
UC Davis
UC Davis Previously Published Works

Title
Spatial C 2 closed loops of prescribed arc length defined by Pythagorean-hodograph curves

Permalink
https://escholarship.org/uc/item/6g64n15k

Authors
Farouki, Rida T
Knez, Marjeta
Vitrih, Vito
et al.

Publication Date
2021-02-01

DOI
10.1016/j.amc.2020.125653
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6g64n15k
https://escholarship.org/uc/item/6g64n15k#author
https://escholarship.org
http://www.cdlib.org/
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Abstract

We investigate the problem of constructing spatial C2 closed loops from a single polynomial curve segment r(t),

t ∈ [ 0, 1 ] with a prescribed arc length S and continuity of the Frenet frame and curvature at the juncture point

r(1) = r(0). Adopting canonical coordinates to fix the initial/final point and tangent, a closed–form solution for

a two–parameter family of interpolants to the given data can be constructed in terms of degree 7 Pythagorean–

hodograph (PH) space curves, and continuity of the torsion is also obtained when one of the parameters is set to

zero. The geometrical properties of these closed–loop PH curves are elucidated, and certain symmetry properties

and degenerate cases are identified. The two–parameter family of closed–loop C2 PH curves is also used to construct

certain swept surfaces and tubular surfaces, and a selection of computed examples is included to illustrate the

methodology.

Key words: spatial closed–loop curves; continuity conditions; arc length; Pythagorean–hodograph curves;

Euler–Rodrigues frame; tubular surfaces

2010 MSC: 51N20, 53A04, 65D17, 65H10

1. Introduction1

The construction of spatial curves that form smooth closed loops is of interest in path planning problems for2

robotics, manufacturing, automated inspection, spatial kinematics, and related applications. Such curves are also of3

interest [12] in the study of minimal surfaces, i.e., surfaces of minimum area with prescribed boundaries, which are4

characterized by zero mean curvature and describe the shape of soap films with a given boundary curve.5
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Preprint submitted to Applied Mathematics and Computation August 4, 2020



The loop closure condition r(1) = r(0) is a minimal requirement for a closed path specified by a single parametric6

curve segment r(t), t ∈ [ 0, 1 ], but higher orders of continuity at this juncture point are typically desirable, either C1
7

(first derivative continuity) or C2 (first and second derivative continuity). Another desirable feature is the ability to8

specify the total arc length S of a closed loop, to ensure that r(t) does not degenerate to a single point.9

The parametric speed σ(t) of a differentiable curve r(t) specifies the rate of change of arc length s with respect

to the curve parameter t, namely

σ(t) = |r′(t)| =
ds
dt
.

Among all polynomial parametric curves, the Pythagorean–hodograph (PH) curves [4] are distinguished by the prop-

erty the σ(t) is a polynomial (not the square–root of a polynomial), and consequently the cumulative arc length

s(t) =
∫ t

0

σ(u) du

is also a polynomial function. The present study shows that it is possible to construct C2 closed loops with a10

prescribed total arc length S using spatial PH curves of degree 7. Through adoption of a canonical coordinate11

system, the construction can be achieved by a simple closed–form solution procedure, requiring only a few square–12

root extractions. These C2 closed–loop degree 7 spatial PH curves constitute a two–parameter family, with certain13

symmetry properties achieved by appropriate choices of the free parameters.14

Recall [13] that the Frenet frame on a space curve r(t) consists of the unit tangent t, principal normal n, and

binormal b, defined by

t =
r′

| r′ |
, n =

r′ × r′′

| r′ × r′′ |
× t , b =

r′ × r′′

| r′ × r′′ |
. (1)

The variation of the Frenet frame (t,n,b) along r(t) is specified [13] by the Darboux vector,

d = τ t + κb , (2)

through the relations
dt
ds

= d× t ,
dn
ds

= d× n ,
db
ds

= d× b ,

where the curvature κ and torsion τ are defined by

κ =
| r′ × r′′ |
| r′ |3

, τ =
(r′ × r′′) · r′′′

| r′ × r′′ |2
.

The C2 closed–loop spatial PH curves of degree 7 constructed herein exhibit continuity of the Frenet frame and15

curvature at the closure point r(1) = r(0). Moreover, by an appropriate choice of the free parameters, closed loops16

with continuity of the torsion can also be achieved.17
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The component τ t of the Darboux vector (2) defines the rate of rotation of the normal n and binormal b about

the tangent t. Consequently, for a closed loop with coincident Frenet frames at r(0) and r(1), the torsion must satisfy

∫ 1

0

τ(t)σ(t) dt = 2πk (3)

for integer k. To preclude more than a complete rotation of n and b about t on traversing r(t), solutions with k = 018

are desirable, i.e., r(t) must have equal amounts of negative and positive torsion. It is known [1] that a smooth19

closed non–planar curve in R3 cannot have non–negative (or non–positive) torsion if it is the graph of a simple closed20

planar curve of positive curvature.121

The remainder of this paper is organized as follows. The basic system of equations that characterizes a C1 closed22

loop constructed from a single PH curve segment of degree 7 is derived in Section 2, and the number of residual23

degrees of freedom is identified. Section 3 then investigates the extension to C2 continuity at the juncture point24

r(1) = r(0), and a closed–form solution for a two–parameter family of closed loops exhibiting continuity of position,25

Frenet frame, and curvature at that point is identified.26

Section 4 derives the Bézier control points of the C2 closed–loop curves, and analyzes their regularity, symmetry27

properties, planar instances, and the limit curve obtained as one of the parameters tends to infinity. In Section 5 we28

consider adapted orthonormal frames on the C2 closed–loop PH curves, and the design of certain swept surfaces and29

tubular surfaces constructed from them, and the methodology is illustrated by a selection of computed examples.30

Finally, Section 6 summarizes the principal results of the present study, and identifies further possible avenues of31

investigation.32

2. Spatial PH curves as closed loops33

Consider the construction of spatial PH curves r(t), t ∈ [ 0, 1 ] that form closed C1 loops with r(1) = r(0),

r′(1) = r′(0), and have a prescribed total arc length S. A spatial PH curve represented as r(t) = (x(t), y(t) + i z(t))

may be generated [3] by integration of the Hopf map form

r′(t) = (|α(t)|2 − |β(t)|2, 2α(t)β(t)) , (4)

defined in terms of two complex polynomials α(t) = u(t)+i v(t) and β(t) = q(t)+i p(t). We express these polynomials

in the Bernstein basis

bmi (t) =
(
m

i

)
(1− t)m−iti , i = 0, 1, . . . ,m,

1The condition (3), with k = 0, is also satisfied [14, 15] by curves on a sphere.
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on t ∈ [ 0, 1 ]. The parametric speed of the spatial PH curve r(t) obtained by integrating (4) is defined by

σ(t) = |α(t)|2 + |β(t)|2 .

The case of the spatial PH quintics (corresponding to m = 2) has already been addressed in [9]. We focus here on34

the degree 7 spatial PH curves (m = 3), constructed from cubic complex polynomials35

α(t) = α0 b
3
0(t) + α1 b

3
1(t) + α2 b

3
2(t) + α3 b

3
3(t) ,

β(t) = β0 b
3
0(t) + β1 b

3
1(t) + β2 b

3
2(t) + β3 b

3
3(t) . (5)

To simplify the analysis we consider canonical form curves with r(1) = r(0) = 0, r′(1) = r′(0) = w2 i with w > 0,36

and S = 1 — more general data can be accommodated by an appropriate translation, rotation, and scaling.37

Satisfaction of the end–point condition r(1) = r(0) = 0 yields one real and one complex equation, namely∫ 1

0

|α(t)|2 − |β(t)|2 dt = 0 and
∫ 1

0

2α(t)β(t) dt = 0 , (6)

while imposing the arc length S = 1 results in the real equation∫ 1

0

|α(t)|2 + |β(t)|2 dt = 1 . (7)

The equations (6)–(7) are equivalent to the simpler system∫ 1

0

|α(t)|2 dt =
∫ 1

0

|β(t)|2 dt = 1
2 ,

∫ 1

0

α(t)β(t) dt = 0 . (8)

Remark 1. The basic C0 closed–loop problem for PH curves characterized by equations (8) may be phrased in

terms of an inner product for complex polynomials, and the induced norm and metric functions. For two complex

polynomials α(t),β(t) on t ∈ [ 0, 1 ] we define the inner product

〈α,β〉 :=
∫ 1

0

α(t)β(t) dt ,

and α(t),β(t) are said to be orthogonal if 〈α,β〉 = 0. Correspondingly, the norms of α(t),β(t) are defined as

‖α‖ :=
√
〈α,α〉 , ‖β‖ :=

√
〈β,β〉 ,

and the triangle inequality ‖α + β‖ ≤ ‖α‖ + ‖β‖ is satisfied. A metric defining the distance between complex

polynomials α(t),β(t) may then be specified as

distance(α,β) := ‖α− β‖ .
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The system of equations (8) defining a closed–loop spatial PH curve with C0 continuity can then be succinctly

formulated as

‖α‖ = ‖β‖ =
1√
2
, 〈α,β〉 = 0 . (9)

Since ‖α− β‖2 = ‖α‖2 + ‖β‖2 − 2 Re(〈α,β〉) these conditions also imply that distance(α,β) = 1.38

Now for the polynomials (5), the integrands in (8) may be formulated in terms of the Bernstein basis of degree 6

on [ 0, 1 ] as

|α(t)|2 = |α0|2 b60(t) + Re(α0α1) b61(t) +
(

2
5 Re(α0α2) + 3

5 |α1|2
)
b62(t) +

(
1
10 Re(α0α3) + 9

10 Re(α1α2)
)
b63(t)

+
(

2
5 Re(α1α3) + 3

5 |α2|2
)
b64(t) + Re(α2α3) b65(t) + |α3|2 b66(t) ,

|β(t)|2 = |β0|2 b60(t) + Re(β0β1) b61(t) +
(

2
5 Re(β0β2) + 3

5 |β1|2
)
b62(t) +

(
1
10 Re(β0β3) + 9

10 Re(β1β2)
)
b63(t)

+
(

2
5 Re(β1β3) + 3

5 |β2|2
)
b64(t) + Re(β2β3) b65(t) + |β3|2 b66(t),

α(t)β(t) = α0β0 b
6
0(t) + 1

2 (α0β1 +α1β0) b61(t) + 1
5 (α0β2 +α2β0 + 3α1β1) b62(t)

+ 1
20

(
α0β3 +α3β0 + 9 (α1β2 +α2β1)

)
b63(t) + 1

5 (α1β3 +α3β1 + 3α2β2) b64(t)

+ 1
2 (α2β3 +α3β2) b65(t) +α3β3 b

6
6(t).

Since the definite integral of a degree n polynomial over [ 0, 1 ] is the sum of its Bernstein coefficients divided by

n+ 1, the equations (8) reduce to

10 |α0|2 + 10 Re(α0α1) + 6 |α1|2 + 4Re(α0α2) + Re(α0α3) + 9 Re(α1α2)

+ 4 Re(α1α3) + 6 |α2|2 + 10 Re(α2α3) + 10 |α3|2 = 35 , (10)

10 |β0|2 + 10 Re(β0β1) + 6 |β1|2 + 4 Re(β0β2) + Re(β0β3) + 9 Re(β1β2)

+ 4 Re(β1β3) + 6 |β2|2 + 10 Re(β2β3) + 10 |β3|2 = 35 , (11)

20α0β0 + 10(α0β1 +α1β0) + 12α1β1 + 4(α0β2 +α2β0 +α1β3 +α3β1)

+ (α0β3 +α3β0) + 9 (α1β2 +α2β1) + 12α2β2 + 10(α2β3 +α3β2) + 20α3β3 = 0 . (12)

Now to match the end derivatives we set r′(1) = r′(0) = w2 i, and we must have

α0 = w eiψ0 , β0 = 0 , α3 = w eiψ3 , β3 = 0 , (13)

5



where ψ0 and ψ3 are free parameters. Thus, setting ∆ψ := ψ3 − ψ0, equations (10)–(12) become

(20 + cos ∆ψ)w2 + 6 |α1|2 + 6 |α2|2 + 10 Re(α0α1) + 10 Re(α2α3) + 4 Re(α0α2)

+ 4 Re(α1α3) + 9 Re(α1α2) = 35 , (14)

6 |β1|2 + 9 Re(β1β2) + 6 |β2|2 = 35, (15)

(10α0 + 12α1 + 9α2 + 4α3)β1 + (4α0 + 9α1 + 12α2 + 10α3)β2 = 0. (16)

The two real equations (14)–(15) and one complex equation (16) impose 4 scalar constraints on the 11 degrees of39

freedom embodied in w,ψ0, ψ3, α1,β1, α2,β2. Thus, the degree 7 C1 PH closed loops incorporate 7 free parameters.40

3. Imposition of C2 continuity41

The C1 PH quintic closed loops formulated in [9] exhibit tangent, curvature, and torsion continuity at the juncture42

point r(1) = r(0), but not continuity of the normal and binormal vectors, since continuity of the Frenet frame requires43

C2 continuity. We now consider imposing the condition r′′(1) = r′′(0) for C2 closed loops defined by degree 7 PH44

curves r(t). This ensures continuity of the Frenet frame and curvature at r(1) = r(0), but not the torsion.45

The end–point second derivatives of r(t) may be expressed as

r′′(0) = 6 (Re(α0α1 − β0β1)− |α0|2 + |β0|2,α0β1 +α1β0 − 2α0β0) ,

r′′(1) = − 6 (Re(α2α3 − β2β3)− |α3|2 + |β3|2,α2β3 +α3β2 − 2α3β3) .

With β0 = β3 = 0 from (13) these expressions simplify to

r′′(0) = 6 (Re(α0α1)− |α0|2,α0β1), r′′(1) = − 6 (Re(α2α3)− |α3|2,α3β2) ,

and on substituting for α0,α3 from (13) with w 6= 0, satisfaction of the C2 continuity condition r′′(1) = r′′(0) yields

the equations

Re(eiψ0 α1 + eiψ3 α2) = 2w , (17)

eiψ0 β1 + eiψ3 β2 = 0 . (18)

Equation (18) indicates that β1,β2 can be written in terms of free parameters λ > 0 and φ ∈ [ 0, 2π) as

β1 = λ ei(ψ0+φ) , β2 = −λ ei(ψ3+φ) . (19)
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Equation (15) is then satisfied if λ is given in terms of ∆ψ = ψ3 − ψ0 by

λ =
√

35
12− 9 cos ∆ψ

. (20)

Now since (β0,β1,β2,β3) = λ eiφ(0, eiψ0 ,− eiψ3 , 0) the polynomial β(t), when φ 6= 0, is simply its instance when46

φ = 0 multiplied by the factor eiφ. This factor does not change the hodograph component x′(t) = |α(t)|2 − |β(t)|2,47

while y′(t) + i z′(t) is modified from 2α(t)β(t) to 2α(t)β(t) e− iφ so y′(t) becomes cosφ y′(t) + sinφ z′(t) and z′(t)48

becomes − sinφ y′(t) + cosφ z′(t). Since this simply represents a rotation of the hodograph r′(t) determined with49

φ = 0 about the x–axis, we henceforth focus on the case φ = 0.50

Using (19) with φ = 0 and substituting α1 = w a1 eiψ0 and α2 = w a2 eiψ3 into equations (14), (16), and (17),

we obtain

w2 [ 20 + cos ∆ψ + 6 (|a1|2 + |a2|2) + 10 Re(a1 + a2)

+ 4 Re(a1ei∆ψ + a2ei∆ψ) + 9 Re(a1a2ei ∆ψ) ] = 35 , (21)

(12− 9 e−i ∆ψ) a1 + (9 ei ∆ψ − 12) a2 = − 8 sin ∆ψ i , (22)

Re(a1 + a2) = 2 . (23)

Re–writing equation (23) as

a1 + a2 = 2 + ξ i , (24)

where ξ is a free real parameter, we may solve it simultaneously with equation (22) to obtain a1,a2 in terms of ∆ψ, ξ

as

a1 =
(12− 9 ei∆ψ)(2 + ξ i)− 8 sin ∆ψ i

24− 18 cos ∆ψ
, (25)

a2 =
(12− 9 e−i∆ψ)(2 + ξ i) + 8 sin ∆ψ i

24− 18 cos ∆ψ
. (26)

Finally, substituting these expressions for a1,a2 into equation (21) identifies, for each choice of ∆ψ and ξ, the unique

positive value of w in (13) as

w =
2
√

15 c0√
260− 144 cos ∆ψ + 4 cos2 ∆ψ + 9 ξ2

, (27)

where we set

c0 := 4− 3 cos ∆ψ . (28)
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Lemma 1. The hodograph (4) depends only on the difference ∆ψ = ψ3 − ψ0 of the angles ψ0, ψ3 in (13).51

Proof : The coefficients

(α0,α1,α2,α3) = (w eiψ0 , w a1 eiψ0 , w a2 eiψ3 , eiψ3) and (β0,β1,β2,β3) = (0, λ eiψ0 ,−λ eiψ3 , 0)

of α(t) and β(t), as determined above, may be expressed as

(α0,α1,α2,α3) = eiψ0 w (1,a1,a2 ei ∆ψ, ei ∆ψ) , (29)

(β0,β1,β2,β3) = eiψ0λ (0, 1,− ei ∆ψ, 0) , (30)

where λ,a1,a2, w — as defined by (20) and (25)–(27) — depend only on ∆ψ. On forming the expressions |α(t)|2 −52

|β(t)|2 and 2α(t)β(t) in (4), the factors eiψ0 extracted from α(t) and β(t) vanish, so r′(t) depends only on ∆ψ.53

In view of the above, we henceforth set ψ0 = 0 and ψ3 = ψ ∈ (−π, π ] so that ∆ψ = ψ. We may summarize the54

preceding results as follows.55

Theorem 1. The degree 7 canonical–form C2 PH curve closed loops comprise a two–parameter family, dependent on56

the parameters ξ and ψ. For each instance of the parameters, a unique closed–form solution is obtained by substituting57

the coefficients (29)–(30) into (5) and integrating (4), where λ,a1,a2, w are defined by (20) and (25)–(27).58

Remark 2. It is useful to note some specializations of the expressions (25) and (26) with respect to ξ and ψ. First,

when ξ = 0 we have

a1 = 1− 13 sinψ
12− 9 cosψ

i , a2 = 1 +
13 sinψ

12− 9 cosψ
i .

Second, if ψ = 0 or π we obtain

a1 = a2 =
2 + ξ i

2
.

Finally, when ξ = 0 and ψ = 0 or π we have simply a1 = a2 = 1, and this implies that r(t) degenerates to a planar59

curve (see Lemma 3 below). Recall that the C1 closed–loop PH quintics constructed in [9] also degenerate to planar60

curves when ψ = 0 or π.61

The end–point third derivatives of r(t) can be expressed as

r′′′(0) = 6 ( 5 (|α0|2 − |β0|2) + 3 (|α1|2 − |β1|2)− 10 Re(α0α1 − β0β1) + 2 Re(α0α2 − β0β2) ,

10 (α0β0 −α1β0 −α0β1) + 2 (α2β0 +α0β2) + 6α1β1 ) ,

r′′′(1) = 6 ( 5 (|α3|2 − |β3|2) + 3 (|α2|2 − |β2|2)− 10 Re(α2α3 − β2β3) + 2 Re(α1α3 − β1β3) ,

10 (α3β3 −α2β3 −α3β2) + 2 (α1β3 +α3β1) + 6α2β2 ) .
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The C3 condition r′′′(1) = r′′′(0) is a vector constraint that cannot, in general, be satisfied by C2 closed–loop PH62

curves of degree 7 because they have only two residual free parameters. However, proceeding to degree 9 PH curves63

yields four new degrees of freedom, and it may then be possible to construct C3 spatial closed loops with prescribed64

arc lengths and continuity of the position, Frenet frame, curvature, torsion, and arc–length derivative of curvature.65

4. Properties of the C2 closed loops66

For the C2 closed–loop PH curves constructed from the coefficients (29)–(30) specified by (20) and (25)–(27), the

control points of the Bézier form

r(t) =
7∑
i=0

pib7i (t) (31)

can be expressed as

p0 = p7 = ( 0, 0, 0 ) , p1 =
1
7

(w2, 0, 0 ) , p6 = − 1
7

(w2, 0, 0 ) ,

p2 =
1
7

(
2w2

(
1 +

3 ξ sinψ
4 c0

)
,

√
35
3 c0

w, 0
)
, p5 =

1
7

(
2w2

(
− 1 +

3 ξ sinψ
4 c0

)
,

√
35
3 c0

w, 0
)
,

p3 =
w

√
105 c3/20



√
3

35 c0
w

4
(
c1 − 2 c0ξ sinψ + c2ξ

2
)

47− 41 cosψ + 3 cos 2ψ + 9 ξ sinψ

3 c0ξ − 18 sinψ − 3 sin 2ψ



T

,

p4 =
w

√
105 c3/20



√
3

35 c0
w

4
(
− c1 − 2 c0ξ sinψ − c2ξ2

)
47− 41 cosψ + 3 cos 2ψ − 9 ξ sinψ

3 c0ξ + 18 sinψ + 3 sin 2ψ



T

,

(32)

where c0 is given by (28), and we define

c1 := 4 [ 78− 8 cos3 ψ + 45 cos2 ψ − 170 cosψ ] , c2 := 18 [ 3− 4 cosψ ] .

4.1. Regularity of the closed loops67

We may verify the regularity of the C2 closed–loop PH curves r(t) as follows. From (4), irregular points with

r′(t) = 0 can occur if and only if α(t) and β(t) have a common root. Using (5) and (30) with ψ0 = 0 and ∆ψ = ψ,

the complex polynomial β(t) can be written as

β(t) = 3λ (1− t)t [ 1− t− t cosψ − i t sinψ ] .

9



Consequently, β(t) vanishes if and only if t = 0 or 1, or t = 1
2 when ψ = 0. Now from (5), (24), and (29), we have

α(0) = w , α(1) = w eiψ , α( 1
2 )
∣∣
ψ=0

= w

(
1 + i

3
8
ξ

)
.

Since ξ ∈ (−∞,∞) equation (27) implies that w 6= 0, so α(t), β(t) cannot have a common root. Hence, the curve68

r(t) is regular.69

4.2. Symmetry properties70

Careful inspection of the control point expressions (32) reveals some possible symmetry or antisymmetry properties

of the C2 closed–loop PH curves r(t) = (x(t), y(t), z(t)) and their derivatives over the interval t ∈ [ 0, 1 ]. For certain

values of the parameters ξ and ψ, these properties are expressed by relations of the form

r(`)(t) = r(`)(1− t) diag (±1,±1,±1) , ` ≥ 0 , (33)

where diag (±1,±1,±1) is a 3 × 3 diagonal matrix whose non–zero elements are −1 or +1. Comparing p1 and71

p6 with w 6= 0 indicates that x(t) can only be antisymmetric, while p2 and p5 indicate that y(t) can only be72

symmetric. A careful consideration of the dependence of all the control points p0, . . . ,p7 on ξ and ψ yields the73

following comprehensive characterization.74

Lemma 2. The C2 closed–loop PH curve (31) specified by the control points (32) and its derivatives satisfy, for75

` ≥ 0, the relations76

(1) r(`)(t) = (−1)` r(`)(1− t) diag(−1, 1,−1) if and only if ξ = 0,77

(2) r(`)(t) = (−1)` r(`)(1− t) diag(−1, 1, 1) if and only if ψ ∈ {0, π}.78

Furthermore, the parametric speed σ and curvature κ are symmetric on [ 0, 1 ], while the torsion τ is symmetric in79

case (1) and antisymmetric in case (2).80

Proof : The proof of (1) and (2) is a direct consequence of the expressions (32) for the control points and the chain

rule. The symmetry of σ then follows directly from (1) and (2), while the properties of the curvature and the torsion

are consequences of the relations

(r′ × r′′)(t) = (r′ × r′′)(1− t) diag(±1,±(−1), 1) ,

where the plus sign corresponds to the case ξ = 0 and the minus sign to the case ψ ∈ {0, π}.81

Note that in case (1), with ξ = 0, the closed–loop PH curve r(t) is also continuous in torsion at the juncture82

point r(1) = r(0). We will show below that when ξ = 0 and ψ ∈ {0, π} the curve r(t) is planar, with z(t) ≡ 0 and83

vanishing torsion, so the results of Lemma 2 still hold. Examples of curves illustrating the properties in Lemma 284

are shown in Figures 1 and 2.85
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Figure 1: The curves r(t) with ξ = 0 and ψ = kπ/10 for k = 1, 2, 3, 4.

Figure 2: Examples of the C2 closed–loop curves r(t) determined by ψ = 0 (above) and ψ = π (below) for four equidistant values of ξ on

[−2.2, 2.2 ].

4.3. Degeneration to planar curves86

For certain special values of the parameters ξ and ψ, the closed loop r(t) may degenerate to a planar curve. These87

cases may be characterized as follows.88

Lemma 3. For (ξ, ψ) ∈ (−∞,∞)× (−π, π], the only planar instances of the C2 closed–loop PH curves specified by

11



the control points (32) correspond to the values (i) ξ = ψ = 0, in which case we have

r(t) =

(
t (1− t)( 1

2 − t) p0(t) ,

√
105
2

(1− t)2t2 , 0

)
,

where p0(t) = −60t4 + 120t3 − 63t2 + 3t+ 1, and (ii) ξ = 0, ψ = π for which

r(t) =

(
5
17
t (1− t)( 1

2 − t) pπ(t) , −5

√
7

102
(1− t)2t2(2t− 3)(2t+ 1) , 0

)
,

with pπ(t) = 8t4−16t3−13t2 +21t+7. Both curves have antisymmetric x components, and symmetric y components.89

For t ∈ (0, 1) the curve r(t) has one self–intersection in case (i), and is free of self–intersections in case (ii).90

Proof : For ξ = 0 and ψ ∈ {0, π}, the quantities (25)–(26) reduce to

a1 = a2 = 1 .

Consequently, α(t) and β(t) have coefficients of the form

(α0,α1,α2,α3) = w (1, 1, eiψ, eiψ) = w (1, 1,±1,±1), (β0,β1,β2,β3) = λ (0, 1,− eiψ, 0) = λ (0, 1,∓1, 0) .

Hence α(t) = a(t), β(t) = b(t) for real polynomials a(t), b(t) and r′(t) has components x′(t) = a2(t) − b2(t),91

y′(t) = 2 a(t)b(t), z′(t) = 0 when ξ = 0 and ψ = 0 or π. Therefore, r(t) is a planar curve.92

Conversely, when r(t) is a planar curve, its torsion must satisfy τ(t) ≡ 0. By straightforward computations, we have

τ(0) = [ (3 cosψ − 4)ξ + 6 sinψ + sin 2ψ ] f(ξ, ψ) , (34)

τ(1) = [ (4− 3 cosψ)ξ + 6 sinψ + sin 2ψ ] f(ξ, ψ) , (35)

where for (ξ, ψ) ∈ (−∞,∞)× (−π, π ] we have

f(ξ, ψ) := − (260− 144 cosψ + 4 cos2 ψ + 9 ξ2)
20 (4− 3 cosψ)2

< 0 .

Now from (34), the condition τ(0) = 0 implies that

ξ = ξ∗ := 2 sinψ
3 + cosψ

4− 3 cosψ
. (36)

Substituting (36) into (35) leads to

τ(1) = 4 sinψ (3 + cosψ) f(ξ∗, ψ) .

Hence, since τ(1) = 0 and f(ξ∗, ψ) < 0, we must have ψ = 0 or ψ = π, and from (36) this implies that ξ = 0.93
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The curve symmetry properties now follow directly from Lemma 2, and as a consequence self–intersection points on

(0, 1) can lie only on the y–axis. To identify them, we must study the real roots of p0(t) and pπ(t). One can easily

verify that p0(t) has only the two roots t0 and 1− t0 on (0, 1), where

t0 =
1
2

 1−

√
27−

√
249

30

 ≈ 0.1942 ,

while all roots of pπ(t) lie outside [ 0, 1 ]. Since r(t0) = r(1− t0) when ξ = ψ = 0, the planar curve identified by these94

values has a self–intersection.95

Figure 3: Planar instances of the closed–loop curves r(t), corresponding to the parameter values ξ = ψ = 0 (left), and ξ = 0, ψ = π

(right, black). The latter curve is quite close to a circle of radius 1/2π (indicated by the blue line). The gray segments indicate portions

of the curves for parameter values outside the interval [ 0, 1 ].

The two planar instances of the C2 closed–loop PH curves are illustrated in Figure 3. The case ξ = 0, ψ = π

approximates a uniformly–parameterized circle with center c = (0, 1/2π) and radius 1/2π, satisfying

0.9649 ≤ | r(t)− c |
r

≤ 1.0575 and 0.9375 ≤ σ(t) ≤ 1.0395 .

4.4. The ξ → ±∞ limit curves96

An interesting situation arises when the parameter ξ tends to ±∞. We focus on the case ξ →∞, since the case97

ξ → −∞ is closely analogous. For each ψ, the limit curve r∞(t) is defined as the locus (31) specified by the limits98
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of the control points (32), with w given by (27), as ξ →∞.99

One can easily see that, in the limit ξ → ∞, the control points p0,p1,p2 and p5,p6,p7 are coincident at the

origin, and by elementary computations we obtain

r∞(t) = Rϕ r̂(t) , (37)

where r̂(t) := 30 (1− t)3t3
(

2 t− 1, 0,
√

7/3
)

and Rϕ is a clockwise rotation about the z–axis by the angle

ϕ = arccos
4 cosψ − 3
4− 3 cosψ

.

By (37), the curve r∞(t) and its derivatives incorporate the symmetries

r(`)
∞ (t) = (−1)` r(`)

∞ (1− t) diag(−1,−1, 1) , ` ≥ 0 .

The parametric speed and curvature are symmetric, but the torsion vanishes since by (37) the curve r∞(t) is a100

rotated version of the planar curve r̂(t) and it must also be planar. Because of the factor (1− t)3t3 in r̂(t), the first101

and second derivatives of r∞(t) vanish at the juncture point r∞(1) = r∞(0), and the limit curve is irregular at that102

point.103

The limit curve r−∞(t) corresponding to the case ξ → −∞ is obtained by simply applying a composition of104

reflections of r∞(t) in the (x, y) and (x, z) planes. All of these properties can be seen in Figure 4.105

5. Adapted frames on degree 7 C2 closed–loop PH curves106

We now consider the construction of rational adapted orthonormal frames on the C2 closed–loop PH curves. An

adapted orthonormal frame (f1(t), f2(t), f3(t)) on a space curve r(t) incorporates the curve tangent t = r′/|r′| as the

vector f1, while f2, f3 span the curve normal plane. The Frenet frame (1) is an adapted frame, but it is not (in

general) rational in the curve parameter t. However, every spatial PH curve admits [2] a rational adapted frame,

the Euler–Rodrigues frame (ERF) with frame vectors (e1(t), e2(t), e3(t)) expressed in terms of the two complex

polynomials α(t) = u(t) + i v(t) and β(t) = q(t) + i p(t) as

e1 =

(
u2 + v2 − p2 − q2, 2(uq + vp), 2(vq − up)

)T
u2 + v2 + p2 + q2

,

e2 =

(
2(vp− uq), u2 − v2 + p2 − q2, 2(uv + pq)

)T
u2 + v2 + p2 + q2

, (38)

e3 =

(
2(up+ vq), 2(pq − uv), u2 − v2 − p2 + q2

)T
u2 + v2 + p2 + q2

.
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Figure 4: The limit curves r∞(t) (red) and r−∞(t) (blue) for several choices of the parameter ψ. The bold curves depict the case ψ = 0.

Any other rational adapted frame can be obtained from the ERF through a (rational) rotation of e2 and e3 in the107

normal plane.108

In the context of closed–loop PH curves, periodic orthonormal frames satisfying fi(1) = fi(0), i = 1, 2, 3, are

desired. Since the constructed degree 7 closed–loop PH curves are C2 continuous, the Frenet frame is periodic, but

the ERF is (in general) not periodic — the initial/final normal–plane vectors

e2(0) = (0, 1, 0) , e2(1) = (0, cos(2ψ), sin(2ψ)) , e3(0) = (0, 0, 1) , e3(1) = (0,− sin(2ψ), cos(2ψ)) ,

coincide only when ψ = kπ for integer k. Note that e2(1), e3(1) are obtained from e2(0), e3(0) by a normal–plane

rotation through angle 2ψ, i.e., e2(1)

e3(1)

 =

 cos(2ψ) sin(2ψ)

− sin(2ψ) cos(2ψ)

e2(0)

e3(0)

 . (39)

To construct a periodic rational adapted frame (f1, f2, f3) with f1 = e1 = t, we must impose a rational normal–plane

rotation f2(t)

f3(t)

 =
1

a2(t) + b2(t)

a2(t)− b2(t) 2 a(t)b(t)

−2 a(t)b(t) a2(t)− b2(t)

e2(t)

e3(t)

 , (40)
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for relatively prime polynomials a(t), b(t) such that f2(1) = f2(0), f3(1) = f3(0). This corresponds to the normal–plane

rotation angle θ(t) = 2 tan−1(b(t)/a(t)). As in [9] we combine a(t), b(t) into a complex polynomial w(t) = a(t)+i b(t),

and consider the simplest case — a linear polynomial w(t) = w0 (1− t) + w1 t with w0,w1 ∈ C, such that

cos θ(t) + i sin θ(t) =
w2(t)
|w(t)|2

. (41)

Choosing θ0 = arg(w0) and setting θ(0) = 2 θ0, it follows from (39) and (40) that the frame is periodic if and only if

θ(1) = 2(θ0 − ψ) + 2kπ for integer k, which implies that

w0 = cos θ0 + i sin θ0, w1 = γ (cos (θ0 − ψ + kπ) + i sin (θ0 − ψ + kπ))

for some real constant γ 6= 0. Henceforth, we also assume that θ0 = 0, i.e., f2(0) = e2(0) and f3(0) = e3(0), and we

choose k = 0 so that

w0 = 1, w1 = γ (cosψ − i sinψ) . (42)

Example 1. For the choices ψ = 0.6π and ξ = 1, the coefficients of the two complex polynomials (5) are

α0 = 0.9704810184, α1 = 1.251475360 − 0.3265209207 i ,

α2 = −1.446585247 + 0.2549451564 i , α3 = −0.2998951274 + 0.9229822965 i ,

β0 = β3 = 0, β1 = 1.538791812 , β2 = 0.4755128207 − 1.463477980 i ,

and for the intermediate control points (32) we obtain

p1 = ( 0.1345476296, 0, 0 ) , p2 = ( 0.3080523555, 0.2133383207, 0 ) ,

p3 = ( 0.1682526896, 0.5698386792,−0.004975174708 ) ,

p4 = (−0.1734469691, 0.4215900651, 0.2609811595 ) ,

p5 = (−0.2301381628, 0.2133383207, 0 ) , p6 = (−0.1345476296, 0, 0 ) .

The resulting curve is shown in Figure 5 together with the Frenet frame (left) and the ERF (right), which is not109

periodic since ψ 6= 0. Figure 6 shows two different periodic rational adapted frames obtained from (40)–(42) with110

γ = −1 (left), γ = 1 (right). The curvature and torsion profiles in Figure 7 show that the curvature is continuous111

but the torsion is not (see Lemma 2).112

It is apparent from Figure 6 that the parameter γ exerts a strong influence on the variation of the periodic frame.

The frame quality can be characterized by the twist [10], indicating the total rotation of the normal–plane vectors

about the tangent along the curve. For the ERF (38), the twist can be expressed as

TERF =
∫ 1

0

ω1(t)σ(t) dt, ω1 = 2
uv′ − u′v − pq′ + p′q

σ2
,
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Figure 5: The C2 closed–loop PH curve, constructed in Example 1, showing the Frenet frame (left) and the ER frame (right). The loop

juncture point r(1) = r(0) is indicated by a dot.

Figure 6: The C2 closed–loop PH curve, constructed in Example 1, equipped with periodic rational adapted frames that are obtained by

rotating the normal plane ER vectors, where the rotation is determined by (42) with γ = −1 (left), γ = 1 (right).
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Figure 7: Curvature (left) and torsion (right) of the C2 closed–loop PH curve in Example 1.

where ω1 is the angular velocity component in the tangent direction, while for the rotated frame (40) the twist

depends on γ, and is given by

Tγ =
∫ 1

0

Ω1(t)σ(t) dt, Ω1(t) = ω1(t) +
θ′(t)
σ(t)

, (43)

where

θ(t) = 2 tan−1 b(t)
a(t)

= 2 tan−1 − γ t sinψ
1− t+ γ t cosψ

.

For ψ ∈ (−π, π) we obtain, by straightforward computations,

Tγ = TERF − 2ψ +

 0, γ > 0,

2π sign(ψ), γ < 0.

This shows that Tγ has, for any fixed ψ, a piecewise–constant dependence on γ.113

However, the integral (43) is not a satisfactory indicator of the frame quality if the integrand changes sign on the

integration interval (i.e., a cancellation of “positive” and “negative” twist occurs). To address this, one can consider

the absolute twist defined by

Tabs,γ :=
∫ 1

0

|Ω1(t)|σ(t) dt.

To evaluate this quantity, the inflections of the adapted frame (f1, f2, f3) — i.e., the points on (0, 1) where Ω1(t)114

changes sign — must be identified.115

Example 2. Choosing ψ = 0.6π and ξ = 1, as in Example 1, the integrand Ω1 is of constant sign on [ 0, 1 ] for all116

γ > 0, but changes sign on [ 0, 1 ] if γ < 0. The graph of Tabs,γ is shown in Figure 8 (left), from which we see that117
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Figure 8: Left: Graph of Tabs,γ in dependence of γ for ψ = 0.6π and ξ = 1. Right: Periodic rational adapted frame for γ = −0.46209.

the absolute twist is much smaller for negative γ (away from zero). This explains the difference between the frames118

in Figure 6, since Tabs,−1 = 1.14628 � Tabs,1 = 6.19326. The minimum of Tabs,γ is attained for γmin = −0.46209,119

Tabs,γmin = 0.65175, and the corresponding frame is shown in Figure 8 (right).120

Further details on optimization of the twist for minimal twist frames on open curves, and periodic frames on121

closed–loop curves, may be found in [9, 10].122

The periodic rational adapted frames defined by (40)–(42) are, in general, only C0 continuous. However, by

an appropriate choice of the parameter γ, one can also achieve C1 continuity. Imposing the additional condition

Ω1(0) = Ω1(1) for C1 continuity results in the quadratic equation γ2 sinψ − 3 γ ξ − sinψ = 0 in γ, with the two

solutions

γ± :=
3ξ ±

√
9ξ2 + 4 sin2 ψ

2 sinψ
.

It can be verified that, with these two γ values, we have f ′i(1) = f ′i(0), i = 1, 2, 3 — i.e., the frame vectors are C1

continuous at the juncture point. This property is particularly useful in the construction of swept surfaces of the

form

S(t, u) = r(t) + p1(u) f2(t) + p2(u) f3(t),

where p(u) = (p1(u), p2(u)) is a given planar curve.123

Example 3. For the choice ψ = 0.6π and ξ = 1, we have γ− = −0.290302, Tabs,γ− = 0.816884 and γ+ = 3.44469,124

Tabs,γ+ = 6.19326. Figure 9 shows a swept surface with r(t) from Example 1, the frame computed using γ−, and125

p(u) chosen as the planar closed–loop PH curve from Section 4.3 (with ψ = 0.5π, ξ = 0, and arc length S = 0.5).126
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Figure 9: Left: the C1 periodic rational adapted frame for γ = γ− (see Example 3). Right: the corresponding swept surface S(t, u).

Example 4. With ψ = 0.1π and ξ = −1, the minimum value of the absolute twist is obtained for any γ > 0, namely127

Tabs,γ = 2.61674 — see Figure 10. The frame is C1 continuous for γ− = −9.81014 with Tabs,γ− = 5.36089, and128

γ+ = 0.101935 with Tabs,γ+ = 2.61674. The corresponding swept surface for γ+ with p(u) determined by ψ = 0.5π,129

ξ = 0 and arc length S = 0.2 is shown in Figure 10 (right).130

Remark 3. The ERF is useful in constructing a rational rotation–minimizing frame (RMF) or minimal twist frame131

(MTF) on spatial PH curves — see [2, 5, 6, 9, 10, 11]. For a certain family of degree 7 PH curves, the ERF is itself132

an RMF [2] — these curves are characterized [8] by the constraints133

Im(α0α1 + β0β1) = Im(α0α2 + β0β2) = 0 ,

3 Im(α1α2 + β1β2) + Im(α0α3 + β0β3) = 0 ,

Im(α1α3 + β1β3) = Im(α2α3 + β2β3) = 0 ,

on the coefficients of the polynomials (5). For the C2 closed–loop PH curves of degree 7 considered herein, these134

conditions cannot be satisfied, since the number of constraints exceeds the number of free parameters. Moreover,135

when we relax the smoothness conditions and consider C1 closed–loop PH curves, only trivial (planar) cases are136

compatible with the above constraints. This can be verified as follows. Using the coefficients (13) for a C1 closed137
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Figure 10: Left: Graph of Tabs,γ in dependence of γ for ψ = π/10 and ξ = −1. Right: Swept surface obtained with the C1 periodic

rational adapted frame for γ = γ+ (see Example 4).

loop, and writing α1 = w a1eiψ1 , α2 = w a2eiψ2 and β1 = w b1eiφ1 , β2 = w b2eiφ2 with w 6= 0, the constraints reduce138

to139

a1 sin(ψ1 − ψ0) = a2 sin(ψ2 − ψ0) = 0 ,

3 [ a1a2 sin(ψ2 − ψ1) + b1b2 sin(φ2 − φ1) ] + sin(ψ3 − ψ0) = 0 ,

a1 sin(ψ3 − ψ1) = a2 sin(ψ3 − ψ2) = 0 .

Any values a1, a2, b1, b2, ψ0, ψ1, ψ2, ψ3, φ1, φ2 satisfying these conditions yield α(t) = ei ζ a(t), β(t) = ei η b(t) for140

real polynomials a(t), b(t) so r′(t) has the components x′(t) = a2(t) − b2(t), y′(t) = 2 cos(ζ − η) a(t)b(t), z′(t) =141

2 sin(ζ − η) a(t)b(t). Hence, n · r′(t) ≡ 0 for n = (0, sin(ζ − η),− cos(ζ − η)), and consequently r(t) degenerates to a142

plane curve.143

Finally, we consider employing the C2 closed–loop PH curves r(t), t ∈ [ 0, 1 ] for the construction of tubular

surfaces. Namely, choosing a trajectory c(u) for the juncture point, a rotation matrix R(u), and a scaling function

ρ(u) for u ∈ I ⊂ R, we define a surface

S(t, u) = ρ(u) r(t)R(u)T + c(u), (t, u) ∈ [0, 1]× I,

whose isoparametric curves u = u0 = constant are C2 closed–loop PH curves with arc length ρ(u0). If c(u), R(u),144
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and ρ(u) depend rationally on u, then S(t, u) is a rational surface. Note that a rational rotation matrix can be145

obtained from (38) by any choice of polynomials u, v, p, q using ei, i = 1, 2, 3 as the columns of R. An example of146

these tubular surfaces is shown in Figure 11.147

Figure 11: An example tubular surface constructed by translating, rotating, and scaling the C2 closed–loop PH curve curve from

Example 1.

6. Closure148

The existence of a two–parameter family of non–planar C2 closed loops with specified arc lengths, defined by149

degree 7 Pythagorean–hodograph (PH) space curves, has been demonstrated. Using the Hopf map representation for150

a PH space curve r(t), t ∈ [ 0, 1 ], and adopting a canonical coordinate system with the juncture point r(1) = r(0) at151

the origin and tangent in the positive x–direction, and a total arc length S = 1, these C2 closed–loop curves admit a152

closed–form construction procedure that employs only elementary arithmetic operations and a few (real) square-root153

extractions.154
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Explicit formulae for the Bézier control points of the closed–loop curves were derived, exhibiting their dependence155

on the two free parameters, and the values of these parameters that incur certain symmetry properties, or degeneration156

to planar curves, were identified. The construction of rational adapted orthonormal frames with C0 or C1 continuity157

at the loop juncture point was also addressed, and these frames were employed to formulate families of rational158

swept surfaces. Finally, a family of tubular surfaces defined by translation, rotation, and scaling of the degree 7 C2
159

closed–loop PH curves was demonstrated.160

The focus of the present study has been to demonstrate the feasibility of closed–form solutions for the construction161

of C2 closed–loop PH curves with specified arc lengths, and to elucidate their key properties and special cases. To162

facilitate their use in design contexts, further investigation is required on how to exploit the two free parameters for163

shape optimization, or to satisfy additional desired geometrical constraints. The exploitation of the C2 closed–loop164

curves in specific applications, such as motion control in robotics, manufacturing, or automated inspection, also165

deserves further investigation.166
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