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include more than three collisions of the radical pair, a closed­

form solution, accounting for all possible collisions, is obtained

when the singlet state radical pairs have unit probability of

bonding during a collision.

In the second model the intersystem crossing is treated via

first-order rate constants which are average values of the

hyperfine couplings. Using these rate constants and hydrodynamic

diffusion equations, an analytical solution, which accounts for

all collisions, is obtained for the geminate recombination. This

model was extended to treat the case of recombination within a

spherical reflecting boundary, such as a micelle. Both models

contain terms which account for loss of radicals due to competitive

chemical reactions.

The two reactions studied are photolysis of benzophenone

and toluene and the photolytic decomposition of dibenzylketone

(l,3-diphenyl-2-propanone). No magnetic isotope effect was

observed in the benzophenone reaction, and this is shown to be

consistent with the operation of spin-orbit coupling (which is

13
estimated) in the radical pair. C enrichment was observed for

the dibenzylketone reaction, and this enrichment was substantially

enhanced at intermediate viscosities and low temperatures.

Part II of this dissertation is a presentation of theory

and results for the use of Zeeman spin-lattice relaxation as a

probe of methyl group rotation in the solid state. The coupling

between spin and spatial degrees of freedom is a result of the
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Pauli principle and is analogous to the behavior of or tho and

para hydrogen. This coupling is associated with a spin degree

of freedom termed rotational polarization, and its size is related

to the non-exponentiality of the Zeeman relaxation. The theory

is presented for the relaxation of methyl groups coupled by

fast spin diffusion and it is extended to treat the case of

adjacent methyl groups which are geared together.

Experimental results are presented for the time and a~gular

dependences of rotational polarization, the methyl group magnetic

moment, and methyl-methyl steric interactions. The compounds

studied are 2,6-dimethylphenol, methyl iodide, 1,4,5,8­

tetramethylanthracene, 1,4,5,8-tetramethylnaphthalene, 1,2,4,5­

tetramethylbenzene, and 2,3-dimethylmaleicanhydride. Calculations

are presented to show the relationship between the tunneling

frequency and rotation rate of a hindered methyl group.
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INTRODUCTORY NOTE

Parts I and II of this dissertation contain very different

subject matter, and with the exception of Appendix F, they were

designed to be read independently of one another. Consequently,

the reader is forewarned that there are instances where the same

symbols are used in the two parts but with different meanings.

The references are marked with square brackets [], and the

reference lists contain only publications, no footnotes.
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PART I: INTERACTION BETWEEN NUCLEAR SPIN AND CHEMICAL

REACTIONS
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MAGNETIC ISOTOPE EFFECT

2

The phenomenon which provided the motivation for work on the

magnetic isotope effect is that of Chemically Induced Dynamic

Nuclear Polarization (CIDNP) [1,2,3]. CIDNP refers to the non­

equilibrium nuclear spin polarizations which are observed in

reaction products during the course of free radical reactions.

Contrary to the implication of its name, the process is not one

where nuclear spin state populations are dynamically pumped as

in microwave pumped Dynamic Nuclear Polarization experiments,

but rather one where different nuclear spin states follow different

paths of chemical reaction (see Figure 1.1). The different

reaction products are thereby formed with certain nuclear spin

states preferentially populated and hence with non-equilibrium

nuclear spin polarizations. The principles behind nuclear spin

state selective chemistry apply also to nuclear spin isotopes.

Thus, it is possible to design chemical reaction schemes where

different nuclear isotopes end up in different chemical

products thereby achieving isotope separation [4,5,6,7]. We term

this the Magnetic Isotope Effect.

The purpose of this work has been to find chemical reactions

in which appropriate conditions apply for the magnetic isotope

effect to manifest itself and to understand the physics and

chemistry of the process so as to modify the reaction conditions

and optimize isotope separation.
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Spin State Product

-I .JL • A

0 iL-l.L ~ B

+1 .i.L • A

XBL 8010-12461

Figure 1.1 In Chemically Induced Dynamic Nuclear Polarization

different nuclear spin states end up in different reaction

products. The nuclear spin state determines the hyperfine coupling

which the unpaired electrons experience, and the hyperfine coupling

influences the chemistry by causing intersystem crossing.
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1. INTRODUCTION

In addition to knowing the chemical reactivity of the free

radicals, the explanation of the magnetic isotope effect requires

a detailed description of free radical diffusion and the electron­

nuclear hyperfine interactions within each radical. Such a

description will be presented in this chapter and in the following

two chapters. In this chapter a phenomenological picture is

given for the radical pair theory [1,8,9] of free radical reactions,

and the roles of diffusion and electronic spin states on chemical

reactivity are discussed. In Chapters 2 and 3 two different

models are presented which take into account all of the features

of radical pair chemistry and which are readily amenable to

computer calculations.

In Chapter 4 the two radical pairs which have been studied

'!Ilcl_the photo~hem~~~!"x_~K ~11~ reactions for prepari~~Lt_ll~~_are_

described. The experimental arrangement and methods of product

analysis are described in Chapter 5. Chapter 6 contains experimental

results on geminate yield and isotopic enrichment for the two

reactions studied along with the predictions of the two models.

Chapter 7 contains a brief summary of the experimental and

theoretical results and a discussion of the magnetic isotope

effect and its suitability for isotope separation under various

circumstances. There is also a discussion of the validity and

applicability of the two models from Chapters 2 and 3.
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1.1 Free Radical Reaction Scheme

A generalized scheme for the generation (through thermolysis

or photolysis) and reaction of free radicals is as follows:

Initiation -+ R­
a } Coupling

Products
(1.1)

where X indicates all other processes resulting in the disappearance

of R~ and ~ such as:

or

R - -+ R ,­
a a

Rearrangement or Decomposition (1. 2)

~ + SH -+ ~H + s- Scavenging (1. 3)

where SH is a free radical scavenger. Since all starting materials

used in this study are diamagnetic, the radicals are always formed

in pairs.

To determine the products formed and their relative amounts,

it is necessary to know the detailed chemical processes and the

rate of each for the reaction under consideration. However, in

practice the reactivity of organic free radicals is often so great

that the kinetics are diffusion-controlled. In the absence of

all but radical-radical coupling processes, then, for the

diffusion controlled reaction of two species R~ and ~ of equal

diffusivity, the following binomial distribution of products results:
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R R
a a 1

2

1

6

If one radical, say R·, is more reactive than the other (i.e.,
a

it either diffuses faster or has less stabilization of the

unpaired-electron center), then R R will be formed faster than
a a

Since by mass balance the yield of R R must equal thata a

of ~~, the result is that the yield of the asymmetric coupling

product Ra~ drops as the difference in the reactivities of R~

and ~ increases.
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1. 2 Geminate Recombination

7

If a scavenger SH is added to a free radical reaction, either

the overall yield of coupling products will fall, or if one radical,

say R~, is selectively scavenged, the yields of RaR
a

and Ra~ will

drop and that of ~~ will increase. If the initiation step of

the reaction is the formation of an asymmetric radical pair, it

is found experimentally [10] that upon increasing addition of

scavenger, the yields of the symmetric coupling products R Rand
a a

~~ go to zero (if both radicals are scavenged) while the yield

of Ra~ asymptotically approaches a non-zero value as shown in

Figure 1.2. This asymptotic yield of Ra~ is attributed to those

initially formed radical pairs which react too quickly either to

be scavenged or to encounter other radicals in solution. In effect,

the reaction takes place in isolation from all other radicals in

solution, and since it involves a single pair of radicals, it is

termed "geminate", or "radical pair", recombination [8].

The explanation for the inability of scavenging to compete

with geminate recombination is as follows. The rate of chemical

reaction between two species is equal to the frequency of collision

of the two species times the probability of reaction upon

collision. For the reaction of homogeneously distributed

particles the rates take the form:

Scavenging rate

Coupling rate k [Ro][R.0]
R a ·b

(1. 4)

(1. 5)
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•

• 1,1,2-Triphenylethanol

o I, 2-0iphenylethane
•

""0-
<l)

r
<l)

>- 0.4 0
0-
(l)

n::
0.2 o

•
• •

• •

7.06.03.0 4.0 5.0

[4> SH]/[<P2CO]
2.01.0

O-----...-.--o----Cl---D---......L....o---o_---J
o

XBL 8010-12618

Figure I.Z. Influence of scavenger on homogeneous and geminate

reaction products in the benzophenone plus toluene photolysis

(see Section 6.1.1). As the thiophenol concentration is

increased, all of the 1,2-diphenylethane and most of the 1,1,2-

triphenylethanol, which are formed homogeneously, are removed;

the fraction of the triphenylethanol which is formed geminately

c~nnot be scavenged. The yields are rel~tive to the unscavenged

reaction; the solvent is toluene; the thiophenol to benzophenone

rat i 0 i s for t 11 e beg inn i n g 0 f t 11 e p11 0 t 0 1 v s is \oJ hen [Ip 2 CO] '" O. 00 3 N.
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where k
S

and k
R

are the appropriate rate constants. Since the

-6
concentration of radicals is typically very low «10 M) due to

their high reactivity, the condition is easily obtained where:

k [SH] »k [R· ]
S R a

0.6)

and the scavenger quenc~es all homogeneous coupling reactions.

In contrast, in geminate recombination the radicals are

initially formed with a separation of a few angstroms:

Initiation ~ R~ + ~ 0.7)

and it is inappropriate to use the homogeneous concentrations

[R· ]
a '

[~] as a measure of the frequency of collisions between

R~ and ~ [8a]. Rather it is necessary to construct a model of

particle motion which gives the collision frequency of two

particles which start at a given microscopic separation from one

another (see sections 1.3, 2.2, 3.1). With such a model it is

found that the rate of geminate reaction is orders of magnitude

faster than homogeneous reaction, and for the scavenger to

compete with it, the scavenger must be used as solvent [8b].

In this work advantage is taken of those chemical systems

where the geminate recombination product Ra~ can be isolated

from all other products. This means that the homogeneous

production of Ra~ is quenched either by use of intermediate

scavenger concentrations or by exploiting other mechanisms of

free radical removal, such as decomposition, which occur on a

time scale intermediate to geminate recombination and

homogeneous reaction.
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When only geminate recombination is considered, one can

study the evolution of an isolated pair of radicals prepared

in a well-defined electronic spin state. Under these conditions

the magnetic isotope effect can be observed and optimized simply.
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1.3 Diffusion

For the light intensities used in this work radical

-8
concentrations are ~ 10 H so that homogeneously distributed

o

radicals would be ~ 6000 A apart. Since this separation is

much larger than molecular dimensions, the diffusion of the

radicals would be accurately described by macroscopic

diffusion equations. When a radical pair is formed, however, the

o

initial separation is ~ 10 A, which is comparable to the particle

size (i.e., the "graining" of the solvent), and the diffusive

behavior is dependent on the microscopic structure of the solvent

[11] (see Figure 1.6, section 2.4}. Two models have been

predominantly used to describe radical pair diffusion at short

times. One model [8c,9] treats the two radicals as occupying

sites on a three-dimensional lattice, and by assuming a particular

jump length and jump frequency, the frequency of collisions is

calculated. The other model [12] simply assumes that the

diffusion can always be described by macroscopic diffusion

equations. The latter model is used in this work (see sections

2.2 and 3.1) and is found to be a sufficient approximation.

The diffusive behavior of a pair of radicals is indicated

schematically in Figure 1.3. The radicals undergo random

diffusive displacements in solution except when they reach the

collision radius r defined as the separation of centers for a
c

hard sphere collision. At each encounter there is a certain

probability (see sections 1.4 and 1.5) of product formation.

It may take several collisions before bonding occurs or else



1.1 12

"R2

"R 2

S,T+10,T­
'------. R - RI 2

DEPLETED IN

SINGLET

"R2

R·
I

TIME

EVOLUTION

TIME

EVOLUTION

Rt

\
ENCOUNTER ~ RI·

rJ
L r!R2

..... 5, T+,TO,T_

"R2 '---------. RI - R2

DEPLETED IN

SINGLET

ENCOUNTER

XBL 802-8352,\

FiFure_~}. Collisions of two freely diffusing radicals. The

overbJr indicates a collision; if two radicals are in the singlet

state during collision, they may bond, otherwise they separate.

During separation the spin states interconvert. This representa-

tiun of radical pair reactivity is from a lecture given by

P. W. Atkins at the NATO Advanced Study Institute on "Chemically

Induced i'lagnetic Pol.:lrization", Urbina, Italy, 1977.
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the radicals diffuse apart and/or are consumed by some other

mechanism.
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1.4 Electronic Spin States

At large interradical separations where radical-radical

interactions become vanishingly small, it is accurate to treat

each radical as having a doublet spin. That is, the spin

multiplicity of a single unpaired electron of spin 1/2 is two.

At small interradical separations where the electron-electron

exchange interaction J(r) becomes dominant, it is no longer

approp~iate to treat the electrons individually; they must be

considered a pair. In the two-electron basis the two doublets

form three triplet states and one singlet. The singlet potential

energy surface is attractive and is the ground electronic

state; the triplet states are repulsive and correspond to an

unbound excited electronic state made up of three substates (see

Figure 1.4). Vsing this picture of potential energy surfaces,

it is convenient to refer in the adiabatic approximation to

radical pairs as singlets or triplets even at very large radical

separations where the two energy surfaces become degenerate.

If higher electronic states are considered, there may be

attractive triplet potential energy surfaces. However, since

the energy of the first excited bound state is generally much

greater than kT for organic molecules) the assumption is made

that the ground electronic state is the only accessible bound

state. With this restriction, bond formation is limited to

those radical pairs which lie on the singlet potential energy

surface.

If the electron-electron exchange interaction J(r) is the
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Q)

o
E
'-
o
u
~

w

Singlet

-50

-100

XBL BOIO-12623

I~igure r.4. Singlet and Triplet Potential energy surfaces for

two hydrogen atoms. The triplet surface is made up of three

sublevels T+
l

, TO' T_
l

" The energy difference between the

singlet and triplet surfaces is 2 J(r) where J(r) is the

exchange interaction. The data for this figure are taken from

the work of Kolos and Wolniewicz [13a].
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only interaction present, a radical pair starting on a given

potential energy surface will remain on that surface indefinitely.

Consequently, a pair of radicals starting on the triplet surface

cannot bond, and they constitute an "inert" radical pair. For

these radicals to react, there must be a mechanism for converting

the triplet electron spin correlation into singlet.
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1.5 Electron Spin State Interconversion

The crux of the magnetic isotope effect is that the

predominant mechanism for electron spin state interconversion

(intersystem crossing) in the radical pair is the electron-

nuclear hyperfine interaction. By coupling to the electron

spin angular momenta, the nuclei can direct the radical pair

from an unreactive potential energy surface to a reactive one

(or vice versa) and thereby have a substantial effect on the

fate of the radicals. That is, whereas a singlet radical pair

can form geminate product, a triplet radical pair can only

undergo homogeneous reaction in which the reaction products

may be different (see section 1.2). The dependence of the inter-

system crossing rate on hyperfine coupling provides the basis

for the differential chemical reactivity of different nuclear

spin states (CIDNP) and isotopes (magnetic isotope effect).

The explicit relationship between hyperfine coupling and inter-

system crossing is described in detail in sections 2.4, 2.5,

and 3.2.

The importance of the diffusive behavior of the radicals is

evident when one considers the effect of the singlet-triplet

energy spacing on intersystem crossing. In first-order

perturbation theory the mixing of two levels I~> and 1m> due to

a perturbation X' is given by:

Mixing coefficient (1. 9)
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where Et and Em are the energies of the respective states. If

It> and 1m> are taken to be a singlet and a triplet state,

respectively, and if JC' is the hyperfine interaction, then for

1 13
typical organic radicals (i.e., H or C coupled to an unpaired

electron):

Mixing coefficient ~
10

8
Hz

2 J(e)
(1.10)

For two carbon-centered radicals within bonding distance the

exchange interaction J(r) is ~ 1015
Hz, and the mixing

-7
coefficient is ~ 10 As the radicals separate,J(:) falls

rapidly to zero (J(r) is strongly dependent upon the orbital

overlap of the two unpaired electrons [13b]), and the mixing

coefficient becomes quite large. In fact, it is no longer valid

to use perturbation theory; the singlet and triplet states

interconvert on the time scale of the hyperfine interaction

(i. e., 1/<9.. IJC' 1m».

Thus, if a radical pair is prepared in one electron spin

state, the radicals may diffuse apart where the hyperfine

couplings mix the spin states, and then diffusively re-encounter

in a new spin state. If diffusion is very fast, the rate limit-

ing step in intersystem crossing is the strength of the hyperfine

interaction. Conversely, if the time scale for diffusion is

slower than that of the hyperfine interaction, then diffusion

will be rate limiting. Consequently, diffusion plays a

crucial role in the magnetic isotope effect.



2. FIRST COLLISION MODEL

2.1 Recombination Yield

Restricting bond formation to those radical pairs with

singlet electron spin correlation, geminate recombination may

be pictured as shown in Figure 1.3 Referring to a radical

pair which represents an ensemble average over all radical

pairs, the time evolution of the system is described as follows.

Two radicals are prepared in a well-defined electron spin state

at t = 0 and with an interradical separation :0. The spin

state evolves in time so that when the radicals collide at

t > to' there is a distribution of population among the singlet

state Sand the three triplet states T+l , TO' T_
l

(or Tx ' Ty '

T). The singlet radical pairs react to form product, while
z

the triplet pairs separate. The system, now depleted in singlet

radical pairs, evolves in time, repopulates the singlet state

through intersystem crossing, and either undergoes another

collision and forms product or the radicals diffuse apart. Thus,

the determination of the geminate recombination yield requires

calculation of the time-dependent diffusive motion and time-

dependent spin state evolution of the radical pair.

Let the probability per unit time of a collision at time t

be represented by f(t), and the probability of product formation

upon collision at time t be given by A(t). Including a finite

lifetime T
RP

for the radical pair, the recombination yield R is

given by:
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R = I A(t) f(t) exp(-t/TRP)dt
o

•

20

(2.1)

From the form of Eq. (2.1) it would appear that the problem of

calculating R is separable into three parts: determination of

A(t), f(t), and T
RP

. If only one collision were considered. this

would be strictly the case. However, when multiple collisions

are considered, A(t) and f(t) cannot be treated separately, and

the complexity of the problem increases rapidly. This is

explained as follows.

Since with each collision the radical pair is depleted in

singlet spin states, the spin state evolution,. which governs

A(t), cannot be considered apart from the collisions which the

radical pair undergoes. The collision probability per unit time

f(t) includes contributions from radical pairs which have under-

gone 1,2,3, ... collisions. Since the outcome of each of these

collisions (i.e., reaction or no reaction) depends on the spin

state at the time of collision, f(t) depends on A(t). In contrast

to A(t) and f(t), T
RP

depends on factors which are independent

of spin state evolution and radical pair diffusion.

It is evident that if only the first collision is

considered. there are no previous collisions or reactions to

consider, and A(t) and f(t) are separable. As such, one means

of simplifying the solution of R is to formulate the problem

using terms which depend only on the probability of first

collision. This approach is termed the "First Collision Model"

and is described in this chapter. It is important to note that

the First Collision Model does not neglect multiple collisions.
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It is a multicollision model. However, to simplify the calculation

the formalism is developed to calculate each collision as if it

were the first collision which the radical pair is undergoing.

Within this framework f(t) is calculated in section 2.2, ACt) is

calculated in sections 2.3 and 2.5, and the radical pair lifetime

T
RP

is discussed in section 2.6.
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2.2 First-Collision Probability Function

Ignoring the finite lifetime T
RP

of the radical pair, the

re-encounter probability per unit time f(t) includes terms for

all numbers of collisions [12a]:

00

f(t) (2.2)

where Pi(ro,t) is the probability per unit time that the radical

pair is undergoing its i
th

collision at time t having started

from an initial separation :0' Although the initial interradical

separation is written as the vector :0' Pi(ro,t) depends only

on the magnitude r
O

= 1:
0

1, because (1) diffusion is isotropic

in solution, and (2) the collision boundary Irl = r is isotropic.
c

As stated above, the probability of an i
th

collision depends on

the probability of the radical pair having survived an (i_l)th

collision which in turn depends on A(t). To allow for the fact

that A(t) changes with each collision, the following quantities

are defined:

- reactivity at first collision at time t
l

(2.3a)

AZ(t1,t Z) - reactivity at second collision at time

t having undergone one collision at time
Z

t 1 (2. 3b)

Ai (t1,t Z'" .t
i

) - reactivity at i
th

collision at time t
l

having undergone i-I collisions at times

(2.3c)
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Since the probability of surviving a collision at time t is

1 - A(t), and since the (i + l)th collision is the first re­

encounter after the i
th

collision, then [12a]

23

...J dt i
t. 11-

x p,(ro,t.) pl(r +d, t-t.)
1 1 c 1

(2.4)

where r
c

d

separation of centers at radical-radical collision·

mean diffusive step in solution.

The quantity r + d is the interradical separation immediately
c

after an unreactive encounter [12a]. By working back iteratively,

it is seen that apart from the A(t) IS, it is only necessary to

calculate PI (r,t), the probability per unit time of first

collision. This quantity has been worked out by Mozumder [12a]

and is given by:

(2.5)

where DR is the relative diffusion coefficient for the two

radicals.

With equations (2.3)-(2.4) the recombination yield can be

written using Pl(r,t) instead of f(t):
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OJ

PI (ro,t l )~ dt 2 A2 (t l ,t2) PI (rc+d,t2-t l )
t

l

0:

X f d t 3 A3 ( t 1 ' t 2 ' t 3 ) p I (rc+d , t 3- t 2 )
t

2

+ ... (2.6)

where each succeeding term represents the yield from the first,

second, third, ... collision. Although the collision radius r
c

can be related to the dimensions of the radicals and considered

a fixed quantity, there are distributions of values for both the

initial interradical separation r
O

and the diffusive length d.

Calculations could be performed for several values of r
O

and d,

but in this work average values are always used. PI(rO,t) is

plotted in Figure 1.5 for several values of the average

diffusion coefficient D of the two members of the radical
avg

pair. The relative diffusion coefficient DR is the sum of the

two individual diffusion coefficients [8aJ or in this case:

2 D
avg

(2.7)

As far as isotope selectivity is concerned, the important point

of Figure 1.5 is that as D becomes smaller, the maximum in
avg

PI (ro,t) is shifted to longer and longer time.
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Figure 1.5. The probability Pl(ro,t) per unit time that two

radicals initially separated by ~o will have a first collision

at time t. The curves are labeled by the average diffusion

coefficient D for the two radicals; the initial inter-
avg

o

radical separation r
O

is 9 A, and the collision radius r c is

o

6 11..
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2.3 Chemical Reactivity

The form assumed for the time-dependent chemical reactivity

A(t) is:

(2.8)

where Set) and T(t) are the time-dependent probabilities that

the radical pair is in a singlet or triplet state, respectively,

and AS and AT are the probabilities that bonding will result

from either state when the two radicals collide [1]. In this

work only the lowest triplet state is considered which is purely

repulsive, and, consequently, AT = O. The singlet surface

has a potential minimum at the collision radius r
c

' and AS

may be as large as 1.0. Since the triplets are unreactive,

subscripts will be omitted henceforth, and A will refer only

to singlets.

There are various reasons why A may be less than 1.0;

three of these are mentioned below.

1) There may be an activation energy for bond formation.

Although no bonds are being broken, some of the radicals

considered are delocalized, and the radical center may need

to rehybridize from a TI-type (much electron delocalization)

to a a-type (electron localized for bond formation). This

process may have a small barrier.

2) The radicals may collide with the wrong orientation

for bond formation. For some of the large radicals (those with

two phenyl groups) this probably reduces A by a factor of 2 to
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3. The smaller radicals are probably close enough to spherical

that they can easily rotate into a bonding orientation during

collision.

3) The solvent may not be able to dissipate the energy

release of bonding quickly enough, causing the product molecule

to fall apart. All of the reactions studied in this work involve

the formation of carbon-carbon bonds which are typically ~ 80

kcal/mole. Nevertheless, since the product molecules are large

(i.e., thirty or more atoms) and the reaction is taking place

in a condensed phase, it is assumed that the bonding energy is

easily dissipated.

Because of the complexity of the above factors, A is treated

as a phenomenological parameter. For the recombination reactions

considered in this work having small, if any, activation energies

and taking place in condensed phases, A is assumed to be fixerl

for a given reaction independent of solvent, temperature, and

viscosity. An estimate gives a value between 0.3 and 1.0.

Having discussed A, it now remains to determine the time­

dependent singlet probability S(t). For this it is necessary to

construct the Hamiltonian containing all of the relevant inter­

actions affecting the electron spin states both between and during

collisions (section 2.4), and then use an appropriate set of basis

functions to calculate the time evolution of the system (section

2.5) .
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2.4 Spin Hamiltonian

The Hamiltonian X may be divided into four major terms:

K( t) (2.9)

J{RP[:(t)] is the radical pair part of the Hamiltonian, and it

contains all of the electron-electron interactions. Because

these interactions depend on the interradical separation {(t),

J{RP[:(t)] is coupled to the diffusive motion of the radicals

and is therefore time-dependent. J{RI (t) and J{R2(t) pertain to

isolated radicals and contain only one-electron interactions.

These one-electron terms may also be time-dependent due to

interactions with the solvent bath surrounding the radicals.

Kso is the spin-orbit coupling Hamiltonian and is composed of

one-electron interactions. However, since it must be treated

in a special fashion, X
SO

is considered separately from X
Rl

(t)

and JC
R2

(t) .

The spatial and time dependences of the Hamiltonian introduce

a great deal of complexity into the calculation of the time

evolution of the radical pair spin states, and it is advantageous

to obtain a Hamiltonian which depends only on spin coordinates.

As such, the spatial dependence will be integrated out in the

course of evaluating each of the Hamiltonian terms. By means of

the approximations which follow, the time dependence will either

be separated from J[(t) or neglected.

The first approximation is to make XRP[:(t)] operative only

during collisions and to assume that radical rotation makes it
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isotropic. This corresponds to giving it the following a-function

dependence on r:

KRP(r ) a[ Ir(t) I - r ]
c - c

(2.10)

The second approximation is that the duration of a collision is

short enough that J(RI and K
R2

, which are much smaller than J(RP(r
C
),

can be neglected during collision.

Another way of stating these first two approximations is to

say that the radicals travel in and out of two distinct regions

as they diffuse. For Irl > r the time evolution is governed by
- c

J(RI and J(R2' and this is termed the "mixing region". For 1::1

r c the time evolution is governed by J(RP' and this is termed the

"collision region". Since the time-dependent collision

probability is determined by Pl(ro,t), the time dependence of

J(RP is determined by this as well. It is assumed that there is

no region intermediate to mixing and collision. In other words,

the system passes suddenly, or non-adiabatically, between the

two regions (see Figure 1.6).

Concerning K
RI

and J(R2' the unpaired electrons couple to the

bath either through interaction with nuclear spins on adjacent

solvent molecules (dipole-dipole coupling) or through anisotropic

intra-radical couplings which are modulated as the radicals

translate and rotate randomly in solution. Two assumptions are

made which allow these couplings to be neglected, and J( and
Rl

K
R2

to be treated as time-independent.

1) The translation and rotation of the radicals in solution
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Figure 1.6. Effect of finite particle size on motion of two

radicals R~ and ~ in solution. Because the solution is close-

packed, two initially touching radicals (a) must separate by an

amount comparable to the diameter of the solvent particles (b).

At large separations (c) there are many intervening solvent

molecules which may be rearranged in various ways to allow the

interradical separation to vary continuously. Because there is a

minimum separation which two non-touching radicals may have [see

(b)], the transition from the collision region (striped circles)

to the mixing region (clear circles) is well defined.
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is fast enough compared to the strength of the anisotropic

31

interactions that the Hamiltonian may be treated as isotropic.

Rotational diffusion constants measured at room temperature in

solvents (i.e., benzene and chloroform) similar to those used in

11
this work are ~ 10 Hz with activation energies of 1 to 2 kcal/mole

[14]. Combining this with translational diffusion, the

anisotropic interactions are easily averaged out (see below), and,

thus, the time dependence is removed.

2) Spin-lattice relaxation is slow compared to geminate

recombination and radical lifetimes. Although the fluctuating

anisotropic parts may be dropped from the time-averaged Hamiltonian,

they are ultimately responsible for bringing the spin system into

equilibrium with the bath (lattice). The time scales for geminate

recombination and radical removal are typically < 1 ~sec and

frequently two to three orders of magnitude shorter. Relaxation

times for electron spin polarization have been reported to lie

in the range 1 to 80 ~sec for low viscosity liquids at room

temperature [15]. and, as such, relaxation may be neglected. At

very high viscosity the geminate recombination may be so slow that

relaxation becomes important. However, under these conditions

the rate limiting step for radical pair recombination is diffusion

so that the spin interactions, and hence the magnetic isotope

effect, should not playa big role anyway (see section 1.5).

2.4.1 Two-Electron Hamiltonian Terms [1]

J( is composed of two terms:
RP

J{ + J{
e D

(2.11)
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where

X electron-electron coulombic repulsion
e

XD electron-electron dipole interaction

32

The Hamiltonian term X is diagonalized by the familiar
e

singlet and triplet electronic wave functions. Writing the

spatial wave function as Ix>, the proper forms are for

singlet:

Ix >S
(2.12a)

and for triplet:

Ix >T
(2.12b)

where u and v are molecular orbitals located on different

radicals. The subscripts indicate occupation of the orbital

by either electron I or 2. The associated energies are:

C + J

C - J

where C is the coulomb integral:

(2.13a)

(2.13b)

C <u v iJ( Iu v >
1 2 e 1 2

(2.14a)

and J is the exchange integral:

J (2.14b)



1.2 33

Theoretical work has shown that e and J depend strongly upon

the overlap of the orbitals of the two unpaired electrons [13b].

Thus, e and J falloff rapidly as the radicals separate and are

approximated in this work by:

e(r)

J(r)

e(r ) <5 ( I r I-r )c _ c

J(r ) <5(lrl-r )c _ c

(2.l5a)

(2.l5b)

where rapid rotation is assumed to make the two integrals

isotropic on the time scale of a collision (i.e., the radical

rotation rate is much greater than the translation rate). Since

e(r) shifts both singlet and triplet levels by the same amount, it

may be eliminated by redefining the zero of energy. Having removed

e(r), the time-independent form of J( at collision is:
e

J( (r )
e c

(2.16)

where J(rc ) is a constant and ~l and ~2 are the electron spin

operators. For organic carbon-centered radicals in the ground

state J(r ) is ~ 80 kcal/mole, or 10
15

Hz/molecule. The term
c

(1/2 + 2 ~1·~2) gives the appropriate sign of the exchange energy

for the singlet and triplet states [Egs. (2.13a) and (2.13b)].

The classical form of the electron dipole-dipole interaction

is:

J(
D

(2.17)

where gl and g2 are the isotropic g-factors of the two electrons
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and S is the Bohr magneton.
e

to obtain a rough estimate of the range of KD.
o

6 A is a typical particle diameter for the radicals and

solvents considered in this work; thus, two radicals separated

by an intervening solvent molecule will have an average inter-
o

electron separation of 12 A. With gl

12 ~, glg2Se2/r3 equals 30 MHz, which

g2 2 and r equal to

is comparable to K
Rl

and

K
R2

. However, since the radicals are generally separated by

more than a single solvent molecule between collisions, and since

radical diffusion further reduces XD, which is completely aniso-

tropic, the approximation is made of neglecting XD in the mixing

region.

To determine the effect of KD on the spin states during

collision, it is helpful to cast KD in a different form [16]:

(2.18)

where D is the second-rank dipolar coupling tensor. Since

(~1+~2) = 0 for singlet states, it is evident that XD cannot

cause intersystem crossing nor mix singlet states in any way.

On the other hand, (~1+~2) is non-zero for the triplet state,

and K affects the triplet sublevels. The spherical tensor basiso

Tx ' Ty ' Tz diagonalizes XD. In this work the Zeeman basis T+ l ,

TO' T_
l

is used, and consequently ~ mixes the triplet sublevels

during each collision.
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2.4.2 One-Electron Hamiltonian Terms ll]
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The Hamiltonian X
R

for a single radical is a sum of four

types of interactions (1):

J{
R

(2.19)

where

XHs magnetic field-electron spin interaction

Jf
lS

electron-nuclear hyperfine interaction

J{HI magnetic field-nuclear spin interaction

J{ll nuclear spin-spin interaction.

All of these interactions will be written as spin Hamiltonian

terms. That is, all spatial integrations have been performed

so that g-factors and hyperfine couplings a., which depend on
1

orbital populations, may be treated as constants.

The magnetic field-electron spin interaction is written

J{
HS (2.20)

where H is an externally applied magnetic field, and as in Eq.

(2.17) the isotropic g-factor is used. Defining the field axis

to be z,

j(
HS

(2.21)

The electron-nuclear hyperfine interaction consists of an

anisotropic through-space dipole-dipole term and a scalar contact
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term. Since the strength of the hyperfine coupling in organic

radicals is of the order of 107_10 8
Hz and since this is much

smaller than typical rotational diffusion constants (i.e.,

11
room temperature values are ~ 10 Hz [14]), the anisotropic

term is neglected. The scalar term is:

:]{ =La, I ·s (2.22)
IS . 1 -i ­

1

where the summation is over a single radical, and a, is the
1

, t 'h f' d I l'S the spl'n of the l· th1S0 roplC yper lne constant an ,
-1

nucleus.

The magnetic field-nuclear spin interaction is:

J<HI -L'Y. h r.·H
. 1 -1

1

-hHLy,I.
i 1 Zl

(2.23)

where y. is the gyromagnetic ratio, corrected by the isotropic
1

h ' 1 h ' f f h ' thI' '11" • 1c emlca s 1 t, 0 tel nuc earspln. ~ contalns no e ectron
HI

spin interactions so it cannot cause intersystem crossing. In

low magnet~c field this term may be neglected (i.e., y/2n ~

3
4 x 10 Hz/Gauffifor protons). In high magnetic field the triplet

sublevels T+
l

and T_
l

are so widely spaced in energy that inter-

system crossing occurs only between singlet S and triplet TO and

this without change of nuclear spin state (see section 2.5).

Since J( only serves to shift the energy of a given nuclear spin
HI

state, it has no effect on the rate of S to TO interconversion and

may therefore be neglected at high field. As such, X
HI

is dropped

from further consideration.

The nuclear spin-spin terms comprising XII are the anisotropic

dipole-dipole coupling and the isotropic through-bond coupling.
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Neglecting the anisotropic interactions, the isotropic through-

o 2
bond couplings are of the order of 10 -10 Hz. These clearly

cannot affect geminate recombination which takes place on a time

scale < 1 Wsec. Thus, XII is dropped.

In summary, two terms of X are retained: the magneticR

field-electron spin coupling Eq. (2.21) and the electron-nuclear

isotropic hyperfine interaction Eq. (2.22). Furthermore, there

are two one-electron Hamiltonians X
Rl

and X
R2

, one for each

electron on a different radical.

2.4.3 Spin-Orbit Coupling

Since spin-orbit coupling is the dominant intersystem crossing

mechanism in molecules, it will be discussed in some detail as

regards the role it plays in radical pair intersystem crossing.

In the literature to date [1,17] arguments have been given for

why spin-orbit coupling may be altogether neglected in the treat-

ment of the radical pair. Consequently, it has not been included

in anv treatment that this author knows of. In this section,

however, it is shown that spin-orbit coupling, although zero in

first-order, may not be ruled out in second-order. An example

demonstrating the strength of the second order coupling is given

in section 2.5.6. Nevertheless, due to the complexity of the

First Collision Model, the standard assumption of neglecting it

will be made. In Chapter 3 the Continuous Diffusion Model is

introduced which can easily accommodate spin-orbit coupling.

With this latter model the effects of different sizes of spin-
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orbit coupling will be shown in Chapter 6.
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The standard form of the spin-orbit interaction is that of

the "atoms in molecules" approach proposed by McClure [18]

where the molecular spin-orbit interaction J{SO is taken to be

a sum of single atom contributions. In this work the same approach

is used, but, unlike the operator used in molecular problems,

here the operator is divided into separate sums for the two

radicals:

J{
so

a
=2:

i
C(rl')£lOsl1. 1. _ _ +~

j
C(r2 ')£2os2

J J - -
(2.24)

where the superscripts a, b identify the two radicals, the sums

are over the nuclei present in each radical, ~k is the orbital

angular momentum operator for electron k, and the core electrons

have been neglected. The strength of the spin-orbit interaction

generated by nucleus i and felt by electron k is ~.(rk') where
1. 1.

is the distance of the electron from the nucleus. Each nucleusr
ki

is taken to generate a central field potential (shielded by core

electrons) so that ~(rki) has spherical symmetry (i.e., r ki is used

not r
k

.).
- 1.

In writing two sums (i.e., treating the two unpaired

electrons independently) for J{so' it is assumed that spin-orbit

coupling during collisions may be neglected. This situation is

exactly analogous to that of the hyperfine interaction [Eq. (2.22)],

and the justification for it lies in the fact that during collision

the singlet and triplet states may be separated by ~ 100 kcal/mole,

thereby making any mixing between these two states vanishingly

small. Phosphorescent lifetimes between such widely separated
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levels are typically > 1 msec and often of the order of seconds

[lSb]. Clearly, it is not necessary to consider this on the time

scale of a collision, and Eq. (2.24) may be used for K
SO

'

It will now be shown that the radical pair states are not

coupled by Kso in first order. Since spin-orbit coupling is a

small perturbation for urganic molecules. the two-electron

radical pair wave function may be written as a product of space

and spin parts:

Ix(r» !¢(a,S» (2.25)

where the spatial wave function Ix(r» was introduced in section

2.4.1. With Eq. (2.25) the first-order mixing coefficient

between singlet and triplet may be written and the spatial and

spin integrals separated as follows:

<~ IU I~ >/(E -E )
RP,S SO RP,T T S

(2.26)

The spatial integrals in Eq. (2.26) both vanish provided that

Xs and X
T

are real, as will now be demonstrated. In typical

organic molecules and radicals all of the molecular orbitals are

purely real. That is, the molecular orbitals are real combinations

of the purelv. real atomic orbitals Is, 2s. 2p , 2p , 2p , etc.. x y z

It is sufficient to show that one of the spatial integrals vanishes:
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a

<xs l2: ~i(rli)~lIXT>
i
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(2.27)

Integrating over the coordinates of electrons 1 and 2 separately,

it follows from the orthogonality of lu> and Iv> in the separated

radicals that there are two possible non-zero integrals:

a

<u l ~ .si (rIi) ~ll u l >
l

and

a

<vll~ ~i(rli)~llvl>
l

(2.28a)

(2.28b)

At this point it is necessary to be more specific about the nature

of the molecular orbitals u and v. Each orbital is located on a

single radical: u is taken to be situated on radical a, and v

on radical b. Since the summation in Egs. (2. 28a), (2. 28b) is

over nuclei on radical a and since E;(r) ~ 0 rapidly with increasing

r, matrix elements of the form of Eq. (2.28b) are necessarily zero.

In other words, when electron 1 is located on radical b (i.e.,

molecular orbital v), the spin-orbit coupling it feels from nuclei

on radical a is zero.

To evaluate the remaining integral in Eg. (2.28a), it is

helpful to consider the angular momentum operator £ in spherical

coordinates [19]:

2-
x

d a
-i[-sin¢ ~e - cosO cote --]

a aIi>
(2.29a)
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Q,
z

d d
-i[cos~ de - sin¢ cose 8¢]

d
-i d~
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(2.29b)

(2.29c)

Since Q, has no radial dependence, the spherically symmetric

C (r
l

.) COllUTIutes with it, and Eq. (2.28a) may be written:
1 1

a

<ull~ C (rl')£llu >
. 11- I
1

<u I ,£ Iu I >
1 -1 1

Since the angular momentum operator Q, is Hermitian, its

(2.30)

expectation value must be real. However, u and ~.(rl') are
1 1

both purely real functions, and as seen from Eqs. (2.29a)-(2.29c),

£ is purely imaginary. Therefore, the integral in Eq. (2.30)

must be identically zero in order to be real [18a,20]. In summary,

given that ~.(rl') is spherically symmetric and that the
1 1

molecular orbitals are real, X
SO

does not cause first-order

mixing between I~RP,S> and I~RP,T>'

The second-order mixing coefficient is [21]:

where I~ > is an excited state which may be either a singlet or
k

triplet. Now it is necessary to determine which terms of the

Hamiltonian J( may couple the radical pair states to possible

excited states. In the molecular case intersystem crossing is

accomplished through the concerted action of vibronic coupling,
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or Born-Oppenheimer breakdown, which mixes states of like spin

and J~O which mixes states of different spin. The vibronic

coupling results from changes in the electronic wave functions

with nuclear motion. This coupling is large only in the collision

region [1] where the electronic potential energy surfaces change

rapidly with interradical separation (see Figure 1.4), but, as

already noted, the mixing is much too weak to be effective on the

collisional time scale. Thus, the dominant interaction appearing

in both matrix elements of the second order mixing coefficient

is KSO ' The fact that USO connects I~RP> to excited states is

demonstrated by the deviation (~ 0.1%) of the free radical g-factor

of common organic radicals from the free electron value. In fact,

the expression for the free radical 6g is very similar to the one

which is being treated in this section [22]. Given that the

matrix element <\\IKsol~/RP> is not negligible, and since (E
RP

S-,

E
RP

T) ~ 0 as the radicals separate, it is no longer valid to,

use perturbation theory. As such, it is necessary to use the

methods to be outlined in the next section, after which the

subject of spin-orbit coupling will be picked up again (section

2.5.6) and a simple example provided.
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2.5 Time Evolution of the Spin States

The present problem, as defined in section 2.3, is to

calculate the probability Set) that the radical pair is in a

singlet electronic state at time t. In order to calculate

this quantity there are three things which first need to be

specified:

1. An appropriate set of basis functions with which to

represent the spin states.

2. Definition of the initial conditions in accordance with

the chemical system being described.

3. Formalism for determining the time-evolution of the

spin states.

These three requirements will now be described.

2.5.1 Basis functions

Since there are two regions (collision and mixing) in which

the time evolution of the electron spins must be determined, it

is useful to use two different sets of basis functions. In both

regions the basis functions are products of electronic and nuclear

spin functions:

IBasis Functions> IElectronic> INuclear> (2.31)

Since the Hamiltonian derived in sections 2.4.1 and 2.4.2 is a

spin Hamiltonian (spin-orbit coupling will be treated separately

in section 2.5.6), the basis functions of Eq. (2.31) involve

spin coordinates only. The nuclear spins are weakly coupled
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to one another and may be written as a simple product of Zeeman

spin functions. These spin functions are grouped together for

each radical:

INuclear>
a

..• >
a

(2.32a)

INuclear>b (2.32b)

where the m's are the magnetic quantum numbers of the nuclei,

and the subscripts a,b refer to the two radicals.

In the collision region the two electrons are stron~ly

coupled, and it is therefore necessary to treat them as a pair.

The singlet and triplet Zeeman functions are used to describe

them in this region. For singlet with spin = 0

Is> (Ia> Is > - Is > la »//21 2 1 2
o (2.33a)

and for triplet with spin 1:

IT >+1

IT >o

IT >
-1

Is > Is >
1 2

+1

o

-1

(2.33b)

(2.33c)

(2.33d)

where M
S

is the z projection of the total electronic spin.

Defining the set of two-electron basis functions as {¢.}, a
J

sample function is:

(2.34)
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In the mixing region the electrons have minimal interaction

with one another and may therefore be treated independently. As

such, doublet spin functions are used for the electrons. Defining

two sets of one-electron basis functions {¢k}a' {¢~}b' one for

each radical, sample functions appear as:

... >
a

(2.35a)

I';'·' >
'£ (2.35b)

where m
S

is the z projection of a single electron spin, and in

this example electron 1 is localized on radical a and electron

2 on radical b. The two-electron basis functions could be used

throughout. The reason for introducing the one-electron functions

is a matter of computational convenience. That is, it is a simpler

problem to solve for the time-evolution of the radicals individually

rather than together. This approach is followed in so far as it

is valid (i.e., in the mixing region).

The transition between the two regions is a natural one. For

instance, the singlet spin function of Eq. (2.33a) can be re-written

in terms of one-electron functions appropriate for the mixing region

merely by re-grouping terms:

(2.36a)

(2.36b)
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(2.36c)

In fact, the two-electron functions may be defined in terms of

the one-electron functions from the start.

2.5.2 Initial Conditions

There are three situations which.occur commonly in free

radical chemical reactions.

a) Singlet Precursor

This occurs frequently when the free radical initiation step

is through thermolysis:

t:.
(CH 3)3 C-N=N-C(CH3)3 -+ (2.37)

where the brackets [] indicate that the two radicals are in the

vicinity of one another, and the superscript S indicates that

the two electrons have singlet spin correlation.

b) Triplet Precursor

This occurs frequently in reactions involving carbenes or

photolysis of ketones:

hv
->- (2.38a)

(2.38b)

where ¢ indicates a phenyl group, and the superscript T indicates

triplet.



1.2 47

c) Random

This occurs when two radicals formed in different chemical

events encounter one another:

(2.39)

In this work the only initial condition considered, besides r is the
0'

fraction f
S

of singlet present when the radical pair is

formed, which in the three cases cited is 1.0, 0.0, and 0.25,

respectively. It is only necessary to be able to solve for

the cases of 100% singlet and 100% triplet, however, since

a chemical situation of arbitrary f can always be written
S

as a linear combination of the two. It is assumed that

initially all nuclear spin levels are equally populated

(Boltzmann differences are trivial), and any difference in

population of the triplet levels T+
l

, TO' T_
l

is ignored.

Although some photolyses occur with preferential population

of a given triplet sublevel, it is here assumed that the radical

pair is formed with the two radicals in such proximity that the

dipole-dipole coupling causes fast relaxation in the triplet

manifold (see section 2.4.1).

2.5.3 Time Evolution up to the First Collision

The problem at hand involves an ensemble of radical pairs

which were formed at different points in time. Since each pair

evolves independently of the others (section 1.2), one can
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arbitrarily have all of the radical pairs being formed at t = 0

without changing the physical observables at t = 00. With this

adjustment it is possible to define a single ensemble averaged

radical pair which is generated at t = 0 and evolves in time

as follows (see also section 2.1).

a) The two radicals start at an initial separation r , which
-0

can be taken to be a single diffusive step greater than the

collision radius r
c

The initial spin populations are defined

by the initial singlet character f
s

which is determined by the

type of chemical reaction from which the radicals have been

formed.

b) Up to the first collision the radical pair evolves

solely under the influence of the onoe-electron Hamiltonian terms

K and J( . This time evolution proceeds until the pair under-RI R2

goes collision at time T. During collision the radical pair

evolves under the influence of the two-electron Hamiltonian

K
RP

, and chemical reaction may occur. Those pairs which do not

react separate, and once again the time evolution is governed by

JeRI and XR2 " The only difference between the time evolution in

this period and that preceding the first collision is that the

radical pair, in general, starts evolving under different initial

conditions. The problem of calculating the time evolution after

collision is identical (except for the initial conditions) to

that before collision. Thus, all that is needed is to be able

to calculate for arbitrary initial conditions the time evolution

of the radical pair up through the first collision, at which

point the calculation may be re-started for a subsequent
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collision, etc. (see Figure 1.3). For this reason the name

"First Collision Model" is used.

With these factors in mind, the mathematical details for the

time evolution up to the first collision will now be discussed.

A sample singlet wave function was given in Eq. (2.36c):

I¢,> (I¢ >I¢'> - !¢ >!¢'»/12
J Q, m n 0

Since the time evolution is governed by the one-electron

Hamiltonians K
Rl

and K
R2

, the one-electron wave functions may be

treated separately. Thus,

(2.40)

The time evolution of each wave function is given by the time-

dependent Schrodinger equation:

(2.41)

In order to make Eq. (2.41) amenable to computer treatment, it is

necessary to write the operator JC in a matrix representation K.

This is done by calculating the following matrix elements in the

basis of the one-electron functions:

(2.42)

At this point a simple example will provide the justification for

the use of the one-electron basis functions. Suppose each radical

contains four spin 1/2 nuclei. Now including the two electrons,
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the number of two-electron basis functions is:
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1024

since each spin has a multiplicity of two. Consequently, the two-

electron Hamiltonian matrix would be 1024 x 1024. Now if one-electron

basis functions are used, the number of basis states for each

radical is:

and the size of each one-electron Hamiltonian matrix ~R is 32 x 32.

Clearly, the use of one-electron basis functions provides a major

reduction in effort.

Another simplification may be realized by considering the

operation of the various terms in J(R on the basis functions.

From Eqs. (2.21) and (2.22):

J(
R g 6eHs z + l:ai~i·~

i
(2.43a)

This may be re-written in terms of raising and lowering operators

[23] to give:

g S Hs + L: a. [ (r':S - + I ~ s+) /2 + Is]
e z . 1. 1. 1. Z Z

1.

(2.43b)

Since the one-electron basis functions are Zeeman product functions,

they are eigenstates of the I ,s operators. Thus, the first andz z

last terms on the right hand side of Eq. (2~43b) do not mix any

states. If the total z component of angular momentum is defined:
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M m
s
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(2.44)

+ - - +
it is evident that the raising and lowering terms l.s and l.s ,

1 1

while changing m. and m , leave M unchanged. Thus, no term in
1 s

J( mixes states of different M, and the Hamiltonian may be blocked
R

by M values. This simplifying feature along with the use of the

one-electron basis functions is employed in the computer program

"singS" (see Appendix A) which performs the calculations described

in this section.

Having constructed X , it may be diagonalized:
-R

(2.45)

It follows from Eq. (2.45) and the time-independent Schrodinger

equation (2.52) that the transformation C contains the eigenvectors

as columns, and the diagonal matrix A contains the eigenvalues.

Since C is unitary,

-1
C (2.46)

where C is the Hermitian adjoint of C, and since

.- *
(C c).. = L c

k
. c

k
.

::: ::: lJ k l J

-1
(C C) ..

::; ::; 1J
0 ..

1J
(2.47)

all of the eigenvectors are orthonormal to one another.

Defining (considering only one radical)

{ 18. >}
J

one-electron eigenfunctions (2.48)
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{hw. }
J

one-electron eigenvalues
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(2.49)

the eigenfunctions may be written:

Ie.> =Lc .1 dJ n > (2.50)
J Q, Q,J x-

where the cQ,j are the elements of~. From Eq. (2.47) it follows

that the basis functions may be written:

For an eigenfunction

(2.51)

J{ Ie>R k
(2.52)

which has the solution

(2.53)

Substituting this into Eq. (2.51) for the basis functions,

I<P R. (t) > = L c ~. exp [ -iw. t] Ie. >
j J J J

(2.54)

The time-dependent one-electron basis functions 1<pR,(t» may be

constructed for radicals a and b, and then substituted into

Eq. (2.40) to obtain the time-dependent two-elec tran basis

function IQ.(t».
J



1.2 53

2.5.4 Time-Dependent Singlet Character

If the system, that is, the ensemble averaged radical pair,

starts in the state 1~1> at t 0, then, assuming no collisions,

the probability that the system has evolved into the state ,~ >
m

at t = 1 is given by:

(2.55)

where <¢ I serves as a projection operator for the amplitude of
m

I¢m> in !¢£(t». The quantity which determines the chemical

reactivity during a collision at time 1 is the total singlet

character S(1) of the radical pair. In order to determine this

quantity it is necessary to project out all of the two-electron

basis functions which have singlet electron spin correlation:

S(1) (2.56)

where the summation over j=S implies that all singlets are

considered. In general, the system will not start in a single

state. If the initiation step produces a singlet precursor, then

the initial state of the system is:

!System,t=O> (2.57)

If there are N singlet states (N is given by the multiplicity of

the nuclear spin functions), then the normalized time-dependent

singlet character for a singlet precursor is:
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(2.58a)

The analogous expression may be written for a triplet precursor

(multiplicity of states = 3N):

(2.58b)

where the summation over £=T is over all 3N triplet electronic

states. In Eq. (2.58b) it is necessary to sum over three times

as many states as in Eg. (2.58a), thereby requiring three times

the computational effort. However, it is possible to write Eg.

(2.58b) in terms of summations over singlet states only as is shown

in the following proof.

For the sake of this proof, it is assumed that the full two-

electron Hamiltonian has been constructed and diagonalized to

obtain:

{Ie >}
k

set of two-electron eigenfunctions

set of two-electron eigenvalues

(2.59)

(2.60)

With these it will be shown that the following expression holds:

N (2.61)

where N is the number of singlets, and the second summation is

over all states £ = S,T - singlets and triplets. Expanding

Eq. (2.61) in terms of the eigenvectors and eigenvalues:
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N
N

L
j=S

4N
~

£=S,T

4N
1<2::

m

* 4N * 2
c. e I~ c" exp[ - HL t 18 > IJill m..··O'!Gn . - JG - n '

55

(2.62)

and rearranging

N
N

L
j=S

4N 4N

L IL
£=S, T m

(2.63)

Since the eigenvectors are orthogonal, m=n, and

N
N 4N 4N

L L 12: c. c~ exp[-i~£t] 1
2

j =S £=S , T m J m m
(2.64)

which may be multiplied out to give

N

N

L
j=S

4N 4N 4N

L L L
£=S, T m m'

* -k
C. C c. c exp [-i (rt ,-rt )t]

Jm £m Jm' £m' m m

(2.65)

Performing the summation over £ first [ see Eg. (2.47) 1.

4N
L

£=S,T
cS ,

mID
(2.66)

and wi t h m m' :

N

L
j=S

4N

L
m

.C

c. c.
Jm Jm

N

L 1
j=S

N

Q.E.D.

(2.67)

Recognizing that Eq. (2.61) can be written

N

N N ') N

L L I<<p.lep (t»I~ + L
j=S m=S J m j '=S

3N
L I<ep., IT (t»j2

n=T J n
(2.68)
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and defining
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N

2:
j=S

N

2:
m=S

(2.69)

then Eqs. (2.58a) and (2.58b) can be rewritten as:

Singlet Precursor

Triplet Precursor

(2.70a)

(2.70b)

so that SS(t) and STet) now both involve the same summations.

Recalling that f
S

is the initial fraction of singlet, there

follows:

General Precursor

(2.71a)

or

It is noted that for a randomly generated pair f
S

SG(t) = 0.25, a constant.

(2.71b)

0.25, and

The function PS(t)/N is calculated in the program "singS"

(Appendix A) for arbitrary magnetic field and up to four spin 1/2

nuclei (of arbitrary hyperfine couplings) on each radical. This

program can be run on a mini-computer, and versions of it have
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been used on a Data General NOVA 820 computer and a Digital

Electronics Corporation PDP 11/70 computer. A calculation is

shown in Figure 1.7 of the singlet character as a function of

time for a radical pair with eight nuclear spins and pure triplet

initially. The important feature of Figure 1.7 is that the

singlet character rises rapidly to near 25% (the equilibrium

value) and then oscillates.

It now remains to describe the time evolution of the radical

pair during collision.

2.5.5 First Collision and Thereafter

During the time evolution which precedes collision two things

happen: (1) The populations of the various spin states change and

(2) as the populations change, coherences are generated between

spin states that are coupled either directly or indirectly through

other states. The effect of a collision on these populations and

coherences will now be discussed.

The dominant interaction upon collision is the exchange

interaction JS' Because of the magnitude of XJ' the singlet/

triplet basis functions are very nearly the true eigenstates.

Treating them as approximately so, the following expressions are

true for singlet:

~xp[-iJt/h] I~s> (2.72a)

and for triplet:
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Figure 1.7 Singlet character as a function of time for a radical

pair starting in a triplet electronic state. The exeernal magnetic

field is zero. The hvperfines on radical R" are: 12, 34, 56, and- a

78 gauss; the hyperfines on radical ~ are: 23,45,67, and 89

gauss.
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exp [+iJt/h ] 'If''T'>
.L
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(2.72b)

Since a collision time is at least of the order of a molecular

·b· '0-14
Vl ratlon ~ L sec (and presumably somewhat longer) and with

16
J/h ~ 10 rad/sec at collision, the argument in the exponential

phase factors is ~ 10
2

radians. Clearly, any phase coherence

between singlet and triplet states is destroyed. Also, since the

singlet and triplet energy difference is so large, any inter-

system crossing to change these populations may be ignored on

the collisional time scale (see section 2.4.3).

Operating among the triplet states is the electron dipole-

dipole interaction X
D

• As described in section 2.4.1, X
D

mixes

the T+
l

, TO' T_
l

states, thereby equalizing their populations

and destroying coherences between the different triplet levels.

Among the singlet states there is the possibility of their

losing enough energy during collision to form a stable chemical

bond. As such, a fraction equal to AS(t) of the total number of

radical pairs which collide form stable molecules. At this point

a simplifying assumption is made about those singlets which

survive collision. Although the singlets are unaffected by X
D

,

it is assumed that all coherences between them are destroyed and

that the surviving (I-A) fraction of singlets represents population

which is equally distributed among the singlets. The destruction

of all singlet coherences is to be expected since the radical pair

is an ensemble average of many different radical pairs. Since

the different pairs will undergo collisions of varying duration,

they will evolve for different lengths of time under the influence



of X
J

(Eq. (2.72a)), thereby randomizing their phases. This

assumption of equalizing the singlet populations is without

physical justification and is introduced merely as a computational

convenience--it allows the surviving radical pairs to be described

by a single independent parameter f
S

' the fraction of singlets.

Immediately after collision f
S

is given by the ratio of surviving

singlets to surviving radical pairs:

(1-:\)S(1)
1-:\5(1)

(2.73)

where the collision takes place at time 1. In practice, the

assumption about the equalization of the singlet populations

during collision has little effect since :\ ~ 1, and most of

the singlets do not survive collision.

After collision the time evolution of a new radical pair

described by a new f S value (Eq. (2.73)) is begun, and recombination

from a second collision may be calculated. This new pair, of

course, is scaled down by the fraction of pairs which have reacted.

This is the same picture of radical pair reactivity which was

presented in section 2.2 and mathematically stated in Eq. (2.6).

The A. functions introduced in Eq. (2.3) are accounted for by
1

calculating f
S

after each collision and letting the system evolve

up to the next collision. The computer program "diffus" (Appendix

B) uses the output of the program "sing5" (see section 2.5.4 and

Appendix A) to calculate the recombination of radical pairs for

up to three collisions. Computationally it is very lengthy to

use reasonably sized time increments and account for more than
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three collisions

Initiation - T
l

- Collision - T
2

- Collision - T
3

- Collision

when all possible values of T
l

,T
2

,T
3

are considered up to the

disappearance of the radicals (see Figure 1.3). In section 2.7

a special case is described where an asymptotic expression is

derived including all collisions.

Before proceeding to the next section, the sequence of events

in the time evolution is recapitulated and the operation of the

various Hamiltonian terms shown schematically in Figures 1.8,

1.9 and 1.10.

2.5.6 Spin-Orbit Coupling

In this section the indirect coupling of the radical pair

singlet '~RP S> and triplet I~RP T> states through an intermediate, ,

excited state I~k> is considered. Since X
SO

is a sum of one-

electron operators, the excited state cannot differ from the

radical pair states by more than one molecular orbital. The

spatial parts of I~IRP S> and I~RP T> are as defined in Eqs., ,

(2.l2a) and (2.l2b). I~k> is taken to be an excited triplet with

spatial function:

(2.74)

For the purpose of this example I~RP T> is a TO spin state and,

I ~ > a T spin state. The coupling scheme is depicted in
k,T +1

Figure 1.11.
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T, T
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Figure 1.8 Time dependence of the radical pair Hamiltonian. ET

ond E
S

are the triplet and singlet energies, respectively; T l ,

T
2

, and T] are the time intervals between collisions. Between

collisions the spins evolve under the influence of the one-electron

Hamiltonians Je
R

for each radical; during collision the large

radical pair Hamiltonian Je
RP

dominates the time evolution.
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Figure 1.9 Couplings between the electronic spin states in the

mixing and collision regions. (a) In the mixing region the one-

electron Hamiltonians couple those states differing by O,±l in

the z component of the electron angular momentum. (b) In the

collision region the two-electron Hamiltonian dominates the time

evolution; the dipole-dipole coupling mixes the triplet sublevels

and the exchange interaction causes the triplet surface to be

repulsive and the singlet surface to be bonding.
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figure 1.10 Time evolution of the electronic spin states after a

collision. (3) Immediately after collision the radical pair is

depleted in singlet so that there is a net flow of population from

the triplet levels to the singlet state. (b) As the radicals

diffuse in the mixing region, the spin state populations are

equilibrated to give 25% singlet and 75% triplet at zero field.



1.2 65

XBL 8010-12463

Yigure 1.11 Spin-orbit coupling in second~order. Although

spin-orbit coupling cannot connect the radical pair states in

first-order, it may couple through an excited triplet state

and still be faster than the hyperfine interaction.
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The molecular orbital Iw> is situated on radical b, and it

is therefore necessary to retain only the summation in X
SO

over

the nuclei on radical b. Writing Xso in terms of raising and

lowering operators:

:0so
b

=2:
j

(2.75)

and the following matrix elements are obtained after performing

the spin integrations:

<I±I IJrbll±l >
RP , S sd RP, TO

o (2.76a)

(2.76b)

(2.76c)

The diagonal elements of J~O are zero since the wave functions

are real (see section 2.4.3). The basis functions are numbered

as:

I'v > IIJi RP S> (2.77a)
1 ,

I'll > 1111 > (2.77b)
'2 I "k,T+

1

I'v > I'v > (2.77e)
3 RP,T

O

The radical pair states are taken to be degenerate in the mixing

region, and the following energies are assigned:

E
3

o (2.78a)



1.2

E = E
2
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(2.78b)

With Eqs. (2.76a)-(2.78b) the Hamiltonian matrix may be constructed

(neglecting all other interactions):

J( (2.79)

Diagonalizing X, the following matrix of eigenvectors Care

obtained along with the eigenvalues ~. for the case of
1

E » 11;;/:

C (
0.70:

-0.707

r,/E

1

r,/E

0.707 )

-121;;*/E

0.707

(2.80)

~\ 0

*~2 E + 21;;1;; IE

*~ = -21;;1;; IE
3

(2.81a)

(2.81b)

(2.81c)

Assuming a triplet precursor, the singlet character as a function

of time is given by:

S (t) (2.82)

From Eqs. (2.54) and (2.80)-(2.82), Set) is calculated to be
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(with E » lsi):
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set) l
2

12*
cos(~

2 E
(2.83)

If lsi is of the order of the spin-orbit coupling constant for

an electron in a carbon 2p atomic orbital [22]:

Is I 0.08 kcal/mole (2.84)

and E is a typical excitation energy in organic molecules:

E 70 kcal/mole (2.85)

then the frequency in Set) is

*2ss /E 0.18 cal/mole
9

1.9 x 10 Hz/molecule (2.86)

The electron-nuclear hyperfine couplings appearing in X
Rl

7 8
and X

R2
(section 2.4.2) are generally in the range 10 -10 Hz.

Thus, even if the estimate in Eg. (2.86) were reduced by a factor

of 10, it would still be comparable to the hyperfines. Further-

more, there is one factor in favor of the estimate of Eq. (2.86).

The expression for the free radical electron g-factor contains

a second-order perturbation term involving X
SO

. The deviation

6g of the free radical g-factor from that of the free electron

value is attributed to the spin-orbit interaction which mixes

excited electronic states into the ground electronic state of

the radical. When the values of lsi and E used above are

substituted into the expression for 6g (in an approximate

fashion), a value of 10-
3

is obtained which is characteristic
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of all of the radicals studied in this work. For a discussion

of the 6g factor along with simple examples the reader is

referred to Reference 22.

With these considerations, the neglect of spin-orbit

coupling in the standard treatments of radical pair inter­

system crossing [1,2,3] seems rather questionable. As

mentioned earlier, the complex nature of the First Collision

Model precludes the inclusion of spin-orbit coupling, but it

is included in the Continuous Diffusion Model which is presented

in the following chapter. In Chapter 6 calculations based on the

Continuous Diffusion Model are presented which show the sensitivity

of both geminate yield and the magnetic isotope effect to spin­

orbit coupling. However, it is also shown (section 6.1.2) that

CIDNP effects, with which the standard treatments of radical

pair recombination are concerned, are far less sensitive to spin­

orbit coupling and may be easily observable even when isotope

effects are not. Thus, the success of those treatments which

neglect the spin-orbit interaction proves little about the

importance it may have in radical pair recombination.
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magnetic field the precession rate of an electron coupled to a

single nucleus is rna where m is the magnetic quantum number and

a is the hyperfine interaction of the nucleus. Ignoring

differences in electron g-factors [this is easily included by

adding a term (gl-gZ)H], the difference in precession rate ~v

for the two electrons at high fields is [1]:

a

12:
i

m.a.
1. 1.

b

-L:
j

m~a.1
J J

(3.3a)

where the sums are over the two radicals for a given nuclear

spin state. Since the electrons precess only about the field

axis at high field, only the secular part of the hyperfine

coupling contributes to ~VHF' Assuming only spin liZ nuclei are

present, then at zero field the electron-nuclear coupling becomes

a (secular plus non-secular) rather than rna, By analogy the zero

field expression is defined:

~V
o

a

-[:
i

n.a. ­
1. 1.

b

L:
j

n'.a. ,
J J

(3. 3b)

where n = ±l for each nucleus. By averaging over all possible

nuclear spin states, the average difference 6v is calculated

for the radical pair. Since a 180 0 dephasing interconverts

singlet and triplet, k+ + k is set equal to 2Lv. Any additional

relaxation terms may be added on to this quantity, This accounts

for all time evolution of the spin states between collisions.

The only time evolution that takes place during collision is

that the singlets react and the triplets are reflected (see

section 3.4).
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3.3 Chemical Loss

The disappearance of radical pairs through chemical reaction

is termed chemical loss and represented by the rate constant

k . This rate constant is simply the inverse of the radical
loss

pair lifetime defined in section 2.6. For the dibenzylketone

photolysis with decarbonylation, k equals k ,and for the
loss co

b~nzophenone/toluenephotolysis with scavenging, k
l

equals
oss
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3.4 Time Evolution Equations and Boundary Conditions

The factors discussed in sections 3.1-3.3 can be combined to

construct the differential equations describing the time

evolution of the radical pair. The solution requires that the

equations be integrated with the appropriate boundary and initial

conditions imposed on the system. The time evolution equations

are

(r,t)
2

PS(:-,t) PT(:-,t)d p [DRV' -k+-kloss ] + k
-0S
dt

(r,t)
2

PT(:-,t) + k+ PS(:-,t)dO [D V' -k -k ]
--T R - loss
at

The following boundary conditions are introduced:

(3.4a)

(3.4b)

-+ 0

-+ 0

o

as Irl

as Irl

Ir I

-+ 00

-+ 00

r
c

(3. Sa)

(3. Sb)

(3. Sc)

i°V'p (r,t) = 0
- T - Ir I r

c
(3. Sd)

Conditions (J.sa) and (J.sb) hold since there are a finite number

of radical pairs. Condition (J.Sc) states that all singlets are

absorbed when the interradical separation Irl equals r the_ c

collision radius; that is, A = 1 in this model (compare section

2.J). Condition (J.sd) states that all triplets are reflected
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when the radicals reach the collision radius.

The initial conditions placed on the system are:

83

(3.6a)

where f S is the fraction of singlets at t

initial interradical separation.

(3. 6b)

a and r is the
-0

Equations (3.4a) and (3.4b) may be separated by the

introduction of the following variables:

X(r,t)

Z(r,t)

which give:

~~ (r,t)

dZ (r,t)
dt

[DRV
2

-(k++k +k l )] Z(r,t)
- oss

(3.7a)

(3.7b)

(3.8a)

(3.8b)
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3.S Recombination Yield

The recombination yield R of radical pairs is equal to the

flux of singlets into the reaction zone Irl = r. integrated over_ c

all time [12b]. This time-dependent flux F(t) of singlets is

given by:

F(t) f
Irl=r
- c

f
Irl=r_ c

(3.9)

where the two integrals are equal for Irl=r by Eqs. (3.Sd) and_ c

(3.7a). Since the diffusion is isotropic, X(r,t) and Z(r,t)

may be written as functions with only time-dependent radial

parts:

X(r,t)

Z(r,t)

L xl (r, t) Y
I

(G,rp)
,m ,m

I,m

L zl (r,t) Y
l

(G,rp)
,m ,m

I,m

(3.l0a)

(3.l0b)

where the Y
l

(G,rp) 's are spherical harmonics. The only angular
,m

dependence in the integral of Eq. (3.9) is from X(r,t) so that

when the angular integration is performed, only the spherically

symmetric Y term survives:
0,0

F(t) = J
Ir I=r
- c

dA D dX (r,t)
R~

I4TI r
c

dX
0,0

dr
(r, t) I

I r=r
c

(3.11)

The recombination yield is:
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OJ

R =[ dt F(t)
o

85

The integral over time is equivalent to a Laplace transform:

ex)

L {F (t) }=I dt exp (-q t) F (t)
o

t'(q) (3.13)

where the Laplace transform variable q is zero. Thus,

R
-
F(O) (3.14 )

Since the Laplace-transformed x(r,O) is the desired quantity,

the time evolution equations (3.8a) and (3.Sb) may be Laplace

transformed:

2 . -
[DRV -kl 1 X(r,O)oss

-X(r,O) (3.l5a)

2 -
[DRV -(k++k +kl )lZ(r,O)- oss -Z(r,O) (3.l5b)

where use has been made of the fact that X(r,t) and Z(r,t) equal

zero at t = ex) because of chemical loss and recombination.

From the initial conditions Eqs. (3.6a) and (3.6b) and the

definitions of X(r,t) and Z(r,t) [Eqs. (3.7a) and (3.7b),

respectively], there follows:

X(r,O)

Z(r,O)

o(r-r )
- -0

(3.l6a)

(3.l6b)
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The a-function may be written in terms of spherical harmonics:

o(r-r )
- -0

1 ~ *--2 o(r-ro ) LJ Y n
n x..,m

r x..,m
(8 ,¢) Y n (8,¢)

o 0 x..,m
(3.17)

Since the spherical harmonics are linearly independent, Eqs.

(3.lsa) and (3.lsb) must be true for each individual pair of

I,m values. From Eq. (3.11) only the l=m=O term is of interest.

Thus,

2
[D v -k ] x (r,O)R r loss 0,0

2-0 (r-r ) / (/4; r )
o

(3: l8a)

2
[DRV -(k++k +k

l
)] z (r,O)r - oss 0,0

; - 2
-yk o(r-r )/ ( 4rr r ) (3.1Sb)

o

where now it is only necessary to keep the radial part v 2 of the
r

Laplacian.

The homogeneous equation may be written:

a2
2 a 2

---2 fer) + r ar fer) - Q, fer)
ar

a (3.19)

-where fer) may be x or z. The solutions of Eq. (3.19) are

zeroth-order modified spherical Bessel functions [27]:

fer) = c
l

exp[-£rl/r + c
2

exp[+£rJ/r (3.20)

Eqs. (3.18a) and (3.1Sb) can thus be solved for x (r,O) and
0,0

z (r,O) and solutions obtained for the two regions r ~ r ~ r
0,0 c 0

and r < r ~ 00. Matching the solutions at r by assuming their
o 0

continuitv and using the boundary conditions Eqs. (3.sa)-(3.sd)

(Laplace transforming them, etc.), the functions x (r,O)
0,0
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and z (r,O) are completely determined. Taking the derivative
0,0

of x (r,O) at r = r [Eq. (3.14)], the recombination yield R
0,0 c

is determined in analytical form. The result is:

R
r (l+Br) exu(-a(r -r )1 +y(l+ar ) exu(-B(r -r )]

c c' oc· c' oc
r (I+Br ) + (l+ar )k+/k

o c c-
(3.21)

where

a =

B

[k ID ]1/2
loss R

[(k +k +k )/D ]1/2
+ - loss R

(3.22a)

(3.22b)

(3.22c)

Using Eqs. (3.2l)-(3.22c) it is possible to calculate l3R and

l2 R from which a suitable enrichment parameter may be defined

(Chapter 6) for comparison with experiment.

Before proceeding to the next chapter, the Continuous

Diffusion Model will be modified by the addition of an extra

boundary condition in order to treat a case of special experimental

interest--that of diffusion in a restricted volume.
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3.6 Restricted Volume and Micelles

Surfactants are molecules consisting of one or more

hydrocarbon chains attached to a polar head group. In solution

these molecules form aggregates, or micelles, of various sizes

and shapes in which the nonpolar parts (i.e., the hydrocarbon

chains) of the molecules associate together and the polar parts

(i.e., the head groups) associate together [28]. The type of

micelle treated in this section is that in which the surfactant

molecules are more or less radially arranged into a sphere with

the hydrocarbon chains forming the interior and the polar head

groups forming the surface. An organic molecule may be solubilized

into the interior of the micelle which is roughly equivalent to

a liquid hydrocarbon droplet [28]. A nonpolar organic molecule

will be repelled from the polar head groups at the surface of the

sphere. In aqueous solution the concentration of nonpolar organic

molecules will be much higher in the micelle interiors than in

the bulk H
2

0 solution. Thus, when such a solution is photolyzed,

the photochemistry of the organic molecule of interest takes

place within the micelle [6].

The Continuous Diffusion Model is adapted to such a situation

by rep13cing the boundary conditions (3.5a) and (3.5b~ which are

relevant for infinite solution, with the new conditions:

o

o

I: I (3.23a)

(3.23b)
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where r
b

is the micelle radius. Since it is the interradical

separation r and not the individual position vectors of the

radicals which enters the calculation, one radical is always

positioned at the origin. Thus, Eqs.(3.23a) and (3.23b) state

that the singlet and triplet radical pairs are reflected when

they separate to the micelle boundary radius r
b

. For the infinite

volume case (sections 3.4, 3.5) the constraint of fixing one

radical and considering the relative diffusion of the other was

simply a matter of reference frame and was inconsequential.

In the micelle case the artifical constraint of having one

radical remain at the center is a source of error. Nevertheless,

the model still accounts for the general features of diffusion in

a restricted volume.

Replacing Eqs. (3.5a) and (3.5b) with Eqs. (3.23a) and

(3.23b), and following the same analysis as in sections 3.4 and

3.5, tqe expression obtained for recombination in a micelle is

where

R {(~3¢1+~1¢2)(1+arc) exp[a(ro-rc )]

- (~4¢1+~2¢2)(1-arc) exp[-a(ro-rc)]}/(6164-6263)

1 - ar
b

(3.24)

(3.25a)

(3.25b)
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{(l-Srb ) [k+(l-ar ) + k (l+Sr )] exp[BCr -r )]
c - c a c

- q[k+Cl-ar ) + k Cl-Sr )] exp[-SCr -r )]} exp[-aCr -r )Jc - c oc oc

(3.25c)

/;,4= {(l-Srb) [k+(l+ar ) + k (l+Sr )] exp[BCr -r )]
c - c a c

- qlk+Cl+ar c ) + k Cl-Br )] exp[-SCr -r )]} exp[aCr -r )]
- c a cae

(3.25d)

~l

(r /r )yk Cl-Srb-q)
c a -

(3.25e)

(3.25f)

(3.25g)

Although the micelle was introduced as a special case of

the derivation of the preceding section, in fact, the opposite
,

is true. Eq. (3.21) for recombination in an infinite volume is

a special case of Eq. (3.24) and is obtained directly from Eq.

C3.24) in the limit of r b + 00 (see Chapter 6, Figure 1.42).
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4. PHOTOCHEHISTRY

4.1 Benzophenone and Toluene

The benzophenone photochemistry involves two steps as

shown in Figure 1.12: (a) production of photoexcited benzo-

phenone and (b) reaction of the excited benzophenone with

toluene. For the photoexcitation step irradiation was performed

with a high pressure mercury UV lamp with all light of wavelength

o

shorter than 3450 A filtered out so that only the lowest excited

singlet Sl of benzophenone could be populated.

Sl occurs 74 kcal/mole above the ground state [29] and has

o

an absorption maximum ~ 3500 A in cyclohexane [30]. 51 inter­

system crosses to the first excited triplet T
l

, in ~ 3 x 10-
11

sec with near unit probability [31]. From theoretical considerations

[32] and chemical reactivity, Sl and identified *T
l

are as n,'IT

states. That is, they are formed by the excitation of a non-

bonding electron the * orbital of the carbonylon oxygen to 'IT

group. Since the two states have the same orbital make-up,

the spin-orbit interaction cannot couple them directly, and

the fast intersystem crossing must involve an intermediate

T
2

state (see Figure 1.13). Furthermore, since 51 and T
l

are separated by 5.7 kcal/mole [29], the high rate of inter-

system crossing indicates that there is significant Franck-Condon

overlap between Sl and an excited vibrational state of T
l

giving a near degenerate condition as shown in Figure 1.13. T
2

* *is presumably a 'IT,'IT state (i.e., 'IT+'JT excitation).
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XBL 8010-7377

figure 1.12 (a) Benzophenone is photoexcited to a singlet state

\,Thich decays to a metastable triplet. (b) The alkoxy-like

triplet state abstracts a hydrogen from toluene and, conserving

spin correlation, produces a triplet radical pair.
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Figure I.13 Photochemical route to produce triplet state

chemistry. The carbonyl moiety is photoexcited to the first

excited singlet state. The excited singlet Sl decays to the

lowest triplet via the spin-orbit interaction which operates

through an intermediate excited triplet T
2

(see sections 2.4.3

and 2.5.6). The metastable triplet T
l

can react to form a triplet

radical pair.
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The excited triplet T
l

has a room temperature lifetime in

"inert" organic solvents of 'V 4 x 10-
3

sec [33]. Because a

non-bonding electron has been excited from the carbonyl oxygen,

the excited state appears radical-like, that is, like an alkoxy

radical [34]. The radical-like oxygen abstracts a hydrogen from

toluene with rate const'3.nt k equal 6 x 10-5 -1 -1
to M sec

<P CB3
[33,35]. The toluene concentrations used were 1 to 10 M, and

thus the abstraction reaction took ~ 10-6
sec, well within the

excited state lifetime. The hydrogen abstraction takes place

without change of electron spin [36], and since 51 decays to T
l

much faster than the rate of hydrogen abstraction, the radical

pairs are formed with 100% triplet electron spin correlation.

An important consideration in regard to radical pair

intersystem crossing arises when the state correlation diagram

for carbonyl hydrogen abstraction is examined. A schematic

correl~tion diagram is shown in Figure 1.14. In zero order the

51 and 50 potential energy surfaces cross. Thus, in zero order

if the radical pair state T
RP

crosses over to 5
RP

, the radical

pair still remains on an unbound surface. In first order, mixing

between Sl and So is allowed, but T
l
-5

0
mixing is forbidden

because of the different electronic spin. The Sl-50 mixing

causes an avoided crossing as shown in the second part of Figure

1.14, and now SRP correlates with the bound state SO' The

strength of the avoided crossing and the rate at which the

radicals move on the surfaces (i.e., adiabatic versus non-

adiabatic motion) are major factors in determining (1) the
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XBL 8010-12624

Figure I.14 Correlation diagrams for benzophenone and toluene radical

p;llr. 'fhese figures are based on the work of Salem I 36] for

formaldehyde plus methane. (a) In zeroth-order there is no interaction

to mix the ground and excited singlet states; thus, the singlet radical

pair state may not lead to product. (b) In first-order the excited

and ground singlet energy surfaces cannot cross; therefore, the

singlet radical pair lies on a bound potential energy surface.
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reactivity A of singlets during collision (see section 2.3) and

(2) the preparation of a pure triplet radical pair. The fact

that triphenylethanol is a product of the benzophenone/toluene

photolysis indicates that the surface crossing is indeed avoided.

The geminate recombination process for the triplet radical pair

from benzophenone and toluene (or from dibenzylketone; see below)

is shown schematically in Figure 1.15.

The hyperfine couplings for the radical pair are shown in

Figure 1.16. Although the ketyl radical is drawn with the

electron localized at the central carbon, the l3C at this position

does not have a very large hyperfine coupling, because the

unpaired electron resides in a n* orbital and is really

delocalized over both aromatic rings. In addition, the n*

molecular orbital is made up of p atomic orbitals which have

nodes at the nuclei.

The isotropic g-factors are I 37J

gBenzyl

2.003

2.0026

The deviation from the free electron g-factor of 2.0023 indicates

that spin-orbit coupling is non-zero (see sections 2.4.3 and

2.5.6).
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Figure 1.15 Diffusive behavior of a triplet radical pair. The

overbar indicates collision. The initially prepared triplet

cannot bond so it separates. During separation the hyperfine

couplings interconvert triplet and singlet, and upon re-encounter

bonding is.possible. Those radicals with the largest hyperfines

interconvert the fastest and are most likely to form product.



1.4 98

HYPERFI NE CONSTANTS IN MHz

O/H (7)
H H

13
1

H

131C6H5- C· (62 ±14)
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H H(9) (68) I (17)

H H H
H H(3)

(46) (14) (5)

HOO)

XBL 8010-12622

Figure I.16 Hyperfine coupling constants for the radical pair

produced by photolysis of benzophenone and toluene. All values

are taken from Reference 37.
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4.2 Dibenzylketone

Tn~ photolysis of dibenzylketone to produce a radical pair

is shown in Figure 1.17. Photolysis was performed with

*irradiation> 3000 A which should populate only the n,n

singlet. 1 *Engel [38] has determined the energy of n,n to be

o 3 *
88 kcal/mole (3250 A) and of n,n to be 79 kcal/mole. The

triplet energy is more than sufficient to accomplish bond

scission since the bond strength of a similar carbon-carbon

bond:

is listed as 63 kcal/mole [39]. From singlet and triplet

sensitization and quenching experiments Engel [38] has

determined that the 3n ,n* level is populated with near unit

quantum yield (see Figure 1.13, section 4.1) and that bond

scission occurs in '\, 10-10
sec. Since decay of T

l
to So

cannot compete with the rate of bond scission, triplet radical

pairs are formed with near unit quantum yield as shown in Figure

1.17.

A schematic zero-order correlation diagram for the ketone

cleavage is shown in Figure I.18a. When first-order mixing of

the triplet states is allowed, the correlation diagram of Figure

I.18b results. From the latter diagram it is reasonable to

expect the formation of a triplet radical pair since the cleavage

of Sl is endothermic and the cleavage of T
l

is estimated from

the above stated energies to be exothermic by 16 kcal/mole. As
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Figure I.17 Preparation of the dibenzylketone triplet radical

pair. R = C6H
S

CH
2

. Photolysis proceeds through an excited

singlet state which decays to an excited triplet (see Figure I.13).

The triplet decays via bond scission to a triplet radical pair.

The quantum yield for loss of CO is "V 0.9 [6bJ; this value is a

lower limit for production of the radical pairs since some of

the pairs recombine.
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Figure 1.18 Correlation diagrams for the dissociation of

dibenzylketone into a radical pair. These figures are based

on the work of Salem [36] for acetone. (a) In zeroth-order

*the n,n states cannot dissociate into radical pair states.

(b) In first-order only the excited triplet state can dissociate

into a radical pair; thus, the photoexcited dibenzylketone

produces a pure triplet radical pair.
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in the case of benzophenone, radical pair intersystem crossing

is a viable route to geminate recombination since SRP is a bound

state. Thus, the triplet radical pair evolves as shown in

Figure 1.15 (section 4.1).

The radical pair is shown in Figure 1.19 with the relevant

hyperfine couplings. In contrast to the benzophenone generated

radical pair, the ketyl radical from dibenzylketone is a 0

radical. That is, the unpaired electron on the ketyl radical

is localized in a sp2 0 orbital on the carbonyl group. Due to

the localization and s character of the orbital, the carbonyl

l3C has a large hyperfine constant. The g-factor for the ketyl

radical is [37]:

g 2.0007

with g for the benzyl radical given in section 4.1.
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HYPERFI NE CONSTANTS IN MHz
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Figure 1.19 Hyperfine coupling constants for the radical pair

produced by photolysis of dibenzylketone. All values are taken

from Reference 37.
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5. EXPERIMENTAL DETAILS

All photolyses were performed with a high pressure mercury

capillary lamp (Illumination Industries AH-6). The reaction

conditions, irradiation set-up, and product work-up are described

below under the three reactions studied.

5.1 Benzophenone and Toluene

Photoexcited benzophenone abstracts a hydrogen atom from

toluene and forms a triplet radical pair (Chapter 4), and for

geminate recombination to occur, there must be intersystem

crossing. Because a l3C at the radical center of either benzo-

phenone or toluene will speed up the intersystem crossing, the

geminate product 1,1,2-triphenylethanol is expected to be

. 13
enriched 1n C. On the other hand, the radicals which diffuse

apart are slightly de-enriched in l3C, and, consequently, the

1,1,2-triphenylethanol formed homogeneously has less l3 C than

the reactants. Thus, the magnetic isotope effect in the benzo-

phenone/toluene reaction was measured as follows:

1) Benzophenone and toluene were photolyzed to form

1,1,2-triphenylethanol both geminately and homogeneously. The

l3 C content of the isolated product should be essentially the

same as that of the reactants.

2) Benzophenone and toluene were photolyzed in the

presence of excess scavenger (thiophenol) which scavenges the

benzyl radicals and prevents homogeneous formation of the



triphenylethanol. Thus, the isolated 1,1,2-triphenylethanol is

1 i
pure geminate product and should be --C enriched. ~he condition

of complete scavenging was determined by varying the thiophenol

concentration and determining the region where the 1,2-diphenyl-

ethane disappears, and the yield of the 1,1,2-triphenylethanol

approaches a constant value (asymptotic geminate yield).

3)
13

By comparing the C content of the triphenylethan?l

formed under the two conditions of no scavenger and excess

scavenger, the magnetic isotope effect was determined.

Using the above procedure the reactions summarized in

Table 1.1 were studied. Reaction volumes were typically 5 ml,

and the reactions were performed in 25 ml pyrex erlenmeyer

flasks. The flasks were stoppered with rubba septa, and O
2

was flushed out by bubbling dry N
2

through the solutions for

~ 1 hour. The l3C-enriched and deuterated benzophenone compounds

were purchased from Merck, Sharp, and Dohme of Canada. The

13C-toluene was synthesized according to the procedure outlined

in Appendix F. Spectralgrade solvents were used without further

purification.

Photolysis times were typically 45 minutes which gave 75%

reaction of the benzophenone. The flasks were suspended in a

pyrex dish/water bath with the UV lamp below the dish. The

water bath contained a copper coil with running water and the

bath was stirred to maintain the temperature ~ 22°C. The lamp

to reaction flask distance was ~ 10 cm. Within the water bath

in the path between lamp and flask was a 1 cm thick piece of
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Table 1.1 Reaction Conditions for Benzophenone plus Toluene

Photolyses

Reaction

1-1

1-2

1-3

2-1

2-2

2-3

3-1

3-2

3-3

4-1

4-2

5-1

5-2

6-1

6-2

Solvent

Benzene

"

"

Acetonitrile

"

"

Acetonitrile

"

"

Acetonitrile

"

Acetoni trile

"

Acetonitrile

"

3.0

2.9

2.7

3.0

2.9

2.7

2.7

2.7

2.7

0.27b

0.27 b

1.3
b

1. 3
b

[¢SH] x 10
3

M

0.0

4.4

14

0.0

4.4

14

0.0

7.3

15

0.0

1.7

0.0

7.8

0.0

17

3.la

3.0
a

2.8
a

3.l
a

3.l
a

2.8a

0.94

0.94

4.7

4.7

4.7

4.5

aToluene initially enriched to 40% in the a position.

bBenzophenone initially enriched to 40% in the carbonyl position.

cBenzophenone initially enriched to 40% in the carbonyl position,

and rings deuterated to 99% 2D.
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plexiglass which served to filter out all light of wavelength

°
< 3450 A. The use of this filter minimized the occurrence of

1 *unwanted side reactions by allowing only the n,TI of benzophenone

°at 3500 A to be produced. Furthermore, because of the water bath

there was 2-3 cm of H
2

0 in the light path which served as an lR

filter and helped prevent solution heating.

The reactions were characterized by gas chromatography using

standards of benzophenone, 1,2-diphenylethane, 1,1,2-triphenyl-

ethanol, and ·tetraphenyl-l,2-ethanediol. The last product was

not observed in the GC, presumably because it either decomposed

or had such a long retention time that its peak was not detected.

The 1,1,2-triphenylethanol gave two peaks which were attributed

to the alcohol and its dehydration product triphenylethylene:

This assignment was further substantiated by the fact that~

the dehydration product could be detected in the mass spectrum.

A Varian 3740 Flame Ionization Detector gas chromatograph was

used. The columns were 6' by 1/8" 3% SE-30 (80/100 mesh Supel-

coport) and 3% OV-17 (100/120 mesh Supelcoport) and were run in

the temperature range l60-2l0°C.

For product analysis the reaction solvents were evaporated

and the mass spectroscopy of the residue performed without

further separation. The dehydration product of the triphenylethanol,

triphenylethylene, appeared in the mass spectra without

complication from other reaction products. The mass spectrometer
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was an MS-12, and multiple spectra (20-40 scans) were recorded

of each reaction. Although the dehydration reaction could not

be avoided, further fragmentation was prevented by running the

mass spectrometer at low ionization voltage ~ 12 eV. Peak

intensities were determined by an online computer which

introduced much unnecessary fluctuation into the data. After

rejection of anomalous values, the data were averaged and

theoretical spectra calculated to determine the isotopic content.
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5.2 Dibenzylketone

The dibenzylketone (DBK) photolysis is a cyclic reaction

where the geminate recombination regenerates the starting material.

Since the initial radical pair is a triplet (Chapter 4), the

nuclear magnetic isotope effect favors recombination of l3 C

containing radical pairs so that as the photolysis proceeds the

illK b . 1 . h d' 13Cecomes progress1ve y enr1C e 1n . Those pairs which

diffuse apart cannot reform the ketone, because decarbonylation

of the acyl radical is much faster than homogeneous recombination.

In the benzophenone/toluene reaction the relevant quantity to

13 d 13 . hmeasure was C in the homogeneous pro uct versus C 1n t e

geminate product. In the DBK reaction the relevant observable

. 13 13
1S the C content of partially reacted ketone versus the C

content of unreacted ketone. The experimental procedure was to

photolyze the ketone, monitor the reaction progress by comparing

the relative amounts of the ketone and the homogeneous product

1,2-diphenylethane, and monitor the l3 C content of the ketone.

Because the reaction is cyclic, the enrichment is sensitive

not only to the differential in geminate recombination of 12C

and 13C, but also to the total amount of geminate return since

this determines the number of cycles a molecule may go through.

As such, the enrichment is very sensitive to the decarbonylation

rate (i.e., temperature dependence) and the diffusion rate (i.e.,

viscosity dependence) which determine the ratio of homogeneous

to geminate product. The experimental approach taken was to

optimize the dibenzylketone enrichment through manipulation of
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temperature and viscosity, and Table 1.5 (section 6.2.2) summarizes

the reaction conditions used.

Reaction volumes were typically 25 ml, and the DBK

concentration was ~ 0.1 M. Because frequent aliquots were

taken, no attempt was made at degassing the samples. However,

to keep the reactions dry, the reaction cells were kept under a

positive pressure of dry N
Z

. The l3C-enriched DBK reagent was

synthesized according to the procedure outlined in Appendix F.

Reagent grade solvents were used without further purification.

Because DBK absorbs at a shorter wavelength than benzophenone,

quartz glassware was used for the photolyses. For room temperature

experiments a similar photolysis set-up was used as for benzophenone.

For the low temperature experiments a specially designed all

quartz 100 ml cell was used which could be immersed in a constant

temperature bath and irradiated from above. The cell is pictured

in Figure I.ZO.

Three bath set-ups were used:

1) Ice/HZO

2) Dry ice/ethanol

3) Ethanol bath cooled by cold N2 flowing through an

immersed copper coil.

The temperature was measured using a copper/constantan thermocouple

inserted in the cell, and temperature stabilization was achieved

through a combination of varying the bath temperature and the

irradiation intensity (i.e., the lamp to cell distance).

Typically the lamp to cell distance was 15 em with the cell 1 em

below the surface of the bath.
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Figure 1.20 Immersible quartz reaction cell. The cell may be

immersed in a constant temperature bath for temperature control

and has an optically flat window to allow photolysis from above.

The bottom and sides are silvered to increase the light intensity

in the cell. The side arm is designed to allow removal of

aliquots while keeping a positive pressure of dry N2 in the cell.

During photolysis a copper/constantan thermocouple is inserted

in the cell.
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The reaction progress was easily characterized using gas

chromatography (Varian 3740 Gas Chromatograph and the columns

previously described) to measure the DBK and 1,2-diphenylethane

peaks.

The peak areas were computed by triangulation and compared

with peaks from standard solutions of known concentration.

Before performing the isotopic analysis, the DBK was purified

by two steps of separation. The first step was preparative thin

layer chromatography. A 50/50 methylene chloride/hexane solvent

was used with Analtech Uniplates of 2000 ~ thick Silica Gel GF.

The 8" x 8" plates were typically loaded with 100-200 mg of

material obtained by taking a reaction aliquot and distilling off

the solvent. For loading the plates, the material was dissolved

in hexane. After collecting the DBK band, the ketone was further

purified by preparative gas chromatography. A 10' by 1/4" 10%

SE-30 (80/100 mesh Gas-Chrom Q) column was used with temperature

equal to 200°C. Column injections were 50 ~l of a DBK/acetone

solution.

With the purified DBK the l3 C enrichment of the carbonyl

carbon (initially enriched to 30% for ease of analysis) was

measured with two different methods: mass spectrometry and NMR

spectroscopy. In the former method a mass spectrum was taken for

the molecular ion of the DBK. The MS-12 mass spectrometer was

used as with the benzophenone/toluene, but it was found that

rather than using computer analysis the mass spectra could be

determined far more accurately and reproducibly by obtaining a
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strip chart recording of the ion flux and measuring the peak

heights 20-40 scans were obtained as before, although

the reproducibility was such that there was little need to

average. To minimize fragmentation of the molecular ion, the

mass spectrometer was run at very low ionization voltage ~ 12 eV.

The mass spectra were analyzed by assuming natural abundance

isotopes at all positions except for the carbonyl carbon.

Although mass spectrometry is more accurate, NMR was also

used, because it has the advantage of monitoring the isotopic

content at the carbonyl position directly.
13

A carbonyl C

splits the proton resonance at the adjacent methylene position

(see Figure 1.21) by 6.3 Hz. By observing the proton NMR spectrum

13 .
and comparing the integrated areas of the C satell1tes to the

1 · h 1 h 13 . b . dunsp ~t met y ene resonance, t e percent C 1S 0 ta1ne. One

set of results where the NMR spectrum was recorded as a function

of the percent of ketone remaining is shown in Figure 1.22.

The accuracy of the NMR is limited by the fact that with

the small coupling constant of 6.3 Hz the methylene resonances

are not fully resolved from one another. In order to find the

peak areas it was necessary to use a curve fitting program

(Nicolet Curve Analysis Program) with the positions, widths,

and heights of three Lorentzians as variables (see Figure 1.23).

Because of phase errors in the NMR spectra and line broadening

which distorts the Lorentzian lineshapes 1 the fitting did not

give very accurate numbers (i.e" ~ 5% error) 1 but it did serve

to confirm that the carbonyl carbon was being enriched (see Fig. 1.22).
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Fi~~~~~ Dibenzylketone molecule.
13

In the absence of C the

methvlene protons give a single NMR line. ~hth l3 C at the

carbonyl position the methylene resonance is split by 6.3 Hz.
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Figure 1.22 Methylene proton NMR signal as a function of remaining

ketone for photolysis of dibenzylketone in cyclohexanol at O°C.

Isotopic ana1ysis by curve fitting the methylene triplets gives:

100% ketone, 29% l3C; 9% ketone, 36% 13C; 1% ketone, 40% l3C;

O % 47% 13C.. 10 ketone, Total photolysis time is 409 min .
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Figure 1.23 Curve fitting analysis of the dibenzylketone methylene

triplet. The center line is the proton resonance in the absence

of l3 C. The outer resonances are from molecules containing a l3 C

at the carbonyl position. The accuracy of the fit is limited by

the overlap of the long Lorentzian tails and by phase errors.



1.5 117

The NMR spectra were taken with a pulsed 180 MHz spectrometer,

-2 3and for some of the very dilute samples (10 - 10- M since

99.9% of the ketone was re~cted), several thousand shots were

required for good signal/noise. 16 K F1D's were acquired for

maximum peak resolution, and the acquisition time per shot was

~ 6 seconds. To avoid error due to the protons (satellite lines)

coupled to l3C having a different relaxation time than the protons

l2C.(center line) "coupled" to 7 the relaxation after saturation

of the methylene triplet was observed (see Figure 1.24) with the

results:

lH to
l3

C (upfield): T
l

= 2.5 ± 0.1 sec

~ to l3
C (downfield): Tl

= 2.6 ± 0.1 sec

~ to l2c: Tl = 2.6 ± 0.1 sec

Thus, no error is expected from having a short recycle time

(recycle time is equal to the acquisition time).

-2 -3
For the dilute samples (10 - 10 M) it was necessary to

exclude H20 since its resonance could swamp out the ketone

resonance. For this purpose dry, clean NMR tubes (0.5 ml) were

soaked several hours in DZO and then washed and dried with

d6-acetone. 99.95% deuterated chloroform was used as solvent for

the NMR samples.

Viscosities for the neat reaction solvents were interpolated

from the tables in Reference 40. For the 70/30 and 80/20

cyclohexanol/isopropanol (weight/weight) solvents the viscosities
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T1 Recovery of Dibenzylketone Methylene Triplet

XIl. 11011-12733

118

Figure I.24 T
l

recovery of dibenzylketone methylene triplet. To

within experimental error, the relaxation time of the protons is

13
independent of whether they are coupled to C or not. Thus,

there is no distortion in the intensities when a short recycle

delay is used in signal averaging. The measured relaxation time

is 2.6 ± 0.1 sec.
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were measured with a falling ball viscosimeter as follows (see

Figure 1. 25). Stainless steel balls of 1/16". 1/8 ", 5/32", and

3/16" were dropped through a tube containing the solvent mixture

of interest. and from the fall times of the balls the viscosity

of the solvent could be calculated using the treatment of

Laughlin and Uhlmann [41]. The drop tube had a 40 cm long neck

of 0.6 cm inner diameter which slowed the drop rate of the balls

and also allowed them to temperature equilibrate with the solvent.

Below the neck was the area calibrated for the fall. This

region had'a 2.66 cm inner diameter and 10 cm length. The

drop tube was completely immersed in an ethanol bath in a silvered

vacuum jacketed glass dewar with an unsilvered (Le •• clear)

strip down the side for observation. The temperature of the bath

was regulated by bubbling cold N2 through the liquid. During

measurements the N2 was turned off to avoid disturbing the drop

tube. The temperature within the drop tube was measured by

a copper/constantan thermocouple. It was also necessary to

measure the solvent densities. This was done by immersing

a graduated cylinder with solvent in the temperature bath and

measuring the solvent volume as a function of temperature.

Assuming a cubical coefficient of expansion of glass of 2.5 x 10-5

per degree centigrade [39J, the error in the density measurements

due to contraction of glass components is ~ 0.2% over the

temperature range studied. With the falling ball and density

data the results of the viscosity as a function of temperature

measurements are shown in Figure 1.26.
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Figure 1.25 Falling ball viscosimeter. The long neck of the

drop tube (not drawn to scale) allows temperature equilibration

of the falling ball with the solvent before reaching the calibrated

area. Ethanol was used for the bath, and its temperature was

regulated by blowing cold N
Z

through the bath. During measurements

the N
Z

was turned off to avoid disturbing the drop tube.
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Figure 1.26 Viscosity measurements for cyclohexanol/isopropanol

solutions. Each curve is labeled by the weight/weight ratio of

cyclohexanol to isopropanol. Using the falling ball viscosimeter

of Figure 1.25 and the treatment of Reference 41, the measured

viscosities were independent of ball size: • 1/16;1, j, 1/8",

X 5/32", + 3/16" diameter stainless steel balls. The results

were unchanged by the addition of 0.06 M 1,2-diphenylethane to

simulate experimental conditions: 0 1/16", !':. 1/8" diameter balls

with 0.06 M 1,2-uiphenylethane. Fitting the lines with an

Arrhenius expression the following activation energies are

obtained: 70/30, 11 kcal/mole; 80/20, 13 kcal/mole; 90/10

17 kcal/mole.
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5.3 Benzaldehyde

Photoexcited benzaldehyde (¢COH) was studied as a candidate

for production of triplet radical pairs through hydrogen abstraction

from a substrate. In initial experiments benzaldehyde was photo-

lyzed at high concentration (2 M) in toluene and in cyclohexane.

In both cases a polymeric material was formed which was not amenable

to further analysis. It was assumed that the benzaldehyde was

reacting too efficiently with itself, and, therefore, a substrate

with a more labile hydrogen was needed. Diphenylmethane (¢ZCHZ)

was chosen as substrate (and solvent), but it was found to be

unstable under photolysis conditions [42]. When pure diphenyl-

methane was photolyzed) 1,1,2,Z-tetraphenylethane was formed,

presumably through the following free radical mechanism:

hv
----+

After these failures benzaldehyde was eliminated from further

consideration.

In retrospect. benzaldehyde reacting with itself via

hydrogen abstraction could provide a very interesting system to

study [43]:

hv
¢COH
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since the acyl radical (¢CO) is a cr radical and therefore has

a large l3C hyperfine (359 }ffiz) at the carbonyl position [37].

It is reported that benzaldehyde undergoes unimolecular reaction

[44] :

¢COH hv-+ [¢CO oH]

This also produces the acyl radical but now via a mechanism

which allows a cyclic reaction to be studied as in the case of

dibenzylketone. Since the phenyl radical (¢o) is less stable

than the benzyl radical (¢CH2), the acyl radical from benzaldehyde

should decarbonylate more slowly than that from dibenzylketone

and therefore give a more efficient geminate recombination and

enrichment system (see section 6.2).
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6. CALCULATIONS AND EXPERIMENTAL RESULTS

Results are presented in this chapter for the benzophenone

plus toluene and the dibenzylketone reactions. For the calcula-

tions with the First Collision Model eight hyperfines were used:

the four largest from each radical. For the Continuous Diffusion

Model calculations, Eq. (3.3b) was used to determine 6v with all

of the known hyperfine constants included in the summations. In

both models unit reactivity of singlets during collision was

assumed; that is, A = 1. The same values of rand r were usedc 0

for both reactions. r was calculated from the molecular density
c

of toluene, and r was derived from experimental results for
o

dibenzylketone (section 6.2.2). For the benzophenone plus toluene

reaction a value of 1 msec was used for the radical pair lifetime

~; Eq. (2.89) was used to calculate T
RP

for dibenzylketone.

The parametrization of the isotope enrichment is discussed below

with the experimental results.
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6.1 Benzophenone and Toluene

6.1.1 Geminate Recombination

The photolysis of benzophenone in toluene to produce 1,2-

diphenylethane, 1,1,2-triphenylethanol, and tetraphenyl-l,2-

ethanediol (see Figure 1.27) has been previously established

[45]. The first-order dependence on benzophenone is demonstrated

in Figure 1.28 where it is sho~ that the yields of triphenyl-

ethanol and diphenylethane vary linearly with the initial

concentration of benzophenone.

The efficiency of bubbling N2 through the reaction solutions

to remove 02 is shown in Table 1.2 where it is seen that the

diphenylethane yield drops markedly when there is no degassing

(i.e., no removal of 02)' The drop is attributed to the reaction

of 02 with the benzyl radicals [45]. Assuming that the benzyl

radicals remove all of the 02 from solution, the difference in

-3yields of the diphenylethane gives an estimate of ~ 10 M for

the concentration of 02 present in undegassed solution.

The experimentally determined ratio of l,l,2-triphenylethanol

to 1,2-diphenylethane formed is 1.6 ± 0.1 (see Figure 1.28).

From this number it follows that 45% of the benzophenone which

abstracts a hydrogen from toluene forms triphenylethanol. To

isolate that fraction of the triphenylethanol which is formed

geminately, it is necessary to scavenge all radicals escaping

fast geminate recombination before they have a chance to undergo

homogeneous reaction.. The results of an experiment with varying
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Figure I.27 Radical-radical coupling products from the photolysis

of benzophenone and toluene. The product 1,1,2-triphenylethanol

is formed homogeneously and geminately.
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Figure 1.28 Linear dependence of the yields of 1,1,2-triphenyl-

ethanol and 1,2-diphenylethane on the initial concentration of

benzophenone. Toluene was the solvent. Each reaction was

photolyzed for 1 hour. The simple linear dependence of the

yields indicates that the reaction as illustrated in Figure 1.27

is uncomplicated by impurities or side reactions. The ratio of

the triphenylethanol yield to dipheny1ethane is 1.6 ± 0.1.
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Table 1.2 Efficiency of Flushing out O
2

with N
2

Reactant a
N2 Flushingb Product

[<!>2 CO ]M (minutes) [<!>CH2CHZ<!> ]M

0.003 a o.oooz

" 30 0.001

" 60 0.001

" 90 0.001

aToluene is the solvent.

bBefore photolysis the stoppered reaction flasks were

immersed in an ice bath to reduce the toluene vapor

pressure, and dry N2 gas was bubbled through them.
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concentration of the radical scavenger thiophenol ¢SH are shown

in Figure 1.2 (section 1.2). The 1,2-diphenylethane disappears

for [¢SH]/[¢2CO] ~ 2 (i.e., [¢SH] ~ 5 x 10-
3 M), which indicates

very efficient scavenging of the benzyl radicals by the thiol.

(See section 2.6 for an estimate of the scavenging rate constant

k). The 1,1,2-triphenylethanol, however, persists all the way
S

out to [¢SH]/[¢2CO] = 6 and appears to be leveling off at a non-

zero value. This non-zero value represents the geminate fraction.

The time scale of geminate recombination is far too fast (10 ...9 .,.

10-8
sec) for the dilute scavenger (~ 10-2 M) to compete w::l.th.

This may also be shown as follows.

Since the homogeneous concentration of radicals depends on

the concentration of benzophenone, in the presence of scavenger the

homogeneous radical-radical coupling products are formed more

efficiently as the benzophenone concentration increases. The

linear dependen~e of the triphenylethanol yield on benzophenone

concentration shown in Figure 1.29 indicates, therefore, that at

0.015 M thiophenol ([¢SH]/[¢ZCO] = 5 in Figure 1.Z) the triphenyl-

ethanol is formed only geminately. Together the data of Figures

1.2 and 1.29 demonstrate that thiophenol serves as an efficient

radical scavenger.

Many other scavengers were tried but had to be rejected

because of complicating side reactions. One example is

bromotrichloromethane BrCC1
3

which has been used frequently else­

where [2 ].. When BrCC1
3

was photolyzed in toluene (no benzophenone

present) both a-bromotoluene and 1,Z...diphenylethane were formed.
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Figure 1.29 Linear dependence of the 1,lJ2~triphenylethanolyield

on the initial benzophenone concentration in the presence of

scavenger. The concentration of the scavenger thiophenol is

0.015 M; toluene is the solvent, Each reaction was photolyzed for

1 hour. If triphenylethanol were being formed from radicals produced

by different benzophenone molecules. then the efficiency of scaveng-

ing would go up as the benzophenone concentration goes down. However,

the simple linear dependence of the yield indicates that the reaction

is first-order in benzophenone; that is, the triphenylethanol is

formed only geminately.
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Presumably the BrCC13 dissociates under photolysis conditions

B CCl hV) Bro + "CClr 3 3

due to the relatively weak (55 kcal/mole [39]) bromine-carbon

bond. Both of the radicals produced can abstract hydrogen from

toluene since the bond energies of hydrogen to bromine (87.4

kcal/mole) and hydrogen to trichloromethyl (96 kcal/mole) are

both greater than hydrogen to benzyl (85 kcal/mole). Thus,

BrCC1
3

serves as an alternate source of benzyl radicals. Further-

more, the a-bromotoluene formed by scavenging

was found to be unstable under photolysis conditions as

photolysis of a-bromotoluene in toluene produced 1,2-diphenylethane.

Returning to thiophenol, the data of Figure 1.2 are plotted

relative to the"unscavenged reaction and only show the change in

yield as scavenger is added, To obtain the actual geminate

recombination yield R, it is necessary to correct for reaction

between the thiophenol scavenger and triplet benzophenone. The

rate constants for reactlimof triplet benzophenone with toluene

and thiophenol are [35];

6 3 105 M-l. x

2.6 x 108 M"",l

..,..1
sec

-1
sec
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Given the large value of k
4SH

, the thiopheno1 competes effectively

for the photoexcited benzophenone in spite of the large difference

in concentrations:

[¢SH] = 0.016 M

The effect of the scavenger is easily accounted for, since it is

known that thiopheno1 does not photoreduce ~ut only quenches the

excited benzophenone [46]. The labile thiyl hydrogen is believed

to be reversibly abstracted by the excited benzophenone,resu1ting

in ground state ketone and thiol [46]. Thus, for the data of

Figure 1.2 after 45 minutes of photolysis, 75% of the benzophenone

is consumed when no thiophenol is present, but 54% is consumed

when [¢SH]/[¢2CO] = 6.

The true geminate yield is obtained by dividing the moles

of l,l,2-triphenylethanol produced by the moles of benzophenone

consumed,as is shown in Figure 1.30. Assuming no homogeneous

reaction at [¢SH]/[¢2CO] = 6, the geminate yield is seen to be

8%. This value for photolysis of benzophenone and toluene with

12
natural abundance C is to be compared with Figure 1.31 where

l2R is calculated as a function of D , the average diffusion
avg

coefficient for the two members of the radical pair. The

diffusion coefficient of the benzyl radical in toluene should

be close to the self-diffusion coefficient of toluene which is

-5 2
2.3 x 10 cm /sec [47]. Since the ketyl radical is about twice

the size of the benzyl radical, it should diffuse somewhat more
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Figure 1.30 Determination of the geminate yield of 1,I,Z-triphenyl-

ethanol. The yield is the moles of triphenylethanol formed per

mole of benzophenone consumed. The ratio of thiophenol to

benzophenone is for the beginning of photolysis. The initial

concentration of benzophenone is 0.003 M. As the concentration

of radical scavenger increases, only the triphenylethanol which

is formed geminately remains. For [¢SH]/[¢ZCO] < I all of the

thiophenol is consumed by radicals, so the yield of homogeneous

product does not falloff rapidly.
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for benzophenone and toluene with 12C.

0.6,....-----.,------,------r------.-------,

Benzophenone + Toluene

Continuous Diffusion Model

c First Collision Model

.g 100 collisions
o
:a 3
E 2o 0.21-~-----
u
<U

a:::

0.0
10-9 10-8 10-7 10-6 10-5 10-4

Davg cm2/sec
X8L 8010-7380 ~c

Figure 1.31 Calculated recombination (i,e'l geminate) yield 12R

D is the average
avg

diffusion coefficient for the two members of the radical

pair.
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-5 2
slowly, and 10 cm /sec is chosen as a rough estimate of D

avg

for the radical pair.

Included in:Flgure 1.31 are the predictions of both the

First Collision Model (FCM) and the Continuous Diffusion Model

(CDM). It is seen that the First Collision Model is close to

convergence after three collisions. The two models agree

-6 2
reasonably well for D > 10 cm /sec and begin diverging

avg
-7 2

below 10 cm /sec. Since the experimental value is at D
avg

-5 2
10 cm /sec, the two models cannot be distinguished. The

-5 2
predicted values at 10 cm /sec are

l2~CM = 2.8%

12
RCDM

3.5%

where the converged value is used for the First Collision Model.

Both models underestimate the experimental value by more than a

factor of two. One explanation for this may be the presence of

spin-orbit coupling,which enhances the geminate recombination of

triplets. This will be further discussed below.

6.1.2 Isotope Enhancement Factor

The isotopic content of the geminate product is determined

by the relative recombination probabilities for the radical pairs

containing different isotopes,

l2C .. di 1 .-contalnlng ra ca palrsl

13
Thus, considering C and
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(6.1)

from which the "enhancement factor" Q is defined to be:

13 12
( C/ C)I 't' 1nl. l.a

(6.2)

Or in the case of triphenylethanol from the benzophenone and

toluene reaction:

Q (6.3)

where "scavenge r" and "no - scavenger" represent geminate and

homogeneous product, respectively. A more illustrative quantity

is Q-l since this gives zero when the reactants and products

have the same isotopic content.

The theoretically predicted Q-l for benzophenone and toluene

is plotted in Figure 1.32, where it is seen that the agreement

between the First Collision Model and Continuous Diffusion Model

is quite reasonable. Over the range of readily realizable

viscosities the biggest effect is expected for D between 10-
5

avg
-4 2 13

and 10 cm /sec. Experiments were performed using both C

13
enriched benzophenone (carbonyl carbon) and C enriched toluene

(methyl carbon), but since they have comparable hyperfines

( 62 MHz for benzophenone and 68 tlliz for toluene), the calculations

were performed only for enriched benzophenone. The experimental

results are given in Table 1.3 (see Table 1.1, section 5.1, for

the reaction conditions).
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0.20

0.15

I
o

0.10

0.05

Benzophenone + Toluene

137

First Collision Model

O.OOL..-------'------..J......--------!-------L------.J
10-9

Davg cm2;sec
X8L 8010-7378

Figure 1.32 Isotope enhancement factor for the benzophenone plus

toluene photolysis. Q is the ratio of recombination yields

l3 R/l2R for l3 C and l2 C containing radical pairs, Q greater than

one indicates the ability of l3 C to facilitate geminate

recombination of the triplet radical pairs.
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Table 1.3 Enrichment Results for Benzophenone plus Toluene

Photolyses.

Reaction [¢SH] / [¢2CO]

1-1 0.0

1-2 1.5

1-3 5

2-1 0.0

2-2 1.5

2-3 5

3-1 0.0

3-2 2.7

3-3 5.5

4-1 0.0

4-2 6.3

5~1 0.0

5-2 6.0

6-1 0.0

6-2 6.0

% l3Ca % Fragmentation
b

38.8 ± 0.2

40 ± 2

38.8 ± 0.4

41 ± 1

39.2 ± 0.7

40 ± 1

37.8 ± 0.2

36 ± 1

41.0 ± 0.2 6.6

41.3 ± 0.4 5.9

42.1 ± 0.2 6.1

41.0 ± 0.3 0.8

39.0 ± O.lc 4.8

39.3 ± 0.3
c

4.2

~ss spectra are fitted for the triphenylethy1ene ion. Natural

abundance isotopes are assumed at all positions (Reaction 6 excepted)
13except for C at one position. 20 to 40 mass spectra were averaged,

and the estimated 13c errors are one-sigma values for the means.

Systematic errors are ignored,since enrichment is the differential

of two measurements.

bThe ion of interest, triphenylethylene, has a base mass of 256. For

mass spectra with a peak at 255, the percent fragmentation is used as

an extra fitting parameter for the overlapping triphenylethylene-minus­

one-hydrogen spectrum.

cReaction 6 is fitted with 98.9% 2n per position for the two benzophenone

phenyl rings which appear in the product.
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Among the six sets of reactions displayed in Table 1.3 the

only evident result is the absence of any trend toward enrich-

ment as the scavenger concentration is increased. For each

reaction set, the enrichments are more or less equal within

experimental error (the error estimates are one-sigma values).

Given that the mass spectroscopy technique (i.e., computer

integration of peak intensities) was not very accurate, neverthe-

less, with the number of experiments done and the amount of

averaging for each experiment, the conclusion seems justifiable

that the enrichment in this system is zero.

-5 2
With D ~ 10 em /sec the theoretical value of Q~l which

avg

is intermediate to the predictions of the two models (see Figure

1.32) is 0.16. With an initial l3C of 40% and a Q value of 1.16,

the final enrichment of the geminate product should be 43.6%

[see Eq. (6.2)]. No change of this size was detected in any of

the experiments. One possible explanation for this discrepancy

is that spin-orbit coupling dominates intersystem crossing in

the radical pair and thereby diminishes any magnetic isotope

selectivity. The effect of spin-orbit coupling on the enhancement

factor is shown in Figure 1.33. Since the radical pair starts

as a triplet, any intersystem crossing contribution from spin-

orbit coupling will increase the geminate yield, This trend

13
is shown in Table 1.4 where geminate yield and C enrichment

are given as a function of the spin~orbit coupling strength.

9
It is seen that for a spin-orbit coupling of 10 Hz, both the

13
predicted geminate yield and C enrichment are in reasonable
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0.20r------,------.------..-------,-------,

Benzophenone + Toluene

I
o

0.15

10-7 10-6

Davg cm2/sec

Spin-Orbit Coupling

o Hz

9
10 Hz

XBL BOlO: 73B1

Figure 1.33 Effect of spin~orbit coupling on the benzophenone

plus toluene isotopic enrichment. The curves are labeled by

the rate of intersystem crossing due to spin~orbit coupling.

S · h· l' d d··· h b l3 C d l2 Clnce t lS coup lng oes not lstlnguls etween an ,

it dilutes any isotope effects on geminate recombination. 10
9

Hz

is the estimated value of spin-orbit coupling for organic radicals

(see sections 2.4.3 and 2.5.6). The curves were calculated with

the Continuous Diffusion Model.
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Table 1.4 Effect of Spin-Orbit Coupling on Geminate Recombination

and Isotope Enrichment

Spin-Orbit Geminate

Coupling (Hz)a Recombination
b QC %

13c in
d

Product

0 0.035 1.136 43.1

10
7

0.037 1.126 42.9

10
8

0.047 1. 076 41.8

10
9

0.097 1.015 40.4

a
The values are the rates of intersystem crossing due to

spin-orbit coupling.

bThis is 12R; these calculated values should be compared with

Figure 1.30 where the geminate yield is determined to be

0.08 for natural abundance reactants.

cQ values are calculated with the Continuous Diffusion Model

-5 2
assuming an average diffusion coefficient of 10 cm /sec.

dproduct values are calculated from Eq. (6.2) assuming 40%

13
C in the reactant benzophenone.
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agreement with the experimental values.

142

One objection that may be raised regarding the presence of

spin-orbit coupling is that Chemically Induced Dynamic Nuclear

Polarization (CIDNP) ,which depends upon the same factors as the

magnetic isotope effect,is a very general phenomenon which gives

large enhancements in NMR signals for a variety of systems. In

fact, when the benzophenone plus toluene reaction is observed by

NMR during photolysis [48], the methylene NMR signal of the

1,1,2-triphenylethanol product is seen to be enhanced by a factor

of 250. Nevertheless, this does not contradict the results of

k Wh . 13 . h . 1 k· fthis wor. en measur1ng C enr1C ments, one 1S 00 1ng or

differences of the order of a few percent. However, in NMR one

is concerned with population differences on the order of parts

per million. For example. if a population difference of two

parts per million is enhanced by a factor of 250

a Q value of only 1.0005 is required. Thus, the Q values

required for CIDNP effects are easily accommodated within a

reaction system where the spin-orbit coupling prevents an

observable magnetic isotope effect,

In conclusion, the results presented in this section indicate

that spin-orbit coupling is the dominant mechanism for inter-

system crossing in the benzophenone plus toluene generated

radical pair. The required strength of the spin-orbit coupling

9
is 10 Hz, and this value was shown in section 2.5,6 to be
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consistent with expectations for a carbon~centered radical with

spin-orbit coupling operating through an intermediate state or

70 kcal/mole excitation.
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6.2 Dibenzy1ketone

6.2.1 Geminate Recombination

The photolysis of dibenzy1ketone is a cyclic process in

which the geminate product and the reactant molecule are identical

(see Figure 1.34). Hence, the geminate yield cannot be

determined by product analysis (it can be gotten by quantum

yield measurements where it is assumed that every molecule

which absorbs a photon forms a radical pair [6,49]). The

disadvantage of such a system is that any isotopic enrichment

of the geminate product is diluted by mixture with unreacted

dibenzylketone. The advantage, which is of greater importance,

is that as photolysis proceeds the dibenzylketone may go through

many cycles of geminate recombination and become progressively

. h d' 13enrlC e ln C.

Because of the two factors of dilution of geminate product

by reactant and multiple photolysis cycles, it is important to

maximize the recombination yield R. R is plotted in Figure 1.35

as a function of D
avg

fair, an~ as before, the First Collision Model is near convergence

after three collisions. In contrast to the benzophenone and

toluene reaction 1 the geminate yield of dibenzylketone does not

continue to go up as D becomes smaller and smaller. The
avg

difference is that whereas the action of the scavenger is limited

by the rate of diffusion and therefore becomes slower as the

solution becomes more viscous, decarbonylation is independent of
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Figure 1.34 Overall reaction scheme for photolysis of

dibenzylketone (R = C6H
S

CH2): Sand T stand for singlet and

triplet electron correlation, respectively; ~v(S) indicates that

photolysis involves an excited singlet state; the brackets [ ]

indicate radical pairs that have a finite probability of diffusive

reencounter. Hyperfine couplings equilibrate Sand T while

diffusive encounter of singlets reforms the ketone; diffusive

separation and decarbonylation (k
CO

) form 1,2-diphenylethane.
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Dibenzylketone
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First Collision Model

100 collisions
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Unlike benzophenone and toluene (Figure 1.31), the

Figure 1.35

with l2 C•

. 12
Calculated recombination yleld R for dibenzylketone

geminate recombination yield falls to zero as the diffusion slows

dow-n, because decarbonylation destroys the phenylacetyl radicals
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Because of the large hyperfine coupling (350 MHz) of

diffusivity and therefore destroys a greater and greater fraction

of radical pairs as recombination slows dovffi. Thus, the

recombination yield goes through a maximum at intermediate values

-7 2
(~10 cm /sec) of the diffusion coefficient.

6.2.2 Isotope Enrichment Factor

In Figure 1.36 are plotted the predicted values of Q-l.

It is noted that the First Collision Model and Continuous

Diffusion Model agree rather well over most of the range of

D
avg

the carbonyl l3C in the acyl radical from dibenzylketone, the

Q-l values are an order of magnitude larger than those of benzo-

phenone and toluene. Here, as for the benzophenone and toluene

system, Q increases as D increases. The observed behavior,avg

however, is quite a bit different from what this might imply.

In Figure "1.37 are shown the results of photolyses performed

at four different viscosities. It is seen that there is indeed

isotope enrichment and that, furthermore, for a given amount of

photolysis (i.e., a given fraction of ketone consumed), the

enrichment increases as the viscosity increases. This viscosity

dependence is a consequence of the cyclic nature of the reaction.

Since Q describes neither the viscosity dependence nor the

progressive enrichment with photolysis time, it is not a meaning-

ful quantity for describing a cyclic reaction. It is the slopes

of the lines, not the Q values, which characterize the data of

Figure 1.37. Rather than using Q which is the ratio of
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Figure 1.36 Isotope enhancement factor for the dibenzylketone

photolysis. Because of its large 13C hyperfine coupling,

dibenzylketone's Q-1 value is an order of magnitude larger than

that for benzophenone and toluene, Figure 1.32.
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Figure T.37 13C enrichment of dibenzylketone for photolysis in

three different solvents. n is the viscosity in units of poise.

The form of the plot corresponds to the analysis (valid for

small enhancement factors) proposed by Bernstein [50]. Q is

the ratio of 13 C to 12 C in the ketone relative to the ratio at

zero photolysis. F is the fraction of ketone which has

decarbonylated.
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recombination probabilities (i.e., 13R/12R), what is needed is

a quantity related to the ratio of disappearance probabilities,

Defining ~v as the rate constant for photolytic

production of triplet radical pairs, there follows for the

d f 13 d 12C ., d'b lkisappearance 0 C an -conta~n~ng ~ enzy etone:

[ l3C] [13C] [ ( 13) ]= 0 exp - 1- R ~vt

and

(6.4a)

(6.4b)

where [13C] and [12 C] are the concentrations of dibenzylketone

with 13c and l2c at the carbonyl position, respectively. The

factor (l-R) is equivalent to a quantum yield for destruction

of the ketone. From the above equations it is easily seen that

(6. Sa)

and

(6.sb)

so that

(6.6)

. 13 13 12 12
Plott~ng In([ CJ/[ CO) versus In(r cl/r C]o) for a

13 12 .photolysis, the slope (1- R)/(l- R) may be obtalned, and,
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relating to this, the enrichment factor E is defined to be:

E
13 12

1 - [(1- R)/(l- R)J· (6.7)

Alternatively, E may be viewed as the differential loss between

l2C and l3 C relative to the loss of l2 C. E is plotted as a

function of diffusion coefficient in Figure 1.38 where it is

seen that the two models predict a maximum for D ~ 10-
7

­
avg

10-
6

cm
2
/sec. £ is calculated from the data shown in Figure

1.37 and presented in Table 1.5 along with the theoretical

predictions. For the theoretical calculation of £ it was

necessary to estimate the diffusion coefficients of the

radicals from the known viscosities of the solvents. For this

purpose the Stokes-Einstein equation was used with a factor of

1/4 to correspond to "slip" boundary conditions [11]:

D
1 . kT
7; nOll

(6.8)

where 0 is the radical radius and 11 is the solvent viscosity

in poise. For the dibenzylketone radical pair 0 is taken to

be the molecular radius of toluene since the toluene molecule

is intermediate in size to the two radicals. From the molecular

density of toluene

-8o ::: 3 x 10 cm

Also appearing in the calculation is the radical-radical

collision radius r which equals the sum of the radii of the
c

ketyl and benzyl radicals:
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Figure 1,38 Enrichment factor E for the dibenzylketone

photolysis. Cyclic reactions are better characterized by the

enrichment factor E than by the enhancement factor Q. E is

the differential loss between l2 C and 13C relative to the loss

of 12C for a single stage of photolysis.
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r ~ 20
c

The dependence of E on the decarbonylation rate of the

ketyl radical is shown in Figure 1.39 where a set of curves

are plotted for different temperatures. The important feature

is that as the temperature drops (i.e., less decarbonylation),

the geminate recombination and, concommitantly, the enrichment

factor increase.

In order to study the enrichment over a large viscosity

range, 70/30 and 80/20 weight/weight mixtures of cyclohexanol and

isopropanol were used as solvents and the temperature varied

to control the viscosity.

smaller activiation energy

Since the decarbonylation has a

(i.e., E = 7.3 kcal/mole) than
a

do the viscosities of the two solvents (i.e., 11 kcal/mole for

the 70/30 and 13 kcal/mole for the 80/20), it does not change

as rapidly as viscosity with temperature. Thus, although both

decarbonylation rate and viscosity enter into the enrichment

factor and are included in the computation of E, the main

features in the temperature dependence for these solvents are

due to viscosity changes. The temperature dependence of the

enrichment factor for photolysis in 70/30 cyclohexanol/isopropanol

solvent is shown in Figure 1.40 along with theoretically

predicted curves. In contrast to the data shown in Figure 1.37

where the enrichment factor increases with viscosity, the data

in Figure 1.40 show that at very high viscosity the enrichment

factor begins to falloff. If the viscosity were not changing

more rapidly than decarbonylation, the enrichment would be
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Figure 1.39 Calculated dibenzylketone enrichment factor as a

function of temperature and average diffusion coefficient. The

temperature dependence is due to the activated decarbonylation

process, The curves were calculated with the Continuous Diffusion

Model.
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Figure 1.40 Enrichment factor as a function of temperature for

photolysis of dibenzylketone in a 70/30 cyclohexanol/isopropanol

weight/weight solvent. The viscosities of the data points are

given in Table 1.5. Uncertainties are given by error bars or

size of point. The Continuous Diffusion Model was used for the

theoretical curves which were calculated for different values of

r o ' the radical-radical separation immediately after scission of
o o o

the ketone: (a) r = 8 A, (b) r = 9 A, Cc} r = 10 A, For
000

the theoretical curves the measured viscosities were fitted

to an Arrhenius expression.
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expected to increase with decreasing temperature as indicated

in Figure 1.39.

Also shown in Figure 1.40 is the dependence of the model

calculation on the initial separation r of the radical pair.
o

°The best fit is for r = 9 A which is a reasonable value since
o
°this gives r -r = 3 A, a number comparable to the molecular

o c

dimensions (i.e., microscopic graining of the cyclohexanol/

isopropanol solvent). To avoid the use of variable fit parameters

for each reaction, this value of r was used in all· of the
o

calculations in this work, although it is expected to vary with

solvent, temperature, and reactant.

The deviation of the 3°e point from the theoretically

predicted curves may be a real discrepancy between theory and

experiment. However, it may also be attributed to extrapolating,

using an Arrhenius law, the viscosity over such a large

temperature range with data measured from -60 to -40 o e. An

accurate measurement of the viscosity (or diffusion coefficient)

at 3°e is needed before the model calculation can be considered

to be in true disagreement with experiment. Nevertheless, the

experimental data do show the expected maximum in the enrichment

as a function of the rate of diffusion, and in the range of

accurate viscosity measurements (-40 to -60°C) an r value of
o

o

9 A gives the best agreement between theory and experiment,

The experimental and theoretical values for the 70/30 cyclohexanol/

isopropanol solvent are tabulated in Table 1.5 along with two

values for the 80/20 solvent at higher viscosity.
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Table 1.5 Dibenzylketone Enrichment £ as a Function of Viscosity and Temperature

Viscositya Temperatureb

Solvent (Poise) (Celsius) £ Experimental C
£ Theoreticald

Toluene 0.006 25 0.038 ± 0.003 0.031

0.008 0 0.061 ± 0.003 0.040

3-Pentanol 0.04 25 0.056 ± 0.002 0.069

Cyclohexanol 0.6 25 0.093 ± 0.002 0.114

Solide 0 0.112 ± 0.003

707- Cyclohexanol 0.2 (?) 3 0.073 ± 0.002 0.112
30% Isopropanol w/w

3.8 -35 0.166 ± 0.002 0.163

11 -45 0.168 ± 0.003 0.144

18 -50 0.138 ± 0.006 0.131

32 -55 0.105 ± 0.003 0.117

80i. Cyclohexanol 36 -45 0.086 ± 0.007 0.099
20i. Isopropanol w/w

270 -60 0.088 ± 0.008 0.050

~he viscosities are all approximate. Viscosities for the neat solvents were inter­

polated from the tables in Reference 40. For the 70/30 and 80/20 cyclohexanol/

isopropanol (weight/weight) solvents the viscosities were measured with a falling

ball viscosimeter. The 3°C and _35°C viscosities for 70/30 cyclohexanol/isopropanol

were extrapolated (using an Arrhenius law) from data measured from _60°C to -40°C.

bTemperatures are average values over the course of a photolysis and typically

varied by ± 3°C. Photolysis times varied from 1 hour at 25°C (1% ketone remaining)

to 50 hours at -60°C (25i. ketone remaining).

cThe enrichment factor £ is the differential loss between l2 C and 13C relative to

the loss of 12C for a single stage of photolysis.

dThe theoretical values of £ are calculated with the Continuous DiffusmnModel.

All values assume r • 9 A.
o

eCyclohexanol forms a plastic crystal from _10°C to 24°c [51].
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The overall agreement between theory and experiment, as

demonstrated by the values in Table 1.5, is reasonably good.

The model calculations are not expected to be of high accuracy

since some error is introduced by using the Stokes-Einstein

equation, Eq. (6.8), rather than directly measuring the

diffusion coefficients.

As in the case of the benzophenone and toluene reaction, it

is interesting to include spin-orbit coupling in the model calcu-

lations and estimate what role it plays in radical pair

intersystem crossing. In Figure 1.41 are shown the enrichment

curves expected for various values of the spin-orbit coupling

strength.
9

It is clear that a value of 10 Hz, as is required

for benzophenone and toluene, would introduce substantial

disagreement between the experimental and theoretical enrichment

factors for dibenzylketone.

If it is oxygen, and not carbon, that is responsible for

spin-orbit coupling, then it is not surprising that spin-orbit

coupling is more important in the benzophenone than in the

dibenzylketone reaction. The ketyl radical from benzophenone

and toluene is a TI radical. Thus, the unpaired electron is

delocalized and would perhaps spend some time on the oxygen.

The acyl radical from dibenzylketone, however, is a a radical

with the unpaired electron highly localized at a carbon center.

On the other hand, it is possible that spin~orbit coupling is

important in the dibenzylketone case 1 and the theoretical

predictions could be brought in line with experimental results
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Figure 1.41 Effect of spin.,.orbit coupling on the dibenzylketone

enrichment factor~ The curves are labeled by the rate of inter-

system crossing due to spin-orbit coupling.
9 .

10 Hz 1S the estimated

value of spin-orbit coupling for organic radicals (see sections

2.4.3 and 2.5~6). The curves were calculated with the Continuous

Diffusion Model.
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by a better choice of r. As such, until a better understanding
o

of r is attained or else quantum yield measurements are made
o

over a large viscosity range to estimate geminate recombination

yields, the exclusion of spin-orbit coupling from consideration

is only tentative.

In Figure 1.42 are shown the model calculations for photolysis

of dibenzylketone in different size micelles. The notable

result is that large enhancements in the enrichment factor E

are possible by restricting the volume for diffusion. The

explanation for this enhancement is simply that as the two

members of the radical pair are kept in close proximity to one

another, the geminate yield goes up thereby aiding the enrichment

process. For the benzophenone and toluene system where only the

relative probabilities of recombination are important, it would

be disadvantageous to perform the reaction in a micelle.

13
In conclusion, large enrichments in C have been observed

in the dibenzylketone photochemical reaction. This enrichment

was substantially enhanced at intermediate values of viscosity

and at low temperatures in good agreement with theoretical

predictions based on the Continuous Diffusion Model.
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Figure 1~42 Enrichment factor for photolysis of dibenzylketone

within a sphere with a reflecting wall (e~g., a micelle), The

curves are labeled by the radius r
b

of the sphere in angstroms.

The single data point is taken from the results of Turro [6J for

photolysis of dibenzylketone in the hexadecyltrimethylamrnonium

chloride (HDTCl) micelle. The radius of the organic portion of the
o

HDTCI micelle is 21.7 A as measured by X-ray scattering [52]. With
o 0

a radical radius of 3 A, the actual boundary radius r b is 18.7 A.

The diffusion coefficient for the radicals in the micelle was

estimated [Eq. (6.8)] from the measured viscosities in a similar

micelle hexadecyltrimethylamrnonium bromide [53].
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7. SUMMARY AND DISCUSSION

In the foregoing chapters the theoretical basis for the

magnetic isotope effect has been presented along with two models

for predicting the effects of nuclear spin on radical pair

recombination. In the First Collision Model the radical pair

diffusion is treated via a first collision probability function

and the evolution of electron-nuclear spin states treated quantum

mechanically. Geminate recombination is calculated by numerically

integrating as a function of time the first collision probability

times the probability the radical pair is in a singlet state times

a decaying exponential to account for a finite radical lifetime.

Because of the quantum mechanical treatment it is difficult to

account for more than about eight nuclear spins, while the

numerical integration makes it difficult to include more than

three collisions of the two radicals. It was shown, however. that

in the case of high singlet reactivity (i.e., A ~ 1) a simple closed

form solution could be obtained to account for all possible

collisions (see section 2.7).

In the Continuous Diffusion Model singlet-triplet intersystem

crossing and chemical loss of radicals are treated via first order

rate constants. These rate constants are added on to two different

equations, one for singlets and one for triplets. The equations

are separated and analytically solved for the geminate recombination

yield R. thereby accounting for all possible collisions. Although

the Continuous Diffusion Model treats the spins as a system

approaching equilibrium and neglects all quantum mechanical
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oscillations, it is in fair agreement with the First Collision

Model in predicting geminate yields and isotopic enrichments for

the two radical pairs studied.

As might be expected, the qualitative agreement between the

predictions of the two models is much better than their quanti­

tative agreement. This is a reflection of the fact that although

the various physical terms are treated very differently in the

two models, they still give the same time scales for diffusion,

intersystem crossing, and radical lifetimes in both treatments.

Given this agreement the Continuous Diffusion Model is certainly

the method of choice for calculation and prediction because of

its simplicity and general applicability~ In addition, the model

was generalized to treat geminate recombination within a reflecting

sphere, such as a micelle.

It was argued that although spin-Qrbit coupling has been

neglected in other published treatments, it can be a major and

even dominant mode of intersystem crossing in the radical pair.

Spin-orbit coupling is easily included in the Continuous Diffusion

Model, and its importance was shown in the treatment of the benzo­

phenone and toluene data~ It was found that for the benzophenone

and toluene reaction the measured geminate yield was too large

and the enrichment too small (i.e., not observed) to agree with

model calculations which consider only the hyperfine couplings.

Both of these observations were shown to be consistent with the

operation of spin-orbit coupling ..
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In the dibenzylketone case l3C enrichment was observed, and

because of the cyclic nature of the reaction, it was found to be

easily manipulated by viscosity and temperature changes.

Experiments with dibenzylketone in a variety of solvents and at

different temperatures showed that the l3C enrichment factor can

be greatly enhanced at intermediate viscosities (~ 10 poise) and

at low tempenature. Furthermore, the experimental results showed

the Continuous Diffusion Model to be of good utility in

characterizing the reaction.

There are certainly many possibilities for future extension

of the magnetic isotope effect so that this technique may be of

practical value in isotope separation. There are other good

candidates for study, as benzaldehyde, and use can be made of

solvents of restricted volume (e.g .• micelles) or restricted

dimensionality (e.g •• liquid crystals, bilayers) to get large

geminate yields and therefore large enrichments in cyclic

reactions. Free radical reactions with heavier atoms~ as in organo­

metallic chemistry [54], with much bigger hyperfine couplings

[7c] may produce large magnetic isotope effects if not

complicated by spin-orbit coupling, In any event 7 the Continuous

Diffusion Model allows easy estimation of magnetic isotope effects

for other nuclei and prediction of the optimum conditions for

performing the reactions.
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8. INTRODUCTION

The focus of this work is to use nuclear spin as a ~robe

of methyl group motion in the solid state.. The role of the

nuclear spin is not merely a passive one where the NMR spectrum

reflects the type of structural and motional environment in

which the nuclear spins are located. Rather, the Pauli exclusion

principle provides a rigid coupling between the dynamics of

nuclear spin-lattice relaxation and torsional transitions of the

methyl group. This coupling is evidenced by the bi~exponential

relaxation observed for the nuclear spin system. Spin thermo­

dynamics [1,2J provides a useful framework for elucidating the

nature of this coupling and in providing the motivation for the

experiments which were performed. Consequently, a brief over­

view is given in Chapter 9 of the main features of the spin

thermodynamic picture. In Chapter 10 are presented those

properties of methyl groups in solids which guide the application

of spin thermodynamics to a suitable description of the experi­

mental situation. Following the disoussion of spin diffusion

and spin-lattice relaxation in Chapter 11, the experimental

arrangement is described in Chapter 12. The experiments and

calculations are given in Chapter 13. Results are presented for

studies of the coupling between nuclear spin and rotational

polarization, the methyl group magnetic moment, methy17methyl

steric interactions, and the relation between hindered rotation

and tunneling. A brief summary and discussion is given in Chapter

14.
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8.1 Partitioning of States in Space and Spin

In describing a system of N particles it is frequently

advantageous to partition the system into various subsystems

which may be considered more or less independently and there-

fore more easily described than the system as a whole. Thus,

the methyl iodide molecule (CH3I) is described in terms of

center of mass motion, rotations, vibrations, and electronic

states. or degrees of freedom~ The choice of these different

categories is largely determined by classical expectations,

and the validity of the picture is generally based on the fact

that each category is associated with its own characteristic

range of energies.

In a quantum mechanical picture the system is described by

its Hamiltonian. The division into subsystems is accomplished

by partitioning the Hamiltonian aSI

x = Xo + XO. + Xo + X' . . + X' + XI"
elect vJ..b rot elect"""vib elect ...rot vib,,""rot

(8.1)

where translational energies and couplings to the radiation field

have been neglected, The first three terms on the right hand

side of Eq. (8~1) represent pure electronic, vibrational and

rotational subsystems, respectively:

[XO XO ]
elect' vib

o

etc, The last three terms represent those interactions which

cause mixing between the different "pure" states, Thus,
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P(O X' ] :f 0
elect' elect-vib
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(8.3a)

(:KO X' ]
elect' vib~rot

o (8.3b)

etc. The validity of the partitioning into subsystems is

dependent upon the magnitude of the mixing terms X' and the

type of measurement performed on the system.

In describing the nuclear spin states of a molecule the same

considerations may be applied as were used above. Restricting

the discussion to spin 1/2 particles in the solid state, the

relevant Hamiltonian is:

X=J( +:1t
Zeeman -Uipolar

(8.4)

interactions.

Xz refers to interactions between single spins and an external
eeman

magnetic field, and X
D

• 1 refers to spin-spin dipole-dipole
1pO ar

Writing Xz as Xz and decomposing :K. 1 into
eeman D1pO ar

a part J(~ which conunutes with Xz and a part X~ which does not,

an analogous form to Eq. (8.1) is obtained:

x = X + X O + X'
Z D D

(8.5)

This Hamiltonian leads to the natural choice of Zeeman states

(eigenstates of XZ) and dipolar states (eigenstates of ~) for

partitioning the system. In high magnetic fields (i.e., 2 1

kilogauss) the Zeeman energies are much larger than dipolar

energies, and it is valid to treat Zeeman and dipolar as two

independent subsystems. In low magnetic fields Zeeman and
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dipolar energies are comparable, the two systems interact

strongly, and the partitioning breaks down [1,3]. In this work

only very high magnetic fields of 24 and 42 kilogauss are used

so that Zeeman and dipolar are always valid subsystems. However,

as shown in the next section, they fail to completely describe

the state of the methyl group. Alternately stated, the energies

alone are insufficient to describe the complete state of the

spins. An analogous situation occurs in the case of chiral

molecules, where a knowledge of the energy gives no indication

as to the number of left and right~handed molecules present.

The selection of the appropriate variables to describe the

spin system fully is guided by a consideration of the spatial

properties of the methyl group and of the spin-spin interactions

within the solid state. Before these factors are discussed, the

spin thermodynamic picture is presented to provide the framework

within which the variables are used;
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9. SPIN THERMODYNAMICS [1,2]

The object of this chapter is to develop a description of

the spin system in terms of coupled reservoirs, or subsystems,

embedded in a lattice of enormous heat capacity (see Figure 11.1).

The spin system is taken to be an ensemble of equivalent methyl

groups, that is, methyl groups which have the same barrier to

rotation and whose C3 axes all have the same orientation with

respect to the magnetic field. Methyl groups at different

orientations to the field and non-methyl spins will be considered

in Chapter 11.

The ensemble of equivalent methyl groups may be described

by the properties of one methyl group which is the average of

the ensemble. Consider this methyl group. It has three spin

1/2 protons, each of which has two possible states of angular

momentum +1/2 or -1/2 as defined within a given axis system.

3Thus, there are 2 = 8 possible nuclear spin states for the

three methyl protons. Requiring the total population of all the

states to be a constant, there still remain seven population

variables to specify [4]. (The question of specifying the phases

of states will be taken up in section 9.3). Treating the

methyl group as a thermodynamic system in contact with the lattice,

seven subsystems can be constructed corresponding either to

individual spin states or, where it is advantageous, to linear

combinations of spin states. This approach is described below.

To allow for exchange of energy or population between the various

reservoirs, the grand canonical ensemble is used.
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Figure 11.1 Examples of subsystems embedded in a lattice and

exhibiting various couplings among themselves. All of the sub­

systems are coupled to the lattice. Since Sl and S2 are

coupled to one another, the relaxation of either after being

driven from equilibrium would be bi-exponential (see section

13.1). S3' S4' and S5 would exhibit tri-exponential relaxation

behavior.
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9.1. Grand Canonical Ensemble

The methyl group spins constitute a thermodynamic system

which is maintained in equilibrium by the lattice (non-nuclear

degrees of freedom). This thermodynamic system is described by

the grand canonical ensemble:

p exp[ (L ll. n i - E) /kT] I=.
i 1

(9.1)

where p is the probability for a given diStribution of population

(normalized) among the spin lev.els, the nils are the populations

of the levels, the lli's are the chemical potentials of the levels,

E is the total energy of the spin system, and =. is the partition

function. Since the energy of each spin level is fixed, the

total energy is specified by the populations:

thwhere e i is the energy of the i level. Thus, E is not an

independent parameter and it may be dropped, leaving the populations

{ni } to describe the system:

p = exp[ L: (lJi/kT)ni] I=.
i

(9.3)

There are two criticisms in regard to expressing p as a

function of the level populations. The first is that NMR measure-

ments are never concerned with the populations of individual levels,

but rather with population differences (or energy differences)
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between levels. As such, the individual populations can only

be indirectly related to experiment. The second criticism

has to do with the time scales for NMR relaxation and is

discussed in the next section under the title of quasi­

equilibrium. Following the discussion of this second criticism

an alternative set of variables known as the "number operators"

is introduced in section 9.3.
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9.2 Quasi-equilibrium [1,6]

In studying relaxation it is frequently the case that

transitions between some levels are much faster than transitions

between other levels. Thus, when the spin system starts in some

general non-equilibrium configuration, it is found that some

population differences, although not the populations themselves,

approach equilibrium much faster than other population differences

do. As a consequence of this the number of variables required to

describe the relaxation is dependent upon the time scale of the

measurement. This is illustrated quite simply in Figure 11.2.

Since the required number of variables will always be less than

or equal to the total number for the system, a judicious choice

of variables may greatly simplify the description of the

relaxation.

In general, if the individual level populations are chosen

as the variables, a reduction in effort will not be achieved.

If, however, the problem is re-parameterized in terms of

population differences, the separation of relaxation equations

by time scales is straightforward. This work is concerned with

proton spin relaxation in the solid state, and the relevant

feature to be taken advantage of is the vast difference in time

scales (i.e., five to six orders of magnitude) between T
1

and

T2 relaxation processes. Spin diffusion (section 11.1) takes

the proton spin system to a state of quasi-equilibrium in

~ 20-50 ~sec (T2). Those population differences which have

equilibrated need not be considered further in describing the
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relaxation. In other words, for each set of levels which have

equilibrated a constraint may be introduced which fixes the

ratios of the relevant populations; each constraint reduces

the number of independent variables.

The system relaxes from a state of quasi-equilibrium to a

state of complete equilibrium in 1-100 sec (T
l

) as a result of

spin-lattice relaxation (section 11.3). The slowly varying

parameters which characterize the relaxation of the quasi­

equilibrium state are termed the quasi-constants, or quasi­

invariants, of the motion [1,6]. The quasi-constants are linear

combinations of the level populations, and constructing the

appropriate set of linear combinations is analogous to finding

the constants of the motion in mechanics.

Of interest in this work is the quasi-equilibrium state,

because of the physical significance of the quasi-constants.

The choice and significance of the quasi-constants is informed

by the considerations presented in Chapters 10 and 11. Before

entering upon these considerations, an operator formalism for

the quasi-constant variables is presented in the following

section.
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Figure 11.2 Relaxation of a system which is described by two

variables and which passes through a quasi-equilibrium state.

The system is prepared in the state XO,Y
O

' The variable Y relaxes

to its equilibrium value in a time T2 which is short compared to

the relaxation time of X. The relaxation of the quasi-equilibrium

state is characterized by the single variable X and requires a

time II to reach complete equilibrium.
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9.3 Number Operators

In Eq. (9.3) p was written as a function of the level

populations n.. It is clear that any complete set of
1

varibles which are made up of linear combinations of the n IS
i

will work equally well. In this section the quantum mechanical

density operator p is introduced with the density operator p

replacing the thermodynamic probability function p and with a

generalized set of nUmber operators {Ok} replacing the set of

level populations {n.}. The transition from scalar to operator
1

is made via the level population operators n.:
1

n. = li><il , (9.4)
1

the eigenvalues of which are the level populations. The number

operators at quasi-equilibrium are defined:

0'" ~ 11'><1'1k = 4-' Cki
1

The matrix c which defines the number operators is given in section

11.2 following the introduction of all of the quasi-constants.

InanalogywithEq. (9.3) [6],

(9.6 )

where the ~IS are the intensive parameters (i.e. entropy

derivatives) associated with the. number operators. The point of

contact between the density operator Eq. (9.6 ) and the

thermodynamic probability function Eq. (9.3) is that the
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probability p is the expectation value of the operator B for a

given state of the system. In the formalism of section 9.1 a

state of the system is defined by a given set of populations

{n.}. In the formalism of this section the system is specified
1

A

by the expectation values of the Ok operators.

A

Because the 0k's are defined in Eq. (9.5) as diagonal in

the spin level basis, the density operator p is also diagonal

in this basis. Since the off-diagonal matrix elements <iIB!j>

represent coherences between the Ii> and Ij> nuclear spin states,

Eq. (9.5) states that there can be no coherences in the spin

system. This corresponds to the treatment of section 9.1 where

it was assumed that the system was entirely specified by the

level populations {n.} with no regard to phase relations between
1

the states. This conforms to the usual treatment of spin thermo-

dynamics [7,8] where the random phase approximation is invoked,

and all of the coherences are assumed to be zero. In NMR

experiments, however, coherently prepared ensembles are the

rule rather than the exception (the exception being TI pulses

or saturation). This is not a problem though, since this work

is concerned primarily with the time evolution of the system

after quasi-equilibrium is reached, and the relaxation processes

(i.e., T2) which produce quasi-equilibrium destroy all of the

coherences. Thus, the random phase approximation is valid, and the

A

0k'S are diagonal.

At high temperature the ak's are small, and Eq. (9.6) may be

expanded to first order:
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(9. 7 )

"where 1 is the unit operator and ~ which is only a normalization

constant has been dropped. The number Dperators are defined so

that their expectation values are deviations from equal

distribution of population.

Thus,

(9.8 )

that is, the number operators are all traceless [6]. The

number operators are defined to be orthogonal and normalized

[6] :

(9. 9 )

With Eqs. (9.7) - (9.9) the expectation values of the number

operators are [6]:

(9.10)

at high temperature.

With the above factors and the discussion of the previous

sections in view the properties of the number operators may be

summarized:

1) They form a complete set of variables for the system.

2) They are linearly independent and normalized.

3) They are traceless.
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4) They correspond to Hamiltonian terms where possible.

S) They are chosen with regard to describing the

quasi-equilibrium state.

6) They are not unique.

On the basis of these properties the number operators are

defined in the. next two chapters where the methyl group

properties and spin relaxation are discussed.
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10. METHYL GROUP DESCRIPTION

10.1 Spatial Hamiltonian

The methyl group is a C
3

rotor which in this work is

treated as moving in a three-fold cosine potential. Including

rotational kinetic energy the Hamiltonian for a rigid methyl

rotor is [9]:

2
J{ =-~

21 (10.1)

where ¢ is tbe angle of rotation and the moment of inertia I

about the C
3

axis is ~ 5.5 x 10-40
g cm2 [10]. The barrier V

3

results from both intramolecular steric interactions and inter-

molecular hindrances within the crystalline sample. To construct

the Hamiltonian matrix of Eq. (10.1) and diagonalize it, the

basis set of free rotor wave functions is chosen:

1m> exp(-im¢)/v'2TI (10.2)

which are the exact solutions for V
3

= O.

The full symmetry group of the methyl rotor is C3V ' but since

only rotational dynamics are being considered here, it is

sufficient to use only the rotational subgroup C3 " There are

three irreducible representations of the group C
3

, and they

transform under the symmetry operations as shown in Table 11.1.

Using Table 11.1 to project the symmetrized wave functions out

of the basis set it is found that for
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A synrrnetry: m 3n

E~ synrrnetry: m = 3n - 1

E
b

synrrnetry: m 3n + 1
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(10.3a)

(10.3b)

(10.3c)

where n = O. ±l. ±2 •.... The energy levels and angular

momenta of a free rotor are shown in Figure 11.3.

The program "methyl" (Appendix C) is used for the hindered

rotor calculations. and in Figure 11.4 are shown the results

of a calculation for V
3

= 1 kcal/mole which is a medium size

solid state barrier. In contrast to the free rotor wave

functions. the hindered rotor. or torsional. wave functions

are not eigenfunctions of angular momentum. Nevertheless, the

expectation values of the angular momentum operator -iha/a¢

can still be calculated. Since each torsional wave function

I~t> is a linear combination of free rotor basis functions,

(10.4)

and the expectation value of angular momentum is given by:

(10.5)

Comparing Figures 11.3 and 11.4, it is seen that below the top

of the barrier the angular momentum of the torsional levels is

greatly reduced. whereas above the barrier the E states rapidly

approach free rotor behavior. Since the free rotor A states

occur in degenerate pairs (i.e .• m = ± 3n). the two members of
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Table 11.1 Character Table for C
3

Symmetry

E

A 1

1

1

1

E

E*

1

E*

E = exp(i27r/3)
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........
0
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..:tC. +9- --9

r
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0:: 1.0w
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0.0 +1- 0- - -I
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Figure 11.3 Energy levels for an unhindered C3 rotor. There are

three symmetry manifolds: E
a

, A, and E
b

. Each level is labeled

by its angular momentum eigenvalue.
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each pair mix very effectively, even well above the barrier,

to form symmetric and antisymmetric combinations which have

m = O.

The convention used in this work is to label each set of

A, E
a

, E
b

states as torsional level i (starting with zero) and

to define the energy difference between the E. and A. states
1 1

as the tunneling splitting ~i:

(10.6)

E A
where e

i
and e i are the energies of the E and A states,

. 1 f h .th . 1 1 1 As i F'respect1ve y, 0 t e 1 tors10na eve. seen n 19ures

11.3 and 11.4, ~i alternates in sign from one torsional level

to the next.

There are a variety of experimental observables which

depend on the average energy difference between A and Estates.

For high barriers where the energy differences between torsional

levels are much greater than the tunneling splittings, the

average A-E energy difference may be equated to the average

tunneling splitting w
t

. Assuming equilibrium with the lattice,

the temperature dependent average tunneling splitting may be

straightforwardly calculated from the Boltzmann distribution of

populations [11]:

~[exp(-e~/kT) +
j J

Aexp(-e./kT)]
1

A
exp(-e./kT)]

J

(10.7)

The E and A states are weighted equally in Eq. (10.7) since they
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Figure 11.4 Energy levels for a C3 rotor with a 1 kcal/mole three-

fold cosine barrier. Each level is labeled by its angular momentum

expectation value. The A states are linear combinations of +3n and

-3n levels and have zero average angular momentum. The three

levels at ~ 0.2 kcal/mole comprise the zeroth torsional level;

the three levels at 0.5 kcal/mole comprise the first torsional

level, etc.
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have the same degeneracy as is shown in section 10.3 where the

spin-rotor coupling is discussed. Although equations of the

form of Eq. (10.7) have been used extensively in the literature

[11,12,13,14,15,16], there are important restrictions on its use

as shown in Chapter 13, section 6.

An important feature of the methyl group dynamics is that

transitions within a symmetry manifold (i.e., Ai to Ai +l ,

a a
E. to E. l' etc.) are much faster than transitions between

J J-

different symmetries. The sycimetry conserving transitions are

caused by the rotor-phonon interaction which has A symmetry

[17,18]. The transitions between symmetries are caused by the

dipolar Hamiltonian which is much weaker [17]. The time scale

for the symmetry conserving transitions is given by the correlation

time T for methyl group motion which at room temperature equals
c

~ 10-12_10-11 sec. The time scale for the transitions between

rotor symmetries is given by the spin-lattice relaxation time T1

which at room temperature is ~ 1-100 sec.
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10.2 Spin Hamiltonian

10.2.1 Zeeman Hamiltonian
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Using a three-spin Zeeman product basis laaa>, laaS>, ISSa>,

etc., the C3-symmetrized wave functions are:

IA+l / Z> = (laaS> + laSa> + /Saa»//}

IA_l/Z> = (ISSa> + ISaS> + laSS»//}

(10.8a)

(10.8b)

(10.8c)

(10.8d) .

(10.8e)

(10.8f)

(10.8g)

(10.8h)

Having defined the spin states. it is now possible to define the

appropriate number operator corresponding to each term of the

spin Hamiltonian.

The Zeeman Hamiltonian is:
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J{
z

- yftH I
o z
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(10.9)

where the magnetic field H is taken to be along the z axis. The
o

basis functions of Eqs. (10.8a)-(10.8h) are eigenfunctions of

J{ with
z

I ~l + ~2 + ~3 (lO.lOa)

etc., for the methyl spins.

e = - yftH m
z 0 z

The eigenvalu~s of J{ are:
z

(lO.lOb)

(10 .11)

where m for the spins is distinguished from the m value defined
z

for the rotor in the preceding section. The spin states in the

presence of an external magnetic field appear as shown in

Figure II.5.

Recalling that the number operators represent excess
A

populations and are normalized, 0
1

is defined:

01 = Lm . lli/16
i Zl

(10.12)

where the lli are the population operators for the spin levels

defined in Eq. (10.8). With Wz = yHo' it follows that

J{
z

= - (10.13)
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Figure 11.5 The energy levels of the three protons of a methyl

group considering only the Zeeman interaction. The levels are

labeled by the component of spin angular momentum along the

magnetic field axis. The C3-symmetrized wave functions are given

in Eq. (10.8).
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10.2.2 Dipolar Hamiltonian

The intramethyl dipolar Hamiltonian was written in Eq. (8.5)

as the sum of two terms ~ and~. Since ~ commutes with the

Zeeman Hamiltonian X , the wave functions of Eq. (10.8) are
Z

also eigenfunctions of~. ~ which does not commute with Xz

or ~ is responsible for spin-lattice relaxation of the spin

states.

The standard form of ~ is:

~=LLD.. [2I.I .-(I:1. +1. r:)/2]
i j 1.J Z1. ZJ 1. J 1. J

(10.14)

where the two summations are over the three protons of the methyl

group. The factor D.. is given by:
1.J

Y
;2 3= P2(cosB .. )/r

1.J
(10.15)

where r is the distance between each pair of spins of the methyl

triangle, Sij is the angle between the internuclear vector of

spins i and j and the magnetic field, and P2(cosB .. ) is the second
1.J

Legendre polynomial. Since the rotation rate of the methyl group

is typically much greater than D
ij

, an average dipolar coupling D

may be factored out of Eq. (10.14) and the summations performed

separately over the spin operators. Thus,

(10.16)

where I is defined in Eq. (lO.lOb) and
Z
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(10.17a)

(10.17b)

From the definitions of the raising and lowering operators it

follows straightforwardly that:

D[3I 2 - 1(1+1)]z (10.18)

where I is the magnitude of I. When the C3 axis is parallel to

the magnetic field,all of the internuclear vectors are perpendicular

to the field, and D equals y2n 2
jr3 . For arbitrary angle 8 between

the C3 axis and the field it is recognized that Eq. (10.18)

transforms as the second-rank tensor T
o

Y
2.. 2 3

D = -n P2(cos8)/r

so that

(10.19)

a bSince the E and E spin states are equivalent to spin 1/2

particles, it is obvious from Eq. (10.18) that they can have no

dipolar energy. On the other hand, the A spin states which are

identical to a spin 3/2 particle are all shifted by J~. By
I'

convention the number operator for the dipolar states is Os and

is defined:

~(A_l/2)]/ 2 • (10.20)

The secular dipolar Hamiltonian may now be written:

(10.21)



II.I0

where

as defined by Eq. (10.18) and Figure 11.6.
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(10.22)
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Figure 11.6 The energy levels of the three protons of a methyl

group considering the Zeeman and intramethyl dipolar interactions.

The intermethyl and non-methyl dipolar interactions may be viewed

as broadening all of the levels.
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10.3 The Pauli Principle and the Tunneling System
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Before closing this description of the methyl group it is

necessary to consider the Pauli exclusion principle which

introduces an important coupling between the spatial and spin

wave functions. The Pauli principle requires that the total

wave function change sign with every exchange of two protons

since they are fermions. Since a C3 rotation of the methyl

group is exactly equivalent to two pair exchanges of the protons,

the overall change in the wave functions is (-1)(-1) +1. To

insure, therefore, that the phase of the wave function remains

unchanged under a C3 rotation, it is necessary that the symmetries

of the spatial and spin wave functions correlate to give A

symmetry. Thus, the symmetries, in analogy with ortho and para

hydrogen, couple as shown in Table 11.2.

One important feature of Table 11.2 is that E spin states

correlate only with E rotor states and A spin states correlate

only with A rotor states. This accounts for the equal weighting

given to the E and A states in Eq. (10.7); there are two E spin

doublets and one A spin quartet for each torsional level. It also

follows from this coupling that the tunneling splitting wt may

be associated directly with the spin states (similar to the

exchange interaction and singlet and triplet electronic states

discussed in Part I, section 2.4.1). That is, the wave functions

associated with the E and A spin states are necessarily separated

in energy by the tunneling splitting. This feature is shown in

Figure 11.7 and suggests the addition of the tunneling system 06 ,
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Table 11.2 Correlation of Spin and Rotor Symmetries

Spin

A

Rotor

A
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Figure II.7 The energy levels of the three protons of a methyl

group considering the Zeeman~ intramethyl dipolar, and tunneling

interactions. The appearance of a tunneling energy in the spin

Hamiltonian is a consequence of the Pauli exclusion principle

which couples spin and rotor symmetries.
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by convention, as another number operator:

" ",," a """ b0
6

= rL:n.(A) -LJn.(E) - LJn.(E )]/(2/2)
i ~ j J k k
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(10.23)

where the sums are over all the population operators of the

specified symmetry. The tunneling energy is

(10.24)

The remaining number operators will be introduced in Chapter 11.
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11. SPIN DIFFUSION AND SPIN-LATTICE RELAXATION

11.1 Symmetry Restricted Spin Diffusion [6,11,19,20]

The intramethy1 dipolar Hamiltonian was discussed in section

10.2.2. In this section the intermethy1 (and non-methyl) dipolar

Hamiltonian X
D

. is introduced. As before, the dipolar
,l.nter

Hamiltonian is separated into a secular and a non-secular part:

'JC = X o + Je'
D,inter D,inter D,inter

(11.1)

~ contains a term I .I . which shifts energy levels and
D, inter Zl. zJ

+ - - +a flip-flop term Iil
j

+ Iil
j

[see Eq. (10.14)] which is

responsible for spin diffusion among the individual methyl

groups and any other surrounding like spins. Spin diffusion

propagates the magnetization throughout a crystal as shown in

Figure II.8 and thereby establishes a uniform magnetization, or

spin temperature [21]. When the spin system is prepared in a

non-equilibrium state, spins in different motional or structural

environments will, in general, relax at different rates. For

protons in solids spin diffusion is typically four or five orders

or magnitude faster than spin-lattice relaxation so that the

assumption of a single Zeeman spin temperature within a crystal is

valid during relaxation. This situation may be termed unrestricted

spin diffusion, and it must be qualified when treating rapidly

rotating methyl groups.

Unless the methyl group is very hindered, methyl group

rotation is orders of magnitude faster than the dipolar interaction.
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Figure II.8 Propagation of spin magnetization by spin diffusion.

For abundant protons the flip-flop terms of the dipolar Hamiltonian

allow the magnetization to diffuse throughout a crystal and thereby

establish a uniform Zeeman temperature. In the figure the pairwise

flip-flop term propagates a -1/2 spin magnetization among a group

of +1/2 spins.
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Hence, ~D . affects all three protons of a given methyl group
,1nter

in identical fashion. Alternately stated, spin diffusion operates

as a totally symmetric interaction on the methyl group [6]. The

importance of this fact is that spin diffusion, although affecting

the magnetizatiqn of a particular methyl group, cannot change

the symmetry state of the methyl group. This is indicated

pictorially in Figure 11.9. This situation is termed symmetry

restricted spin diffusion (SRSD) [6,11,19,20]"and as a consequence

of it additional quasi-constants are present.

Symmetry restricted spin diffusion is discussed further in

the next section. The non-secular interaction XD' i which. , nter

contributes to spin-lattice relaxation is treated in section

11.3.2.
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Figure 11.9 Symmetry Restricted Spin Diffusion (SRSD). The

average dipolar interaction between a rapidly rotating methyl

group and an adjacent spin is totally symmetric [6]. Thus, it

cannot change the methyl group symmetry. The symmetry-conserving

flip-flop (a) is therefore allowed, and the symmetry-nonconserving

flip-flop (b) is forbidden.
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11.2 Rotational Polarization
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The rapid spin diffusion is the phenomenon responsible for

bringing the initially prepared non-equilibrium spin system into

a state of quasi-equilibrium. Spin diffusion maintains the

Zeeman and dipolar polarizations as quasi-constants (22]. Since

SRSD conserves the symmetry of each methyl group, there is now

an additional one quasi-constant per methyl group. If each of

these quasi-constants were distinct and coupled to the Zeeman

subsystem, then the Zeeman relaxation would be extraordinarily'

complex. In fact, it is only necessary to add one more quasi-

constant to the three previously defined. This is proven as

a general result in section 11.3. For now this may be illustrated

in simple fashion by considering an ensemble of equivalent

methyl groups.

Since SRSD conserves the symmetries of the methyl groups,

a b
the population within each spin symmetry manifold (A, E , and E )

is constant. Since the total number of methyl groups is a constant,

there are two independent symmetry population variables which

specify the ensemble [6]. One has already been defined in Eq.

(10.23) as the tunneling system. Presently the remaining quasi­

constant is defined as the difference between E
a

and E
b

spin

populations and is termed the rotational polarization system

A

04 [6,11,19,20,23]:

(11. 2)
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where the sums are over all of the states within the specified

A

symmetry. 0
4

is called rotational polarization, since for a

a b
hindered rotor the E and E spin states correlate with rotor

states of opposite angular momentum within a given torsional

level (see Figure 11.10).

The complete set of number operators and their spin state

eigenvalues are given in Table 11.3.
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Figure II.lO Correlation of nuclear spin states with methyl

group rotation. The spin and rotor symmetries are coupled as a

consequence of the Pauli exclusion principle. Since within a

a b
given torsional level the E and E rotor states have opposite

angular momenta and the A rotor state has no average angular

momentum, then the Ea and Eb spin states may be associated with

opposite senses of methyl group rotation.
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Table 11.3 Eigenvaluesa
of the Number b cOperators '

A3/ 2 Al / 2 A_1/2
a a b b

A_3/ 2 El / 2 E_l / 2 El / 2 E_l / 2

16 61
3/2 1/2 -1/2 -3/2 1/2 -1/2 1/2 -1/2

12 °2
1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2

/3 63 0 1 -1 0 -1/2 1/2 -1/2 1/2

04 0 0 0 0 1/2 1/2 -1/2 -1/2
~

Os 1/2 -1/2 -1/2 1/2 0 0 ° °/z °6 1/2 1/2 1/2 1/2 -1/2 -1/2 -1/2 -1/2

°7 0 ° 0 0 1/2 -1/2 -1/2 1/2

aThe eigenvalues are for the spin eigenstates of the Zeeman and

secular dipolar Hamiltonians. At quasi-equilibriu~ all of the

number operators are diagonal.

bThe identity operator which may be taken as the eighth number

operator is not needed since the total population of the spin

states is a constant.

CThis table is taken from reference 6.
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11.3 Spin Lattice Relaxation

11.3.1 Independent Methyl Groups
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Reiterating, the four quasi-constants of the methyl group

spin system are:

"-

°1 = Zeeman Magnetization

"-

°4 Rotational Polarization

"-

Os = Dipolar Order

"-

°6 = Tunneling Polarization.

The relevant quantity associated with each is its expectation

value which at high temperature is given by Eq. (9.10):

The object of the present section is to obtain the time-dependent

solutions of [6]:

a = -S-(a-a ) (11.3)
", - -eq

where a_ is the vector of ~ 's with equilibrium value a and S
1< -eq :::

is the relaxation matrix.

It is assumed that the intramethyl non-secular dipolar

interaction ~ dominates the spin-lattice relaxation to such

an extent that X
D
'. may be neglected. The basis for this,1nter

is that the methyl groups are the only molecular groups under-

going rapid phonon-modulated motion in the samples studied.

Furthermore, it is assumed that the intramethyl proton distance
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is somewhat shorter than the distance between methyl and non­

methyl protons [the relaxation efficiency falls off as 1/r6 ;

see Eqs. (11.4a)-(11.5)]. In any event, it is extremely difficult

to treat Xn' . t analytically [24], and if necessary it can
,ln er

always be added on as a phenomenological contribution [25] to

the relaxation equations developed in this and the following

section.

The intramethy1 relaxation rate constants for the ~'s at

high temperature are [6]:

2
Sll(8) = 2K (1+3 cos 8) (11.4a)

S41 (8) = 2/6 K cos8

= 3K

= 3K

6K

(11. 4b)

(11. 4c)

(11.4d)

(11.4e)

(11.4f)

where 8 is the angle between the methyl group C3 axis and the

magnetic field and

K (9/16) • 2 4 /r6
(11. 5)= n y T

c
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where y is the gyromagnetic ratio of the proton, T is the
c

correlation time for methyl group motion, and r is the intra-

methyl proton-proton separation. No couplings exist at high

temperature beween aI' a 4 and as' a
6

. Since only Zeeman

relaxation (i.e., T
l

) is studied in this work,aS and a 6 are

dropped from further consideration. For convenience the

following definitions are made:

M =

R =

(11.6a)

(11.6b)

where M represents the magnetization of the Zeeman states and R

represents the rotational polarization.

The remaining problem is to obtain the quasi-constants for

a system of inequivalent methyl groups. The correct quasi~

constant for the Zeeman system follows straightforwardly from

a consideration of spin diffusion. Restricting the discussion

to two methyl groups and neglecting the coupling to the rotational

polarization system, the Zeeman relaxation equations are:

HI -SllC8l)MI V(Ml~M2)

M2 = -Sll(8 Z)MZ - V(MZ-Ml )

where

M = M - Meq

(11.7a)

(11.7b)

(11.8)
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and V is the spin diffusion interaction which serves to equalize

the two magnetizations (see Figure II.13a). Writing Eqs. (11.7a)

and (11.7b) in matrix form:

+V -V )(:1) (11.9)
+ V HZ

and rotating the relaxation matrix by 45°, the following equation

is obtained:

(11.10)

where 5
11

is the average of the two rate constants 511 (8 1) and

5
ll

(8
Z
)' Since V » 5

11
, spin diffusion drives the Zeeman

difference (Ml-MZ) to zero long before the sum (Ml+MZ) relaxes.

Hence, (Ml-MZ) may be dropped, and the quasi-equilibrium state

is described by the quasi-constant (Ml+MZ)' It follows that

for N methyl groups the appropriate Zeeman quasi-constant is:

_ N _

M= L:H
i i

with the auto-relaxation rate constant

(11.11)

(ll.1Z)

Any non-methyl protons may be simply added onto the above sums

with N being redefined to include all of the protons.
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Because there is no mechanism comparable to spin diffusion

to transfer rotation polarization among all of the methyl groups,

rotational polarization is more difficult to treat than the Zeeman

system. Nevertheless, there is only one rotational polarization

quasi-constant which couples to the Zeeman system. The relaxation

equations and results are stated in this section with the

derivation being given in Appendix D.

Having defined the Zeeman quasi-constant M in Eq. (11.11),

the relaxation matrix S is now asymmetric. The reason is that

the rotational polarization R. of an individual methyl group
1

couples to M as before, but only liN

Thus,

of M couples to R..
1

M/M Sll S14(81 ) S14(8 2) M/M 1eq eq

.
Rl/Meq S14(8 l )/N S44 0

Rl/Meq

R2/M S14(8 2)/N 0 S44 R2/M
eq eq

(11.13)

where M , the equilibrium value of M, has been introduced as
eq

a normalization factor. Eq. (11.13) could be diagonalized

by standard techniques, but for Nmethyl groups the relaxation

matrix is (N+l) x (N+l), and the general solution is

intractable. However, by considering the determinant
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det(8-Al) for the eigenvalue problem, it is easily seen that as
~ ::::

long as 8
44

is independent of angle (i.e., at high temperature),

there will be N-l eigenvectors with relaxation rate 8
44

which

are not coupled to the Zeeman system. The remaining two eigen-

vectors result in a Zeeman relaxation characterized by two

quasi-constants so that the relaxation is bi-exponential

[6,23,25]. The relaxation rates AI' A2 and eigenvectors are

derived in Appendix D and given in References 23 and 25:

where

(11.14)

N

= L
i

(11.15)

The required rotational polarization quasi-constant is [6,25]:

P (t)
r

N

= L
i

(11.16)

resulting in the following relaxation equations:

'V

M(t)/Meq

and

(11.l7a)

where

z/6 K P (t) 1M
r eq (A1-S11 ) C1 exp (-A

1
t) + (AZ-S11 ) Cz exp(-A 2t)

(11.l7b)
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and

~

[(811-'\2) M(O) - 216 K P (0)] / [ (X -A )M )
r 1 2 eq

217

(l1.l8a)

-C2 = [M(O)-Cl]/Meq (1I-18b)

The importance of the above equations is that the Zeeman

relaxation is dynamically coupled to the rotational polarization

of the spin states, and, therefore, through the Pauli principle

it is dynamically coupled to the rotor states. There are some

interesting consequences of this coupling which relate to the

angular momentum which the Ea , Eb rotor states possess. One

such consequence is the possibility of measuring the methyl

group magnetic moment in the solid state (see section 13.2).

Another is the ability to detect gearing between methyl groups

which is discussed in the following section and also in section

13.3.

11.3.2 Coupled Methyl Groups

A question of long standing interest is whether or not two

adjacent methyl groups rotate together as two cogged gears

[26,27,28,29J. If they do, that behavior should have a marked

effect on rotational polarization as will now be shown.

Consider two methyl groups geared together in a perfectly

classical fashion. Since they are constrained to rotate at the

same speed, they must be in the same torsional level. And

since they must have opposite angular momenta, they necessarily
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form an EaE
b

rotor pair as shown in Figure II.ll. Complete

gearing, therefore, prevents the formation of a non~zero

rotational polarization. However, since it is the projection

of rotational polarization along the magnetic field axis

[see Eq. (11.16)] that is important, the rotational polarization

system may still couple to the Zeeman system as shown in Figure

I1.12.

The gearing interaction is accounted for in a manner

analogous to the treatment of spin diffusion. That is, defining

W as the gearing interaction and ignoring for the moment the

coupling to the Zeeman system, the relaxation equations for

the rotational polarizations of two adjacent methyl groups are

[compare Eqs. (11.7a) and (11.7b)]:

(11. 19a)

(ll.19b)

where, in contrast to spin diffusion, W causes the sum of the

polarizations rather than the differences to go to zero. This

is illustrated in Figure 11.13.

With Eqs. (11.19a) and (11.19b) and the Zeeman system the

complete relaxation equation for two adjacent methyl groups is:

(11. 20)
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H H, ,, ,, ,, ,,
e H ,

HHe eHe

XBL 802-8346

Figure II.ll Cancellation of rotational polarization for geared

methyl groups.
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ZEEMAN TO ROTATIO-NAL POLARIZATION"J case

H
"J

H
"J

XBL 802-8349

Figure 11.12 Angular depend~nce of the net rotational

polarization of two geared methyl groups. Because of the cosS

dependence of the Zeeman to rotational polarization coupling,

it is the magnetic field projection of the rotational polarization

which is a quasi-constant. Thus, if the methyl groups are geared,

the xylene molecule on the left will exhibit no rotational

polarization, but the molecule on the right will.
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( a)

MI

SPIN DIFFUSION

v

(FLIP-FLOP)

•
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(b) STERIC INTERACTION

w
•

R 2

XBL 813-8357

Figure 11.13 Comparison of the effects of spin diffusion and

steric interaction on two adjacent methyl groups. (a) The spin

diffusion causes the difference in the two Zeeman magnetizations

to go to zero. (b) The steric interaction causes two adjacent

methyl groups to rotate in opposite directions, and the sum

of rotational polarizations goes to zero.



11.11

The rotational polarizations are rotated by 45 0 to obtain:

222

x

(11. 21)

The case of W = 0 was treated in section 11.2 where it was shown

that the Zeeman relaxation is described by two exponentials.

For arbitrary W the solution of-Eq. (11.21) has two quasi-

constants coupled to the Zeeman system so that the relaxation

is tri-exponential (see the computer program "couple.c" in

Appendix E). If the two methyl groups are strongly geared,

then W » ·Sll' S44 and the sum (Rl +RZ) goes rapidly to zero leaving

a quasi-equilibrium state described (ignoring the dipolar and

tunneling systems) by M and the difference (Rl -R2).



11.11

Thus, in the limit of large W, (R
l

+R
2

) may be dropped

and the following relaxation matrix obtained for N methyl

groups:

M/M
eq

(R
I
-R2)/M

eq

(R
3
-R4)/M

eq

222a

l

Sll

[ S14 (8 1 )-S14 (8 2 )] /N

[S14(8 3 )-S14(8 4 )] /N

[S14 (8
1

)-S14 (8 2 )] /2 [S14 (8
3

)-S14 (8 4 )] /2 ...

S44 0

o S44

J

x

r
M/Meq

(RI -R2)/Meq

(R
3

-R4)/Meq.

l
(11.22)
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where the normalization M has been included .. and the methyl
eq

groups interact sterically in isolated pairsl (R
I

-R
2
), (R

3
-R

4
),

(R5-R6), etc. Eq. (11.22) is of exactly the same form as Eq.

(11.13) and may be solved by the techniques outlined in Appendix

D. Following this procedure a bi-exponential solution is

obtained with relaxation rate constants:

where

(11. 23)

s' 2 =
14

(11. 24)

The new rotational polarization quasi-constant is defined to

be:

Q (t) =
r

N-l
~ [cos(8i)-cos(8 i +l )] [Ri (t)-Ri +l (t)]/2 ,

i=1,3,5 ..•
(11. 25)

resulting in the following relaxation equations:

M(t) 1Meq

and

(11. 26a)

216 K Qr (t) IMeq = P·i-S11) Ci exp (-Ai t) + (A2-S11) C2 exp (-A2t)

(11. 26b)

where

C'
1

(1l.27a)
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~d

C' = [M(O)-Cl']/M2 eq
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(11.27b)

Eqs. (11.22)-(11.27b) should be compared with the analogous

Eqs. (ll.13)-(11.18b) for independent methyl groups. The

critical factors which distinguish the two sets of equations

are the cross-relaxation terms S14
2

and Si4
2

and the associated

quasi-constants Pr(t) and Qr(t), respectively.

One problem that arises in considering strongly interacting

methyl groups is that the adjacent methyl groups may contribute

significantly to one another's relaxation. This can be accounted

for as follows. If the methyl groups do not exert a strong

gearing interaction W on one another, it is unlikely that at

high temperature the individual protons (i.e., the gear teeth)

can remain in registry with one another for periods of time

comparable to l/X [29]. Consequently, X
D

. is
D,inter ,1nter

averaged over the methyl protons and contributes predominantly

to symmetry conserving transitions. Defining this contribution

to be ~ll:

(11.28)

On the other hand, if the gearing is very strong, JeD . t,1n er

will not be averaged over the methyl protons, and it will cause

E
a

+ E
b

transitions. [Actually, such transitions are implicitly

assumed in W, Eqs. (11.19a) and (11.19b)]. Defining this

contribution to be ~44:
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s'44 S44 + /1 44
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(11. 29)

There is no reason for UD . to affect S14 [25J. Estimates of
,~nter

/111 and /144 may be obtained by semi~empirical considerations

(see section 13.5.1). Since X . t may contribute to- D,~n er

relaxation whether there is steric interaction or not, Sil

and S44 may be used in the treatment of either independent or

coupled methyl groups (25].

Although bi-exponential relaxation is predicted for either

extreme of no gearing or large gearing, all three measurable

quantities AI' A2 , and Cl (or Ai, AZ' and Ci) differ in the two

cases. Results of experiments on molecules containing methyl

groups of varying degrees of steric interaction are presented

in section 13.5.



11.12 226

12. EXPERIMENTAL DETAILS

12.1 Samples

All experiments were performed on powder samples except

for some studies which were done on single crystals of durene

(1,2,4,5-tetramethylbenzene) and 2,3-dimethylmaleicanhydride.

Methyl iodide (CH3I) was studied at -105°C and -150°C. Since

it froze suddenly at _80 Dc (published M.P. -66.5 DC [30]), it

presumably did not form a glass. The methyl iodide was

typically cooled over a period of I to 2 hours.

Several experiments were performed using single crystals

of 2,3-dimethylmaleicanhydride. All of the single crystals

contained 10% of perdeuterated molecules. The level of

deuteration was 98% so that any CH2D, which might have

significantly different relaxation properties [31] than CH
3

,

was very dilute. The deuterium quadrupole splitting of the

rapidly rotating CD
3

depends only on the angle between the C3

axis and the magnetic field. Hence, it was hoped that the

deuterium NMR spectrum could be used to orient the single

crystal and thereby obtain the angular dependence of rotational

polarization. This had to be abandoned, however, due to the

complexity of the deuterium spectrum~ The spectrum appeared to

contain eight pairs of lines (i.e., eight methyl orientations,

thus, four molecules per unit cell) although the signal to

noise precluded saying this with great certainty.

The advantage of using a single crystal is that spin

diffusion is effective over the entire sample. For a powder



11.12 227

the separation of the crystallites prevents effective spin

diffusion, and the crystallites relax independently. Thus,

there may be multiple spin temperatures and a markedly non­

exponential relaxation curve for the powder. However, if there

are multiple methyl group orientations per unit cell, the

relaxation is relatively isotropic with little difference

between powder and crystal. This probably explains the success

of Emid in applying SRSD theory to powders [11,23,25]. As

shown in section 13.3, however, the powder and single crystal

of 2,3-dimethylmaleicanhydride have different temperature

dependences.

The powder samples were pressed into pellets 6 mm in

diameter and 6 rom in length. The single crystals were approxi­

mately the same size. The solids were inserted into 8 mm glass

tubes and held in place with teflon plugs. The CH31 was degassed

and sealed in an 8 mm tube:

Syntheses for those samples which are not commercially

available are described in Appendix F. Also contained in

Appendix F are the details of the single crystal preparation.
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12.2 Signal to Noise

All of the measurements reported in this work are basically

intensity measurements. Consequently, the critical experimental

parameters were signal to noise and spectrometer linearity (linearity

is discussed separately under each spectrometer). Linewidth was

a minimal concern except for the unsuccessful crystal alignment by

deuterium NMR where the field was shimmed to give a 1 ppm linewidth

for H
2
0.

Very little could be done to improve signal to noise other

than signal averaging. The proton signals were large, but fluctua­

tions in electronics and ambient noise picked up by the probe were

not negligible. Signal averaging was made difficult by the very

feature which is of interest in this work: rotational polarization.

Ordinarily, the recycle delay between measurements is one T
l

.

Furthermore, the relaxation is generally independent of recycle

delay if the spin system is saturated at the start of each cycle.

Since rotational polarization is a separate quasi-constant, it is

not removed by saturating the Zeeman spin system. In fact, it is

unaffected if the saturation time is much less than S14'

Consequently, the rotational polarization must be allowed to relax

to a negligible level between measurements. The rotational

polarization lifetime, or lie decay time, was generally two to

four times as long as T
l

• Allowing four lifetimes, two to three

minutes was typically required for each measurement. With

fifteen different time values for a given relaxation experiment,

it was prohibitive to average more than about 10 times, This
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was generally sufficient to obtain SiN of 50 or better.

Since the proton spectrum was a single Gaussian of 30

to 50 KHz linewidth, it was unnecessary to Fourier transform

the F1D's. Typically, each F1D was averaged and then integrated

(after linearity.correction if necessary), allowing 15 ~sec

deadtime after the detection pulse.
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12.3 106 MHz Spectrometer

12.3.1 Magnet

The spectrometer is based around a Westinghouse 24.4 kGauss

superconducting magnet with 2.5 inch bore. Although the magnet is

low resolution, in all cases the homogeneous linewidths were much

greater than any inhomogeneous broadening.

12.3.2 Pulse Generation

The proton RF is generated by mixing the 30 MHz La from a

General Radio ll64-A frequency synthesizer with 136 MHz (generated

by doubling 68 MHz output by the same synthesizer) and keeping

the lower sideband. The RF is gated by a l6-step home-built

pulse programmer. After various stages of intermediate

amplification the pulse is finally amplified to 200 watts with

a class C tuned transmitter built from a Millen ham radio kit.

90 0 pulse lengths are 1 to 1.25 ~sec, thus, providing sufficient

spectral width to cover the proton spectrum.

12.3.3 Probe

The probe uses a simple coil-and-capacitor tank circuit

(see Figure II.14a) with a Q of ~ 150 at 106.2 MHz. The coil

is 8 turns of 18 gauge bare copper wire and has a diameter of

8 mm and length of 1.5 em. The coil is mounted on a teflon block

(~ 2.25" diameter) and covered with a glass dewar for thermal

insulation.
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Temperature control is achieved by regulating the flow and

temperature of cold N
2

or warm air over the sample. Before reaching

the sample the input gas flows over a small coil of Advance wire

which is heated by a voltage proportional current source. A

copper/constantan thermocouple is read by a nanovoltmeter which

outputs a differential voltage to drive the current source. By

calibrating the nanovoltmeter with a digital thermometer, the

temperature may be regulated to within ± O.loC over the range

-170°C to 80°C.

The sample mount is similar to that shown in Figure 11.15.

The sample is mounted in the larger of a pair of two-to~one 90°

bevel gears. The shaft of the smaller gear is attached to a

flexible cable external to the probe which allows manual rotation

of the sample: 180° in ~ 1 sec.

12.3.4 Receiver

The proton receiver has two stages of amplification: a

wideband low noise preamplifier (Avantek UTO-511, UA-I02, VA-lOJ

cascade) with 34 dB gain and a 30 MHz low noise IF amplifier

with 43 dB gain. The IF amp is home-built and is based on a

cascaded pair of Siliconix E420 dual J-FET~s [32J. Between

the wideband and IF amplifiers the NMR signal is mixed down to

30 MHz and then attenuated to avoid saturating the IF amp. The

output of the IF amp is split by a 0°_90° tee to allow quadrature

detection. The two phases are each mixed with 30 MHz and one is

selected to be digitized.
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(a) SINGLE-TUNED PROBE
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IH Transmitter,

Receiver

( b) DOUBLE - TU NED PROBE

IH Transm itter,

Receiver

--'---:~-r.../'"'l"Y'"'(""\"'---,-.u:::-.- 2D Transmitter,

Receiver

XBL 812-8109

Figure 11.14 Single and double-tuned probe circuits. A
H

is the

wavelength corresponding to the proton Larrnor frequency; A
H

is

corrected for the reduced velocity (0.7 c) of an electromagnetic

wave in a solid coaxial cable.
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PROBE HEAD AND SAMPLE MOUNT

TOP VIEW

233

0)

b)
c)

FRONT

BEVEL

-+-+--- d)

e)
f)

a) gas transfer line, b)

d) deuterium capacitor,
H

open A /4 stub. The

32 pitch; the larger

the smaller is 1/2" in

Eigure 11.15 Probe head and sample mount. The probe head is made

of glass-impregnated teflon, and the sample mount is aluminum with

a teflon sleeve. The probe head is threaded for attaching a bell

jar dewar. The labeled openings are for
H

grounded A /4 stub, c) proton capacitor,

e) copper/constantan thermocouple, and f)

straight bevel gears are brass and have a

gear is 1" in diameter with 32 teeth, and

diameter with 16 teeth.
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The maximum gain of the receiver is greater than 60 dB. With

25 dB attenuation before the IF amp, the spectrometer is linear

to within 2% over a range of input signals from 0.6 ~Vrms to

0.6 mVrms. The linearity of the IF amp over this range could

not be matched by two commercial IF amps (RHG EVT~30l0's) that

were tried. Error frore non-linearity was less than or equal to

the statistical errors generally present.

12.3.5 Digitizer

The audio signal is digitized by an 8 bit Biomation Transient

Recorder Model 802. The maximum digitization rate is 1000 points

in 500 ~sec which is more than sufficient for solid state proton

spectra.

Typical audio signals ranged from 1 to 100 mVpp.
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12.4 185 MHz Spectrometer

12.4.1 Magnet

The magnet is a Bruker 42.5 kGauss superconducting magnet

with 3.5 inch bore. The magnet has both superconducting and

room temperature shims and was shimmed to a 1 ppm H20 linewidth

for the experiments.

12.4.2 Pulse Generation

The RF and LO generation is very similar to that previously

described (section 12.3.2). The 30 MHz LO is generated by

tripling the 10 MHz output of a General Radio 1061 frequency

synthesizer. 155 MHz from the same synthesizer is mixed with

the 30 MHz, and the upper sideband kept. After various stages

of intermediate amplification the 185 MHz is gained up to 200

watts with a class C cavity-tuned transmitter built from a

Millen ham radio kit.

The pulse is gated with a l6-step home~built pulse

programmer which can be loaded and run under computer control

(a NOVA 820 computer is used). 90° pulses were typically

around 5 ~sec long which provided adequate spectral width.

The probe uses a single coil double-tuned tank curcuit as

shown in Figure II.14b (similar to Reference 33). The circuit
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is simultaneously tuned for lH at 185 MHz and 2n at 28.4 MHz.

The coil uses 8 turns of 18 gauge bare copper wire and is 8 rom

in diameter and 1.5 cm in length.

The temperature control is similar to that described in

section 12.3.3 except that a digital thermometer with internal

reference controls the heater current supply. Thus, the nano­

voltmeter arrangement described previously is bypassed, and

the desired temperature may be dialed in directly.

The probe is designed for automated sample flipping. The

sample mount of the probe is as shown in Figure 11.15. The

sample sits in the larger of a pair of two~to-one 90 0 brass bevel

gears. The shaft of the smaller gear runs along the length of

the probe (~ 4 feet) and is attached to the shaft of a SLO-SYN

M06l-FC08 stepping motor mounted at the end of the probe (see.

Figure 11.16). The motor mount is extended gH beyond what is

normally the end of the probe. This is to allow clearance for

the tuning capacitors and temperature~control connections and

also to prOVide greater separation between the motor (which

contains permanent magnets) and the superconducting magnet.

The step increment of the motor is 1.8 0 so that the 2 to 1

gearing provides a 0.9 0 step increment for the sample. The

motor is driven by an STMlOl translator module which requires

a 24 VDC, 6 amp power supply. The stepping motor and

translator module are manufactured by Superior Electric Company.

The translator module is driven by negative going logic

pulses (10 ~sec minimum width) from the spectrometer pulse
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cl DRIVE SHAFT ------N

d) PROBE HEAD { ~~~

e) SAMPLE MOUNT {

SCALE I-- 3" ---i

X8L 812-8126

Figure 11.16 Sample flipping probe. The tuning capacitors,

\H/ 4 stubs, and thermocouple, which run parallel to the transfer

line, are not shown. The base plates and support rods are

aluminum; the drive shaft and gas transfer line, which supports

the probe head, are stainless steel. The rotation angle is

marked by a pointer and azimuthal chart on the upper base plate.

The total probe length is ~ 4 feet.
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programmer and has two inputs to allow the motor to be stepped

clockwise or counterclockwise. The translator module also has

an internal oscillator for continuous rotation of the motor.

The translator module is rated at 1000 pulses per second and

the motor at 500 pulses per second maximum. In practice,

however, it was found that the motor could be run at 1000

pulses per second (i.e., 1800 sample flip in 0.2 sec) without

error.

12.4.4 Receiver

The receiver is very similar to the one described in

section 12.3.4, the major exception being that a commercial

30 MHz IF amp (RHG EVT 3010) is used. There are two stages

of amplification (preamp and IF), and the output of the IF

amp is divided into 00 and 90 0 components and mixed with

30 MHz to obtain the audio signal in quadrature.

The receiver was found to have poor linearity characteristics

with the gain of a 1 ~Vrms input signal being 2 to 3 dB less than

the gain of a 0.1 mVrms input. Since non-linearity can severely

distort a relaxation curve, it was necessary to record a

calibration curve for each experiment and correct the data

accordingly.

12.4.5 Digitizers

The two audio components are sampled and digitized by a

pair of Datel Model SHM2 S/H's in series with a pair of 10 bit
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l'

r

rr

Datel ~~del ADCEIOB A/D's. The digitization rate is limited

by the rate of data transfer to the NOVA 820 computer. The

fastest acquisition rate without error is 5 ~sec per point

which is marginal with T2 's around 20 ~sec.
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13. EXPERIMENTAL RESULTS AND CALCULATIONS

13.1 Bi-exponential Relaxation

The equilibrium spin system is shown in Figure 11.17. At

equilibrium there is no net flow of energy or particles between

any of the subsystems or between subsystem and lattice. The

effect of the RF pulse is depicted in Figure 11.18. The NMR

probe circuit is coupled only to the Zeeman spin states; the

rotational polarization subsystem and lattice can be detected

only indirectly through their influence on the Zeeman states.

After the Zeeman system is driven from equilibrium it relaxes

as shown in Figure 11.19. If the Zeeman system were the only

quasi-constant or if it was uncoupled from the other subsystems,

then it would relax as a single exponential. The coupling to

the rotational polarization brings about the bi-exponential

relaxation described in section 11.3.1.

The measured bi-exponential relaxation of 2,6-dimethylphenol

is shown in Figure 11.20. A saturation recovery pulse sequence

was used with a recycle delay of 150 sec. For saturation of

the spin system three 90 0 pulses were used; the pulses were

separated by 1.5 msec which is much greater than T2 and much

less than T
1

. 2,6-dimethylphenol has been studied extensivey

by Emid [20,23,25] using OW NMR techniques.
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(Everything else)

XBL 803-8421
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Figure 11.17 Thermodynamic picture of system at equilibrium.

There is no net flow of energy or particles between the three

reservoirs.
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RF Zeeman Rotational- -
Transmitter

•
States - States

" "
Lattice

XBL 803-8422

Figure 11.18 Use of RF irradiation to drive the system from

equilibrium. The RF circuit (i.e., the probe coil) is coupled

directly to the Zeeman subsystem and indirectly to the

rotational polarization subsystem and the lattice.
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., ,-
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2 channels

Relaxation

X8L 803-8419

Figure 11.19 Return to equilibrium, After RF irradiation the Zeeman

subsystem returns to equilibrium by losing energy to the lattice. If

there is only one coupling to the lattice,the relaxation is exponential.

If the Zeeman subsystem couples to rotational polarization,the

relaxation is bi-exponential~
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•
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/9°C 106.2 MHz

8.9 sec, 24.4%
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XBL 8011-12730

Figure 11.20 Bi-exponential T
l

relaxation observed for a poly-

crystalline sample of 2,6-dimethylphenol. The line for the

fast component was obtained by subtracting the slow componer.t

from the measured curve.
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13.2 Time Dependence of Rotational Polarization

Once the Zeeman system is driven from equilibrium (i.e., heated

by the RF pulses). it in turn drives the rotational polarization

system away from equilibrium [19,23]. The size of the rotational

polarization which is generated may be monitored through the Zeeman

signal as follows.

The Zeeman system is given a ~ pulse and then allowed to relax

for a time t. During this time the rotational polarization. p

subsystem is being pumped. Immediately after t the Zeeman system
p

is saturated by a series of 90° pulses and then sampled at a time

t later as shown in Figure 11.21. If there were no rotational

polarization, the size of the sampled Zeeman signal would depend

only on the time interval t. However. since rotational polarization

is not affected when the Zeeman system is saturated, P (t ) is
r p

present after saturation, and this in turn influences the Zeeman

recovery. The Zeeman signal is dependent upon both evolution

-
periods and is written explicitly as M(t ,t). P (t ) may be

p r p

measured through the changes in M(t .t) as a function of t .
P P

From Eqs. (11.17a)-(11.18b)

and

- -
[M(t .t)-M(O.t)]/M

P eq -216K Pr(tp) [exP(-Alt)-exP(-A2t)]/[(A1-A2)Meq]

(13.1)

(13.2)
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7T'7T'7T' ..".--- -..". 222 2

RECYCLE DELAY ~ t p ~ t ~DETECTION
XBL 812-8122

Figure 11.21 Pulse sequence for determining the time dependence of

rotational polarization. The rotational polarization is pumped

by the Zeeman relaxation during the time t , and its magnitude
p

is determined by its effect on the Zeeman relaxation during the

time t.
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where
-"

M(O,O)!M -2
eq

P (O)!M = °r eq
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(13.3a)

(13.3b)

The quantity [M(t ,t)41(O,t)J/M ,which is directly proportional
p eq

to P (t )!M ,was measured for 1,4,5,8-tetramethylanthracene as
r p eq

a function of t with t equal to 6 sec. The data are plotted inp

Figure II. 22, and apart from the poor signal to noise the data do

show the rise and fall of P (t ) as predicted by Eq. (13.2).
r p

The T
l

relaxation curve of 1,4,5,8-tetramethylanthracene was

measured (see section 13.5.1) to obtain the quantities AI' A2 , and

Cl • Using these measured quantities and Eqs. (11.17a)-(11.18b),

(13.l)-(13.3b), the predicted time dependence of P (t )- is shown
r p

in Figure 11.22. Presumably a part of the discrepancy between

the predicted curve and the experimental data may be attributed to

the fact that the non-exponentiality of the T
l

curve contains

contributions from rotational polarization plus powder anisotropy

(i.e., incomplete spin diffusion), whereas the data of Figure 11.22

are strictly a measurement of rotational polarization.
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TIME DEPENDENCE OF ROTATIONAL POLARIZATION
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Figure 11.22 Time dependence of rotational polarization. The sample

was polycrystalline 1,4,5,8-tetramethylanthracene. The proton

resonance frequency was 185 MHz, and the temperature was 25°C.

The abscissa is the time t , and the time t was fixed at 6 sec
p

(see Figure 11.21). The theoretical curve was calculated using

Eqs. (l1.17a)-(11.18b), (13.l)-(13,3b), and the Tl relaxation data

of Figure II. 32.
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13.3 Angular Dependence of Rotational Polarization

The rotational polarization quasi-constant was shown to be

[Eq. (11.16)]:

P (t)
r

Leos(8.) R.(t)
. 1. 1.

1.

where Ri(t) is the Ea_Eb population difference of the i th methyl

group and 8i is the angle between the methyl C3 axis and the

magnetic field. Considering R.(t) as a vector of length R.(t)
-1. 1.

parallel to the i
th

C
3

axis, Pr(t) is the total projection of

rotational polarization along the magnetic field.

written:

R. (t) may be
-1.

R. (t)
_1.

sinn.y + cose.z]R.(t)
1. 1. 1.

(13.4)

where n
i

is the azimuthal angle and x, y, z are the unit axis

vectors. If the sample is rotated about the x axis by the angle

~, then the new rotational polarization quasi-eonstant immediately

after rotaion is:

P (t. ¢)
r . (13.5)

Assuming that a powder average is valid, then the average value of

sinn is zero, and from Eqs. (11.16) and (13.5):

P (t,¢)
r cos(¢) P (t,O)

r (13.6)

where the notation has been changed to account for the sample
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rotation. Eq. (13.6) may be tested experimentally to confirm

the vector nature of rotational polarization and the validity

of the z projection P as the correct quasi-constant.
r

P (t ,0) was pumped as demonstrated in the previous section,
r p

the sample rotated (see Figure 11.23), and resultant rotational

polarization measured by its effect on the Zeeman T1 recovery.

The necessary pulse sequence is shown in Figure 11.24 with the

first sample rotation (~ 0.2 sec) being controlled by the pulse

programmer (automated probe described in section 12.4.3).

Incorporating the time intervals t and t and the rotation
p

angle ¢ into the notation, there follows from Eqs. (11.17a)-

(l1.l8b) :

- -
[M(t ,¢,t)-M(t ,O,t)]/M = -2/6K[P (t ,¢)-p (t ,0)]p p eq r p r p

x

(13.7)

According to Eq. (13.6)

P (t ,¢)-P (t ,0) = (cos¢-l) P (t ,0)r p r p r p

Thus,

..... - - .....
[1t(t ,<P,t)-M(t ,O,t)]/[M(t ;rr,t)-M(t ,O,t)]

p p P P

(13.8)

(1-cos<p)/2

(13.9)

where Eq. (13.7) is taken relative to its value for a TI

rotation of the sample.
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Figure 11.23 Effect of a 180 0 sample flip on the Zeeman (Z) and

rotational polarization (R) subsystems. The Zeeman subsystem

depends only on spin coordinates and is unaffected, therefore, by

a sample flip. Rotational polarization is associated with the

spin symmetries which are coupled to the spatial symmetries

through the Pauli exclusion principle. Thus, rotational

polarization follows the motion of the methyl C
3

axes and is

inverted by a sample flip.
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Figure 11.24 Pulse sequence for determining the angular dependence

of rotational polarization. The rotational polarization is pumped

by the Zeeman relaxation during the time t. The sample is then
p

quickly rotated ~ an angle ¢, and the resulting rotational

polarization measured by its effect on the Zeeman relaxation

during the time t.
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The quantity expressed in Eq. (13.9) has been measured for a

1,4,5,8-tetramethylanthracene powder with t = t = 9 sec, and
p

the results are plotted in Figure 11.25 as a function of~. The

agreement between the experimental results and Eq. (13.9) is fair

considering that there should be some contribution to the results

from T
l

anisotropy in the powder.
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Figure 11.25 Angular dependence of rotational polarization. The

sample was polycrystalline 1,4,5,8-tetramethylanthracene. The

proton resonance frequency was 185 MHz, and the temperature was

25°C. The abscissa is the angle ¢; the times t and t were
p

fixed at 9 sec (see Figure 11.24). The theoretical curve was

calculated from Eq. (13.9).



11.13 255

13.4 Equilibrium Rotational Polarization

Implicit in the use of C
3

symmetry for the methyl group is

the degeneracy of the Ea and E
b

rotor states within a torsional

level (it is assumed throughout this discussion that degeneracy

refers either to an individual torsional level or to an average

over torsional levels). This may be rigorously affirmed on the

b i f i l · h Ea d Eb .as sot me reversa s~nce t e an states are m~rror

images of one another, However, in the presence of an external

magnetic field the two symmetries need not he degenerate, since

time reversing the methyl group does not change the direction of

the field, The degree to which the field breaks the degeneracy

and the C3 symmetry depends upon the degree of interaction between

the methyl group rotation and the magnetic field, This inter~

group of methyl iodide CH
3

I generates a magnetic moment which can

be detected through shifts in the rotational spectrum of CH3I in

a magnetic field [34], The magnetic moment may be written;

where 8 is the nuclear magneton, ~ the molecular g~tensor, and

J the angular momentum of the molecule, Considering only the

component due to rotation of the methyl group about its C3 axis;

(13.11)

where gk is the methyl group g-factor and m is the angular
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momentum quantum number along the C
3

axis (see section 10.1)

gk has been measured for a few molecules: CH3F. CH3Br. CH3I,

CH3CCH [35.36]. All of the measured values are ~ 0.3 with the

value for CH
3

I equal to 0.310 ± 0.016 [35].

In section 10.1. Eq. (10.5) it was shown that although angular

momentum is no longer a good quantum number for hindered rotors.

hindered methyl groups do rotate and an expectation value of

angular momentum <m> can be associated with each Ea and E
b

state (see Figure 11.4). Furthermore. by calculating a Boltzmann

average over the torsional states. it is possible to associate a

temperature-dependent expectation value of angular momentum with

a beach symmetry manifold E and E. Thus, in the presence of an

external magnetic field the Ea and Eb spin states which are

b aassociated with the E and E rotor states. respectively. through

the Pauli principle are no longer degenerate [18]. This is

illustrated in Figure 11.26 where the energy hw
RP

is associated

with rotational polarization. The net effect of this is that

a b
at equilibrium the populations of the E and E spin states are

no longer equal so that P is non-zero.r.eq

Experiments were performed to measure the equilibrium value

of rotational polarization P for solid CH3I at -103°C. The
r.eq

non-exponential relaxation of solid CH3I is shown in Figure 11.27.

From the temperature dependence of T
l

(measured at -103 and -150°C)

the barrier to CH3 rotation was found to be 420 ± 60 cal/mole.

P was measured by the combination of pulse sequences shown inr.eq

Figure 11.28. In the first sequence a 90° pulse is given to the

spins. after a time t the sample is flipped by 180°, and then
p
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Figure 11.26 The energy levels of the three protons of a methyl

group considering the Zeeman, intramethyl dipolar, and tunneling

interactions and the coupling between the methyl group rotation and

the external magnetic field. Because the magnetic field lifts the

a bdegeneracy of the E and E states, the methyl group symmetry is

only approximately C
3

.
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Methyl Iodide
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Figure 11.27 Bi-exponential T
l

relaxation observed for a sample of

frozen methyl iodide. The parameters for the fast relaxation

component are accurate to within 20%, and the parameters for the

slow component are within a factor of 2. Additional values which were

included in the fit but not plotted are: 2.47 at 176 sec, 0.48 at

219 sec, and 0.35 at 263 sec.
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Figure 11.28 Pulse sequences used for determination of equilibrium

rotational polarization. The rotational polarization is pumped by

the Zeeman relaxation during the time t , and it is observed by
p

its effect on the Zeeman relaxation during the time t. Pulse

sequence (a) contains a 180 0 sample flip. The difference in Zeeman

signals from sequences (a) and (b), for given values of t and t,p

is directly proportional to the rotational polarization present

at time t. By fixing t and increasing t , the data may be
p . p

extrapolated to obtain the equilibrium rotational polarization.

Note: since the difference of (a) and (b) was recorded, the second

TI/2 pulse of each sequence was unnecessary.
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after a time t the Zeeman signal is sampled. The second sequence

is the same except the sample flip is omitted. The difference

between the two Zeeman signals (i.e., flip and no flip) is

proportional to P (t ) [see Eqs. (13.7), (13.8)]. By increasing
r p

t while holding t fixed, the asymptotic equilibrium value Pp r,eq

may be measured. The results of such an experiment are shown

in Figure 11.29.

P (t ) appears to be converging to a non-zero equilibrium
r p

value although the data are far from conclusive. A non-linear

least squares routine was used to fit the data to the equation:

f(t) = A + B exp(-At) (13.12)

where A and A are related to P and A
2

, respectively. The
r,eq

fit was performed using the FORTRAN subroutine '~ARPRO" [37,38,39]

obtained from the Lawrence Berkeley Laboratory Computer Center.

It is not advisable to take the logarithm of Eq. '(13.12) and use

a linear least-squares method since this is ill-behaved for

f(t) near zero and meaningless for a negative f(t). The results

of the VARPRO fit are:

A = 0.004 ± 0.002 (13.13a)

B 0.2 ± 0.1 (13.13b)

0.022 ± 0.006
-1

sec (13.13c)

From Eqs. (13.7) and (13.8) and the experimental parameters

obtained from the data of Figures 11.27 and 11.29 there is

obtained:
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Figure II.29 Measurement of the equilibrium rotational polarization

P of solid methyl iodide. The proton frequency was 106.2 MHz,
r,eq

and the temperature was -103°C. The time t was fixed at 15 sec

(see Figure II.28). A non-linear least squares fit of the data

gave a decay time of 50 ± 25 sec, in fair agreement with A
2

of

Figure II.27, and an equilibrium value P 1M of 0.003 ± 0.002
r,eq eq

(note: the data in the figure are scaled up by a factor of 100).
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P 1M = 0.003 ± 0.002
r,eq eq
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(13.14)

where K was calculated from Eqs. (11.4a) and (11.18a) assuming

a powder average for Sll.

The program "methyl" (Appendix C) was used to calculate the

theoretical value of P /M as follows. With the highr,eq eq

temperature approximation

P = h WRP/kT = 8 gkh[<m(Ea» - <m(Eb»]Hr,eq
(13.lSa)

Meq (13.lSb)

where gH is the proton g-factor. With

b a<m(E » = -<m(E » (13.16)

by time reversal symmetry, it follows that

P /Mr,eq eq
(13.17)

where the experimental values of gk(0.3l) and gH(S.S8S) have

been used. Using "methyl" to calculate the temperature-dependent

P /M (i.e., the angular momentum of the rotor is temperature-
r,eq eq

dependent) for a 420 cal/mole barrier, the results of Figure 11.30

are obtained. Given the negligible value predicted at -103°C,

the experimental results of Figure 11.29 and Eq. (13.14) must

be considered very tentative. Furthermore, in the calculation

all methyl groups were assumed parallel to the field H, whereas a

powder average would be more appropriate. With the magnetic

interaction given by ~·H, the energy varies as case. Performing
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a powder average, the calculations of Figure 11.30 are reduced

by a factor of two (note: methyl groups pointing in opposite

directions do not cancel since the coupling to the Zeeman system

is proportional to cose).

An interesting calculation would be to see if a larger value

of P is predicted for a sixfold rather than a threefoldr,eq

barrier.
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Figure II.30 Theoretical equilibrium rotational polarization Pr,eq

as a function of temperature. The activation energy 420 ± 60 cal/mole,

which was obtained from the CH
3

I relaxation data, was used as the

barrier to methyl group rotation. All methyl groups were assumed

to have their C
3

axes along the magnetic field. For an isotropic

distribution of methyl groups the above calculation should be

reduced by a factor of 2.
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13.5 Methyl-methyl Steric Interaction

13.5.1 Strong and Weak Coupling

The molecules 1,4,5,8-tetramethylanthracene and 1,4,5,8­

tetramethylnaphthalene (see Figure 11.31) provide an interesting

comparison for observing the effect of steric interaction on

rotational polarization. In 1,4,5,8-tetramethylanthracene the

methyl groups are well separated, and the bi-exponential relaxation

of independent methyl groups is expected. The T
l

relaxation

curve of 1,4,5,8-tetramethylanthracene is shown in Figure 11.32.

The data are fitted well with a bi-exponential decay curve (the

nonlinear least-squares fitting routine '~ARPRO" [37,38,39] was

used to fit all of the relaxation data discussed in sections

13.5.1 and 13.5.2).

On the other hand, 1,4,5,8-tetramethylnaphthalene, which has

very strong steric interaction between adjacent methyl groups,

exhibits the strictly exponential decay behavior shown in

Figure 11.33. This is in exact accordance with the predictions

of section 11.3.2 for strongly coupled methyl groups. According

to Eq. (11.24) the coupling between Zeeman and rotational

polarization depends on the difference [S14(8 i )-S14(8 i +l )] for two

coupled methyl groups. This difference is zero for 1,4,5,8­

tetramethylnaphthalene since both members of each coupled pair

are parallel (or nearly so), and, therefore, the Zeeman system

relaxes independently (and exponentially) of rotational

polarization. The strong coupling is found to persist from 20°
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XBL 802-8347A

Figure 11.31 Examples of weak and strong steric coupling. The

well-separated methyl groups of 1,4,S,8-tetramethylanthracene

(top) are expected to relax as independent methyl groups, whereas

the closely-spaced methyl groups of 1,4,5,8-tetramethylnaphthalene

(bottom) are expected to relax as strongly geared methyl groups.
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1,4,5,8-Tetramethyionthrocene

19.7°C 106.2 MHz

10-1

XBL B03-8415

Figure 11.32 Bi-exponential T
l

relaxation observed for a poly-

crystalline sample of 1,4,5,8-tetramethylanthracene. The line

for the fast component was obtained by subtracting the slow

component from the measured curve. The bi-exponential relaxation

is indicative of independent methyl groups.
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1,4,5,8- Tetramethylnaphthalene
106.2 MHz
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Figure 11.33 Exponential T
1

relaxation observed for a poly­

crystalline sample of 1,4,5,8-tetramethylnaphtha1ene. The relaxation

times are accurate to within 1%. The exponential relaxation can be

attributed to the combined effects of strong methyl gearing and

intermethyl relaxation.



11.13 269

to 60 0 as shown in Figure 11.33. Assuming an Arrhenius law for

the correlation time, the calculated barrier to methyl group

reorientation is 3.1 ± 0.1 kcal/mole. This value is essentially

the same as that for 1,8-dimethylnaphthalene which has been

reported as 3.2 ± 0.1 kcal/mole [40] and 3 kcal/mole [41]; the

barriers for other dimethylnaphthalenes range from 0.4 to 2.5

kcal/mole [40].

The objection could be made that the intermethyl contribution

to the relaxation seriously alters the treatment of section 11.3.2.

This may be easily checked. It was previously stated that

JC increases 8
11

and 844 but not 814 [25]. Assuming thatD,inter

either 811 and 844 become large due to ~,inter or 514 becomes

small due to the steric interaction, then Al 2 may be expanded,
2 2

in the quantity 4 5
14

/(8
11

-8
44

) to obtain from Eq. (11.14) or

(11.23)

(13.l8a)

(13.l8b)

where

(13 .19)

And with P (0) equal to zero,
r

(13.20a)

(13.20b)
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As x goes to zero, C2 goes to zero, and the relaxation is
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exponential. Thus, this technique cannot distinguish S14 going

to zero from Sll' S44 becoming very large.

From Figures 11.32 and 11.33 it is seen that Sll of

1,4,5,8-tetramethylnaphthalene is about ten times larger than

that of 1,4,5,8-tetramethylanthracene. If this difference is

due to X
D

. , then the effects due to steric coupling may
,~nter

be diluted considerably. However, if the difference is due to

the tetramethylnaphthalene having a much larger methyl group

rotational barrier than the tetramethylanthracene, then the steric

coupling model is correct since Sll' S44' and S14 are all

proportional to the correlation time and scale by the same factor.

Thus, it is necessary to distinguish between changes due to

barrier height and changes due to inter methyl relaxation.

Two methods are suggested below for determining this.

S44 for 1,4,5,8-tetramethylnaphthalene may be obtained

by measuring the dipolar relaxation rate S55 [42] since S44

and S55 are equal [see Eqs. (11.4c) and (11.4d)]. Sll is

obtained simply from Figure 11.33. If Sll and 844 have changed

by a common factor relative to the same quantities for 1,4,5,8-

tetramethylanthracene, then it may be assumed that the rates

have simply scaled with the increase in barrier. Alternatively,

if one methyl group of each coupled pair were deuterated, then

the relaxation could be measured at the same barrier but minus

the intermethyl contribution. In the absence of K. and
D,1.uter

coupled rotational polarizations, the relaxation should be

bi-exponential as well as being slower. Until either the
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dipolar relaxation or deuteration experiment is performed. the

exponential relaxation of 1,4,5,8-tetramethylnaph.thalene may be

taken to be the combined result of strong steric coupling and

intermethyl relaxation.

13.5.2 Intermediate Coupling

An interesting situation arises when cases of steric

interaction intermediate to the above two are considered.

Durene (1,2,4,5-tetramethylbenzene) and 2,3-dimethylmaleican­

hydride have similar methyl-methyl geometries. When the T
l

relaxation of durene is measured near room temperature, it is

found to be strictly exponential as shown in Figure 11.34. On

the other hand, 2,3,-dimethylmaleicanhydride shows a non­

exponential relaxation near room temperature (see Figure 11.35).

The measurements were performed using both single crystal (the

durene used in the single crystal had one ring position deuterated)

and powder samples, and the results were unchanged for both

compounds. One possible explanation for the difference between

the two compounds is as follows.

If the steric coupling is strongly dependent upon the fraction

of time each methyl rotor is above the barrier in energy, then a

small difference in the intermethyl barrier may cause a large

difference in the observed relaxation at a given temperature.

That is, ignoring the barrier to rotation from other molecules

which is essentially stationary, the barrier which one methyl

rotor sees is dependent upon the angular orientation of the
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Figure 11.34 Exponential T
l

relaxation observed for a polycrystalline

sample of 1,2,4,S-tetramethylbenzene. The ~elaxation time at 19.3°C

is accurate to within 1%, and the value at 60°C is accurate to

within 2%.
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Figure 11.35 Bi-exponential T
l

relaxation observed for a polycrystalline

sample of 2,3-dimethylmaleicanhydride at 22°C. The short and long

relaxation times are accurate to within 10% and 15%, respectively.
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adjacent methyl rotor. Now if one methyl has sufficient energy

to exceed the barrier height, then it may rotate freely without

regard to the orientation of the adjacent methyl, and the motion

of the two methyls is uncorrelated. If, on the other hand, the

methyl rotors lie far below the barrier height in energy, then

they must either tunnel, which is slow, or move in correlated

fashion: as one methyl rotates, the barrier moves, and the

other methyl must follow. If durene and 2,3-dimethylmaleicanhydride

are in the region of marginal steric coupling, then it should be

possible to detect the transition from weak to strong coupling.

To test this hypothesis the temperature dependence of Tl was

studied.

The results for durene at 19° and 60°C are shown in Figure

11.34. Except for some scatter in the smaller data points at

60°C there is no indication that the relaxation is becoming

non-exponential at the higher tempe~ature. The activation

energy for the methyl reorientation is determined from the data

to be 1.9 ± 0.1 kcal/mole. This energy has also been reported

as 1.6 ± 0.1 kcal/mole by NMR T
l

measurements [43a] and 2.03 ±

0.16 kcal/mole by neutron scattering [43b]. The deviation of

the 1.6 kcal/mole value from the other two may be an artifact of

the data analysis which was used: Tl data from 90 to 350 K was

fitted assuming a single activation energy [43b], and it is now

known that the T
l

of methyl groups may exhibit a smaller activation

energy at low temperature than at high [44].

2,3-dimethylmaleicanhydride was studied extensively to see

if the transition from weak to strong coupling could be detected.
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In Figures II.36 to II.39 is shown the temperature dependence

of the relaxation of a Z,3-dimethylmaleicanhydride single

crystal at a fixed orientation. From the plots there is no

trend to be discerned other than the increases of the rates

as the correlation time becomes longer. Using the routine

"VARPRO" to solve for Cl (Cl + Cz are normalized to one), Al

and A2 , the single crystal data and that from powder experiments

were analyzed; the results are plotted in Figures 11.40 and

11.41. The predominant feature of Figure 11.40 is that the

relaxation becomes more exponential (i.e., C
l

increases) as

the tempeaature is increased. In fact, the relaxation for the

powder was exponential at the highest temperature (i.e., 70°C

which is well below the melting point of 93-96°C) measured as

shown in Figure 11.42. Unfortunately, the single crystal

relaxation was not measured at 70°C also. Excluding the methyl-

methyl steric interaction Wand X Eqs. (11.18a) andD,inter'

(11.27a) predict no temperature dependence for Cl since this

quantity involves a ratio of rates. Another peculiar feature

of Figure 11.40 is that the powder shows a much stronger

temperature dependence than the single crystal. The temperature

dependences of Al and A2 are shown in Figure 11.41.

From Cl ' AI' A2 , and Eqs. (11.14), (11.18a) [or Eqs. (11.23),

(11.27a)] were derived the rate constants Sll' S44' and S14' Sll

and S44 are shown in Figures II.43a and II.43b as a function

of temperature, The interesting feature of Figure 11.43 is that

Sll and S44 have slightly different temperature dependences; that

is, they are relaxed by motions which have different activation
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2,3 - Dimethylmaleicanhydride
Single Crystal
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Figure 11.36 Bi~exponential T
l

relaxation observed for a single

crystal of 2,3~dimethylmaleicanhydrideat 25°C. The short and

long relaxation times are accurate to within 10% and 15%,

respectively.
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2,3 - 0 imethylmaleicanhydride
Single Crystal
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Figure 11.37 Bi-exponential T
l

relaxation observed for a single

crystal of 2,3-dimethylmaleicanhydride at _40°C. The relaxation

times and percentages are accurate to within 10%.
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Figure 11.38 Bi-exponential T
l

relaxation observed for a single

crystal of 2,3-dimethylmaleicanhydride at -80°C. The relaxation

times and percentages are accurate to within 10%.
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Figure 11.39 Bi-exponential T
l

relaxation observed for a single

crystal of 2,3-dimethylmaleicanhydride at -110°C. The relaxation

times and percentages are accurate to within 10%.
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Figure 11.40 Temperature dependence of the degree of bi-

exponentiality for 2,3-dimethylmaleicanhydride. Open circles are

data for a polycrystalline sample, and the solid circles are data

for a single crystal at a fixed orientation. The maximum deviation

from exponential relaxation is for C
l
!(C

l
+C 2) equal to 0.5. At

the highest temperature used (70°C) the polycrystalline sample

showed exponential relaxation (see Figure 11.42).
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Figure 11.41 Temperature dependence of A
1

and A2 for 2,3-

dimethy1ma1eicanhydride. (a) Single crystal at a fixed

orientation. (b) Polycrystalline sample.
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Figure 11.42 Exponential T
l

relaxation observed for a polycrystalline

sample of 2,3~dimethylmaleicanhydrideat lOoe.
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Figure 11.43 Temperature dependence of Sll and S44 for 2,3­

dimethylmaleicanhydride. (a) Single crystal at a fixed

orientation. (b) Polycrystalline sample.



11.13 284

energies. This is not predicted by Eqs. (11.4a), (11.4c) which

describe intramethyl relaxation. Thus, the discrepancy is

probably due to intermethyl contributions to 5
11

and 5
44

, It

is not unusual that they are affected differently since Zeeman

and rotational polarizations may be relaxed by different

transitions.

The temperature dependence of 5
14

is shown in Figure 11.44.

There is no sudden change as a function of temperature which

would indicate a transition from independent ° [Eq. (11.15)] to

coupled [Eq. (11.24)] methyl groups. The results on C
l

, however,

indicate that if there is a transition it occurs at the highest

temperature measured; 5
14

, of course, could not be determined

for the exponential decay at 70°C.

The activation energies associated with each of the

relaxation rates are compiled in Table 11.4. Although the

single crystal values are comparable to that measure for durene,

the powder values are substantially different. The difference

between the single crystal and powder results is not understood.

Furthermore, the temperature dependence of T
1

did not reconcile

the difference between durene and 2,3-dimethylmaleicanhydride.

It may be that intermolecular couplings dominate the durene

relaxation and therefore invalidate comparisons made on the

basis of molecular structure.

A single crystal of 2,3-dimethylmaleicanhydride containing

10% perdeuterated material was grown in the hope that the crystal

could be aligned via the angular dependence of the deuterium

quadrupole splitting (see section 12.1). This was unsuccessful



11.13 285

I

- I -
SI4

o Powder
-

.Single Crystal

~ -

I
-

T -I
u 10 - -
GO
III

-
-

-

-2
10

0 2 3 4 5 6 7

103fT (K-1)
lBl 81~-ao69

Figure 11.44 Temperature dependence of S14 for single crystal

and polycrystalline samples of 2,3-dimethylmaleicanhydride.

The proton frequency is 185 MHz for the single crystal data and

106.2 MHz for the powder data.
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due to the complexity of the deuterium NMR spectrum. The

angular dependence of the relaxation was studied nevertheless,

to see how great the anisotropy is. The angular dependence of

C
l

, Ai' and AZ are recorded in Figures 11.45a and 11.45b, and

the derived values of 5
11

, 5
44

, and 5
14

are shown in Figures 11.46a

and 11.46b. There is a region where the relaxation becomes

exponential (see Figure 11.45a), but since the molecular

orientations could not be identified, it is not possible to

correlate the results with the predictions for either independent

or coupled methyl groups. It would be very interesting to study

the temperature dependence of the anisotropy, particularly

with regard to understanding the difference between powder and

single crystal (Table 11.4).
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Table 11.4 Activation Energiesa for the Relaxation Rate

Constants of 2,3-Dimethylmaleicanhydride at

High Temperature

Powder Single Crystal

Relaxation Rate Constant E kcal/mole E kcal/molea a

Sll 1.7 ± 0.1 2.1 ± 0.1

S44 3.8 ± 0.4 2.4 ± 0.1

S14 2.9 ± 0.4 2.3 ± 0.1

aThe activation energies (E ) are obtained from the data
a . .

of Figures 11.43 and 11.44. An Arrhenius expression is

assumed for the correlation time T which is proportional
c

to each of the relaxation rate constants through Eqs.

(11.4a)-(11.4c) and (11.5).
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Figure 11.45 Angular dependence of C
l

, AI' and AZ for a single

crystal of 2,3-dimethylmaleicanhydride. The proton frequency was

185 MHz, and the temperature was 25°C. (a) Cl/(Cl+CZ) is plotted;

the relaxation appears exponential from 112° to 155°. (b) AZ is

undefined for the region of exponential relaxation.
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Figure 11.46 Angular dependence of Sll' S44' and S14 for a single

crystal of 2,3-dimethylmaleicanhydride. The proton frequency was

185 MHz, and the temperature was 25°C. S44 and S14 are undefined

for the region 112° to 155 0 where the relaxation is exponential.
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13.6 Temperature Dependent Tunneling Frequency

In section 10.1 the standard model (slightly modified from

Reference 11) was presented for explaining the temperature dependence

of the observable tunneling frequency wt ' Calculations from the

computer program "methyl" are now presented in order to point out

some of the interesting features as well as precautions which

are inherent in the use of Eq. (10.7) for wt '

In Figure 11.47 the theoretical temperature dependence of wt

is plotted for a barrier V
3

of 1 kcal/mole. The low temperature

plateau value of w
t

is the ground state tunneling splitting ~O.

As the temperature increases from zero the tunneling splittings

~O' ~l' ~2' ... of alternating sign average together so that wt

falls rapidly around 50 K. This is the familiar behavior of wt

as observed experimentally [12,13,45,46]. To be noted in

Figure 11.47 is the reappearance of a negative W around 200 K.
t

This author knows of no experiments in which a high temperature

tunneling splitting of this sort has been observed. Of the

experimental techniques available, Pintar's spin-locking

experiments [46], which involve a resonant transfer of energy,

are probably best suited for such a measurement. NMR lineshape

and relaxation studies would be insensitive to w since at high
t

temperature both are dominated by fast stochastic methyl group

reorientation.

p~ anomalous case of the temperature dependence will serve

to illustrate the limitations of Eq. (10.7). In Figure 1I.48a is

shown the calculation of wt for a 4 kcal/mole barrier. Rather
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Figure 11.47 Theoretical temperature dependence of the average

tunneling splitting w
t

for a C3 rotor with a 1 kcal/mole rotation

barrier.. The torsional energies and tunneling splittings were

calculated with the program "methyl.f4p", and W was calculated
t

with Eq. (10,7),
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Figure 11.48 Theoretical temperature dependence of the average

tunneling splitting w
t

for a C
3

rotor with a 4 kcal/mole rotation

barrier. The torsional energies and tunneling splittings were

calculated with the program "methyl.f4p."

with Eq. (10.7).

(a) w
t

was calculated

(b) w
t

was calculated using only the two lowest

torsional levels.
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than falling, there is an almost monotonic increase of w with
t

increasing temperature. This is in marked contrast to the work

of Johnson and Mottley [12] where a barrier of 4 kcal/mole is

reported, and yet their data show a tunneling splitting which

decreases from a low temperature value of 21 kHz to zero at 85 K.

Pintar [46] studied the same compound (CH3CDZI), and although his

experimental fitting parameters do not correspond to a 4 kcal/mole

barrier, his data do show a drop in w
t

from 48 kHz at low

temperature to near zero at 90 K. In both cases the authors were

able to fit their data by using only the two lowest tunneling

sp1ittings, 60 and 6
1

, in calculating w
t

' They are right in

assuming that the population of higher levels is quite small,

but these levels still contribute significantly to the average

since for a barrier of 4 kcal/mole:

(13.21)

for i > 1.

The underlying assumption of the Boltzmann average of Eq.

(10.7) is that the averaging process (i.e., the transitions

between torsional states) takes place at a rate much higher than

the tunneling frequencies being averaged. For a 4 kca1/mole

barrier:

6
0

6.8 x 104
Hz

6
1

= -6.3 x 105 Hz

6
2

6.6 x 107
Hz
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and the torsional splittings are

294

= 690

652

cal/mole

cal/mole

Since the energy differences between the torsional levels are

comparable, it may be assumed that the phonon induced transitions

between them all proceed at about the same rate n. If the phonon

density is such that

(13.22)

then:

1) The condition of fast exchange [47] applies to ~O and

~l' and an average tunneling splitting appears which is weighted

by the Boltzmann factors for eO and e l , and

2) slow exchange applies to ~2 so that ~2 does not contribute

to the average, but rather appears as a distinct tunneling

splitting with intensity given by the Boltzmann factor for e 2 ,

If condition (13.22) holds at temperatures < 100 K, then it

is correct to include only the two lowest levels in the averaging

process. The results of such a calculation are shown in Figure

II.48b.

It is interesting to note that Johnson and Mottley [12]

reported that in some experiments their main observed spectrum

for w was superposed with a low intensity spectrum corresponding
t

to a much larger tunneling splitting. Furthermore, Allen [14]

used an exchange theory with the two lowest levels to fit Johnson
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and Mottley's data; the derived exchange rate was ~ = 10 60 , The

result of these observations is that it is more appropriate to use

an exchange theory [14,47] than the thermodynamic average

Eq. (10.7) to treat w
t

at low temperature.

Along other lines, it is interesting to compare the classical

rotation rate of the hindered methyl rotor with its tunneling

frequency. Using the program "methyl" to calculate the expectation

value <m>. for the Ea state of the i
th

torsional level, the
].

rotation frequency <vR>i is:

<v >
R i

<m>i h/(21TI) (13.23)

where I is the methyl group moment of inertia, 5.5 x 10-
40

g cm
2

[10]. In Table 11.5 are listed <vR>i and 6
i

for the first several

torsional levels of a methyl rotor with a 1 kcal/mole barrier.

Since <m> alternates in sign from level to level, this provides,

perhaps, a more intuitive view of why coherent tunneling rotation

stops at high temperature. That is, as a methyl group in a given

torsional level begins to rotate in a clockwise direction, then

it is excited to another level and rotates in a counter-clockwise

direction, then it decays to a lower level and rotates again in a

clockwise direction, etc., with the net effect being that if the

transitions are fast enough, the methyl group essentially stands

still. This kind of "tunneling blocking" has been referred to in

other contexts as well [48,49].

The advantage of viewing the averaging as taking place over

<V
R

>. rather than 6. is simply that the frequency of rotation can
]. ].
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be used to characterize the levels above and below the barrier in

energy, whereas it is not evident that the tunneling splitting is

a meaningful quantity to apply to the free-rotor-like wave

functions above the barrier. In either case there is little

quantitative difference as indicated by Table 11.5.
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Table 11.5 Comparison of Classical Rotation Rate and

Tunneling Frequency of a Methyl Rotor with

a 1 kcal/mole Barrier.

<v > x 10-12 Hza
~. x 10-12 b

Torsional Level HzR i 1

0 0.00052 0.00044

1 -0.0174 -0.0146

2 0.232 0.167

3 -0.722 -0.920

4 1. 95 1.49

5 -2.33 -2.50

6 3.00 2.84

7 -3.32 -3.48

8 3.95 3.79

9 -4.26 -4.41

a<vR>i is the classical rotation rate of the Ea state of

the methyl rotor in the i th torsional level.

b~. is the tunneling frequency of the i th torsional level.
1



11.14 298

14. SUMMARY AND DISCUSSION

The experiments of the preceding chapter provide an overview

of the possibilities and difficulties of using Zeeman spin-

lattice relaxation to probe methyl group rotation and torsion.

The mathematical framework for analyzing the experiments is

presented in the sections on independent (11.3.1) and coupled

(11.3.2) methyl groups. The treatment of independent methyl

groups follows from the work of Emid [6,23,25], while the solution

of the coupled methyl group problem is new to this work. At

high temperature all of the spin thermodynamics can be viewed

as relating solely to the spin states with the coupling between

spin and rotor being a consequence of the Pauli exclusion

principle. At low temperature the complexity of the treatment

increases rapidly [11,50,51,52] as w
t

becomes comparable to the

frequency of stochastic methyl group reorientation.

The experiments of sections 13.1, 13.2, and 13.3 illustrate

the basic features of the coupling between Zeeman and rotational

polarization and demonstrate the validity of the rotational

polarization quasi-constant as written in Eq. (11.16). The

experiments on equilibrium rotational polarization (section 13.4)

are important, because they provide a crucial test of the

coupling between spin and spatial wave functions via the Pauli

principle; the existence of this coupling at high temperature

has been called into question by a few authors [17,18,53].

Unfortunately, sufficient signal to noise was not achieved to

conclude that P is definitely non-zero.r,eq
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The study of methyl~methyl gearing (section 13,5) is perhaps

the area where rotational polarization can play its most useful

role. The results on 1,4,5,8-tetramethylanthracene and 1,4,5,8-

tetramethylnaphthalene are entirely consistent with the

expectations for independent and geared methyl groups, respectively.

These measurements, however, are made questionable by the presence

of JC .
D,lnter

This is not an irresolvable point though; using

dipolar relaxation measurements to obtain S44' the contribution

of intermethyl relaxation is readily determined.

The differences between durene and 2,3-dimethylmaleicanhydride

and between powder and single crystal samples of 2,3-dimethyl-

maleicanhydride are not understood. From molecular considerations

any differences are expected to be slight. An especially

interesting study would be to orient a single crystal of, for

instance, 2,3-dimethylmaleicanhydride and compare directly the

predictions for independent and geared methyl groups with

experiment. The orientations where the relaxation is expected

to change from non-exponential to exponential are quite different

in the two coupling extremes, and trial calculations with the

program "couple.c" (Appendix E) indicate large changes in AI' A2

as well. This study in conjunction with dipolar relaxation

measurements is required if definitive statements about rotational

polarization and steric coupling are to be made. Once such a

study is completed, then the foundation is laid for using

rotational polarization to make general observations about the

degree of methyl-methyl gearing in different molecules.
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In conclusion, the comments on the temperature dependence of

the tunneling frequency are intended as a warning regarding the

use of the various expression for wt appearing in the literature.

The remarks on the relationship between <VR>. and b. are included
1 1

for the purpose of demystifying the disappearance of tunneling at

high temperature.
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proaram sina5
c
c sing5 calculates the singlet character as a functlon of time for the
c two electrons of a ra~ical pair. up to a hyperfines can be inout
c tor each ra~ical. other input consists of the two g-factors, the
c maanetic field, and time values for the calculation. the singlet
c character is outout (along with -time- and -delta-time-) into the
c file -sing.val- for further processing to oetermine the
c reco~bination ~ield.

c
co~mon/lnl~l/mat(5,32),mtv(32),mpicxl1v)

common/lolx4/nnIKI(32),nevl(o),innlkl(o),inpvl(o),locl(32)
common/lbl~5/nbIK2l32),nev2(o),;n~lk2(b),;nev2(o),loc2(52)

common/lblk%1,o?
common/lblx7/c1(25Z),ev1l32),cZ(252),ev2(3Zl
common/l~lk~/nsinas,nblksl,nolxs2

oimens;on matsl4,2~b),h~atlIO,10),u(10,10),all~),a~lq)

o;mension s(1000),t(10UO),ot(1000)
equivalence (matll,l),mats(I,I», lplll),hmat(I,l»
equivalence (oZ(I),ull,I»
comolex pllZ52),p2l252)

c
c inout routine
c

call int05(nil,al'91,niZ,aZ,q2,h,loopl,loo~2,10003,loopq,loopS)

c
c calculations for rad;cal I
c I. construct IPln configurations
c

call setuolni1,nucl,nro~I,ncolIJ

mt=nro_1
nhlkSI=mt+1
inc=1
ine=1

c
c
c
c
c
c

2.
3.
u.
5.

PiCK all configurations of a given angular momentum
construct hamiltonian matrix for these confiquratlons
diayonalize the hamiltonian matrix
reoeat the procedure for each Possible angular momentum

00 100 i=1,nblxs1
call picx(mt,ncoll,nfns,nnlk1,loc1,i)
call hamil(nro.I,nfns,al,al,h,hmat)
call haia~(hmat,nfns,cl(;nc),evl(;ne),u)

nev1(i)=nfns
inevl(;)=;ne
innlxll;)=inc
ine=lne+nfns
inc=inc+nfns*nfns
mt=mt-Z

100 contlnue
C

c the aoove ~-steu orocedure ;s repeat eo for the secona radical
c

call setup(ni2,nuc2,nrowZ,nco12)
mt=nro.Z
nnIKsZ=mt+1
inc=1
ine=l
GO 2uG i=li~bl~s2
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calIO;Ck(mt,l"Ico12,nfns,nbllcc,loc2,i)
cal I ham; l(nrow2,nfns,a2,92,h,hmat)
cal 1 hdia~(hmat,nfns,c2(inc),ev2(;ne),u)

nev2(iJ=nfl'lS
inev2(; l=ine
inolk2(i)=inc
ine=ine+nfns
inc=inc+nfns·nfns
mt=mt-2

200 continue
wr;te(o,2uS)

20S formatllx,'dlaQon~lizationcomoleted - oe~in time
c develooment')

c
C construct the matrix of all singlet configurations
c

call sing(nucl,nuc2,mats,nsinas)
c
c calculate the evolution of singlet character with time
c

ti=O.
100p=0
;flloonl.~t.O) cal I
if(loo02.~t.O) call
if(100p3.~t.O) call
if(loop~.~t.U) cal I
if(10005.~t.O) call

c
c outout sectIon
c

stimeS(ti,l.e-ll,loool,loap,s,t,dt,mats)
stimeS(ti,1.e-IO,100p2,10op,s,t,dt,mats)
stimeS(ti,l.e-Uq,loo~3,loop,s,t,dt,m8ts)

stimeS(ti,l.e-O~,loop~,loop,s,t,ot,mats)

stime~(ti,l.e-07,loopS,looo,s,t,dt,mats)

500

SOO

000

700

800

<fOll

1000

1 100

1200

130 O'

1~00

lS00

open(unit=OI,name='sing.val',ty~e='new')

wrltell,3uO)
formatllx,'·sinQ.val· - out out file for ·singS·')
write(I,~uO) nIl
formatl/,Ix,il,' hyoerfines on radical I:')
Iflnll.gt.O) write(I,SUO) (alIi), ;=I,niI1
format(Sx,fB.3,' gauss')
wrltell,ouO) gl
formAt(/,5x,to.~' = g-vAlue')
write(1,7uO) 1"1;2
format(/,Ix,il,' hyoerfines on radical 2:')
if(nI2.gt.O) write(I,SOO) (a2li), i:l,ni2)
.. rite(l,oOO) q2
write(l,bOO) h
tormatl/,Ix,ell.i,' gauss external magnetic field')
write(I,900) nsings
format(/,lx,iS,' singlets calculated')
wrlte(l,lullll) 1000
formatl/,lx,iS,' different time values calculated:')
wrlte(l,llOO) loopl
format(Sx,;5,' x 1.Oe-11 sec')
write(I,1200) 10002
format(Sx,iS,' x I.De-lO sec')
write(I,1300) 100n3
format(Sx,iS,' x 1.De-~ sec')
.. rite(!,1400) loopq
formatl5x,i5,' x I.Oe-B sec')
.. ritell,15UO) 10005
formdt(Sx,iS,' x 1.Oe-7 sec')
write(l,lbUD)



160U

1700

for-n,at(/,lll,' time s(t)
'" r- it e ( 1, 17 u u) (t ( ; ) , s ( ; ) , d t ( i ) , i =I, loop)
for-mat(lx,3eI5.5)
c]ose(un;t=OlJ
l!no

308
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c
c SUbroutine intoS follows.
c

subroutine into~(nil,al,~1,nil,a~,g2,h,100pl,loopl,loopj,

c looP14, loop:» . - - - - -

c
c input routine written for program 'sing~'

c
dimension al(q),a2(q)
write(o,lOO) . .

lQO tormaf(lx,'progra m Slng~.,.',I,lx,

c'cldnp singlet calculation',17,lx~

c·enter number of'spins on eaCh radical (uP to q for eaCh): ',~)

readl5,lSO) nil,ni2
150 format(liZj

write(b,~OOJ
~QO tormat{/,lx~'note: hyperflne constants and magnetIc tleld',I,

c/K,'must-have the same units 19auss)',/)
l~lnil.eq.OJ go to j~O

wr;te(b,300j nil -
jOO format(lx,'enter the',12,' hyperfine constants for radical 1')

readl~;jO~j lalliJ,i:l,nil)
30~ tormatliOf~.O)·

j~O iflnil;eq.O) go to qSO
write(o,qoo; nil

qOO format(lx,'enter the',ll,' hyperfine constants for radical l'J
read(~;~O:>} (&2l1J,i=1,ni2J

qSO wr1te(b;5VOJ
~OO tormatl/,lx~'enter the g-tactor for radical 1: ',))

readb~jO:» 91
write(o,ouO)

000 tormatllx,'enter the g-tactor for radical ~: ',$)
readl~;jO:>} ~C

write(b,700J
IQO formatl/,lx~'enter the ma~netlC field strength: ',~)

readb;30SJ h
write(b~dOOJ

dOU formatl/,lx~'time increment lntormation - enter the number of'
c,l,lx,·iterations (lOUO total) for eaCh of the tollowing"tlmes.-)

write(o,IH':J)' -
dl':J tormat(lx;'l.Ue-ll sec: ',iJ

readlS;doS) loopl
wrlte(b,8cS)

625 tormatllx,'i.Oe-lO sec ',i)
readl~;lSo~) 100p2
lIlrit.lb~dj':J)

d35 tormaiilx~'l.Oe-Oq sec ',I)
readl~;do:» loopj
.. rite(o~dq~)

dq~ tormattlx,'l.Oe-OlS sec ',I)
re&dlS;do~) loopq
wrltelo,8~,)

1S55 tormat(lx,'i.Oe-OT sec ',I)
readi,;lSbS) loopS

db';) tormat(lqJ
wrlte(!i,900J

~OO format~/,lx,'thank-you and may you have a good calculation',I)
return
end

c
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c subroutine setup follows.
c

subrout,ne setup(n;,nuc,nrow,ncol)
c
c sets up tne matrix of all possible spin configurations
c for a given raoical - uses binary counting for generating
c all of the permutations of uP and down apins
c

comlllon/lolk1/.at(5,j2),mtvl~~),mpick(10)

nuc=c**ni _. . -" .
nrow=il1+ 1
ncol=nuc+nuc
00 bVO nca=1,nuc
nco=nca+nuc
mat(l,nca)=l
melli,nco;=-l
mi=O
iflnrow.eq.1) go to 5~0

num=nca-l
Join=nuc
do 4~O j=c,nrow
JOln=join/2
k=num-jbin
if(kj 50,15003'0

50 ~atli,nc.j=-l·

lIat(J,ncbj=-l
tid =riii-1
go to '6,0

15U matlJ,ncaJ=1
llIet{J,nCOJ=l
lIi=ni,-t1
,flj.eq.nrow) go to 5'0
11=j+1
do ~~O nr=j1,n r ow
Illatlnr,nca)=-1
~at(nr,nco)=-l

1lI;=".,-1
l50 cont,nue

go to 5,0
350 ~at(J,nca)=1

lIIat(j,nCOJ=l
1lI1=m,+1
num=k

450 cont,nue
550 IlItv(ncaJ=.i-tl

mtv{ncbj=.i-1
bUO cont,nue

return
.no

c
C subroutine PICk follows.
c

c
C PIcks out al I basi. function. of a given tot.1
c angular ~o~entum

c
common/,0Ik1/m.t(5,j2),mtvlj~),llIpiCk(10)

Ol~enSlon nblk(1J,loc(1) "..
nfn.=U



do 100 j=l,ncol
If(mtvlj).ne.mt) go to 100
nfns=n1ns+l
mplCk(nfns)=j
nblklj)=i
loc(j):nfns

100 contInue
return
end

c
c subrout ine hami 1 follo~s.

c
suoroutine hamil(nrow,nfns,a,g,h,hmat). -

c
C constructs the hamiltonian matrix for a group of
C spIn states
c

co~mon/lb'kl/~.t(~,jZ),mtv(j~J,mpick(10J

dimenSIon hmatln1ns;nfnsJ,al1j,mCo,(~j,hvec(10)

gfree=~.OU2j2~ ..
dO 1000 i=1,n1ns
nbf=mplck(iJ
ms=matll,riot)
~colilJ=ms

sec=U.
If(nrow.eq.1) gO to 1~0

do'~O Igo=2,nrow
ml=~atligo,nbf)

mcol iigoJ=mi
nl'lyp=igo-l
sec=sec+e(nhyp)*mi

~O contInue
l~O hmatli,,)=ms*(g*n/gfree+sec*.~)*.~

lfli;eq.n1ns) '00 to 1100 .
iott=i+l
do ~'O ;go=iof1,nfns
hvecUgo)=O.

2~0 continue
iflms.eq.-lJ go to ~~o

mcolllJ=-l
do q~0';go=2,nro~

nhyp=igo-l
If(mcolligoJ.eq.1J go to qSO
mcolligo)=l .
do jSO irun=ioff,n1ns
nbf2=mpickllrunJ
itllcl'lecklmcol,mat(l,nbf~J,nro.J.eq.O)go to jSU
hveclirunJ=a(nl'lypJ*.~

350 contInue
mcolligo)=-l

q50 continue
go to tS~O

550 mcolll]=l
do ISO'igo=~,nrow

nhyp=igo-l
ltlmcol(igoJ.eq.-l) go to 7S0
mcolligoJ=-i
do o~O irun=ioff,nfns
nbfc=mpiCk(,run)
lf~iCheck~mcol,~at(l,nbf2J,nrowJ.eq.OJgo to b~O
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&50

750
850

950
1000
1100

hvec~irun)=a{nhYP)*.5

contInue
Illcol~igo)=l

continue
00 9~0 igo=ioff,nfn5
h.atti,igo)=hvec{igo)
hmatligo,i)=hvecligo)
continue .
cont1nue
"return
end
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c
c functIon lchec~ follows.
c

function iCheCklivec,jvec,nrow). .
c
c if two vectors are not identIcal the function returns zero
c otherwIse it return. 1
c

dimension ivec(l),jvec{l)
lcheck=O .
do 100 i=l,nrow
lftivecli).ne.jvecli)) go to ~UO

100 continue .
lCheclc=l

200 return
end

c
c subroutine hdiag follows.
c

.ubroutine hdiaglh,n,cv,ev,u)
c
c diagonallzation routine
c based on the Illethod of jacobi, it dlagOnaliZes a real
c symmetrIC matrix by performIng a rotatIon whenever the
c angle i. greater than a given threshold. this process
c continues with the threShold angle being decreased untIl
C some minImum angle criterion i. Illet.
C

Olmension hln,n),uln,n),cvl1J,ev{1)
do 100 i = 1 , Ii . . .. ..
do ~O j=i,n
uli,J)=O.
u(j,'i=O.

~O continue
uli,I)=l.

100 continue
nr=u
lfln.eq.1) go to 70u
angmln=0.017
ang=0.1145
;stop=ri';'l

200 te.t=tan{ang)*.~

300 do 4UO'i=l,i:top
ip=i .
hil,zhli,i)
jgo=I+1 .
do j~O j=jgo,n
jp=j
hij=hll,j)



hjJ=n(j.jJ
aClJ=n;,-hjj
;flaoslh;jJ.gt.test*aoataCljJJ go to 50U

150 cont,nue . ,
~Oo contInue

if(ang.lt.angm;nJ go to lOU
ang=ang*.jjj3j .
go to 200'

'>00 nr=nr ... l
opp=c.*hij
theta=arctan(opp.aClj)*.'>
c=c08lthetaJ
a=sinlthetaJ
do bUO k=l,n
,flk.lt.;pJ hik=h(k,ipJ
,flk.ot.;O) hik=hlip,ki
if(k.lt.jpJ hjk=n(k,jpi
if(k.gt.joJ hjk=hljp,k)
iflk.lt.ip.and.k.ne.jp) hlk,lPJ=hik*C"'hjk*s
if(k.gt.ip.anCl.k.ne.jp) h(ip,ki=hlk*c ... njk*a
iflk.lt.jp.and.k.ne.ipJ hlk,JPi=-h;k*S ... hjk*C
iflk.ot.jo.and.k.ne.ipj h(JP~kj=-h;k*."'hjk*C

ult;=Ulk,ioJ'
ukj=ulk, joJ
ulk"PJ=Ukl*C ukj*.
Ulk,JPj=-ukl* Ukj*C

bOU continue
cosc:lc*c
.in2=s*.
cross=l.*h;j*C*S
I1lip,jp)=U.
h{,p,,0J=ni,*cosc ... cross ... hjj*sinc
hljp.jpJ=n;i*Slnl-cros s +njj*cosc
go to jOO

lOU in"=U '
"0 tsUO j=l,n
eYljJ=h(j~jJ
do',.,U ;=I,n
ino=1nd+l
cY~indJ=U~i,jJ

1'>0 continue
800 cont1nue

return
end

c
c functIon arctan follows.
c

function arctanlopp,.dJJ
c
C computes the .rc-tangent of opp/adj
c

arctan=1.~107qbj27

lfla~j.eq.O.)·g6 to lUO
if~aDs~aClj).lt.abs(oPpJ*l.e-cOJ go to 100
arg=opp/adj
arctan=atanlarg)

100 return ­
end

c
c subroutIne .in~ follows.

313
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c
subroutine s;nolnucl,nuc~,msts,ns;nos).. -

c
c sets up the Matr;. at all possIble singlet configurations
c

dImension ~atslq,2~b)

ns;ngs:nu~1*nuc2 .
lcol=O
do 100 i:l,nucl
do So j=l;nucl
lcol=;coltl
lIIatsll, icol )=i
matsl2,icol):jtnuc2
lI\atsl3,icolj:itnucl
mats(4"col):j

~O contInue
100 contInue

return
end

c
c SUbroutine prod follows.
c

c
c computes the product of the eigenvector matri.
C (In vector form) WIth the phaSe vector and wi'th the
e transpose of the eigenvector lIIatrl.. g;ves the
c tIme development of the wave functions.
e

dimension c(1),ev(1),inblkllJ,inevl1),nev(lJ
c amp Ie. p l 1 j _. - .

c
e tig;s 'tIme in inverse gauls', i.e. the conversion from gauss to
c radIans.
e

tig=t*1.7~"'eOl

do 100 i:1,nblk.s
inc=,nbl kli)
lne=1nev(i) .
call Psublclinc),ev(ine),tlg,nevll),pllnc))

100 contInue· - . - -..
return
end

c
C SUbroutIne pSUb follows.
e

SUbroutine psublc,ev,t,nev,p)- .e
e lIIultipllel d;agonal blOCk matrIces for routIne prOd
e

dImension cl1J,ev(1)
comple. pllj,phaSellO),phold
do 100 k=1,nev -
arg=evlk)*t
lflaoslarg).gt.100.) arg=arguelevlk),t)
phaselk)=cmpl.lcoslarg),-alnlarg)j

lOU contll'iue '. -., ..
do ~UO ;:l,nev
lpa"t=l;-l)*nev
do'l:>O-j=i;nev
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JP~rt=~J-1~*nev

lj=jparttl
ji=;perttj
PhOld:c~plxlO.,U.}

do l~O lr.=l,nev
Ir.part=llr.-iJ*nev
; 1r.Z:lr.part t, "
jlr.=kParttj
phola:pholdtcliIr.J*phaselkJ*cljkJ

15U cont 1nue .... -- .
plljJ=phold
p(ji.J=phold

250 continue
}OU contlnue

return
end

c
c function ~rgue follo.s.
c

function argue(ev,t}. .
c
c reduces a large trigonometrlc argu~ent lthe product
c of ev and tJ to a small one
c

twopl=o.2~51653U~

w=ev/t.op;
i.=.
rw;.,-,,,,
It=t
rt=t-i t
a1=1."'rt
,1=a1
r1=a1-i1
aZ=ii*r.
i2=a2
1'2=.2-12
argue=lr1tr2 t r.*rt}*t.opi
return" .
end

c
C subroutine sfina follo.s.
c

sUbroutine sflnd(mats,scharJ
" . "

c
c routine to project the singlet character out of
c those states originating in the singlet ~anlfold.

c
co~mon/lbllr.~/nblk1l52J,nev1lb}'lnblk1lb},;nev1lbJ,loC1l52}

co~mon/lblkS/nblk2(j2j,neY~(bj,lnblk2(b),ineY~(bj,loc~(3~j
common/lblk~/p1,p2- - -
com~on/lblk~/ns,n9.,nolks1,nblk.2

dlmenSl0n .atsl~,250J .
complex plll52j,p2l252J,scoef
schar=U. .. - . "
do ~UO i=1,naings
ls1=mats(i,;) ­
-,.2=rilau(2, i j
,s5=lIlaul5,iJ
1s£l=initulil, i j
,01=nt>lk1Us1J



316

I b~=nb I k2l i liU
ibj=nblkl(iI5j
lb~=nblk2(iI4j

do j~O j:"nsings
jsl:mat6{1,jJ
js~z:matl(l, j J
jsj=matsU,jJ
j5'4=matS(~,jJ
jbi=nDlklljslJ
Jb~=nblk2ljI2j

Jbj=nOlkl(js5i
jbil=nblk2(jS4i
lfllbl.ne:jbl) go to ~O

'f('bl.ne.jD,j go to j~O
lndla=indlinblklllo1J,nevlllblJ,loelljsIJ,loelllsIJJ
lna~O=lnd(inblk2(ib2),neV~llb~j,loe2lj8~J,loe~(,s~jj
lnOlb=lnd{,nblkl(ib5J,nevlll0jJ,loel{jljJ,loel('Sjjj
lnala=1nd(inblk2(ib4J,nev2(lb'4),loe~(Js'4J,loe~(1''4jj

~eoei=PI{indlaJ-~2{irid~bJ+~lliridlbJ-~~lirid28J­
l=reallseoef-conjg(seoefjJ
go t~ ~~O _ ..

~o ifllbl.ne.jDJJ go to I~O

'f('02.n•• jD4j go to j~O

1nOI=ind{1nDlkll1blJ,nevlllblJ,loel{j.j),loell1S1JJ
lnol=ind(inol kdlb2J,nev~('b~j,loe2{js4J, loedi.dj
~coef=pl(inal)-p~l"ld~J' - .
l:reallseoef-conjglseoefJJ
QO to ebo ...

l~U lfllDj.n•• jDIJ go to 5~O

'f{,04.ne.jD2J go to l~o

lnal=lndlinDI~llib5J,nevlllbjJ,loelljslJ,loellisjJJ
1nOl=indlinol~,(ib4J,nevlllo4j,loe'(J.~j,loe~(;a4jj
~coef=pl(;ndlJ-p,lind~J . - .. .
l=reallscoef-conjglseoef)J

2~U iflj~9t.iJ '=I-~. - ..
Ichar=lehar+1

550 contInue -
'400 cont1nue

.ch.r=,char-.2~

return .
end

c
e function lnd follo~s.

e
functIon ino{inolk,nev,i,jJ- .

e
c computea Index for vector entry
c

ind=lj-IJ*nev+i+inblk-l
~etu~n . . .
end

c
e IUbroutin. Itime~ follo~••
c

lubroutine .time~lti,del,nt;mel,loop,s,t,dt,.atIJ. . .
c
c c~leul~te the evolution of "nglet char~cter ~1th time
c

co==cn/lb!k~/nb!kl(j~),nevllb}.1nD'k!lb},ineYllbJ,loCllj~J

common/lblkj/nblk2(3~J,nevl(bJ"nblk2(bj,inev~(bJ,ioc~ (3,j. .- .
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common/lblkblpl,p2
common/lblk7/cll~~cJ,evll~cJ,C~l2~cJ,evcljcJ

~ommon/lblk~/nsings,nbli~i,riolkj~ .
01menSl0n s[lOOOJ,tllOOOJ,OtllO~OJ,mat'l~,~~bJ
complex p1l25c),p2l25~J . ".-
noel=O
00 iou 1=loop.l,Joop.ntl.es
t;=tudel
tllJ=t;
otllJ=oel
ndel=noel.l
call prodlcl,evl,t;,nblkll,lnolkl,inevl,nevl,pl)
c~l) prod(c~,ev~,ti,nolkl~,lnolkc,inevc,nevc,pcj. .

c
c prOject the .inglet character out of each of the develop1ng states
c

cal I Ifindlmatl,sCharJ
all)=scharinllngs

100 contInue
loop=loop.ndel
return
end



APPENDIX B: Program "diffus.f4p"
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proara", diffus
c
c pr09ra~ written to accomoanv ~sing5~. ~sinq5~ calculates t~e

c singlet cn~racter of a glven raaical pair system as a
c functlon of ti~e. "rliffus" accepts set) data for c-12 ana c-13
c radical p~irs trom the fi les ~c12.dat" anO "cI3.dat", respectively.
c diffusion and reaction parameters are input from the file
c ~diffuS.rlat".

C
real 512(1000), tI2(I~u0), dtlcl10(0)
redl 515(1000), tI3110UO), dt13(1000)
common rcol, rzero, lamda, fs, ncol
real kloss, lamda
Oata P1/3.1U1591

c
c inout sectIon
c input oeneral oarameters for raulcals an~ solvent
c

ooenl unit=Dl, na~e=·diffus.dat·, tyoe='oJd', readonly )
rea"1{ 1, ~O)

readlt, 5\)
~O for~dt(lx)

rl"adll,l';i0) reol
rcol = rcol * 1.0e-1J

150 formatlf7.U)
reaa(l, ~a)

readll,l~O) rzero
rzero = rzero • 1.0e-R
reaoll, ':),1)

rl"aall,2~U) kloss
c')0 formatleIS.5)

readll, 50)
rea.1 I 1 , I ~ U) f s
reajll, 50)
readll,2,u) pmin
reaall,2S0) p~ax

rea"; ( I, 5")
readll,35u) num

3')0 formatl;5)
rea,.,ll,5U)
rl"aall,15U) lamda
reaall, 5u)
rea,1(1,350) ncol
close( unit=OI

c
c input t, set), and dt for c-12 radical pelrs
c

openl unit=Ol, name=·c12.dat·, type='olo', reaaonly )
reatjll, 50)
rearlll, 5J)
readll,4UU) ni

40i! for",at (i 1)

do 4'0 ; = 1, nit3
450 read( 1, 50)

reaOl1,UUu) "i
dO 5~O i = 1, nit?

550 readl1, 50)
reed(I,350J Ip12
ao 050 i = 1, 7

6<;0 read( 1, ~O)



750
rearyll,75v) l tlcCi I, 512(i), dtl?li),
formatl3el:>.5)
closer unlt=Ul

= 1, lp12 )
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c
c input t, set), ana dt for c-13 raoical pairs
c

850

95u

1050

openl unit=OI, name='c13.dat', tyoe='old', readonly )
readll, 50)
rea~ll, 50)
read(1,qUJ) ni
00 85u i = 1, ni.3

reao(l, "l)

rearill, qU,» n;
do 950 i = 1, ni.7

reao(l, 5v)
readll,35U) 1013
do l05u 1 = 1, 7

reao(l, 5lJJ
readll,75U) ( tI5l;), 513(;), Ot13liJ, = 1, lp13 )
closer unit=Ol )

c
c out out tne input p~ram.. ters
c

1100

III 0

1120

1130

llqO

1150

11&0

1170

111S0

1190

1200

1250

1300

.. ritel 0, llUO )
formatl 1,1.,'outout from ·Oiffus.fQo·'J
.. ritel 0, 1110 ) rcol
formatl/,lll,'radical-radical collision radius
.. rite( b, 1120 ) rzero
format(IIl,'initial raoical separation radius
.. ritel 0, 11311 ) kloss
formdtl/,lx,'cnemical loss rate constant (hz):',elv.3)
.. ritel 0, 11~O ) fs
format(I.,'initial fraction of singlet: ',f5.3)
.. ritel 0, 1150 ) lamda
formatlll,'singlet reactivity per collision: ',f5.3)
.. ritel 0, IlbO ) ncol
formatl/,IIl,'numoer of collisions in calculation:',iZ)
.. rltel 6, 1170 ) Ipll
formatlll,'number of c-12 time values:',i5)
.. ,-itel b, 111S0 J lp13
fO'-matllll,'numoer of c-13 time values:',iS)
.. ,-itel 0, 11~0 )
formatl/,11l,'self-diffusion',bll,'c-12',oll,'c-13',1
.. ritel 0, 120U )
formate oll,'enriChment',51l,'en hancement')
.. rite( 0, 1250 )
formate 1.,' coefficient ',bll,'yield',SIl,'yieln',~)

.. rite( 0, 13UO )
formatl 5.,' factor ',51l,'factor-I.O')

:',ell.3J

c
c set uo parameters needed for the calculations.
c

trp = 1.0 I kloss
pmul = exol alog( pmax I pm1n ) I num
cUe)f = p"in

c
c loop to perform calculation as a function of diffusion coefficient.
c

num = num • 1
00 lilOO ijif = l,num



~rel = 2.0 * oself
c
c calculation of recombination yielo for c-12 ra~ical pairs
c

rl2 = recoml 512, t12, otic. tro, erel, Iple )
c
c calculation' of recombination yielo for c-13 radical pairs
c

r13 = reco~( 513, t13, ot13, trp, orel, Ip13 )
c
c calculate the enricnment factor "enr" ana the enhancement
c factor "q".
c

enr = ( r13 - r12 ) / ( 1.0 - r12
o = r13 I rl?

c
C output sectIon
c
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13S0

1000

write( 0, 1350 ) oself, rIc, r13, enr, 0 - 1.0
for~at( 1.,ele.~,~x,fo.~.~x,fo.Q,~.,fS.3,10.,f5.3)

dself = aself * pmul
cOntInue

C
C end oiffusion coefficient loop.
c

end
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c
c functions for tne progr8~ -oiffus-: recom(), pll)
c
c the function -reco"'()- follows.
c

function ,.ecom( s, t, at, t,.p, o"el, loop)
c
c function .,.itten to accompany -diffus.fqp-. -,.ecoml)- calculates
c the recomoination yield for the ,.adical pai,..
c

common "col, ,.zero, lamda, 151, ncol
"e~l slIUOU), tllOOO), otllOU0)
rea I I amoa
aata Pl/3.1UI5~/

c
c set UP parameters needed fo,. the calculatlons.
c

taecay :: -trp * aloo(.9q~)

tmax :: 7.~ * trp
cl :: lrcol / ,.zero) * l,.ze,.o - ,.col) / sqrtl~.O * pi * d,.el)
c2 :: -l ,.zero - ,.col )**2 / l ~.U * orel
1'1=0.
1'2=0.
,.5=\).
al = - l 1.0 - 4.0 * fsl ) I 3.0
01 = l 1.U - fsl ) / 3.0

c
c calculation of the ,.ecombination yiel~ -,.ecom­
c
c iteration 1000 for t~e 1i,.st "e-~ncounter fractinn -"1­
c

·10 ~uo il=l, 1000

ifl tlil) .ot. tmax ) QO to bUC
c
c calcuJatp. the "e-encounter p"ooa~ility f~,. the fi,.st collision.
c

D"ool = oil t(il), c1, cZ ) * atlil)
it( tlil) .~H. taecay ) o,.obl = p,.obl * expl-tlil> / t,.p )

c
c calcylate tne singlet cnaracter of the radical pai,..
c

51 :: 81 * s(il) + hI
c
c calculate the inteq,.ated yielo.
c

,.1 = 1'1 + D,.ool * 51
i t l nco 1 • It. 2 '10 t 0 50 f)

c
c iteration loo~ for thp. secona ,.e-encounte" f,.action -rZ­
c

qOO

- la'TIoa ) * 51 / ( 1.0 - lamaa * 51
- q.O * f52 ) / 3.0

fs2 ) / 3.0

fsZ :: ( 1.U
a2 = - l 1.0
02 = l l.u ­
col2 = U.U
do 3'10 i2=1, loop

time:: t(il) + tliZ)
i1l time .gt. tmax .0,.. time .gt. tCloo~) ) go to
D"OOZ :: pll tCiZ), cl, cZ ) * ctCiZ)
11, tllZ).gt.tdeCay ) prOb2 = probe * exp( -t(i2) /
52 = a2 * s(i2) + oZ

trp
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co12 = co12 + prob~ ,. s?
ifl ncol .It. 3 ) QO to .301l

c
c iteration loop for t~e thlrd re-encounter fraction "r2"
c

rl + r2 + r.3 )

loop.

reco~ = 13m~a * (
return
enJ

fs3 = l I.u - lamoa ) ,. s2 / ( 1.0 - lamda ,. s2 )
a.3 = - ( 1.0 - q.O * fs3 ) / 3.0
b3 = l 1.0 - fs3) / 3.0
col3 = 0.0
ao lOa i3=1, loop

t"ne = t(il} + tli2} + tll3)
iff ti~e .qt. trnax .or. tlme .~t. tllooD} ) 00 to 200
oro~~ = oil tli.3), cl, c2 ) - atli3)
ifltli3J.gt.tuecay) orob3 = oroh3 - exp( -t(i3) / trp
s~ = a3 - s(i3) + b3
col.3 = col.3 + pro~~ * 93

IOu cont i nue
2UU r3 = r3 + lco13 • prool.oll.V-lamda-sIJ * prob2.o(1.0-lamda.os2)}
c
c enrl tnirj re-encounter 1000.

c
300 conti~ue

qUO r~ = r2 t ( c01~ • Drobl ,. ( 1.0 - lam~a • 51
c
c end seconu re-encounter loo~.

c
50U continue
c
c
c
bOU

c
c function "pIll" folI0"5.
c

function oil t, cl, c2 }
pi = ci / t*"l.~

arq = c2 / t
if ( ar~ .Ie. -75.0 ) pi = 0.0
if l ar~ .gt. -75.U .and. erg .It. -U.UOI ) 01 = pi ,. exp( arq )
return
en:::l



APPENDIX C: Program "methyl.f4p"

324



325

program methyl
c
c
c
c:
c
c
c
c
c
c
c
c
c
c:
c:

Ion

150

200

3011

llSO

500

~roar~m to calcuJ~tp the enproy levpls of a c3-ro t or in 11 cos(3x)
type potential. tne levels consist of three types corresponaino
to thp ~ymm~tries (~,ea, anrl pb) nf the three irreducible
rppresentatiol"ls of a c.3-system (i.e. 11 methyl Qroup).
becaUSe of th p maonetic moment of the rotatina
methyl arouo, the aeqenpr~cY hetween "ea" and "eb" states of the
samA eneray level is brOken in tne prpsence of a maonetic fiela.
this maonetic interaction IS incluoed in the calculation. the
l,urooSe of the oroyram is to calculate o(ea)-o(eb) relative to the
proton m~anptization An~ p(a}-(o(e~)+p(eb» as a function of
temnerature for a given barrIer heioht where o( ) indicates
popuJllltion.
written bY larry 1. sterna - november IQ7Q.

imolicit aouhle precision (a-h,o-z)
~imel"lsion eelS), a(15), h(1~,15), ev(15), U(IS,IS), effm(15)
rlimensiol"l effma(15), eff"'e(15), t(35), 1'0(35), .. t(35)
inteoer nval (]5)
.. rite(h,IU O)
format(I,lx,'proaram methyl ••• ·,I,lx,

c'proar~m to calcullllte the level oopulations of a methyl-rotor',I,
c1x,'lIIs a function of tpnlC'erature for a given olllrrfer height',II,
clx,'enter tne numoer 01 temperatures: ',$)

reaa(~,I~U) ntemps
format(I?)
.. ritp.(h,?UO) nt~mps

format(]x,'enter the ',i?,' temperatures (lcelvin):')
rio 400 I = l,ntemps
",rite(h,~UO) i
format(ox,i~,') temoerature = ',J)
rea<.j(~,3'iU) t(i)
10rmat(11.0)
continue
.. rite(b,£IS0)
10rmat(lx,'outout eioenvectors? enter I for YeS, 0 for no: ',~)

relllo ( 5, 150 ) iyen
.. ri le(6,500)
format(!x,'el"lter the bArrIer h.-iah t (kcal/"'ole): ',$)

re"a(~,.3'iU) v.3
c
c
c
c
c
c
c
c
c
c
c
c
c
c

set UP cOl"lstants neeoed il"l the calculation.
hhar = hb~r x l.e~2n

ergs = converSIon from !ccal/mole to ergslmolecule
beon = holtzm~nn's constal"lt
pi = oi
9ch~ = methyl qrou~ g-factor
goro = oroton g-factor
ch3i = methyl group moment of il"lert;a x l.e+40

nl'lm;ltonlan terms
elcln = kinetic energy term
epotO = secular potential enerqv term
eoot3 = non-secular potent ii'll energy term

hbl'lr = I.054113e-07
eras = 0.9£19/10e-1<o
bcon = l.iAOLJ<oe-lo
pi = .3.1/1 1<:;9
oc"3 = u.3
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opr-o = 5.SI'\~a1:lh

ch3i = ~.S

ekin = (hoar**2)/(2. * ch3i
epotO : (v3 * ~r-as)/2.

epot3 = -(v3 * er-qs)/q.
c
c calculate the ener-gies of the "a" and "ea" states in the absence of
c a magnetic field.
c

if ( loen .ea. 1 ) aoen( unlt:Ol,name='eigen.val',type='new· )
rio 1350 I = 1,2

c
c 00 the "a" states fir-st.
c

nvalCU = -21
c
c dn the "ea" statps second.
c

700
c
C s .. l

C

;t(l.p.".?) nval(l) = -20
do 700 j = 2,15
nval(j) = nVIlJ(j-l) + 3
continue

un th .. hamiltnnian matrix.

do qOO 1 = l,te;
h(i,i) = ekin * nval(I)**2 ) + epotO
rio ~OO j = i.1">
if( j-i).e~.I) hCi,j) = epot'
;t«j-i).gt.l) hCi,j) = o.
h(i,i) = hCl,j)

AOO continue
qUo continue
c
C di/loonalile the hamiltonian matriX
c

call diaQdP(h,lS,ev,u)
c
c calculate the "effective" m-value (i.e. angular momentum) of
c each einenstate.
c

1000
1100

rio 1100
eftm(j)
rio 1000
effm(j)
continue
continue

= 1,1 ~

= 0.0
= I, I')

= eftmC jl + Cu(i,j)**2) * nval Ci)

c
C if sPf'cifierj (i.e., iaen = I), output the eigenvector-s, etc.
c into th .. file "eiaen.val".
c

if ( ioen .ne. 1 ) ga to 1170
if(l.e".I) wr-iteC1,lI05) v3

1105 formatClx,'a-eiQenstlltes far barrier helaht = ',f5.3,
c' kcal/mole',/)

if(l.ea.?) wr-iteCl,IIIO) v3
1110 for-m~tClx,'ea-elQenstates for- barr-;er- height = ',f5.3,

c' kCPll/mole',/)
rio IlbO I = 1,15
.. ritf'(I,ll?U) i,ev(j),ef f m(j),nvPll(l),u(l,j)
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11llli

11 <; li
111,0

l]7li

format(1.,i2,5.,~12.5,5.,f9.ll,5x,i3,5x,fq.6)

writ~(I,llaU) (nval(i),u(i,j],i=2,lS)
format(3qx,i~,5x,fQ.6)

writt>(1,115u)
format(/)
continue
continue

327

c
c ordPr the eigpnvalues and m-values.
c

ll00

130(;

1350

rio 1300 i = 1,15
inew = i
ene .. = ev(i)
1"010 = eve;)
do 1?00 j = i,t~

if(ev(j).lt.enew) in!"w = j
if(ev(j).lt.!"new) enpw = pv(})
continue
ev(i) = t"ne ..
t"v(inew) = !"old
if(J.eo.l) aCi 1 = ev(i)
iffl.eo.?) eli) = ev(i)
old'll = eff'll(;)
pffm(il = effm(inew)
effm(inew) = olam
H(l.eo.l) eff"'a(i) = effm(i)
HfI.eo.2) effme(i) = t"ffm(i)
continue
continue
if ( ioen .en. 1 ) closer unit=OI

c
c calculate the level populat;ons, rotational polarization,
c tur,nt>llino frequency, and alleraoe rotation rate (hertz)
c a~ a function of temperature.
c

do 1500 n = J,nt~mps

ht = bcon * ten)
c
c ell9wt = alleraoe tunnel I ino BpI itt ino (lot)
C all9"'a (~lIamp) = averaoe m-value of the e(eJ-states
C dV4ma should be zer'" - nonzero value indicat~~

c rounu-off error In diagon~lization.

c za(e) = partitio" function for the e(e)-torsional levels.
c

allome = 0. 11
"lIomp = 0. 11
allo .. t = 0.11
1'a = 0.0
1'1" = O.U
do IllOO i = 1 , 15

c
c 1'(1) is the 10 .. l"st possible energy for the rotor.
c

hfa = fexodo( - ( ali) - a(l) ) I bt
hf!" = fexoao( - ( e(;) - a(1) ) I bt )
avowt = avowt + ( eli) - e(i) ) * ( hfa + bf~ )
7a = ZI! + bfl!
71" = ze + ... fp
avom" = avoma + effml!(i) * bfa
I!vomp = avom~ + effme(i) * of e



1400 continue
8110ma = aI/O,""1 I za
aI/orne = 81/0me I ze
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c
c the rotational polarization "rp" is o~fineo 1~ te~mS of the
c percent of th~ croton zeeman maonetization.
c

~p(n) = 2.0 * aI/orne * 100. * gch3/o~ro

c
c "wt" i~ the tunn~l lino splittino, i.e. the 8ver8ge eneroy
c oifference hetween the 8- and e-stateS.
c

wt(n) = al/o"t I
..,t(n) = wt(n) I

1500 continue
c
c outout the results.
c

Za + ze )
?O * pi * hhar * 1.01'-20 )

2000

20?0

.2040
201,0

2100

7200

2300

2/l00

op~n( unit=OI,name='roto~.val',type='new'

writ~(I,14(10) v3
form"'t(Ix,'"rotor.val" - outout from "methvl"',/I,

cox,'harrier heiyht = ',f5.3,' kcal/mole',/I,lox,'e-energy',
cAx,'effective',~x,'a-enerqv',8x,'effective',1,5x,'level',5x,

c'(kcal/mnle)',~x,'"e~"m-value',~x,'(kCal/mole)',5x,

c'"a" m-value')
write(1,200U) (i,e(i)/erQs,eff~e(i),a(i)/erys,effm8(i),i=1,15)
format( 6x, ie, 7., f~.S, lOx, f R • a , 7x, fR.3, 9x, f8.4 )
write( 1, 2u20 )
formi'lt(/,I').,'tunnel1,nq snlittinq',5x,'tunnelllny sclittiny',

c l ,')x,'lpvel',9x,'(kclll / mole)',lbx,'(he r tz)')
no 20bn i = 1,15

tunnel = e(,) - lI(i)
write(I,2~40) i, tunnel I eros, tunnel*I.Oe+2U I (2.*pi*hbar)
format( Ox, i2, 12x, fR.S, 16., el?5 )

continue
writ~(1,210()

format(/,5x,'temoerature',bx,'rotational',9x,'tunnelling',
c/,6x,'(ke}l/ln)',7x,'oolarization *',4x,'splittino (hz)')

write( 1, 22 0 0 ) ( i, t(i), ~p(i), ..,tti), i = I, ntemps
formate 2x, i2,'J f7.2, 9x, fb.4, llx, e10.3 )
write( 1, 23 0 0 )
format(l,lx,·*·,1,2x,'rotatior.al 1='0.lariz'Jtion is percent of

c proton 7e~man magnetization.')
clnSf!( unlt=01 )
write( b, <'lIno )
format( I, Ix, '*** output in the file "rotor.val" ••• ',/)
stOIJ
enrl
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c
c SUbroutine dia~d~ tollows - double precision version.
c

subroutine jiaodo(h,n,eY,u)
c dia~on8Iilatio~ routine written for .nyMaQ ••• yerlion 1
c based on the ~ethoj of Jacobi, it diaoonalizes a real
c sym~etric ~~tri. by pertormin~ a rotation whenever the
c angle il oreater than a ~fYen threshold. this prOcess
c continu~s with the threlhold angle being decreased until
e some mini~um a'ole criterfon il met.
e moditie~ for oro~r.m -.ethyl-.
c -hdiao- uses t~e function -arctan-.
c written by larry 1. Iterna

imolicit jouble orecilfon Ca-h,o·z)
~imensfon h(n,n),uCn,n),ey(l)
do 100 i = 1 , n
do SO j=i,n
u(i,/)=O.
u(J,O=O.

~O continue
u(i,O=l.

Ion continue
nr=O
ifCn.eo.l} ~o to 700
.nomin = 0.000017
ano=0.17115
fltoo=,,-l

200 test=dta,,(ano)*.~

300 ~o qoO ;=l,iltoo
ip=i
h;;=h(f,O
J go= hi
do 350 j=;go,n
/p=j
hiJ=h(f,j)
hjJ="(j,j}
.dj=h;i-hjJ
ifCdabs(hij}.~t.test*dabs(adJ» go to 500

350 co"tinue
400 continue

ff(ang.lt.ano~in) 00 to 700
8ng::a n o*.>'333
00 to 200

500 nr="r~l

opo=2.*hij
th~ta=rlar:tn(ooo,adj)*.5

e=rlcos(theta)
I=dsin(t"eta)
do bOO k=l,n
ff(k.lt.f~J hik::h(k,fp)
ff(~.~t.f~1 hi~::h(io,~)

ff(~.lt.J~1 hj~::"(~,Jp)

ff(k.gt.J~J hj~=h(Jo,k)

ff(~.lt.f~••nd.k.ne.Jp) h(k,fp)=hik*c+hjk*.
ff(k.gt.i~••nj.~.ne.jo) h(fp,k)::hik*c+hjk*s
ff(k.lt.J~••nd.~.ne.;p) h(k,Jp)=-hfk*l+hlk*e
ff(~.gt./~~.nd.k.ne.fp) h(Jo,k)=-hfk*.+hJk*e
ukf=u(k,;~J

u~l=u(k,J~J

u(k,fp)=u~i*c+ukj*.
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u(k,jo)=-~ki*s+ukj*C

600 continue
cos2=c·c
s;n2=s*5
cross=2.*hij*C*5
.,(ip,jo)=O.
"(ip,io)=hii*cos2+cross+hjJ*sin2
.,(jo,jo)=.,ii*sin2-cross+hjj*cos2
go to 300

700 do 600 j=l,n
~v(j)="(I,J)

800 continue
retu"n
~nd

c
c function da,.ct~ follows.
c

function ja,.ctn(ooo,adJ)
c
c function written for anv~a~••• vers;on
c comoutes the arc-t.ng~nt of ooo/adj
c

imolicit j~ubl~ orecision (a-h,o-z)
darctn=1.5707963?7
if(adj.ea.O.) ao to 100
if(ahsCadj).lt.abs(oop)*1.e-20) ao to 100
aro=oop/ajJ
da,.ctn=datanCa"O)

100 retu"n
~nd

c
c function fe.pdo follows.
c

c
c function compute. the re.l exponential of -aro-. if -a"o·
c is smaller tha~ -7~, ·fexo· r~turns the value O. the
c puroose of this function is to pr~v~nt the ·un;x· .vste~

c fro~ returnino a -floatino ov~rflow m~.seae· Which occurl
C when the ~inimum .tora~e lize of the Mechine i. approached.
c

imolicit jouhle Orecilion Ca-h,o-z)
fellPl10 = O.
lfCarg.gt.-75.) faxodp = dexoCarg)
return
end
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APPENDIX D: Reduction of (N+l) x (N+l) Set of Relaxation Equations

to 2 x 2 System

Tne relaxation eigenvectors for the systen of N methyl

groups are obtained from the characteristic equation of the

relaxation matrix:

Sll-A S14(8l ) S14(8 2) S14(83)

S14(8 l )/N S44-A 0 a

det(S-Al) = S14(8z)/N a S44-A a
~ ~

SI4(83)/N 0 0 S44-A

(D.I)

To reduce this equation to the Z x Z system of equations which

describe the Zeeman relaxation, it is only necessary to consider

the eigenvalues. These may be obtained by induction from the

solution of a 4 x 4 relaxation matrix (i.e., three methyl groups).

The analogy between the (N+l) x (N+l) case and the 4 x 4 case is

made by writing the characteristic equation for each and then

expanding the determinant of each into its second row minors.

By comparison of the corresponding minors the solution of the 4 x 4

case is straightforwardly generalized. It follows that for N methyl

groups there are N-l eigenvalues Ai equal to S44 and two eigenvalues

AI' A2 which are given by [1]

= a
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Al 2 (5
11

+5 44 )/2
1 2

+ 4 5 2]1/2= ± "2 [(511-544 ), 14

where

2 N Z
514 = L 514 (8 i) /N

i

It follows very simply from the equation

(5-1..1) 1J!. = 0
::: 1::;:: _1

(D.2)

(D.3)

(D.4)

that the N-l eigenvectors ~i with Ai = 544 are all uncoupled from

the Zeeman system. Consequently, the Zeeman system is a linear

combination of only two eigenvectors, 1J!1 and 1J!Z:

It follows that

~

M(t)/Meq = -AICI exp(-Alt) - AZCZ exp(-Azt)

and from the relaxation equation

N

H(t)/M = [-S M(t) - L S14(8
i

) Ri(t»)/M
eq 11 i eq

The following parameter is defined [Z,3]:

(D.5)

(D.6)

(D.7)

P (t)
r

N
L cos(e i ) Ri (t)
i

(D.S)

making P (t) the net projection of rotational polarization along
r

the magnetic field. Since both M(t) and P (t) are sums over all
r

of the methyl groups, division by M normalizes both. Foreq
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treatment of experimental data, sums such as Eqs. (D.3) and

(D.S) must be replaced by single crystal or powder averages.

It now follows that from Eqs. (D.5)-(D.S) that

2/6 K Pr(t)/Meq = (Al-Sll)Cl exp(~Alt) + (A 2-S1l)C2 exp(~A2t)

(D.9)

By taking the values of Eqs. (D.5)-(D.8) at t=O,the coefficients

C
1

and C2 are found to be:

and

[M(O)-Cl]/Meq

(D. lOa)

(D. lOb)

The crucial element in simplifying the relaxation equations

into a 2 x 2 set is that all of the individual rotational

polarizations have the same auto-relaxation rate constant S44'

At low temperature when S44 becomes angular dependent, the

relaxation of the Zeeman system becomes multi-exponential, and

no simplification is possible [3].
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'Include <stdlo.h.
'd.'ln. 01 J.l~159

'delln. r 1.8e-08
'defIne hoar 1.D5~~3e-Z7

'dellne ga••a 26153.0
••lnO

,- Progra. cauole •••• ,
,. rnls pro91"a. calculates the ,..Ia"atlon .of two .,
, ••• th,1 groups .1I1:h are sterlcall, co~pl.d s~ as +'
,. to rot.t. In a gear.d fashIon. T"e t.o aetht I .,
'+ groups .... assua.d to II. attaChed to a ,.Igld .,
/+ aolecular 'raae ."d secur.ted il, II .I.ed .ngle. +
'+ r"e calcul.tlon IS an e"t.nston 0' 'ne S~SO 101el +'
,. dell.loped Eald an1 Ilind. +'
/. T"e progr.. a uses t"e subroutine ·cHag· and the .,
/. func'lon -arct.n.· ./
,. Mrl"en 0, Larr, ~. S,erna .,

.,. Jlepar'.ent of ~"ealstr, ., ... _
,. Unlve,.slt, of Call'ornla. Berkele, .,
,. "une 1980 ./

(

doubl. ohl ... pl\jb. del. alpN. sll., s1111, sllta, sl~). s .... psIO;
double tau. w. cosa. coso. slnb ;
doubl. rO, sIZO) IZU, cllO) 1201o c.c131 131.+ ""13)0 "'ll(3) .; _.
doubl. powO. cosll, sinO, sertn. IrctanO
tnt I, I :
FILE ·'open(), ·fp

,. Input sectIon .,
ortnt f ( • Pro~"a. couole ••• \n· I :
print' I· Pro",.aa 10 c.lculat. 'ne ;ouoted relaxation bel'lavlor • J ;
or 1n' I I -0' t"o a.''', I gr OUDS .11 h'n s'.r lc t n '.ract ton .hlc" - )
orin' I ( -coupl.s t"e two rotational polarlzat Ions. 'n'n· ) :
prtntf I • Ent.,. ,,,. angle (1e9r"eesJ o' tne first ae,,,,1 groual - J
scant I ·X'·, LD"I. J :
ortnt' I • Enter '''e .ngle (degrees) separ.,lng '''e two e.,,,,I·
prtn,' ( • grO..lOS '" In t". aol ecular tr ..... - .J :_.
scanf I ·Xf·. Ldel ) :
orin" ( • Enter tM az lauthal angle (d.grees) of ,he second .etn,11 .);
sc an' I ·X f·. 'a I oNl ) :
orint' ( • Ent.r tne correla'lon 'Ia. for aeth,1 .olion! •
sc an' I ·X f·, ".u I :
prl n" ( • Ln'.r' ha .s'r en g'll 1JtzJ _.A' -'h• .s 'ar Ic .coupLtngl ~ --l _
scan' ( ·X' -. l_ I ;
prln" I -'n En'el" t"e lnl fl. I condit Ions., ,. ) :
orint f I ·'n IZ - Z.e;l , Zee;1 • I :
sc.n I I·X I·, 'b Q( (lJ I I
Dr tn' t I • IU • R2 I • )

_.sCM't ( .l:'~, J.ilOlij .) .J _
Drint, I· -Rl. RZI· J
sc an' I ·X I ., l b 0 [ l I I ;

,. So." back 'h. InpUt p.,. ••• '.rs••,
, 0 : loo.n ( ·c 0..10 Ie. val·, .... ) I
fprintf ( rD•• Outaut froo. ,·couo •• ,· ••• - ) :
fprln" ( '0, -\n Angle 0' firs' .etll,1 groua • %.1f degrees.-... onla L';
lorint' ( 10. -" ".th,l-aetn,1 SlIo.rllltlon angle. X.l' d.grees.-.cl."
forint' ( fo••,,. Azjau'h.1 Ingle 0' 5econd .eth,1 !retu!' •• , ;
'Drln" ( 'D•• t.l' de9f" ••s.·, alohl ) ;
Iprlntf I fp, ·'n lteth" gr~p correlllltlon tlae • %.3e seconds.-, 'lIIU' ;
'prln,' ( '12••,,. "e,,,,I-a.tn,1 st.,.jc couol jng str .... gth • X.Z' Hl.· ... l;
forjnt! ( fo, ·'n\n Inj U.I coruUtJ.ons... •• ·_.. ) ...;. _
IDl"lnt' ( fD, -" Qua.,tjt, Valu.- , :
Iprjnt! I 'D. ·'n (1 - 10e;1 , Z.e; %5.Z'·, ttO(O)
lorint! ( fD, -,'" Rl. R2 %5.2'-, bO[11
fprlntf I 'Po -'n -Rl. RZ %5.l'·, bOIl)

/. Set uo oaril•• t.,.s•••t,.je.s, e'c. 'or calculatjon••,
r 0 • "bar , pow I r, J.O • :
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/ .J.Q .:
I 3.0

• -C4sa .J
• eoso I

I 3.0
I 3. 0

~o z rO • rO • pow' gaaaa. ~.O I • tau • Z7.0 I lZ5.0
ohia • 2.0 • ~i ...hia I ~C.O ;
~el • Z.o .. ~i .. del I 360.0 ;
a'oha 2 2.0 • oi .. a'Pha I 3&0.0 ;
cos•• eos ( ohia » ;

---__ ~ __ ---J::QstI • i::4sldelJ • -C4S(phlaj -"--&JJ\l4.U "~'.a'DMj·_-£'alonlal ;­
sinD z SQ~t , 1.0 - eoso • cosb I ;
ohia • phi. • Jflli.O I , Z.O • pi I ;
ohlD • aretan I s1 nD. eosD I • 3&0.0 I , Z.O • 01 I
• = • I , 2.0 • 01 I ;

f· P.ra.et.rs 0' the r.lax.tlon aatrix s. ·f

s11a z lfl.li • r-O • • 1 • .0 + ..LQ • ~sa
s11D • 16.0 • ,.0 • ( 1. a + 3.0 • COSD
sllta • 16.0 • Sq,.t ( 6.0 I • ~O • cosa
s1/oD 0: lfl.O • SQ~t ( fl.O I • rO • eosb
S44 0: a.o .. ~O ;
s([;] (0) 0: ( sU. + S11D ) I 2.0 ;

-£( III (1) • _. s..1lta • _.51Ito J Jz...ll~

s'O) (2) a (-sl/o. + s140 I 12.0 ;
s( 11 (J.] • sit .. + Z.O • •
sU) (2) 0: 0.0 ;
s( II (2) • 54. ;
'or , 1 0: 0 ; I cz 2 ; ++ I I

'or ( J a II : I c= I ; .. J j
s( 1) (J) a s(l I (l) ;

'print' ( 'P. -\1'1\1'1 In'tla' ~.Iazatlon "atrlx••• •
, o~ , I 0: Ii ; I ca l ; ++1 I

(

'or Int. ( '0••'1'1- I ;
-. or , J • 0 ; , u 2 ; ++, )

'orlntf ( 'II. ·X13."'·. s( II II) I
)

f· Olallon.llz. the ~.I••atlon aat~I•• • ,
(U.g , 3. s. e••v ) •

f· Construct tft. r.'axaUon .Quatlons 'o~ the 5"St•• de'lned 0" tM Initial ·f
I· CClI'ldltl4ns••,

'or ( •• 0; co: 2 ; +.1 I
(

osHi 0: G.O
'or , , a Q ; , ca l ; ••, I

pdQ a psiD • ell J (U • bOll)
• or I J all; , cal ; ++/ J

cOIl) 111" DSU • ell) 111

. )

)

f· Out out s.ctlon • • ,
'print' ( 'D. -'1'1'" EIII.nvctor "at~ill... 'n
'o~ ( I a 0 ; I c. 2 ; ++1 I

'orlnt. , JD. • PsI~Xd·._~_J_.J _
'orlnt' ( 'P. -\" (Z - ZeQIlZeQ- I ;
'o~ , ) a II ; I ca 2 ; .. ) )

'print' , '0. ·Xll.5'-. clO) (/) I ;
'o~ i 1'1 t. ,.o. -\" R1. R2 -);
'or- ( ) a Q ; I ca 2 ; ++. I

,orlntf , 'D. -X12.S,-. _c.l1.J J:-JJJ-J _ ..
torlnt' ( '0. -\1'1 -R1. R2 - I ;
'or- I ) aD; • ca Z ; •• ) I

hrll'ltf ( '0. ~lZ.5'-. cll) (I) I;
'orlnt' ('0.-\1'1\1'1 Eillenstat. ~elaxatlon Rate
'or , 1 a Ii ; , Ca 2 ; ++1 I

'Drlntf J ••• -'\1\ X52 115.'" X15.3'·. _I. e,,'lI. l.a I e"'l1 ) :
'print' ( '0. -\1'1\1'1 Field .nllie 0' 'Irst .eth,,1 a l.l' degrees.-.onlal
Iprlnt, I '0. -\1'1 Fle'd anlli. o. second .eth,,1 a X.l' delllr.es.-. ohl~1

tprlnt' ('P. -\1'1\1'1 Rel ••• tlon Coellielent ".trl •••• \n - I
'or ( i a Ii ; I ca 2 ; +.1 I

'orlnt' ( '0. - Psl-ld-. I I
'orlnt' ( 'Po -\1'1 (l - ZeQllleQ· I I



for ( J a 0 Ilea 2 I ++1 ,
'prtnt' ( 'PI -U2.5f-,

fpri~tf ( fp, -'n ~1 + R2
for ( J a a ; 1 c. Z ; ++J I

'prtntf ( f~t ·X12.5f-,
,prtnt~ ( 'PI -'n -R1. RZ
for ( J • C ; 1 <. 2 I ++1 I

fprtntf I fp, -X12.5'-,
Iprintf ( 'PI -'n- , ;

ell (Q J L J J
- I ;

cD (1) II J I ;
~ J ...:

co (2 J (I J , ;
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'Include es'dio.h.
'dellne an9aax 1.7_5e-1
'define an9ain 1.7~5e-5

diag I n, h. u. e .. !
,& Diagonal1zaUan routln. &/
,& Based ~n 'he .. thod of ~acobl, this ~ou'ine "
" ellagonall1es a r •• 1 sr.aetrlc .atrl••r oerforwing '/
/' a rotatlOf'l to z.r:! ., off-dia90nal el.aent '/
/' t"e rotatl 0fI a"l91 e Is greater than a ghen '/
/' tl\reSho ldo fhis procass continues .Uh tne '/
/' '''reshold angle bein9 dec·.ased until soae "
-fa .lni .... ang'. crlt.rion Is .et. fhe .ethoel is ",& intended to .ini.lze 'he nuab..- of unn.:ess .... r '/
" rotations and the~.br r.duc. rounj-ofl error. 'f
" The function -arctanl)- is us.d. "
,& IIrit t.n br La""r _. St.rna &/
/& Depart ••nt of Che.istr, '/
f' ~Unj,,,.,.sifY of ':aUfcrnLh -BerkeJey 'f _ ~_~~~_~

/' ..une lCJ80 "
~oubl e he J IZDJ. ul I IZlil, a,,1 J ;
i nf n ;
(

doubf. ang. OP:». adl. tas', th.ta, c. s. cosZ. slnZ. cross
double hUt hU, -bll, Il1k. blk, uki, uKI ; - _
doubl e cosO. sinll. fabsll, aretanO
Int I, I. k, or, nrold ;,& U is the uni'ary aatri. of rotations .hlc" dlagonelil.s h. TI.e colu.n; "

" of u are the eigen"ectors. '/
f' Set U .Qua' to the identlt, .. 'rl. Inltlall,. "

for ( I "D Ie. n-l ; t t1 •
for ( , • 0 ; I e. n-l I •• , )

If I 1 •• J )
~III IJJ • 1.0

.Isa
.,111(11.0.0

f' Ola90naHz.tlon s.ction ,,_
nr • 0 ;
if(nr"l!

for ( ang ••ng... ; ang •••n;.I, ; .ng a .ng , J.O
(

'est. sin ( Z.O & an9 I , cos ( Z.O & an9 I
I1roJd ••.1 ~ -

."lle ( rr • "rold
(

nrold • n~ ;
, or ( 1 • a ; 1 e. "- Z = •• I )

for I J • 1.1 I J e • .,-1 I •• ,
__ J: ._ _ _

hll • h( 11 (J I =
h1l • hlll I)) ;

h II • hi J I (J I I
ooP • 2.0 & III I ;
ad' " ... U - "'11 I

/' Check angle of rotation na.d.d to z.ro the off-dlalJOfIal .trix el ••.,nt "
If ( f ab s ( opp J » f ab 50 ( ad I ) , 'e5 t )

I' Perfore rotation anj Iner...n' nr • the n~.b.r of ro'a'ions, "
(

thata • an:t.n ( ODI». .dl ) , Z.O
c • cos ( t h. t a )

_~ .s &_.$in .1 tIl.t.a ..J)c...;II-- _

for I k • ~ ; k e. n-l •• k
(

If ( k fa II k fa
(

!flkel)
hi k • I\l k) II I
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el se
tlH< .. ",,) ltd

If Ikc))
t\,k. "(k) ~')

el se
','- ----. ---.---- .. -.~,. -&. .." )~) ·4·

Hlket)
til kl (j). ht k 4 c • h' k 4 S

el se
hU) {I<J. ht k 4 c • hi k 4 5

HIke"
._. .__ .. __ . __... . MkJ ~,-J.~ ~"f. 4 ~ • "Ik • ~ ....

else
h(II (k) • -htk 4 S • h,k • c

• - So ..;

• c :
k 4'

J

J
ukf. U(k' (j'
uk' • ut k J (,)

.----4I(kl ..((1 _ . ..,k( 4~ .... .lIk)

u(kl (jJ • -"k( & S + ukl
1 /& .... d -'0"- .000 0"."

cosZ • C 4 C ,

.unZ & s & .s ~

C,.OSS a Z.O - III I 4 C - S ;

. ..J\(!J .{,) .. -JI.' l-----
hU) (j) • lIit 4 cosZ • Cl"OSS • hll 4 51"2
h( JI (I I • nU 4 sfnZ - cross + nil 4 ':052

ttl" • nl" + 1 ,
) /& ond -(f- condttlon fo,. ,.otatt~n 4',& .... d -'0"- 1000 o"e" I I anO t -,

J- end -m( 1.- 'or n,. ~ nrolO 4'
,- .... d -'0"- I DOll o"e" ang 41

elllenwalues .Uh ,he d(ogonal e'.o.n's ., II. -,
t ea n-1 ; + +l )
.h(HU);

._1._.._.
J

"ecto,. 0'
I I • 0 ;

0"( U

f- Fl" the

'0"

Oouble arctan I 01l0, odl ,,& Fun:,ton .,.ltt.n '0" -dfall.C-. -,,4 Calculates 'he al":-'anllon' 0' oPIl/aO, ."en I' tn. 41
'4 ol"~oent (s In'tntto. 4/

~ouble 000, ad' ;
( .. --- ._.-

O~ubla "01. 'oosll, otanI' ,
Jf ( 'ObS I odl • c 'oos ( 000 , 4 1.0..Z0 ,

,,01 a 1,57'796327 ,

,,01 • a'.n, C 000 , o~,

..ll C .Ad) c O. 0 ) - _
wo' .... , + 3.1"159 ;

I".,~,.n ( wal , I

also .;

----------- -_._" -_ ... - ---- -_.._-- --
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APPENDIX F: Synthesis and Crystal Growing

The syntheses of compounds used in this work are described

below unless they are commercially available. Zone refining

and crystal growing are discussed at the end.

13 . 13C-dibenzylketone (1,3-dlphenyl-2-propanone-2- C) was

prepared by pyrolysis of phenylacetic acid-1-13C calcium salt

ina procedure similar to that of H. Apitzsch [4].

a_13C-toluene was prepared from benzoic acid-1_13C by lithium

aluminum hydride reduction followed by bromination with PBr
3

and

again reduction by lithium aluminum hydride.

2,3-dimethylmaleicanhydride-d
6

which is a previously unknown

compound was prepared as follows. In a stainless steel bomb of

150 ml capacity was placed 4g of 2,3-dimethylmaleicanhydride, 80 ml

D20 (99.8% D), and 0.42 g of anhydrous potassium carbonate. The

bomb was heated in an oven at ISS-159°C with the temperature

controlled by a thermostatic thermometer touching the outside of

the bomb. Temperature control was very critical. After ~ 20 hours

the bomb was opened, and the contents were acidified with dilute

HCl and extracted with methylene chloride after saturating the

aqueous phase with NaCl. The organic phase was dried with MgS04 ,

evaporated, and distilled on a bulb-to-bulb apparatus at 20 torr.

2.35 g of material was obtained which was found by mass spectroscopy

to be 95% deuterated. 4 g of the 95% deuterated material was

prepared and then re-exchanged as above to obtain 1.74 g of material

after recrystallization in petroleum ether. The 2,3-dimethyl-

maleicanhydride-d6 had a melting point of 93-94° and was 99.3%
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deuterated as determined by mass spectroscopy.

Durene-d
l

(1,2,4,5-tetramethylbenzene-3-d
l

) was synthesized

by metallation of bromodurene with butyllithium followed by

quenching with D
2
0.

1,4,5,8-tetramethylanthracene was synthesized according to

the procedure of Ellison and Hey [5].

1,4,5,8-tetramethylnaphthalene was synthesized according to

the procedure of Mosby [6].

The durene and all of the compounds used for single crystal

preparation were zone refined. The zone refiner has 22 zones,

10 of which were used; 50 passes were typically run.

Single crystals are grown from a melt using the Bridgman

technique [7,8]. A vertical growth technique is used where an

evacuated pyrex tube containing the zone refined material is

lowered through a heating solenoid. The pyrex tubes are conical

with a moulded constriction at one end to facilitate seed growth.

Typically, 1.5 g of material is used, and the conical single

crystals obtained are 4 em long and have a 12 rom diameter at

the larger end. The growth rate for a 2,3~dimethylmaleieanhydride

crystal is about one week.
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