteworthy (for more on these 
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studies, see Condon and DeSteno, Chapter 22 in this volume). Future studies should consider 

issues of situational factors (such as resource availability or social-evaluative processes) on real-

world helping behavior. 

Summary  

As a whole, the studies surveyed indicate that compassion-based (and in some cases 

attention- or mindfulness-based) training may sensitize participants to the suffering of others and 

increase the tendency to experience compassion or sympathy, as opposed to emotions such as 

disgust or anger, in response to the perceived suffering of others. Furthermore, it appears that 

training may reduce aversion in the form of automatic bias against stigmatized groups. In terms 

of prosocial action, findings suggest that both long-term and shorter-term compassion training 

may increase the tendency to respond altruistically in the context of economic games played in 

the laboratory and in ecologically valid situations, though data here are sparse. 

Mechanisms of Change 

So how might directed and deliberate training in compassion change one’s behavioral, 

cognitive, or psychological reactions to suffering in the world? This is a truly open question. As 

discussed, compassion-training programs comprise a variety of design elements, all of which 

may influence observed or reported changes in compassionate responding. To date, few studies 

have attempted to disambiguate these potential mechanisms of change; thus any discussion of 

such mechanisms is largely theoretical. Nevertheless, we will address several potential pathways 

through which compassion training may influence real-world compassionate responses, with the 

goal of motivating future research and encouraging greater delineation of component processes. 

First, we discuss potential ways in which various types of meditation may influence compassion-

relevant processes. We then suggest how broad training elements unrelated to meditation style or 
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practice may function to support training-related changes. It is important to note that in none of 

these cases do we suggest a one-to-one or linear relationship of change between any specific 

outcome measure and element of training. Rather, we point to a range of influences and training 

factors that, together, may contribute to observed changes in a dynamic, contextually dependent 

manner. 

Meditation 

All trainings reviewed in this chapter include elements of guided or silent meditation 

practice. In many modern psychological accounts, meditation training is often conceptualized as 

facilitating a process of mental development that can enhance attentional stability and the ability 

to self-regulate affect and behavior through the application of attention and awareness to various 

domains of experience (Lutz, Slagter, Dunne, & Davidson, 2008; Lutz et al., 2009; Rosenberg et 

al., 2015; Sahdra et al., 2011). The process through which meditation may influence real-world 

responses to suffering is unknown and has largely gone uncharacterized. However, the extent to 

which meditation practice facilitates trait-like changes in cognition or behavior presumably 

depends on a confluence of cognitive-affective capacities developed through a given meditation 

practice. These domains include the cognitive operations and ethical commitments embedded in 

the meditation instructions; the personal motivations of the practitioner; the relationship between 

practitioner and teacher (whether in person or via digital media); the sociocultural context in 

which the training is offered, and resulting alterations in perception, attitudes, or response 

tendencies; and well-being resulting from continued engagement in the practice. The same 

meditation techniques delivered by different teachers or in differing contexts may hold divergent 

effects on a given group of individuals, who are also likely to exhibit considerable inter-

individual differences in motivation, socio-emotional function, and baseline capacities for 
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compassionate responses. While recognizing the importance of contextual and individual 

differences, it is possible that meditation training may generally increase the tendency to respond 

with compassion, both by influencing the desire to care for others, and by improving cognitive-

affective capacities that enhance the ability to enact these motivational tendencies. 

Some meditation practices (e.g., compassion, loving-kindness) focus explicitly on the 

development of care and concern for oneself and others. These practices often aim to 

“systematically [alter] the content of thoughts and emotions” (Dahl, Lutz, & Davidson, 2015, p. 

518) by cultivating specific affective and motivational states and traits that increase positive 

feelings and actions towards others. One interesting possibility is that meditation practices of this 

class may support compassion by fostering a sense of connectedness between oneself and others 

(Trautwein, Naranjo, & Schmidt, 2014). Indeed, feelings of connectedness and closeness to 

others appear to increase prosocial behavior. For instance, feeling close to an individual (Beckes, 

Coan, & Hasselmo, 2013) or having been to the location of a natural disaster before it has 

occurred (Zagefka, Noor, & Brown, 2013) have both been linked to increased altruistic behavior. 

It is also possible that compassion-based trainings support a shift in the perceived importance of 

attuning to suffering in one’s life, the connection between suffering and personal happiness, and 

one’s own causal agency in creating or alleviating that suffering (Ozawa-de Silva et al., 2012). 

Other meditation practices purport to strengthen the practitioner’s ability to regulate, 

direct, and reorient attention (Dahl et al., 2015; Lutz, Jha, Dunne, & Saron, 2015). Supporting 

this assertion, our lab has reported that Shamatha Project participants who underwent intensive 

training in attention-based meditation demonstrated improved perceptual discrimination 

(MacLean et al., 2010), attentional stability (MacLean et al., 2010), and response inhibition 

(Sahdra et al., 2011) following a three-month intensive training period. If and how such increases 
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in attentional stability and cognitive-regulatory capacity support changes in situationally-

appropriate affective responding is another open question. In the Shamatha Project, training-

related improvements in response inhibition were linked to greater self-reported socio-emotional 

and psychological functioning (Sahdra et al., 2011). These same participants also demonstrated 

greater engagement with, and less defensiveness to, film depictions of suffering (Rosenberg et 

al., 2015). 

Overall, these data suggest that training in a variety of contemplative practices may 

influence socio-emotional outcomes. Interpretation of the effects of specific meditation 

techniques is complicated by the lack of data on the effects of teachers (independent of the type 

of meditation taught) in modeling compassionate and altruistic motivations, either directly or 

indirectly, through their actions, word choice, style of interpersonal interaction, and teaching 

instructions. Thus, while specific cognitive capacities trained through mindfulness or focused-

attention practices probably influence socio-emotional functioning, the role of the teacher in 

imparting the value of a compassionate attitude toward suffering may constitute an important, 

and under-studied, element of compassion training. 

Other pathways through which meditation practice may influence real-world 

compassionate responding include the activation of secure attachment primes (Mikulincer & 

Shaver, 2005; Mikulincer, Shaver, Gillath, & Nitzberg, 2005; Shaver, Lavy, Saron, & 

Mikulincer, 2007), reducing experiential avoidance of distress (Chiesa, Anselmi, & Serretti, 

2014), strengthening meta-awareness (Dahl et al., 2015; Lutz et al., 2015), and increasing the 

salience of signs of suffering in others (Lutz et al., 2008). Current evidence for these 

hypothesized pathways is sparse; we believe that future work designed to elucidate specific 

pathways to change is essential for the field’s continued growth. 
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Non-contemplative Training Elements  

Other elements that influence compassion-related training outcomes may operate relatively 

independent of the specific meditation techniques or practices being taught. These include the 

grounding of the training in an ethical worldview, personal preferences and motivations for 

practice, and social factors such as interaction with a respected teacher and identification with a 

group of like-minded individuals. 

Individuals come to meditation practice with different intentions and motivations, which 

presumably influence the course of an individual’s development during training. For example, an 

individual who engages in meditation practice with the goal of reducing ruminative thought 

might place a different emphasis on the development of compassion than does an individual who 

arrives with the goal of feeling more connected to others. Individuals also have personal 

preferences, which may influence their enjoyment of, responsiveness towards, and commitment 

to the training program. Indeed, different patterns of neural activity in response to painful stimuli 

before training in CBCT have been found to predict subsequent time spent practicing 

mindfulness and compassion meditation during training (Mascaro, Rilling, Negi, & Raison, 

2013). Thus, it may be important to consider preexisting differences in evaluating the outcomes 

of meditation interventions, or in tailoring interventions to specific populations. 

Compassion-training programs often include teaching and instruction in ethics. Though 

the lessons and exercises in CCT and CBCT are presented within a primarily secular framework, 

many of the key concepts and core practices are drawn from Buddhist traditions, and both 

programs were developed under the guidance of Buddhist teachers and scholars Geshe Thupten 

Jinpa and Geshe Lobsang Tenzin Negi, respectively. Other interventions may occur within more 

explicitly religious contexts. The Shamatha Project, for example, was conducted at a Buddhist 
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retreat center environment under the guidance of Buddhist-trained meditation teacher (B. Alan 

Wallace). Nevertheless, even within the explicitly Buddhist context of the Shamatha Project, 

participants varied in their personal religious beliefs and adherence to Buddhist worldviews; the 

contribution of these individual differences to our reported outcomes, however, is presently 

unknown. This is but one example of the multiple layers of complexity inherent in many studies 

of training compassion. Thus, while very little research has been conducted on the influence of 

intention, motivation, and belief within meditation training, we believe that this is an essential 

area for future work. In the Shamatha Project, we are examining this issue through qualitative 

analysis of practitioners’ worldviews, goals, and approach to life via thematic coding of 

interviews collected both during and after training. The goal is to visualize and quantify 

qualitative shifts in participants’ reports using network analytic methods for statistical integration 

with empirical laboratory findings (Pokorny et al., accepted). 

The social interactions with teachers and fellow trainees inherent in many compassion-

based trainings may also play an important role in supporting observed training effects. 

Importantly, studies employing an active control intervention designed to account for some of 

these social factors have failed to find differences in outcomes between mindfulness training and 

control interventions on a variety of self-report and physiological variables (MacCoon et al., 

2012; Rosenkranz et al., 2013). It will be crucial for future studies to examine whether 

compassion-relevant outcomes are similarly sensitive to non-specific effects of the training 

context. In addition to effects of social support, it may also be important to consider the influence 

of teacher-specific effects on training outcomes. For example, in the earlier reviewed Condon et 

al. (2013) study—which found no differences in prosocial behavior following training in 

mindfulness or compassion meditation—both training programs were taught by an experienced 



25 
 

Tibetan Buddhist lama who has extensive compassion meditation experience. It is possible that 

the experience of interacting with a teacher who embodies compassionate behavior may serve, in 

itself, as a catalyst for the development of compassion. The influence of teacher-specific factors, 

independent of delivered content or training materials, is an important consideration for future 

research. 

Summary 

Compassion training may influence compassion-related outcomes through a range of 

hypothesized pathways, including increased motivation and capacity to respond to others in 

need, development or reorganization of one’s ethical priorities, and renewed social support and 

guidance from others. There are currently few studies that enable researchers to distinguish the 

effects of these different training elements, and as such, mechanistic explanations of training 

effects lack clear empirical support. Future study designs that allow for mechanistic hypotheses, 

that or that derive testable model of predicted results (e.g., Ashar et al., 2016), will be essential 

for the development of the field. However, we believe it is also healthy to question a core 

motivating assumption often encountered in the training literature: that researchers should seek 

to identify primary “active ingredients” that directly correspond to the development of isolatable 

cognitive or affective capacities. At this stage, the available evidence from mindfulness and 

compassion-training programs is suggestive of a complex, variable, and contextually dependent 

developmental process in which acquired skills may generalize to various domains and are 

supported by multiple interrelated processes. The extant work in this area consists mainly of 

heuristic outlines and theoretical sketches of how such a dynamic, interactive process may 

function (e.g., Halifax, 2012), and directed theoretical development is needed. 

 



26 
 

Issues in the Interpretation of Training Outcomes 

There is a range of issues complicating the interpretation of compassion training-related 

outcomes. Key challenges include the generalization of findings from assessments of expert 

meditators to non-expert populations, the general lack of rigorous active control interventions 

(particularly for multi-week, in-person trainings such as CBCT and CCT), the possible 

dissociation between feelings of compassion and knowledge of appropriate action, and the 

complexity of drawing inferences from multi-method studies incorporating neuroimaging, self-

reported experience, and measured behavior. We will discuss each of these in turn. 

Expert Meditators  

Many of the key insights in this field—and as cited in this chapter—are based on data 

collected from expert meditators, often male Tibetan Buddhist monks, who have a day-to-day 

experience that differs profoundly from that of the novice meditators often used as control 

comparisons in these studies. Such experts may also have a very different ethical framework and 

motivation for their meditation practice (Santideva, 1997) than is typically presented in 

secularized short-term interventions, or that may motivate novices to participate in a study (such 

as remuneration or academic credit). Beyond these motivational and cultural differences, 

additional issues include understanding and following delivered instructions, and managing the 

effort required to engage in specified practices, all of which are likely to change and evolve with 

acquired expertise. Experts also generally have extensive training in a range of meditation 

techniques, not just those specifically aimed at cultivating compassion. Thus, observed effects 

cannot be attributed to training in any specific practice, but are presumably due to a constellation 

of factors, including specific meditation training, scholastic knowledge, worldview, and life 

experience. 
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Active Control Interventions  

There is a need for implementation of rigorous, active control interventions within the 

meditation training literature at large (Davidson & Kaszniak, 2015). Many studies have 

employed matched waitlist control conditions (e.g., Rosenberg et al., 2015), which are designed 

to control for general population-level factors such as demographics, the motivation to practice 

and engage in meditation, and quantification of simple “practice” effects of repeated 

experimental testing in longitudinal designs. Nevertheless, when such studies report changes in 

outcomes following an intervention, it is often difficult to attribute these observed changes to 

specific training elements of interest (e.g., compassion meditation). Rather, such changes may be 

influenced by a confluence of multiple training elements, or other factors largely unrelated to 

training, such as demand characteristics. To this end, researchers at the University of Wisconsin–

Madison have developed the Health Enhancement Program (HEP), an active control intervention 

for the evaluation of mindfulness-based stress reduction (MBSR; Kabat-Zinn, 1990). In studies 

comparing these two programs, no differences were found in self-reported emotional experience 

in a thermal pain task (MacCoon et al., 2012) or in cortisol rise in response to an acute social 

stressor (Rosenkranz et al., 2013) between HEP and MBSR. These findings highlight the 

importance of accounting for aspects of meditation-based interventions that are unrelated to the 

dissemination of teachings on specific techniques, such as the presence of a compassionate 

teacher, social support, and relevant didactic information. 

Compassion and Appropriate Action  

The ability to select an appropriate behavioral response to a given situation may be 

dissociated from the capacity to generate compassionate feelings or to feel motivated to help 
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others. In situations where one has the intention to respond compassionately, the successful 

deployment of an appropriate response requires an understanding of the dynamics of the 

situational context, knowledge of the potential outcome of different actions, and a felt capacity to 

cope with the situation (Halifax, 2012). To our knowledge, no studies have examined the effects 

of compassion training on the ability to determine appropriate action when witnessing others in 

need of help or aid, or how such behavioral action is moderated by training expertise and 

individual differences in psychological traits or affective profiles. Further complicating this 

question, behavioral manifestations of compassionate responses may look quite different, 

depending on the situational or interpersonal context. For example, skillful and compassionate 

parenting may at times require gentle nurturance or flexible guidance, and at other times require 

stern words or the setting of firm limits. Determining what constitutes a compassionate response 

in which situation is a formidable challenge. 

Brain, Experience, and Behavior 

Many studies rely on brain imaging data combined with self-report measures to assess 

training efficacy. While it can be useful to look to neural mechanisms to understand the 

neurobiological mechanisms of compassion development, this approach can lead to unclear 

inferences regarding the processes underlying training-related change. For instance, in a study of 

compassion training versus reappraisal training, Weng et al. (2013) observed similar patterns of 

neural connectivity between the dorsolateral prefrontal cortex and the nucleus accumbens 

following training in both intervention groups. However, in the compassion training group, 

increased connectivity predicted greater altruistic redistribution of funds in an economic game, 

whereas in the reappraisal group, increased connectivity between these regions predicted less 

redistribution of funds. The fact that the same pattern of change in measured connectivity was 
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related to divergent changes in behavior between training groups highlights the complex 

relationship between training, brain activity, and behavior. Continued efforts to integrate 

experiential accounts and behavioral measures will strengthen our understanding of the 

development and experience of compassion, and how these may vary across individuals and 

contexts. 

Summary 

In this section, we have reviewed evidence that compassion training may influence 

participants’ attitudes toward difficult emotions, enhance socio-emotional processing, reduce 

aversion to suffering and to stigmatized others, and support prosocial behaviors. While 

acknowledging that evidence for specific mechanisms is sparse, we discussed potential pathways 

for training-related changes, and pointed to key issues in the interpretation of such data, 

including the joint consideration of experiential and behavioral information in the interpretation 

of data. 

What Is the Trajectory of Compassion Training? 

The training of compassion can be conceptualized as a developmental process: changes in 

compassion-relevant processes occur over time, and they are deepened and strengthened with 

acquired expertise. The shape of the associated developmental curves likely varies between 

component processes, and between individuals. For the sake of illustration, consider a 

hypothetical training trajectory with the following attributes:  

1. The cognitive effort required to respond compassionately to suffering has a linear, 

negative slope, with the highest effort demonstrated in novices and the lowest in 

experts;  
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2. The affective/motivational salience of suffering follows an independent, positive 

exponential curve, quickly increasing with expertise and then leveling out over 

time; and  

3. Personal distress to suffering has an inverted U-shaped curve, in which distress 

first rapidly increases, peaks with moderate levels of training, and then decreases 

at higher levels of expertise.  

In this imagined scenario, the specification of component developmental curves—and any 

interactions between them—would aid researchers in generating hypotheses about the experience 

of compassion and predictions for compassion-relevant outcome measures at different points in 

training. Despite the potential utility of such curves, there are very few studies that attempt to 

model developmental trajectories. Importantly, when considering the trajectory of compassion 

training, this conceptual approach can inform research and theory at several different timescales: 

the trajectory within a single session (of meditation or of performing a laboratory task), the 

trajectory across a set training period (such as a course of CCT or CBCT), and the trajectory 

across a lifetime of practice. Here, we will consider the potential utility of each of these 

timescales in generating research questions. 

Trajectory across a Single Session 

There is extremely limited knowledge regarding the time-course of the recruitment of 

select cognitive and affective processes within a given session of compassion meditation or 

within a compassion-relevant task (for an example, see Engen & Singer, 2015b). In studies 

employing brain imaging techniques, neural activity is typically averaged across an entire task 

block or meditation period, thus information on temporal dynamics is lost. However, time-course 

analyses of compassion-related processes may offer deeper insights into how these processes 



31 
 

unfold. For example, analysis of the time-course of compassion-based emotion regulation in 

expert meditators has demonstrated activation in brain regions implicated in reward and social 

connection before the onset of distressing films, suggesting that participants were upregulating 

their positive affect prior to presentation of the challenging stimuli (Engen & Singer, 2015b). By 

considering within-session temporal dynamics in this manner, it becomes possible to 

disambiguate competing hypotheses that hold differing implications for our understanding of 

compassion—in this case, the hypotheses of anticipatory up-regulation versus positive affective 

responses to stimuli designed to elicit distress. This example demonstrates the utility of 

considering the time course of compassion in elucidating supporting processes and in the 

interpretation of relevant data. For a more in-depth discussion of the importance of within-

session temporal dynamics, and potential methodologies for implementing such analyses, see 

Weng et al., Chapter 11 in this volume. 

Trajectory across Training 

In addition to single sessions of practice, one can consider trajectories across the course 

of multiple sessions of an intervention. Intervention studies typically employ two measurement 

points: pre-training and post-training. While pre- to post-training change can be informative, it 

provides little insight into how processes develop during training. This remains a largely 

unexplored area of inquiry. Returning to the conceptual illustration of a developmental curve of 

training presented in the introduction to this section, the length of training and timing of 

assessment points within a given training program will place training outcome measurements at 

different points of this hypothetical curve. Where these measurements are placed relative to a 

given individual’s underlying developmental trajectory will, in turn, almost certainly influence 

the magnitude and direction of reported effects. As discussed in our hypothetical example, a 



32 
 

developmental training trajectory could vary across different elements of training, and these 

varying curves and their interactions could have differential effects on outcome measures. 

Exemplifying the utility of this approach, Lumma et al. (2015) examined longitudinal changes in 

heart rate (HR), high frequency heart rate variability (HF-HRV), participants’ reports of how 

much they liked the training, and perceived effort across different meditation styles within the 

ReSource Project. This year-long training was divided into three counterbalanced three-month 

training modules. In each module a different meditation practice was taught: mindfulness of 

breathing, observing thoughts, and loving-kindness. Analyses revealed that, over the course of 

the year-long training, ratings of enjoyment of any given practice increased, and perceived effort 

decreased. Although HR during meditation practice increased over the course of the year-long 

training, this was only true for the three months of loving-kindness meditation and three months 

of observing-thoughts meditation; HR did not increase over the three months of breathing 

meditation. Similarly, HF-HRV significantly decreased over the course of the year-long training; 

however, when the year-long training period was analyzed according to the specific three-month 

training modules, this decrease was significant only for the loving-kindness and observing-

thoughts meditation styles. This pattern of effects supports the notion that trajectories of training 

may indeed differ across training elements (in this case, per meditation type, but also presumably 

processes related to attention, emotion regulation, cognitive control, etc.; see Dahl, Lutz, & 

Davidson, 2016; Engen & Singer, 2015a) and outcome measures. 

Trajectory across a Lifetime 

The development of compassion does not end at the cessation of formal training—

individuals continue to integrate and apply the views, motivations, and capacities developed 

during training into their ongoing life experiences. Despite this, few studies track participants 
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beyond the conclusion of formal training programs, and therefore little is known about how 

individuals integrate observed training effects into their daily lives. Much more thought is 

needed on this issue, as researchers begin to characterize the conceptual dividing line between 

active training and daily life, and undertake longitudinal studies with measures of compassionate 

behavior that are optimized for real-world contexts. Measures with clear real-world implications, 

such as dyadic interactions with close others, second-person reports, or measures of community 

involvement, may be useful for more fully understanding the development of compassion after 

formal training and, ultimately, across an individual’s lifetime. 

A Note on State versus Trait Effects 

In contrast to our emphasis on the developmental characteristics of compassion training, 

even a few minutes of loving-kindness meditation has been shown to induce increased feelings 

of social connectedness and positivity toward strangers (Hutcherson, Seppala, & Gross, 2008). 

Likewise, a one-day training in loving-kindness meditation has been shown to increase self-

reported positive affect and empathy, as well as associated neural activity in response to 

distressing videos (Klimecki, Leiberg, Lamm, & Singer, 2012), and to increase helping behavior 

in a prosocial game (Leiberg, Klimecki, & Singer, 2011). The concept of training as we have 

framed it suggests that a skill or ability is developed and honed over time; however, these shorter 

interventions, which lack such an extended developmental trajectory, nevertheless seem to affect 

compassion-relevant measures. Further contributing to this apparent contrast are issues of 

measuring and conceptualizing changes in state-like versus trait-like capacities over time. A very 

short intervention manipulating situational or contextual factors may be sufficient to induce a 

state-level change, whereas longer-term or intensive trainings may be more likely to influence 

trait-like tendencies, which in turn influence situational responding. Practices and interventions 
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at both of these levels of analysis have been shown to influence compassionate responses. 

Among the situational or contextual factors that can influence compassionate responding are the 

number of suffering victims (Cameron & Payne, 2011), explanations ascribed to the cause of 

suffering (Gill, Andreychik, & Getty, 2013), perceptions of agency (Akitsuki & Decety, 2009), 

and societal factors such as ongoing cultural conflict (Bruneau, Dufour, & Saxe, 2012). Trait-like 

contributors may include formative early life experiences such as the development of attachment 

security (Mikulincer & Shaver, 2005; Mikulincer and Shaver, Chapter 7 in this volume). Both 

trait-level and contextual factors critically contribute to any real-world response to suffering: as 

one encounters suffering, one’s capacity to experience and generate compassion meets 

situationally specific factors, which dynamically alter the expression of compassion in a given 

moment (see Condon and DeSteno, Chapter 22 in this volume). 

Conclusion: Compassion without Action and Subtle Forms of Suffering 

In this chapter, we have offered an overview of current approaches to training 

compassion and what research on these approaches suggests about the development of 

compassion and the trajectory of compassion training. In this final section, we address two key 

issues that present significant research challenges, but are highly relevant to daily life outcomes: 

the role of compassion when nothing immediate can be done to relieve another’s suffering; and 

manifestations of suffering that are common to the human experience, yet are frequently 

overlooked in research on compassion. 

We are frequently exposed to suffering in others that we cannot immediately act to 

alleviate, such as media depictions of war, genocide, starvation, and natural disasters. What, in 

these situations, constitutes an appropriate response? When the scale of suffering exceeds our 

perception of our own resources to relieve it, we tend to experience “compassion collapse” 
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(Cameron & Payne, 2011). So how can we respond compassionately when we witness suffering 

that is far afield and out of our locus of control? In these cases, we would argue that self-care 

becomes a critical act of compassion. In the moment that we empathize with suffering that we 

cannot possibly relieve, and feel our own powerlessness in the face of others’ pain, our own 

suffering and distress may increase. Thus, recognizing our own suffering and taking measures to 

acknowledge, engage with, and care for that pain is itself an act of compassion. In this 

conceptualization, compassionate regard for oneself becomes can become an important aspect of 

well-being (see Neff and Germer, Chapter 27 in this volume). 

Related to this question, representations of suffering presented in psychological studies of 

compassion tend to depict obvious physical (mutilation, starvation) or emotional (sadness, 

distress) pain, or instances of social unfairness (often through economic games). While 

undeniably salient, these forms of suffering are not fully representative of the range of suffering 

we often encounter in our daily lives. It is possible that different kinds of suffering and the 

varying contexts in which they occur may induce heterogeneous affective and motivational states 

and demand unique or tailored behavioral responses, all of which may still be considered 

“compassionate” (Ekman, 2014). In other words, suffering does not always present in obvious 

forms. A range of affective and motivational states can lead to a given compassionate response, 

with the behavioral manifestation of that response often dependent on the situational context. 

Thus, the appropriate response to perceived suffering may be quite different, depending on a 

given situation, and it may be difficult to operationalize these responses in reductionist or 

simplified terms. The field of contemplative science would benefit from the development of 

theoretical models that attempt to characterize compassion along multiple experiential and 

psychological dimensions. A recent work outlining such a phenomenological classification of 
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mindfulness and related processes (Lutz et al., 2015) could serve as a useful guide in developing 

a similar framework for organizing compassion-based practices. 

From the Buddhist perspective, a central form of suffering is the suffering of change—all 

life situations and circumstances, no matter how satisfying, are transitory (Patrul, 1998). From 

this perspective, our basic biological and psychological nature perpetuates a cycle of meeting 

needs only to then have to meet other needs: “I am hungry, and so I eat”; “I ate, so now I am 

tired”; “I am tired, so now I must rest”; and so on. Thus, an approach to life that emphasizes only 

hedonic aspects of well-being (attaining pleasure and avoiding pain; e.g., Ryan & Deci, 2001) 

may result in a never-ending quest to fulfill these needs. Paradoxically, training in mindful, 

compassionate self-regard may enable one to savor the pleasurable aspects of these momentary 

experiences, without attaching one’s sense of well-being to the pleasant target or object. With 

repeated practice, this decoupling of well-being from momentary experiences of pleasure or pain 

may promote the development of an understanding of one’s own agency in creating the 

conditions for happiness, which is ultimately more consistent with a eudaimonic view of well-

being (Bach & Guse, 2015; Ryan & Deci, 2001). 

The cultivation of compassion toward suffering resulting from the transitory nature of 

experience represents an unstudied, but potentially widely applicable, domain of inquiry. This 

may be particularly relevant for individuals in modern societies with assured access to basic 

necessities (food, water, shelter, and physical safety). Subtle forms of suffering often go 

unnoticed, as they are pervasive daily conditions of even the most materially well-off 

individuals. For example, from the contemplative perspective, meditation-based trainings that 

foster awareness of this inevitable cascade of small daily losses or changes in hedonic state (e.g., 

the last bite of a delicious meal, the end of a good book) may provide a gateway towards a 
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deeper understanding that one’s primary external sources of comfort and well-being, such as 

loved ones, employment, health, or longevity, are also of a transient nature. Building a 

framework for how to relate to suffering in familiar, seemingly less consequential, life domains 

may, in turn, provide the experiential basis for compassionate responses to other, more apparent 

forms of suffering such as physical pain or the loss of a loved one. This may ultimately extend 

further to more extreme kinds of suffering—such as violence, war, or famine—even if one has 

no familiarity with such conditions. The understanding that everyone experiences suffering, 

however subtle, may spark a sense of commonality in which to ground compassion and, bit by 

bit, extend it to individuals whose lives, experiences, and manifestations of suffering may be 

quite different from our own. Thus, understanding these more subtle but inescapable types of 

suffering may be important in working towards global compassion (see Ekman and Ekman, 

Chapter 4 in this volume), and in moving from idealized to enacted compassion (e.g., Raiche, 

2016). 
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Introduction 

A central claim of Buddhist contemplative traditions is that training in meditation can 

bring about lasting changes in the nature and habits of the mind (e.g., Dalai Lama & Cutler, 

2009; Wallace 2006). Consistent with these claims, different forms and regimens of meditation 

training have been shown to influence capacities as diverse as attentional stability (e.g., Lutz et 

al., 2009; van Leeuwen et al., 2012; Zanesco et al., 2019), stress buffering (e.g., Creswell & 

Lindsay, 2014), emotion regulation and reactivity (e.g., Lutz, et al., 2008; Rosenberg et al., 

2015), and prosociality (e.g., Ashar et al., 2016; Condon et al., 2013; Weng et al., 2017). 

Critically, these changes may extend well beyond the bounds of formal meditation sessions, 

influencing broad domains of daily life (e.g., Donald et al., 2019; Sahdra et al., 2011; Skwara et 

al., 2017). The manifestation of these effects across domains that are not explicitly trained 

implies that meditation training might alter domain-general neurocognitive systems. Generalized 

changes in such systems should theoretically be observed across a variety of situations contexts 

and, notably, in the spontaneous neural activity of the brain at rest (e.g., Bauer et al., 2019).  

In this report, we leverage data from a large-scale, longitudinal study of intensive 

meditation to ask whether neuroelectric changes observed during formal meditation practice 

might generalize to an ostensibly non-meditative state. In a previous report, we showed that 3 

months of full-time training in shamatha meditation (a form of focused attention practice) led to 

replicable reductions in EEG beta band power during mindfulness of breathing meditation 

among a group of experienced meditators (Saggar et al., 2012). This cohort of participants also 

demonstrated improvements across a variety of cognitive and affective domains (see, for 

example, Rosenberg et al., 2012; Sahdra et al., 2011; Shields et al., 2020, Zanesco et al., 2013, 

2018), including the ability to make fine-grained perceptual discriminations in a visual task 
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(MacLean et al., 2010, Zanesco et al 2019). Our present aim was to investigate whether brain 

oscillatory changes also occurred during an uninstructed resting state, and whether these changes 

could predict performance on a separate perceptual discrimination task. By characterizing these 

domains, we hoped to shed light on neurocognitive factors that might support cross-domain 

changes in meditation-related processes over a period of intensive practice. 

The brain is remarkably responsive to changes in environment and behavior. For 

instance, immobilizing a person’s arm for only 48 hours can lead to neuroplastic changes in 

functional brain connectivity (Newbold et al., 2020). The capacity of the brain to undergo 

reorganization has also been observed in the context of contemplative practice. Experienced 

meditators show persistent shifts in functional (e.g., Davidson and Lutz, 2008; Hasenkamp and 

Barsalou, 2012) and structural (e.g., Fox et al., 2014; Lumma et al., 2018) brain organization. 

These changes can be observed during active meditation practice (e.g., Braboszcz et al., 2017; 

Fucci et al., 2018; Lee et al., 2018; Saggar et al., 2012), during task performance (e.g., Desbordes 

et al., 2012; Zanesco et al., 2019; van Leeuwen et al., 2012) and in the functional architecture of 

the resting brain (e.g., Dentico et al., 2018; Hasenkamp & Barsalou, 2012; Zanesco et al., 2021). 

Much of the neuroscientific literature on meditation has focused on investigations of 

brain activity during formal meditation practice (for reviews, Cahn & Polich, 2006; Lomas, 

Ivtzan, & Fu, 2015; Lee, Kulubya, Goldin, Goodarzi, & Girgis, 2018). During formal meditation 

practice, practitioners engage with a specified set of mental activities for a given period of time. 

These formal sessions are typically undertaken in a physical posture, such as sitting or lying 

down; and are conditioned by social, ethical, and other factors (Lutz et al., 2015). For example, 

during mindfulness of breathing meditation, a practitioner might sit quietly in an upright posture, 

focusing on the sensations of breath at the aperture of their nostrils or the rising and falling of 
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their abdomen. When they notice that their mind has wandered, they are instructed to gently 

redirect it back to the breath (Gunaratana, 2002). Through repeated practice, practitioners 

cultivate the ability to regulate attention and to volitionally maintain awareness on a chosen 

object. Over time, improvements in the ability to direct and sustain attention are thought to 

extend beyond the meditative context and generalize to other activities (Dalai Lama & Cutler, 

2009; Lutz, et al., 2015; Wallace, 2006).  

While the boundary conditions of formal meditation sessions are often clearly delineated, 

the effects of meditation training are much less circumscribed (Cahn & Polich, 2006; Skwara et 

al., 2017). The brain systems and cognitive mechanisms engaged through various meditative 

practices are implicated in a wide array of psychological processes (Dahl et al., 2015; Lutz et al., 

2015). As such, meditation-related changes in these neurocognitive systems may manifest across 

a range of different contexts and outcomes. Experientially, shifts in perception and awareness 

experienced during formal practice may, over time, extend into daily life in ways that are both 

pervasive and persistent (Dalai Lama & Cutler, 2009; Davidson & Kazniak, 2015; Kabat-Zinn 

2013; Wallace, 2006), blurring the line between meditative states and everyday experience.  

Evidence for meditation-related domain generalization can be gleaned from tasks that 

engage the specific skills or capacities ostensibly trained by a given meditation practice, as well 

as from tasks that cut across cognitive and affective domains that were not specifically targeted 

by that practice. In our own work studying shamatha meditation, we have found that 3 months of 

intensive training leads to improvements in the capacity to regulate one’s attention (MacLean et 

al., 2010; Sahdra et al., 2011; Shields et al., 2020; Zanesco et al, 2013, 2016, 2018, 2019), but 

also to alterations in emotional responses to suffering (Rosenberg et al., 2015), and improved 

socioemotional functioning (Sahdra et al., 2011). It remains unclear, however, what brain 
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processes support the tendency for cognitive capacities engaged during formal practice to 

generalize across diverse psychological domains.  

To the extent that meditation training leads to generalized changes in cognition and 

behavior, there should be observable shifts in the activity of underlying brain systems that 

support these functions. One method for quantifying the functioning of such brain systems is to 

examine neural oscillations, as indexed by electrical activity at the scalp (e.g., Buzsaki et al., 

2012). In a prior study, we examined brain activity—indexed via scalp electroencephalography 

(EEG)—during a formal session of mindfulness of breathing meditation (Saggar et al., 2012). 

Experienced meditators were assigned to an initial training or waitlist control group. Participants 

in the training group entered a 3-month residential retreat, where they practiced formal 

meditation for 6 to 8 hours a day. Both groups completed testing sessions at the beginning, 

middle, and end of the intervention period. The waitlist controls were later assessed again during 

a second 3-month retreat intervention.  

For both retreats, participants who received meditation training demonstrated significant 

reductions in band power in the beta frequency range, as well as reductions in peak individual 

alpha frequency. These changes were not observed in the waitlist control group. As described 

above, mindfulness of breathing meditation involves directing and maintaining attention to the 

tactile sensations of breath. Because prior research has implicated beta band activity in 

attentional orienting to sensory information (e.g., van Ede et al., 2011; Pfurtscheller and Lopes 

da Silva, 1999; Schubert et al., 2009), we interpreted our findings as reflecting enhanced 

attention to, and sensory processing of, the subtle sensations of breath developed through 

intensive practice (Saggar et al., 2012). 
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The Present Study 

In the present study, we asked whether oscillatory changes concomitant to the Saggar et 

al. (2012) findings would be observed during an uninstructed resting task. We examined 

longitudinal changes in EEG spectral power recorded during 2 minutes of eyes closed rest in the 

same cohort of participants as the prior study. While beta oscillations have long been implicated 

in sensorimotor and attentional processes, recent work also suggests that beta band activity may 

be broadly related to the efficiency of communication between core brain networks (Betti et al., 

2020). In studies of resting brain activity, beta band activity has been associated with the 

transient coupling of nodes both within and across resting state networks (de Pasquale et al., 

2012; 2018), and with functional connectivity between resting state networks (Wens et al., 

2019). These associations appear to be pronounced for nodes of the default mode network. 

Importantly, moments of high within- and between-network correlation—associated with band-

limited power in the beta frequency—appear to correspond to moments of high network 

efficiency (Betti et al., 2020).  

Experiential (e.g., Dalai Lama & Cutler, 2009; Kabat-Zinn, 2013) as well as empirical 

(e.g., Desbordes et al., 2012; Fox et al., 2014; Hasenkamp and Barsalou, 2012) accounts suggest 

that neurocognitive changes instantiated through meditation extend beyond the bounds of formal 

practice. Thus, it is possible that the changes we previously observed during mindfulness of 

breathing practice could be indicative of broader changes in patterns of neural activity. These 

broader changes, in turn, should be observable across multiple contexts including during quiet, 

uninstructed rest. As support for this idea, an additional study on these same participants 

revealed retreat-related changes in activity patterns of resting EEG microstates, suggesting broad 

shifts in the functional architecture of the resting brain over the course of these retreats (Zanesco 
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et al., 2021). If reductions in beta band activity previously found during mindfulness of breathing 

practice were also observed during rest, this would suggest more generalized changes in the 

activity patterns of underlying brain networks, offering a window into the neurocognitive 

processes supporting domain-general change during meditation training.  

The present data comprise part of a multimethod, waitlist-controlled study of intensive 

residential meditation (e.g., MacLean et al., 2010; Saggar et al., 2012; Sahdra et al., 2011; 

Zanesco et al., 2019). 88-channel scalp EEG was collected at the beginning, middle, and end of 

two 3-month meditation retreats while participants rested quietly with their eyes closed. We 

hypothesized that 3 months of residential training would alter brain oscillatory activity during the 

uninstructed resting task. We further hypothesized that these changes would mirror those 

previously observed during mindfulness of breathing meditation: namely, overall reductions in 

beta band power and individual alpha frequency. We also predicted that any observed reductions 

in beta band power would be related to concomitant improvements in perceptual discrimination, 

as measured by a perceptual thresholding task that requires participants to make fine grained 

visual discriminations. Previously, we reported that retreat participants demonstrated better 

perceptual discrimination on this task following meditation training (MacLean et al., 

2010). Here, we expected that greater reductions in beta power would be related to greater 

retreat-related improvements in visual discrimination. Linking brain activity during eyes closed 

rest to behavioral performance on a visual perceptual task would offer further evidence for the 

relevance of observed neural changes across multiple cognitive and perceptual contexts.   
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Method 

Participants 

We recruited experienced meditation practitioners through advertisements in print and 

online Buddhist publications. Following recruitment, 60 eligible participants (32 females, 28 

males; Mage = 48 years, range = 22 to 69) were randomly assigned to an initial training group (n 

= 30) or a waitlist control group (n = 30) using a stratified matching procedure. The groups were 

matched at baseline on age, sex, ethnicity, and major personality characteristics, as well as 

several cognitive task variables assessed prior to assignment (for details of recruitment and group 

matching, see MacLean et al., 2010; Shields et al., 2020). They were also matched on lifetime 

meditation experience, with an overall mean of 2,610 cumulative hours (initial training: M = 

2,549 hours, range = 250 to 9,500; waitlist control: M = 2,668, range = 250 to 15,000). In 

addition, participants were screened for medical conditions and Axis I psychiatric diagnoses as 

assessed by the Mini International Neuropsychiatric Interview screen (Sheehan et al., 1998) and 

a clinical interview administered by a licensed clinical psychologist.  

One waitlist participant left the study after completing the control assessments, due to 

circumstances unrelated to the study. This left a total of 29 participants for the second training 

intervention. All study procedures were approved by the Institutional Review Board of the 

University of California, Davis. All participants gave full informed consent and were 

compensated $20 per hour of data collection. 

Meditation Training and Retreat 

The waitlist design included two 3-month-long residential meditation retreats. The two 

retreats were formally identical in training structure and were held in the same scenic retreat 

environment. During the first retreat (Retreat 1), active training participants lived and practiced 
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meditation on-site at Shambhala Mountain Center in Red Feather Lakes, CO. Waitlist control 

participants continued with their daily lives during this time and were flown to the retreat center 

to complete on-site assessments at the beginning, middle, and end of the intervention period. At 

each assessment, waitlist control participants arrived at the retreat center approximately 3 days 

(range = 65–75 hours) prior to their laboratory session for an initial acclimatization period to 

adjust to the altitude (~2500 m) and natural environment. Approximately 3 months after Retreat 

1, waitlist control participants returned to the retreat center and underwent their own 3-month 

retreat intervention as active training participants (Retreat 2). Thus, the design comprised three 

participant statuses: Retreat 1 active training participants, Retreat 1 waitlist controls, and Retreat 

2 active training participants. The Retreat 2 training participants were the same participants as 

Retreat 1 waitlist controls and were initially assessed as active training participants about 3 

months after the conclusion of their final wait-list control assessment.  

While on retreat, training participants practiced meditation for 6 to 8 hours a day, under 

the guidance of Dr. B Alan Wallace, an experienced Buddhist teacher and contemplative scholar. 

Participants gathered twice daily to engage in guided group meditation and instruction and met 

individually with Dr. Wallace once a week. The meditation instructions were drawn from the 

Theravada and Mahayana Buddhist traditions and included shamatha and four immeasurables 

practices (described in Wallace, 2006). Shamatha techniques aim to develop stability of 

attention, perceptual vividness, and concentration, and were the primary practices taught on 

retreat. These consisted of: (1) mindfulness of breathing, in which attention is focused on the 

sensations of the breath; (2) observing mental events, in which attention is turned to all forms of 

mental phenomena; and (3) observing the nature of consciousness, in which focus is placed on 

the awareness of being aware. The four immeasurables of loving-kindness, compassion, 
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empathetic joy, and equanimity aim to cultivate beneficial aspirations for the self and others, (for 

a description, see Rosenberg et al., 2015; Wallace, 2010). The four immeasurables were taught 

as supportive practices, for approximately 45 minutes per day, on average. Overall, training 

participants reported devoting most of their practice time to mindfulness of breathing (for full 

practice time details see, Sahdra et al., 2011). 

Laboratory Sessions and Measures 

On-site laboratory assessments were conducted at the beginning (preassessment), middle 

(midassessment), and end (postassessment) of each retreat. At each assessment, participants 

completed approximately 4 hours of testing on each of two consecutive days. The results of these 

assessments can be found in several other reports (e.g., MacLean et al., 2010; Rosenberg et al, 

2015; Saggar et al., 2012; Sahdra et al. 2011; Shields et al, 2020; Zanesco et al., 2019). All 

testing took place in two field laboratories with darkened, sound-attenuated testing and control 

rooms built on-site at the retreat center. Retreat 1 training participants completed a total of three 

on-site assessments, while waitlist controls completed a total of six assessments—three as 

controls in Retreat 1, and three as active training participants in Retreat 2. 

Resting EEG 

Resting EEG was collected as the first laboratory task at each assessment. Continuous 

EEG was recorded across 4 minutes of rest, divided into four 1-minute segments of eyes open 

and eyes closed rest (open, closed, closed, open). At the beginning of each segment, participants 

were instructed via an audio recording: “For the next sixty seconds please sit quietly with your 

eyes closed [open].” Because our goal was to investigate brain activity in the absence of an 

explicit task, these instructions were intentionally non-directive and avoided any mention of 

meditation or mind wandering.  
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In our prior report, participants practiced mindfulness of breathing with their eyes closed. 

Therefore, for consistency with these data, we included data from the eyes closed resting epochs 

only. In addition, only participants who had usable EEG data at all assessment points were 

included in the analyses (four were excluded upon initial inspection; seven were excluded 

following preprocessing). This resulted in a total of 53 participants (28 female; Mage = 48.47 

years, SDage = 14.21, range = 22.25 to 69.69) providing a total of 159 observations for Retreat 1. 

Of these, 26 were training participants (13 female; age: Mage = 50.26, SDage = 12.94, range = 

23.90 to 69.69), and 27 were waitlist controls (15 female; age: Mage = 46.74, SDage = 15.39, range 

= 22.25 to 65.16). For Retreat 2, 26 training participants (13 female; Mage = 46.47 years, SDage = 

15.56, range = 22.25 to 65.16) provided 78 observations. 

Data acquisition and processing. EEG was recorded with the BioSemi ActiveTwo 

system (http://www.biosemi.com) at a sampling rate of 2048 Hz. Easycap electrode caps 

(http://www.easycap.de) were fitted with BioSemi electrode holders in an 88-channel equidistant 

montage, and individual electrode locations were localized using a Polhemus Patriot digitizer 

(http://www.polhemus.com). On participant request, some electrodes (primarily at frontopolar 

locations) were not inserted or were removed to minimize discomfort. The EEG recordings were 

band-pass filtered offline between 0.1 and 200 Hz (zero-phase; roll-off; 12 dB/octave LP, 24 

dB/octave HP) and then referenced to the average of all remaining channels. Data preprocessing 

was conducted in BESA 5.2 (www.besa.de). Channels with very low signal quality were 

discarded prior to analysis, and data were manually marked to remove extreme artifacts and 

intermittent high amplitude EMG contamination. 

Separating neural from non-neural signal sources. Following the process outlined in 

Saggar et al. (2012), second-order blind source identification (SOBI; Belouchrani et al., 1997) 

http://www.besa.de/


57 
 

was used to separate signals of putative neural origin from non-neural sources. SOBI is a method 

similar to ICA that functions to separate signal components. Unlike ICA, which examines only 

momentary correlations, SOBI uses joint-diagonalization of correlation matrices at multiple 

temporal delays. This is used to identify maximally independent sources by minimizing the sum 

of the squared cross-correlations of all pairs of sources across all temporal delays. We used 41 

temporal delays, τ = [1:1:10, 12:2:20, 25:5:100, 120:20:300] ms, as recommended in Tang et al., 

2005. The two consecutive 1-minute segments of eyes closed resting EEG were concatenated 

and submitted to SOBI. A novel SeMi-automatic Artifact Removal Tool (SMART; 

https://stanford.edu/~saggar/Software.html; Saggar et al., 2012) was used to generate signal 

source topography, spectra, autocorrelation, and timeseries for inspection. These SMART 

outputs were used to manually classify signal sources as neural or non-neural (e.g., EMG, ocular 

artifacts, line noise) in origin (see Saggar et al., 2012, for examples of SMART output and a 

discussion of the parameters considered in source classification). 

Reconstruction and conversion into standardized electrode space. Following 

application of SOBI, sources identified as non-neural were removed and the remaining putative 

neural sources were reconstructed into the original 88-channel montage. To ensure that channel 

locations were standardized across participants, the reconstructed montage was then transformed 

into a standard 81-channel montage (international 10-10 system) using spherical spline 

interpolation (smoothing factor of 2e-07) as implemented in BESA 5.2. Eight channels of the 

standard 81-channel montage (AF9, Fpz, Fp2, Nz, AF10, CB1, CB2) did not have corresponding 

nearest electrode sites in the original montage and so were removed from the interpolated 

locations, yielding a final standardized 73-channel montage. 

https://stanford.edu/%7Esaggar/Software.html
https://stanford.edu/%7Esaggar/Software.html
https://stanford.edu/%7Esaggar/Software.html
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Scalp current density. We used the MATLAB CSD Toolbox 

(http://psychophysiology.cpmc.columbia.edu/Software/CSDtoolbox; Kayser & Tenke, 2006), to 

transform data from the standardized 73-channel montage into a reference-free estimation of 

scalp current source density (CSD) using spherical spline interpolation (Perrin et al., 1989). 

Resulting CSD units are given in μV/m2. The surface Laplacian was estimated as the second 

derivative of the scalp potential and smoothed by a lambda factor of 2e-05. Transformation of 

scalp voltage to CSD minimizes the effects of volume conduction and improves visualization of 

scalp topographic differences (Kayser & Tenke, 2012; 2015).  

Power spectral estimation. The 2 minutes of reconstructed EEG data were segmented 

into 2-second (4096 point) segments with 50% overlap. Power spectra estimates, averaged over 

2-second windows, were computed in the MATLAB FieldTrip package (Oostenveld et al., 2011) 

using multi-tapered power spectral density estimation (Mitra & Pesaran, 1999; Oostenveld et al., 

2011) and a Hanning window (Welch, 1967) at 0.5 Hz resolution. Frequency bands were defined 

relative to each individual’s peak alpha frequency (IAF). IAF was calculated within a frequency 

range of 7 Hz (𝑓𝑓1) to 14 Hz (𝑓𝑓2) using the center-of-gravity method of Klimesch (1999): 

𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 =
Σ𝑖𝑖=𝑓𝑓1
𝑓𝑓2 (𝑎𝑎(𝑓𝑓𝑖𝑖)  ×  𝑓𝑓𝑖𝑖)

Σ𝑖𝑖=𝑓𝑓1
𝑓𝑓2 𝑎𝑎(𝑓𝑓𝑖𝑖)

 

where 𝑓𝑓𝑖𝑖 denotes the power-spectral estimate at frequency 𝑖𝑖. For each EEG recording, IAF values 

were calculated for each channel, separately, and then averaged across all channels to obtain a 

single mean estimate of IAF per participant per assessment. Frequency bands were then 

calculated for each participant at each assessment based on their mean IAF. Table 2.1 presents 

the IAF frequency band definitions and resultant IAF-based frequency band ranges used in the 

current dataset, alongside the canonical frequency bands. After the IAF-based frequency ranges 

http://psychophysiology.cpmc.columbia.edu/Software/CSDtoolbox
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were defined, power was estimated within each band by averaging over the 2 minutes of eyes 

closed EEG for each individual’s idiosyncratic frequency range. The results presented below are 

based on a single estimate of power (μV2/m2) per frequency band for each electrode, participant, 

and assessment. We additionally conducted all analyses using canonical fixed frequency bands. 

Using fixed bands did not result in major changes to our core findings. These results are 

presented in the Supplementary Information. 

Perceptual Discrimination Task 

Participants also completed a perceptual discrimination task, given immediately 

following the resting task at each assessment. The task was designed to determine each 

participant’s visual perceptual threshold by measuring the minimum difference in line length at 

which the participant could reliably discriminate between a target and non-target line, with a 

smaller difference between line types corresponding to a lower threshold. This task has been 

described in-depth elsewhere (MacLean et al., 2010; Zanesco et al., 2019). Briefly, participants 

were asked to distinguish between frequent long line non-targets (70% of trials), and infrequent 

short line targets (30% of trials), which were masked and presented for 150 msec at the center of 

a dark screen. Participants responded by clicking whenever the target appeared, and were given 

auditory feedback for their responses. 

A PEST (Parameter Estimation through Sequential Testing) algorithm (Taylor & 

Creelman, 1967) was used to converge on a participant’s visual threshold by dynamically 

varying the length of a target line compared to an unchanging longer non-target line. Visual 

threshold was calculated for all assessments as the visual angle difference in line length at which 

a participant could perform this task with 75% accuracy, with the exception of the Retreat 1 pre-

assessment, where an 85% criterion was used (see MacLean et al., 2010). Because of the 
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methodological inconsistencies among assessments in Retreat 1 (see also Zanesco et al., 2018, 

2019) we limited the current investigation of visual threshold to Retreat 2.  

Statistical Analyses 

Non-parametric Permutation-based Cluster Identification 

We examined changes in electrode-wise band power estimates as a function of 

assessment (pre-, mid- and post-retreat) using non-parametric cluster-based permutation testing, 

implemented with the ft_freqstatistics function in FieldTrip (Oostenveld et al., 2011). This data-

driven approach identifies contiguous clusters of electrodes that demonstrate reliable changes in 

band power, while also controlling for multiple comparisons (Maris & Oostenveld, 2007). It is 

important to note that identified clusters provide evidence for differences between conditions—

in this case across the three assessment points—but do not provide evidence for changes at any 

specific electrode site (see Sassenhagen & Draschkow, 2019, for the spatial limitations of 

cluster-based permutation tests). 

A separate non-parametric permutation test was conducted for each participant status 

(Retreat 1 training, Retreat 1 control, and Retreat 2 training) and IAF-based frequency band 

(delta, theta, alpha, beta, gamma). In cases where change was identified in the alpha band, we 

conducted follow up tests for changes in three alpha sub-bands (alpha 1, alpha 2, alpha 3), based 

on prior evidence for functional differences between lower (alpha 1, alpha 2) and upper (alpha 3) 

alpha (Klimesch, 1999).  

First, for each electrode, change in band power across assessments was evaluated as a 

multivariate F-statistic, and electrodes demonstrating a significance level of α ≤ 0.05 were 

selected as candidate cluster members. These candidate electrodes were then grouped into 

clusters based on spatial adjacency. Cluster criteria were set such that each candidate electrode 
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was required to have two adjacent electrodes that were also cluster candidates, resulting in a 

minimum cluster size of three electrodes. Cluster-level statistics were then calculated by taking 

the sum of the F-statistics of all electrodes comprising a cluster. The significance of this cluster 

statistic was assessed non-parametrically through 10,000 permutations of a Monte Carlo 

approximation. Finally, we subjected the resultant cluster probabilities to the false discovery rate 

(FDR) procedure of Benjamini and Hochberg (1995) to control for multiple comparisons. Cluster 

statistics that survive this correction indicate change across assessments that is larger than would 

be expected by chance. 

Parametric Analysis: Mixed Models  

Cluster-wise power estimates were subjected to parametric statistical testing to assess the 

significance and directionality of change across assessments as a function of participant status. 

First, band power at each electrode included in a significant cluster was log-transformed. Then, 

these values were averaged within each cluster to create a cluster-wise estimate of band power, 

or cluster mean, reported in log(μV2/m2). This was done for each individual at each assessment. 

Following the approach of Saggar et al, 2012, when a cluster was identified for a given 

participant status (e.g., Retreat 1 training), cluster mean power estimates based on that cluster 

were also calculated for the relevant comparison status. For example, if an alpha band cluster of 

10 electrodes was identified in Retreat 1 training participants, a cluster mean of these 10 

electrodes would also be generated for each Retreat 1 control participant. Likewise, if a cluster 

was identified for Retreat 2 training participants, this cluster was also applied to the data from 

these same participants as Retreat 1 waitlist controls. This allowed for direct parametric 

comparison of power change in corresponding sets of electrodes across experimental conditions. 
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Changes in cluster mean power were analyzed using linear mixed effects models 

implemented in SAS PROC MIXED version 9.4. Assessment (pre-, mid-, post-) and participant 

status were included as fixed effects. In Retreat 1, status functioned as a between-groups effect 

(Retreat 1 training compared to Retreat 1 controls), while in Retreat 2 it served as a within-

subjects contrast (Retreat 2 training participants compared to their prior status as Retreat 1 

controls). A random effect of participant was included to allow for repeated measures within 

subjects. Parameters were estimated using restricted maximum likelihood, and degrees of 

freedom were calculated based on the Sattherthwaite approximation. 

Of primary interest was the assessment by status interaction, the presence of which would 

indicate that participants on retreat demonstrated a pattern of change across assessments that 

differed from participants not currently on retreat. This was followed by a test of the effect of 

assessment within each status and directed comparisons of model estimated marginal means. The 

effect of assessment was centered to preassessment and participant status was centered to the 

control group for all follow-up tests. 

Changes in IAF were examined using an identical analytic procedure to that used in the 

parametric analysis of cluster mean power. Changes in visual perceptual threshold across Retreat 

2 assessments were analyzed using the same approach, but without the effect of participant 

status. 

Associations between Cluster Mean Power and Other Measures  

Correlations were computed between the cluster mean power and visual threshold measures 

obtained for Retreat 2 training participants. We examined associations between these measures at 

the pre- and postassessments, and for mean changes across the retreat intervention. Changes 

were quantified as difference scores from the pre-retreat to the post-retreat assessment, where 
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negative scores indicate a reduction over the course of retreat. All values were checked for 

outliers (defined according to Tukey’s rule as 1.5 times the interquartile range below the first 

quartile, or above the third quartile), and correlations were computed including and excluding 

outliers. Significance values were adjusted using the Benjamini-Hochberg (1995) procedure.  

We also examined correlations between these measures and meditation practice hours 

while on retreat, as well as cumulative lifetime meditation hours. While on retreat, participants 

recorded the amount of time, in minutes, that they had dedicated to meditation practice each day 

(see Sahdra et al., 2011). For each participant, we averaged these daily estimates across days to 

compute an index of average daily practice time and correlated this with measures of beta band 

power and visual threshold. Lifetime hours were calculated based on participant self-reports of 

meditation practice history collected prior to group assignment. 

Results 

Retreat 1 Spectral Analysis 

We first examined changes in IAF over the course of Retreat 1. Table 2.2 presents mean 

IAF for Retreat 1 training and control participants at each assessment. We observed a main effect 

of assessment, F(2, 102) = 10.39, p < .001, but no main effect of status F(1, 51) = 0.10, p = .749, 

or interaction between assessment and status, F(2, 102) = 1.70, p = .188, indicating that the 

groups did not significantly differ in their change across time.  

However, training-related changes in IAF were previously identified among these 

participants in a prior analysis (Saggar et al., 2012). Therefore, we chose to further explore 

changes in IAF over assessments in Retreat 1 as a function of group. A test of simple effects 

indicated that IAF significantly changed over assessments in training participants, F(2, 102) = 

9.86, p < .001, but not in waitlist controls, F(2, 102) = 2.08, p = .130. Follow-up comparisons of 
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model estimated means indicated that IAF did not significantly differ between training and 

control participants at the pre-retreat assessment (b = 0.01, SE = 0.13, p = .944, 95% CI [-0.24, 

0.26]). Additional comparisons indicated that IAF in training participants decreased significantly 

from pre- to mid-retreat (b = -0.12, SE = 0.03, p < .001, 95% CI [-0.19, -0.05]), and pre- to post-

retreat (b = -0.14, SE = 0.03, p < .001, 95% CI [-0.21, -0.07]), but not from mid- to post-retreat 

(b = -0.02, SE = 0.03, p = .593, 95% CI [-0.08, 0.05]). 

Cluster Identification 

The nonparametric permutation analysis for Retreat 1 training participants indicated a 

significant change in alpha band power, cluster statistic = 108.97, p = .009, and beta band power, 

cluster statistic = 166.49, p = .004, across assessments (see Figure 2.1). We followed up on the 

identified alpha cluster in retreat participants by testing for clusters in alpha sub-bands. This 

analysis indicated significant band power differences between assessments in the upper alpha 

range only (i.e., alpha 3; IAF – 1.2 x IAF Hz), cluster statistic = 172.09, p = .003. No changes 

were indicated for the remaining bands in training participants. No clusters were identified in any 

band in waitlist controls. 

Table 2.2 presents descriptive statistics for cluster mean power estimates (derived from 

identified clusters) for frequency bands demonstrating significant change across assessments. 

Estimates are given for training participants, in whom the clusters were identified, as well as the 

corresponding values for these clusters in waitlist controls. The findings of the cluster analysis 

for bands showing significant change (beta, whole band alpha, and the alpha 3 sub-band) in 

Retreat 1 training participants are shown in the left side of Figure 2.1, Panel A. The electrodes 

comprising identified clusters are superimposed as stars on the electrode-wise F-values. The 
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leftmost column of Panel B shows the F-values in the beta band for Retreat 1 controls. As no 

clusters were identified in this group, no electrodes are marked. 

Parametric Tests 

We next examined condition differences in mean power for the identified alpha and beta 

band clusters (Figure 2.2). As no clusters of significant change were identified in waitlist 

controls, their cluster mean power estimates are based on the clusters identified for Retreat 1 

training participants, which were applied to both groups (see Methods).  

For the alpha band cluster, Type 3 tests of fixed effects indicated a main effect of 

assessment, F(2, 102) = 4.98, p = .009, a main effect of participant status F(1, 51) = 10.55, p = 

.002, and a non-significant interaction between assessment and status, F(2, 102) = 2.78, p = .067. 

Due to the lack of a significant interaction effect, no follow up tests were conducted. For the 

upper alpha sub-band (alpha 3), there was a main effect of assessment F(2, 102) = 6.68, p = .002, 

a main effect of status F(1, 51) = 10.74, p = .002, and, again, a non-significant interaction 

between assessment and status, F(2, 102) = 2.90, p = .059.  

For the beta band, there were significant main effects of assessment, F(2, 102) = 7.15, p = 

.001, and status F(1, 51) = 11.76, p = .001, and a significant interaction between assessment and 

status, F(2, 102) = 7.67, p < .001. Tests of simple effects within each group revealed a significant 

effect of assessment in training participants, F(2, 102) = 14.54, p < .001, but not in controls, F(2, 

102) = 0.00, p = .995. Follow-up comparisons of model estimated means indicated that training 

and control participants did not significantly differ in cluster mean beta power at the pre-retreat 

assessment (b = -0.31, SE = 0.16, p = .055, 95% CI [-0.62, 0.01]). Additional comparisons 

indicated that training participants decreased significantly in cluster mean beta band power from 

pre- to mid-retreat (b = -0.26, SE = 0.06, p < .001, 95% CI [-0.39, -0.13]), and pre- to post-retreat 
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(b = -0.33, SE = 0.06, p < .001, 95% CI [-0.46, -0.20]), but not from mid- to post-retreat (b = -

0.08, SE = 0.06, p = .248, 95% CI [-0.20, 0.05]). 

Retreat 2 Spectral Analysis 

For analyses of Retreat 2 data, we compared active training participants to their own prior 

status as Retreat 1 waitlist controls.  

We first checked for change in IAF across assessments. Mean values for IAF in Retreat 2 

participants are presented in Table 2.3. For IAF, there was a significant main effect of 

assessment, F(2, 124) = 16.56, p < .001, a significant main effect of participant status F(1, 125) 

= 55.77, p < .001, and a significant interaction between assessment and status, F(2, 124) = 6.81, 

p = .002. Tests of simple effects further indicated a significant effect of assessment when 

participants were on retreat F(2, 124) = 21.69, p < .001, but not when they served as waitlist 

controls F(2, 124) = 1.30, p = .277. Follow-up comparisons revealed no difference in pre-

assessment IAF as a function of participant status (b = -0.08, SE = 0.04, p = .082, 95% CI [-0.17, 

0.01]). Moreover, during Retreat 2, participants’ IAF significantly decreased from pre- to mid-

assessment (b = -0.21, SE = 0.04, p < .001, 95% CI [-0.29, -0.12]), and from pre- to post-retreat 

(b = -0.28, SE = 0.04, p < .001, 95% CI [-0.36, -0.19]), but not from mid- to post-retreat (b = -

0.07, SE = 0.04, p = .120, 95% CI [-0.15, 0.02]). 

Cluster Identification  

We next conducted nonparametric cluster analyses of Retreat 2 training participants 

across their 3 assessments while on retreat. Nonparametric tests indicated a significant difference 

in beta band power, cluster statistic = 121.55, p = .008. No clusters were identified in any other 

band. The identified cluster can be seen in the left side of Figure 2.1, Panel C, and descriptive 

statistics for cluster mean power estimates can be found in Table 2.3. 
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Parametric Tests  

No clusters were identified in Retreat 2 training participants when they served as waitlist 

controls (see Retreat 1 Spectral analyses). Consequently, all Retreat 2 cluster mean power 

estimates are based on the clusters identified in Retreat 2 training participants, applied to their 

EEG collected during both retreats. Using these estimates, we tested for differences in cluster 

mean power in Retreat 2 participants in their status as active retreat participants versus waitlist 

controls (Figure 2.2). Tests of fixed effects for mean beta power indicated no main effect of 

assessment, F(2, 124) = 2.50, p = .086, a significant main effect of status F(1, 128) = 7.65, p = 

.007, and a significant interaction between assessment and status, F(2, 124) = 4.82, p = .010. 

Tests of simple effects revealed a significant effect of assessment when Retreat 2 participants 

were actively on retreat, F(2, 124) = 6.99, p = .001, but not when they served as controls, F(2, 

124) = 0.20, p = .820. Follow-up comparisons further indicated that cluster mean beta band 

power did not differ at the pre-retreat assessment as a function of participant status (b = 0.07, SE 

= 0.08, p = .421, 95% CI [-0.10, 0.23]). Moreover, during Retreat 2, participants demonstrated a 

significant decrease in cluster mean beta band power from pre- to mid-retreat (b = -0.27, SE = 

0.08, p = .001, 95% CI [-0.44, -0.11]), and pre- to post-retreat (b = -0.25, SE = 0.08, p = .002, 

95% CI [-0.41, -0.09]), but not from mid- to post-retreat (b = 0.02, SE = 0.08, p = .780, 95% CI 

[-0.14, 0.18]).  

Associations between Cluster Mean Power and Other Measures 

Correlations between Beta Power and Visual Threshold  

We next investigated whether patterns of training-related beta band power at rest were 

associated with changes in visual processing observed in a separate perceptual task. Table 2.4 

presents correlations between measures of mean beta band power and visual threshold (see also 
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Supplementary Information) among Retreat 2 participants. Correlations are presented between 

levels of each measure at pre and postassessment, as well as for difference scores from the pre- 

to postassessment. 

There were no outliers in cluster mean beta band power at either assessment. There were 

no outliers in visual threshold at the pre-retreat assessment, and one outlier at the post-retreat 

assessment. Additionally, there was one outlier in change in cluster mean power from pre- to 

postassessment, and two outliers in change in visual threshold. In no case did removing outliers 

change the uncorrected statistical significance of a correlation. Both uncorrected p-values and 

adjusted p-values following FDR correction are presented below.  

There was no significant association between mean beta power and visual threshold at the 

pre-, r(24) = -.37, p = .064. 95% CI [-.66, .02], padj = .121, or post-retreat assessments, r(24) = 

.03, p = .881, 95% CI [-.36, .41], padj = .881. Moreover, change in visual threshold was not 

significantly related to mean beta power at the preassessment, r(24) = .20, p = .330, 95% CI[-.20, 

.54], padj = .424, or the postassessment, r(24) = -.20, p = .339, 95% CI [-.54, .21], padj = .424. 

Removing outliers did not alter the significance of any of these correlations, all ps ≥ .231. 

Changes in cluster mean beta band power were, however, positively correlated with 

preassessment visual threshold, r(24) = .71, p < .001, 95% CI [.45, .86], padj < .001, as well as 

postassessment visual threshold, r(24) = .52, p = .007, 95% CI [.16, .75], padj = .017, such that 

participants with lower (better) visual thresholds demonstrated greater reductions in beta power 

across assessments (Figure 2.3). The correlation between visual threshold at pre-retreat and beta 

cluster mean power change remained significant when outliers were removed, r(23) = .64, p < 

.001, 95% CI [.32, .82], padj = .003. The correlation between visual threshold at post-retreat and 

beta cluster mean power change was r(22) = .45, p = .026, 95% CI [.06, .73], when outliers were 
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removed, though the association fell short of significance following FDR correction, padj = .067. 

Finally, there was a significant negative correlation between change in beta cluster mean power 

and change in visual threshold, r(24) = -.52, p = .007, 95% CI [-.75, -.16], padj = .017, such that 

greater improvements in visual angle threshold were related to smaller reductions in beta power 

across assessments. This relationship remained significant (uncorrected) when outliers were 

removed, r(22) = -.41, p = .046, 95% CI [-.69, -.01], but fell short of significance with 

correction, padj = .099. 

Correlations with Meditation Practice Time on Retreat  

We further examined the relationship between changes in these measures and meditation 

practice time while on retreat. There was not a significant relationship between beta power 

change and practice time: there was a modest but not significant negative correlation when 

outliers were included, r(24) = -.37, p = .060, 95% CI [-.66, .02], which was attenuated when 

outliers were removed, r(22) = -.20, p = .340, 95% CI [-.56, .22]. Changes in visual threshold 

showed a positive correlation with meditation time, such that those who meditated the most 

demonstrated the least improvement in visual threshold. However though this relationship was 

significant when including all participants, r(24) = .41, p = .037, 95% CI [.03, .69], it was not 

significant when outliers were removed, r(21) = .27, p = .206, 95% CI [-.16, .62]. Importantly, 

the partial correlations between beta power change and pre-retreat visual threshold, r(23) = .67, p 

< .001, post-retreat visual threshold, , r(23) = .55, p = .004, and change in visual threshold, r(23) 

= -.43, p = .031, all remained significant when controlling for practice time. There were no 

significant correlations between self-reported lifetime meditation hours and beta power or visual 

threshold at pre- or postassessment, or with change in either measure, all ps ≥ .238. The same 

was true for participant age, all ps ≥ .056. 
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Associations between Beta Band Reductions at Rest and during Mindfulness of Breathing 

Pearson correlations were calculated between significant beta band clusters identified 

during eyes closed rest and mindfulness of breathing from each of their respective data sets (see 

Saggar et al., 2012, for a full description of the clusters identified in that analysis). Cluster means 

from Saggar et al. (2012) were thus based on a different subset of participants and identified 

electrode clusters than in the present study. For these correlations, we pooled retreat training 

participants from both retreats to maximize statistical power. Beta band cluster mean power was 

strongly correlated between rest and mindfulness of breathing in retreat participants at the pre-, 

r(37) = .65, p < .001, 95% CI [.42, .80], mid-, r(37) = .65, p < .001, 95% CI [.42, .80], and post-

retreat, r(37) = .65, p < .001, 95% CI [.42, .80], assessments. Pre- to post-retreat change in rest 

and mindfulness of breathing cluster means were also moderately correlated, r(37) = .44, p = 

.006, 95% CI [.14, .66]. This association is shown in Figure 2.4. 

Intraclass Correlation Coefficients  

We also examined the intraclass correlation coefficients (ICCs) for eyes closed rest and 

mindfulness of breathing across retreat assessments. The ICCs were calculated from null (i.e., 

unconditional means) models of beta band cluster mean power in retreat participants with 

complete data for both conditions. The ICC describes the proportion of variance in repeated 

measures data that is attributable to between- versus within-person differences (Hoffman, 2015), 

with a larger ICC indicating less variability between assessment points within an individual. This 

provides an estimate of the overall consistency of individuals’ cluster mean power across 

assessments in each condition.  

The ICC for eyes closed rest was 0.813 in Retreat 1, suggesting that 81.3% of the 

variance in beta band power was attributable to differences between individuals, and 18.7% was 
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attributable to within-person variation across assessments (including measurement error). The 

ICC for mindfulness of breathing in Retreat 1 was .920, suggesting that 92% of the variance was 

attributable to differences between individuals, and only 8% of the variance was attributable to 

within-person variation across assessments, suggesting high levels of stability between 

assessments. This pattern of higher ICC during mindfulness of breathing was similar for Retreat 

2 active participants, where the ICCs for eyes closed rest and mindfulness of breathing were .691 

and .847, respectively.  

Discussion 

This study was motivated by a central question in contemplative research: can engaging 

in dedicated periods of meditation practice lead to generalized changes outside of formal 

practice? To this end, we examined changes in the spontaneous activity of the brain over the 

course of intensive meditation training. We had participants engage in focused attention 

(shamatha) meditation practice for 6 to 8 hours a day and measured their brain oscillatory 

activity during a period of uninstructed rest. We found power reductions in the alpha and beta 

bands during eyes closed rest over the course two 3-month-long retreat interventions. Reductions 

in beta band activity were replicated across the two independent training periods, mirroring 

changes we previously observed during active practice of mindfulness of breathing meditation in 

these same participants (Saggar et al., 2012). Moreover, we found that training-related decreases 

in resting beta power were related to better baseline visual discrimination in a perceptual task. 

Our findings demonstrate that intensive meditation training can result in neurophysiological 

changes that cross cognitive domains and extend beyond the bounds of formal practice.  

Our findings, as well those of Saggar et al. (2012), were largely restricted to longitudinal 

changes in the beta band. The consistency of these effects across meditation and rest points to 



72 
 

beta band activity as a potential indicator of domain-general change in neural processes resulting 

from meditation training. Beta band activity is broadly implicated in a range of neurocognitive 

functions and network dynamics, including sensorimotor processing (e.g., van Ede et al., 2011; 

Pfurtschcheller & Lopes da Silva, 2009), cognitive effort (Kopell et al., 2010), attentional 

orienting across domains (van Ede et al., 2011), top-down control of visual attention (Bastos et 

al., 2015; Buschman & Miller, 2007), predictive coding of the sensory environment (e.g, Arnal 

& Giraud, 2012), and working memory (Axmacher et al., 2008; Miller et al., 2018). Recent work 

also demonstrates the relevance of beta to cross-domain inhibitory control (e.g., Castiglione et 

al., 2019, who demonstrated that preventing a thought from coming to mind elicited increases in 

beta power similar to those elicited when stopping a physical action), offering support for the 

idea that beta power may reflect the activity of neurocognitive networks that exert effects across 

domains.  

Power in the beta band is inversely related to cortical excitability (Ploner et al., 2006; 

Tamura et al., 2005), such that lower power is taken to reflect greater activation of local cortical 

networks. This inverse relationship between power and excitability also appears to be true of the 

high alpha band (Klimesch, 1999; Samaha, et al., 2017). Although we initially predicted 

oscillatory changes specific to the beta band only (in line with Saggar et al., 2012), we observed 

power changes in the high alpha range as well. Suppression in these frequencies may reflect 

disinhibition of underlying neural assemblies, allowing for greater cortical excitability and thus 

enhanced stimulus processing. This is consistent with reports of reduced acoustic startle 

habituation among experienced practitioners of Tibetan nondual traditions (i.e., Dzogchen or 

Mahamudra; Antonova et al., 2015). This work suggests that the sensory systems of experienced 
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meditators may maintain their responsiveness in situations that would typically induce 

habituation.  

Alternatively, it is possible that the beta reductions observed in the current study 

represent alterations in the structure, efficiency, or dynamics of the default mode or other large-

scale brain networks (e.g., de Pasquale et al, 2012; Wens et al., 2019). Power in the beta range 

during rest appears to fluctuate with BOLD activity in several canonical resting state networks, 

notably showing a positive correlation with activity in regions of the default mode network, and 

a negative correlation with those of the dorsal attention network (Mantini et al., 2007). Beta band 

activity is also associated with functional connectivity between and within resting state networks 

(de Pasquale et al., 2012; de Pasquale et al., 2018; Wens et al., 2019), and with band-limited 

power in the beta frequency corresponding to moments of high network efficiency (Betti et al., 

2020). Thus, it appears that beta activity may relate to efficiency of communication between the 

brain’s core networks (Betti et al., 2020).  

Other research indicates that long-term meditation training may lead to altered resting 

functional connectivity and reduced activity within the default mode network (Berkovich-Ohana 

et al., 2014; Brewer, Worhunsky et al., 2011; Garrison et al., 2015). Moreover, in our own work 

with these same participants, we found retreat-related changes in dynamic patterns of resting 

EEG microstates (Zanesco et al., 2021). These lines of research suggest that the observed 

reductions in beta over retreat could be reflective of altered patterns of functional connectivity, 

and possibly changes in the predominance of default mode activity during uninstructed rest (e.g., 

Bauer et al., 2019). This implies that—rather than being specific to meditation states—the 

observed retreat-related changes in beta band activity could indicate broad shifts in baseline 

patterns of brain activity and its underlying functional architecture.  
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Other studies have characterized meditation-related reductions in the beta frequency 

range during meditation practice compared to rest (during shamatha practice: Saggar et al., 2012; 

during Zen practice: Faber et al., 2015, Hauswald et al., 2015, see also Cahn & Polich, 2006 and 

Lomas et al., 2015 for reviews). However, to our knowledge the only other study to identify 

changes in the beta frequency range in the resting brains of experienced meditators found 

increases in power following a day of vipassana or metta practice (Dentico et al., 2018). The 

inconsistency of these results is indicative of the heterogeneous research findings reported in the 

meditation literature at large. For example, a study by DeLosAngeles et al. (2016) found that 

increased alpha band power characterized focused attention meditation when compared to rest, 

but that decreasing beta band power was associated with self-reported depth of meditation during 

practice. Similarly, Bauer and colleagues (2019) found a reduction in activity and functional 

connectivity in the default mode network of experienced meditators at rest compared to novices, 

but comparative increases in these same metrics during focused attention meditation.  

Discrepancies between findings could result from various methodological sources, 

including 1) differing cognitive-affective processes engaged across distinct styles of practice 

(e.g., Dahl et al., 2015; Lutz et al., 2015), 2) design and analytic approaches—including the 

choice of comparison groups (e.g., novice or experienced meditators) and baseline conditions 

(e.g., instructed mind-wandering, uninstructed rest; see Cahn and Polich, 2006; Kazniak, 2015; 

Van Dam et al., 2018), and 3) the experience levels of practitioner groups, who may display 

unique trajectories of training-related change (e.g., King et al., 2018; Skwara et al., 2017). 

Indeed, the effects of meditation practice and training may manifest differently as a function of 

these design decisions, pointing to the important, perhaps even deterministic, role that the choice 

of comparison condition plays in outcomes of meditation studies (cf. Van Dam et al., 2018).  
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Relating EEG Power and Perceptual Sensitivity 

We previously reported improvements in behavioral outcomes of sustained attention and 

perceptual discrimination in this same cohort of participants (MacLean et al., 2010). 

Accordingly, we predicted that greater retreat-related reductions in beta power should be 

associated with improvements in visual threshold. We instead observed that greater reductions in 

beta power were associated with less improvement in visual threshold across retreat. Moreover, 

the strongest correlation between visual threshold and beta power was between threshold at the 

pre-retreat assessment and change in beta power from the pre- to postassessment. Thus, those 

participants who demonstrated the lowest visual threshold (best acuity) at the beginning of 

training showed the greatest subsequent reduction in beta power over the course of retreat. It is 

possible that visual threshold at the onset of training served as a proxy for practitioners’ trait-like 

capacity or motivation to engage with meditation practice over time. This might explain why 

initial behavioral performance predicted greater meditation-related neurophysiological change 

(see also the Supplementary Information for an analysis of beta change in a subset of high 

behavioral performers). Though the relationship did not follow the direction we predicted, the 

correlation between training-related changes in eyes closed beta band power with performance 

on a separate visual task demonstrates the functional relevance of the observed changes in resting 

brain activity across behavioral and sensory domains. 

Similarities between Rest and Mindfulness of Breathing 

The retreat-related changes in brain activity observed in the current study mirror those 

previously identified in these same participants during active practice of mindfulness of 

breathing (Saggar et al., 2012). Both analyses found reductions in frontoparietal EEG power 

specific to the beta band, as well as IAF slowing. The similarity of these findings raises questions 
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regarding the meaning of ostensible state versus trait measures in the context of intensive 

meditation training.  

First, might our participants have been meditating when asked to rest quietly? While our 

instructions discouraged participants from engaging in active, formal meditation practice during 

the resting period, we were intentionally non-directive as to what mind-state participants should 

maintain. In contrast to more explicit resting instructions given in other studies (e.g., instructed 

mind wandering; see Braboszcz et al., 2017; Cahn et al., 2010), our instructions allowed us to 

observe more naturalistic changes in the resting brain, albeit while sacrificing a degree of 

methodological control and certainty. To address whether participants were engaged in active 

meditation practice during eyes closed rest, we examined associations between EEG power at 

rest and during mindfulness of breathing. We found that reductions in beta power during 

mindfulness of breathing were strongly correlated with reductions in beta during rest at each 

assessment, while retreat-related changes in the two measures were moderately correlated. This 

lends support to the idea that a proportion of the observed reductions in beta power reflect 

patterns of change common to quiet rest and formal practice. However, beta power within an 

individual was more consistent across assessments during mindfulness of breathing than during 

rest. This suggests that rest was a more variable brain state from one assessment to another. 

While inconsistencies between the two datasets could originate from a variety of sources—most 

notably data length and EEG preprocessing differences—overall these patterns suggest that EEG 

recorded during rest and mindfulness of breathing is indexing related, but not identical, 

underlying brain states.  

The second question pertains to the fluidity of meditative versus non-meditative states for 

experienced practitioners, and what it means to “rest” in the context of retreat. While formal 
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meditation practice is undertaken within relatively circumscribed bounds, the effects of training 

may be more far-reaching, leading to pervasive shifts in perception, emotion, and cognition that 

have long been reported in traditional practitioner accounts (e.g., Dalai Lama & Cutler, 2009; 

Wallace 2006). From this perspective, meditation is not discontinuous with other domains of 

experience. This may especially be true in the context of a meditation retreat, where participants 

are encouraged to imbue their daily activities with contemplative awareness. Thus, one’s 

baseline quality of awareness may, over time, come to more closely resemble those states 

cultivated during sessions of formal meditation. This points to the complexity of separating state 

and trait effects. 

Strengths and Limitations 

Our study is limited by having a waitlist, rather than active, control group. Additionally, 

all of our participants were experienced meditators. As such, our findings speak to patterns that 

occur during an intensive period of retreat training in already-experienced practitioners. Though 

participants dedicated many of their waking hours to formal meditation practice during retreat, 

our findings might also reflect the complex and non-specific influences of retreat experience—

including diet, distance from the stressors and commitments of daily life, social and spiritual 

support, and the idyllic natural setting of the retreat center—rather than the effects of a specific 

meditative practice in isolation (King et al, 2019).  

Our design also conveys several strengths. By studying experienced meditators over a 

dedicated period of practice, we were able to examine longitudinal changes in similarly-matched 

participants over time, thus avoiding confounds introduced by comparing across participant 

groups of differing experience levels. Additionally, our waitlist design included a formal 

replication with the second retreat that allowed us to conduct between groups comparisons in 
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Retreat 1 and replicate these effects within individuals in Retreat 2. This allows us to draw 

conclusions with greater confidence for effects that are consistent across retreats. Taken in the 

broader context of other findings from this project (e.g., Rosenberg et al., 2012; Sahdra et al., 

2011; Shields et al., 2020, Zanesco et al., 2013, 2018), this work speaks to the wide range of 

domains that were affected by the same retreat experience. 

Conclusion  

Our results suggest that patterns of neural activity observed during intensive meditation 

practice translate to eyes closed rest, and that baseline changes in oscillatory activity relate to 

measures of fine-grained visual discrimination obtained in a separate perceptual task. These 

findings provide empirical support for the idea that meditation training can exert effects that 

extend beyond the limits of formal practice to other cognitive and sensory domains. They also 

clearly demonstrate that rest is not an invariant baseline. Instead, it is influenced in meaningful 

and behaviorally relevant ways by the effects of meditation training.  

Finally, our findings lend support to dimensional, process-oriented models of meditation-

related change (e.g., Dahl et al., 2016; Lutz et al., 2015). The strongest effects of meditation 

might instantiate in situations where there is active or purposeful engagement of the capacities 

being trained (such as the volitional focus on the breath during mindfulness of breathing), 

whereas more subtle effects might manifest in situations where the engagement of these 

capacities is less central or volitional (such as the processing of ongoing sensory stimuli at rest). 

Such conceptualizations might allow for greater flexibility in how we investigate and interpret 

the process and outcomes of contemplative practice, helping to foster a view of the continuity 

between formal meditation practice and other domains of life.    
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Tables and Figures 

Table 2.1. IAF-based frequency band values and ranges 

Frequency band Range based on IAF Range in current data set Fixed band range 

Delta 2.0 – 0.4 x IAF Hz 2.0 – 3.93 (0.19) Hz 0.1 – 4 Hz 

Theta 0.4 x IAF – 0.6 x IAF Hz 3.93 (0.19) – 5.90 (0.29) Hz 4 – 8 Hz 

Alpha 0.6 x IAF – 1.2 x IAF Hz 5.90 (0.29) – 11.80 (0.58) Hz 8 – 13 Hz 

   Alpha 1 0.6 x IAF – 0.8 x IAF Hz 5.90 (0.29) – 7.87 (0.39) Hz ---- 

   Alpha 2 0.8 x IAF – IAF Hz 7.87 (0.39) – 9.83 (0.48) Hz ---- 

   Alpha 3 IAF – 1.2 x IAF Hz 9.83 (0.48) – 11.80 (0.58) Hz ---- 

Beta 1.2 x IAF – 30 Hz 11.80 (0.58) – 30 Hz 13 – 30 Hz 

Gamma 30 – 50 Hz 30 – 50 Hz 30 – 50 Hz 

IAF --- 8.69 – 11.28 Hz† --- 

Note. Ranges for the current data set are presented as the mean (SD) of the lower and upper limits of each IAF-based 
frequency band across all participants and assessments. Canonical band definitions are as described in Cohen 
(2014), with the exception of alpha sub-bands, for which there are no established canonical ranges independent of 
IAF. †Range for IAF is the absolute minimum and maximum observed in the current dataset. 

 

 

Table 2.2. Descriptive statistics for Retreat 1 dependent measures 

Note. Values are presented as mean (SD). Band power units are log(μV2/m2). Cluster means for waitlist controls (n = 
27) are based on the clusters identified in Retreat 1 training participants (n = 26). 

 

   Band power 
 IAF  Alpha cluster Alpha 3 cluster Beta cluster 
Training participants     
   Pre 9.94 (0.36)  3.05 (0.96) 2.71 (0.91) 1.42 (0.63) 
   Mid 9.82 (0.44)  2.90 (0.85) 2.48 (0.77) 1.17 (0.59) 
   Post 9.80 (0.43)  2.72 (0.88) 2.35 (0.82) 1.09 (0.64) 
Waitlist controls     
   Pre 9.93 (0.47)  3.70 (1.00) 3.30 (0.98) 1.73 (0.57) 
   Mid 9.87 (0.48)  3.63 (0.90) 3.21 (0.84) 1.73 (0.55) 
   Post 9.88 (0.54)  3.65 (0.81) 3.23 (0.78) 1.74 (0.42) 
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Table 2.3. Descriptive statistics for Retreat 2 dependent measures 
 
 
 
 
 
 
 
 
 
 
 

Note. Values are presented as means (SD). Band power units are log(μV2/m2). Cluster means for participants as 
controls (n = 27) are based on the clusters identified in these participants during Retreat 2 training (n = 26). 
 

 

Table 2.4. Correlations between cluster mean beta power and visual threshold in Retreat 2 
Training Participants 

  Beta power   Visual threshold 

Measure Pre Post ∆   Pre Post ∆ 

Beta power 
       

Pre-retreat — 
      

Post-retreat .71**† — 
     

∆ Post-Pre -.49*† .26 — 
    

Visual angle threshold 
       

Pre-retreat -.37× .16 .71**† 
 

— 
  

Post-retreat -.35 .03 .52**†◊ 
 

.69**† — 
 

∆ Post-Pre .20 -.20 -.52**†◊   -.77**† -.06 — 

Note. Correlations are with outliers included. ∆ indicates change from pre to post retreat (post-pre). The uncorrected 
significance of all correlations remains unaltered when outliers are removed, though two correlations◊ fall short of 
significance with FDR correction when outliers are removed. df = 24. ×p = 0.06. *p < 0.05. **p < 0.01. †Correlation 
survives FDR correction. 

 

 IAF  Band power  
in beta cluster Visual threshold 

In training    
   Pre 9.84 (0.50)  1.49 (0.59) 0.73 (0.29) 
   Mid 9.63 (0.50)  1.21 (0.57) 0.59 (0.16) 
   Post 9.56 (0.49)  1.24 (0.53) 0.59 (0.18) 
As controls    
   Pre 9.93 (0.47)  1.41 (0.53) - 
   Mid 9.87 (0.48)  1.46 (0.54) - 
   Post 9.88 (0.54)  1.44 (0.42) - 
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Figure 2.1. Identified clusters of current source density (CSD) power change across retreat in (A) Retreat 1 training 
participants, n = 26; (B) Retreat 1 waitlist controls, n = 27; and (C) Retreat 2 training participants (previously 
waitlist controls), n = 26. The asterisk (*) indicates electrodes that comprise a significant cluster. All cluster ps < 
0.01. For each panel, the leftmost maps depict cluster statistic F-values; the right upper maps depict CSD Beta 
power at pre-, mid-, and post-retreat; and the right lower maps depict raw subtracted differences in CSD power 
between assessments (e.g., “Pre to Post” = post – pre) 
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Figure 2.2. Beta cluster mean power at each assessment point in clusters identified for each retreat training group 
(Retreat 1, Retreat 2). Significant clusters were identified in the training groups only, and were then applied to the 
waitlist control group, for whom no significant clusters were identified. Black dots are individual data points, yellow 
circles are group means, and yellow lines are the standard error of the mean. Retreat 1, n = 26, Waitlist Control, n = 
27. Retreat 2, n = 26. Note that the Waitlist Control and Retreat 2 Training groups represent the same participants 
before attending, and while attending retreat, respectively. 
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Figure 2.3. Correlation between change in mean beta cluster power during eyes closed rest and pre-retreat visual 
threshold in Retreat 2, r(24) = .71, p < .001. The density distribution of each variable is represented on the 
respective axis. 

 

 

 

Figure 2.4. Correlation between change in beta band cluster mean power during eyes closed rest and during 
mindfulness of breathing practice in active retreat participants, r(37) = .435, p = .006. The density distribution of each 
variable is represented on the respective axis. 
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Supplementary Information 

Verification of Spectral Findings Using Canonical Frequency Bands 

We conducted an additional set of analysis to verify that the observed changes in spectral 

power were not merely a feature of changes in IAF-based band definitions over the course of 

retreat. If the results were not unduly influenced by the IAF-based frequency bands, then we 

should find that—even in the presence of IAF change—the results of the cluster analysis should 

be similar regardless of whether IAF-based or canonical frequency bands are used. This should 

be true both for the bands in which clusters are identified, and the change in these clusters over 

retreat. 

We repeated all primary analyses using canonical fixed frequency bands, following 

identical data processing and analysis procedures as outlined in the Methods, with the exception 

that canonical frequency bands rather than IAF-based frequency bands were used for power 

spectral estimation (see Table 2.1 of the manuscript for canonical band definitions). Cluster 

based permutation tests were run on the five frequency bands (delta, theta, alpha, beta, gamma) 

to identify clusters of change, and mixed models were used to assess group differences in change 

over time in clusters demonstrating significant change. 

Using canonical frequency bands, we identified three significant clusters in Retreat 1 

training participants: one in alpha, cluster statistic = 130.11, p = .006; and two in beta, cluster 

statistic = 75.25, p = .024, and cluster statistic = 57.77, p = .041, respectively. In Retreat 2 

training participants we identified one significant cluster of change in beta power, cluster 

statistic = 265.87, p < .001. No significant clusters of change were identified in Retreat 1 waitlist 

controls. Supplementary Figure 2.1 depicts the identified clusters of change using canonical 

frequency bands. 
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Supplementary Figure 2.1. Identified clusters of CSD power change using canonical fixed frequency bands in 
Retreat 1 (n = 26) and Retreat 2 (n = 26) training participants. No clusters were identified in waitlist controls. 
*p<.01; +p=.024; xp=.041.  
 

 Mixed models were then used to compare changes in identified clusters between groups. 

As with the IAF-based clusters, clusters identified in Retreat 1 and Retreat 2 active training 

participants were applied to Retreat 1 waitlist controls to provide a basis for between group 

comparisons. Model specification was identical to those used in the primary analysis.  

For the Retreat 1 alpha cluster, there were significant main effects of assessment, F(2, 

102) = 6.00, p = .003, and status F(1, 51) = 11.21, p = .002, but the interaction between 

assessment and status fell short of significance, F(2, 102) = 2.61, p = .079.  

In the first beta band cluster, the effect of assessment was not significant, F(2, 102) = 

2.76, p = .068. However, status, F(1, 51) = 9.15, p = .004, and the interaction between 

assessment and status, F(2, 102) = 8.07, p < .001, both revealed significant effects. Tests of 

simple effects within each group demonstrated a significant effect of assessment in training 

participants, F(2, 102) = 9.88, p < .001, but not in controls, F(2, 102) = 0.78, p = .461. Follow-up 

comparisons of model estimated means indicated that training and control participants did not 
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significantly differ at the pre-retreat assessment (b = -0.21, SE = 0.16, p = .179, 95% CI [-0.53, 

0.10]). Further comparisons indicated that training participants decreased significantly in cluster 

mean beta band power from pre- to mid-retreat (b = -0.25, SE = 0.07, p < .001, 95% CI [-0.39, -

0.11]), and pre- to post-retreat (b = -0.30, SE = 0.07, p < .001, 95% CI [-0.44, -0.15]), but not 

from mid- to post-retreat (b = -0.05, SE = 0.07, p = .529, 95% CI [-0.19, 0.10]).  

For the second beta cluster, there were significant main effects of assessment, F(2, 102) = 

10.17, p < .001, and status F(1, 51) = 11.41, p = .002, as well as a significant interaction between 

the two F(2, 102) = 3.90, p = .023. Tests of simple effects demonstrated a significant effect of 

assessment in training participants, F(2, 102) = 12.85, p < .001, but not in controls, F(2, 102) = 

0.99, p = .374. Follow-up comparisons indicated that active training participants had slightly 

lower cluster mean beta band power at the pre-retreat assessment than did waitlist controls (b = -

0.44, SE = 0.18, p = .017, 95% CI [-0.81, -0.08]). Additional comparisons indicated that training 

participants decreased significantly from pre- to mid-retreat (b = -0.23, SE = 0.07, p = .001, 95% 

CI [-0.36, -0.09]), and pre- to post-retreat (b = -0.33, SE = 0.07, p < .001, 95% CI [-0.47, -0.20]), 

but not from mid- to post-retreat (b = -0.11, SE = 0.07, p = .113, 95% CI [-0.24, 0.03]).  

 In Retreat 2, the mixed model comparing active training participants to themselves as 

controls showed significant main effects of assessment, F(2, 124) = 4.52, p = .013, and status, 

F(1, 127) = 16.87, p < .001, in the identified beta cluster, as well as a significant interaction 

between the two, F(2, 124) = 5.55, p < .001. Tests of simple effects revealed that Retreat 2 

participants significantly changed in beta power over assessments when they were active retreat 

participants, F(2, 124) = 9.85, p < .001, but not while they were waitlist controls, F(2, 124) = 

0.04, p = .964. Follow-up comparisons indicated that these participants showed no difference in 

power in the identified beta cluster at the beginning of Retreat 1 versus the beginning of Retreat 
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2 (b = 0.01, SE = 0.07, p = .870, 95% CI [-0.12, 0.15]). Further comparisons indicated that, 

during Retreat 2 training, these participants decreased significantly in cluster mean beta band 

power from pre- to mid-retreat (b = -0.24, SE = 0.07, p < .001, 95% CI [-0.38, -0.11]), and pre- 

to post-retreat (b = -0.27, SE = 0.07, p < .001, 95% CI [-0.41, -0.14]), but not from mid- to post-

retreat (b = -0.03, SE = 0.07, p = .637, 95% CI [-0.17, 0.10]).  

 Overall, the analysis using canonical frequency bands show a similar pattern of change as 

when IAF-based frequency bands are employed. This suggests that our findings are not an 

artifact of shifts in IAF-based band definitions resulting from changes in IAF.  

Change in Visual Threshold 

In previously published analyses, we demonstrated improvements in visual angle 

threshold among active training participants from the larger retreat study (MacLean et al., 2010; 

Retreat 1: n = 59; Retreat 2: n = 27). We confirmed that these changes held in the current subset 

of Retreat 2 participants that provided usable EEG data (n = 26). Means and standard deviations 

for visual angle threshold are reported in Table 2.3 of the main manuscript. As expected, Type 3 

tests of fixed effects revealed a significant effect of assessment F(2, 50) = 7.33, p = .002, and 

follow-up comparisons indicated that visual threshold improved from pre- to mid-retreat (b = -

0.14, SE = 0.04, p = .001, 95% CI [-0.22, -0.06]), and from pre- to post-retreat (b = -0.13, SE = 

0.04, p = .002, 95% CI [-0.21, -0.05]), but not from mid- to post-retreat (b = 0.00, SE = 0.04, p = 

.911, 95% CI [-0.08, 0.09]). 

Clarifying the Relationship between Visual Threshold and Beta Power in a Subset of High-

Performing Participants 

To better understand the relationship between visual threshold and beta power, we 

examined a subset of participants who demonstrated very low (good) visual thresholds at the 
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beginning of retreat—a group that we have termed the “high-performers.” We defined high-

performers as participants who, at the beginning Retreat 2, demonstrated a visual angle threshold 

of at least .5 standard deviations below the mean. We hoped that investigating this subset of 

participants would help clarify the pattern of observed correlations between beta power and 

visual threshold. Specifically, we suspected that the observed negative correlation between 

change in visual threshold and change in beta power across retreat could be driven, in part, by a 

ceiling effect in visual angle threshold: participants who began retreat with a very low (good) 

threshold might already be performing near the physical limits of their perceptual system, and 

thus have little room to improve.  

Because analyses of the relationship between visual threshold and beta power were 

limited to Retreat 2 (see Method in the main manuscript), we also limited our analysis of high-

performers to Retreat 2. We used Welch’s Test for Unequal Variances, as the subset of high-

performers (N = 8) comprised a smaller group than the remainder of Retreat 2 participants (N = 

18) against which we compared them. In cases where we had a directional hypothesis about the 

high-performers, we used a one-tailed test, which we noted in the reporting of statistics. The 

high-performers did not significantly differ from the remaining participants in age t(13.75) = -

0.19, p = .86, 95% CI [-15.63, 13.14], or previous lifetime meditation hours, t(15.90) = 0.13, p = 

.89, 95% CI [-2680.07, 3023.95]. The gender breakdown of the high-performing group was also 

consistent with Retreat 2 as a whole (~50% female).  

Among the high-performing participants, change in visual angle threshold (M = 0.01, SD 

= 0.11) from pre- (M = 0.43, SD = 0.06) to post-retreat (M = 0.45, SD = 0.10) did not 

significantly differ from zero, t(7) = 0.38, p = .71, 95% CI [-.08, .12]. This is not true of the 

remaining Retreat 2 participants (those not defined as high performers), in whom change in 
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visual threshold (M = -0.20, SD = 0.21) significantly differed from zero, t(17) = -3.97, p < .001, 

95% CI [-.30, -.09]. Confirming this difference, a direct comparison of the high-performing 

subset to the remaining Retreat 2 participants demonstrated that the high-performers (M = 0.01, 

SD = 0.11) showed significantly less subsequent reduction in visual threshold than the other 

participants (M = -0.20, SD = 0.21), tone-tailed(23.18) = 3.37, p = .001, 95% CI [.10, Inf]. 

The high-performing subset also appears to have differed from the remaining participants 

on two other key measures. Consistent with the sample-wide positive correlation between pre-

retreat visual threshold and beta power reductions (i.e., lower starting thresholds correlate with 

greater beta power reductions), the high-performers demonstrated greater retreat-related 

reduction in beta power (M = -0.57, SD = 0.40) than did the remaining Retreat 2 participants (M 

= -0.11, SD = 0.37), tone-tailed(12.56) = -2.80, p = .007, 95% CI [-Inf, -.17]. We further found that 

the high-performing subset meditated significantly more minutes per day on average during 

retreat (M = 437.65, SD = 111.27) than did the remaining Retreat 2 participants (M = 348.15, SD 

= 69.24), tone-tailed (9.50) = 2.10, p = .032, 95% CI [11.88, Inf].  

Overall, these patterns suggest that visual threshold at the onset of training might 

represent a complex indicator of traits relating to mental effort, motivational drive, or the ability 

for cognitive engagement over time. Thus, participants who perform well on these baseline 

measures may tend to engage in more meditation practice while on retreat, and subsequently 

manifest stronger psycho-physiological changes. Performance in the thresholding task depends 

on the ability to discriminate between subtle differences in line length, but also on visual 

working memory, and the ability to maintain focus throughout the task period. Participants who 

begin retreat with a stronger ability to engage with the task over long periods could feasibly 

demonstrate better performance during this task at baseline. This same capacity could allow 
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participants to dedicate more time to formal meditation practice over retreat, resulting in greater 

neurophysiological change. In this case, the observed correlations between visual threshold and 

beta power could be explained by such a mediating effect. Unfortunately, the current data set is 

not sufficiently powered to directly address this possibility. Investigations of the influence of 

baseline individual differences on subsequent meditation-related effects may be a fruitful avenue 

for future research.  
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Chapter 3 

Microstate Correlates of Compassion Meditation: The Representation of Close and Difficult Others 

 

 

 

 

Preregistered as: 

Brain electric microstates during compassion meditation, https://osf.io/sfpj3   

https://osf.io/sfpj3
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Introduction 

At the heart of many world religions and ethical traditions, we find the instruction to love 

others as you love yourself (Blackburn, 2003; Wattles, 1996). While the precise formulation 

varies across traditions and has generated philosophical debate (e.g., Singer, 1963; Wattles, 

1996), the core principle is so universal that we refer to the imperative to “do unto other as you 

would have them do unto you” as the Golden Rule (Flew, 1979). 

Though the principle may be intuitive (Wattles, 1996) and near universally referenced, 

the reality is far from that. One salient issue is how we draw boundaries between those others 

who we see as deserving of our care and kind treatment, and those who we do not. In situations 

of intergroup conflict, the dehumanization of “others” is often used as justification for violence 

(e.g., Harris & Fiske, 2011; Kteily et al., 2015; Kteily et al., 2016; Struch & Schwarz, 1989; Viki 

et al., 2013). Though recent work has called into question whether the moral justification of such 

violence rests on the dehumanized perception of victims, or on a moral reframing of the act of 

violence itself (Lang, 2020), the pattern remains that these cycles of violence are both enforced 

by—and in turn reinforce—a perceived divide between those who would harm the ones I love, 

and those whom I must protect from this harm (see, for example, essays on breaking 

intergenerational cycles of violence in Gobodo-Madikizela, 2016). 

While we may see the most extreme manifestations of this divide in situations of 

intergroup conflict and violence, the tendency to draw lines between varying classes of others is 

not limited to these contexts. Rather, social psychologists have long observed that, across many 

situations, humans distinguish between people we perceive as belonging to our in-group versus 

those we perceive as belonging to an out-group (e.g., Allport, 1954; Brewer, 1999; Brown, 2011; 

Hastorf & Cantril, 1954; Sherif et al., 1961). These perceptions in turn influence the degree to 
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which we feel empathy, compassion, and the motivation to help (e.g., Cikara et al., 2011). 

Human ethnocentrism—the perception that one’s own group is more important or better than 

others—can facilitate cooperation and trust within the perceived in-group, but can also contribute 

to prejudice and violence against other groups (e.g., De Drue et al., 2011; Fiske, 2002; 

Hammond & Axelrod, 2006). In fact, there is some evidence that the same neurochemicals that 

can facilitate intergroup cooperation can also increase hostility toward outgroups (e.g., De Drue 

et al., 2011). At the neurocognitive level, group divides can influence multiple aspects of 

perception and appear to be a cornerstone of human social cognition (for a review, see 

Molenberghs, 2013). At the same time, there is evidence that the boundaries between groups are 

flexible and context-dependent (e.g., Turner et al., 1994). This highlights the point that these 

groups are not set or unchangeable and opens the possibility that—given the right motivation and 

context—a person’s existing boundaries could be redrawn to encompass a wider group of others. 

Buddhism, Compassion, and the Extension of the Circle of Care 

Buddhist tradition explicitly takes the broadest view of who should be included in the 

circle of care: all sentient beings. In the Theravada school, this value is expressed through the 

four brahmaviharas (also known as the four immeasurables): karuna (compassion), metta (loving 

kindness), mudita (sympathetic joy), and upekkha (equanimity), which the practitioner is 

instructed to cultivate in their mind and send out in all directions.1 In Mahayana Buddhism, the 

value of compassion is one of the two core qualities of mind—alongside enlightened wisdom 

(prajña)—which the practitioner must cultivate on the bodhisattva (enlightenment seeker) path 

(Dalai Lama & Kamalashila, 2001). Though Buddhist schools diverge on the motivation2 for 

                                                            
1 These instructions are found in the Kālāmas Sutta (AN 365), trans. Thanissaro Bhikkhu, 1994. 
https://www.accesstoinsight.org/tipitaka/an/an03/an03.065.than.html 
2 In the Theravada school, the practitioner works to achieve their own enlightenment, thus the purpose of these 
practices is to purify their mind of obstacles such as envy, greed, and hatred. In the Mahayana and Vajrayana 
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engaging in these practices, the cultivation of compassion remains a shared and fundamental 

aspect.  

Reflecting this shared commitment, practices to cultivate compassion can be found 

throughout Buddhism. Some practices—found primarily in the Vajrayana and Dzogchen 

traditions—aim to awaken the compassionate mind through the practice of non-referential 

compassion, visualization of the self as one with a deity of compassion, or the direct realization 

of the nondual nature of reality.3 Others, such as tonglen (trans. “taking and giving), provide the 

practitioner the opportunity to practice taking personal responsibility for the alleviation of 

suffering by engaging in a visualization of breathing in others’ suffering and breathing out 

compassion and love (e.g., Chödrön, 2001). Yet other practices instruct the practitioner to reflect 

on their interconnectedness with4 or fundamental similarity to5 all beings.  

In the Western context, a compassion practice commonly taught in secularized settings 

builds on the care and concern we naturally feel for loved ones and works to extend the 

motivation to alleviate suffering to a wider and wider circle of others. In this practice—which 

draws from the Theravada brahmaviharas and Tibetan four immeasurables (e.g., Salzberg, 2002; 

Wallace, 1999)—the practitioner begins by imagining a loved one (such as a dear friend or even 

                                                            
schools, the practitioner vows to liberate all sentient beings from the suffering of samsara (the cycle of birth, death, 
and rebirth), and to continue to be reborn themselves until this work is complete. Thus the practitioner’s individual 
liberation is fundamentally tied to the liberation of all beings (Dalai Lama & Chodron, 2017). This motivation, 
called bodhicitta or “awakening mind” is closely linked to the Tibetan concept of interdependence and is at the core 
of Tibetan compassion practices (Makransky, 2012). 
3 These traditions understand the true nature of mind as pristine, compassionate awareness, and thus all the 
practitioner must do to awaken is realize the fundamental nature of their own mind (Lingpa, 2016; Patrul Rinpoche, 
1998). 
4 See, for example, from Path of the Bodhisattva: “Since all beings have at one time been your very own mother, 
you should think like this: ‘If all my mothers that have loved me since beginningless time continue to suffer, what is 
the use of my own happiness?’” (Gyatrul Rinpoche, 2008, p. 57). 
5 From The Bodhisattva’s Way: “Strive at first to meditate upon the sameness of yourself and others. In joy and 
sorrow all are equal; Thus be guardian of all, as of yourself. The hand and other limbs are many and distinct, But all 
are one--the body to be kept and guarded. Likewise, different beings, in their joys and sorrows, are, like me, all one 
in wanting happiness.” (Shāntideva, 2006, p. 122). 
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pet) who is suffering. They try to imagine what this suffering is like for that person, and, moved 

by their love and concern, generate the genuine wish that their loved one be free of suffering. 

The practitioner then repeats this process, taking as the target of their meditation progressively 

more distant or difficult individuals, until, in the final visualization, all beings are encompassed. 

This same general format is also used to generate and extend the boundaries of loving kindness, 

empathetic joy, and equanimity. These practices often rely on a combination of visualizations 

and mental repetition of phrases (e.g, “may you be free of suffering”) to generate these beneficial 

aspirations toward the chosen target (e.g., Salzberg, 2002). 

It is important to note that, while we have described here a small subset of practices used 

to explicitly generate compassion, in a traditional Buddhist context all practices are undertaken 

with the core motivation of achieving liberation from suffering (e.g., Dalai Lama & Chodron, 

2017). As such, even practices that do not have an explicit focus on compassion are conditioned 

by this intention and worldview. 

Other-oriented Effects of Compassion Meditation 

Though mindfulness practices have received more research attention, compassion-based 

teachings and practices have begun to draw scientific interest in recent years (for reviews, see 

Quaglia et al., 2021; Skwara et al., 2017; see Kirby et al., 2017 for a meta-analysis). As a recent 

review points out, these studies have disproportionately focused on the benefits of compassion 

practice to the self (Quaglia et al., 2021). Indeed, a recent meta-analysis (Kirby et al., 2017) 

found only four studies of compassion-based interventions over the previous 12 years that 

included a self-report measure of other-oriented compassion (13 included self-compassion). 

Across these four studies, they reported an overall effect size of d = .55, which represented a 

significant increase in self-reported compassion.  
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Consistent with this reported increase, there is evidence that compassion-based 

interventions and meditative expertise may modulate brain systems involved in salience 

detection, appraisal, social cognition, and affective processing in response to suffering. A 

number of neuroimaging studies examining compassion training interventions report post-

training increases in positive affect and activation in brain regions associated with affect, reward, 

and social cognition in response to witnessing suffering (e.g., Ashar et al., 2021; Klimecki et al., 

2013, 2014; Weng et al., 2013). Others report reductions in negative affect (Desbordes et al., 

2012; Weng et al., 2018; Klimecki et al., 2013), and increases in markers of attention to suffering 

(Weng et al., 2018). Studies in experts with extensive meditation training have found similar 

compassion meditation-related upregulation of positive affect and associated brain activity 

(Engen & Singer, 2015), as well as enhanced central and peripheral nervous system responses to 

sounds of suffering (Lutz et al., 2008, 2009). Taken as a whole, these findings suggest that 

compassion training may increase sensitivity to and the salience of others’ suffering. At the same 

time, experience with compassion meditation may also help reduce negative affect in response to 

suffering, and increase feelings of care and affiliation. Together, one might expect such changes 

to increase the likelihood of helping behavior and prosocial responding. Supporting this 

possibility, several studies have indeed found evidence of increased prosocial and altruistic 

helping behavior following compassion training (Ashar et al., 2016; Böckler et al., 2018; Condon 

et al., 2013; Weng et al., 2013, 2015). 

However, compassion-based interventions and practices are not the only form of 

contemplative training that has been shown to increase other-oriented compassion. For example, 

a study by Condon and colleagues (2013) demonstrated that a meditation training intervention 

increased the likelihood that participants would offer their chairs to an injured stranger, but these 
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effects were of the same magnitude regardless of whether participants had received compassion-

based or mindfulness training. In our own work, we’ve found that an intensive meditation retreat 

primarily focused on shamatha (calm-abiding) meditation—with the four immeasurables taught 

as ancillary practices—led to increased expressions of sympathy and reduced expressions of 

rejection emotions (e.g, anger, disgust, contempt) in response to witnessed suffering (Rosenberg 

et al., 2015). These participants also showed greater physiological orienting to, and increased 

depth of processing of, others’ suffering (King et al., in prep). Lending further support to these 

observations, a recent meta-analysis found a positive association between mindfulness based 

contemplative trainings and prosocial behavior (Donald et al., 2019). Thus there is evidence that 

contemplative training can enhance other-oriented concern, but that these effects may not be 

specific to compassion-based trainings or compassion meditation practices. 

There is less research exploring whether the boundaries of others for whom this concern 

is experienced can be extended with training. While a number of studies have explored the 

effects of mindfulness (for a recent review, see Oyler et al., 2021) or loving kindness (Kang et 

al., 2014) training on intergroup bias, to our knowledge no studies to have explicitly looked at 

the effects of compassion training on responses to the suffering of different classes of others. 

Furthermore, no neuroimaging studies have systematically investigated whether there is a 

modulating effect of target during compassion meditation practices. Indeed, the need for a more 

systematic approach to understanding the potential impact that different targets of compassion 

have on training effects was noted by Kirby and colleagues (2017) in their recent review of the 

compassion training literature. This is a key gap that the current study aims to address. 
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Theories of How Compassion Meditation Influences Compassionate Action 

Theoretical approaches have tried to account for how contemplative training might lead 

to changes in real-world compassionate responses. One recent account proposes that 

visualization-based compassion meditation may act as a mental simulation, priming 

neurocognitive systems for compassionate responses in daily life (Wilson-Mendenhall et al., 

2021). Building on research on voluntary imagination (e.g., Pearson et al., 2019), grounded 

cognition (e.g., Barsalou, 2008, 2009), sensorimotor (e.g., Hardwick et al., 2018) and 

interoceptive (Wilson-Mendenhall, Henriques, et al., 2019) simulation, and the prosocial 

outcomes of imagined helping (e.g., Gaesser, 2013; Gaesser & Fowler, 2020), the authors 

propose that visualization-based compassion meditation may precipitate real-world 

compassionate action by engaging the same brain systems responsible for compassionate 

responses in daily life. This account focuses primarily on the vivid compassion visualization 

practices found in Tibetan Buddhism. While these exact practices were not employed in the 

current study, the four immeasurables practices taught were informed by and share a number of 

features with Tibetan compassion practices, including visualizations and the volitional extension 

of the circle of care. 

While the theory laid out by Wilson-Mendenhall and colleagues (2021) offers a plausible 

neurocognitive pathway by which visualization-based compassion practices may prime the 

practitioner for real-world compassionate action, it cannot account for the compassion-relevant 

effects observed following meditation training that does not include explicit compassion 

practices (see Skwara et al., 2017 for a discussion). Another theoretical framework suggests that 

compassion is contextual and emergent and therefore cannot itself be directly trained (Halifax, 

2012). Instead, this model posits that compassionate responses can be strengthened by training 
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underlying component processes, which in turn support the emergence of contextually-

appropriate compassionate responses. While this model draws on contemplative theory and 

experiential accounts rather than empirical research findings, the idea that compassionate 

responses are emergent and contextually-grounded and depend, at least in part, on non-

compassion processes offers a useful frame for considering the non-specific effects of 

contemplative training. 

EEG Microstates as a Window into Network Dynamics 

Regardless of the exact mechanisms of training-related change, the mental 

representations of various suffering others imagined during compassion meditation should be 

reflected in the continuous activity of the brain. While a number of neuroimaging studies, 

reviewed above, have used fMRI to localize regional brain activity during compassion practice, 

far fewer studies have investigated time-varying brain dynamics during compassion meditation 

(e.g., Lutz et al., 2004; Schoenberg et al., 2018). A large body of research has explored the 

functional significance of localized brain areas, but other work suggests that brain functions are 

supported by parallel processing distributed across large-scale networks (see: Bressler & Menon, 

2010; Fries, 2005; Meehan & Bressler, 2012; Michel & Koenig, 2018). The ongoing neural 

activity of these networks can in part be recorded at the scalp via electroencephalography (EEG), 

and the spatial and temporal features of this activity can be described by segmenting the EEG 

time series into brain electric microstates (Lehmann, 1971; Michel & Koenig, 2018).  

The voltage topographic distribution of the EEG time series has been shown to vary in a 

dynamic but organized manner, characterized by periods of relative stability followed by rapid 

transitions to another state (Lehmann et al., 1987). These moments of stability—typically lasting 

60-150 ms—correspond to peaks in the global field power, ostensibly reflecting moments of high 
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synchrony in underlying neural generators (Michel & Koenig, 2018; Zanesco et al., 2020). 

Microstate analysis takes advantage of this feature by describing the continuous EEG time series 

as a series of categorical topographical states, derived from these global field power peaks. 

Changes in the topographic pattern of EEG scalp voltage require changes in the spatial 

distribution of activity in underlying neural generators (Murray et al., 2008, Vaughn, 1982), and 

thus different microstate configurations are thought to reflect shifts in the predominance of 

activity in different contributing brain networks (Zanesco et al., 2021).  

Studies have consistently found that a handful of these topographic configurations can 

account for a large proportion of the observed topographic variance in the EEG time series (for a 

review, see Michel & Koenig, 2018; for large sample studies in normative populations, see 

Koenig et al., 2002; Zanesco et al. 2020). Thus microstate analysis provides an approach for 

describing patterns of underlying network dynamics using an “alphabet” of relatively few 

categorical states. These patterns can be described in terms of the features of the representative 

topographies (strength, duration, frequency, and the amount of variance explained), or in terms 

of the temporal sequencing of microstates. Such sequences have been found to demonstrate 

scale-free mono-fractal dynamics (van de Ville et al., 2010), meaning that they are organized in 

lawful, but unpredictable ways (Michel & Koenig, 2018). By employing a series of techniques 

that allow for the characterization and comparison of multivariate symbolic data (sequence 

analysis; Abbott & Tsay, 2000), these sequences can be examined for the overall similarity of 

their temporal patterning. This allows for the holistic comparison of the dynamics of the EEG 

time series without relying on any single parameter or indicator, making it an ideal approach to 

assess the overlap in brain activity generated during different mental tasks. 
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In a previous analysis, we demonstrated that an intensive meditation retreat intervention 

resulted in global reductions in microstate strength and duration during eyes closed rest (Zanesco 

et al., 2021). These changes were observed across all microstate configurations, suggesting 

global changes in the brain systems organizing neuronal communication and excitability (Michel 

& Koenig, 2018). We also observed retreat-related changes in the temporal sequencing of 

microstates, which were related to increases in felt attentiveness and serenity. This study serves 

as evidence that microstate analysis can provide a meaningful window into meditation-related 

changes in brain dynamics and subjective experience. While a limited number of other studies 

have examined meditation-related modulation of microstate dynamics (e.g., Brechet et al., 2021; 

Faber et al., 2017; Panda et al., 2016;  Zarka et al., 2021), to our knowledge none have looked at 

compassion or other emotion-generative practices (Dahl et al., 2015). Further, no known study 

has attempted to investigate the potential effect of the target of compassion on these dynamics. 

The Current Study 

In the current study, we examined the effects of a residential meditation retreat 

intervention on the electrophysiological functioning of brain networks during a guided 

compassion meditation. Experienced meditators engaged in three months of full-time meditation 

training in a residential retreat setting, or were assigned to an initial waitlist control group. These 

waitlist controls completed all measurements in the first retreat, and later returned to complete 

their own retreat intervention. While on retreat, participants engaged in full-time meditation 

training in shamatha practices, as well as the four immeasurables. They completed a battery of 

assessments at the beginning, middle, and end of retreat. As part of these assessments, they 

engaged in a guided compassion meditation, and EEG was recorded throughout. In this 

meditation, they imagined the suffering of—and then took as the target of their compassion—
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three different categories of others: a loved one (close other), someone with whom they have 

experienced difficulty (difficult other), and the various forms of suffering experienced by beings 

throughout the world (all others). 

We were interested in longitudinal changes in microstate dynamics, as well as variations 

in the temporal sequencing of microstates as a function of the target of compassion. All core 

analyses and hypotheses were preregistered on the Open Science Framework. We hypothesized 

that retreat training should result in global alterations to brain electric microstates during 

compassion meditation, reflected in changes to the parameters (e.g., strength, duration) 

describing them. We did not, however, have specific predictions regarding which parameters 

should show change or the direction of this change. We further hypothesized that retreat training 

should alter the temporal dynamics of the microstate time series, and that this should be reflected 

in greater sequence dissimilarities between assessment points than within them. Our main 

hypotheses pertained to differences in the temporal sequences of microstates as a function of the 

target of compassion. We hypothesized that microstate sequences generated during compassion 

for a close versus for a difficult other should significantly differ, reflecting differences in the 

brain systems engaged (and experiences evoked) by these different tasks. However, we expected 

these differences to attenuate over the course of retreat, reflecting a reduction in the 

differentiation between loved and challenging others, and providing evidence for the extension 

of the circle of care. 

Method 

Participants and Retreats 

These data comprise part of a large, multi-method study of residential retreat meditation 

training - The Shamatha Project. Experienced meditation practitioners were recruited through 
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advertisements in print and online Buddhist publications and assigned via a stratified matching 

procedure to an initial training group (n = 30) or waitlist control group (n = 30) for Retreat 1. 

Waitlist control participants later returned to complete their own training in Retreat 2. One 

waitlist participant left the study after Retreat 1 for reasons unrelated to the study, leaving a total 

of n = 29 in Retreat 2. The groups were matched at a baseline assessment on age, sex, ethnicity, 

personality, and cognitive task performance (for details on recruitment and matching, see 

MacLean et al., 2010, Shields et al., 2020). Additionally, participants were matched on lifetime 

meditation experience, having an overall mean of 2,610 lifetime practice hours (initial training 

group: M = 2,549 hours, range = 250 to 9,500 hours; waitlist control group: M = 2,668 hours, 

range = 250 to 15,000 hours). All participants were screened for medical conditions and Axis I 

psychiatric disorders as assessed by a clinical psychologist through a clinical interview the Mini 

International Neuropsychiatric screen (Sheehan et al., 1998). All study procedures were 

approved by the University of California, Davis Institutional Review Board, and participants 

provided informed consent and were compensated $20 per hour for data collection. 

The waitlist-controlled design of the study consisted of two formally identical 3-month 

long residential meditation retreats. Retreats were held at Shambhala Mountain Center (SMC) in 

Red Feather Lakes, Colorado. In Retreat 1, training participants lived and practiced onsite for the 

3-month duration, completing assessments at the beginning (pre-), middle (mid-), and end (post-) 

of the retreat. Waitlist control participants continued about their daily lives, but were flown to the 

retreat center to complete the pre-, mid-, and post-retreat assessments on-site. At each 

assessment, waitlist participants arrived at SMC approximately 3 days (range: 65 to 75 hours) 

prior to laboratory assessments to allow for an initial acclimatization period to the altitude 

(~2,500 meters) and retreat environment. Approximately 3 months after the end of Retreat 1, 
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waitlist control participants returned to SMC to complete their own 3-month residential retreat 

(Retreat 2). 

Meditation Training 

During their 3 months in retreat training, participants practiced meditation for 6 to 8 

hours per day under the guidance of B. Alan Wallace, an experienced Buddhist contemplative 

scholar and meditation teacher. While on retreat, participants gathered for group meditation 

practice guided by Mr. Wallace twice per day, and met individually with Mr. Wallace once per 

week for one-on-one instruction. Meditation practices and contemplative instruction were based 

in the Theravada and Mahayana Buddhist traditions. The retreats emphasized a family of 

concentrative practices, collectively called shamatha meditation. These practices are thought to 

develop stability of attention, perceptual vividness, and strength of concentration. The primary 

techniques taught on retreat were: (1) mindfulness of breathing, in which the attention is focused 

on the sensations of the breath; (2) observing mental events, in which attention is directed to all 

forms of mental phenomena as they arise; and (3) observing the nature of consciousness, in 

which attention is placed on the awareness of being aware (for an in-depth description of various 

shamatha techniques, see Wallace, 2006; for a discussion of different classes of meditation 

practice, see Dahl et al., 2015). 

In addition to these primary shamatha meditation practices, teacher B. Alan Wallace 

instructed participants in the four immeasurables of loving-kindness, compassion, empathetic 

joy, and equanimity. These emotion-generative practices aim to foster a sense of common 

humanity with—and care for—others and provide the ethical and motivational framing to 

contextualize shamatha practices (Wallace, 1999). In loving kindness meditation—aimed to 

foster aspirations of benevolence toward others—practitioners use imagery and silent phrases of 
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kindness (e.g., “May you find happiness and the causes of happiness”) to generate the wish for 

others’ happiness. In compassion meditation—aimed to develop concern for the suffering of 

others—practitioners imagine another’s suffering and, moved by the understanding that no being 

wishes to suffer, generate the wish that this person be free of their suffering. In empathetic joy 

meditation—aimed to enhance the capacity to experience joy at other’s happiness—practitioners 

bring to mind another’s good fortune and practice delighting in it. In equanimity meditation—

aimed to cultivate a sense connectedness and interdependence with others—practitioners practice 

seeing all others (loved ones, strangers, enemies) as fundamentally similar to themselves, sharing 

the wish for happiness and freedom from suffering (Rosenberg, 2015; Wallace, 1999). Together, 

these practices are thought to support the development of genuine care and concern for an ever-

widening circle of others, and to combat feelings of envy, indifference, and spite.  

Participants reported spending most of their daily meditation time (6 to 8 hours per day) 

practicing the primary shamatha techniques. On average, training participants reported engaging 

in approximately 40 minutes of four immeasurables practice per day (M = .68 hours, SD = .30 

hours). For a full breakdown of time committed to various practices, see Sahdra et al., 2011). 

Procedure 

Assessments were completed at the beginning, middle, and end of each retreat in two 

field laboratories constructed on site at SMC. These laboratories consisted of darkened and 

sound-attenuated testing and control rooms to allow for the capture of research laboratory-quality 

measurements. Retreat 1 training participants completed three assessments in total (pre-, mid- 

and postassessment in Retreat 1); Retreat 2 training participants completed a total of six 

assessments (pre-, mid-, and postassessment as Retreat 1 waitlist controls, and pre-, mid-, and 

postassessment as Retreat 2 training participants). At each assessment point, laboratory 



115 
 

assessments were conducted over two consecutive days, each of which included approximately 4 

hours of laboratory testing. 

EEG Data Collection and Processing 

Compassion Meditation. The compassion meditation was completed as the final 

measure on the first day of each assessment. During the compassion meditation, participants sat 

in a darkened, sound-attenuated testing room and engaged in a guided meditation pre-recorded 

by Mr. Wallace. The recording began with an introduction that provided general instructions for 

the meditation (~1 min 22 sec), then guided participants through a Tibetan Buddhist-derived 

compassion meditation (~11 min 23 sec), and closed with gongs to signal the end of the 

meditation (~32 sec). The recording was preceded and followed by two 1-minute resting periods, 

first with eyes open, then with eyes closed. Thus the full order of each compassion meditation 

session was as follows: eyes open rest, eyes closed rest, introduction, compassion meditation, 

gongs, eyes open rest, eyes closed rest. 

The compassion meditation comprised three epochs, each focusing on a different target 

for compassion: 

(1) A close other: “someone you know and care about who is suffering from physical 

or psychological distress.” 

(2) A difficult other: “a person who, despite wishing to be of suffering him or herself, 

causes you a great deal of difficulty.” 

(3) All others: “let the scope of your awareness rove through the world, attending to 

those who suffer, whether from hunger and thirst, from poverty or the miseries of 

war, from social injustice, or the imbalances and afflictions of their own minds.” 
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Each epoch followed the same general structure: first participants were instructed to bring the 

target to their mind, then to imagine the target’s suffering and the causes of that suffering, next to 

take the target’s perspective and imagine what that suffering is like for them, and finally to 

generate the wish that the target be free from suffering. A full transcript of the recording can be 

found in Appendix 3A.  

EEG Recording and Preprocessing. Continuous EEG was recorded at a sampling rate 

of 2048 Hz with the BioSemi ActiveTwo system (http://www.biosemi.com) for the duration of 

the session, including the pre- and post-meditation resting periods. Easycap electrode caps 

(http://easycap.de) fitted with BioSemi electrode holders were arranged in an 88-channel 

equidistant montage, and individual electrode locations were localized using a Polhemus Patriot 

digitizer (http://www.polhemus.com). On participant request, electrodes were removed or not 

inserted to minimize discomfort (primarily at frontopolar locations). Following recording, the 

EEG was band-pass filtered between 0.1 and 200 Hz (zero-phase; roll-off of 12 dB/octave LP, 24 

dB/octave HP). Channels with very low signal quality were discarded, and the reference was set 

to the average of all remaining channels. Data were then manually artifact marked to remove 

extreme artifacts. These preprocessing steps were conducted in BESA 5.3. 

Following artifact marking, the EEG files were spliced to remove the following epochs: 

eyes open resting periods, the introduction, and the gongs, and any interstitial periods between 

recording epochs. Thus the structure of the final files was as follows: eyes closed rest (~1 min), 

compassion meditation (~11 min 23 sec), eyes closed rest (~1 min). These spliced files were then 

submitted to second-order blind source identification (SOBI; Belouchrani et al., 1997), which 

was used to separate out signals stemming from putative noise versus neural sources. SOBI is 

similar to ICA in that it functions to separate out maximally independent signal sources. Unlike 

http://biosemi.com/
http://easycap.de/
http://www.polhemus.com/
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ICA, SOBI uses joint-diagonalization of correlation matrices at multiple temporal delays to 

determine independence. SOBI functions by minimizing the sum of the squared cross-

correlations of all pairs of sources across all temporal delays. As recommended in Tang et al. 

(2005), we employed 41 temporal delays, τ = [1:1:10, 12:2:20, 24:5:100, 120:20:300] ms. A 

SeMi-automatic Artifact Removal Tool (SMART; https://stanford.edu/~saggar/Software.html; 

Saggar et al., 2012) was used to generate outputs depicting signal source topography, spectra, 

autocorrelation, and signal time series for visual inspection (see Saggar et al., 2012 for examples 

of SMART output and a discussion of parameters considered in source classification). These 

outputs were manually classified as neural or noise (e.g., EMG, ocular artifact, line noise), and 

the ostensible neural signals were then reconstructed into the original 88-channel montage. The 

reconstructed data were then transformed into a standardized 81-channel montage (international 

10-10 system) using spherical spline interpolation with a smoothing factor of 2e-06 as 

implemented in BESA 5.3.  

Standardized 81-channel montage EEG files were then imported into Cartool and 

converted to native format for topographic segmentation. Once in Cartool, EEG were 

downsampled to 102.4 Hz, DC-removed, band-pass filtered between 0.1 and 40 Hz, average-

referenced, and spatially smoothed to minimize the influence of signal outliers in the montage 

(Michel & Brunet, 2019). These steps were all conducted using the Cartool software toolbox 

version 3.91 (Brunet et al., 2011). 

Topographic Segmentation and Microstate Parameter Estimation 

Topographic segmentation of the 267 individual EEG recordings was conducted using an 

adapted k-means clustering method, as implemented in Cartool 3.91. This approach determines 

the optimal number of clusters (k) that can account for the greatest global explained variance 

https://stanford.edu/
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(GEV) in the spatial time series using the fewest representative topographic maps (Michel et al., 

2009; Murray et al., 2008). First, peaks in global field power (GFP) are identified in the 

continuous EEG time series. Then, maps of the scalp topographic voltage at each GFP peak are 

generated. The GFP—equivalent to the spatial standard deviation of amplitude across the entire 

average-referenced electrode montage (Skrandies, 1990)—is a reference-independent measure of 

scalp voltage potential (µV) that quantifies the strength of the electric field at a given sample of 

the EEG recording. GFP peaks are thought to reflect moments of high global neuronal synchrony 

within the continuous time series. Thus the maps of scalp voltage at these peaks provide optimal 

representations of moments of quasi-stable voltage topography (Koenig and Brandeis, 2016; 

Zanesco et al., 2020). These maps were then submitted 100 iterations of recording-level k-means 

clustering as described below. 

Clustering of voltage maps. For each recording, k-means clustering proceeded as 

follows. First, a subset of 1 to 12 maps (k = [1:12]) was randomly selected from the total set of 

GFP peak voltage maps. This subset of maps served as the initial centroids for clustering. Then, 

the spatial correlation between the k centroid maps and the remaining voltage maps was 

computed. Correlations were computed from the relative topographic configuration of the maps, 

ignoring polarity by correcting the sign of the spatial correlation coefficients (Michel et al., 

2009). Based on these correlations, voltage maps were assigned to the centroid with which they 

had the strongest spatial correlation, creating k clusters of maps. Maps were only assigned to a 

cluster if their spatial correlation with the cluster centroid exceeded .5; maps that did not have a 

correlation of at least .5 with any of the k cluster centroids were left unassigned. After all 

correlations were calculated and each GFP peak voltage map was assigned to a cluster, k new 

centroid maps were created by averaging across all the constituent maps assigned to each of the k 
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clusters. This process continued iteratively until the global explained variance (GEV) between 

the average centroids and the voltage maps converged to a limit. 

This procedure was repeated 100 times for each value of k = [1:12], with each of these 

100 iterations beginning with a new subset of randomly selected k centroids. After 100 iterations, 

the set of k centroids with the highest GEV was identified and selected. Finally, the optimal 

number of k clusters was selected from these maximal GEV centroids across all levels of k using 

a metacriterion defined by 7 independent optimization criteria (see Brechet et al., 2019; Custo et 

al., 2017 for a discussion of the metacriterion). Across all 267 files, the optimal number of 

average centroid maps determined by the recording-level k-means clustering procedure ranged 

from 4 to 7 topographic maps (M = 5.01, SD = 0.85) that explained an average of 75.86% (SD = 

4.45%, range = 64.91% to 88.72%) of the variance in the GFP peak voltage maps.  

Clustering of recording-level centroids. The final sets of recording-level optimal 

centroids identified in the previous step were then submitted to a second round of k-means 

clustering. In this second step, we conducted k-means clustering on these centroids to identify the 

global clusters that best explain the recording-level representative centroids across all 267 

recordings. To do this, a set of k = [1:15] maps were randomly selected from across all sets of 

recording-level centroid maps, then used as global centroids for clustering, with each recording-

level centroid map assigned to the global centroid map with which it had the highest spatial 

correlation. Recording-level centroids were only assigned to a global cluster if the spatial 

correlation with that cluster centroid was .5 or higher. For each level of k, this was repeated over 

200 iterations and the k centroids with the highest GEV were selected. After all iterations across 

all levels of k were complete, the optimal number of global clusters was determined by using the 
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optimization metacriterion. This resulted in a set of k global centroids that best represent the 

topographic configurations across all EEG recordings. 

This second round of clustering identified five global centroids that best satisfied the 

metacriterion and together explained 82.43% of the variance in the 1337 recording-level 

topographic maps. Four recording-level maps had a correlation of less than .5 with all global 

centroids and therefore went unassigned to a cluster. Figure 3.1 depicts the five global centroids, 

each with the subset of recording-level centroids that were assigned to that cluster. 

Parameterization of the Microstate Time Series. Following the clustering procedure 

and identification of global centroids, the downsampled continuous EEG files were then spliced 

into conditions: pre-meditation rest, compassion meditation, and post-meditation rest.  

The five global centroids were then fit back to the epoched EEG files to derive a time 

series of microstate sequences for each condition. All samples of each downsampled EEG file 

were categorized by assigning them to the global cluster centroid (microstate configuration) with 

which they demonstrated the highest spatial correlation, ignoring polarity. EEG samples that had 

low spatial correlations (<.5) with all global centroids were left unassigned. Microstate sequence 

time series were then temporally smoothed by ignoring assigned microstates that were present 

for less than 3 consecutive samples (~30 msec), and reassigning those samples by splitting them 

between the preceding and following microstates in the series. In addition to fitting the 

continuous EEG, we also fit the five global centroids to the voltage maps at the global field 

power peaks to create a GFP peak microstate time series for each recording. 

We then derived four microstate parameters from each epoch of each recording-level 

microstate time series. Global explained variance (GEV) is the percentage of observed variance 

in the EEG time series that is explained by a given microstate configuration (global centroid). 
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Mean microstate duration is the average total duration (in msec) of contiguous samples assigned 

to a given microstate configuration when that microstate appears in the time series. Occurrence 

per second is the average number of times per second a given microstate occurs in the 

continuous time series. Lastly, mean global field power is the average of the fitted GFP peaks 

assigned to a given microstate configuration, indicating the maximal field strength and degree of 

synchronization among the neural generators contributing to the voltage topography of each 

global centroid. The first three parameters (GEV, mean microstate duration, and occurrence per 

second) were derived from the microstate time series of the continuous EEG recordings. The last 

(mean global field power) was derived from the GFP peaks of each recording. 

In the compassion meditation condition, on average 90.21% (SD = 5.99%) of time 

samples from a given file of continuous EEG were successfully assigned to a global centroid, 

while 98.06% (SD = 2.42%) of GFP peaks were successfully assigned. Of the 267 recordings, 

one was excluded from further analysis because a large proportion of samples (53.54% in 

continuous EEG; 32.40% of GFP peaks) were unable to be assigned to a global cluster (had less 

than a .5 spatial correlation with all global centroids). In the retained recordings, the five global 

centroids explained on average a total of 57.09% GEV (SD = 4.75%) of the continuous EEG 

time series and 71.31% (SD = 4.48%) of the GFP peaks. Descriptive statistics for microstate 

parameters during compassion meditation are reported in Table 3.1 for Retreat 1 and Table 3.2 

for Retreat 2. 

In the pre-meditation resting condition (pre rest), an average of 90.81% (SD = 5.99%) of 

time samples in the continuous EEG were successfully assigned to a global centroid, and 98.26% 

(SD = 2.32%) of the GFP peaks were successfully assigned. Of the 267 recordings, one recording 

had a large proportion of samples that could not be assigned (48.85% continuous EEG time 
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samples; 28.70% of GFP peaks) and was excluded from further analysis. This was the same file 

that was excluded in the compassion meditation condition. In the remaining recordings, the five 

global centroids explained an average total of 57.42% GEV (SD = 5.16%) of the continuous 

EEG time series, and an average total of 71.94% GEV (SD = 4.47%) in the GFP peaks. 

Descriptive statistics for microstate parameters during pre-meditation rest for Retreats 1 and 2 

can be found in Tables 3.3 and 3.4, respectively. 

In the post-meditation resting condition (post rest), an average of 90.61% (SD = 6.06%) 

of time samples in the continuous EEG were successfully assigned to a global centroid, and 

98.17% (SD = 2.36%) of the GFP peaks were successfully assigned. Of the 267 recordings, one 

recording had a large proportion of samples that could not be assigned (51.76% continuous EEG 

time samples; 29.20% of GFP peaks) and was excluded from further analysis. This was the same 

file that was excluded in the compassion meditation and pre rest conditions. In the remaining 

recordings, the five global centroids explained an average total of 57.19% GEV (SD = 5.23%) of 

the continuous EEG time series, and an average total of 71.44% GEV (SD = 4.80%) in the GFP 

peaks. Descriptive statistics for microstate parameters during post-meditation rest are reported in 

Table 3.5 for Retreat 1 and Table 3.6 for Retreat 2. 

Microstate Sequence Analysis 

We next employed sequence analysis (Abbott & Tsay, 2000) to examine the time series 

of microstates (see Zanesco et al., 2020 and Zanesco et al., 2021 for previous applications of this 

approach to microstate time series data). Sequence analysis is a way of characterizing and 

comparing multivariate symbolic data - in this case, the time series of symbolic states 

represented by the sequence of microstate configurations. We employed the optimal matching 

(OM) of spells algorithm (Studer & Ritschard, 2016) to determine dissimilarities between 
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sequences and multivariate distance matrix regression (MDMR; McArdle & Anderson, 2001; 

McArtor et al., 2017; Zapala & Schork, 2012) to compare these dissimilarities between groups, 

assessments, and epochs of the compassion meditation.  

For the analysis of microstate sequences, the compassion meditation condition was 

divided into three sub-epochs based on the target of compassion participants were instructed to 

visualize: close other, difficult other, and all others. The sequence analysis examines the 

microstate series in the continuous EEG (and not the series of GFP peaks), therefore fit 

information for the continuous data only is reported here for each epoch. Across all files, an 

average 90.54% (SD = 6.01%) of time samples were successfully assigned to a global centroid in 

the close other epoch, 90.20% (SD = 5.95%) in the difficult other epoch, and 89.83% (SD = 

6.24%) in the all others epoch. One file was excluded from further analysis in all epochs because 

a large proportion of samples (53.96% in the close other epoch; 52.57% in the difficult other 

epoch; 54.26% in the all others epoch) were unable to be assigned to a global centroid.  

In the retained recordings, the close other epoch had an average length of 3 min 27.06 sec 

(SD = 20.38 sec, min = 1 min 0.27 sec, max = 3 min 39.69 sec), the difficult other epoch had an 

average length of 3 min 47.84 sec (SD = 20.46 sec, min = 1 min 53.08 sec, max =4 min 2.35 sec), 

and the all others epoch had an average length of 3 min 25.15 sec (SD = 19.41 sec, min = 1 min 

41.68 sec, max = 3 min 41.49 sec). On average in these retained recordings, the five global 

centroids explained a total of 57.24% (SD = 4.92%) GEV in the close other epoch, 57.06% (SD = 

4.68%) GEV in the difficult other epoch, and 56.83% (SD = 4.91%) in the all others epoch. 

Optimal Matching and Analysis of Sequence Dissimilarities. Sequence analysis was 

conducted in R using the seqHMM (Helske & Helske, 2019) and TraMineR (Gabadinho et al., 

2011) packages. We first converted each file of downsampled, fitted continuous EEG into a 
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sequence of microstate configurations, such that each subject/assessment/epoch was expressed as 

a series of the five identified configurations with each time sample represented by a single 

microstate label (e.g., AADBCCCEC). Time samples that went unassigned during the fitting 

process (i.e., had lower than .5 correlation with all global centroids) were marked as missing, but 

were retained as part of the sequence (e.g., for example, if the D configuration of the previous 

sequence were instead unassigned, the sequence would be: AA“missing”BCCCEC). Figure 3.2 

depicts the full microstate sequence for each participant at each assessment, in each epoch of 

compassion meditation.  

These sequences served as the input for the OM of spells algorithm. OM of spells uses 

the order and duration of categorical states to calculate the dissimilarity between pairs of 

sequences. Sequences are defined as a series of categorical states or “spells” (microstate 

configuration) each with a duration (the number of contiguous time samples of the same 

configuration). For example, the series AADBCCCEC has 6 spells (A, D, B, C, E, C), each of 

which has a corresponding duration (2, 1, 1, 3, 1, 1). Thus the series would be represented as A2, 

D1, B1, C3, E1, C1. Dissimilarity between pairs of sequences is operationalized as the edit 

distance: the minimum number of substitutions, insertions, and deletions necessary to transform 

one sequence of spells into another (Abbot & Tsay, 2000; Studer et al., 2011). Each operation 

(substitution, insertion, deletion) has a corresponding edit “cost.” The cost to perform an 

operation on a given categorical state is weighted based on the frequency of that state across all 

sequences, with more common states having lower associated edit costs than rarer states. 

Additionally, the OM of spells algorithm incorporates expansion and contraction operations to 

account for the duration of each spell. The cost of expansion and contraction operations are 
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subject to a reduced edit cost compared to other operations (insertion, deletion), thus the ordering 

of spells is weighted more heavily than their durations. 

 Edit costs were calculated separately for Retreat 1 and Retreat 2. Insertion/deletion 

(indel) costs for each microstate configuration were first derived from the log-transform of the 

inverse frequency (𝑙𝑙𝑙𝑙𝑙𝑙[2/(1 +  𝑓𝑓𝑖𝑖)]) of that state across all sequences (Gabadinho et al., 2011). 

Unassigned samples were included in the list of states to be matched. Pairwise substitution costs 

(e.g., the cost to substitute configuration A for configuration B) were then calculated by 

summing the indel costs of each pair (e.g., substitutionA,B = indelA + indelB). The indel edit 

cost (the cost of inserting or deleting rather than substituting a state) to be used in OM was set to 

the maximum indel of all states. The expansion cost (δ) was set to one third of this maximum 

indel edit cost. Thus the cost to substitute a state was always less than the cost to delete it and 

insert another, and the cost to expand the duration of a spell was equal to approximately one 

quarter the cost of inserting an entirely new microstate, biasing the OM algorithm to use 

substitutions and contractions/expansions whenever possible.  

Indel costs calculated for each retreat were as follows. Retreat 1: A = 0.597, B = 0.590, C 

= 0.476, D = 0.532, E = 0.543, Unassigned = 0.609; Retreat 2: A = 0.606, B = 0.591, C = 0.455, 

D = 0.533, E = 0.541, Unassigned = 0.614. Additionally, we calculated indel costs separately 

within each group of participants for use in MDMR follow up tests. These were as follows. 

Retreat 1 training: A = 0.590, B = 0.587, C = 0.495, D = 0.528, E = 0.547, Unassigned = 0.607; 

Retreat 1 waitlist control: A= 0.604, B = 0.592, C = 0.457, D = 0.536, E = 0.539, Unassigned = 

0.611 ; Retreat 2 training: A = 0.607, B = 0.591, C = 0.453, D = 0.530, E = 0.543, Unassigned = 

0.617. 
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Finally, we also conducted a sensitivity analysis to verify that any observed effects were 

not due to differences in data length between the compassion meditation epochs. To do this, we 

shortened all sequences to the length of the longest sequence of the shortest epoch. We then 

recalculated indel costs on this shortened data, which were as follows. Retreat 1: A = 0.590, B = 

0.582, C = 0.460, D = 0.520, E = 0.532, Unassigned = 0.602; Retreat 2: A = 0.599, B = 0.584, C 

= 0.438, D = 0.522, E = 0.530, Unassigned = 0.608. 

Statistical Analysis 

Mixed Effects Models of Microstate Parameters 

We modeled changes in microstate parameters (GEV, duration, occurrence, and GFP) 

using mixed effects models implemented with the LME4 package in R (Bates et al., 2015). 

Model parameters were estimated using restricted maximum likelihood with degrees of freedom 

calculated using Satterthwaite approximation. All participants who provided any data at any 

assessment were included. Retreat 1 models for change in microstate parameters during 

compassion meditation included the between-subjects fixed effect of group (control versus 

training), and the within-subjects effects of assessment (pre-, mid, and post-retreat) and 

microstate configuration (A, B, C, D, and E). Retreat 2 models included the within-subject 

effects of status (waitlist control versus in training), assessment, and microstate configuration. 

Random subject intercepts were included to allow for between-person variability in baseline 

level, and effects were referenced to the control group at the pre-retreat assessment. Microstate 

configuration was referenced to configuration C. For all parameters, we first tested a full model 

including all potential main effects and interactions, and followed up with simplified model 

retaining only significant terms. We report type III tests of fixed effects from the full model, and 

parameter estimates for significant fixed effects in the simplified models. To correct for multiple 
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comparisons, we used a blanket cut-off of p = .01 to assess the significance of type III tests and 

parameter estimates. 

To elucidate whether observed effects were specific to compassion meditation, we built 

an additional set of mixed effects models comparing compassion meditation to pre- and post-

meditation eyes closed rest. These expanded models were identical to the models described 

above, adding the within-subjects effect of condition (pre-meditation rest, compassion 

meditation, post-meditation rest), referenced to compassion meditation. These models were 

targeted to test for effects of condition, therefore we only followed up with simplified models in 

cases where the omnibus test indicated a main or interaction effect of condition. As with the 

compassion-only models, we used a blanket cut-off of p = .01 for considering an effect 

statistically significant. 

Multivariate Distance Matrix Regression of Sequence Dissimilarities 

We modeled changes in sequence dissimilarities using multivariate distance matrix 

regression (MDMR; McArdle & Anderson, 2001; McArtor et al., 2017; Zapala & Schork, 2012), 

implemented in R using the MDMR package (McArtor, 2018). MDMR is a person-centered 

regression method that regresses a distance matrix onto a set of predictors. This makes it possible 

to test the significance of associations between the dissimilarities of individual response profiles 

and the chosen predictors (McArtor, 2017). Like mixed effects models, mixed effects MDMR 

can account for hierarchies and dependencies in the data structure. When partitioning sums of 

squares of dissimilarities in MDMR, dissimilarities were not squared as this the preferred 

approach when the dissimilarities are edit distances (Studer et al., 2011; Zanesco et al., 2021). 

We used MDMR to test for differences in sequence dissimilarities calculated by OM of 

spells. For each retreat, we built a series of mixed effects MDMR models to test the effects of 
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group (in Retreat 1) or status (in Retreat 2), assessment (pre, mid, post), and epoch (close other, 

difficult other, all other) on sequence dissimilarities. For each retreat, the analysis proceeded as 

follows: we first built a main-effects only model, which we used to interpret the main effects of 

group/status, assessment, and epoch; we next expanded the model by adding in all two-way 

interactions, which we used to assess interactions between any two predictors; we finally built a 

model that included three-way interactions between group/status, assessment, and epoch. We 

followed up interaction terms using directed MDMR comparisons on dissimilarities calculated 

within each group separately because 1) differences in edit costs between groups could affect 

estimation of within-group dissimilarities; and 2) the partitions of sums of squares of 

dissimilarities are affected by the overall dissimilarity of all sequences in a given analysis, thus 

dissimilarities in one group will influence the calculation of dissimilarities in the other (Zanesco 

et al., 2021). In all models, effects were referenced to the control group at the pre-retreat 

assessment during the close other epoch. As MDMR only calculates the differences between 

between dissimilarities and does not provide parameter estimates, centroid distances are provided 

where relevant in place of parameter estimates. Centroid distances are the dissimilarity between 

multivariate distance centers for each grouping of data. We also provide estimates of 

discrepancy—or dispersion around the distance center of a group—which serves as an indicator 

of between-person variability. 

Results 

Mixed Effects Models of Microstate Parameters 

Global Explained Variance 

We first checked for any differences in GEV—the proportion of observed variance 

explained by a given microstate configuration—in Retreat 1 continuous EEG. We found no 
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significant effect of group, F(1, 865) = 0.60, p =.441, or assessment, F(2, 865) = 0.01, p = .992, 

and a significant effect of microstate configuration, F(4, 865) = 250.49, p < .001. There was no 

interaction between group and assessment, F(2, 865) = 0.02, p < .984, assessment and 

configuration, F(8, 865) = .50, p = 0.854, or three-way interaction between group, assessment, 

and configuration, F(8, 865) = .25, p = .981. There was a significant interaction between group 

and configuration, F(4, 865) = 10.43, p < .001. A simplified model was then created by 

removing the non-significant terms. The parameter estimates from this simplified model are 

reported in Table 3.7. Briefly, parameter estimates from this simplified model indicated that 

configuration C accounted for a greater proportion of the GEV than any other microstate 

configuration in the control group (all ps < .0001) and in the retreat group (all ps < .001). 

However, it explained a significantly greater proportion of GEV in the control group than in the 

training group both in terms of absolute GEV explained (p < .001), and relative to other 

configurations (all ps < .001). 

We next examined GEV in Retreat 2 by comparing Retreat 2 participants to themselves 

as waitlist controls. Type III tests of fixed effects indicated that there was no effect of status, F(1, 

855) = 0.04, p = .847, or of assessment, F(2, 855) = 0.06, p = .941, and no interaction between 

status and assessment, F(2, 855) = 0.05, p = .947.  There was a significant effect of microstate 

configuration, F(4, 855) = 343.15, p < .001, but no interaction of configuration with status, F(4, 

855) = 0.23, p = .921, or assessment, F(8, 855) = 0.67, p = .718, and no three-way interaction 

between status, assessment, and configuration, F(8, 855) = 0.23, p = .985. We therefore created a 

simplified model containing only the effect of configuration. Parameter estimates from this 

simplified model are reported in Table 3.7. As in Retreat 1, configuration C explained a greater 

proportion of GEV than any other microstate (all ps < .001). 
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We also examined GEV in each retreat using expanded models comparing compassion 

meditation to pre- and post-meditation rest. These models were designed to test for differences in 

microstate parameters between meditation and rest. Type III tests of fixed effects in these models 

indicated no main effect of condition in Retreat 1, F(2, 2595) = .02, p = 0.978, or in Retreat 2, 

F(2, 2536.4) = 0.03, p = .970, and no interaction between condition and any other factor in either 

retreat. All other effects were similar to those observed in the models testing compassion 

meditation alone. See Table 3.11 for the type III tests of fixed effects in these expanded models. 

Overall, these results indicate that there were differences in GEV between different 

microstate configurations—with microstate C explaining the preponderance of variance—as well 

as baseline group differences in the proportion of GEV explained by different microstate 

configurations. However, there were no group differences in the total GEV, and no effects of 

retreat training on total GEV or the proportion of GEV explained by a particular microstate 

configuration. They also indicate that GEV does not seem to differ between compassion 

meditation and quiet rest. 

Mean Microstate Duration 

We next examined Retreat 1 parameters for changes in microstate duration—the average 

amount of time a given microstate configuration remains dominant when it appears in the 

microstate timeseries. Type III tests of fixed effects indicated that there was not a significant 

effect of group, F(1, 57.99) = 1.76, p = .190, assessment, F(2, 807.72) = 2.17, p = .115, or 

interaction between group and assessment, F(2, 807.72) = 2.14, p = .118. There was a significant 

main effect of configuration, F(4, 807.72) = 168.27, p < .001, and interaction between group and 

configuration, F(4, 807) = 6.91, p < .001, but no interaction between assessment and 

configuration, F(8, 807) = 0.21, p = .989, or three-way interaction between group, assessment, 
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and configuration, F(8, 807) = 0.15, p = .996. A simplified model was then created removing 

non-significant terms. The model parameters from this simplified model are reported in Table 

3.8. Briefly, in both groups, configuration C showed a longer average duration than any other 

microstate configuration (controls: all ps < .001, training: all ps < .001), had a longer absolute 

duration in the control group than in the retreat group (p < .001) and was longer relative to other 

microstates in the control group than in the retreat group (all ps < .01). 

In Retreat 2, type III tests of fixed effects indicated a significant main effect of status, 

F(1, 828.90) = 16.78, p < .001, assessment, F(2, 826.06) = 9.53, p < .001, and configuration, 

F(4, 826.06) = 212.82, p < .001, as well as a significant interaction between status and 

assessment, F(2, 826.06) = 6.78, p = .001. There was no interaction between status and 

configuration, F(4, 826.06) = 0.13, p = .971,  or assessment and configuration, F(8, 826.06) = 

0.49, p = .864, nor was there a three-way interaction between status, assessment, and 

configuration, F(8, 826.06) = 0.25, p = .980. A simplified model including only significant terms 

was created. Parameters from this simplified model are reported in Table 3.8, and marginal 

estimated means of key effects are described here, referenced to configuration C. At the pre-

retreat assessments, the estimated marginal means of duration for Retreat 2 participants in 

training, EMMtraining, pre = 90.19, 95% CI [87.79, 92.60], versus as Retreat 1 waitlist controls, 

EMMcontrol, pre = 89.83, 95% CI [87.44, 92.21], did not significantly differ, b =0.37, SE = 

0.82, t(847.04) = 0.45, p =.655. Participants did not demonstrate change in mean duration as 

waitlist controls: estimated marginal means at the mid-retreat assessment, EMM = 88.68, 95% CI 

[ 86.30, 91.07], did not significantly differ from at the pre-retreat assessment, b = -1.14, SE = 

0.80, t(846.07) = -1.41, p = .158; nor did estimated marginal means at the post-retreat 

assessment, EMM = 90.43, 95% CI [88.04, 92.81], b = 0.60, SE = 0.80, t(846.07) = 0.74, p = 
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.457. However, when in training in Retreat 2, participants demonstrated significantly reduced 

duration at the mid-retreat, EMM =86.30, 95% CI [83.89, 88.69], b = -3.90, SE = 0.82, 

t(846.06)= -4.74, p < .001, and post-retreat, EMM = 86.58, 95% CI [84.18, 88.98], b = -3.61, SE 

= 0.82, t(846.06) = -4.39, p < .001, than at pre-retreat. 

Additional models comparing compassion meditation to rest did not indicate any effect of 

condition, F(2, 2536.10) = 0.37, p = .692, or interaction between condition and any other effect. 

However, when including this extra data, a significant group by assessment interaction did 

emerge in Retreat 1, F(2, 2537.20) = 4.75, p = .009, and was maintained in Retreat 2, F(2, 2535) 

= 13.97, p < .001, replicating the pattern observed in the Retreat 2 compassion meditation only 

model. Type III tests fixed effects from these models are reported in Table 3.12. 

Overall, these results demonstrate a baseline between groups difference in the average 

duration of configuration C, as well as the duration of configuration C relative to other 

configurations, with configuration C demonstrated longer average and relative durations in the 

waitlist control group compared to the Retreat 1 training group. Additionally, they suggest that 

duration might be sensitive to retreat training as mean duration decreased over the course of 

Retreat 2. However, these findings did not reliably replicate across retreats. Finally, models 

comparing compassion meditation to pre- and post-meditation rest indicated no effect of 

condition, indicating that duration, and retreat-related change in duration, did not vary by task. 

Occurrence per Second 

We next tested the average occurrence per second of each microstate configuration. In 

Retreat 1, type III tests of fixed effects indicated no main effect of group, F(1, 58.11) = 3.96, p = 

.051, or assessment, F(2, 809.78) = .43, p =.652, or interaction between group and assessment, 

F(2, 809.78) = 0.13, p = .118, or three-way interaction between group, assessment, and 
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configuration, F(8, 807) = 0.15, p =.882. There was a significant effect of configuration, F(4, 

807.23) = 138.68, p < .001, as well as a significant interaction between group and configuration, 

F(4, 807.23) = 5.14, p < .001, but no interaction between assessment and configuration, F(8, 

807.23) = 0.75, p = .646. A simplified model was created removing non-significant effects. 

Model parameters from this simplified model are reported in Table 3.9. Briefly, microstate 

configuration C occurred more times per second on average than any other configuration in both 

the control (all ps < .001) and training (all ps < .008) groups. Compared to the control group, the 

training group had more occurrences per second of microstate configurations A (p < .001), B (p 

= .002), and D (p < .001) relative to the occurrence of microstate C. 

Consistent with this, in Retreat 2, the main model indicated a significant effect of 

configuration, F(4, 826.33) = 204.72, p < .001, but no main effect of status, F(1, 835.08) = 2.84, 

p = .092, or assessment, F(2, 826.33)= 1.25, p = .287, or interaction between status and 

assessment, F(2, 826.33) = 0.39, p = .678, status and configuration, F(4, 826.33) = 0.30, p = 

.879, assessment and configuration, F(8, 826.33) = 1.10, p = .359 or status, assessment, and 

configuration, F(8, 826.33) = 0.37, p = .937. Model parameters from the simplified model 

retaining only the effect of configuration are reported in Table 3.9. These parameters indicated 

that configuration C occurred more times per second on average than did any other configuration 

(all ps < .001).  

Models incorporating data from pre- and post-meditation rest for each retreat did not 

indicate any effect of condition, or interaction with condition with any other factor. Solutions for 

type III tests of fixed effects for these models can be found in Table 3.13. 

Overall, these results indicate that microstate configuration C occurred more times per 

second on average than any other microstate, and that this difference relative to other microstates 
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was greater in the waitlist controls than in the Retreat 1 training group. They also suggest that 

condition (rest versus meditation) did not influence occurrence per second. 

Global Field Power 

Finally, we assessed mean global field power at the fitted GFP peaks. In Retreat 1, Type 

III tests of fixed effects indicated significant main effects of group, F(1, 58) = 7.80, p = .007, 

assessment, F(2, 807.06) = 12.58, p < .001, and configuration, F(4, 807) = 112.17, p < .001, as 

well as a significant interaction between group and configuration, F(4, 807) = 6.87, p < .001. 

There was not a significant interaction between group and assessment, F(2, 807.06) = 1.76, p 

=.173, assessment and configuration, F(8, 807) = 0.28, p = .974, or group, assessment, and 

configuration, F(8, 807) = 0.04, p = .999. Parameter estimates from a simplified model removing 

non-significant interactions are presented in Table 3.10 and marginal estimated means of key 

effects are described here, with all effects centered to configuration C. Across all assessments, 

the training group had significantly lower GFP than did the waitlist control group, b = -1.65, SE 

= 0.46, t(62.18) = -3.61, p < .001. However, both groups demonstrated the same pattern of 

change, with all participants showing reductions in GFP from the pre-retreat, EMMtraining = 

6.30, 95% CI [ 5.65, 6.95], EMMcontrol = 7.95, 95% CI [7.30, 8.60], to mid-, EMMcontrol = 

7.75, 95% CI [7.10, 8.40], EMMtraining = 6.10, 95% CI [5.45, 6.75], retreat assessment, b = -

0.20, SE = 0.05, t(825) = -3.91, p < .001,  and from the pre- to post-, EMMcontrol = 7.70, 95% 

CI [7.05, 8.35], EMMtraining = 6.05, 95% CI [5.41, 6.70], retreat assessment, b = -0.25, SE = 

0.05, t(825) = -4.73, p < .001. 

In Retreat 2, type III tests of fixed effects showed main effects of status, F(1, 826.22) = 

7.17, p = .008, assessment, F(2, 825.99) = 5.39, p = .005, and configuration, F(4, 825.99) = 

126.66, p < .001. There were no significant interactions between status and assessment, F(2, 
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825.99) = 0.91, p = .404, status and configuration, F(4, 825.99) = 0.02, p = .999, assessment and 

configuration, F(8, 825.99) = 0.24, p = .984, or status, assessment, and configuration, F(8, 

825.99) = 0.05, p = 1. A simplified model consisting of only main effects was created. Parameter 

estimates from this model are reported in Table 3.10, and estimated marginal means are reported 

here, referenced to configuration C. Compared to themselves as waitlist controls, Retreat 2 

participants showed significantly lower GFP  when in training, b = -0.13, t(848.22) = -2.71, p 

=.007. However they demonstrated the same pattern of GFP reductions as waitlist controls and in 

retreat training. This reduction fell short of our p = .01 significance cut-off from the pre-, 

EMMcontrol = 7.91, 95% CI [7.12, 8.70], EMMtraining = 7.76, 95% CI [6.99, 8.56], to mid-, 

EMMcontrol = 7.76, 95% CI [6.97, 8.55], EMMtraining = 7.62, 95% CI [6.83, 8.41] retreat 

assessments, b = -0.15, SE = 0.06, t(847.99) = -2.54, p = .011, but was significant when 

comparing the pre-, and post-, EMMcontrol = 7.72, 95% CI [6.93, 8.51], EMMtraining = 7.58, 

95% CI [6.80, 8.38] retreat assessments,  b = -0.19, SE = 0.06, t(847.99) = -3.13, p = .002. 

We then tested models comparing compassion meditation to the pre- and post-meditation 

resting periods. As these were targeted models created to examine the effect of condition, we 

report only effects that directly pertain to condition here. A full report of type III tests of fixed 

effects for these models can be found in Table 3.14, and all parameter estimates from subsequent 

simplified models are presented in Table 3.15. 

In Retreat 1, there was a significant main effect of condition, F(2, 2537) = 63.13, p < 

.001, and a significant interaction between assessment and condition, F(4, 2537) = 4.58, p = 

.001. Additionally, there was a significant main effect of group, F(1, 58) = 7.84, p = .007, and a 

significant interaction between group and assessment, F(2, 2537) = 5.12, p = .006, replicating the 

pattern in the compassion only model. Parameter estimates from a simplified model retaining 
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only significant effects indicated that at the Retreat 1 pre-assessment, GFP during compassion 

meditation in both the control EMMcontrol = 7.95, 95% CI [ 7.29, 8.61], and training 

EMMtraining = 6.36, 95% CI [5.70, 7.02] groups was significantly lower than during pre-

meditation, EMMcontrol = 8.41, 95% CI [ 7.75, 9.07], EMMtraining = 6.82, 95% CI [6.16, 

7.48], b = 0.46, SE = 0.06, t(2607) = 7.67, p < .001, or post-meditation rest, EMMcontrol = 8.26, 

95% CI [ 7.60, 8.92], EMMtraining = 6.67, 95% CI [6.01, 7.33], b = 0.31, SE = 0.06, t(2607) = 

5.16, p < .001. This pattern was maintained at subsequent assessments, though GFP in pre-

meditation rest declined significantly more than in compassion meditation from pre- to mid-

retreat, b = -0.26, SE = 0.08, t(2607) = -3.10, p = 0.002.  

Retreat 2 analyses replicated these patterns. In Retreat 2, the omnibus model again 

indicated a main effect of condition, F(2, 2536) = 41.21, p < .001, and an interaction between 

assessment and condition, F(4, 2536) = 3.74, p = .004. However the status by assessment 

interaction originally observed in the compassion only model fell just short of our significance 

cut-off, F(2, 2536) = 4.52, p = .011. A simplified model retaining only significant effects 

indicated that participants demonstrated significantly lower GFP at the pre-retreat assessment 

during compassion meditation, EMMcontrol = 7.99, 95% CI [ 7.20, 8.78], EMMtraining = 7.76, 

95% CI [6.96, 9.25] than in pre-meditation rest, EMMcontrol = 8.46, 95% CI [ 7.67, 8.92], 

EMMtraining = 8.23, 95% CI [7.43, 9.02], b = 0.47, SE = 0.07, t(2612) = 6.89, p < .001, and 

post-meditation rest, EMMcontrol = 8.33, 95% CI [ 7.53, 9.12], EMMtraining = 8.10, 95% CI 

[7.30, 8.89], b = 0.34, SE = 0.07, t(2612) = 4.94, p < .001. As in Retreat 1, this pattern was 

maintained across assessments, though GFP declined significantly more from the pre- to mid-

retreat assessment during pre-meditation rest than during compassion meditation, b = -0.28, SE = 

0.10, t(2612) = -2.87, p = 0.004. 



137 
 

In summary, these results demonstrate that GFP consistently decreased across 

assessments. This decrease occurred in both waitlist control and training participants, suggesting 

that it was not specific to retreat training. However training participants did demonstrate overall 

lower GFP than did waitlist controls both when comparing groups in Retreat 1, and when 

comparing controls to themselves in training in Retreat 2. GFP decreased over assessments 

regardless of whether participants were engaging in compassion meditation or quiet rest. 

However, GFP was lower overall during compassion meditation than during pre- or post-

meditation rest. Finally, GFP appeared to decrease more from pre- to mid-retreat during pre-

meditation rest than during compassion meditation.  

Multivariate Distance Regression of Sequence Dissimilarities 

Retreat 1 

We first modeled the main effects of group (waitlist control, training), assessment (pre, 

mid, post), and epoch (close other, difficult other, all other) on sequence dissimilarities in Retreat 

1. This model indicated that sequences were not significantly different between groups, stat = 

0.95, p = .740. Across all groups and epochs, sequences were significantly different between the 

pre- to mid-retreat assessments, stat = 1.48, p < .001. However, differences in sequences 

between the pre- and post-retreat assessments were not significant, stat = 1.11, p = .072. Finally, 

across all groups and assessments, the close other epoch significantly differed from both in the 

difficult other, stat = 2.76, p < .001, and all others, stat = 1.42, p < .001 epochs. We next 

expanded this model to examine pairwise interactions between predictors. This model included 

all two-way interactions. This second-level model indicated that the groups had significantly 

different patterns of change in dissimilarities from the pre- to mid-retreat assessments (stat = 

1.15, p = .033) but not from the pre- to post-retreat assessments (stat = 1.10, p = .094). None of 
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the two-way interactions between group and epoch or assessment and epoch were significant (all 

ps > .387). Finally, a model including the three-way interactions between group, assessment, and 

epoch was tested. This model indicated that there were no significant three-way interactions (all 

ps > .288).   

We followed up on significant effects from these models with directed comparisons of 

dissimilarities calculated within each group, and examined centroid distances—a measure of 

dissimilarity between multivariate distance centers—and discrepancies—a measure of between-

person variability within a given condition—to aid interpretation (Zanesco et al., 2021). For a 

map of pairwise dissimilarities in Retreat 1, see Figure 3.3; for matrix of centroid distances, see 

Figure 3.4, panel A. 

In the waitlist control group, the effect of assessment collapsing across epochs indicated 

that sequences differed significantly between the pre- and mid-retreat assessments, stat = 1.27, p 

= .007, but not between the pre- and post-retreat assessments, stat = 1.09, p = .168. Consistent 

with this, the centroid distance between the pre- and mid-retreat assessments, centroid distance = 

642.85, was greater than the centroid distance between the pre- and post-retreat assessments, 

centroid distance = 598.85. Discrepancies were very similar between the pre-, discrepancy = 

2,957.49, and mid-retreat, discrepancy = 2,927.53, assessments, and slightly lower at the post-

retreat assessment, discrepancy = 2,887.07, indicating similar levels of between-subject 

variability at pre- and mid-retreat, with slightly lower between-person variability by post-retreat. 

Collapsing across assessments, sequences during the close other epoch were significantly 

different from sequences during the difficult other epoch, stat = 1.75, p < .001, but did not 

significantly differ from sequences during the all others epoch, stat = 1.11, p = .121. Consistent 

with this, centroid distances between the close other and difficult other epochs, centroid distance 
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= 627.63, were greater than between the close other and all others epochs, centroid distance = 

586.59. Discrepancies were similar between the close other, discrepancy = 2,835.88, and all 

others, discrepancy = 2,816.24, epochs, but were higher in the difficult other epoch, discrepancy 

= 3117.32. This indicates that sequences during the difficult other epoch had greater between-

subject variability. 

In the training group, sequences at the pre-retreat assessment were significantly different 

from sequences at the mid-retreat assessment, stat = 1.32, p = .002, but not from sequences at the 

post-retreat assessment, stat = 1.16, p = .052. Consistent with this, the centroid distance between 

sequences at pre- and sequences at mid-retreat, centroid distance = 610.38 was slightly larger 

than the centroid distance from pre- to post-retreat, centroid distance = 606.85. Discrepancies 

were similar at the pre-, discrepancy = 2,856.39, mid-, discrepancy = 2,845.35, and post-retreat, 

discrepancy = 2,878.57 assessments, indicating similar levels of between-subjects variability in 

microstate sequences. Comparing meditation epochs, sequences during the close other epoch 

were significantly different from sequences during the difficult other, stat = 2.47, p < .001, and 

all others, stat = 1.33, p = .002, epochs.  An examination of centroid distances showed a greater 

distance between the close other and difficult other epochs, centroid distance = 663.97, than 

between the close and all others epochs, centroid distance = 599.08. Discrepancies once again 

indicated higher levels of between-subjects variability in the difficult other epoch, discrepancy = 

3,063.37, than in the close other, discrepancy = 2,759.50, or all others, discrepancy = 2,738.65, 

epochs. 

Retreat 2 

We next tested for sequence dissimilarities as a function of our predictors in Retreat 2. 

These analyses compared Retreat 1 waitlist controls to themselves in training during Retreat 2. 
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The initial main effects model indicated a significant difference in microstate sequences as a 

function of participants’ status as waitlist controls versus as training participants, stat = 1.39, p < 

.001. Sequences also differed as a function of assessment, with significant differences between 

the pre- and mid-retreat assessments, stat = 1.83, p < .001, and the pre- and post-retreat 

assessments, stat = 1.25, p = .003. Finally, sequences differed as a function of epoch: the close 

other epoch significantly differed from both the difficult other, stat = 2.11, p < .001, and all 

others, stat = 1.32, p < .001, epochs. The second model incorporating all two-way interactions 

indicated that participants showed different patterns of dissimilarities from the pre- to mid-retreat 

assessments, stat = 1.32, p < .001, and the pre- to post-retreat assessments, stat = 1.69, p < .001, 

when they were training participants versus when they were waitlist controls. There were no 

significant two-way interactions between status and epoch, or assessment and epoch, all ps > 

.399. Finally, we tested for three-way interactions between status, assessment, and epoch. This 

third model found no significant three-way interactions, all ps > .268.  

We then conducted directed comparisons within the Retreat 2 training group. For a map 

of pairwise dissimilarities in Retreat 2, see Figure 3.3; for matrix of centroid distances, see 

Figure 3.4, panel A.  For directed comparisons in these participants as waitlist controls, see 

Retreat 1 analyses above. Comparisons collapsing the effect of assessment across epochs 

indicated that Retreat 2, participants’ microstate sequences significantly differed between the 

pre- and mid-retreat, stat = 2.36, p < .001, and the pre- and post-retreat, stat = 2.27, p < .001, 

assessments. The centroid distance between the pre- and mid-retreat assessments, centroid 

distance = 731.28, was slightly larger than between the pre- and post-retreat assessments, 

centroid distance = 712.67, while discrepancies were similar at the pre-, discrepancy = 2,900.90, 

mid-, discrepancy = 2,955.37, and post-retreat, discrepancy = 2,926.40 assessments, indicating 
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similar levels of between-subjects variability. Across assessments, the close other epoch was 

significantly different from both the difficult other, stat = 2.07, p < .001, and all others, stat = 

1.26, p = .008, epochs. The centroid distance between the close other and difficult other epochs, 

centroid distance = 661.50, was greater than between the close other and all others epochs, 

centroid distance = 613.13. Consistent with Retreat 1 findings, discrepancy in the difficult other 

epoch, discrepancy = 3,105.82, was larger than in the close other, discrepancy = 2842.66 or all 

others, discrepancy = 2835.41, epochs, indicating that sequences in this epoch demonstrated 

greater between-subjects variability. 

Sensitivity Analysis 

Finally, we conducted a sensitivity analysis to confirm that observed dissimilarities were 

not a function of different sequence lengths across the different epochs. To do this, all files were 

truncated to the length of the longest file in the shortest epoch (e.g., the length of a close other 

file with no artifacts removed, 3 min 39.69 seconds), and then all analysis steps were repeated on 

these shortened files. In Retreat 1, results from all models were consistent with the findings from 

models of the full length data. Sequences were not significantly different between groups, stat = 

.961, p = .693, but across groups were significantly different from pre- to mid-retreat, stat = 1.48, 

p < .001, though not from mid- to post-retreat, stat = 1.12, p = .056. Importantly, the differences 

between epochs was maintained, with sequences in the close other epoch significantly differing 

from sequences in the difficult other, stat = 1.56, p < .001, and all others, stat = 1.46, p < .001, 

epochs. The model incorporating two-way interactions indicated a significant interaction 

between group and assessment at the mid-retreat assessment, stat = 1.15, p = 0.029. No other 

interactions reached significance, all ps > .085. Finally, the model incorporating interactions 
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between group, assessment, and epoch indicated that there were no significant three-way 

interactions, all ps >.340.  

In Retreat 2, results were once again consistent with findings from the models of the full 

length data. The main effects model indicated significant differences between microstate 

sequences when participants were waitlist controls versus training participants, stat = 1.42, p < 

.001. Across statuses, sequences differed as a function of assessment: sequences at the pre-retreat 

assessment were significantly different from sequences at the mid-, stat = 1.84, p < .001, and 

post-retreat, stat = 1.27, p = .002, assessments. Importantly, these standardized-length sequences 

also differed between epochs: the close other epoch significantly differed from both the difficult 

other, stat = 1.24, p = .004, and all others, stat = 1.36, p < .001, epochs. The model incorporating 

two-way interactions indicated a significant interaction between status and assessment at the 

mid-, stat = 1.30, p = .001, and post-retreat, stat = 1.67, p < .001, assessments. No other two-way 

interactions were significant, all ps > .431. The final model incorporating three-way interactions 

found no significant interactions between status, assessment, and epoch, all ps > .344.  

As a whole, these models suggest that observed effects reported in the main analysis are 

not due to differences in sequence lengths between meditation epochs. 

Discussion 

Overview 

In a waitlist-controlled study, we found shifts in the duration, strength, and temporal 

patterning of EEG microstates while experienced meditators engaged in a guided compassion 

meditation. We also found consistent differences in the temporal sequencing of microstates as a 

function of who participants were generating compassion for (a close other, a difficult other, all 

others).  Microstates were derived by segmenting continuous EEG into sequences of quasi-stable 
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categorical configurations reflecting moments of phase-synchronized network activity, and were 

examined for changes over the course of two 3-month long retreats. Our findings corroborate 

evidence from previous studies suggesting that a central effect of intensive retreat-based 

meditation training is a global shift toward increased neural flexibility and excitability (Saggar et 

al., 2012; Skwara et al., in revision; Zanesco et al., 2021). Additionally, to our knowledge they 

provide the first neural evidence that the mental operations evoked when generating compassion 

may vary based on who the compassion is directed toward. 

Discussion of Core Findings 

Data-driven clustering identified five global centroids that best accounted for the variance 

in topographic voltage patterns across our 267 EEG recordings. The topographic configurations 

of these centroids matched up well with canonical microstate configurations A through E that 

have been identified in prior research (see Michel & Koenig, 2018 for a review). While these 

five global centroids together accounted for the majority of observed topographic variance in the 

recording-level centroids in clustering (~83%), and in both the global field power peaks (~71%) 

and the continuous time series (~57%) in fitting, an appreciable proportion of the variance went 

unexplained. Thus, while the set of global centroids chosen met the criterion of explaining the 

most variance with the minimum number of configurations at the group level, it is possible that 

other microstate configurations not included in this set—or selection criteria favoring specificity 

over generalizability (e.g., Koenig et al., 2014)—would have better explained variance in 

individual files or demonstrated relevance to meditation-related processes. 

Of these five global configurations, microstate C explained the greatest proportion of 

observed variance, had the longest duration, occurred most frequently, and had the strongest 

global field power. This was true across waitlist control and training participants in both retreats, 
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and is consistent with patterns observed in large-scale studies of normative populations (e.g., 

Koenig et al., 2002; Zanesco et al., 2020) as well as for a previous analysis of these same 

participants during eyes closed rest (Zanesco et al., 2021). Although there were group differences 

in the predominance of configuration C in Retreat 1—with the waitlist control group showing 

greater differences between microstate C and other configurations—these differences were 

present at the pre-retreat assessment and did not change with training, suggesting that they were 

likely due to baseline individual differences between groups. Supporting this assertion, these 

group differences were not identified when comparing waitlist controls to themselves in Retreat 

2 training.  

We did not find any configuration-specific training effects, suggesting that the retreat-

related changes observed in the current study did not differentially affect specific microstate 

configurations and their underlying generators. This implies that changes captured by the current 

analysis are likely related to global shifts in brain dynamics regulating arousal or excitability 

(Michel & Koenig, 2018; Zanesco et al., 2021). 

Across configurations, we observed longitudinal reductions in microstate duration and 

strength during compassion meditation. Decreases in duration appeared to be specific to training 

participants, but this effect was not consistent across the two retreat interventions. This finding 

indicates that microstate duration may be sensitive to retreat training, but lacks the robust 

evidence offered by replication across retreats. Global field power—or the strength of a given 

microstate—showed consistent reductions over the course of the retreats. These reductions were 

not specific to participants in retreat training—they were also present in the waitlist control 

group. Training participants did, however, display lower microstate strength overall comparing 

between subjects in Retreat 1, as well as within subjects in Retreat 2. Thus while the pattern of 
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longitudinal change did not appear to differ by groups, the average level was lower in training 

participants. It is possible that there was, in fact, a training-related difference the trajectories of 

microstate strength, but we lacked the statistical power to detect it. Supporting this possibility, 

we found that retreat participants had greater overall reductions in global field power in models 

incorporating pre- and post-meditation rest. It is also possible that observed reductions in the 

strength of microstates were related to repeated practice of the guided compassion meditation 

rather than to the retreat intervention, and would therefore be expected to be present in both 

groups. Alternatively, the observed reductions could be due to factors unrelated to training or 

compassion meditation, such as increasing comfort with the testing paradigm or familiarity with 

the retreat center. 

Irrespective of the source of the change, reductions in microstate durations suggest less 

momentary stability in underlying neural generators (Khanna et al., 2015), while reductions in 

the peaks of global field power can be interpreted as a reflection of fewer phase-synchronized 

neurons contributing to the overall strength of a given topographic configuration (Zanesco et al., 

2021). Together, these patterns are indicative of more labile microstate dynamics. This lability 

may reflect greater present-centered awareness (Zanesco et al., 2021) and greater flexibility of 

dynamical neural systems that must balance the integration and segregation of information (e.g., 

Deco et al., 2011; Bressler & Kelso, 2016). 

Notably, these patterns of change appear similar to those found in a recent analysis of 

resting EEG in these same participants (Zanesco et al., 2021). In that study, EEG collected 

during 2 minutes of eyes-closed rest showed training-related reductions in microstate duration 

and strength. Consistent with this, in the present data we found no discernable differences 

between compassion meditation and quiet rest in the proportion of topographic variance 
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explained by the global centroids, nor in microstate duration or frequency of occurrence. One 

parameter did distinguish compassion meditation from rest: microstate strength. Participants 

across both retreats demonstrated lower overall global field power during compassion meditation 

than during rest, regardless of whether they were in training or acting as waitlist controls. While 

global field power was lower during meditation, microstate strength demonstrated larger 

decreases from the beginning to the middle of the retreats during pre-meditation rest than it did 

during compassion meditation.  

Global field power is thought to reflect the degree of neural synchronization within 

underlying generators, while microstate topography is primarily driven by activity in the alpha 

envelope (Milz et al., 2017). Compassion meditation is presumably a more directed mental 

activity than uninstructed rest. As such, the current observation of lower global field power 

during compassion meditation compared to rest would be broadly consistent with the well-

established pattern of task-related increases in alpha desynchronization (e.g., Klimesch et al., 

1998; Klimesch, 1999; Pfurtscheller et al., 1996). It is, however, inconsistent with the oft-

reported observation of increased alpha power during meditation compared to rest (for a review, 

see Cahn and Polich, 2006). One possible interpretation is that the patterns observed in 

microstate parameters in the current study are more related to changes in general neurocognitive 

systems than to any compassion meditation-specific effects or neural generators. Indeed, this 

would be unsurprising given that microstate analysis 1) assumes the presence of global (non-

task-specific) brainstates and 2) is concerned with capturing the broad dynamics of these global 

brainstates rather than variations within them (Michel & Koenig, 2018). 

Consistent with this interpretation, when we employed multivariate sequence analysis—

an approach better-suited to capturing shifts in the temporal dynamics of microstates—we were 
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able to identify more nuanced changes in the microstate syntax. This analysis revealed training-

related differences in microstate sequences, and was able to distinguish sequences as a function 

of the target of compassion. Sequence dissimilarities tended to be more pronounced from the 

beginning to the middle of retreat than from the beginning to the end. We have observed this in 

previous analyses of EEG data in these same participants (Saggar et al., 2012; Skwara et al., in 

revision), though not consistently so. Additionally, while the training and control groups 

displayed different patterns of change, the direction of these differences was not consistent 

between retreats. In Retreat 1, the waitlist controls demonstrated more dissimilar sequences from 

pre- to mid-retreat than did the training group. However when these participants completed the 

training intervention in Retreat 2, they displayed greater dissimilarities from the pre- to mid-

retreat assessments, as well as significant changes from the pre- to post-assessments. This 

suggests that at least some of the sequence differences we observed are due to practice effects of 

repeated engagement with the guided compassion meditation.  

The strongest effect emerged when comparing microstate sequences generated during 

epochs of the meditation that instructed participants to focus on different targets of compassion. 

In line with our prediction that mental operations—and thus microstate patterns—should vary 

with the target of compassion, we found that sequences differed as a function of compassion 

meditation epoch (close other, difficult other, all others). This was true across retreats and groups 

– training status did not modulate this effect. However, despite our prediction that mental 

representations of close and difficult others should become less differentiated over retreat, we 

found no evidence that the similarities of these epochs reliably changed with training. Across all 

assessments and groups, sequences during the difficult other epoch demonstrated the highest 

dissimilarity from other epochs (Figure 3.3; Figure 3.4). This remained the case when controlling 
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for differences in sequence lengths between epochs. As the epochs were always presented in the 

same order, one possibility is that differences between epochs could reflect deepening states of 

absorption (e.g., Faber et al., 2017; Schoenberg et al., 2019). While we cannot rule out this 

possibility, it seems unlikely as difficult other, which consistently had the highest dissimilarity 

with the other two epochs, was the middle epoch of the meditation.  

Sequences during the difficult other epoch also demonstrated the greatest discrepancies, 

meaning that the sequences within this epoch showed the most dispersion around their 

multivariate distance center. This suggests this epoch evoked the most variable mental activity 

between subjects. This could potentially reflect variation from a number of sources. For instance, 

it is possible that participants took more varied approaches to the generation of compassion for a 

difficult person, given the ostensible greater difficulty of this task. Indeed, practitioners are often 

instructed to engage in more elaborative storytelling, such as imagining the difficult other as a 

baby, to assist in overcoming feelings of resistance to compassion (e.g., Wallace, 1999). Though 

the guided meditation did not include these details, all of the participants in this study were 

experienced meditators and likely had practice with these more elaborative techniques. Another 

possibility is that imagining the suffering of difficult others elicited more varied emotional or 

cognitive reactions, including feelings of schadenfreude, indifference, or resistance, that are less 

likely to be triggered in the close or all others epochs. However, while these are tempting 

explanatory theories, without detailed phenomenological reporting it is impossible to truly know 

if participants undertook a greater range of mental activities in this epoch, or if this could 

account for the observed variability. 

A recent theoretical account has proposed that compassion-based contemplative practices 

may influence real-world compassionate behaviors by simulating the experience of encountering 
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suffering and responding with compassion as if it were actually happening (Wilson-Mendenhall, 

2021). By using vividly-imagined scenarios of suffering and compassionate action to engage the 

neurocognitive networks involved in compassionate responding, these practices may prime the 

practitioner to act compassionately when they encounter these scenarios in daily life. Following 

on this, if we consider each microstate to reflect a moment of cognition (Changeux and Michel, 

2004), and a sequence of microstates a representation of the evolution of these moments as they 

unfold over time, our current findings suggest that the mental simulations undertaken when 

generating compassion for varying classes of others are distinct from one another, particularly in 

the case of the difficult other. While this does not provide insight into the exact neurocognitive 

processes at play, it establishes microstate sequence analysis as a potentially useful tool for 

examining the similarity of the simulations ostensibly undertaken when generating compassion 

for various others. 

Previous findings in these same participants demonstrating increases in other-oriented 

care and concern (Rosenberg et al., 2015) and greater self-relevance of others’ suffering (King et 

al., in prep). Despite this, the current findings offer no evidence that three months of intensive 

meditation training reduced differentiation between close and difficult others. Other recent works 

have pointed out the dualistic view of compassion that is embedded in much of Western 

compassion training and research (Quaglia et al., 2021), and have called for a return to the 

relational core of compassion training to overcome barriers to compassion (Condon & 

Makransky, 2020). The current data demonstrate that these are essential questions to grapple 

with if we are to take seriously the project of learning to collectively expand our circles of care. 
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Strengths, Limitations, and Future Directions 

The current study conveys several strengths. The waitlist control design includes a built-

in replication in the form of Retreat 2, allowing greater confidence in findings that are consistent 

across both retreat interventions. Further, the intensity of the intervention itself potentially allows 

us to identify effects that may not be obvious in less immersive settings. The current analysis 

includes direct comparisons between rest and meditation, which allows for greater 

interpretability of training effects. Finally, the richness of data available on this cohort of 

participants allows for a rare level of contextualization of the data in the present analysis. 

Crucially, all core analyses were preregistered, offering transparency and increased confidence in 

the observed effects. 

There are also a number of limitations to the current analysis. This study relies on a 

relatively small sample size of experienced meditators. This means that we may not have the 

statistical power to detect smaller effects, and our results may be specific this population. 

Additionally, the compassion meditation epochs proceeded in the same order for all participants 

at all assessments. This means that we cannot rule out the possibility that observed sequence 

differences are driven by order effects. The choice of microstate analysis as a method also 

implies several limitations. In preparation for microstate analysis, continuous EEG data are 

subjected to a high degree of filtering and downsampling, which may mask effects that are 

carried by higher frequency bands or unfold on a faster timescale. Indeed, microstate 

topographies are thought to primarily reflect activity in the alpha envelope (Milz et al., 2017), 

but meditation training has been shown to influence oscillatory activity across a broad range of 

frequencies (Cahn & Polich, 2006; Lomas et al., 2015) including the gamma band (e.g., Lutz et 

al., 2004; Schoenberg et al., 2018). In the current analysis, we defined our global centroids 
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across all conditions, meditation epochs, assessments, and groups. This enabled us to compare 

across these factors, but also means that our analysis would be insensitive to topographic 

reconfigurations such as have been recently observed following meditation training (Brechet et 

al., 2021).  

One way to examine topographic variation, while still maintaining the ability to compare 

parameters and sequences across groups, would be to examine the spatial correlations between 

centroid topographies from each group of participants that were assigned to the same global 

cluster. Additionally, tests to see if the current findings have any relationship to compassion-

relevant behavioral or self-report measures would help to clarify our interpretations. Generally, a 

primary challenge in studying brain activity during meditative practices is that it is impossible to 

know exactly what a person is doing at any given moment, particularly without in-depth 

phenomenological reporting (e.g., Kok & Singer, 2017; Petitmengin et al., 2019; Przyrembel & 

Singer, 2018). Including approaches that address the phenomenological gap between third and 

first person measures may be an important aspect of future studies attempting to capture and 

interpret the variation and richness of meditative experience (Lutz et al., 2015; Lutz & 

Thompson, 2003; Varela, 1996).  

Conclusion 

The current study adds to a series of findings from these residential retreat interventions 

that demonstrate task-general changes in large-scale brain processes that may regulate network 

excitability. These changes appear to permeate across quiet rest (Skwara et al., in revision; 

Zanesco et al., 2021), concentrative breath meditation (Saggar et al., 2012), and guided 

compassion meditation. As a whole, these studies offer converging evidence that a primary effect 

of this intensive retreat training is a generalized increase in the lability and sensitivity of 
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neurocognitive systems, which may in turn support greater flexibility in responding to the 

demands of the present moment (Bressler & Kelso, 2016; Zanesco et al., 2021). We also present 

the first-known evidence that epochs of compassion meditation can be distinguished based on the 

target of compassion. This establishes microstate sequence analysis as a potentially useful tool 

for quantifying some aspects of the mental operations engaged during compassion generation for 

various others. While these findings should be considered preliminary, they may have 

implications for approaches to training compassion, particularly when working to extend the 

circle of care. 

  



153 
 

References 

Abbott, A., & Tsay, A. (2000). Sequence analysis and optimal matching methods in sociology: 
Review and prospect. Sociological Methods & Research, 29(1), 3-33. 
https://doi.org/10.1177/0049124100029001001 

 
Allport, G. (1954). The nature of prejudice. Addison-Wesley. 
 
Ashar, Y. K., Andrews-Hanna, J. R., Yarkoni, T., Sills, J., Halifax, J., Dimidjian, S., & Wager,  

T. D. (2016). Effects of compassion meditation on a psychological model of charitable 
donation. Emotion, 16(5), 691. 

 
Ashar, Y. K., Andrews-Hanna, J. R., Halifax, J., Dimidjian, S., & Wager, T. D. (2021). Effects  

of compassion training on brain responses to suffering others. Social Cognitive and 
Affective Neuroscience, 16(10), 1036-1047. 

 
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.  
 https://doi.org/10.1146/annurev.psych.59.103006.093639  
 
Barsalou, L. W. (2009). Simulation, situated conceptualization, and prediction. Philosophical  

Transactions of the Royal Society B: Biological Sciences, 364(1521), 1281–1289. 
https://doi.org/10.1098/rstb.2008.0319 

 
Bates D, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models Using  
 lme4.” Journal of Statistical Software, 67(1), 1–48. doi: 10.18637/jss.v067.i01. 
 
Belouchrani, A., Abed-Meraim, K., Cardoso, J. F., & Moulines, E. (1997). A blind source  

separation technique using second-order statistics. IEEE Transactions on Signal 
Processing, 45(2), 434-444. https://doi.org/10.1109/78.554307  

 
Blackburn, S. (2003). Ethics: A very short introduction (Vol. 80). Oxford University Press. 
 
Böckler, A., Tusche, A., Schmidt, P., & Singer, T. (2018). Distinct mental trainings differentially  

affect altruistically motivated, norm motivated, and self-reported prosocial behaviour. 
Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-31813-8 

 
Brechet, L., Brunet, D., Birot, G., Gruetter, R., Michel, C. M., & Jorge, J. (2019). Capturing the 

spatiotemporal dynamics of task-initiated thoughts with combined EEG and fMRI. 
Neuroimage, 194, 82-92. https://doi.org/10.1016/j.neuroimage.2019.03.029 

 
Bréchet, L., Ziegler, D. A., Simon, A. J., Brunet, D., Gazzaley, A., & Michel, C. M. (2021).  

Reconfiguration of electroencephalography microstate networks after breath-focused, 
digital meditation training. Brain Connectivity, 11(2), 146-155. 

https://doi.org/10.1177/0049124100029001001
https://doi.org/10.1146/annurev.psych.59.103006.093639
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1109/78.554307


154 
 

 
Bressler, S. L., & Kelso, J. A. S. (2016). Coordination dynamics in cognitive neuroscience. 

Frontiers in Neuroscience, 10, 397. https://doi.org/10.3389/fnins.2016.00397 
 
Bressler, S.L., & Menon, V. (2010). Large-scale brain networks in cognition: emerging methods 

and principles. Trends in Cognitive Sciences, 14, 277–290. 
 
Brewer, M. B. (1999). The psychology of prejudice: Ingroup love or outgroup hate?. Journal of  
 Social Issues, 55, 429-444. 
 
Brown, R. (2011). Prejudice: Its social psychology. John Wiley & Sons. 
 
Brunet, D., Murray, M. M., & Michel, C. M. (2011). Spatiotemporal analysis of multichannel 

EEG: CARTOOL. Computational Intelligence and Neuroscience, 2011, 2. 
https://doi.org/10.1155/2011/813870 

 
Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging  

studies. Psychological Bulletin, 132(2), 180-211. 
https://doi.org/10.1037/00332909.132.2.180 
 

Changeux, J. P., & Michel, C. M. (2004). Mechanisms of neural integration at the brain-scale  
level: The neuronal workspace and microstate models. In S. Grillner & A. M. Graybiel 
(Eds.), Microcircuits: The interface between neurons and global brain function (347-
370). The MIT Press. 

 
Chödrön, P. (2001). Tonglen: The path of transformation. Vajradhatu Publications. 
 
Cikara, M., Bruneau, E. G., & Saxe, R. R. (2011). Us and them: Intergroup failures of 

empathy. Current Directions in Psychological Science, 20(3), 149-153. 
 
Condon, P., Desbordes, G., Miller, W. B., & DeSteno, D. (2013). Meditation increases  

compassionate responses to suffering. Psychological Science, 24(10), 2125–2127. 
https://doi.org/10.1177/0956797613485603 

 
Condon, P., & Makransky, J. (2020). Recovering the relational starting point of compassion 

training: a foundation for sustainable and inclusive care. Perspectives on Psychological 
Science, 15(6), 1346-1362. 

 
Custo, A., Van De Ville, D., Wells, W. M., Tomescu, M. I., Brunet, D., & Michel, C. M. (2017). 

Electroencephalographic resting-state networks: Source localization of microstates. Brain 
Connectivity, 7(10), 671-682. https://doi.org/10.1089/brain.2016.0476  

 
 

https://doi.org/10.1037/00332909.132.2.180


155 
 

Dahl, C. J., Lutz, A., & Davidson, R. J. (2015). Reconstructing and deconstructing the self:  
cognitive mechanisms in meditation practice. Trends in Cognitive Sciences, 19(9), 515-
523. 

 
Dalai Lama & Chodron, T. (2017). Buddhism: One teacher, many traditions. Simon and  
 Schuster. 
 
Dalai Lama & Kamalashila (2001). Stages of meditation (Geshe L. Jordhen, L. C. Ganchenpa, &  
 J. Russell, Trans.). Snow Lion Publications. 
 
De Dreu, C. K., Greer, L. L., Van Kleef, G. A., Shalvi, S., & Handgraaf, M. J. (2011). Oxytocin  

promotes human ethnocentrism. Proceedings of the National Academy of 
Sciences, 108(4), 1262-1266. 

 
Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical 

organization of resting-state activity in the brain. Nature Reviews Neuroscience, 12, 43-
56. https://doi.org/10.1038/nrn2961 

 
Desbordes, G., Negi, L. T., Pace, T. W., Wallace, B. A., Raison, C. L., & Schwartz, E. L. (2012).  

Effects of mindful-attention and compassion meditation training on amygdala response to 
emotional stimuli in an ordinary, non-meditative state. Frontiers in Human 
Neuroscience, 6, 292. 

 
Donald, J. N., Sahdra, B. K., Van Zanden, B., Duineveld, J. J., Atkins, P. W., Marshall, S. L., &  

Ciarrochi, J. (2019). Does your mindfulness benefit others? A systematic review and 
meta‐analysis of the link between mindfulness and prosocial behaviour. British Journal 
of Psychology, 110(1), 101-125. 

 
Engen, H. G., & Singer, T. (2015). Compassion-based emotion regulation up-regulates  

experienced positive affect and associated neural networks. Social Cognitive and 
Affective Neuroscience, 10(9), 1291-1301. 

 
Engen, H. G., Bernhardt, B. C., Skottnik, L., Ricard, M., & Singer, T. (2018). Structural changes  

in socio-affective networks: multi-modal MRI findings in long-term meditation 
practitioners. Neuropsychologia, 116, 26-33. 

 
Faber, P. L., Travis, F., Milz, P., & Parim, N. (2017). EEG microstates during different phases of 

Transcendental Meditation practice. Cognitive Processing, 18(3), 307-314. 
https://doi.org/10.1007/s10339-017-0812-y 

 
Fiske, S. T. (2002). What we know now about bias and intergroup conflict, the problem of the 

century. Current Directions in Psychological Science, 11(4), 123-128. 
 



156 
 

Flew, A. (1979). Golden rule. A dictionary of philosophy, 134. 
 
Fries, P., 2005. A mechanism for cognitive dynamics: neuronal communication through neuronal 

coherence. Trends in Cognitive Sciences, 9, 474–480. 
 
Gabadinho, A., Ritschard, G., Müller, N. S., & Studer, M. (2011). Analyzing and visualizing 

state sequences in R with TraMineR. Journal of Statistical Software 40(4), 1-37. 
https://doi.org/10.18637/jss.v040.i04 

 
Gaesser, B., & Fowler, Z. (2020). Episodic simulation of prosocial interaction: Investigating the  

roles of memory and imagination in facilitating a willingness to help others. Psychology 
of Consciousness: Theory, Research, and Practice, 7(4), 376–387. 
https://doi.org/10.1037/cns0000232 

 
Gaesser, B. (2013). Constructing memory, imagination, and empathy: A cognitive neuroscience  
 perspective. Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00576 
 
Gobodo-Madikizela, P. (2016). Breaking intergenerational cycles of repetition: A global  
 dialogue on historical trauma and memory. Barbara Budrich Publishers. 
 
Gyatrul Rinpoche (2008). Path of the Bodhisattva (S. Khandro, Trans.). Vimala Publishing. 
 
Halifax, J. (2012). A heuristic model of enactive compassion. Current Opinion in Supportive and  
 Palliative Care, 6(2), 228-235. 
 
Hammond, R. A., & Axelrod, R. (2006). The evolution of ethnocentrism. Journal of Conflict  
 Resolution, 50(6), 926-936. 
 
Hardwick, R. M., Caspers, S., Eickhoff, S. B., & Swinnen, S. P. (2018). Neural correlates of  

action: Comparing meta-analyses of imagery, observation, and execution. Neuroscience 
and Biobehavioral Reviews, 94, 31–44. https://doi.org/10.1016/j.neubiorev.2018.08.003 

 
Harris, L. T., & Fiske, S. T. (2011). Dehumanized Perception: A Psychological Means to  

Facilitate Atrocities, Torture, and Genocide?. Zeitschrift fur Psychologie, 219(3), 175–
181. https://doi.org/10.1027/2151-2604/a000065 

 
Hastorf, A. H., & Cantril, H. (1954). They saw a game; a case study. The Journal of Abnormal  
 and Social Psychology, 49(1), 129. 
 
Helske, S., & Helske, J. (2019). Mixture hidden Markov models for sequence data: the seqHMM 

package in R. Journal of Statistical Software, 88(3), 1-32. 
https://doi.org/10.18637/jss.v088.i03  

 

https://doi.org/10.1037/cns0000232
https://doi.org/10.3389/fpsyg.2012.00576
https://doi.org/10.1016/j.neubiorev.2018.08.003


157 
 

Kang, Y., Gray, J. R., & Dovidio, J. F. (2014). The nondiscriminating heart: lovingkindness  
meditation training decreases implicit intergroup bias. Journal of Experimental 
Psychology: General, 143(3), 1306. 

 
King, B. G., Zanesco, A. P., Skwara, A. C., & Saron, C. D. (in preparation). Cultivating concern  

for others’ well-being: Meditation training and the motivation to engage with human 
suffering. 

 
Kirby, J. N., Tellegen, C. L., & Steindl, S. R. (2017). A meta-analysis of compassion-based  

interventions: Current state of knowledge and future directions. Behavior Therapy, 48(6), 
778-792. 

 
Klimecki, O. M., Leiberg, S., Lamm, C., & Singer, T. (2013). Functional neural plasticity and  

associated changes in positive affect after compassion training. Cerebral Cortex, 23(7), 
1552-1561. 

 
Klimecki, O. M., Leiberg, S., Ricard, M., & Singer, T. (2014). Differential pattern of functional  

brain plasticity after compassion and empathy training. Social Cognitive and Affective 
Neuroscience, 9(6), 873-879. 

 
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory  

performance: a review and analysis. Brain Research Reviews, 29(2-3), 169-195. 
https://doi.org/10.1016/S0165-0173(98)00056-3  
 

Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., & Schwaiger, J. (1998). Induced 
alpha band power changes in the human EEG and attention. Neuroscience 
Letters, 244(2), 73-76. 

 
Koenig, T., & Brandeis, D. (2016). Inappropriate assumptions about EEG state changes and their 

impact on the quantification of EEG state dynamics. Neuroimage, 125, 1104-1106. 
https://doi.org/10.1016/j.neuroimage.2015.06.035  

 
Koenig, T., Prichep, L., Lehmann, D., Sosa, P. V., Braeker, E., Kleinlogel, H., Isenhart, R., &  

John, E. R. (2002). Millisecond by millisecond, year by year: normative EEG microstates 
and developmental stages. Neuroimage, 16(1), 41-48. 

 
Koenig, T., Stein, M., Grieder, M., & Kottlow, M. (2014). A tutorial on data-driven methods for  
 statistically assessing ERP topographies. Brain Topography, 27(1), 72-83. 
 
Kok, B. E., & Singer, T. (2017). Phenomenological fingerprints of four meditations: Differential 

states changes in affect, mind-wandering, meta-cognition, and interoception before and 
after daily practice across 9 months of training. Mindfulness, 8(1), 218-231. 
https://doi.org/10.1007/s12671-016-0594-9 

https://doi.org/10.1016/S0165-0173(98)00056-3


158 
 

 
Kteily, N., Bruneau, E., Waytz, A., & Cotterill, S. (2015). The ascent of man: Theoretical and  

empirical evidence for blatant dehumanization. Journal of Personality and Social 
Psychology, 109(5), 901. 

 
Kteily, N., Hodson, G., & Bruneau, E. (2016). They see us as less than human:  

Metadehumanization predicts intergroup conflict via reciprocal dehumanization. Journal 
of Personality and Social Psychology, 110(3), 343. 

 
Lang, J. (2020). The limited importance of dehumanization in collective violence. Current  
 Opinion in Psychology, 35, 17-20. 
 
Lehmann, D. (1971). Multichannel topography of human alpha EEG fields. 

Electroencephalography and Clinical Neurophysiology, 31(5), 439-449. 
https://doi.org/10.1016/0013-4694(71)90165-9 

 
Lehmann, D., Ozaki, H., & Pál, I. (1987). EEG alpha map series: brain micro-states by space-

oriented adaptive segmentation. Electroencephalography and Clinical 
Neurophysiology, 67(3), 271-288. 

 
Lingpa, D. (2016). Heart of the great perfection: Dudjom Lingpa's visions of the great 

perfection (B.A. Wallace, Trans.). Simon and Schuster. 
 
Lomas, T., Ivtzan, I., & Fu, C. H. (2015). A systematic review of the neurophysiology of  

mindfulness on EEG oscillations. Neuroscience & Biobehavioral Reviews, 57, 401-410. 
https://doi.org/10.1016/j.neubiorev.2015.09.018  
 

Lutz, A., Brefczynski-Lewis, J., Johnstone, T., & Davidson, R. J. (2008). Regulation of the  
Opinion in Psychology, 35, 17-20.neural circuitry of emotion by compassion meditation: 
effects of meditative expertise. PloS one, 3(3), e1897. 

 
Lutz, A., Greischar, L. L., Perlman, D. M., & Davidson, R. J. (2009). BOLD signal in insula is  

differentially related to cardiac function during compassion meditation in experts vs. 
novices. Neuroimage, 47(3), 1038-1046. 

 
Lutz, A., Greischar, L. L., Rawlings, N. B., Ricard, M., & Davidson, R. J. (2004). Long-term  

meditators self-induce high-amplitude gamma synchrony during mental 
practice. Proceedings of the national Academy of Sciences, 101(46), 16369-16373. 

 
Lutz, A., Jha, A. P., Dunne, J. D., & Saron, C. D. (2015). Investigating the phenomenological 

matrix of mindfulness-related practices from a neurocognitive perspective. American 
Psychologist, 70(7), 632-658. https://doi.org/10.1037/a0039585. 

 

https://doi.org/10.1016/0013-4694(71)90165-9
https://doi.org/10.1016/j.neubiorev.2015.09.018


159 
 

Lutz, A., & Thompson, E. (2003). Neurophenomenology: Integrating subjective experience and 
brain dynamics in the neuroscience of consciousness. Journal of Consciousness Studies, 
10(9-10), 31-52. 

 
MacLean, K. A., Ferrer, E., Aichele, S. R., Bridwell, D. A., Zanesco, A. P., Jacobs, T. L., King,  

B. G., Rosenberg, E. L., Sahdra, B. K., Shaver, P. R., Wallace, B. A., Mangun, G. R., & 
Saron, C. D. (2010). Intensive meditation training improves perceptual discrimination 
and sustained attention. Psychological Science, 21(6), 829-839. 
https://doi.org/10.1177/0956797610371339  

 
Makransky, J. (2012). Compassion in Buddhist psychology. In C. Germer & R. D. Siegel (Eds.),  

Wisdom and compassion in psychotherapy: Deepening mindfulness in clinical practice 
(pp. 61–75). Guilford Publications. 

 
McArdle, B. H., & Anderson, M. J. (2001). Fitting multivariate models to community data: A 

comment on distance-based redundancy analysis. Ecology, 82(1), 290-297. 
https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 

 
McArtor, D. B. (2018). MDMR: Multivariate Distance Matrix Regression. R package version 

0.5.1. https://CRAN.R-project.org/package=MDMR 
 
McArtor, D. B., Lubke, G. H., & Bergeman, C. S. (2017). Extending multivariate distance matrix 

regression with an effect size measure and the asymptotic null distribution of the test 
statistic. Psychometrika, 82(4), 1052-1077. https://doi.org/10.1007/s11336-016-9527-8 

 
Meehan, T.P., Bressler, S.L., 2012. Neurocognitive networks: findings, models, and theory.  
 Neuroscience and Biobehavioral Reviews, 36, 2232–2247. 
 
Michel, C. M., & Brunet, D. (2019). EEG source imaging: A practical review of the analysis 

steps. Frontiers in Neurology, 10:325. https://doi.org/10.3389/fneur.2019.00325 
 
Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying the temporal 

dynamics of whole-brain neuronal networks: A review. Neuroimage, 180, 577-593. 
https://doi.org/10.1016/j.neuroimage.2017.11.062 

 
Michel, C. M., Koenig, T., & Brandeis, D. (2009). Electric neuroimaging in the time domain. In 

C. M. Michel et al. (Eds.), Electrical Neuroimaging (pp. 111–144). Cambridge, UK: 
Cambridge University Press. https://doi.org/10.1017/CBO9780511596889  

 
Milz, P., Pascual-Marqui, R. D., Achermann, P., Kochi, K., & Faber, P. L. (2017). The EEG 

microstate topography is predominantly determined by intracortical sources in the alpha 
band. Neuroimage, 162, 353-361. 

 

https://doi.org/10.1177/0956797610371339
https://cran.r-project.org/package=MDMR
https://doi.org/10.1016/j.neuroimage.2017.11.062


160 
 

Molenberghs, P. (2013). The neuroscience of in-group bias. Neuroscience & Biobehavioral 
Reviews, 37(8), 1530-1536. 

 
Murray, M. M., Brunet, D., & Michel, C. M. (2008). Topographic ERP analyses: A step-by-step 

tutorial review. Brain Topography, 20(4), 249-264. https://doi.org/10.1007/s10548-008-
0054-5  

 
Oyler, D. L., Price-Blackshear, M. A., Pratscher, S. D., & Bettencourt, B. A. (2021).  

Mindfulness and intergroup bias: A systematic review. Group Processes & Intergroup 
Relations, https://doi.org/10.1177/1368430220978694 

 
Panda, R., Bharath, R. D., Upadhyay, N., Mangalore, S., Chennu, S., & Rao, S. L. (2016).  

Temporal dynamics of the default mode network characterize meditation-induced 
alterations in consciousness. Frontiers in Human Neuroscience, 10, 372. 

 
Patrul Rinpoche. (1998). The words of my perfect teacher: A complete translation of a classic  
 introduction to Tibetan Buddhism. Altamira Press. 
 
Pearson, J. (2019). The human imagination: The cognitive neuroscience of visual mental  

imagery. Nature Reviews Neuroscience, 20(10), 624–634. 
https://doi.org/10.1038/s41583-019-0202-9 

 
Petitmengin, C., van Beek, M., Bitbol, M., Nissou, J. M., & Roepstorff, A. (2019). Studying the 

experience of meditation through micro-phenomenology. Current Opinion in Psychology, 
28, 54-59. https://doi.org/10.1016/j.copsyc.2018.10.009 

 
Pfurtscheller, G., & Lopes da Silva, F. (1999). Event-related EEG/MEG synchronization and  

desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842-1857. 
https://doi.org/10.1016/S1388-2457(99)00141-8  

 
Przyrembel, M., & Singer, T. (2018). Experiencing meditation – Evidence for differential effects 

of three contemplative mental practices in micro-phenomenological interviews. 
Consciousness and Cognition, 62, 82-101. https://doi.org/10.1016/j.concog.2018.04.004 

 
Quaglia, J. T., Soisson, A., & Simmer-Brown, J. (2021). Compassion for self versus other: a  

critical review of compassion training research. The Journal of Positive 
Psychology, 16(5), 675-690. 

 
Rosenberg, E. L., Zanesco, A. P., King, B. G., Aichele, S. R., Jacobs, T. L., Bridwell, D. A.,  

MacLean, K. A., Shaver, P. R., Ferrer, E., Sahdra, B. K., Lavy, S., Wallace, B. A., & 
Saron, C. D. (2015). Intensive meditation training influences emotional responses to 
suffering. Emotion, 15(6), 775. https://doi.org/10.1037/emo0000080  

 

https://doi.org/10.1177%2F1368430220978694
https://doi.org/10.1038/s41583-019-0202-9
https://doi.org/10.1016/j.copsyc.2018.10.009
https://doi.org/10.1016/S1388-2457(99)00141-8
https://doi.org/10.1037/emo0000080


161 
 

Saggar, M., King, B. G., Zanesco, A. P., MacLean, K. A., Aichele, S. R., Jacobs, T. L., Bridwell,  
D. A., Shaver, P. R., Rosenberg, E. L., Sahdra, B. J.,  Ferrer, E., Tang, A. C., Mangun, G. 
R., Wallace, B. A., Miikkulainen, R., & Saron, C. D. (2012). Intensive training induces 
longitudinal changes in meditation state-related EEG oscillatory activity. Frontiers in 
Human Neuroscience, 6, 256. https://doi.org/10.3389/fnhum.2012.00256  

 
Sahdra, B. K., MacLean, K. A., Ferrer, E., Shaver, P. R., Rosenberg, E. L., Jacobs, T. L.,  

Zanesco, A. P., King, B. G., Aichele, S. R., Bridwell, D. A., Mangun, G. R., Lavy, S., 
Wallace, B. A., & Saron, C. D. (2011). Enhanced response inhibition during intensive 
meditation training predicts improvements in self-reported adaptive socioemotional 
functioning. Emotion, 11(2), 299-312. https://doi.org/10.1037/a0022764  

 
Salzberg, S. (2002). Lovingkindness: The revolutionary art of happiness. Shambhala 

Publications. 
 
Schoenberg, P. L., Ruf, A., Churchill, J., Brown, D. P., & Brewer, J. A. (2018). Mapping  

complex mind states: EEG neural substrates of meditative unified compassionate 
awareness. Consciousness and Cognition, 57, 41-53. 

 
Schoenberg, P. L., & Vago, D. R. (2019). Mapping meditative states and stages with  

electrophysiology: concepts, classifications, and methods. Current Opinion in 
Psychology, 28, 211-217. 

 
Sherif, M., Harvey, O. J., White, B. J., Hood, W. R., & Sherif, C. W. (1961). Intergroup conflict  

and cooperation. The Robbers Cave experiment (Vol. 10). University of Oklahoma Book 
Exchange. 

 
Shāntideva (2006). The way of the bodhisattva (The Padmakara Translation Group, Trans.).  
 Shambhala Publishing. 
 
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., Hergueta, T.,  

Baker, R., & Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview 
(M.I.N.I): The development and validation of a structured diagnostic psychiatric 
interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(Suppl 20), 
22–33. 

 
Shields, G. S., Skwara, A. C., King, B. G., Zanesco, A. P., Dhabhar, F. S., & Saron, C. D.  

(2020). Deconstructing the effects of concentration meditation practice on interference 
control: The roles of controlled attention and inflammatory activity. Brain, Behavior, and 
Immunity. https://doi.org/10.1016/j.bbi.2020.06.034  

 
 
 

https://doi.org/10.3389/fnhum.2012.00256
https://doi.org/10.1037/a0022764
https://doi.org/10.1016/j.bbi.2020.06.034


162 
 

Singer, M. G. (1963). The golden rule. Philosophy, 38(146), 293-314. 
 
Skrandies, W. (1990). Global field power and topographic similarity. Brain Topography, 3(1), 

137-141. https://doi.org/10.1007/BF01128870 
 
Skwara, A. C., King, B. G., & Saron, C. D. (2017). Studies of training compassion: What have  

we learned; what remains unknown. In E. M. Seppälä, E. Simon-Thomas, S. L. Brown, 
M. C. Worline, C. D. Cameron, & J. R. Doty (Eds.), The Oxford handbook of compassion 
science (pp. 219-236). Oxford University Press. 

 
Skwara, A. C., King, B. G., Zanesco, A. P., & Saron, C. D. (in revision). Shifting baselines:  

Longitudinal reductions in beta oscillatory power characterize resting brain activity with 
intensive meditation. 
 

Struch, N., & Schwarz, S. H. (1989). Intergroup aggression: Its predictions and distinctness from 
in-group bias. Journal of Personality and Social Psychology, 56, 364–373. 

 
Studer, M., & Ritschard, G. (2016). What matters in differences between life trajectories: a 

comparative review of sequence dissimilarity measures. Journal of the Royal Statistical 
Society, 179(2), 481-511. https://doi.org/10.1111/rssa.12125 

 
Studer, M., Ritschard, G., Gabadinho, A., & Müller, N. S. (2011). Discrepancy analysis of state 

sequences. Sociological Methods & Research, 40(3), 471-510. 
https://doi.org/10.1177/0049124111415372 

 
Tang, A. C., Sutherland, M. T., & McKinney, C. J. (2005). Validation of SOBI components from  

high-density EEG. NeuroImage, 25(2), 539-553. 
https://doi.org/10.1016/j.neuroimage.2004.11.027  

 
Turner, J. C., Oakes, P. J., Haslam, S. A., & McGarty, C. (1994). Self and collective: Cognition 
 and social context. Personality and Social Psychology Bulletin, 20(5), 454-463. 
 
Van de Ville, D., Britz, J., & Michel, C. M. (2010). EEG microstate sequences in healthy  

humans at rest reveal scale-free dynamics. Proceedings of the National Academy of 
Sciences, 107(42), 18179-18184. 

 
Varela, F. (1996). Neurophenomenology: A methodological remedy for the hard problem. 

Journal of Consciousness Studies, 3, 330–349. 
 
Viki, G. T., Osgood, D., & Phillips, S. (2013). Dehumanization and self-reported proclivity to  

torture prisoners of war. Journal of Experimental Social Psychology, 49(3), 325-328. 
 
 

https://doi.org/10.1007/BF01128870
https://doi.org/10.1016/j.neuroimage.2004.11.027


163 
 

Wallace, B. A. (1999). The four immeasurables: Practices to open the heart. Snow Lion  
 Publications. 
 
Wallace, B. A. (2006). The attention revolution: Unlocking the power of the focused mind.  
 Simon and Schuster. 
 
Wattles, J. (1996). The golden rule. Oxford University Press. 
 
Weng, H. Y., Fox, A. S., Hessenthaler, H. C., Stodola, D. E., & Davidson, R. J. (2015). The role  

of compassion in altruistic helping and punishment behavior. PloS one, 10(12), 
e0143794. 

 
Weng, H. Y., Fox, A. S., Shackman, A. J., Stodola, D. E., Caldwell, J. Z., Olson, M. C., Rogers,  

G. M., & Davidson, R. J. (2013). Compassion training alters altruism and neural 
responses to suffering. Psychological Science, 24(7), 1171-1180. 

 
Weng, H. Y., Lapate, R. C., Stodola, D. E., Rogers, G. M., & Davidson, R. J. (2018). Visual  

attention to suffering after compassion training is associated with decreased amygdala 
responses. Frontiers in Psychology, 9, 771. 

 
Wilson-Mendenhall, C., Dunne, J., & Davidson, R. (2021). Visualizing compassion: Episodic  

simulation as contemplative practice. MindRxiv. https://doi.org/10.31231/osf.io/zbu6k 
 
Wilson-Mendenhall, C. D., Henriques, A., Barsalou, L. W., & Barrett, L. F. (2019). Primary  

interoceptive cortex activity during simulated experiences of the body. Journal of 
Cognitive Neuroscience, 31(2), 221–235. https://doi.org/10.1162/jocn_a_01346 

 
Zanesco, A. P., King, B. G., Skwara, A. C., & Saron, C. D. (2020). Within and between-person 

correlates of the temporal dynamics of resting EEG microstates. NeuroImage, 211(1), 
116631. https://doi.org/10.1016/j.neuroimage.2020.116631 

 
Zanesco, A. P., Skwara, A. C., King, B. G., Powers, C., Wineberg, K., & Saron, C. D. (2021).  

Meditation training modulates brain electric microstates and felt states of 
awareness. Human Brain Mapping, 42(10), 3228-3252. 
https://doi.org/10.1002/hbm.25430 

 
Zapala, M. A., & Schork, N. J. (2012). Statistical properties of multivariate distance matrix 

regression for high-dimensional data analysis. Frontiers in Genetics, 3, 190. 
https://doi.org/10.3389/fgene.2012.00190  

 
Zarka, D., Cevallos, C., Ruiz, P., Cebolla, A. M., Petieau, M., Bengoetxea, A., & Cheron, G.  

(2021). Trait and state mindfulness modulate EEG microstates. MedRxiv. 
https://doi.org/10.1101/2021.11.22.21266675 

https://doi.org/10.31231/osf.io/zbu6k
https://doi.org/10.1162/jocn_a_01346
https://doi.org/10.1002/hbm.25430
https://doi.org/10.3389/fgene.2012.00190
https://doi.org/10.1101/2021.11.22.21266675


164 
 

Tables and Figures 

Table 3.1 

 
Note. Means and SDs of microstate parameters during compassion meditation are provided for each configuration. 
Additionally, a summary statistic (total or average) across configurations is provided for each parameter. 



165 
 

Table 3.2 

 
Note. Means and SDs of microstate parameters during compassion meditation are provided for each configuration. 
Additionally, a summary statistic (total or average) across configurations is provided for each parameter. 
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Table 3.3 

 
Note. Means and SDs of microstate parameters during pre-meditation rest are provided for each configuration. 
Additionally, a summary statistic (total or average) across configurations is provided for each parameter. 
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Table 3.4 

 
Note. Means and SDs of microstate parameters during pre-meditation rest are provided for each configuration. 
Additionally, a summary statistic (total or average) across configurations is provided for each parameter. 
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Table 3.5 

 
Note. Means and SDs of microstate parameters during post-meditation rest are provided for each configuration. 
Additionally, a summary statistic (total or average) across configurations is provided for each parameter. 
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Table 3.6 

 
Note. Means and SDs of microstate parameters during post-meditation rest are provided for each configuration. 
Additionally, a summary statistic (total or average) across configurations is provided for each parameter. 
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Table 3.7 

 
Note. Model parameters from simplified mixed effects models of percent GEV during compassion meditation are 
provided. For each retreat, only effects that were significant in that retreat were retained. Effects are referenced to 
configuration C in the waitlist control group at the pre-retreat assessment. A cut-off of p < .01 is used to determine 
statistical significance; the 95% CI is provided for each parameter estimate.  
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Table 3.8 

 
Note. Model parameters from simplified mixed effects models of mean duration in milliseconds during compassion 
meditation are provided. For each retreat, only effects that were significant in that retreat were retained. Effects are 
referenced to configuration C in the waitlist control group at the pre-retreat assessment. A cut-off of p < .01 is used 
to determine statistical significance; the 95% CI is provided for each parameter estimate.  
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Table 3.9 

 
Note. Model parameters from simplified mixed effects models of occurrence per second during compassion 
meditation are provided. For each retreat, only effects that were significant in that retreat were retained. Effects are 
referenced to configuration C in the waitlist control group at the pre-retreat assessment. A cut-off of p < .01 is used 
to determine statistical significance; the 95% CI is provided for each parameter estimate.  
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Table 3.10

Note. Model parameters from simplified mixed effects models of GFP in microvolts during compassion meditation 
are provided. For each retreat, only effects that were significant in that retreat were retained. Effects are referenced 
to configuration C in the waitlist control group at the pre-retreat assessment. A cut-off of p < .01 is used to 
determine statistical significance; the 95% CI is provided for each parameter estimate.  
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Table 3.11 

Note. Type III tests of fixed effects are reported for mixed effects models of percent GEV incorporating condition 
(pre-meditation rest, compassion meditation, post-meditation rest). In Retreat 1, “Status” refers to the between-
subjects effect of group (waitlist control, training); in Retreat 2, “Status” refers to the within-subjects effect of status 
(as R1 waitlist controls, in R2 training).Satterthwaite approximation is used to estimate degrees of freedom. A cut-
off of p < .01 is used to determine statistical significance.  



175 
 

Table 3.12 

Note. Type III tests of fixed effects are reported for mixed effects models of mean microstate duration in 
milliseconds incorporating condition (pre-meditation rest, compassion meditation, post-meditation rest). In Retreat 
1, “Status” refers to the between-subjects effect of group (waitlist control, training); in Retreat 2, “Status” refers to 
the within-subjects effect of status (as R1 waitlist controls, in R2 training).Satterthwaite approximation is used to 
estimate degrees of freedom. A cut-off of p < .01 is used to determine statistical significance.  
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Table 3.13 

Note. Type III tests of fixed effects are reported for mixed effects models of mean microstate duration in 
milliseconds incorporating condition (pre-meditation rest, compassion meditation, post-meditation rest). In Retreat 
1, “Status” refers to the between-subjects effect of group (waitlist control, training); in Retreat 2, “Status” refers to 
the within-subjects effect of status (as R1 waitlist controls, in R2 training).Satterthwaite approximation is used to 
estimate degrees of freedom. A cut-off of p < .01 is used to determine statistical significance.  
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Table 3.14 

Note. Type III tests of fixed effects are reported for mixed effects models of GFP in microvolts incorporating 
condition (pre-meditation rest, compassion meditation, post-meditation rest). In Retreat 1, “Status” refers to the 
between-subjects effect of group (waitlist control, training); in Retreat 2, “Status” refers to the within-subjects effect 
of status (as R1 waitlist controls, in R2 training).Satterthwaite approximation is used to estimate degrees of freedom. 
A cut-off of p < .01 is used to determine statistical significance.  
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Table 3.15 

 
Note. Model parameters from simplified mixed effects models of GFP in microvolts incorporating condition (pre-
meditation rest, compassion meditation, post-meditation rest) are provided. For each retreat, only effects that were 
significant in that retreat were retained. Effects are referenced to configuration C in the waitlist control group during 
compassion meditation at the pre-retreat assessment. A cut-off of p < .01 is used to determine statistical 
significance; the 95% CI is provided for each parameter estimate. 
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Figure 3.1 
Global Centroids and Comprising Topographies 

 
Note. The five microstate configurations, global centroids A – E, resulting from the k-means clustering procedure 
are presented, along with the file-level centroid maps that were assigned to each cluster. Each global topography is 
the centroid of their respective clusters of maps. Four file-level centroid maps went unassigned. Maps are 2-D 
isometric projections with nasion upwards. 
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Figure 3.2 
Individual Microstate Sequences

 

 

Note. Figure continued on next page. 
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Note. Two-page figure. Microstate sequences for each participant in each epoch (close other, difficult other, all 
others) at each assessment (pre, mid, post), organized by group (retreat 1 training, retreat 1 control, retreat 2 control) 
are depicted. Note that Retreat 1 Control and Retreat 2 Training sequences depict the same participants as waitlist 
controls and in retreat training, respectively. 
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Figure 3.3 
Heatmaps of Pairwise Dissimilarities

 
Note. The pairwise dissimilarities between sequences calculated based on optimal matching (OM) of spells are 
depicted in symmetrical matrices. Note that the Retreat 2 matrix compares participants to themselves as controls. 
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Figure 3.4 
Centroid Distances and Sequence Medoids by Group, Assessment, and Epoch 

 
Note. (A) Centroid distances between each assessment and epoch are depicted for each group. Centroid distances are 
the dissimilarity between the multivariate distance centers of two groupings, and represent the overall dissimilarity 
between those groupings. (B) Sequence medoids in each epoch at each assessment are depicted by group. A 
sequence medoid is the individual sequence that has the lowest dissimilarity with all other sequences in its grouping, 
making it the most representative single sequence. 
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Appendix 3A 

Guided Compassion Meditation Transcript 

Introduction 

“For the next 12 minutes, you will be engaging in a guided compassion meditation. Please begin 

by sitting comfortably with your spine erect. Take 3 deep, relaxing breaths into your lower 

abdomen, keeping the abdomen soft and flexible. There will be a few moments of silence, during 

which you may settle your mind and body. You will then receive further instructions…” 

Epoch 1: Close Other 

“Now direct your attention to someone you know and care about who is suffering from physical 

or psychological distress. Let this person fill your heart and mind. Attend to his or her 

experience, and if you know the causes of the person’s grief or pain, be present with those 

causes. Imagine shifting your attention into his or her perspective, experiencing his or her 

difficulties. Then return to your own perspective, imagine the person being present, and think: 

‘May you be free from suffering and the causes of suffering. Imagine this person finding relief 

and being free to lead a happy and meaningful life. Take some time to remain with that wish.” 

Epoch 2: Difficult Other 

“Now bring to mind another person who, despite wishing to be free of suffering him or herself, 

causes you a great deal of difficulty. Shift your perspective to this person’s perspective, 

imagining what it is like, and then return to your own. With an understanding of the 

consequences of this person’s troubling, difficult behavior, wish that he or she be free of the 

mental afflictions that contribute to it. Let the heartfelt wish arise: ‘May you have a clear vision 

of the path to freedom from suffering.’ And imagine this person free of the causes of suffering. 

Stay with this thought for a few moments.” 
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Epoch 3: All Others 

“Now let the scope of your awareness rove through the world, attending to those who suffer, 

whether from hunger and thirst, from poverty or the miseries of war, from social injustice, or the 

imbalances and afflictions of their own minds. We are all deserving of compassion, especially 

when we act out of delusion, harming ourselves and others. Let your heart embrace the world, 

with the aspiration: ‘May we all be free of suffering and its true causes, may we all help ease 

each other’s pain.” 
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