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include more than three collisions of the radical pair, a closed-
form solution, accounting for all possible collisions, is obtained
when the singlet state radical pairs have unit probability of
bonding during a collision.

In the second model the intersystem érossing is treated via
first-order rate constants which are average values of the
hyperfine couplings. Using these rate constants and hydrodynamic
diffusion equations, an analytical solution, which accounts for
all collisions, is obtained for the geminate recombination. This
model was extended to treat the case of recombination within a
spherical reflecting bouhdary, such as a micelle. Both models
contain terms which account for loss of radicals due to competitive
chemical reactions.

The two reactions studied are photolysis of benzophenone
and toluene and the photolytic decomposition of dibenzylketone
(1,3-diphenyl-2-propanone). No magnetic isotope effect was
observed in the benzophenone reaction, and this is-shown to be
consistent with the operation of spin-orbit coupling (which is
estimated) in the radical-pair. 13C enrichment was observed for
the dibenzylketone reaction, and this enrichment was substantially
enhanced at intermediate viscosities and low temperatures.

Part I1 of this dissertation is a presentation of theory
and results for the use of Zeeman spin-lattice relaxation as a
probe éf methyl group rotation in the solid state. The coupling

between spin and spatial degrees of freedom is a result of the



Pauli principle and is analecgous to the behavior of ortho and

para hydrogen. This coupling is associated with a spin degree

of freedom termed rotational polarization, and its size 1s related
to the non-exponentiality of the Zeeman relaxation. The theory

is presented for the relaxation of methyl groups coupled by

fast spln diffusion and it is extended to treat the case of
adjacent methyl groups which are geared together.

Experimental results are presented for the time and angular
dependences of rotational polarization, the methyl group magnetic
moment, and methyl-methyl steric interactions. The compounds
studied are 2,6-dimethylphenol, methyl iodide, 1,4,5,8-
tetramethylanthracene, 1,4,5,8-tetramethylnaphthalene, 1,2,4,5-
tetramethylbenzene, and 2,3-dimethylmaleicanhydride. Calculations
are presented to show the reléﬁionship between the tunneling

frequency and rotation rate of a hindered methyl group.
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INTRODUCTORY NOTE

Parts I and II of this dissertation contain very different
subject matter, and with the exception of Appendix F, they were
designed to be read independently of one another. Consequently,
the reader is forewarned that there are instances where the same
symbols are used in the two parts but with different meanings.
The references are marked with square brackets [], and the

reference lists contain only publications, no footnotes.



And whatsoever ye do, in word or
deed, do all in the name of the
Lord Jesus, giving thanks to God
the Father through him.

Colosstans 3.17
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PART I: INTERACTION BETWEEN NUCLEAR SPIN AND CHEMICAL

REACTIONS



MAGNETIC ISOTOPE EFFECT

The phenomenon which provided the motivation for work on the
magnetic isotope effect is that of Chemically Induced Dynamic
Nuclear Polarization (CIDNP) [1,2,3). CIDNP refers to the non-
equilibrium nuclear spin polarizations which are observed in
reaction products during the course of free radical reactions.
Contrary to the implication of its name, the process is not one
where nuclear spin state populations are dynamically pumped as
in microwave pumped Dynamic Nuclear Polarization experiments,
but rather one where different nuclear spin states follow different
paths of chemical reaction (see Figure I1.1). The different
reaction products are thereby formed with certain nuclear spin
states preferentially populated and hence with non-equilibrium
nuclear spin polarizations. The principles behind nuclear spin
state selective chemistry apply also to nuclear spin isotopes.
Thus, it is possible to design chemical reaction schemes where
different nuclear isotopes end up in different chemical
products thereby achieving isotope separation [4,5,6,7]. We term
this the Magnetic Isotope Effect.

The purpose of this work has been to find chemical reactions
in which appropriate conditions apply for the magnetic isotope
effect to manifest itself and to understand the physics and
chemistry of the process so as to modify the reaction conditions

and optimize isotope separation.
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Figure I.1 1In Chemically Induced Dynamic Nuclear Polarization
different nuclear spin states end up in different reaction
products. The nuclear spin state determines the hyperfine coupling
which the unpaired electrons experience, and the hyperfine coupling

influences the chemistry by causing intersystem crossing.
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1. INTRODUCTION

In addition to knowing the chemical reactivity of the free
radicals, the explanation of the magnetic isotope effect requires
a detailed description of free radical diffusion and the electron-
nuclear hyperfine interactions within each radical. Such a
description will be presented in this chapter and in the following
two chapters. In this chapter a phenomenological picture is
given for the radical pair theory [1,8,9] of free radical reactions,
and the roles of diffusion and electronic spin states on chemical
reactivity are discussed. 1In Chapters 2 and 3 two different
models are presented which take into account all of the features
of radical pair chemistry and which are readily amenable to
computer calculations.

In Chapter 4 the two radical pairs which have been studied

and the photochemistry of the reactions for preparing them are

described. The experimental arrangement and methods of product
analysis are described in Chapter 5. Chapter 6 contains experimental
results on geminate yield and isotopic enrichment for the two
reactions studied along with the predictions of the two models.
Chapter 7 contains a brief summary of the experimental and
theoretical results and a discussion of the magnetic isotope

effect and its suitability for isotope separation under various
circumstances. There is also a discussion of the validity and

applicability of the two models from Chapters 2 and 3.



1.1 Free Radical Reaction Scheme

A generalized scheme for the generation (through thermolysis

or photolysis) and reaction of free radicals is as follows:

R -R
T"a "a
/////2 Coupling

Initiation > R: -Rb< R Ry Products
B

X

(1.1)

where X indicates all other processes resulting in the disappearance

of Ré and Rﬁ such as:

Ré > R; Rearrangement or Decomposition (1.2)

or

RB + SH ~» RbH + S- Scavenging (1.3)

where SH is a free radical scavenger. Since all starting materials
used in this study are diamagnetic, the radicals are always formed
in pairs.

To determine the products formed and their relative amounts,
it is necessary to know the detailed chemical processes and the
rate of each for the reaction under consideration. However, in
practice the reactivity of organic free radicals is often so great
that the kinetics are diffusion-controlled. In the absence of
all but radical-radical coupling processes, then, for the
diffusion controlled reaction of two species Ré and RB of equal

diffusivity, the following binomial distribution of products results:



I.1

If one radical, say Ré’ is more reactive than the other (i.e.,
it either diffuses faster or has less stabilization of the
unpaired-electron center), then RaRa will be formed faster than
RbRb' Since by mass balance the yield of RaRa must equal that
of RbRb’ the result is that the yield of the asymmetric coupling

product RaRb drops as the difference in the reactivities of Ré

and RB increases.



1.2 Geminate Recombination

If a scavenger SH is added to a free radical reaction, either
the overall yield of coupling products will fall, or if one radical,
say Ré’ is selectively scavenged, thé yields of RaRa and RaRb will
drop and that of RbRb will increase. If the initiation step of
the reaction is the formation of an asymmetric radical pair, it
is found experimentally [10] that upon increasing addition of
scavenger, the yields of the symmetric coupling products RaRa and
RbRb go to zero (if both radicals are scavenged) while the yield
of RaRb asymptoticaily approaches a non-zero value as shown in
Figure I1.2. This asymptotic yield of RaRb is attributed to those
initially formed radical pairs which react too quickly either to
be scavenged or to encounter other radicals in solution. 1In effect,
the reaction takes place in isolation from all other radicals in
solution, and since it involves a single pair of radicals, it is
termed ''geminate', or "radical pair', recombination [8].

The explanation for the inability of scavenging to compete
with geminate recombination is as follows. The rate of chemical
reaction between two species is equal to the frequency of collision
of the two species times the probability of reaction upon
collision. For the reaction of homogeneously distributed

particles the rates take the form:
Scavenging rate = k [SH][Ré] (1.4)

(1.5)

Coupling rate

1l
.
5

oF
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Figure 1.2. Influence of scavenger on homogeneous and geminate
reaction products in the benzophenone plus toluene photolysis
(see Section 6.1.1). As the thiophenol concentration is
increased, all of the 1,2-diphenylethane and most of the 1,1,2-
triphenvlethanol, which are formed homogeneously, are removed;
the fraction of the triphenylethanol which is formed geminately
cannot be scavenged. The vields are relative to the unscavenged
reaction; the solvent is toluene: the thiophenol to benzophenone

ratio is for the beginning of the photolvsis when [¢,CO] = 0.003

M.



where kS and kR are the appropriate rate constants. Since the
' -6
concentration of radicals is typically very low (<10 M) due to

their high reactivity, the condition is easily obtained where:
>> . .
kg[SH] >> kp (R3], kg [Re] (1.6)

and the scavenger quenches all homogeneous coupling reactions.
In contrast, in geminate recombination the radicals are

initially formed with a separation of a few angstroms:
e + Re 4 Re
Initiation » R: + Re , (1.7)

and it is inappropriate to use the hombgeneous concentrations
[Ré], [RB] as a measure of the freduency of collisions between
Ré and RB [8a]. Rather it is necessary to construct a model of
particle motion which gives the collision frequency of two
particles which start at a given microscopic separation from one
another (see.sections 1.3, 2.2, 3.1). With such a model it is
found that the rate of geminate reaction is orders of magnitude
faster than homogeneous reaction, and for the scavenger to
compete with it, the scavenger must be used as solvent [8b].

In this work advantage is taken of those chemical systems
where the geminate recombination product RaRb can be isolated
from all other products. This means that the homogeneous
production of RaRb is quenched either by use of intermediate
scavenger concentrations or by exploiting other mechanisms of
free radical removal, such as decomposition, which occur on a
time scale intermediate to geminate recombination and

homogeneous reaction.
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When only geminate recombination is considered, one can
study the evolution of an isolated pair of radicals prepared
in a well-defined electronic spin state. Under these conditions

the magnetic isotope effect can be observed and optimized simply.
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1.3 Diffusion

For the light intensities used in this work radical
concentrations are v 10_8 M so that homogeneously distributed
radicals would be v 6000 2 apart. Since this separation is
much larger than molecular dimensions, the diffusion of the
radicals would be accurately described by macroscopic
diffusion equations. When a radical pair is formed, however, the
initial separation is " 10 Z, which is comparable to the particle
size (i.e., the "graining'" of the solvent), and the diffusivé
behavior is dependent on the microscopic structure of the solvent
[11] (see Figure 1.6, section 2.4). Two models have been
predominantly used to describe radical pair diffusion at short
times. One model [8c,9] treats the two radicals as occupying
sites on a three-dimensional lattice, and by assuming a particular
jump length and jump frequency, the frequency of collisions is
calculated. The other model [12] simply assumes that the
diffusion can always be described by macroscopic diffusion
equations. The latter model is used in this work (see sections
2.2 and 3.1) and is found to be a sufficient approximation.

The diffusive behavior of a pair of radicals is indicated
schematically in Figure I.3. The radicals undergo random
diffusive displacements in solution except when they reach the
collision radius r. defined as the separation of centers for a
hard sphere collision. At each encounter there is a certain
probability (see sections 1.4 and 1.5) of product formation.

It may take several collisions before bonding occurs or else
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Figure 1.3, Collisions of two freely diffusing radicals. The
overbar indicates a collision; if two radicals are in the singlet
state during collision, thev may bond, otherwise they separate.
NDuring separation the spin states interconvert. This representa-
tion of radical pair reactivity is from a lecture given by

P. W. Atkins at the NATO Advanced Study Institute on ‘'Chemically

Induced Magnetic Polarization’, Urbino, Italy, 1977.



the radicals diffuse apart and/or are consumed by some other

mechanism.

13
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1.4 Electronic Spin States

At large interradical sepgrations where radical-radical
interactions become vanishingly small, it is accurate to treat
each radical as having a doublet spin. That is, the spin
multiplicity of a single unpaired electron of spin 1/2 is two.
At small interradical separations where the electron-electron
exchange interaction J(E) becomes dominant, it is no longer
appropriate to treat the electrons individually; they must be
considered a pair. In the two-electron basis the two doublets
form three triplet states and one singlet. The singlet potential
energy surface is attractive and is the ground electronic
state; the triplet states are repulsive and correspond to an
unbound excited eleptronic state made up of three substates (see
Figure I1.4). Using this picture of potential energy surfaces,
it is convenient to refer in the adiabatic approximation to
radical pairs as singlets or triplets even at very large radical
separations where the two energy surfaces become degenerate.

If higher electronic states are considered, there may be
attractive triplet potential energy surfaces. However, since
the energy of the first excited bound state is generally much
greater than kT for organic molecules, the assumption is made
that the ground electronic state is the only accessible bound
state. With this restriction, bond formation is limited to
those radical pairs which lie on the singlet potential energy
surface.

If the electron-electron exchange interaction J(r) is the
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Figure I.4. Singlet and Triplet Potential energy surfaces for

two hvdrogen atoms. The triplet surface is made up of three

sublevels T+l’ TO. T_l. The energy difference between the

singlet and triplet surfaces is 2 J(r) where J(r) 1is the

exchange interaction. The data for this figure are taken from

the work of Kolos and Wolniewicz [13a].
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only interaction present, a radical pair starting on a given
potential energy surface will remain on that surface indefinitely.
Consequently, a pair of radicals starting on the triplet surface
cannot bond, and they constitute an "inert" radical pair. For
these radicals to react, there must be a mechanism for converting

the triplet electron spin correlation into singlet.
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1.5 Electron Spin State Interconversion

The crux of the magnetic isotope effect is that the
predominant mechanism for electrpn spin state interconversion
(intersystem crossing) in the radical pair is the electron-
nuclear hyperfine interaction. By coupling to the electron
spin angular momenta, the nuclei can direct the radical pair
from an unreactive potential energy surface to a reactive one
(or vice versa) and thereby have a substantial effect on the
fate of the radicals. That is, whereas a singlet radical pair
can form geminate product, a triplet radical pair can only
undergo homogeneous reaction in which the reaction products
may be different (see section 1.2). The dependence of the inter-
system crossing rate on hyperfine coupling provides the basis
for the differential éhemical reactivity of different nuclear
spin states (CIDNP) and isotopes (magnetic isotope effect).

The explicit relationship between hyperfine coupling and inter-
system crossing is described in detail in sections 2.4, 2.5,

and 3.2.

The importance of the diffusive behavior of the radicals is
evident when one considers the effect of the singlet-triplet
energy spacing on intersystem crossing. In first-order
perturbation theory the mixing of two levels |%> and [m> due to

a perturbation H' is given by:

\
Mixing coefficient = <§(H; 2> (1.9)
m 9



where E'Q and Em are the energies of the respective states. If
12> and ]m> are taken to be a singlet and a triplet state,
respectively, and if (' is the hyperfine interaction, then for

. . . . 1 13 .
typical organic radicals (i.e., "H or C coupled to an unpaired

electron):

8
.. .. _ 10
Mixing coefficient = §~3?§7 Hz . (1.10)

For two carbon-centered radicals within bonding distance the
exchange interaction J(E) is v lO15 Hz, and the mixing
coefficient is n 10—7. As the radicals separate,J(E) falls
rapidly to zero (J(E) is strongly dependent upon the orbital
overlap of the two unpaired electrons [13b]), and the mixing
coefficient becomes quite large. In fact, it is no longer valid
to use perturbation theorv; the singlet and triplet states
interconvert on the time scale of the hyperfine interaction
(i.e., 1/<2}3C" |m>).

Thus, if a radical pair is prepared in one electron spin
state, the radicals may diffuse apart where the hyperfine
couplings mix the spin states, and then diffusively re-encounter
in a new spin state. If diffusion is very fast, the rate limit-
ing step in intersystem crossing is the strength of the hyperfine
interaction. Conversely, if the time scale for diffusion is
slower than that of the hyperfine interaction, then diffusion
will be rate limiting. Consequently, diffusion plays a

crucial role in the magnetic isotope effect.
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2. FIRST COLLISION MODEL
2.1 Recombination Yield

Restricting bond formation to those radical pairs with
singlet electron spin correlation, geminate recombination may
be pictured as shown in Figure I.3 Referring to a radical
pair which represents an ensemble average over all radical
pairs, the time evolution of the system is described as follows.
Two radicals are prepared in a well-defined electron spin state
at t = 0 and with an interradical separation r.. The spin
state evolves in time so that when the radicals collide at

t >t there is a distribution of population among the singlet

O?

state S and the three triplet states T T (or T T,

+10 Tor T y
TZ). The singlet radical pairs react to form product, while

the triplet pairs separate. The system, now depleted in singlet
radical pairs, evolves in time, repopulates the singlet state
through intersystem crossing, and either undergoes another
collision and forms product or the radicals diffuse apart. Thus,
the determination of the geminate recombination yield requires
calculation of the time-dependent diffusive motion and time-
dependent spin state evolution of the radical pair.

Let the probability per uni; time of a collision at time t
be represented by f(t), and the probability of product formation
upon collision at time t be given by A(t). Including a finite
lifetime 7T for the radical pair, the recombination yield R is

RP

given by:



R = .ZT A(t) f£(t) exp(—t/TRP)dt . (2.1)

From the form of Eq. (2.1) it would appear that the problem of
calculating R is separable into three parts: determination of
A(t), f£(t), and TRP' If only one collision were considered, this
would be strictly the case. However, when multiple collisions
are considered, A(t) and f(t) cannot be treated separately, and
the complexity of the problem increases rapidly. This is
explained as follows.

Since with each collision the radical pair is depleted in
singlet spin states, the spin state evolution, which goverms
A(t), cannot be considered apart from the collisions which the
radical pair undergoes. The collision probability per unit time
f(t) includes contributions from radical pairs which have under-
gone 1,2,3, ... collisions. Since the outcome of each of these
collis;ons (i.e., reaction or no reaction) depends on the spin
state at the time of collision, f(t) depends on A(t). In contrast

to A(t) and f(t), T depends on factors which are independent

RP
of spin state evolution and radical pair diffusion.

It is evident that if only the first collision is
considered, there are no previous collisions or reactions to
consider, and A(t) and f(t) are separable. As such, one means
of simplifving the solution of R is to formulate the problem
using terms which depend only on the probability of first
collision. This approach is termed the '"First Collision Model"

and is described in this chapter, It is important to note that

the First Collision Model does not neglect multiple collisions.
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It is a multicollision model. However, to simplify the calculation
the formalism is developed to calculate each collision as if it
were the first collision which the radical pair is undergoing.
Within this framework f(t) is calculated in section 2.2, A(t) is
calculated in sections 2.3 and 2.5, and the radical pair lifetime

TRP is discussed in section 2.6.



2.2 First-Collision Probability Function

Ignoring the finite lifetime TRP of the radical pair, the
re-encounter probability per unit time f(t) includes terms for

all numbers of collisions [12a]:

[o.0]

f(t) = 2 pi(ro,t) (2.2)
i=1

where pi(r ,t) is the probability per unit time that the radical

0
pair is undergoing its ith collision at time t having started
from an initial separation Iy Although the initial interradical
separaﬁion is written as the vector Tos pi(ro,t) depends only

on the magnitude Ty = IE |, because (1) diffusion is isotropic

in solution, and (2) the collision boundary IE[ =T, is isotropic.
As stated above, the probability of an ith collision depends on
the probability of the radical pair having survived an (i—l)th
collision which in turn depends on A(t). To allow for the fact

that A(t) changes with each collision, the following quantities

are defined:

Xl(tl) = reactivity at first collision at time tl (2.3a)
k?(tl,tq) = reactivity at second collision at time
t? having undergone one collision at time
t. 2.3b
1 ( )
AL(e,,t t.) T reactivity at ith collision at time t
AR AR C y 1
having undergone i-1 collisions at times
t t . (2.3c)

172t
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Since the probability of surviving a collision at time t is
. , th .. . .
1 - X(t), and since the (i + 1) collision is the first re-—

th
encounter after the i collision, then [1l2a]

t
pi+l(r0,t) = »thl[ dt2 Z dc]_L [l—ki(tl,tz,...ti)}

1 i-1

x pi(ro,ti) pl(rc+d, t—ti) (2.4)

where r = separation of centers at radical-radical collision-

d

]

mean diffusive step in solution.

The quantity r. + d is the interradical separation immediately
after an unreactive encounter [l12a]. By working back iteratively,
it is seen that apart from the A(t)'s, it is only necessary to
calculate pl(r,t), the probability per unit time of first
collision. This quantity has been worked out by Mozumder [12a]

and is given by:

3/2

p)(rget) = [(r /ry) (rg=r )/ (/FiD £/ H)] expl=(ry=r )%/ (4D )]

(2.3)
where DR is the relative diffusion coefficient for the two
radicals.

With equations (2.3)-(2.4) the recombination yield can be

written using pl(r,t) instead of f(t):
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[eo)

R =.é‘dt1 Al(tl) pl(ro,tl)

+ ,é‘dtl [1-Al(tl)] pl(ro,tl)[dtz Az(tl,tz) pl(rc+d,t2—t1)
1

+ Zdtl [1—Al(tl)] pl(ro,tl)[dtz [1—A2(tl,t2)] pl(rc+d,t2—tl)
1

[eg

x [dt3 A3 (tl,tz,tB) pl(rc+d,t3—t2)
2

+ ... (2.6)

where each succeeding term represents the yield from the first,
second, third, ... collision. Although the collision radius r.
can be related to the dimensions of the radicals and considered
a fixed quantity, there are distributions of values for both the
initial interradical separation I, and the diffusive length d.
Calculations could be performed for several values of r, and d,
but in this work average values are always used. pl(ro,t) is
plotted in Figure 1.5 for several values of the average

diffusion coefficient Davg of the two members of the radical

pair. The relative diffusion coefficient DR is the sum of the

two individual diffusion coefficients [8a] or in this case:

b, = 2D . (2.7)

As far as isotope selectivity is concerned, the important point
of Figure I.5 is that as Davg becomes smaller, the maximum in

pl(ro,t) is shifted to longer and longer time.



o™ 0710 1072 078 1077

Figure 1.5.‘ The probability pl(ro,t) per unit time that two
radicals initially separated by Ty will have a first collision
at time t. The curves are labeled by the average diffusion
coefficient Davg for the two radicals; the initial inter-
radical separation T, is 9 :\, and the collision radius r. is

o

6 A.
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2.3 Chemical Reactivity

The form assumed for the time-dependent chemical reactivity

A(t) is:

A(t) = AL S(t) + AT T(t) (2.8)

S

where S(t) and T(t) are the time-dependent probabilities that
the radical pair is in a singlet or triplet state, respectively,
and AS and AT are the probabilities that bonding will result
from either state when the two radicals collide [1]. In this
work only the lowest triplet state is considered which is purely
repulsive, and, consequently, AT = 0. The singlet surface

has a potential minimum at the cbllision radius L and AS

may be as large as 1.0. Since the triplets are unreactive,
subscripts will be omitted henceforth, and A will refer only

to singlets.

There are various reasons why XA may be less than 1.0;
three of these are mentioned below.

1) There may be an activation energy for bond formation.
Although no bonds are being broken, some of the radicals
considered are delocalized, and the radical center may need
to rehvbridize from a m-type (much electron delocalization)
to a O-type (electron localized for bond formation). This
process may have a small barrier.

2) The radicals may collide with the wrong orientation

for bond formation. For some of the large radicals (those with

two phenyl groups) this probably reduces A by a factor of 2 to
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3. The smaller radicals are probably close enough to spherical
that they can easily rotate into a bonding orientation during
collision.

3) The solvent may not be able to dissipate the energy
release of bonding quickly enough, causing the product molecule
to fall apart. All of the reactions studied in this work involve
the formation of carbon-carbon bonds which are typically v 80
kcal/mole. Nevertheless, since the product molecules are large
(i.e., thirty or more atoms) and the reaction is taking place
in a condensed phase, it is assumed that the bonding energy is
easily dissipated.

Because of the complexity of the above factors, A is treated
as a phenomenoclogical parameter. For the recoﬁbination reactions
considered in this work having small, if any, activation energies
and taking place in condensed phases, A is assumed to be fixed
for a given reaction independent of solvent, temperature, and
viscosity. An estimate gives a value between 0.3 and i.O.

Having discussed A, it now remains to determine the time-
dependent singlet probability S(t). For this it is necessary to
construct the Hamiltonian containing all of the relevant inter-
actions affecting the electron spin states both between and during
collisions (section 2.4), and then use an appropriate set of basis
functions to calculate the time evolution of the system (section

2.5).
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2.4 Spin Hamiltonian
The Hamiltonian J( may be divided into four major terms:
H =
() JCRP [E(t)] + J(Rl(t) + JfRz(t) + J{SO . (2.9)

ﬂﬁp[g(t)] is the radical pair part of the Hamiltonian, and it
contains all of the electron-electron interactions. Because
these interactions depend on the interradical separation {(t),
HﬁP[E(t)] is coupled to the diffusive motion of the radicals
and is therefore time-dependent. ﬂkl(t) and ﬂkZ(t) pertain to
isolated radicals and contain only one-electron interactions.
These one-electron terms may also be time-dependent due to
interactions with the solvent bath surrounding the radicals.
Héo is the Spin¥orbit coupling Hamiltonian and is composed of

one—electron interactions. However, since it must be treated

is considered separately from #__(t)

in a special fashion, ¥ =1

SO
and KRz(t).

The spatial and time dependences of the Hamiltonian introduce
a great deal of complexity into the calculation of the time
evolution of the radical pair spin states, and it is advantageous
to obtain a Hamiltonian which depends only on spin coordinates.
As such, the spatial dependence will be integrated out in the
course of evaluating each of the Hamiltonian terms. By means of
the approximations which follow, the time dependence will either
be separated from J(t) or neglected.

The first approximation is to make ﬂkP[E(t)] operative only

during collisions and to assume that radical rotation makes it




I.2 29

isotropic. This corresponds to giving it the following §-function

dependence on T:

Hoplr(e)] = 3 (x ) o[fe(e)| - r 1 . (2.10)

The second approximation is that the duration of a collision is

short enough that Hk and sz, which are much smaller than Mk (rc),

1 p

can be neglected during collision.

Another way of stating these first two approximations is to
say that the radicals travel in and out éf two distinct regions
as they diffuse. For |El > T, the time evolution is governed by
ﬂkl and MﬁZ’ and this is termed the "mixing region'. For IEI =
r. the time evolution is governed by #__, and this is termed the
"collision region". Since the time-dependent collision
probability is determined by pl(ro,t), the time depeﬁdence of
HRP is determined by this as well. It is assumed that there is
no region intermediate to mixing and collision. In other words,
the system passes suddenly, or non-adiabatically, between the
two regions (see Figure I.6).

and ﬂR?, the unpaired electrons couple to the

£

Concerning Wkl
bath either through interaction with nuclear spins on adjacent
solvent molecules (dipole-dipole coupling) or through anisotropic
intra-radical couplings which are modulated as the radicals
translate and rotate randomly in solution. Two assumptions are
made which allow these couplings to be neglected, and Mﬁl and

H to be treated as time-independent.

R2

1) The translation and rotation of the radicals in solution



1.2 30

(c)

XBL 8010-12620

Figure I.6. Effect of finite particle size on motion of two
radicals Ré and R* in solution. Because the solution is close-
packed, two initially touching radicals (a) must separate by an
amount comparable to the diameter of the solvent particles (b).
At large separations (c) there are many intervening solvent
molecules which may be rearranged in various ways to allow the
interradical separation to vary continuously. Because there is a
minimum separation which two non-touching radicals may have [see
(b)], the transition from the collision region (striped circles)

to the mixing region (clear circles) is well defined.
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is fast enough compared to the strength of the anisotropic
interactions that the Hamiltonian may be treated as isotropic.
Rotational diffusion constants measured at room temperature in
solvents (i.e., benzene and chloroform) similar to those used in
this work are lOll Hz with activation energies of 1 to 2 kcal/mole
[14]. Combining this with translational diffusion, the

anisotropic interactions are easily averaged out (see below), and,
thus, the time dependence isrremoved.

2) Spin-lattice relaxation is slow compared to geminate
recombination and radical lifetimes. Although the fluctuating
anisotropic parté may be dropped from the time-averaged Hamiltonian,
they are ultimately responsible for bringing the spin system into
equilibrium with the bath (lattice). The time scales for geminate
recombination and radical removal are typically < 1 usec and
frequently two to three orders of magnitude shorter. Relaxation
times for electron spin polarization have been reported to lie
in the range 1 to 80 usec for low viscosity liquids at room
temperature [15], and, as such, relaxation may be neglected. At
very high viscosity the geminate recombination may be so slow that
relaxation becomes important. However, under these conditions
the rate limiting step for radical pair recombination is diffusion
so that the spin interactions, and hence the magnetic isotope

effect, should not play a big role anyway (see section 1.5).

2.4.1 Two-Electron Hamiltonian Terms [1]

ﬂﬁP is composed of two terms:

(. =¥ , .
JRP o + Hb (2.11)
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where
ﬂé = electron-electron coulombic repulsion
ﬂb = electron-electron dipole interaction

The Hamiltonian term ﬂé is diagonalized by the familiar
singlet and triplet electronic wave functions. Writing the
spatial wave function as IX>, the proper forms are for

singlet:

IXS> = (lu1v2> + |v1u2>)//§ (2.12a)

and for triplet:

’XT> = (!U1y2> - |v1u2>)//2_ (2.12b)

where u and v are molecular orbitals located on different

radicals. The subscripts indicate occupation of the orbital

by either electron 1 or 2. The associated energies are:
ES =C+J (2.13a)
ET =C-J (2.13b)

where C is the coulomb integral:

!

= (Ulvzi (2.148)

KélU1V2>

and J is the exchange integral:

J = <u1v2;3(eyvlu2> . (2.14b)
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Theoretical work has shown that C and J depend strongly upon
the overlap of the orbitals of the two unpaired electrons [13b].
Thus, C and J fall off rapidly as the radicals separate and are

approximated in this work by:

C(r) = c(r)) 6(|El—rc) (2.15a)

J(r)

J(r) 6([£l-rc) (2.15b)

where rapid rotation is assumed to make the two integrals

isotropic on the time scale of a collision (i.e., the radical
rotation rate is much greater than the translation rate). Since
C(E) shifts both singlet and triplet levels by the same amount, it
may be eliminated by redefining the zero of emergy. Having removed

C(r), the time-independent form of ﬂé at collision is:

Me(rc) = J(rc)(l/Z + 2 51'52) (2.16)

where J(rc) is a constant and 1 and s, are the electron spin
operators. For organic carbon-centered radicals in the ground
state J(rc) is v 80 kcal/mole, or 101S Hz/molecule. The term
(1/2 + 2 s,°S ) gives the appropriate sign of the exchange energy
for the singlet and triplet states [Egs. (2.13a) and (2.13b)].

The classical form of the electron dipole-dipole interaction
is:

i = (glg28i/r3)[§l'§2—3(§l'§)(§2'g)/r2] (2.17)

where 84 and g, are the isotropic g-factors of the two electrons
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2
and Be is the Bohr magneton. The factor gngBe /r3 will be used

to obtain a rough estimate of the range of Hb.

=]

6 A is a typical particle diameter for the radicals and
solvents considered in this work; thus, two radicals separated
by an intervening solvent molecule will have an average inter-

[+

electron separation of 12 A. With g1

e

By = 2 and r equal to

12 A, gngBez/r3 equals 30 MHz, which is comparable to ﬂkl and
%ﬁZ' However, since the radicals are generally separated by

more than a single solvent molecule between collisions, and since
radical diffusion further reduces ﬂb, which is completely aniso-
tropic, the approximation is made of neglecting ﬂb in the mixing
region.

To determine the effect of ﬂb on the spin states during

collision, it is helpful to cast ﬂb in a different form [16]:

3(D = (s +§2)°E'(§1+§ ) (2.18)

where D is the second-rank dipolar coupling tensor. Since

-~

(sl+s ) = 0 for singlet states, it is evident that Hb cannot

cause intersystem crossing nor mix singlet states in any way.

On the other hand, (Sl+52) is non-zero for the triplet state,

and ﬂb affects the triplet sublevels. The spherical tensor basis

T, T, T diagonalizes H_. 1In this work the Zeeman basis T, .,
X 3% z D +1

TO’ T_l is used, and consequently ﬂb mixes the triplet sublevels

during each collision.



2.4.2 One-Electron Hamiltonian Terms | 1]

The Hamiltonian ﬂi for a single radical is a sum of four

types of interactions (1):

Hk = ﬂﬁs + M&S + Mﬁl + M&I (2.19)

where

ﬂﬁs = magnetic field-electron spin interaction

ﬂis = electron-nuclear hyperfine interaction
Mﬁl = magnetic field-nuclear spin interaction
M&I = nuclear spin-spin interaction.

All of these interactions will be written as spin Hamiltonian
terms. That is, all spatial integrations have been performed
so that g-factors and hyperfine couplings ai’ which depend on
orbital populations, may be treated as constants.

The magnetic field-electron spin interaction is written

H = gB

HS Hes ' (2.20)

e

where H is an externally applied magnetic field, and as in Eq.
(2.17) the isotropic g-factor is used. Defining the field axis

to be Z,

i = gk Hs . (2.21)

The electron-nuclear hyperfine interaction consists of an

anisotropic through-space dipole-dipole term and a scalar contact
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term. Since the strength of the hyperfine coupling in organic
radicals is of the order of 107—108 Hz and since this is much

smaller than typical rotatiomal diffusion constants (i.e.,

1
room temperature values are v 1Ol Hz [14]), the anisotropic

term is neglected. The scalar term is:

f}{‘ =Za‘ I s (2.22)

where the summation is over a single radical, and ai is the

. . . . . .th
isotropic hyperfine constant and Ii is the spin of the i

nucleus.

The magnetic field-nuclear spin interaction is:

Hyp = _‘L;Yi hIysH=-hAH ;Yi i (2.23)

where Yi is the gyromagnetic ratio, corrected by the isotropic

. . . th . .
chemical shift, of the i nuclear spin. ﬂﬁl contains no electron

spin interactions so it cannot cause intersystem crossing. In
low magnetic field this term may be neglected (i.e., Y/2mw =
4 x 103 Hz/Gauss for protons). 1In high magnetic field the triplet

sublevels T+ and T , are so widely spaced in energy that inter-

1 1

system crossing occurs onlv between singlet S and triplet TO and
this without change of nuclear spin state (see section 2.5).

Since ﬂﬁI only serves to shift the energy of a given nuclear spin

state, it has no effect on the rate of S to TO interconversion and

may therefore be neglected at high field. As such, Mﬁl is dropped

from further consideration.

The nuclear spin-spin terms comprising X are the anisotropic

IT

dipole-dipole coupling and the isotropic through-bond coupling.
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Neglecting the anisotropic interactions, the isotropic through-
bond couplings are of the order of lOO—lO2 Hz. These clearly
cannot affect geminate recombination which takes place on a time
scale < 1 usec. Thus,‘ﬂil is dropped.

In summary, two terms of ﬂk are retained: the magnetic
field-electron spin coupling Eq. (2.21) and the electron-nuclear
isotropic hyperfine interaction Eq. (2.22). Furthermore, there
are two one-electron Hamiltonians Hﬁ and ﬂkz, one for each

1

electron on a different radical.

2.4.3 Spin-Orbit Coupling

Since spin-orbit coupling is the dominant intersystem crossing
mechanism in molecules, it will be discussed in some detail as
regards the role it plays in radical pair intersystem crossing.
In the literature to date [1,17] arguments have been given for
whv spin-orbit coupling may be altogether neglected in the treat-
ment of the radical pair. Consequently, it has not been included
in any treatment that this author knows of. In this section,
however, it is shown that spin-orbit coupling, although zero in
first-order, mav not be ruled out in second-order. An example
demonstrating the strength of the second order coupling is given
in section 2.5.6. Nevertheless, due to the complexity of the
First Collision Model, the standard assumption of neglecting it
will be made. In Chapter 3 the Continuous Diffusion Model is
introduced which can easily accommodate spin-orbit coupling.

With this latter model the effects of different sizes of spin-
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orbit coupling will be shown in Chapter 6.
The standard form of the spin-orbit interaction is that of
the "atoms in molecules'' approach proposed by McClure [18]
where the molecular spin-orbit interaction ﬂéo is taken to be
a sum of single atom contributions. 1In this work the same approach
is used, but, unlike the operator used in molecular problems,

here the operator is divided into separate sums for the two

radicals:

J(SO —Z g (r "s +Zb E (r ~2 *s, (2.24)

where the superscripts a, b identify the two radicals, the sums
are over the nuclei present in each radical, %k is the orbital
angular momentum operator for electron k, and the core electrons
have been neglected. The strength of the spin-orbit interaction
generated by nucleus i and felt by electron k is éi(rki) where
T is the distance of the electron from the nucleus. Each nucleus
is taken to generate a central field potential (shielded by core

electrons) so that &(rki) has spherical symmetry (i.e., L is used

not r
Nkl)
In writing two sums (i.e., treating the two unpaired

electrons independently) for ¥ it is assumed that spin-orbit

S0’
coupling during collisions may be neglected. This situation is

exactly analogous to that of the hyperfine interaction [Egq. (2.22)],
and the justification for it lies in the fact that during collision
the singlet and triplet states may be separated by "~ 100 kcal/mole,

thereby making any mixing between these two states vanishingly

small. Phosphorescent lifetimes between such widely separated
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levels are typically > 1 msec and often of the order of seconds
[18b]. Clearly, it is not necessary to consider this on the time
scale of a collision, and Eq. (2.24) may be used for ﬂéo.

It will now be shown that the radical pair states are not
coupled by ﬂéo in first order. Since spin-orbit coupling is a
small perturbation for organic molecules, the two-electron
radical pair wave function may be written as a product of space

and spin parts:

[¥op> = Ix(0)> |6(,8)> (2.25)

where the spatial wave function lx(r)> was introduced in section
2.4.1. With Eq. (2.25) the first-order mixing coefficient
between singlet and triplet may be written and the spatial and

spin integrals separated as follows:

<y >/(E-EJ)

3
RP,sI SOIWRP,T
= <Xs'1 BTy Ixpre<ogls 0>/ (Ep-EQ)

* <Xs§;)5j(rzj>%z xp>*<0gls, |0/ (BB . (2.26)

The spatial integrals in Eq. (2.26) both vanish provided that

Xg and Xy are real, as will now be demonstrated. In typical
organic molecules and radicals all of the molecular orbitals are
purely real. That is, the molecular orbitals are real combinations
of the purely real atomic orbitals 1s, 2s, 2p_, 2p , 2p2, etc.

X y

It is sufficient to show that one of the spatial integrals vanishes:
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a a
1
< > = — < —
(2.27)
Integrating over the coordinates of electrons 1 and 2 separately,

it follows from the orthogonality of |u> and |v> in the separated

radicals that there are two possible non-zero integrals:

a
I, = <ullzij t"i(rli)%llul> (2.28a)
and
a
= 2
I, <vllzi: gi(rli)%l|vl> . (2.28b)

At this point it is necessary to be more specific about the nature
of the molecular orbitals u and v. Each orbital is located on a
single radical: wu is taken to be situated on radical a, and v
on radical b. Since the summation in Eqs. (2.28a), (2.28b) is
over nuclei on radical a and since £(r) + 0 rapidly with increasing
r, matrix elements of the form of Eq. (2.28b) are necessarily zero.
In other words, when electron 1 is located on radical b (i.e.,
molecular orbital v), the spin-orbit coupling it feels from nuclei
on radical a is zero.

To evaluate the remaining integral in Eq. (2.28a), it is
helpful to consider the angular momentum operator % in spherical

coordinates [19]:

. . 3 P
2x = -i[-sind 56~ cosd coth 8¢] . (2.29a)




Ry = ~-i[cosd g%—— sin¢ cosB g%] (2.29b)
L = -1 9 (2.29
, = 1 3% .29¢)

Since £ has no radial dependence, the spherically symmetric

gi(rli) commutes with it, and Eq. (2.28a) may be written:

a a ' / a !
<“1J§: £ (r P8 lup> = Ey(ryy) upltyl %; Ty’

i

<ui|%1|ui> . (2.30)

Since the angular momentum operator % is Hermitian, 1its

expectation value must be real. However, u and gi(rli) are

both purely real functions, and as seen from Egqs. (2.29a)-(2.29c¢),
% is purely imaginary. Therefore, the integral in Eq. (2.30)

must be identically zero in order to be real [18a,20]. In summary,
given that gi(rli) is spherically symmetric and that the

molecular orbitals are real, Méo does not cause first-order

mixing between |V and |¥

> >.
RP,S RP,T

The second-order mixing coefficient is [21]:

<y |M¢wk><vk|u1wRP,T>

g: RP, S
KFRP (Epp g=Epp ) (Ep—Egp 1)

where ]Wk> is an excited state which may be either a singlet or
triplet. Now it is necessary to determine which terms of the
Hamiltonian J( may couple the radical pair states to possible
excited states. In the molecular case intersystem crossing is

accomplished through the concerted action of vibronic coupling,
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or Born-Oppenheimer breakdown, which mixes states of like spin

and J which mixes states of different spin. The vibronic

%O
coupling results from changes in the electronic wave functions
with nuclear motion. This coupling is large only in the collision
region [1] where the electronic potential energy surfaces change
rapidly with interradical separation (see Figure I.4), but, as
already noted, the mixing is much too weak to be effective on the
collisional time scale. Thus, the dominant interaction appearing

in both matrix elements of the second order mixing coefficient

connects |¥_ _> to excited states is

I3 7( .
is Ho . The fact that 7 RP

{
S0

demonstrated by the deviation (Vv 0.17%) of the free radical g-factor
of common organic radicals from the free electron value. In fact,
the expression for the free radical Ag is very similar to the one
which is being treated in this section [22]. Given that the

matrix element <¥ |3 |V

k['SO is not negligible, and since (ER -

>
RP P,S

ERP T) -+ 0 as the radicals separate, it is no longer valid to
2

use perturbation theory. As such, it is necessary to use the
methods to be outlined in the next section, after which the

subject of spin-orbit coupling will be picked up again (section

2.5.6) and a simple example provided.
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2.5 Time Evolution of the Spin States

The present problem, as defined in section 2.3, is to
calculate the probability S(t) that the radical pair is in a
singlet electronic state at time t. In order to calculate
this quantity there are three things which first need to be
specified:

1. An appropriate set of basis functions with which to
represent the spin states.

2. Definition of the initial conditions in accordance with
the chemical system being described.

3. Formalism for determining the time-evolution of the
spin states.

These three requirements will now be described.

2.5.1 Basis functions

Since there are two regions (collision and mixing) in which
the time evolution of the electron spins must be determined, it
is useful to use two different sets of basis functions. In both
regions the basis functions are products of electronic and nuclear

spin functions:

|Basis Functions> = |Electronic> |Nuclear> . (2.31)

Since the Hamiltonian derived in sections 2.4.1 and 2.4.2 is a
spin Hamiltonian (spin-orbit coupling will be treated separately
in section 2.5.6), the basis functions of Eq. (2.31) involve

spin coordinates only. The nuclear spins are weakly coupled
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to one another and may be written as a simple product of Zeeman
spin functions. These spin functions are grouped together for

each radical:
INuclear>a = |mmm, ...> (2.32a)

INuclear>b = Im m m% ...>b (2.32b)

where the m's are the magnetic quantum numbers of the nuclei,
and the subscripts a,b refer to the two radicals.

In the collision region the two electrons are strongly
coupled, and it is therefore necessary to treat them as a pair.
The singlet and triplet Zeeman functions are used to describe

them in this region. For singlet with spin = 0

ls> = (|a1> [82> - 1B1> ]a2>)//2— Mg = 0 (2.33a)
and for triplet with spin = 1:

IT+1> = Joy> loy> Mg o= +1 (2.33b)

|T0> = (!onl> 182> + ]sl> |a2>)//§ Mg = 0 (2.33¢)

IT_1> = |Bl> |82> Moo= -1 (2.33d)

where M_ is the z projection of the total electronic spin.
Defining the set of two-electron basis functions as {©j}, a

sample function is:

lo > = Lo 'm! ...> .
"j> !S> Imlm2 ce -2, imymy b . (2.34)



1.2 45

In the mixing region the electrons have minimal interaction
with one another and may therefore be treated independently. As
such, doublet spin functions are used for the electrons. Defining
two sets of one-electron basis functions {¢k}a’ {¢2}b’ one for

each radical, sample functions appear as:

(2.35a)

=
v
|

)
\%

E}
=]
v

.2 (2.35b)

\

|
E}

\4
E)

where mg is the z projection of a single electron spin, and in
this example electron 1 is localized on radical a and electron
2 on fadical b. The two-electron basis functions could be used
throughout. The reason for introducing the one-electron functions
is a matter of computational convenience. That is, it is a simpler
problem to sclve for the time-evolution of the radicals individually
rather than together. This approach is followed in so far as it
is valid (i.e., in the mixing region).

The transition between the two regions is a natural one. For
instance, the singlet spin function of Eq. (2.332) can be re-written

in terms of one-electron functions appropriate for the mixing region

merely by re-grouping terms:

1 '
t¢j> =V3-(!a1> |82> - 151> [a2>)|mlm2 cee> [mimz o> (2.36a)

1
[©j> =5 [|a1>\mlm2 ...>a)(|82>(mimé ...>b)—(|81>]mlm2 )

t 1
([a2>|mlm2 _,_>b)] (2.36b)
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l©j> = [[¢2> [¢)1;1> - ]¢n> I¢<;>]/‘/2_ . (2.36c)

In fact, the two-electron functions may be defined in terms of

the one-electron functions from the start.

2.5.2 1Initial Conditions

There are three situations which.occur commonly in free
radical chemical reactions.

a) Singlet Precursor

This occurs frequently when the free radical initiation step

is through thermolysis:

A
- — .o S
(CH3)3 C—N—N—C(CH3)3 [(CH3)3C C(CHB)C] + N2+ (2.37)

where the brackets [] indicate that the two radicals are in the
vicinity of one another, and the superscript S indicates that
the two electrons have singlet spin correlation.

b) Triplet Precursor

This occurs frequently in reactions involving carbenes or

photolysis of ketones:
@,C=N=N — ¢, C: + N * (2.38a)
5] (2.38b)

where ¢ indicates a phenyl group, and the superscript T indicates

triplet.
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¢) Random
This occurs when two radicals formed in different chemical

events encounter one another:

R; 4 Re — [Ré .Rb]ZSAS,7SAT. (2.39)
In this work the only initial condition considered, besides ro’ is the
fraction fS of singlet present when the radical pair is

formed, which in the three cases cited is 1.0, 0.0, and 0.25,
respectively. It is only necessary to be able to solve for

the cases of 100% singlet and 1007% triplet, however, since

a chemical situation of arbitrary fS can always be written

as a linear combination of the two. It is assumed that
initially all nuclear spin levels are equally populated
(Boltzmann differences are trivial), and any difference in
population of the triplet levels T+l’ TO’ T__l is ignored.
Although some photolyses occur with preferential population

of a given triplet sublevel, it is here assumed that the radical

pair is formed with the two radicals in such proximity that the
dipole-dipole coupling causes fast relaxation in the triplet

manifold (see section 2.4.1).

2.5.3 Time Evolution up to the First Collision

The problem at hand involves an ensemble of radical pairs
which were formed at different points in time. Since each pair

evolves independently of the others (section 1.2), one can
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arbitrarily have all of the radical pairs being formed at t = 0
without changing the physical observables at t = ®. With this
adjustment it is possible to define a single ensemble averaged
radical pair which is generated at t = 0 and evolves in time

as follows (see also section 2.1).

a) The two radicals start at an initial separation ro which
can be taken to be a single diffusive step greater than the
collision radius r.. The initial spin populations are defined
by the initial singlet character fS which is determined by the
tvpe of chemical reaction from which the radicals have been
formed. |

b) Up to the first collision the radical pair evolves
solely under the influence of the one-electron Hamiltonian terms
MRl and WRZ' This time evolution proceeds until the pair under-
goes collision at time T. During collision the radical pair
evolves under the influence of the two-electron Hamiltonian
HﬁP’ and chemical reaction may occur. Those pairs which do not
react separate, and once again the time evolution is governed by

H, . and ﬂk The only difference between the time evolution in

R1 2°
this period and that preceding the first collision is that the
radical pair, in general, starts evolving under different initial
conditions. The problem of calculating the time evolution after
collision is identical (except for the initial conditions) to
that before collision. Thus, all that is needed is to be able

to calculate for arbitrary initial conditions the time evolution

of the radical pair up through the first collision, at which

point the calculation may be re-started for a subsequent
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collision, etc. (see Figure I1.3). For this reason the name
"First Collision Model' is used.

With these factors in mind, the mathematical details for the
time evolution up to the first collision will now be discussed.

A sample singlet wave function was given in Eq. (2.36c):
- > ] = BN
(0> = (o >lor> = o >le V2.

Since the time evolution is governed by the one-electron
Hamiltonians ﬂﬁl and sz, the one-electron wave functions may be

treated separatelv. Thus,

[0,(0)> = (Jo (e)>]or (0)> - [o_(e)>[ol(e)>) /Y2 . (2.40)

The time evolution of each wave function is given by the time-

dependent Schrodinger equation:
., 0 _
ih == |0 (0> = I, (0>, (2.41)

In order to make Eq. (2.41) amenable to computer treatment, it is
necessary to write the operator ¥ in a matrix representatiocn .

This is done by calculating the following matrix elements in the

basis of the one-electron functions:
i = < H > . 2.42
@0, = <oy 13le, (2.42)

At this point a simple example will provide the justification for
the use of the one-electron basis functions. Suppose each radical

contains four spin 1/2 nuclei. Now including the two electroms,
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the number of two-electron basis functions is:

ince each spin has a multiplicity of two. Consequently, the two-
electron Hamiltonian matrix would be 1024 x 1024. Now if one-electron
basis functions are used, the number of basis states for each

radical is:

and the size of each one-electron Hamiltonian matrix fﬁ is 32 x 32.
Clearly, the use of one-electron basis functions provides a major
reduction in effort.

Another simplificatioﬁ may'be realized by considering the

operation of the various terms in ﬂk on the basis functions.

From Egs. (2.21) and (2.22):

My, = 8 B Hs, +41‘,_-:a151'§ . (2.43a)

This may be re-written in terms of raising and lowering operators

[23] to give:

+ - - +
= H + a .s + I.s 2 + 1 2.43
R = 8 B8Hs, iZi[(Il 5/ 5,0 . (2.43b)
Since the one-electron basis functions are Zeeman product functions,
they are eigenstates of the Iz’ s, operators. Thus, the first and
last terms on the right hand side of Eq. (2.43b) do not mix any

states. If the total z component of angular momentum is defined:



I.2 51

M= m +)_i:mi , (2.44)

it is evident that the raising and lowering terms I:s_ and I;s+,
while changing m, and m_, leave M unchanged. Thus, no term in

ﬂh mixes states of different M, and the Hamiltonian may be blocked
by M values. This simplifying feature along with the use of the
one-electron basis functions is employed in the computer program
"sing5" (see Appendix A) which performs the calculations described

in this section.

Having constructed %ﬁ, it may be diagonalized:

-1

c (2.45)

-~

no
1]

1

It follows from Eq. (2.45) and the time-independent Schrodinger

equation (2.52) that the transformation C contains the eigenvectors

as columns, and the diagonal matrix A contains the eigenvalues.

Since C is unitary,

ot (2.46)

where C' is the Hermitian adjoint of C, and since

+ ~ * -1 -
(S g)ij —};ckickj = ((f c).., =68, , (2.47)

all of the eigenvectors are orthonormal to one another.

Defining (considering only one radical)

{|8j>} = one-electron eigenfunctions , (2.48)
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{hwj} = one~electron eigenvalues , (2.49)

the eigenfunctions may be written:

lej> =chj’d)9«> . (2.50)
L

where the CQj are the elements of C. From Eq. (2.47) it follows

=

that the basis functions may be written:

*
6> ==§; cple> (2.51)

For an eigenfunction

3 O _ -
ih 52',9k> = Hﬁ]8k> = hwklek> (2.52)

which has the solution

]Bk(t)> = expl[-iw t]]8k> . (2.53)

k
Substituting this into Eq. (2.51) for the basis functions,
* .
|¢R(t)> =-Z:c£, exp[—1w,t]|8.> . (2.54)
J 3 3
J
The time-dependent one-electron basis functions |¢2(t)> may be
constructed for radicals a and b, and then substituted into

Eq. (2.40) to obtain the time-dependent two-electron basis

function !Qj(t)>.
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2.5.4 Time-Dependent Singlet Character

If the system, that is, the ensemble averaged radical pair,
starts in the state |¢£> at t = 0, then, assuming no collisions,
the probability that the system has evolved into the state l®m>

at t = T is given by:
P, (1) = |<b |o,(1)>|? (2.55)
2-m m' L ’

where <®m| serves as a projection operator for the amplitude of
[®m> in [@R(t)>. The quantity which determines the chemical
reactivity during a collision at time T is the total singlet
character S(T) of the radical pair. In order to determine this
quantity it is necessary to project out all of the two-electron

basis functions which have singlet electron spin correlation:

2
S(t) = 3 [<o.lo,(1)>] (2.56)
= j'e
j=S
where the summation over j=S implies that all singlets are
considered. In general, the system will not start in a single
state. If the initiation step produces a singlet precursor, then
the initial state of the system is:
lSystem,t=O> = 2: l©2> . (2.57)
2=5
If there are N singlet states (N is given by the multiplicity of
the nuclear spin functions), then the normalized time-dependent

singlet character for a singlet precursor is:




N N
HOED DY [<®j[®2(T)>[2/N : (2.58a)
j=8 £=§ .

The analogous expression may be written for a triplet precursor

(multiplicity of states = 3N):

2 ;m <6, 18, (0> |
S.(1) = <o, [0, (1)>]“/3N (2.58b)

where the summation over 2=T is over all 3N triplet electronic
states. In Eq. (2.58b) it is necessary to sum over three times
as many states as in Eq. (2.58a), thereby requiring three times
the computational effort. However, it is possible to write Eq.
(2.58b) in terms of summations over singlet states only as is shown
in the following proof.

For the sake of this proof, it is assumed that the full two-

electron Hamiltonian has been constructed and diagonalized to

obtain:
{[@k>} = set of two-electron eigenfunctions (2.59)
{th} = set of two-electron eigenvalues . (2.60)

With these it will be shown that the following expression holds:

N 4N )
No= 3 2 [<o ] (e)>] (2.61)
j=s ¢=s,T7 3

where N is the number of singlets, and the second summation is
over all states £ = S,T - singlets and triplets. Expanding

Eq. (2.61) in terms of the eigenvectors and eigenvalues:
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N 4N 4N N 4N 9
N = Z: Z: ]<Z; c,m@!z:cg exp[—int]e > |
j=S 2=S,T m JT mTF 0 n
(2.62)
and rearranging
N 4N 4N 4N 9
N = Z: l}: z: imCy exp[—iQQt]<Om]On>]
j=S 2=S,T
(2.63)
Since the eigenvectors are orthogonal, m=n, and
N 4N 4N . 2
N = z: z: lz: ijclm exp[—lﬂzt]l (2.64)
j=S 2=S,T m
which may be multiplied out to give
4N 4N 4N
N = 2: 2: 2: ¢ ¢, c. ,c. exp[-1(f2 ,-0 )t]
e R Sy jm m jm' Lm m' m
(2.65)
Performing the summation over % first [ see Eq. (2.47) ],
4N .
Y e, e, =68, , (2.66)
9=5.T fm " f&m mm
and with m = m':
N 4N N
N = Z > ¢ inSim = Z 1 =N (2.67)
j=s m j=s Q.E.D.

Recognizing that Eq. (2.61) can be written

N 3N

N N
Ne Y T e le st YT Jee o (03] (2.68)
= j=s n=r 17
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and defining

N N 2
Po(t) = 2. 20 [<e o (£)>] - (2.69)
i=S m=$ ]

then Eqs. (2.58a) and (2.538b) can be rewritten as:

Singlet Precursor

Ss(t) = PS(t)/N (2.70a)

Triplet Precursor
ST(t) = {1~[Ps(t)/N]}/3 (2.70b)

so that SS(t) and ST(t) now both involve the same summations.
Recalling that fS is the initial fraction of singlet, there

follows:

General Precursor

SG(t) = fsss(t) + (l—fS)ST(t) (2.71a)
or

Sc(t) = [(l—fs)—(l—éfS)PS(t)/N]/3 . (2.71b)
It is noted that for a randomly generated pair fS = 0.25, and

Sc(t) = 0.25, a constant.

The function PS(t)/N is calculated in the program ''sing5"
(Appendix A) for arbitrary magnetic field and up to four spin 1/2
nuclei (of arbitrary hyperfine couplings) on each radical. This

program can be run on a mini-computer, and versions of it have
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been used on a Data General NOVA 820 computer and a Digital
Electronics Corporation PDP 11/70 computer. A calculation is
shown in Figure I.7 of the singlet character as a function of
time for a radical pair with eight nuclear spins and pure triplet
initially. The important feature of Figure I.7 is that the
singlet character rises rapidly to near 25% (the equilibrium
value) and then oscillates.

It now remains to describe the time evolution of the radical

pair during collision.

2.5.5 First Collision and Thereafter

During the time evolution which precedes collision two things
happen: (1) The populations of the various spin states change and
(2) as the populations change, coherences are generated between
spin states that are coupled either directly or indirectly through
other states. The effect of a collision on these populations and
coherences will now be discussed.

The dominant interaction upon collision is the exchange
interaction ﬂj. Because of the magnitude of H_, the singlet/
triplet basis functions are very nearly the true eigenstates.
Treating them as approximately so, the following expressions are

true for singlet:
ws(c)> = exp[-th/ﬁ]]‘PS> (2.72a)

and for triplet:



S(t)

.25 —

90 L W 1 1 L L 1 !

I.2 58

SINGLET CHARACTER
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Figure T.7 Singlet character as a function of time for a radical
pair starting in a triplet electronic state. The external magnetic
field is zero. The hyperfines on radical Ré are: 12, 34, 56, and
78 gauss; the hyperfines on radical R* are: 23, 45, 67, and 89

£4auss.
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[¥_ (£)> = exp[+iJt/h] |V > : (2.72b)

Since a collision time is at least of the order of a molecular
vibration v 10_14 sec (and presumably somewhat longer) and with
J/h ~ lOl6 rad/sec at collision, the argument in the exponential
phase factors is v 102 radians. Clearly, any phase coherence
between singlet and triplet states is destroyed. Also, since the
singlet and triplet energy difference is so large, any inter-
system crossing to change these populations may be ignored on
the collisional time scale (see section 2.4.3).

Operating among the triplet states is the electron dipole-
dipole interaction Wb. As described in section 2.4.1, ﬂb mixes

T states, thereby equalizing their populations

the T+1, TO, -1

and destroying coherences between the different triplet levels.
Among the singlet states there is the possibility of their
losing enough energy during collision to form a stable chemical
bond. As such, a fraction equal to AS(t) of the total number of
radical pairs which collide form stable molecules. At this point
a simplifying assumption is made about those singlets which
survive collision. Although the singlets are unaffected by ﬂb,
it is assumed that all coherences between them are destroyed and
that the surviving (1-A) fraction of singlets represents population
which is equally distributed among the singlets. The destruction
of all.singlet coherences is to be expected since the radical pair
is an ensemble average of many different radical pairs. Since
the different pairs will undergo collisions of varying duration,

they will evolve for different lengths of time under the influence
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of K& (Eq. (2.72a)), thereby randomizing their phases. This
assumption of equalizing the singlet populations is without
physical justification and is introduced merély as a computational
convenience--it allows the surviving radical pairs to be described
by a single independent parameter fs, the fraction of singlets.
Immediately after collision fS is given by the ratio of surviving
singlets to surviving radical pairs:

_ (1-M)s(1)
fg = 1-AS(T) (2.73)

where the collision takes place at time T. 1In practice, the
assumption about the equalization of the singlet populations
during collision has little effect since A = 1, and most of
the singlets do not survive collision.

After collision the time evolution of a new radical pair
described by a new fS value (Eq. (2.73)) is begun, and recombination
from a second collision may be calculated. This new pair, of
course, is scaled down by the fraction of pairs which have reacted.
This is the same picture of radical pair reactivity which was
presented in section 2.2 and mathematically stated in Eq. (2.6).
The Xi functions introduced in Eq. (2.3) are accounted for by
calculating fS after each collision and letting the system evolve
up to the next collision. The computer program "diffus'" (Appendix
B) uses the output of the program "sing5" (see section 2.5.4 and
Appendix A) to calculate the recombination of radical pairs for
up to three collisions. Computationally it is very lengthy to

use reasonably sized time increments and account for more than
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three collisions

Initiation - Tl - Collision - T2 - Collision - T3 - Collision

when all possible values of Tl,Tz,T3 are considered up to the
disappearance of the radicals (see Figure I.3). 1In section 2.7
a special case is described where an asymptotic expression is
derived including all collisions.

Before proceeding to the next section, the sequence of events
in the time evolution is recapitulated and the opefation of the
various Hamiltonian terms shown schematically in Figures I.8,

1.9 and I.10.

2.5.6 Spin-Orbit Coupling

In this section the indirect coupling of the radical pair

singlet IWRP S> and triplet IWRP T> states through an intermediate

’ ’
excited state ]Wk> is considered. Since ﬂéo is a sum of one-

electron operators, the excited state cannot differ from the
radical pair states by more than one molecular orbital. The
spatial parts of IWRP,S> and IWRP,T> are as defined in Egs.

(2.12a) and (2.12b). ka> is taken to be an excited triplet with

spatial function:

> = o~ > 2
le,T (lulw2 fwyu,)/ 4 . (2.74)
For the purpose of this example IWRP T> is a TO spin state and
[Wk T > a T+1 spin state. The coupling scheme is depicted in

Figure I.11.
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XBL 8010-12462

Figure 1.8 Time dependence of the radical pair Hamiltonian. ET

and ES are the triplet and singlet energies, respectively; K
T, and T3 are the time intervals between collisions. Between
collisions the spins evolve under the influence of the one-electron

Hamiltonians ﬂﬁ for each radical; during collision the large

radical pair Hamiltonian ﬂﬁP dominates the time evolution.
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Figure 1.9 Couplings between the electronic spin states in the
mixing and collision regions. (a) In the mixing region the one-
electron Hamiltonians couple those states differing by 0,%*1 in
the z component of the electron angular momentum. (b) In the
collision region the two-electron Hamiltonian dominates the time
evolution; the dipole-dipole coupling mixes the triplet sublevels
and the exchange interaction causes the triplet surface to be

repulsive and the singlet surface to be bonding.
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Figure 1.10 Time evolution of the electronic spin states after a
collision. (a) Immediately after collision the radical pair is
depleted in singlet so that there is a net flow of population from
the triplet levels to the singlet state. (b) As the radicals
diffuse in the mixing region, the spin state populations are

equilibrated to give 25% singlet and 75% triplet at zero field.
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|.+!5_

XBL 8010-12463

Figure 1.11 Spin-orbit coupling in second-order. Although
spin-orbit coupling cannot connect the radical pair states 1in
first-order, it mav couple through an excited triplet state

and still be faster than the hyperfine interaction.
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The molecular orbital |w> is situated on radical b, and it
is therefore necessary to retain only the summation in ﬂéo over
the nuclei on radical b. Writing ﬂéo in terms of raising and

lowering operators:
Hb b + - +
Heo ==§; gj(rzj)[(lzs +2,8,)/2 4 8 08 o1, (2.75)

and the following matrix elements are obtained after performing

the spin integrations:

<WRP,S“§U“%P,TO> =0 (2.76a)
| . _
<WRP,S|ﬂgolwk,T+l> B <V2’§:€j(r2j)22|w2>/¢r': C (2.76b)
= + _
Vo 1 1Hool¥ > =<, [T, (85w /B = © L (2.760)
0 KTy J

The diagonal elements of ﬂéo are zero since the wave functions

are real (see section 2.4.3). The basis functions are numbered

as:

1 > = !

lyl |va,S> (2.77a)

’\y S !W > (2.77b)
2 K, T,

woy o ( N o g

¥,> [PRP,TO ) (2.77¢)

The radical pair states are taken to be degenerate in the mixing

region, and the following energies are assigned:

E. =E =0 (2.78a)
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E, = E (2.78b)

With Eqs. (2.76a)-(2.78b) the Hamiltonian matrix may be constructed

(neglecting all other interactions):

0 z 0
* *
H = z E C . (2.79)
0 C 0

Diagonalizing ¥, the following matrix of eigenvectors C are

obtained along with the eigenvalues Qi for the case of

E > |g]:

0.707 ¢/E  0.707

c = o 1 /I /E (2.80)
-0.707 ¢/E 0.707
2, = 0 (2.81a)
*
2, = £+ 2007/ (2.81b)
*
QB = -2zC /E . (2.81c)

Assuming a triplet precursor, the singlet character as a function

of time is given by:

|¥ (t)>}2 . (2.82)

S(t) = |<v
RP,TO

RP,S

From Egqs. (2.54) and (2.80)—(2.82)>S(t) is calculated to be
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(with E > |z]):

rr® ¢t

S(t) = = - % cos(2— 5 . (2.83)

N

If IC! is of the order of the spin-orbit coupling constant for

an electron in a carbon 2p atomic orbital [22]:

lz] = 28 cm_l = 0.08 kcal/mole (2.84)
and E is a typical excitation energy in organic molecules:

E = 70 kcal/mole s ' (2.85)
then the frequency in S(t) is

ZCC*/E = 0.18 cal/méle = 1.9 x lO9 Hz/molecule . (2.86)

The electron-nuclear hyperfine couplings appearing in ﬂﬁl
8

7
and XR (section 2.4.2) are generally in the range 10 -10 Hz.

2
Thus, even if the estimate in Eq. (2.86) were reduced by a factor
of 10, it would still be comparable to the hyperfines. Further-
more, there is one factor in favor of the estimate of Eq. (2.86).
The expression for the free radical electron g-factor contains

a second-order perturbation term involving Héo. The deviation

Ag of the free radical g-factor from that of the free electron
value is attributed to the spin-orbit interaction which mixes
excited electronic states into the ground electronic state of

the radical. When the values of ICI and E used above are

substituted into the expression for Ag (in an approximate

-3
fashion), a value of 10 is obtained which is characteristic
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of all of the radicals studied in this work. For a discussion
of the Ag factor along with simple examples the reader is
referred tc Reference 22.

With these considerations, the neglect of spin-orbit
coupling in the standard treatments of radical pair inter-
system crossing [1,2,3] seems rather questionable. As
mentioned earlier, the complex nature of the First Collision
Model precludes the inclusion of spin-orbit coupling, but it
is included in the Continuous Diffusion Model which is presented
in the following chapter. 1In Chapter 6 calculations based on the
Continuous Diffusion Model are presented which show the sensitivity
of both geminate yield and the magnetic isotope effect to spin-
orbit coupling. However, it is also shown (section 6.1.2) that
CIDNP effects, with which the standard treatments of radical
pair recombination are concerned, are far less sensitive to spin-
orbit coupling and may be easily observable even when isotope
effects are not. Thus, the success of those treatments which
neglect the spin-orbit interaction proves little about the

importance it may have in radical pair recombination.
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magnetic field the precession rate of an electron coupled to a
single nucleus is ma where m is the magnetic quantum number and
a is the hyperfine interaction of the nucleus. Ignoring
differences in electron g-factors [this is easily included by
adding a term (gl—gz)H], the difference in precession rate Av

for the two electrons at high fields is [1]:
a b
_ _ '
By, = IlZ m.a, ‘? mjajl (3.3a)

where the sums are over the two radicals for a given nuclear
spin state. Since the electrons precess only about the field
axis at high field, only the secular part of the hyperfine

coupling contributes to Av Assuming only spin 1/2 nuclei are

HF®
present, then at zero field the electron-nuclear coupling becomes

a (secular plus non-secular) rather than ma. By analogy the zero

field expression is defined:
a b \
Ay, = [}1'_: n.a. - %: njaj| (3.3b)

where n = %1 for each nucleus. By averaging over all possible
nuclear spin states, the average difference Av is calculated

for the radical pair. Since a 180° dephasing interconverts
singlet and triplet, k+ + k_is set equal to 20V, Any additional
relaxation terms may be added on to this quantity, This accounts
for all time evolution of the spin states between collisions.

The only time evolution that takes place during collision is

that the singlets react and the triplets are reflected (see

section 3.4).
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3.3 Chemical Loss

The disappearance of radical pairs through chemical reaction
is termed chemical loss and represented by the rate constant

kloss This rate constant is simply the inverse of the radical

palr lifetime defined in section 2.6. For the dibenzylketone

photolysis with decarbonylation, k equals kco’ and for the

loss

bénzophenone/toluene photolysis with scavenging, kloss equals

kS[¢SH].
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3.4 Time Evolution Equations and Boundary Conditions

The factors discussed in sections 3.1-3.3 can be combined to
construct the differential equations describing the time
evolution of the radical pair. The solution requires that the
equations be integrated with the appropriate boundary and initial
conditions imposed on the system. The time evolution equations

are

2

?Tis (r,e) = [DgV -k, -k, T og(r,e) + k_p (r,0) (3.4a)
2 .

%%,T (r,t) = [D,V —k_—kloss] oplr,t) +k oo (r,e) . (3.4b)

The following boundary conditions are introduced:

OS(E’t) >0 as IEI - o (3.5a)
pp(r,t) >0 as |r| » = (3.5b)
pglr,e) =0 lr] = r, (3.5¢)
t-Vp.(r,t) = 0 lr| = r . (3.5d)

Conditions (3.5a) and (3.5b) hold since there are a finite number
of radical pairs. Condition (3.5c¢c) states that all singlets are
absorbed when the interradical separation IEI equals r. the
collision radius; that is, A = 1 in this model (compare section

2.3). Condition (3.5d) states that all triplets are reflected
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when the radicals reach the collision radius.

The initial conditions placed on the system are:

ps(f’o) = fsﬁ(g-go) (3.6a)

OT(E’O) = (1—fS) 6(5—50) (3.6b)

where f. is the fraction of singlets at t = 0 and I is the
initial interradical separation.

Equations (3.4a) and (3.4b) may be separated by the

introduction of the following variables:

X(r,t) = ps(g,t) + pT(g,t) (3.7a)

z(r,t) = kyps(r,t) - k_pp(r,c) | (3.7b)

which give:

X (rt) = [D.V k. ] X(r,t) (3.8a)
ot <’ R loss <0 :
9Z (1 ¢) = [D.VP-(k +k +k. )] z(r,t) (3.8b)
at <’ R + - Tloss 27 : ‘
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3.5 Recombination Yield

The recombination yield R of radical pairs is equal to the

flux of singlets into the reaction zone ]r{ =T, integrated over

~

all time [12b]. This time-dependent flux F(t) of singlets is

given by:
F(t) = da DRf-VpS(r,t) = f dA DRf--Vx(r,t) (3.9)
|r]=rC ~ T rl=r_ - o

where the two integrals are equal for ]r[=rc by Egs. (3.5d) and
(3.7a). Since the diffusion is isotropic, X(r,t) and Z(r,t)
may be written as functions with only time-dependent radial

parts:

]

X(r,t) = 30 % (r,0) ¥ (0,0) (3.10a)

l1,m ’

z(r,e) = 3, 7, (r,e) Y, (0,9) (3.10b)

b

where the Yl m(O,¢)'s are spherical harmonics. The only angular

dependence in the integral of Eq. (3.9) is from X(r,t) so that
when the angular integration is performed, only the spherically

symmetric YO term survives:
o)

ox

X _ 2 0,0
F(t) = !%[’q da D w= (r,t) = Vam r " Dy = (r,t)!rzrc

(3.11)

The recombination yield is:
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e8]

2
R =.%Tdt F(t) = varm T, DR[§%>.ZTdt X905 -(3.12)

The integral over time 1is equivalent to a Laplace transform:

I,{F(t)}=~/ﬂdt exp(-qt) F(t) = F(q) (3.13)
0

where the Laplace transform variable q is zero. Thus,

R = F(0) = V4T r 2 (r,0)] __ . (3.14)
C =T

R é-*O,O
c

3

o

Since the Laplace-transformed x(r,0) is the desired quantity,
the time evolution equations (3.8a) and (3.8b) may be Laplace

transformed:

2 -
[DRV _kloss] X(E’O) = —X(E’O) (3.15a)

? -
(D77 - (k +k_+k; N 2Z(x,0) = -Z(z,0) (3.15b)

los

where use has been made of the fact that X(E’t) and Z(E’t) equal
zero at t = ® because of chemical loss and recombination.

From the initial conditions Eqs. (3.6a) and (3.6b) and the
definitions of X(E’t) and Z(E’t) [Eqs. (3.7a) and (3.7b),

respectively], there follows:

X(r,0) = 6(5—50) (3.16a)

Z(E’O) [fs(k++k_)—k_]6(5—50) Yk_d(f—g ) . (3.16b)
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The 8-function may be written in terms of spherical harmonics:

S(rr) =5 6(cr) ¥ Y5 (6,0 Y, (8,4) . (3.17)

< <o r2 i ,

Since the spherical harmonics are linearly independent, Egs.
(3.15a) and (3.15b) must be true for each individual pair of

1,m values. From Eq. (3.11) only the 1=m=0 term is of interest.

Thus,

2 " 2 )
[DRVr _kloss] xo’o(r,O) = -6(r—r0)/(/2; r) (3.18a)

2 ~ — 2
[PV, "= Gtk +ey (] 2 (r,0) = ~Yk_8(r-t )/ (V4m t7)(3.18b)

2
where now it is only necessary to keep the radial part Vr of the

Laplacian.

The homogeneous equation may be written:

2
Jii-f(r) + g'—a—-f(r) - Qz f(r) = 0 (3.19)

- r or
where f(r) may be x or z. The solutions of Eq. (3.19) are

zeroth-order modified spherical Bessel functions [27]:

f(r) = ¢, exp[-2r|/r + <, exp[+4r]/r . (3.20)

1

Eqs. (3.18a) and (3.18b) can thus be solved for io O(r,O) and

b

IA

Eo O(r,O) and solutions obtained for the two regions r. r < ro

b4

and r, < r < w, Matching the solutions at T, by assuming their
continuity and using the boundary conditions Egs. (3.5a)-(3.5d)

(Laplace transforming them, etc.), the functions ﬁo O(r,O)

bd
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and z, O(r,O) are completely determined. Taking the derivative
b

of X O(r,O) at r =1 [Eq. (3.14)], the recombination yield R
?

is determined in analytical form. The result is:

. i (1+8rc) exp[—a(ro—rc)l +y (I+ar ) exp[—B(ro—rc)] (.21
r (1+8r ) + (I+ar Dk /k_
where
_ 1/2
a = [ky . /Dg] (3.22a)
B = [(k.+k +k. )/p.1+/? (3.22b)
+ "~ "loss R :
Y= £ 01+ (k /k ) -1 . (3.22¢)

- Using Eqs. (3.21)-(3.22c¢) it is possible to calculate l3R and
12R from which a suitable enrichment parameter may be defined
(Chapter 6) for comparison with experiment.

Before proceeding to the next chapter, the Continuous
Diffusion Model will be modified by the addition of an extra

boundary condition in order to treat a case of special experimental

interest-—that of diffusion in a restricted volume.
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3.6 Restricted Volume and Micelles

Surfactants are molecules consisting of one or more
hydrocarbon chains attached to a polar head group. In solution
these molecules form aggregates, or micelles, of various sizes
and shapes in which the nonpolar parts (i.e., the hydrocarbon
chains) of the molecules associate together and the polar parts
(i.e., the head groups) associate together [28]. The type of
micelle treated in this section is that in which the surfactant
molecules are more or less radially arranged into a sphere with
the hydrocarbon chains forming the interior and the polar head
groups forming the surface. An organic molecule may be solubilized
into the interior of the micelle which is roughly equivalent to
a liquid hydrocarbon droplet [28]}. A nonpolar organic molecule
will be repelled from the polar head groups at the surface of the
sphere. In aqueous solution the concentration of nonpolar organic
molecules will be much higher in the micelle interiors than in
the bulk H,0 solution. Thus, when such a solution is photolyzed,
the photochemistry of the organic molecule of interest takes
place within the micelle [6].

The Continuous Diffusion Model is adapted to such a situation
by replacing the boundary conditions (3.5a) and (3.5b% which are

relevant for infinite solution)with the new conditions:

(3.23a)

I
o
It
a]

V0. (r,t)

IE! b

i
=]

el = r, (3.23b)

I
2}

r+Vp (r,t)



I.3 89

where Ty is the micelle radius. Since it is the interradical
separation r and not the individual position vectors of the
radicals which enters the calculation, one radical is always
positioned at the origin. Thus, Egs.(3.23a) and (3.23b) state
that the singlet and triplet radical pairs are reflected when
they separate to the micelle boundary radius T, - For the infinite
volume case (sections 3.4, 3.5) the constraint of fixing one
radical and considering the relative diffusion of the other was
simply a matter of reference frame and was inconsequential.
In the micelle case the artifical constraint of having one
radical remain at the center is a source of error. Nevertheless,
the model still accounts for the general features of diffusion in
a restricted volume.

Replacing Eqs. (3.5a) and (3.5b) with Egs. (3.23a) and

(3.23b), and following the same analysis as in sections 3.4 and

3.5, the expression obtained for recombination in a micelle is

R = {(A3¢1+A1¢2)(1+arc) exp[a(ro—rc)]

(8,6, +0,6,) (1-ar ) exp[—a(ro-—rc)]}/(AIAA—A2A3) (3.24)

where

A =1 - ar (3.25a)

>
il

(l+arb) exp[—2a(rb—ro)] (3.25b)
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A3 = {(l—Brb)[k+(l-arc) + k_(l+8rc)] exp[B(ro—rc)]
- q[k+(l—urc) + k_(l—BrC)} exp[-B(ro—rC)]} exp[—a(ro—rc)]
(3.25¢)

Az;= {(l—Brb)[k+(l+urC) + k_(l+8rc)] exp[B(ro—rc)]
- qlk+(1+ﬂrc) + k_(l—BrC)] exp[—B(rO-rC)]} exp[a(ro—rc)]
(3.25d)
¥, = (Al—Az)/(Zaro) (3.25e)
¢, = (r /r )Yk_(1-Br -q) (3.25f)
q = (1+€r.) exp[-2B(r -t )] . (3.25g)

Although the micelle was introduced as a special case of
the derivation of the preceding section, in fact, the opposite
is trué. Eq. (3.21) for recombination in an infinite volume is
a special case of Eq. (3.24) and is obtained directly from Eq.

(3.24) in the limit of r, - « (see Chapter 6, Figure I1.42).

b
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4, PHOTOCHEMISTRY
4.1 Benzophenone and Toluene

The benzophenone photochemistry involves two steps as
shown in Figure I.12: (a) production of photoexcited benzo-
phenone and (b) reaction of the excited benzophenone with
toluene. For the photoexcitation step irradiation was performed
with a high pressure mercury UV lamp with all light of wavelength
shorter than 3450 Z filtered out so that only the lowest excited

singlet S, of benzophenone could be populated.

1

Sl occurs 74 kcal/mole above the ground state [29] and has

an absorption maximum " 3500 R in cyclohexane [30]. S1 inter-
system crosses to the first excited triplet Tl’ in v 3 x 10_11
sec with near unit probability [31]. From theoretical considerations
[32] and chemical reactivity, Sl and T1 are identified as n,W*
states. That is, they are formed by the excitation of a non-
bonding electron on oxygen to the m* orbital of the carbonyl
group. Since the two states have the same orbital make-up,

the spin-orbit interaction cannot couple them directly, and

the fast intersystem crossing must involve an intermediate

T2 state (see Figure I.13). Furthermore, since Sl and Tl

are separated by 5.7 kcal/mole [29], the high rate of inter-
svstem crossing indicates that there is significant Franck-Condon
overlap between S1 and an excited vibrational state of Tl

giving a near degenerate condition as shown in Figure I.13. T2

* , * . .
is presumably a m,m state (i.e., T>T excitation).
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Figure 1.12 (a) Benzophenone is photoexcited to a singlet state

which decays to a metastable triplet.

(b) The alkoxy-like

triplet state abstracts a hydrogen from toluene and, conserving

spin correlation, produces a triplet radical pair.



h

A

Chemistry

XBL 8010-12621

Figure T.13 Photochemical route to produce triplet state
chemistry. The carbonyl moiety is photoexcited to the first

excited singlet state. The excited singlet S, decays to the

1

lowest triplet via the spin-orbit interaction which operates

through an intermediate excited triplet T, (see sections 2.4.3

2

and 2.5.6). The metastable triplet T, can react to form a triplet

1

radical pair.
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The excited triplet T, has a room temperature lifetime in

1
"inert'" organic solvents of Vv 4 x lO_3 sec [33]. Because a
non-bonding electron has been excited from the carbonyl oxygen,
the excited state appears radical-like, that is, like an alkoxy
radical [34]. The radical-like oxygen abstracts a hydrogen from
toluene with rate constant k¢CH3 equal to 6 x lO_5 M_1 sec_1
[33,35]). The toluene conceptrations used were 1 to 10 M, and
thus the abstraction reaction took < lO_6 sec, well within the
excited state lifetime. The hydrogen abstraction takes place
without change of electron spin [36], and since Sl decays to Tl
much faster than the rate of hydrogen abstraction, the radical
pairs are formed with 1007 triplet electron spin correlation.

An important consideration in regard to radical pair
intersystem crossing arises when the state correlation diagram
for carbonyl hydrogen abstraction is examined. A schematic
correlgtibn diagram is shown in Figure I.l4. In zero order the
S, and S, potential energy surfaces cross. Thus, in zero order

1 0

if the radical pair state TRP crosses over to SRP’ the radical

pair still remains on an unbound surface. In first order, mixing
between Sl and SO is allowed, but Tl—SO mixing is forbidden
because of the different electronic spin. The Sl—SO mixing
causes an avoided crossing as shown in the second part of Figure
1.14, and now SRPvcorrelates with the bound state SO. The
strength of the avoided crossing and the rate at which the

radicals move on the surfaces (i.e., adiabatic versus non-

adiabatic motion) are major factors in determining (1) the
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oth Order
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Figure I.14 Correlation diagrams for benzophenone and toluene radical
pair. These figures are based on the work of Salem | 36] for
formaldehyde plus methane. (a) In zeroth-order there is no interaction
to mix the ground and excited singlet states; thus, the singlet radical
pair state may not lead to product. (b) In first-order the excited

and ground singlet energy surfaces cannot cross; therefore, the

singlet radical pair lies on a bound potential energy surface.
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reactivity A of singlets during collision (see section 2.3) and
(2) the preparation of a pure triplet radical pair. The fact
that triphenylethanol is a product of the benzophenone/toluene
photolysis indicates that the surface crossing is indeed avoided.
The geminate recombination process for the triplet radical pair
from benzophenone and toluene (or from dibenzylketone; see below)
is shown schematically in Figure I.15.

The hyperfine couplings for the radical pair are shown in
Figure I.16. Although the ketyl radical is drawn with the
electron localized at the central carbon, the 13C at this position
does not have a very large hyperfine coupling, because the
unpaired electron resides in a ™ orbital and is really
delocalized over both aromatic rings. In addifion, the "
molecular orbital is made up of p atomic orbitals which have
nodes at the nuclei.

The isotropic g-factors are | 37]:

gKetyl = 2.003

1

gBenzyl 2.0026

The deviation from the free electron g-factor of 2.0023 indicates
that spin-orbit coupling is non-zero (see sections 2.4.3 and

2.5.6).
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Figure T1.15 Diffusive behavidr of a triplet radical pair. The
overbar indicates collision. The initially prepared triplet
cannot bond so it separates. During separation the hyperfine
couplings interconvert triplet and singlet, and upon re-encounter
bonding is possible. Those radicals with the largest hyperfines

interconvert the fastest and are most likely to form product.
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HYPERFINE CONSTANTS IN MHz
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Figure I.16 Hyperfine coupling constants for the radical pair
produced by photolysis of benzophenone and toluene. All values

are taken from Reference 37.
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4.2 Dibenzylketone

Tne photolysis of dibenzylketone to produce a radical pair
is shown in Figure 1.17. Photol?sis was performed with
irradiation > 3000 Z which shouid populate only the n,ﬂ*
singlet. Engel [38] has determined the energy of ln,ﬂ* to be
88 kcal/mole (3250 2) and of 3n,ﬂ* to be 79 kcal/mole. The
triplet energy is more than sufficient to accomplish bond

scission since the bond strength of a similar carbon~carbon

bond:

CH,CO *CH,

is listed as 63 kcal/mole {39]. From singlet and triplet
sensitization and quenching experiments Engel [38] has
determined that the 3n,ﬂ* level is populated with near unit
quantum yield (see Figure 1.13, section 4.,1) and that bond
scission occurs in Vv 10—10 sec. Since decay of Tl to SO
cannot compete with the rate of bond scission, triplet radical

pairs are formed with near unit quantum yield as shown in Figure

1.17.

A schematic zero-order correlation diagram for the ketone
cleavage is shown in Figure I1.18a. When first-~order mixing of
the triplet states is allowed, the correlation diagram of Figure
I.18b results. From the latter diagram it is reasonable to
expect the formation of a triplet radical pair since the cleavage
of Sl is endothermic and the cleavage of T, is estimated from

1

the above stated energies to be exothermic by 16 kcal/mole. As
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Figure I1.17 Preparation of the dibenzylketone triplet radical
pair. R = C6H5CH2. Photolysis proceeds through an excited

singlet state which decays to an excited triplet (see Figure I.l3);
The triplet decays via bond scission to a triplet radical pair.

The quantum yield for loss of CO is ™ 0.9 [6b]; this value is a
lower limit for production of the radical pairs since some of

the pairs recombine.
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Figure 1.18 Correlation diagrams for the dissociation of
dibenzyvlketone into a radical pair. These figures are based

on the work of Salem [36] for acetone. (a) In zeroth-order

the n,ﬂ* states cannot dissociate into radical pair states.

(b) In first-order only the excited triplet state can dissociate
into a radical pair; thus, the photoexcited dibenzylketone

produces a pure triplet radical pair.
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in the case of benzophenone, radical pair intersystem crossing
is a viable route to geminate recombination since SRP is a bound
state. Thus, the triplet radical pair evolves as shown in
Figure 1.15 (section 4.1).

The radical pair is shown in Figure I1.19 with the relevant
hyperfine couplings. 1In contrast to the benzophenone generated
radical pair, the ketyl radical from dibenzylketone is a o
radical. That is, the unpaired electron on the ketyl radical
is localized in a sp2 O orbital on the carbonyl group. Due to
the localization and s character of the orbital, the carbonyl
13

C has a large hyperfine constant. The g-factor for the ketyl

radical is [37]:
g = 2.0007

with g for the benzyl radical given in section 4.1.



1.4 103

HYPERFINE CONSTANTS IN MHz
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Figure 1.19 Hyperfine coupling constants for the radical pair
produced by photolysis of dibenzylketone. All values are taken

from Reference 37.
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5. EXPERIMENTAL DETAILS

All photolyses were performed with a high pressure mercury
capillary lamp (Illumination Industries AH-6). The reaction
conditions, irradiation set-up, and product work-up are described

below under the three reactions studied.

5.1 Benzophenone and Toluene

Photoexcited benzophenone abstracts a hydrogen atom from
toluene and forms a triplet radical pair (Chapter 4), and for
geminate recombination to occur, there must be intersystem
crossing. Because a 13C at the radical center of either benzo-
phenone or toluene will speed up the intersystem crossing, the
geminate product 1,1,2-triphenylethanol is expected to be
enriched in 13C. On the other hand, the radicals which diffuse
apart are slightly de-enriched in 13C, and, consequently, the
1,1,2-triphenylethanol formed homogeneously ﬁas less 13C than
the reactants. Thus, the magnetic isotope effect in the benzo-
phenone/toluene reaction was measured as follows:

1) Benzophenone and toluene were photolyzed to form
1,1,2-triphenylethanol both geminately and homogeneously., The
13C content of the isolated product should be essentially the
same as that of the reactants.

2) Benzophenone and toluene were photolyzed in the
presence of excess scavenger (thiophenol) which scavenges the

benzyl radicals and prevents homogeneous formation of the
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triphenylethanol. Thus, the isolated 1,1,2-triphenylethanol is
pure geminate product and should be 13C enriched. The condition
of complete scavenging was determined by varying the thiophenol
concentration and determining the region where the 1,2-diphenyl-
ethane disappears, and the yield of the 1,1,2-triphenylethanol
approaches a constant value (asymptotic geminate yield).

3) By comparing the 13C content of the triphenylethanol
formed under the two conditions of no scavenger and excess
scavenger, the magnetic isotope effect was determined.

Using the above procedure the reactions summarized in
Table I.l1 were studied. Reaction volumes were typically 5 ml,
and the reactions were performed in 25 ml pyrex erlenmeyer
flasks. The flasks were stoppéred with rubba septa, and O2

was flushed out by bubbling dry N_ through the solutions for

2
" 1 hour. The 13C-enriched and deuterated benzophenone compounds
were purchased from Merck, Sharp, and Dohme of Canada. The
13C—toluene was synthesized according to the procedure outlined
in Appendix F. Spectralgrade solvents were used without further
purification.

Photolysis times were typically 45 minutes which gave 75%
reaction of the benzophenone. The flasks were suspended in a
pvrex dish/water bath with the UV lamp below the dish. The
water bath contained a copper coil with running wafer and the
bath was stirred to maintain the temperature v 22°C. The lamp

to reaction flask distance was ~ 10 cm. Within the water bath

in the path between lamp and flask was a 1 cm thick piece of
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Table I.1 Reaction Conditions for Benzophenone plus Toluene

Photolyses
. 3 3
Reaction Solvent [¢2CO} x 107 M [¢SH] x 107 M [¢CH3]M

1-1 Benzene 3.0 0.0 3.1a
1-2 " 2.9 4.4 3.0%
1-3 " 2.7 14 2.8%
2-1 Acetonitrile 3.0 0.0 3.12
2-2 " 2.9 4.4 3.12
2-3 " 2.7 14 2.8%
3-1 Acetonitrile 2.7 0.0 0.30°
3-2 " 2.7 7.3 0.30°
3-3 " 2.7 15 0.302
4-1 Acetonitrile 0.27° 0.0 0.94
4=2 " 0.27° 1.7 0.94
5-1 Acetonitrile 1.3P 0.0 4.7
5-2 " 1.3P 7.8 4.7
6-1 Acetonitrile 3.0° 0.0 4.7
6-2 " 2.9¢ 17 4.5

4Toluene initially enriched to 40% in the o position.
bBenzophenone initially enriched to 407 in the carbonyl position.

CBenzophenone initially enriched to 40% in the carbonyl position,

and rings deuterated to 997% 2D.
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plexiglass which served to filter out all light of wavelength

o
< 3450 A. The use of this filter minimized the occurrence of

unwanted side reactions by allowing only the ln,ﬂ* of benzophenone
at 3500 Z to be produced. Furthermore, because of the water bath
there was 2-3 cm of HZO in the light path which served as an IR
filter and helped prevent solution heating.

The reactions were characterized by gas chromatography using
standards of benzophenone, 1,2-diphenylethane, 1,1,2~triphenyl-
ethanol, and tetraphenyl-1,2-ethanediol. The last product was
not observed in the GC, presumably because it either decomposed
or had such a long retention time that its peak was not detected.

The 1,1,2-triphenylethanol gave two peaks which were attributed

to the alcohol and its dehydration product triphenylethylene:

A

¢,COHCH,6 == ¢,CCHY + H,0

This assignment was further substantiated by the fact that only
the dehydration product could be detected in the mass spectrum.
A Varian 3740 Flame Ionization Detector gas chromatograph was
used. The columns were 6' by 1/8" 37 SE-30 (80/100 mesh Supel-
coport) and 3% OV-17 (100/120 mesh Supelcoport) and were run in
the temperature range 160-210°C.
For product analysis the reaction solvents were evaporated
and the mass spectroscopy of the residue performed without
further separation. The dehydration product of the triphenylethanol,
triphenylethylene, appeared in the mass spectra without

complication from other reaction products. The mass spectrometer
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was an MS-12, and multiple spectra (20-40 scans) were recorded
of each reaction. Although the dehydration reaction could not
be avoided, further fragmentation was prevented by running the
mass spectrometer at low ionization voltage Vv 12 eV. Peak
intensities were determined by an online computer which
introduced much unnecessary fluctuation into the data. After
rejection of anomalous values, the data were averaged and

theoretical spectra calculated to determine the isotopic content.
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5.2 Dibenzylketone

The dibenzylketone (DBK) photolysis is a cyclic reaction
where the geminate recombination regenerates the starting material.
Since the initial radical pair is a triplet (Chapter 4), the

. . 13
nuclear magnetic isotope effect favors recombination of C

containing radical pairs so that as the photolysis proceeds the

IBK becomes progressively enriched in 13C. Those pairs which

diffuse apart cannot reform the ketone, because decarbonylation
of the acyl radical is much faster than homogeneous recombination.
In the benzophencne/toluene reaction the relevant quantity to
13, 13 .
measure was C in the homogeneous product versus C in the
geminate product. In the DBK reaction the relevant observable
, 13 ) ' 13
is the C content of partially reacted ketone versus the C
content of unreacted ketone. The experimental procedure was to
photolyze the ketone, monitor the reaction progress by comparing
the relative amounts of the ketone and the homogeneous product
. . 13
1,2-diphenylethane, and monitor the C content of the ketomne.
Because the reaction is cyclic, the enrichment is sensitive

. . . . . . 12
not only to the differential in geminate recombination of C

13 . .
and C, but also to the total amount of geminate return since

this determines the number of cycles a molecule may go through.
As such, the enrichment is very sensitive to the decarbonylation
rate (i.e., temperature dependence) and the diffusion rate (i.e.,
viscosity dependence) which determine the ratio of homogeneous

to geminate product. The experimental approach taken was to

optimize the dibenzylketone enrichment through manipulation of
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temperature and viscosity, and Table I.5 (secfion 6.2.2) summarizes
the reaction conditions used.

Reaction volumes were typically 25 ml, and the DBK
concentration was v 0.1 M. Because frequent aliquots were
taken, no attempt was made at degassing the samples. However,
to keep the reactions dry, the reaction cells were kept under a
positive pressure of dry NZ‘ The 13C—enriched DBK reagent was
synthesized according to the procedure outlined in Appendix F.
Reagent grade solvents were used without further purification.
Because DBK absorbs at a shorter wavelength than benzophenone,
quartz glassware was used for the photolyses. For room temperature
experiments a similar photolysis set~up was used as for benzophenone.
For the low temperature experiments a specially designed all
quartz 100 ml cell was used which could be immersed in a constant
temperature bath and irradiated from above. The cell is pictured
in Figure I.20.

Three bath set-ups were used:

1) Ice/HZO

2) Dry ice/ethanol

3) Ethanol bath cooled by cold N2 flowing through an

immersed copper coil.

The temperature was measured using a copper/constantan thermocouple
inserted in the cell, and temperature stabilization was achieved
through a combination of varying the bath temperature and the
irradiation intensity (i.e., the lamp to cell distance).
Typically the lamp to cell distance was 15 cm with the cell 1 cm

below the surface of the bath.



I.5
IMMERSIBLE QUARTZ REACTION CELL e

TOP

(BOTTOM) T T
VIEW

I
|
|
|
|
|

—70 mm 6.0/

minimum

i 4 9 mm
! 6 172
I OPTICALLY CLEAR, inches
i FLAT WINDOW

BOTTOM AND

W7/ l

XBL 812-8105
Figure 1.20 Immersible quartz reaction cell. The cell may be
immersed in a constant temperature bath for temperature control
and has an optically flat window to allow photolysis from above.
The bottom and sides are silvered to increase the light intensity
in the cell. The side arm is designed to allow removal of
aliquots while keeping a positive pressure of dry N2 in the cell.

During photolysis a copper/constantan thermocouple is inserted

in the cell.
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The reaction progress was easily characterized using gas
chromatography (Varian 3740 Gas Chromatograph and the columns
previously described) to measure the DBK and 1,2-diphenylethane
peaks.

The peak areas were computed by triangulation and compared
with peaks from standard solutions of known concentration.
Before‘performing the isotopic analysis, the DBK was purified
by two steps of separation. The first step was preparative thin
laver chromatography. A 50/50 methylene chloride/hexane solvent
was used with Analtech Uniplates of 2000 u thick Silica Gel GF.
The 8" x 8" plates were.typically loaded with 100-200 mg of
material obtained by taking a reaction aliquot and distilling off
the solvent. For loading the plates, the material was dissolved
in hexane. After collecting the DBK band, the ketone was further
purified by preparative gas chromatography. A 10' by 1/4" 10%
SE-30 (80/100 mesh Gas-Chrom Q) column was used with temperature
equal to 200°C. Column injections were 50 ul of a DBK/acetone
solution.

With the purified DBK the 13C enrichment of the carbonyl
carbon (initially enriched to 30% for ease of analysis) was
measured with two different methods: mass spectrometry and NMR
spectroscopy. In the former method a mass spectrum was taken for
the molecular ion of the DBK. The MS-12 mass spectrometer was
used as with the benzophenone/toluene, but it was found that
rather than using computer analysis the mass spectra could be

determined far more accurately and reproducibly by obtaining a
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strip chart recording of the ion flux and measuring the peak
heights by hand. 20-40 scans were obtained as before, although
the reproducibility was such that there was little need to
average. To minimize fragmentation of the molecular ion, the
mass spectrometer was run at very low ionization voltage Vv 12 eV.
The mass spectra were analyzed by assuming natural abundance
isotopes at all positions except for the carbonyl carbon.

Although mass spectrometry is more accurate, NMR was also
used, because it has the advantage of monitoring the isotopic
content at the carbonyl position directly. A carbonyl 13C
splits the proton resonance at the adjacent methylene position
(see Figure I1.21) by 6.3 Hz. By observing the proﬁon NMR spectrum
and comparing the integrated areas of the 13C satellites to the
unsplit methylene resonance, the percent 13C is obtained. One
set of results where the NMR spectrum was recorded as a function
of the percent of ketone remaining is shown in Figure I.22.

The accuracy of the NMR is limited by the fact that with
the small coupling constant of 6.3 Hz the methylene resonances
are not fully resolved from one another, In order to find the
peak areas it was necessary to use a curve fitting program
(Nicolet Curve Analysis Program) with the positions, widths,
and heights of three Lorentzians as variables (see Figure 1.23).
Because of phase errors in the NMR spectra and line broadening
which distorts the Lorentzian lineshapes, the fitting did not
give very accurate numbers (i.e., v 5% error), but it did serve

to confirm that the carbonyl carbon was being enriched (see Fig. I1.22).
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’ 13
Figure T1.21 Dibenzylketone molecule. 1In the absence of C the
. . . . 13
methvlene protons give a single NMR line. With C at the

carbonyl position the methylene resonance is split by 6.3 Hz.
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Figure I.22 Methylene proton NMR signal as a function of remaining

ketone for photolysis of dibenzylketone in cyclohexanol at o°c.

Isotopic analysis by curve fitting the methylene triplets gives:

100% ketone, 29% 13C; 9% ketone, 36% 13

13
0.17 ketone, 47% C. Total photolysis time is 409 min.

C; 17 ketone, 40% 13C;
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Peak Analysis of Dibenzylketone Methylene Triplet

Experimental

Calculated

17.5%___

XBL 8011-12735

Figure I.23 Curve fitting analysis of the dibenzylketone methylene

triplet. The center line is the proton resonance in the absence

13 .. 13
of C. The outer resonances are from molecules containing a C

at the carbonyl position. The accuracy of the fit is limited by

o overlan o o 5 Tarea fo et le and Ly shoce erirers
the overlap of the long Lorentzian tails and by phase errors,
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The NMR spectra were taken with a pulsed 180 MHz spectrometer,
and for some of the very dilute samples (10_2 - 10"3 M since
99.9% of the ketone was regcted), several thousand shots were
required for good signal/noise. 16 K FID's were acquired for
maximum peak resolution, and the acquisition time per shot was
"~ 6 seconds. To avoid error due to the protons (satellite lines)
coupled to 13C having a different relaxation time than the protons
(center line) "coupled" to 12C, the relaxation after saturation
of the methylene triplet was observed (see Figure I.24) with the

results:

lH to 130 (upfield): Tl = 2.5 % 0.1 sec
lH 13 . -
to C (downfield): Tl = 2.6 * 0.1 sec
lH to 12C: Tl = 2.6 * 0.1 sec .

Thus, no error.is expected from having a short recycle time
(recycle time is equal to the acquisition time),

For the dilute samples (10—2 - 10_3 M) it was necessary to
exclude H20 since its resonance could swamp out the ketone
resonance. For this purpose dry, clean NMR tubes (0.5 ml) were
soaked several hours in D20 and then washed and dried with
d6—acetone. 99.95% deuterated chloroform was used as solvent for
the NMR samples.

Viscosities for the neat reaction solvents were interpolated

from the tables in Reference 40. TFor the 70/30 and 80/20

cyclohexanol/isopropanol (weight/weight) solvents the viscosities
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T, Recovery of Dibenzylketone Methylene Triplet
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Figure I.24 T1 recovery of dibenzylketone methylene triplet. To
within experimental error, the relaxation time of the protons is
independent of whether they are coupled to 13C or not. Thus,
there is no distortion in the intensities when a short recycle
delay is used in signal averaging. The measured relaxation time

is 2.6 * 0.1 sec.
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were measured with a falling ball viscosimeter as follows (see
Figure I.25). Stainless steel balls of 1/16", 1/8%, 5/32", and
3/16" were dropped through a tube containing the solvent mixture
of interest, and from the fall times of the balls the viscosity

of the solvent could be calculated using the treatment of

Laughlin and Uhlmann [41]. The drop tube had a 40 cm long neck

of 0.6 cm inner diameter which slowed the drop rate of the balls
and also allowed them to temperature equilibrate with the solvent.
Below the neck was the area calibrated for the fall. This

region had'a 2.66 cm inner diameter and 10 cm length. The

drop tube was completely immersed in an ethanol bath in a silvered
vacuum jacketed glass dewar with an unsilvered (i.e., clear)
strip down the side for observation. The temperature of the bath
was regulated by bubbling cold N2 through the liquid. During
measurements the N2 was turned off to avoid disturbing the drop
tube. The temperature within the drop tube was measured by

a copper/constantan thermocouple. It was also necessary to
measure the solvent densities. This was done by immersing

a graduated cylinder with solvent in the temperature bath and
measuring the solvent volume as a function of temperature,
Assuming a cubical coefficient of expansion of glass of 2.5 x 10.-S
per degree centigrade [39], the error in the density measurements
due to contraction of glass components is < 0.27 over the
temperature range studied. With the falling ball and density

data the results of the viscosity as a function of temperature

measurements are shown in Figure I.26.
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Figure I1.25 Falling ball viscosimeter. The long neck of the

drop tube (not drawn to scale) allows temperature equilibration

of the falling ball with the solvent before reaching the calibrated
area. Ethanol was used for the bath, and its temperature was

regulated by blowing cold N2 through the bath. During measurements

the N2 was turned off to avoid disturbing the drop tube.
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Figure I.26 Viscosity measurements for cyclohexanol/isopropanol
solutions. Each curve is labeled by the weight/weight ratio of
cyclohexanol to isopropanol. Using the falling ball viscosimeter
of Figure I.25 and the treatment of Reference 41, the measured
viscosities were independent of ball size: e 1/16", A 1/8",

X 5/32", + 3/16" diameter stainless steel balls. The results
were unchanged by the addition of 0.06 M 1,2-diphenylethane to
simulate experimental conditions: O 1/16", A 1/8" diameter balls
with 0.06 M 1,2-diphenylethane. Fitting the lines with an
Arrhenius expression the following activation energies are
obtained: 70/30, 11 kcal/mole; 80/20, 13 kcal/mole; 90/10

17 kcal/mole.
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5.3 Benzaldehyde

Photoexcited benzaldehyde (¢COH) was studied as a candidate
for production of triplet radical pairs through hydrogen abstraction
from a substrate. In initial experiments benzaldehyde was photo-
lyzed at high concentration (2 M) in toluene and in cyclohexane.
In both cases a polymeric material was formed which was not amenable
to further analysis. It was assumed that the benzaldehyde was
reacting too efficiently with itself, and, therefore, a substrate
with a more labile hydrogen was needed. Diphenylmethane (¢2CH2)
was chosen as substrate (and solvent), but it was found to be
>unstable under photolysis conditions [42]. When pure diphenyl-
methane was photolyzed, 1,1,2,2-tetraphenylethane was formed,

presumably through the following free radical mechanism:

hv s
¢2CH2 — ¢2cn + He

2¢26H —  ¢,CHCHY, .

After these failures benzaldehyde was eliminated from further

consideration.

In retrospect, benzaldehyde reacting with itself via
hydrogen abstraction could provide a very interesting system to
study [43]:

hv

$COH —+ GCOH®

$COH' + ¢COH — [$C(OH)H ¢C0]T ,
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since the acyl radical (¢CO) is a 0 radical and therefore has
13 2 - rn Faid = 1 -l 1 243 r
a large ~“C hyperfine (359 MHz) at the carbonyl position [37].

It is reported that benzaldehyde undergoes unimolecular reaction

[44] :

scom > [4C0 -H] )

This also produces the acyl radical but now via a mechanism

which allows a cyclic reaction to be studied as in the case of
dibenzylketone. Since the phenyl radical (¢°*) is less stable

than the benzyl radical (¢6H2), the acyl radical from benzaldehyde
should decarbonylate more slowly than that from dibenzylketone

and therefore give a more efficient geminate recombination and

enrichment system (see section 6.2).
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6. CALCULATIONS AND EXPERIMENTAL RESULTS

Results are presented in this chapter for the benzophenone
plus toluene and the dibenzylketone reactions. For the calcula-
tions with the First Collision Model eight hyperfines were used:
the four largeét from each radical. For the Coqtinuous Diffusion
Model calculations, Eq. (3.3b) was used to determine AV with all
of the known hyperfine constants included in the summations. 1In
both models unit reactivity of singlets during collision was
assumed; that is, A = 1. The same values of T, and ro were used
for both reactionms. r, was calculated from the molecular density
of toluene, and r, was derived from experimental results for
dibenzylketone (section 6.2.2). For the benzophenone plus toluene
reaction a value of 1 msec was used for the radical pair lifetime

for dibenzylketone.

Tps Eq. (2.89) was used to calculate Tep

The parametrization of the isotope enrichment is discussed below

with the experimental results.
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6.1 Benzophenone and Toluene

6.1.1 Geminate Recombination

The photolysis of benzophenone in toluene to produce 1,2-
diphenylethane,'l,l,2—tripheny1ethanol, and tetraphenyl-1,2-
ethanediol (see Figure I.27) has been previously established
[45]. The first-order dependence on benzophenone is demonstrated
in Figure I.28 where it is shown that the yields of triphenyl-
ethanol and diphenylethane vary linearly with the initial
concentration of benzophenone.

The efficiency of bubbling N2 through the reaction solutions
to remove 0, is shown in Table I.2 where it is seen that the
diphenylethane yield drops markedly when there is no degassing
(i.e., no removal of 02). The drop is attributed to the reaction
of O2 with the benzyl radicals [45]. Assuming that the benzyl
rédicals remove all of the O2 from solution; the difference in
yields of the diphenylethane gives an estimate of v 10_3 M for
the concentration of 02 present in undegassed solution.

The experimentally determined ratio of 1,1,2-triphenylethanol
to 1,2-diphenylethane formed is 1.6 * 0.1 (see Figure 1.28).

From this number it follows that 45% of the benzophenone which
abstracts a hydrogen from toluene forms triphenylethgnol. To
isolate that fraction of the triphenylethanol which is formed
geminately, it is necessary to scavenge all radicals escaping
fast geminate recombination before they have a chance to undergo

homogeneous reaction. The results of an experiment with varying
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Figure I.27 Radical—~radical coupling products from the photolysis
of benzophenone and toluene. The product 1,1,2-triphenylethanol

is formed homogeneously and geminately.
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Figure I.28 Linear dependence of the yields of 1,1,2-triphenyl-
ethanol and 1,2-diphenylethane on the initial concentration of
benzophenone. Toluene was the solvent. Each reaction was
photolyzed for 1 hour. The simple linear dependence of the
yields indicates that the reaction as illustrated in Figure I.27
is uncomplicated by impurities or side reactions. The ratio of

the triphenylethanol yield to diphenylethane is 1.6 * 0.1.
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Table 1.2 Efficiency of Flushing out O2 with N2

Reactant® 7 N, Flushingb Product
[¢2CO]M (minutes) [¢CH2CH2¢]M
0.003 0 0.0002
" 30 0.001
" 60 0.001
" 90 0.001

a, .
Toluene is the solvent.

bBefore photolysis the stoppered reaction flasks were
immersed in an ice bath to reduce the toluene vapor

pressure, and dry N, gas was bubbled through them.

2
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concentration of the radical scavenger thiophenol ¢$SH are shown
in Figuré I.2 (section 1.2). Thg 1,2-diphenylethane disappears
for [$SH]/[$,C0] ~ 2 (i.e., [¢SH] ~ 5 x 107> M), which indicates
very efficient scavenging of the benzyl radicals by the thiol,.
(See section 2.6 for an estimate of the scavenging rate constant
kS). The 1,1,2-triphenyliethanol, however, persists all the way
out to [¢SH]/[¢2CO] = 6 and appears to be leveling off at a non-
zero value. This non-zero value represents the geminate fractiom.
The time scale of geminate recombination is far too fast (1077 -
10_8 sec) for the dilute scavenger (Vv 10_2 M) to compete with.
This may also be shown as follows.

Since the homogeneous concentration of radicals depends on
the concentration of benzophenone, in the presence of scavenger the
homogeneous radical-radical coupling products are formed more
efficiently as the benzophenone concentration increases. The
linear dependence of the triphenylethanol yield on benzophenone
concentration shown in Figﬁre I.29 indicates, therefore, that at
0.015 M thiophenol ([¢SH]/[¢2CO] = 5 in Figure I,2) the triphenyl-
ethanol is formed only geminately. Together the data of Figures
I.2 and .1.29 demonstrate that thiophenol serves as an efficient

radical scavenger.

Many other scavengers were tried but had to be rejected
because of complicating side reactions. One example is

bromotricnloromethane BrCCl3 which has been used frequently else-

where [ 2 ]. When BrCCl3 was photolyzed in toluene (no benzophenone

present) both a-bromotoluene and 1,2~diphenylethane were formed.
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Figure I.29 Linear dependence of the 1,1,2-triphenylethanol yield

on the initial benzophenone concentration in the presence of
scavenger. The concentration of the scavenger thiophenol is

0.015 M; toluene is the solvent. Each reaction was photolyzed for

1 hour. If triphenylethanol were being formed from radicals produced
by different benzophenone molecules, then the efficiency of scaveng-
ing would go up as the benzophenone concentration goes down. However,
the simple linear dependence of the yield indicates that the reaction
is first-order in benzophenone; that is, the triphenylethanol is

formed only geminately.
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Presumably the BrCCl3 dissociates under photolysis conditions

BrCCl, NV, opre 4 ~CCl,

due to the relatively weak (55 kcal/mole [39]) bromine-carbon
bond. Both of tﬂe radicals produced can abstract hydrogen from
toluene since the bond energies of hydrogen to bromine (87.4
kcal/mole) and hydrogen to trichloromethyl (96 kcal/mole) are
both greater than hydrogen to benzyl (85 kcal/mole). Thus,

BrCCl, serves as an alternate source of benzyl radicals. Further-

3

- more, the G-bromotoluene formed by scaveriging

¢CH2° + BrCCl, — ¢CH2Br + +CCl

3 3

was found to be unstable under photolysis conditions as
photolysis of a-bromotoluene in toluene produced 1,2—diphenylgthane.
Returning to thiophenol, the data of Figure I.2 are plotted
relative to the unscavenged reaction and only show the chénge in
vield as scavenger is added. To obtain the actual geminate
recombination yield R, it is necessary to correct for reaction
between the thiophenol scavenger and triplet benzophenone. The
rate constants for reactionof triplet benzophenone with toluene

and thiophenol are [35]:

6.3 x 105 le sec.\_1

k
$CH,

2.6 x 108 le sec‘_l .

P
I

$SH
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Given the large value of k¢SH’ the thiophenol competes effectively
for the photoexcited benzophenone in spite of the large difference

in concentrations:

[¢CH3] 9.4 M

fi

[$SH] 0.016 M

The effect of the scavenger is easily accounted for, since it is
known that thiophenol does not photoreduce but only quenches the
excited benzophenone [46]. The labile thiyl hydrogen is believed
to be reversibly abstracted by the excited benzophenone,resulting
in ground state ketone and thiol [46]. Thus, for the data of
Figure 1.2 after 45 minutes of photolysis, 757 of the benzophenone
is consumed when no thiophenol is present, but 547 is consumed
when [¢SH]/[¢2CO] = 6.

The true geminate yield is obtained by dividing the moles
of 1,1,2-triphenylethanol produced by the moles of benzophenone
consumed,as is shown in Figure I.30, Assuming no homogeneous
reaction at [¢SH]/[¢2CO] = 6, the geminate yield is seen to be
8%. This value for photolysis of benzophenone and toluene with
natural abundance 12C is to be compared with Figure I.31 where
12R is calculated as a function of Davg’ the average diffusion
coefficient for the two members of the radical pair. The
diffusion coefficient of the benzyl radical in toluene should
be close to the self-diffusion coefficient of toluene which is
2.3 x 10_5 cmz/sec [47]. Since the ketyl radical is about twice

the size of the benzyl radical, it should diffuse somewhat more
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Figure T.30 Detérmination of the geminate yield of 1,1,2-triphenyl-
ethanol. The yield is the moles of triphenylethanol formed per
mole of benzophenone consumed. The ratio of thiophenol to
benzophenone is for the beginning of photolysis. The initial
concentration of benzophenone is 0.003 M, As the concentration

of radical scavenger increases, only the triphenylethanol which

is formed geminately remains. For [¢SH]/[¢2CO] < 1 all of the
thiophenol is consumed by radicals, so the yield of homogeneous

product does not fall off rapidly.
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Figure 1.31 Calculated recombination (i.e., geminate) yield lZR

. . 12 .
for benzophenone and toluene with C. Davg is the average <t

diffusion coefficient for the two members of the radical

pair.
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slowly, and lO—5 cmz/sec is chosen as a rough estimate of Davg
for the radical pair.

Included in:Figure I.31 are the predictions of both the
First Collision Model (FCM) and the Continuous Diffusion Model
(CDM). It is seen that the First Collision Model is close to
convergence after three collisions. The two models agree
reasonably‘well for Davg > 10—6 cmz/sec and begin diverging
below 10_7 cm2/sec. Since the experimental value is at Davg =

10—5 cm2/sec, the two models cannot be distinguished. The

predicted values at 10'-5 cm2/sec are

12RFCM - 2.8

12
RCDM

3.5%

where the converged.value is used for the First Collision Model.
Both models underestimate the experimental value by more than a
factor of two. One explanation for this may be the presence of
spin-orbit coupling,which enhances the geminate recombination of

triplets. This will be further discussed below.

6.1.2 1Isotope Enhancement Factor

The isotopic content of the geminate product is determined
by the relative recombination probabilities for the radical pairs
containing different isotopes. Thus, considering 13C and

2C-containing radical pairs:
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13,12 _ 13,12 . ,13 12
( C/ C)Product = ( R/ R.) ( C/ C)Initial (6"1)
from which the "enhancement factor" Q is defined to be:
13,12
(Tc/7Te)
q = 13R/12R - 0 Product ) (6.2)
(7c/77o)

Initial

Or in the case of triphenylethanol from the benzophenone and

toluene reaction:

13,12
("Tc/770)
Scavenger (6.3)

No - Scavenger

"no — scavenger' represent geminate and

_ where "scavenger" and
homogeneous product, respectively. A more illustrative quantity

is Q-1 since this gives zero when the reactants and products

have the same isotopic content.

The theoretically predictea Q-1 for benzophenone and toluene
is plotted in Figure I.32, where it is seen that the agreement
between the First Collision Model and Continuous Diffusion Model
is quite reasonable, Over the range of readily realizable
viscosities the biggest effect is expected for Davg between 10
and 10_4 cm2/sec. Experiments were performed using both 13C
enriched benzophenone (carbonyl carbon) and 13C enriched toluene
(methyl carbon), but since they have comparable hyperfines
( 62 MHz for benzophenone and 68 MHz for toluene), the calculations
were performed only for enriched benzophenone. The experimental

results are given in Table I.3 (see Table 1.1, section 5.1, for

the reaction conditions).
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Figure I.32 Isotope enhancement factor for the benzophenone plus
toluene photolysis, Q is the ratio of recombination yields
13R/12R for 13C and 12C containing radical pairs. Q greater than

one indicates the ability of 13C to facilitate geminate

recombination of the triplet radical pairs.
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Table I.3 Enrichment Results for Benzophenone plus Toluene

Photolyses.
. s 13 .a o . b

Reaction [¢SH]/[¢2CO] Z 77C % Fragmentation

1- 0.0 38.8 + 0.2

1-2 1.5 40 % 2

1-3 5 38.8 * 0.4

- 0 41+

- 39.2 + 0.7

2-3 5 40+

3-1 0.0 37.8 + 0.2

3-2 2. 36 +

3-3 5.5 _—

4-1 0.0 41.0 + 0.2

4-2 6.3 41.3 *+ 0.4 5.9

5-1 0.0 42.1 + 0.2 6.1

5-2 6.0 41.0 + 0.3 0.8

6-1 0.0 39.0 + 0.1°

6-2 6.0 39.3 + 0.3° 4.2

Mass spectra are fitted for the triphenylethylene ion. Natural
abundance isotopes are assumed at all positions (Reaction 6 excepted)
except for 13C at one position. 20 to 40 mass spectra were averaged,
and the estimated 13C errors are one-sigma values for the means.
Systematic errors are ignored,since enrichment is the differential

of two measurements.

bThe ion of interest, triphenylethylene, has a base mass of 256, For
mass spectra with a peak at 255, the percent fragmentation is used as
an extra fitting parameter for the overlapping triphenylethylene-minus-

one-hydrogen spectrum.

“Reaction 6 is fitted with 98.9% 2D per position for the two benzophenone

phenyl rings which appear in the product.
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Among the six sets of reactions displayed in Table I.3 the
only evident result is the absence of any trend toward enrich-
ment as the scavenger concentration is increased. For each
reaction set, the enrichments are more or less equal withinm
experimental error (the error estimates are one-sigma values).
Given that the mass spectroscopy technique (i.e., computer
integration of peak intensities) was not very accurate, neverthe-
less, with the number of experiments done and the amount of
averaging for each experiment, the conclusion seems justifiable
that the enrichment in this system is zero.

With Davg = 10_5 cmZ/sec the theoretical value of Q-1 which
is intermediate to the predictions of the two models (see Figure
I.32) is 0.16. With an initial 13C of 40% and a Q value of 1.16,
the final enrichment of the geminate product should be 43.6Z%

[see Eq. (6.2)]. No change of this size was detected in any of
the experiments. One possible explanation for this discrepancy
is that spin-orbit coupling dominates intersystem crossing in
the radical pair and thereby diminishes any magnetic isotope
selectivity. The effect of spin-~orbit coupling on the enhancement
factor is shown in Figure I.33. Since the radical pair starts
as a triplet, any intersystem crossing contribution from spin-
orbit coupling will increase the geminate yield, This trend

is shown in Table I.4 where geminate yield and l3C enrichment
are given as a function of the spin-~orbit coupling strength.

It is seen that for a spin-orbit coupling of lO9 Hz, both the

predicted geminate yield and 13C enrichment are in reasonable



I.6 140

0.20 T
Benzophenone + Toluene
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Figure 1.33 Effect of spin-~orbit coupling on the benzophenone
plus toluene isotopic enrichment. The curves are labeled by
the rate of intersystem crossing due to spin-orbit coupling.

. 3 . . . 13 12
Since this coupling does not distinguish between C and C,

9

it dilutes any isotope effects on geminate recombination. 10  Hz
is the estimated value of spin-orbit coupling for organic radicals

(see sections 2.4.3 and 2.5.6). The curves were calculated with

the Continuous Diffusion Model.
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Table I.4 Effect of Spin-Orbit Coupling on Geminate Recombination

and Isotope Enrichment

Spin-Orbit Geminate
Coupling (Hz)a Recombinationb QC yA 13C in Productd
0 0.035 1.136 43.1
lO7 0.037 1.126 42.9
108 0.047 1.076 41.8
109 0.097 1.015 40.4

a . .
The values are the rates of intersystem crossing due to

spin-orbit coupling.

bThis is 12R; these calculated values should be compared with
Figure I.30 where the geminate yield is determined to be

0.08 for natural abundance reactants.

CQ values are calculated with the Continuous Diffusion Model
assuming an average diffusion coefficient of 10-5 cmz/sec.

dProduct values are calculated from Eq. (6.2) assuming 40%

13C in the reactant benzophenone.
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agreement with the experimental values.

One objection that may be raised regarding the presence of
spin-orbit coupling is that Chemically Induced Dynamic Nuclear
Polarization (CIDNP) ,which depends upon the same factors as the
magnetic isotope effect,is a very general phenomenon which gives
large enhancements in NMR signals for a variety of systems. 1In
fact, when the benzophenone plus toluene reaction is observed by
NMR during photolysis [48], the methylene NMR signal of the
1,1,2-triphenylethanol product is seen to be enhanced by a factor
of 250. Nevertheless, this does not contradict the results of
this work. When measuring 13C enrichments, one is looking for
differences of the order of a few percent. However, in NMR one
is concerned with population differences on the order of parts
per million. For example, if a population difference of two

parts per million is enhanced by a factor of 250
6 6 6 6
Q(107+1)/(10 -1) = (10 +250)/(10 -250) ,

a Q value of only 1.0005 is required. Thus, the Q values
required for CIDNP effects are easily accommodated within a
reaction system where the spin-~orbit coupling prevents an
observable magnetic isotope effect,

In conclusion, the results presented in this section indicate
that spin-orbit coupling is the dominant mechanism for inter-
system crossing in the benzophenone plus toluene generatéd
radical pair. The required strength of the spin-orbit coupling

is 109 Hz, and this value was shown in section 2.5.6 to he
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consistent with expectations for a carbon-centered radical with
spin-orbit coupling operating through an intermediate state of

70 kcal/mole excitation.
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6.2 Dibenzylketone

6.2.1 Geminate Recombination

The photolysis of dibenzylketone is a cyclic process in
which the geminate product and the reactant molecule are identical
(see Figure I.34). Hence, the geminate yield cannot be
determined by product amalysis (it can be gotten by quantum
yield measurements where it is assumed that every molecule
which absorbs a photon forms a radical pair [6,49]). The
disadvantage of such a system is that any isotopic enrichment
of the geminate product is diluted by mixture with unreacted
dibenzylketone. The advantage, which is of greater importance,
is that as photolysis proceeds the dibenzylketone may go through
many cycles of geminate recombination and become progressively
enriched in 13C.

Because of the two factors of dilution of geminate product
by reactant and multiple photolysis cycles, it is important to
maximize the recombination yield R. R is plotted in Figure I.35
as a function of Davg' The agreement between the two models is
fair, and, as before, the First Collision Model is near convergence
after three collisions. In contrast to the benzophenone and
toluene reac;ion, the geminate yield of dibenzylketone does not
continue to go up as Davg becomes smaller and smaller, The
difference is that whereas the action of the scavenger is limited
by the rate of diffusion and therefore becomes slower as t

solution becomes more viscous, decarbonylation is independent of
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O

Diffusion 0 T
R

XBL 802-8353

Figure I1.34 Overall reaction scheme for photolysis of

dibenzylketone (R = C CH2); S and T stand for singlet and

6H5
triplet electron correlation, respectively; khv(s) indicates that
photolysis involves an excited singlet state; the brackets [ ]
indicate radical pairs that have a finite probability of diffusive
reencounter, Hyperfine couplings equilibrate S and T while

diffusive encounter of singlets reforms the ketone; diffusive

separation and decarbonylation (kco) form 1,2~diphenylethane.
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Figure 1.35 Calculated recombination yield 12R for dibenzylketone
with 12C. Unlike benzophenone and toluene (Figure 1I.31), the
geminate recombination yield falls to zero as the diffusion slows
down, because decarbonylation destroys the phenylacetyl radicals
co.

C6H5CH2
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diffusivity and therefore destroys a greater and greater fraction
of radical pairs as recombination slows down. Thus, the

recombination yield goes through a maximum at intermediate values

(= 10—7 cmz/sec) of the diffusion coefficient.

6.2.2 Isotope Enrichment Factor

In Figure 1.36 are plotted the predicted values of Q-1.

It is noted that the First Collision Model and Continuous
Diffusion Model agree rather well over most of the range of
Davg' Because of the large hyperfine coupling (350 MHz) of

the carbonyl 13C in the acyl radical from dibenzylketone, the
Q-1 values are an order of magnitude larger than those of benzo-
phenone and toluene. Here, as for the benzophenone and toluene
system, Q increases as Davg increases. The observed behavior,
however, is quite a bit different from what this might imply.

In Figure I.37 are shown the results of photolyses performed
at four different viscosities. It is seen that there is indeed
isotope enrichment and that, furthermore, for a given amount of
photolysis (i.e., a giveﬁ fraction of ketone consumed), the
enrichment increases as the viscosity increases. This viscosity
dependence is a consequence of the cyclic nature of the reaction.
Since Q describes neither the viscosity dependence nor the
progressive enrichment with photolysis time, it is not a meaning-
ful quantity for describing a cyclic reaction. It is the slopes
of the lines, not the Q values, which characterize the data of

Figure I.37. Rather than using Q which is the ratio of
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3 1 T 1 T 1
Dibenzylketone
2 -
Ik Continuous Diffusion Model
/
/
/
/s
______________ — -~
o 1 i i 1 1
1010 1072 i0-8 107 0= 1073 10~4
D cmZsec
avg ) XBL 8010-7379

Figure I1.36 Isotope enhancement factor for the dibenzylketone
photolysis. Because of its large 13C hyperfine coupling,
dibenzylketone's Q-1 value is an order of magnitude larger than

that for benzophenone and toluene, Figure 1I1.32.
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Figure T, 37 l3C enrichment of dibenzylketone for photolysis in

three different solvents. n is the viscosity in units of poise.

The form of the plot corresponds to the analysis (valid for

small enhancement factors) proposed by Bernstein [50]. Q is

the ratio of 13C

zero photolysis.

decarbonylated.

12 . . .
to C in the ketone relative to the ratio at

F is the fraction of ketone which has
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recombination probabilities (i.e., 13R/lZR), what is needed is
a quantity related to the ratio of disappearance probabilities,
that is, (1-1°R)/(1-12R).

Defining khv as the rate constant for photolytic
production of triplet radical pairs, there follows for the

disappearance of 13C and 12C-containing dibenzylketone:

(Pe) = Pe1y enl-(1-R)g e (6.4a)

and

12

[*2c1 = 1*%c1, expl-(-"*R)K, t] (6.4b)

where [13C] and [lZC] are the concentrations of dibenzylketone
. 13 12 - .
with C and C at the carbonyl position, respectively. The

factor (1-R) is equivalent to a quantum yield for destruction

of the ketone. From the above equations it is easily seen that

1n((Pe1/1e1) = ~a-PRok ¢ (6.5a)
and

ln(IIZC]/[lZCJO) = —(l-lzR)khvt (6.5b)
so that

(7 el/ (Pl = fif%éﬁ% n(rPe/ely) L (6.6)

Plotting ln([l3C]/[l3C0) versus ln([lZC]/[lzclo) for a

photolysis, the slope (1—13R)/(1—12R) may be obtained, and,
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relating to this, the enrichment factor € is defined to be:

e =1-[a-r/a-)- (6.7)

Alternatively, € may be viewed as the differential loss between
12C and 13C relative to the loss of 120. € is plotted as a
function of diffusion coefficient in Figure I.38 where it is
seen that the two models predict a maximum for Davg ~ lO—7 -
10—6 cmzlsec. € is calculated from the data shown in Figure
I.37 and presented in Table I.5 aiong with the theoretical
predictions. For the theoretical calculation of € it was
necessary to estimate the diffusion coefficients of the
radicals from the known viscosities of the solyents. For this

purpose the Stokes-Einstein equation was used with a factor of

1/4 to correspond to "slip" boundary conditions [11]:

_ 1 kT

where 0 is the radical radius and n is the solvent viscosity

in poise. TFor the dibenzylketone radical pair ¢ is taken to

be the molecular radius of toluene since the toluene molecule

is intermediate in size to the two radicals. From the molecular

density of toluene

o =3 x 10--8 cm .

Also appearing in the calculation is the radical-radical
collision radius r, which equals the sum of the radii of the

ketyl and benzyl radicals:
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Figure 1,38 Enrichment factor € for the dibenzylketone

photolysis. Cyclic reactions are better characterized by the

enrichment factor € than by the enhancement factor Q. € is

the differential loss between 12(3 and 13C relative to the loss

of lzC for a single stage of photolysis.
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The dependence of € on the decarbonylation rate of the
ketyl radical is shown in Figure I.39 where a set of curves
are plotted for'different temperatures. The important feature
is that as the temperature drops (i.e., less decarbonylation),
the geminate recombination and, concommitantly, the enrichment
factor increase.

In order to study the enrichment over a large viscosity
range, 70/30 and 80/20 weight/weight mixtures of cyclohexanol and
isopropanol were used as solvents and the temperature varied
to control the viscosity. Since the decarbonylation has a
smaller activiation energy (i.e., Ea = 7.3 kcal/mole) than
do the viscosities of the two solvents (i.e., 11 kcal/mole for
the 70/30 and 13 kcal/mole for the 80/20), it does not change
as rapidly as viscosity with temperature. Thus, although both
decarbonylatioﬁ rate and viscosity enter into the enrichment
factor and are included in the computation of €, the main
features in the temperature dependence for these solvents are
due to viscosity changes. The temperature dependence of the
enrichment factor for photolysis in 70/30 cyclohexanol/isopropanol
solvent is shown in Figure I1.40 along with theoretically
predicted curves. In contrast to the data shown in Figure 1,37
where the enrichment factor increases with viscosity, the data
" in Figure 1.40 show that at very high viscosity the enrichment
factor begins to fall off. If the viscosity were not changing

more rapidly than decarbonylation, the enrichment would be
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Figure I.39 Calculated dibenzylketone enrichment factor as a
function of temperature and average diffusion coefficient. The
temperature dependence is due to the activated decarbonylation

process. The curves were calculated with the Continuous Diffusion

Model.
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Figure 1.40 Enrichment factor as a function of temperature for
photolysis of dibenzylketone in a 70/30 cyclohexanol/isopropanol
weight/weight solvent. The viscosities of the data points are
given in Table I.5. Uncertainties are given by error bars or
size of point. The Continuous Diffusion Model was used for the
theoretical curves which were calculated for different values of
s the radical-radical separation immediately after scission of
the ketone: (a) ro= 8 2, (b) r = 9 2, (c) r, = 10 Z. For

the theoretical curves the measured viscosities were fitted

to an Arrhenius expression.
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expected to increase with decreasing temperature as indicated
in Figure I.39.

Also shown in Figure I1.40 is the dependence of the model
calculation on the initial separation T of the radical pair.

(-]
The best fit is for ro = 9 A which is a reasonable value since

this gives ro—rc =3 2, a number comparable to the molecular
dimensions (i.e., microscopic graining of the cyclohexanol/
isopropanol solvent). To avoid the use of variable fit parameters
for each reaction, this value of T, was used in all of the
calculations in this work, although it is expected to vary with
solvent, temperature, and reacfant,

The deviation of the 5°C point from the theoretically
predicted curves may be a real discrepancy between theory and
experiment. However, it may also be attributed to extrapolating,
using an Arrhenius law, the viscosity over such a large
température range with data measured from -60 to -40°C. An
accurate measurement of the viscosity (or diffusion coefficient)
at 3°C is needed before the model calculation can be considered
to be in true disagreement with experiment. Nevertheless, the
experimental data do show the expected maximum in the enrichment
as a function of the rate of diffusion, and in the range of
accurate viscosity measurements (-40 to -60°C) an T, value of
9 R gives the best agreement between theory and experiment,

The experimental and theoretical values for the 70/30 cyclohexanol/

isopropanol solvent are tabulated in Table I.5 along with two

values for the 80/20 solvent at higher viscosity.
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Table 1.5 Dibenzylketone Enrichment € as a Function of Viscosity and Temperature

Viscositya Temperatureb

Solvent (Poise) (Celsius) € ExperimentalC € Theoreticald

Toluene 0.006 25 0.038 + 0.003 0.031

0.008 0 0.061 *+ 0.003 0.040

3-Pentanol 0.04 25 0.056 + 0.002 0.069

Cyclohexanol G.6 25 0.093 + 0.002 0.114

So1ia® 0 0.112 * 0.003 -

707% Cyclohexanol 0.2 (7) 3 0.073 * 0.002 0.112
30% Isopropanol w/w

3.8 <35 0.166 * 0.002 0.163

11 =45 0.168 + 0.003 0.144

18 . ~50 0.138 * 0.006 0.131

32 -55 0.105 * 0.003 0.117

80% Cyclohexanol 36 =45 0.086 * 0.007 0.099
207 Isopropanol w/w

270 -60 0.088 * 0.008 0.050

8The viscosities are all approximate. Viscosities for the neat solvents were inter-
polated from the tables in Reference 40. For the 70/30 and 80/20 cyclohexanol/
isopropanol (weight/weight) solvents the viscosities were measured with a falling
ball viscosimeter. The 3°C and «35°C viscosities for 70/30 cyclohexanol/isopropanol

were extrapolated (using an Arrhenius law) from data measured from -~60°C to -40°C.

bTemperatures are average values over the course of a photolysis and typically
varied by * 3°C. Photolysis times varied from 1 hour at 25°C (1% ketone remaining)

to 50 hours at -60°C (25% ketone remaining).

“The enrichment factor € 1s the differential loss between 120 and 13C relative to

the loss of 12C for a single stage of photolysis.

dThe theoretical values of € are calculated with the Continuous Diffusiom Model.
-4

All values assume ro =0 A,

eCyclohexanol forms a plastic crystal from -10°C to 24°C [51]}.
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The overall agreement between theory and experiment, as
demonstrated by the values in Table I.5, is reasonably good.

The model calculations are not expected to be of high accuracy
since some error is introduced by using the Stokes-Einstein
equation, Eq. (6.8), rather than directly measuring the
diffusion coefficients.

As in the case of the benzophenone and toluene reaction, it
is interesting to include spin-orbit coupling in the model calcu-
lations and estimate what role it pléys in radical pair
intersystem crossing. In Figure 1.41 are shown the enrichment
curves expected for various values of the spin-orbit coupling
strength. It is clear that a value of lO9 Hz, as is required
for benzophenone and toluene, would introduce substantial
disagreement between the experimental and theoretical enrichment
factors for dibenzylketone.

If it is oxygen, and not carbon, that is responsible for
spin-orbit coupling, then it is not surprising that spin-orbit
coupling is more important in the benzophenone than in the
dibenzylketone reaction. The ketyl radical from benzophenone
and toluene is a 7 radical. Thus, the unpaired electron is
delocalized and would perhaps spend some time on the oxygen.

The acyl radical from dibenzylketone, however, is a O radical
with the unpaired electron highly localized at a carbon center.
On the other hand, it is possible that spin-orbit coupling is
important in the dibenzylketone case, and the theoretical

predictions could be brought in line with experimental results
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Figure I.41 Effect of spin-orbit coupling on the dibenzylketone

enrichment factor.
system crossing due to spin-orbit coupling.

value of spin-orbit coupling for organic radicals (see sectioms

2.4.3 and 2.5.6).

Diffusion Model.

The curves are labeled by the rate of inter-

The curves were calculated with the Continuous

9
10° Hz is the estimated
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by a better choice of r,- As such, until a better understanding
of r, is attained or else quantum yield measurements are made
over a large viscosity range to estimate geminate recombination
yields, the exclusion of spin-orbit coupling from consideration
is only tentative.

In Figure I1.42 are shown the model calculations for photolysis
of dibenzylketone in different size micelles. The notable
result is that large enhancements in the enrichment factor €
are possible by restricting the volume for diffusion. The
explanation for this enhancement is simply that as the two
members of the radical pair are kept in close proximity to one
another, the geminate yield goes up thereby aiding the enrichment
process. For the benzophenone and toluene system where only the
relative probabilities of recombination are important, it would
be disadvantageous to perform the reaction in a micelle.

In conclusjon, large enrichments in 13C have been observed
in the dibenzylketone photochemical reaction. This enrichment
was substantially enhanced at intermediate values of viscosity
and at low temperatures in good agreement with theoretical

predictions based on the Continuous Diffusion Model,
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Figure I.42 Enrichment factor for photolysis of dibenzylketone
within a sphere with a reflecting wall (e.g., a micelle). The
curves are labeled by the radius ry of the sphere in angstroms.

The single data point is taken from the results of Turro [6] for
photolysis of dibenzylketone in the hexadecyltrimethylammonium
chloride (HDTCl) micelle. The radius of the organic portion of the
HDTC1 micelle is 21.7 Z as measured by X-ray scattering [52]. With
a radical radius of 3 Z, the actual boundary radius Ty is 18.7 Z.
The diffusion coefficient for the radicals in the micelle was
estimated [Eq. (6.8)] from the measured viscosities in a similar

micelle hexadecyltrimethylammonium bromide [53].
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7. SUMMARY AND DISCUSSION

In the foregoing chapters the thecretical basis for the
magnetic isotope effect has been presented along with two models
for predicting the effects of nuclear spin on radical pair
recombination. in the First Collision Model the radical pair
diffusion is treated via a first collision probability function
and the evolution of electron-nuclear spin states treated quantum
mechanically. Geminate recombination is calculated by numerically
integrating as a function of time the first collision probability
times the probability the radical pair is in a singlet state times
a decaying exponential to account for a finite radical lifetime.
Because of the quantum mechanical treatment it is difficult to
account for ﬁore than about eight nuclear spins, while the
numerical integration makes it difficult to include more than
three collisions of the two radicals. It was shown, however, that
in the case of high singlet reactivity (i.e,, A = 1) a simple closed
form solution could be obtained to account for all possible
collisions (see section 2.7).

In the Continuous Diffusion Model singlet~triplet intersystem
crossing and chemical loss of radicals are treated via first order
rate constants., These rate constants are added on to two different
equations, one for singlets and one for triplets. The equations
are separated and analytically solved for the geminate recombination
yield R, thereby accounting for all possible collisions. Although
the Continuous Diffusion Model treats the spins as a system

approaching equilibrium and neglects all quantum mechanical
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oscillations, it is in fair agreement with the First Collision
Model in predicting geminate yields and isotopic enrichments for
the two radical pairs studied.

As might be expected, the qualitative agreement hetween the
predictions of the two models is much better than their quanti-
tative agreement. This is a reflection of the fact that although
the various physical terms are treated very differently in the
two models, they still give the same time scales for diffusion,
intersystem crossing, and radical lifetimes in both treatments.
Given this agreement the Continuous Diffusion Model is certainly
the method of choice for calculation and prediction because of
its simplicity and general applicability. 1In addition, the model
was generalized to treat geminate recombination within a reflecting
sphere, such as a micelle.

It was argued that although spin-orbit coupling has been
neglected in other published treatments, it can be a major and
even dominant mode of intersystem crossing in the radical pair.
Spin-orbit coupling is easily included in the Continuous Diffusion
Model, and its importance was shown in the treatment of the benzo-
phenone and toluene data. It was found that for the benzophenone
and toluene reaction the measured geminate yield was too large
and the enrichment too small (i.e., not observed) to agree with
model calculations which consider only the hyperfine couplings.
Both of these ohservations were shown to be consistent with the

operation of spin-orbit coupling.
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In the dibenzylketone case 13C enrichment was observed, and
because of the cyclic nature of the reaction, it was found to be
easily manipulated by viscosity and temperature changes.
Experiments with dibenzylketone in a variety of solvents and at
different temperatures showed that the 13C enrichment factor can
be greatly enhanced at intermediate viscosities (v 10 poise) and
at low tempemature. Furthermore, the experimental results showed
the Continuous Diffusion Model to be of good utility in
characterizing the reaction.

There are certainly many possibilities for future extension
of the magnetic isotope effect so that this technique may be of
practical value in isotope separation. There are other good
candidates for study, as benzaldehyde, and use can be made of
solvents of restricted volume (e.g., micelles) or restricted
dimensionality (e.g., liquid crystals, bilayers) to get large
geminate yields and therefore large enrichments in cyclic
reactions. Free radical reactions with heavier atoms, as in organo-
metallic chemistry [54], with much bigger hyperfine couplings
[7c] may produce large magnetic isotope effects if not
complicated by spin-orbit coupling. In any event, the Continuous
Diffusion Model allows easy estimation of magnetic isotope effects
for other nuclei and prediction of the optimum conditions for

performing the reactions.
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8. INTRODUCTION

The focus of this work is to use nuclear spin as a probe
of methyl group motion in the solid state. The role of the
nuclear spin is not merely a passive one where the NMR spectrum
reflects the type‘of structural and motional environment in
which the nuclear spins are located. Rather, the Pauli exclusion
principle provides a rigid coupling between the dynamics of
nuc}ear spin-lattice relaxation and torsional transitions of the
methyl group. This coupling is evidenced by the bi-exponential
relaxation observed for the nuclear spin system. Spin thermo-
dynamics [1,2] provides a useful framework for élucidating the
nature of this coupling and in providing the motivation for the
experiments which were performed. Consequently, a brief over-
view is given‘in Chapter 9 of the main features of the spin
thermodynamic picture. In Chapter 10 are presented those
properties of methyl groups in solids which guide the application
of spin thermodynamics to a suitable description of the experi-
mental situation. TFollowing the discussion of spin diffusion
and spin-lattice relaxation in Chapter 11, the experimental
arrangement is described in Chapter 12. The experiments and
calculations are given in Chapter 13. Results are presented for
studies of the coupling between nuclear spin and rotational
polarization, the methyl group magnetic moment, methyl-methyl
steric interactions, and the rélation between hindered rotation
and -tunneling. A brief summary and discussion is given in Chapter

14,
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8.1 Partitioning of States in Space and Spin

In describing a system of N particles it is frequently
advantageous to partition the system into various subsystems
which may be considered more or less independently and there—~
fore more easily described than the system as a whole. Thus,
the methyl iodide molecule (CHBI) is described in terms of
center of mass motion, rotations, vibrations, and electronic
states, or degrees of freedom. The choice of these different
categories is largely determined by classical expectations;
and the validity of the picture is generally based on the fact
that each category is associated with its own characteristic
range of energies.

In a quantum mechanical picture the system is described by
its Hamiltonian. The division into subsystems is accomplished

by partitioning the Hamiltonian as:

- 0 0 A ° L *
o= ﬂélect + J<t'ib + ﬂ;ot + J{.electevib + M;lectvrot + ﬂ;ib—rot
(8.1)

where translational energies and couplings to the radiation field
have been neglected, The first three terms on the right hand
side of Eq. (8.1) represent pure electronic, vibrational and

rotational subsystems, respectively:

[3 ] = a , (8.2)

elect’ Jq:ib

etc. The last three terms represent those interactions which

cause mixing between the different "pure" states., Thus,
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o '
[ﬂ;lect’ ﬂélect—vib] 70 (8.3a)

[#° ] =0 , (8.3b)

.,
elect’ " wvib-rot

etc. The validity of the partitioning into subsystems is
dependent upon the magnitude of the mixing terms H' and the
type of measurement performed on the system.

In describing the nuclear spin states of a molecule the same
considerations may be applied as were used above. Restricting
the discussion to spin 1/2 particles in the solid state, the

relevant Hamiltonian is:

(8.4)

X +
Zeeman mbipolar

7 eeman refers to interactions between single spins and an external

magnetic field, and & refers to spin-spin dipole-dipole

Dipolar

. . . . J{‘ JC k3 J(“ )
interactions. Writing 7 as ¥, and decomposing Dipolar into

eeman
a part ﬂB which commutes with ﬂi and a part HB which does not,

an analogous form to Eq. (8.1) is obtained:

0 = Je ! . .
JCZ+D+D (8.5)

This Hamiltonian leads to the natural choice of Zeeman states
(eigenstates of ﬂé) and dipolar states (eigenstates of ﬂ;) for
partitioning the system. In high magnetic fields (i.e., 21
kilogauss) the 2eeman energies are much larger than dipolar
energies, and it is valid to treat Zeeman and dipolar as two

independent subsystems. In low magnetic fields Zeeman and
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dipolar energies are comparable, the two systems interact
strongly, and the partitioning breaks down [1,3]. 1In this work
only very high magnetic fields of 24 and 42 kilogauss are used
so that Zeeman and dipolar are always valid subsystems. However,
as shown in the next section, they fail to completely describe
the state of the methyl group. Alternately stated, the energies
alone are insufficient to describe the complete state of the
spins. An analogous situation occurs in the case of chiral
molecules, where a knowledge of the energy gives no indication
as to the number of left and right-handed molecules present.

The selection of the appropriate variables to describe the
spin system fully is guided by a consideration of the spatial
properties of the methyl group and of the spin-spin interactions
within the solid state. Before these factors are discussed, the
spin thermodynamic picture is presented to provide the framework

within which the variables are used.
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9. SPIN THERMODYNAMICS [1,2]

The object of this chapter is to develop a description of
the spin system in terms of coupled reservoirs, or subsystems,
embedded in a lattice of enormous heat capacity (see Figure I1.1),
The spin system is taken to be an ensemble of equivalent methyl
groups, that is, methyl groups which have the same barrier to
rotation and whose C3 axes all have the same orientation with
respect to the magnetic field. Methyl groups at different
orientations to the field and non-methyl spins will be considered
in Chapter 11.

The ensemble of equivalent methyl groups may be described
by the propertie; of one methyl group which is the average of
the ensemble. Consider this methyl group. It has three spin
1/2 protons, each of which has two possible states of angular
momentum +1/2 or -1/2 as defined within a given axis system.
Thus, there are 23 = 8 possible nuclear spin states for the
three methyl protons. Requiring the total population of all the
states to be a constant, there still remain seven population
variables to specify [4]. (The question of specifying the phases
of states will be taken up in section 9.3). Treating the
methyl group as a thermodynamic system in contact with the lattice,
seven subsystems can be constructed corresponding either to
individual spin states or, where it is advantageous, to linear
combinations of spin states. This approach is described below.
To allow for exchange of energy or population between the various

reservoirs, the grand canonical ensemble is used.
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LATTICE

XBL 812-8111

Figure II.1 Examples of subsystems embedded in a lattice and
exhibiting various couplings among themselves. All of the sub-
systems are coupled to the lattice. Since Sl and 82 are
coupled to one another, the relaxation of either after being
driven from equilibrium would be bi-exponential (see section

13.1). 83, 84, and S5 would exhibit tri-exponential relaxation

behavior.
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9.1. Grand Canonical Ensemble

The methyl group spins constitute a thermodynamic system
which is maintained in equilibrium by the lattice (non-nuclear
degrees of freedom). This thermodynamic system 1s described by

the grand canonical ensemble:
p = expl (2 w;n, - E)/KkT] /2 (9.1)
i

where p is the probability for a given distribution of population
(normalized) among the spin levels, the ni's are'the populations
of the levels, the ui's are the chemical potentials of the levels,
E is the total energy of the spin system, and E is the partition
function. Since the energy of each spin level is fixed, the

total energy is specified by the populations:

E= J en (9.2)
T °1M

where e is the energy of the ith level. Thus, E is not an
independent parameter and it may be dropped, leaving the populations

{ni} to describe the system:

p = exp| 2 (“i/kT)“1] /= . (9.3)
i

There are two criticisms in regard to expressing p as a
function of the level populations. The first is that NMR measure-—
ments are never concerned with the populations of individual levels,

but rather with population differences (or energy differences)
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between levels. As such, the individual populations can only
be indirectly related to experiment. The second criticism

has to do with the time scales for NMR relaxation and is
discussed in the next section under the title of quasi-
equilibrium. Following the discussion of this second criticism
an alternative set of variables known as the 'number operators"

is introduced in section 9.3.
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9.2 Quasi-equilibrium [1,6]

In studying relaxation it is frequently the case that
transitions between some levels are much faster than transitions
between other levels. Thus, when the spin system starts in some
general non—equiiibrium configuration, it is found that some
population differences, although not the populations themselves,
approach equilibrium much faster than other population differences
do. As a consequence of this the number of variables required to
describe the relaxation is dependent upon the time scale of the |
measurement. This is illustrated quite simply in Figure II.Z2.
Since the required number of variables will always be less than
or equal to the total number for the system, a judicious choice
of variables may greatly simplify the description of the
relaxation.

In general, if the individual level populations are chosen
as the variables, a reduction in effort will not be achieved.

If, however, the problem is re-parameterized in terms of
population differences, the separation of relaxation equations
by time scales is stralghtforward. This work is concerned with
proton spin relaxation in the solid state, and the relevant
feature to be taken advantage of is the vast difference in time
scales (i.e., five to six orders of magnitude) between T1 and
T2 relaxation processes. Spin diffusion (section 11.1) takes
the proton spin system to a state of quasi-equilibrium in

" 20-50 usec (Tz). Those population differences which have

equilibrated need not be considered further in describing the
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relaxation. In other words, for each set of levels which have
equilibrated a constraint may be introduced which fixes the
ratios of the relevant populations; each constraint reduces
the number of independent variables.

The system relaxes from a state of quasi-equilibrium to a
state of complete equilibrium in 1-100 sec (Tl) as a result of
spin-lattice relaxation (section 11.3). The slowly varying
parameters which characterize the relaxation of the quasi-
equilibrium state are termed the quasi-constants, or quasi-
invariants, of the motion [1,6]. The quasi-constants are linear
combinations of the level populations, and constructing the
appropriate set of linear combinations is analogous to finding
the constants of the motion in mechanics.

Of interest in this work is the quasi-equilibrium state,
because of the physical sigﬁificance of the quasi-constants.
The choice and significance of the quasi-constants is informed
by the considerations presented in Chapters 10 and 11. Before
entering upon these considerations, an operator formalism for
the quasi-constant variables is presented in the following

section.
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XO’qu Y -® X eq,qu

1

XBL 812-8116

Figure II.2 Relaxation of a system which is described by two
variables and whiéh passes through a quasi-equilibrium state.

The system is prepared in the state XO,YO. The variable Y relaxes
to its equilibrium value in a time T2 which is short compared to
the relaxation time of X. The relaxation of the quasi-equilibrium
state is characterized by the single variable X and requires a

time Tl to reach complete equilibrium.
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9.3 Number Operators

In Eq. (9.3) p was written as a function of the level
populations n,. It is clear that any complete set of
varibles which are made up of linear combinations of the ni's
will work equaliy well. In this section the quantum mechanical
density operator § is introduced with the density operator p
replacing the thermodynamic probability function p and with a
generalized set of number operators {Gk} replacing the set of
level populations {ni}. Thevtransition from scalar to operator

is made via the level population operators ﬁi:

' i, = [i><i], (9.4)

the eigenvalues of which are the level populations. The number

operators at quasi-equilibrium are defined:

6k =2i_jcki [i><i| . (9.5)

The matrix ¢ which defines the number operators is given in section

i1.2 following the introduction of all of the quasi-constants.

In analogy with Eq. (9.3) [e6],

6 = exp() ockak)/E (9.6 )
k

where the ak's are the intensive parameters (i.e. entropy
derivatives) associated with the number operators. The point of
contact between the density operator Eq. (9.6 ) and the

thermodynamic probability function Eq. (9.3) is that the
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probability p is the expectation value of the operator p for a
given state of the system. 1In the formalism of section 9.1 a
state of the system is defined by a given set of populations
{ni}. In the formalism of this section the system is specified

~
by the expectation values of the 0, operators.

k
Because the 6k's are defined in Eq. (9.5) as diagonal in

the spin level basis, the density operator P is also diagonal

in this basis. Since the off-diagonal matrix elements <if6[j>

represent coherences between the |i> and |j> nuclear spin states,

Eq. (9.5) states that there can be no coherences in the spin

system. This corresponds to the treatment of section 9.1 where

it was assumed that the system was entirely specified by the

level populafions {ni} with no regard to phase relations between

the states. This conforms to the usual treatment of spin thermo-

dynamics [7,8] where the random phase approximation is invoked,

and all of the coherences are assumed to be zero. In NMR

experiments, however,vcoherently prepared ensembles are the

rule rather than the exception (the exception being T pulses

or saturation). This is not a problem though, since this work

is éoncerned primarily with the time evolution of the system

after quasi-equilibrium is reached, and the relaxation processes

(i.e., T2) which produce quasi-equilibrium destroy all of the

coherences. Thus, the random phase approximation is valid, and the

~

Ok's are diagonal.

At high temperature the ak's are small, and Eq. (9.6) may be

expanded to first order:
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6=i+}:o¢k6k (9.7)
k
where i is the unit operator and = which is only a normalization
constant has been dropped. The number operators are defined so
that their expectation values are deviations from equal
distribution of population.

Thus,

Tr 0, =Tr 0.1 =0 ; (9.8)

that is, the number operators are all traceless [6]. The

number operators are defined to be orthogonal and normalized

[6]:

r 0,0, = 8, C(9.9)

With Egs. (9.7) - (9.9) the expectation values of the number

operators are [6]:

Tr 0.0 = o (9.10)

at high temperature.
With the above factors and the discussion of the previous

sections in view the properties of the number operators may be

summarized:

1) They form a complete set of variables for the system.
2) They are linearly independent and normalized.

3) They are traceless.
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4) They correspond to Hamiltonian terms where possible.
5) They are chosen with regard to describing the
quasi-equilibrium state.
6) They are not unique.
On the basis of these properties the number operators are
defined in the.next two chapters where the methyl group

properties and spin relaxation are discussed.
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10. METHYL GROUP DESCRIPTION

10.1 Spatial Hamiltonian

The methyl group is a C3 rotor which in this work is
treated as moving in a three-fold cosine potential. Including
rotational kinetic energy the Hamiltonian for a rigid methyl

rotor is [9]:

Y

—5 + & (1-cos3¢) (10.1)
2

o~

where ¢ is the angle of rotation and the moment of inertia I

about the C, axis is = 5.5 x 10-40 g cm2 [10]. The barrier V

3

results from both intramolecular steric interactions and inter-

3

molecular hindrances within the crystalline sample. To construct
the Hamiltonian matrix of Eq. (10.1) and diagonalize it, the

basis set of free rotor wave functions is chosen:
|m> = exp(-im¢)/vV2m (10.2)

which are the exact solutions for V3 = 0.

The full symmetry group of the methyl rotor is C3V’ but since
only rotational dynamics are being considered here, it is
sufficient to use only the rotational subgroup C3. There are
three irreducible representations of the group CB’ and they
transform under the symmetry operations as shown in Table II.1l.
Using Table II.1 to project the symmetrized wave functions out

of the basis set it is found that for
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A symmetry: m = 3n (10.3a)

i

E" symmetry: m = 3n - 1 (10.3b)

3n+1 (10.3c)

E° symmetry: m

where n 0, 1, £2, ... . The energy levels and angular
momenta of a free rotor are shown in Figure II.3.

The program "methyl" (Appendix C) is used for the hindered
rotor calculations, and in Figure II.4 are shown the results
of a calculation for V3 = 1 kcal/mole which is a medium size
solid state barrier. In contrast to the free rotor wave
functions, the hindered rotor, or torsional, wave functions
are not eigenfunctiqns of angular momentum. Nevertheless, the
expectation values of the angular momentum operator -ihs/d¢

can still be calculated. Since each torsional wave function

|¢2> is a linear combination of free rotor basis functioms,

[Wy> =2 a,, exp(-im ¢)/V2T , (10.4)
k

and the expectation value of angular momentum is given by:

*
<m> = .
w>y §ak2 a o m . (10.5)
Comparing Figures II.3 and II.4, it is seen that below the top
of the barrier the angular momentum of the torsional levels is
greatly reduced, whereas above the barrier the E states rapidly
approach free rotor behavior. Since the free rotor A states

occur in degenerate pairs (i.e., m = * 3n), the two members of
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Table II.1 Character Table for C3 Symmetry

E C3 Cg
A 1 1 1
E? 1 € g*
Eb 1 g* €

€ = exp(i2mn/3)

189
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Figure I1.3 Energy levels for an unhindered C3 rotor. There are

three symmetry manifolds: Ea, A, and Eb. Each level is labeled

sy S4+a arci]ar mOme cere o o amra i
oY its a.ugula‘f nomentum eigenvaidue.
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each pair mix very effectively, even well above the barrier,
to form symmetric and antisymmetric combinations which have
m = 0.

The cbnvention used in this work is to label each set of
A, Ea, Eb stateS as torsional level i (starting with zero) and
to define the energy difference between the Ei and Ai states

as the tunneling splitting Ai:
A, = e; - e, (10.6)

where e? and ei are the energies of the E and A states,
respectively, of the ith torsional level. As seen in Figures
I1.3 and 1I.4, Ai alternates in sign from one torsional level

to the next.

There are a variety of experimental observables which
depend on the average energy difference between A and E states.
For high barriers where the energy differences between torsional
levels are much greater than the tunneling splittings, the
average A-E energy difference may be equated to the average
tunneling splitting W, . Assuming equilibrium with the lattice,
the temperature dependent average tunneling splitting may be

straightforwardly calculated from the Boltzmann distribution of

populations [11]:

-

E;Ai[exp(—e?/kT) + exp(-e,/kT)]

. (10.7)

[

w (T) = E
2:[exp(—ej/kT) + exp(-e,/kT)]
J

[

The E and A states are weighted equally in Eq. (10.7) since they
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Figure II1.4 Energy levels for a C3 rotor with a 1 kcal/mole three-

fold cosine barrier.

expectation value.

Each level is labeled by its angular momentum

The A states are linear combinations of +3n and

~3n levels and have zero average angular momentum. The three

levels at v 0.2 kcal/mole comprise the zeroth torsional level;

the three levels at 0.5 kcal/mole comprise the first torsional

level, etc.
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have the same degeneracy as is shown in section 10.3 where the
spin-rotor coupling is discussed. Although equations of the
form of Eq. (10.7) have been used extensively in the literature

[11,12,13,14,15,16], there are important restrictions on its use
as shown in Chapter 13, section 6.

An important feature of the methyl group dynamics is that
transitions within a symmetry manifold (i.e., Ai to Ai+l’

; to E?_l, etc.) are much faster than transitions between
different symmetries. The symmetry conserving transitions are
caused by the rotor-phonon interaction which has A symmetry
[17,18]. The transitions between symmetries are caused by the
dipolar Hamiltonian which is much weaker [17]. The time scale
for the symmetry conserving transitions is given by the correlation
time TC for methyl group motion which at room temperature equals
" 10 -10 sec. The time scale for the transitions between
rotor symmetries is given by the spin-lattice relaxation time Tl

which at room temperature is v 1-100 sec.
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10.2 Spin Hamiltonian

10.2.1 Zeeman Hamiltonian

194

Using a three-spin Zeeman product basis [aoa>, |aaB>, |BBa>,

etc., the C3—symmetrized wave functions are:

(A | o>

+3/2>

o, ., > = (|aoB> + |aBo> + |Baa>)/V3

+1/2
IA_1/2> = (|BBa> + |BaB> + |aBR>)/V3
|a_5,,> = |888>
|Ei1/2> = (JaaB> + e|aBa> + e*|Baa>)/V3
lEfl/2> = (|BBa> + £|BaB> + e*|aBB>)/V3
IE:1/2> = (|oaB> + e*|aBa> + €|Boa>)/V3
|EE1/2> = (|BBa> + e*léa8> + e|agB>)/V3

(10.8a)

(10.8b)

(10.8¢)

(10.84d) -

(10.8e)

(10.8£)

(10.8g)

(10.8h)

Having defined the spin states, it is now possible to define the

appropriate number operator corresponding to each term of the

spin Hamiltonian.

The Zeeman Hamiltonian is:
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* = - YhH T, (10.9)

where the magnetic field Ho is taken to be along the z axis. The
basis functions of Eqs. (10.8a)-(10.8h) are eigenfunctions of

H with
z

L=+ L (10.10a)

Iz = Izl + I22 + Iz3 s (10.10b)
etc., for the methyl spins. The eigenvalues of ﬂ; are:
e, = - YhHomz (10.11)

where m, for the spins is distinguished from the m value defined
for the rotor in the preceding section. The spin states in the
presence of an external magnetic field appear as shown in
Figure II.5.

Recalling that the number operators represent excess

populations and are normalized, Ol is defined:

0, =§i:mzi ni//E (10.12)

where the ﬁi are the population operators for the spin levels

defined in Eq. (10.8). With w, = YH,, it follows that

= - hw 0 i X
ﬂ; szl (10.13)



IT.10 196

a)
[
N o
o

o J— L |
2 —Eﬁ‘
b | ' ‘ﬁwz
2 7 - —
S
2

XBL 812-8117

Figure II.5 The energy levels of the three protons of a methyl
group considering only the Zeeman interaction. The levels are
labeled by the component of spin angular momentum along the

magnetic field axis. The C3—éymmetrized wave functions are given

in Eq. (10.8).
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10.2.2 Dipolar Hamiltonian

The intramethyl dipolar Hamiltonian was written in Eq. (8.5)
as the sum of two terms ﬂg and ﬂ%. Since ﬂ% commutes with the
Zeeman Hamiltonian ﬂ;, the wave functions of Eq. (10.8) are
also eigenfuncti&ns of ﬂ%. ﬁ% which does not commute with ﬂé
or ﬂB is responsible for spin-lattice relaxation of the spin
states.

The standard form of ﬂB is:

H =3 ¥, (21, 1 ~(I7 I + I] 1})/2] (10.14)

T 5 zi“zj i 7j i73
where the two summations are over the three protons of the methyl

group. The factor Dij is given by:

3

D,. = Y2h2 Pz(cosBij)/r (10.15)

ij

where r is the distance between each pair of spins of the methyl

triangle, B8 is the angle between the internuclear vector of

ij
spins i and j and the magnetic field, and Pz(cosBij) is the second
Legendre polynomial. Since the rotation rate of the methyl group
is typically much greater than Dij’ an average dipolar coupling D
may be factored out of Eq. (10.14) and the summations performed
separately over the spin operators. Thus,

i - D[zxi (it o+ 1T /2] (10.16)

where'Iz is defined in Eq. (10.10b) and
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DI (10.17a)
i

=21, . (10.17b)
1

From the definitions of the raising and lowering operators it

follows straightforwardly that:

) :
HB = D[BIz - I(I+1)] (10.18)

where I is the magnitude of E. When the C3 axis is parallel to

the magnetic field,all of the internuclear vectors are perpendicular
to the field; and D equals Yzhz/r3. For arbitrary angle 6 between
the C3 axis and the field it is recognized that Eq. (10.18)

transforms ‘as the second-rank tensor TO so that
D = Y2h2 Pz(cose)/r3 . (10.19)

Since the Ea and Eb spin states are equivalent to spin 1/2
particles, it is obvious from Eq. (10.18) that they can have no
dipolar energy. On the other hand, the A spin states which are
identical to a spin 3/2 particle are all shifted by ﬂ;. By

convention the number operator for the dipolar states is O5 and

is defined:

~ ~

0g = [a(Ay,,) + (A ) ~n(a ,) - alh_,,)]1/ 2 . (10.20)

3/2 ~3/2

The secular dipolar Hamiltonian may now be written:

3 = ho 0 (10.21)
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where

hw_ = 3D (10.22)

as defined by Eq. (10.18) and Figure II.6.
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Figure I1.6 The energy levels of the three protons of a methyl
group considering the Zeeman and intramethyl dipolar interactions.
The intermethyl and non-methyl dipolar interactions may be viewed

as broadening all of the levels.
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10.3 The Pauli Principle and the Tunneling System

Before closing this description of the methyl group it is
necessary to consider the Pauli exclusion principle which
introduces an important coupling between the spatial and spin
wave functions. ‘The Pauli principle requires that the total
wave function change sign with every exchange of two protons
since they are fermions. Since a C3 rotation of the methyl
group is exactly equivalent to two pair exchanges of the protoms,
the overall change in the wave functions is (-1)(-1) = +1. To
insure, therefore, that the phase of the wave function remains
unchanged under a C3 rotation, it is necessary that the symmetries
of the spatial and spin wave functions correlate to give A
symmetry. Thus, the symmetries, in analogy with ortho and para
hydrogen, couple as shown in Table II.2.

One important featufe of Table 1I.2 is that E spin states
correlate only with E rotor states and A spin states correlate
only with A rotor states. This accounts for the equal weighting.
given to the E and A states in Eq. (10.7); there are two E spin
doublets and one A spin quartet for each torsional level. It also
follows from this coupling that the tunneling splitting w_ may
be associated directly with the spin states (similar to the
exchange interaction and singlet and triplet electronic states
discussed in Part I, section 2.4.1). That is, the wave functions
associated with the E and A spin states are necessarily separated
in energy by the tunneling splitting. This feature is shown in

Figure II.7 and suggests the addition of the tunneling system 06’
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Table II.2 Correlation of Spin and Rotor Symmetries

Spin Rotor
A A
Ea Eb

b a
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Figure II.7 The energy levels of the three protons of a methyl
group considering the Zeeman, intramethyl dipolar, and tunneling
interactions. The appearance of a tunneling energy in the spin
Hamiltonian is a consequence of the Pauli exclusion principle

which couples spin and rotor symmetries.
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by convention, as another number operator:
A A~ ~ a A b
0g = [2 0, (A) -2, (E7) - Ean(E )1/ (2v2) (10.23)
i i
i i k
where the sums are over all the population operators of the
specified symmetry. The tunneling energy is

x& = hmt 0 - (10.24)

The remaining number operators will be introduced in Chapter 11.
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11. SPIN DIFFUSION AND SPIN-LATTICE RELAXATION

11.1 Symmetry Restricted Spin Diffusion [6,11,19,20]

The intramethyl dipolar Hamiltonian was discussed in section
10.2.2. 1In this section the intermethyl (and non-methyl) dipolar

Hamiltonian #(_ . is introduced. As before, the dipolar
D,inter

Hamiltonian is separated into a secular and a non-secular part:

(11.1)

x = H° !
D,inter D,inter + D,inter

. contains a term I ,I . which shifts energy levels and
D,inter zi z]

+ - -+
a flip~flop term Iin + Iin

responsible for spin diffusion among the individual methyl

[see Eq. (10.14)] which is

groups and any other surrounding like spins. Spin diffusion
propagates the magnetization throughout a crystal as shown in
Figure II.8 and thereby establishes a uniform magnetization, or
spin temperature [21]. When the spin system is prepared in a
non-equilibrium state, spins in different motional or structural
environments will, in general, relax at different rates. For
protons in solids spin diffusion is typically four or five orders
or magnitude faster than spin-lattice relaxation so that the
assumption of a single Zeeman spin temperature within a crystal is
valid during relaxation. This situation may be termed unrestricted
spin diffusion, and it must be qualified when treating rapidly
rotating methyl groups.

Unless the methyl group is very hindered, methyl group

rotation is orders of magnitude faster than the dipolar interaction.
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Figure 11.8 Propagation of spin magnetization by spin diffusion.
For abundant protons the flip-flop terms of the dipolar Hamiltonian
allow the magnetization to diffuse throughout a crystal and thereby
establish a uniform Zeeman temperature. In the figure the pairwise
flip-flop term propagates a -1/2 spin magnetization among a group

of +1/2 spins.
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Hence, #° affects all three protons of a given methyl group

D,inter
in identical fashion. Alternately stated, spin diffusion operates
as a totally symmetric interaction on the methyl group [6]. The
importance of this fact is that spin diffusion, although affecting
the magnetization of a particular methyl group, cannot change
the symmetry state of the methyl group. This is indicated
pictorially in Figure II.9. This situation is termed symmetry
restricted spin diffusion (SRSD) [6,11,19,20],.and as a consequence
of it additional quasi-constants are present.

Symmetry restricted spin diffusion is discussed further in
the next section. The non-secular ipteraction m%,inter which

contributes to spin-lattice relaxation is treated in section

11.3.2.
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(@) © ALLOWED FLIP—FLOP

(b) FORBIDDEN FLIP-FLOP

T

XBL 812-8106

Figure II.9 Symmetry Restricted Spin Diffusion (SRSD). The
average dipolar interaction between a rapidly rotating methyl
group and an adjacent spin is totally symmetric [6]. Thus, it
cannot change the methyl group symmetry. The symmetry-conserving
flip-flop (a) is therefore allowed, and the symmetry-nonconserving

flip-flop (b) is forbidden.
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11.2 Rotational Polarization

The rapid spin diffusion is the phenomenon responsible for
bringing the initially prepared non-equilibrium spin system into
a state of quasi-equilibrium. Spin diffusion maintains the
Zeeman and dipolar polarizations as quasi-constants [22]. Since
SRSD conserves the symmetry of each methyl group, there is now

an additional one quasi-constant per methyl group. If each of

these quasi-constants were distinct and coupled to the Zeeman
subsystem, then the Zeeman relaxation would be extraordinarily’
complex. In fact, it is only necessary to add one more quasi-
constant to the three previously defined. This is proven as
a general result in section 11.3. For now this may be illustrated
in simple fashion by considering an ensemble of equivalent
methyl groups.

Since SRSD conserves the symmetries of the methyl groups,
the population within each spin symmetry manifold (A, Ea, and Eb)
is constant. Since the total number of methyl groups is a constant,
there are two independent symmetry population variables which
specify the ensemble [6]. One has already been defined in Eq.
(10.23) as the tunneling system. Presently the remaining quasi-
constant is defined as the difference between E? and Eb spin
populations and is termed the rotational polarization system

O4 [6,11,19,20,23]:

0, = [zi:ﬁi(Ea) - JZjﬁj(Eb)]/ 2 (11.2)



I1.11 208

where the sums are over all of the states within the specified

A

symmetry. 04 is célled rotational polarization, since for a
hindered rotar the E? and Eb spin states correlate with rotor
states of opposite angular momentum within a given torsional
level (see Figure II.10).

The complete set of number operators and their spin state

eigenvalues are given in Table II.3.
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Figure II1.10 Correlation of nuclear spin states with methyl

group rotation. The spin and rotor symmetries are coupled as a
consequence of the Pauli exclusion principle. Since within a
given torsional level the E? and Eb rotor states have opposite
angular momenta and the A rotor state has no average angular
momentum, then the £? and Eb spin states may be associated with

opposite senses of methyl group rotation.
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Table II.3 Eigenvaluesa of

the Number Operatorsb
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30 A2 A Aan B B E?/2 52
V6 61 3/2 /2 -1/2  -3/2 1/2  -1/2 1/2  -1/2
v2 0, 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2
V3 0, 0 1 -1 0 -1/2 1/2 -1/2  1/2
6, O 0 0 0 /2 1/2  -1/2  -1/2
0y 1/2 -1/2 -1/2 1/2 0 0 0 0
20, 1/2  1/2  1/2 /2 -1/2 -1/2  -1/2 -1/2
0, 0O 0 0 0 1/2  -1/2 -1/2  1/2

a .
The eigenvalues are for the spin eigenstates of the Zeeman and

secular dipolar Hamiltonians.

number operators are diagonal.

b

At quasi-equilibrium all of the

The identity operator which may be taken as the eighth number

operator is not needed since the total population of the spin

states is a constant.

CThis table is taken from reference 6.
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11.3 Spin Lattice Relaxation

11.3.1 Independent Methyl Groups

Reiterating, the four quasi-~constants of the methyl group

spin system are:

61 = Zeeman'Magnetization

64 = Rotational Polarization
65 = Dipolar Order

66 = Tunneling Polarization.

The relevant quantity associated with each is its expectation

value which at high temperature 1s given by Eq. (9.10):
Tr Okp = oy

The object of the present section is to obtain the time-dependent

solutions of [6]:

1Q e

= —2.(g_geq) (11.3)

where o is the vector of ak's with equilibrium value aeq and S
is the relaxation matrix.

It is assumed that the intramethyl non-secular dipolar
interaction ﬂ% dominates the spin-lattice relaxation to such
an extent that ¥ |, may be neglected. The basis for this

D,inter
is that the methyl groups are the only molecular groups under-

going rapid phonon-modulated motion in the samples studied.

Furthermore, it is assumed that the intramethyl proton distance
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is somewhat shorter than the distance between methyl and non-
methyl protons [the relaxation efficiency falls off as 1/r6;
see Egs. (11.4a)-(11.5)]. 1In any event, it is extremely difficult
to treat ﬂB,inter analytically [24], and if necessary it can
always be added on as a phenomenological contribution [25] to

the relaxation equations developed in this and the following
section.

The intramethyl relaxation rate constants for the ak's at

high temperature are [6]:

sll(e) = 2K (1+3 cosze) (11.4a)
5,,(8) = 5,,(8) = 2/6 K cosd (11.4b)
Su4 = 3K (11.4c)
S5 = 3K (11.4d)
556(6) = Sg5(8) = 3/2 K P, (cosb) (11.4e)
Sgq = 6K (11.4f)

where 0 is the angle between the methyl group C3 axis and the

magnetic field and
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where Yy is the gyromagnetic ratio of the proton, TC is the
correlation time for methyl group motion, and r is the intra-
methyl proton-proton separation. No couplings exist at high

temperature beween Oys Oy and Og, O Since only Zeeman

6°
relaxation (i.e., Tl) is studied in this work,a5 and Qe are

dropped from further consideration. For convenience the

following definitions are made:

M = o (11.6a)
R = 04 (11.6b)

where M represents the magnetization of the Zeeman states and R
represents the rotational polarization.

The remaining problem is to obtain the quasi-constants for
a system of inequivalent methyl groups. The correct quasi-
constant for thé Zeeman system follows straightforwardly from
a consideration of spin diffusion. Restricting the discussion
to two methyl groups and neglecting the coupling to the rotational

polarization system, the Zeeman relaxation equations are:

n:al = -sll(el)ﬁ1 - V(ﬂl—ﬁz) (11.7a)

1“:12 = —sll(ez)ﬂ2 - v(Hz—ﬁl) (11.7b)
where

M =M-M (11.8)

eq
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and V is the spin diffusion interaction which serves to equalize
the two magnetizations (see Figure I1I.13a). Writing Eqs. (11.7a)

and (11.7b) in matrix form:

My 511(61) +V -V My

MZ -V Sll(ez) +V Mz

(11.9)

and rotating the relaxation matrix by 45°, the following equation

is obtained:
M, + M 811 [511(81)'511(62)]/2 My

[811(81)'511(92)]/2 sll+2v .Ml

(11.10)

where S11 is the average of the two rate constants Sll(el) and
. N . . .

sll(ez). Since V > 511’ spin diffusion drives the Zeeman

difference (ﬁl—ﬁz) to zero long before the sum (ﬂl+ﬁ2) relaxes.

Hence, (ﬁl—ﬁz) may be dropped, and the quasi-equilibrium state

is described by the quasi-constant (ﬁl+ﬁ2). It follows that

for N methyl groups the appropriate Zeeman quasi-constant is:

~ N
M= oM, (11.11)
i

with the auto-relaxation rate constant

N
s11 o ; 811(81)/N . (11.12)

Any non-methyl protons may be simply added onto the above sums

with N being redefined to include all of the protons.
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Because there is no mechanism comparable to spin diffusion
to transfer rotation polarization among all of the methyl groups,
rotational polarization is more difficult to treat than the Zeeman
system. Nevertheless, there is only one rotational polarization
quasi-constant which couples to the Zeeman system.f The relaxation
equations and results are stated in this section with the
derivation being given in Appendix D.

Having defined the Zeeman quasi-constant ﬁ in Eq. (11.11),
the relaxation matrix § is now asymmetric. The reason is that

the rotational polarization Ri of an individual methyl group

couples to M as before, but only 1/N of M couples to Ri'

Thus,
[ ] \ ’
M/Meq Sll 514(61) 814(82) .. M/Meq
RyMog | = = S,/ s, 0 e R, /M
1" eq
RZ/Meq 814(62)/N 0 s44 cen RZ/Meq
J L j
(11.13)

where Meq’ the equilibrium value of ﬁ, has been introduced as
a normalization factor. Eq. (11.13) could be diagonalized

by standard techniques, but for N methyl groups the relaxation
matrix is (N+1) x (N+1), and the general solution is

intractable. However, by considering the determinant
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det(S-Al) for the eigenvalue problem, it is easily seen that as

long as S44 is independent of angle (i.e., at high temperature),

there will be N~1 eigenvectors with relaxation rate S44 which

are not coupled to the Zeeman system. The remaining two eigen-

vectors result in a Zeeman relaxation characterized by two

quasi-constants so that the relaxation is bi-exponential

[6,23,25]. The relaxation rates Al’ Xz and eigenvectors are

derived in Appendix D and given in References 23 and 25:

>
|

1 2
1,2 = S1p¥844072 2 3 108175440 + 4 5y,

where

N 2
514 = 21: S14 (ei)/N

211/2

(11.14)

(11.15)

The required rotational polarization quasi-constant is [6,25]:

N
P (t) = le cos(6,) R, (t) ,

resulting in the following relaxation equations:

~
M(t)/Meq = Cl exp(—llt) +C, exp(—kzt) ,

and

2/6 K Pr(t)/Meq = (Al-sll) ¢, exp(—xlc) + (X,-S

where

11

(11.16)

(11.17a)

) C2 exp(—lzt)

(11.17b)
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(@
|

[(S7;-},) M(0) - 2/6 K P (0)1/] (x

1M ] (11.18a)

and

@
|

2 = [M(O)—Cl]/Meq a (ll.l8b)

The importance of the above equations is that the Zeeman
relaxation is dynamically coupled to the rotational polarization
of the spin states, and, therefore, through the Pauli principle
it is dynamically coupled to the rotor states. . There are some
interesting consequences of this coupling which relate to the
angular momentuﬁ which the Ea, Eb rotor states possess. One
such consequence is the possibility of measuring the methyl
group magnetic moment in the solid state (see section 13,2).
Another is the ability to detect gearing between methyl groups
which is discussed in the following section and also in section

13.3.

11.3.2 Coupled Methyl Groups

A question of long standing interest is whether or not two
adjacent methyl groups rotate together as two cogged gears
[26,27,28,29], 1If they do, that behavior should have a marked
effect on rotational polarization as will now be shown.

Consider two methyl groups geared together in a perfectly
classical fashion. Since they are constrained to rotate at the
same speed, they must be in the same torsional level. And

since they must have opposite angular momenta, they necessarily
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form an EaEb rotor pair as shown in Figure II.1l. Complete
gearing, therefore, prevents the formation of a non-zero
rotational polarization. However, since it is the projection

of rotational polarization along the magnetic field axis

[see Eq. (11.16)] that is important, the rotational polarization
system may still couple to the Zeeman system as shown in Figure
IT7.12.

The gearing interaction is accounted for in a manner
analogous to the treatment of spin diffusion. That is, defining
W as the gearing interaction and ignoring for the moment the
coupling to the Zeeman system, the relaxation equations for
the rotational polarizations of two adjacent methyl groups are

[compare Egqs. (11.7a) and (11.7b)]:

e
]

1 - 844Rl - W(R1+R2) (11.19a)

= 5,,Ry - W(R1+R2) (11.19b)

e
it

where, in contrast to spin diffusion, W causes the sum of the
polarizations rather than the differences to go to zero. This
is illustrated in Figure II1.13.

With Eqs. (11.19%a) and (11.19b) and the Zeeman system the

complete relaxation equation for two adjacent methyl groups is:

M 511 S1,(80) 81,0 M
Rl = - 514(61)/2 544+w W Rl (11.20)
R, 5,,(6,)/2 W S, 4V / R, /
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XBL 802-8346

Figure IT.11 Cancellation of rotational polarization for geared

methyl groups.
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XBL 802-8349

Figure IT1.12 Angular dependence of the net rotational

polarization of two geared methyl groups. Because of the cosb
dependence of the Zeeman to rotational polarization coupling,

it is the magnetic field projection of the rotational polarization
which 1is a quasi-constant. .Thus, if the methyl groups are geared,
the xylene molecule on the left will exhibit no rotational

polarization, but the molecule on the right will.
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(a) SPIN DIFFUSION (FLIP-FLOP)

?

M,

(b) STERIC INTERACTION

_

Ro
XBL 813-8357

Figure I1.13 Comparison of the effects of spin diffusion and

steric interaction on two adjacent methyl groups. ({(a) The spin
diffusion causes the difference in the two Zeeman magnetizations
to go to zero. (b) The steric interaction causes two adjacent
methyl groups to rotate in opposite directions, and the sum

of rotational polarizations goes to zero.
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The rotational polarizations are rotated by 45° to obtain:

M 511 [S,,(6)-51,(8))1/2 [8),(8))+5;,(8))1/2
Rp=Ry |= | [5,(81)-5;,(8,)1/2 S44 0
R1+R2 [814(61)+814(82)1/2 0 544+2w
M
X Rl—R2
R R, : (11.21)

The case of W = 0 was treated in section 11.2 where it was shown
that the Zeeman relaxation is described by two exponentials.

For arbitrary W the solution of Eq. (11.21) has two quasi-
constants coupled to the Zeeman system so that the relaxation

is tri-exponential (see the computer program "couple.c" in
Appendix E). If the two methyl groups are strongly geared,

then W >> § and the sum (Rl+R2) goes rapidly to zero leaving

117544
a quasi-equilibrium state described (ignoring the dipolar and

tunneling systems) by M and the difference (Rl—Rz)°
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Thus, 1n the limit of large W, (Rl+R2) may be dropped

and the following relaxation matrix obtained for N methyl
groups:
M/M

eq
(Rl_RZ)/Meq

(R3—R4)/Meq

.
S11 [514(61)—814(62)]/2 [814(63)—814(84)]/2...
_ | [814(87)-8,,(8,)1/N 8,4 | 0
[514(93)—814(64)]/N 0 s44
(=~ )
M/Meq
X (Ry-Ry) /M,

(RB—RA)/Meq

(11.22)
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where the normalization Meq has been included, and the methyl
groups interact sterically in isolated pairs: (Rl—Rz), (R3-R4),
(RS—R6), etc. Eq. (11.22) is of exactly the same form as Eq.
(11.13) and may be solved by the techniques outlined in Appendix
D. Following this procedure a bi-exponential solution is

obtained with relaxation rate constants:

. P | o 42 , 2,172
M 5= (8yy#8,,0/2 % 5 [(5;-5,,0° + 4 51,7 (11.23)

where

2
A
814

N-1
. [5,,(0.0-5,, 6., V1%/2m) . (11.24)
i=1,3,5...

The new rotational polarization quasi-constant is defined to

be:

N-1
Q. (8) = [cos(6,)-cos (8, )[R, (£)-R, ,(©)]/2,
i=1,3,5.

LY

(11.25)
resulting in the following relaxation equations:
N = ! ) ' !
M(t)/Meq Cl exp ( Alt) + 02 exp( Azt) (11.26a)
and
' = v_ ' ! t_ L !
2V6 K Q ()M, = (A]=8;) C] exp(-A1t) + (A;-8);) C) exp(-A;t)
(11.26b)
where

C; = [(51,-25) M(0) - 2V6 K Qr(O)]/[(Al-AZ) Meq] (11.27a)
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and

cé = [1~1(0)~ci]/M(_1_q . A (11.27b)

Egs. (11.22)-(11.27b) should be compared with the analogous
Eqs. (11.13)-(11.18b) for independent methyl groups. The
critical factors which distinguish the two sets of equatiomns
are the cross-relaxation terms 5142 and Si42 and the associated
quasi-constants Pr(t) and Qr(t), respectively.

One problem that arises in considering strongly interacting
methyl groups is that the adjacent methyl groups may contribute
significantly to one another's relaxation., This can be accounted
for as follows. 1If the methyl groups do not exert a strong
gearing interaction W on one another, it is unlikely that at
high temperature the individual protons (i.e., the gear teeth)
can remain in registry with one another for periods of time

[29]. Consequently, ¥

comparable to 1/ D.inter
’

H
D,inter

averaged over the methyl protons and contributes predominantly
to symmetry conserving transitions. Defining this contribution

to be Allz

' =
Sll Sll + All . (11.28)

i H
On the other hand, if the gearing 1s very strong, D,inter
will not be averaged over the methyl protons, and it will cause
Ea -+ Eb transitions. [Actually, such transitions are implicitly
assumed in W, Eqs. (11.19a) and (11.19b)]. Defining this

contribution to be A&A:
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S,, =8S,,+4,, . (11.29)

There is no reason for X to affect 514 [25]. Estimates of

D,inter

All and A4

(see section 13.5.1). Since Mb inter WAy contribute to
’

4 may be obtained by semi-empirical considerations

relaxation whether there is steric interaction or not, Sil

L}
and S44

coupled methyl groups [25].

may be used in the treatment of either independent or

Although bi-exponential relaxation is predicted for either
extreme of no gearing or large gearing, all three measurable
quantities Al' A2’ and C1 (or !, Aé, and Ci) differ in the two
cases. Results of experiments on molecules containing methyl
groups of varying degrees of steric interaction are presented

in section 13.5.
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12. EXPERIMENTAL DETAILS

12.1 Samples

All experiments were performed on powder samples except
for some studies which were done on single crystals of durene
(1,2,4,5-tetramethylbenzene) and 2,3-dimethylmaleicanhydride.
Methyl iodide (CH3I) was studied at -105°C and ~150°C. Since
it froze suddenly at -80°C (published M.P. = -66.5°C [30]), it
presumably did not form a glass. The methyl iodide was
typically cooled over a period of 1 to 2 hours.

Severél experiments were performed using single crystals
of 2,3-dimethylmaleicanhydride. All of the single crystals
contained 10% of perdeuterated molecules. The level of
deuteration was 98% so that any CH2D, which might have
significantly different relaxation properties [31] than CH3,
was very dilute. The deuterium quadrupole splitting of the
rapidly rotating CD3 depends only on the angle between the C3
axis and the magnetic field. Hence, it was hoped that the
deuterium NMR spectrum could be used to orient the single
crystal and thereby obtain the angular dependence of rotational
polarization. This had to be abandoned, however, due to the
complexity of the deuterium spectrum. The spectrum appeared to
contain eight pairs of lines (i.e., eight methyl orientatioms,
thus, four molecules per unit cell) although the signal to
noise precluded saying this with great certainty.

The advantage of using a single crystal is that spin

diffusion is effective over the entire sample. For a powder
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the separation of the crystallites prevents effective spin
diffusion, and the crystallites relax independently, Thus,
there may be multiple spin temperatures and a markedly non-
exponential relaxation curve for the powder. However, if there
are multiple methyl group orientations per unit cell, the
relaxation is relatively isotropic with little difference
between powder and crystal. This probably explains the success
of Emid in applying SRSD theory to powders [11,23,25]. As
shown in section 13.3, however, the powder and single crystal
of 2,3-dimethylmaleicanhydride have different temperature
dependences.

The powder samples were pressed into pellets 6 mm in
diameter and 6 mm in length. The single crystals were approxi-
mately the same size. The solids were inserted into 8 mm glass
tubes and held in place with teflon plugs. The CH3I was degassed
and sealed in an 8 mm tube.

Syntheses for those samples which are not commercially
available are described in Appendix F. Also contained in

Appendix F are the details of the single crystal preparation.
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12.2 Signal to Noise

All of the measurements reported in this work are basically
intensity measurements. Consequently, the critical experimental
parameters were signal to noise and spectrometer linearity (linearity
is discussed sepérately under each spectrometer). Linewidth was
a minima; concern except for the unsuccessful crystal alignment by
deuterium NMR where the field was shimmed to give a 1 ppm linewidth
for HZO'

Very little could be done to improve signal to noise other
than signal averaging. The proton signals were large, but fluctua-
tions in electronics and ambient noise picked up by the probe were
not negligible. Signal averaging was made difficult by the very
feature which is of interest in this work: rotational polarization.
Ordinarily, the recycle delay between measurements is one Tl'
Furthermore, the relaxation is generally independent of recycle
delaylif the spin system is saturated at the start of each cycle.
Since rotational polarization is a separate quasi-constant, it is
not removed by saturating the Zeeman spin system. In fact, it is
unaffected if the saturation time is much less than 814.
Consequently, the rotational polarization must be allowed to relax
to a negligible level between measurements. The rotational
polarization lifetime, or 1/e decay time, was generally two to

four times as long as T Allowing four lifetimes, two to three

l!
minutes was typically required for each measurement. With

fifteen different time values for a given relaxation experiment,

it was prohibitive to average more than about 10 times, This
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was generally sufficient to obtain S/N of 50 or better.
Since the proton spectrum was a single Gaussian of 30
to 50 KHz linewidth, it was unnecessary to Fourier transform
the FID's. Typically, each FID was averaged and then integrated
(after linearity .correction if necessary), allowing 15 usec

deadtime after the detection pulse.
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12.3 106 MHz Spectrometer

12.3.1 Magnet

The spectrometer is based around a Westinghouse 24.4 kGauss
superconducting magnet with 2.5 inch bore. Although the magnet is
low resolution, in all cases the homogeneous linewidths were much

greater than any inhomogeneous broadening.

12.3.2 Pulse Generation

.The proton RF is generated by mixing the 30 MHz LO from a
General Radio 1164-A frequency synthesizer with 136 MHz (generated
by doubling 68 MHz output by the same synthesizer) and keeping
the lower sideband. The RF is gated by a 1l6-step home-built
pulse programmer. After various stages of intermediate
amplification the pulse is finally amplified to 200 watts with
a class C tuned transmitter built from a Millen ham radio kit,
90° pulse lengths are 1 to 1.25 usec, thus, providing sufficient

spectral width to cover the proton spectrum.

12.3.3 Probe

The probe uses a simple coil-and-capacitor tank circuit
(see Figure II.l4a) with a Q@ of ~ 150 at 106.2 MHz. The coil
is 8 turns of 18 gauge bare copper wire and has a diameter of
8 mm and length of 1.5 cm. The coil is mounted on a teflon block
(v 2.25" diameter) and covered with a glass dewar for thermal

insulation.
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Temperature control is achieved by regulating the flow and
temperature of cold N2 or warm ailr over the sample. Before reaching
the sample the input gas flows over a small coil of Advance wire
which is heated by a voltage proportional current source. A
copper/constantan thermocouple is read by a nanovoltmeter which
outputs a differential voltage to drive the current source. By
calibrating the nanovoltmeter with a digital thermometer, the
temperature may be regulated to within # 0.1°C over the range
-170°C to 80°C.

The sample mount is similar to that shown in Figure II.15.
The sample is mounted in the larger of a pair of two-to-ome 90°
bevel gears. The shaft of the smaller gear is attached to a
flexible cable external to the probe which allows manual rotation

of the sample: 180° in Vv 1 sec.

12.3.4 Receiver

The proton receiver has two stages of amplification: a
wideband low noise preamplifier (Avantek UTO-511, UA-102, UA-103
cascade) with 34 dB gain and a 30 MHz low noise IF amplifier
with 43 dB gain. The IF amp is home«~built and is based on a
cascaded pair of Siliconix E420 dual J-FET's [32], Between
the wideband and IF amplifiers the NMR signal is mixed down to
30 MHz and then attenuated to avoid saturating the IF amp. The
output of the IF amp is split by a 0°-90° tee to allow quadrature
detection. The two phases are each mixed with 30 MHz and one is

selected to be digitized.
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(a) SINGLE—TUNED PROBE

"H Transmitter, W’
) Al

(b) DOUBLE-TUNED PROBE

I . 2
H Transmitter |
| , — ,H/ D Transmitter,
Receiver Receiver
X X' |
4q 4q
> )
r77

XBL 812-8109

H
Figure II.14 Single and double-tuned probe circuits. A is the

wavelength corresponding to the proton Larmor frequency; A 1is

corrected for the reduced velocity (0.7 c¢) of an electromagnetic

wave in a solid coaxial cable.
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PROBE HEAD AND SAMPLE MOUNT

TOP VIEW

a)

b)
c)

FRONT

BEVEL GEARS——

///

Bl ]

SAMPLE MOUNT

} PROBE HEAD

SCALE pb——2"—-
XBL 812-8128

Figure II.15 Probe head and sample mount. The probe head is made

of glass-impregnated teflon, and the sample mount is aluminum with
a teflon sleeve. The probe head is threaded for attaching a bell
jar dewar. The labeled openings are for a) gas transfer line, b)
grounded AH/4 stub, ¢) proton capacitor, d) deuterium capacitor,
e) copper/constantan thermocouple, and f) open AH/A stub. The
straight bevel gears are brass and have a 32 pitch; the larger
gear 18 1" in diameter with 32 teeth, and the smaller is 1/2" in

diameter with 16 teeth.
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The maximum gain of the receiver is greater than 60 dB. With
25 dB attenuation before the IF amp, the spectrometer is linear
to within 27 over a range of input signals from 0.6 uVrms to
0.6 mVrms. The linearity of the IF amp over this range could
not be matched by two commercial IF amps (RHG EVT-3010's) that
were tried. Error from non-linearity was less than or equal to

the statistical errors generally present.

12.3.5 Digitizer

The audio signal is digitized by an 8 bit Biomation Transient
Recorder Model 802. The maximum digitization rate is 1000 points
in 500 usec which is more than sufficient for solid state proton
spectra.

Typical audio signals ranged from 1 to 100 mVpp.
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12,4 185 MHz Spectrometer

12.4.1 Magnet

The magnet is a Bruker 42.5 kGauss superconducting magnet
with 3.5 inch bore. The magnet has both superconducting and
room temperature shims and was shimmed to a 1 ppm H20 linewidth

for the experiments.

12.4.2 Pulse Generation

The RF and LO generation is very similar to that previously
described (section 12.3.2). The 30 MHz LO is generated by
tripling the 10 MHz output of a General Radio 1061 frequency
synthesizer. 155 MHz from the same synthesizer is mixed with
the 30 MHz, and the upper sideband kept. After various stages
of intermediate amplification the 185 MHz is gained up to 200
watts with a class C cavity-tuned transmitter built from a
Millen ham radio kit,

The pulse is gated with a 1l6~step home~built pulse
programmer which can be loaded and run under computer control
(a NOVA 820 computer is used). 90° pulses were typically

around 5 psec long which provided adequate spectral width.

12.4.3 Probe

The probe uses a single coil double-tuned tank curcuit as

shown in Figure II.14b (similar to Reference 33). The circuit
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is simultaneously tuned for 1H at 185 MHz and 2D at 28.4 MHz.
The coil uses 8 turns of 18 gauge bare copper wire and is 8 mm
in diameter and 1.5 c¢m in length.

The temperature control is similar to that described in
section 12.3.3 except that a digital thermometer with internal
reference controls the heater current supply. Thus, the nano-
voltmeter arrangement described previously is bypassed, and
the desired temperature may be dialed in directly.

The probe is designed for automated sample flipping. The
sample mount of the probe is as shown in Figure II.15. The
sample sits in the larger of a pair of two-~to-one 90° brass bevel
gears. The shaft of the smaller gear runs along the length of
the probe (v 4 feet) and is attached to the shaft of a SLO-SYN
MO61-FCO8 stepping motor mounted at the end of the probe (see
Figure I1.16). The motor mount is extended 9" beyond what is
normally the end of the probe. This is to allow clearance for
the tuning capacitors and temperature-control connections and
also to provide greater separation between the motor (which
contains permanent magnets) and the superconducting magnet.
The step increment of the motor is 1.8° so that the 2 to 1
gearing provides a 0.9° step increment for the sample. The
motor is driven by an STM10l tramslator module which requires
a 24 VDC, 6 amp power supply. The stepping motor and
translator module are manufactured by Superior Electric Company.

The translator module is driven by negative going logic

pulses (10 usec minimum width) from the spectrometer pulse
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11,12
SAMPLE FLIPPING PROBE

f) POINTER
q)SUPPORT RODS
— ""/
"
-—
b) BASE PLATES N

=———— h} TRANSFER LINE

¢) DRIVE SHAFT ———m o

i

d} PROBE HEAD

€] SAMPLE MOUNT

SCALE  p—3"—
XBL 812-8126

Figure II.16 Sample flipping probe. The tuning capacitors,

AH/A stubs, and thermocouple, which run parallel to the transfer
line, are not shown. The base plates and support rods are
aluminum; the drive shaft and gas transfer line, which supports

the probe head, are stainless steel. The rotation angle is

marked by a pointer and azimuthal chart on the upper base plate.

The total probe length is Vv 4 feet.
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programmer and has two inputs to allow the motor to be stepped
clqckwisé or counterclockwise. The translator module also has
an intermal oscillator for continuous rotation of the motor.
The translator module is rated at 1000 pulses per second and
the motor at 500 pulses per second maximum. In practice,
however, it was found that the motor could be run at 1000
pulses per second (i.e., 180° sample flip in 0.2 sec) without

error.

12.4.4 Receiver

The receiver is very similar to the one described in
section 12.3.4, the major exception being that a commercial
30 MHz IF amp (RHG EVT 3010) is used. There are two stages
of amplification (preamp and IF), and the output of the IF
amp is divided into 0° and 90° components and mixed with
30 MHz to obtain the audio signal in quadrature.

The receiver was found to have poor linearity characteristics
with the gain of a 1 YVrms input signal being 2 to 3 dB less than
the gain of a 0.1 mVrms input. Since non-linearity can severely
distort a relaxation curve, it was necessary to record a
calibration curve for each experiment and correct the data

accordingly.

12.4.5 Digitizers

The two audio components are sampled and digitized by a

pair of Datel Model SHM2 S/H's in series with a pair of 10 bit
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Datel Model ADCE1CB A/D's. The digitization rate is limited
by the rate of data transfer to the NOVA 820 computer. The
fastest acquisition rate without error is 5 Hsec per point

which 1s marginal with T2's around 20 usec.



I1.13 240

13. EXPERIMENTAL RESULTS AND CALCULATIONS

13.1 Bi-exponential Relaxation

The equilibrium spin system is shown in Figure II.17. At
equilibrium there is no net flow of energy or particles between
any of the subsystems or between subsystem and lattice. The
effect of the RF pulse is depicted in Figure II.18. The NMR
probe circuit is coupled only to the Zeeman spin states; the
rotational polarization subsystem and lattice can be detected
only indirectly through their influence on the Zeeman states.
After the Zeeman system is driven from equilibrium it relaxes
as shown in Figure II.19. 1If the Zeeman system were the only
quasi-constant or if it was uncoupled from the other subsystems,
then it would relax as a single exponential. The coupling to
the rotational polarization brings about the bi-exponential
relaxation described in section 11.3.1.

The measured bi-exponential relaxation of 2,6-dimethylphencl
is shown in Figure II.20. A saturation recovery pulse sequence
was used with a recycle delay of 150 sec. For saturatioh of
the spin system three 90° pulses were used; the pulses were
separated by 1.5 msec which is much greater than T2 and much
less than T,. 2,6-dimethylphenol has been studied extensivey

1
by Emid [20,23,25] using CW NMR techniques.
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Thermodynamic Picture

of System at Equilibrium

Zeeman
States

Rotational
States

Lattice

(Everything else)

Figure 1I.17 Thermodynamic picture of system at equilibrium.

reservoirs.

XBL 803-8421

. There is no net flow of energy or particles between the three
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Drive from Equilibrium

RF Zeeman Rotational
. .
Transmitter States States

Lattice

XBL 803-8422

Figure I1.18 Use of RF irradiation to drive the system from

equilibrium. The RF circuit (i.e., the probe coil) is coupled
directly to the Zeeman subsystem and indirectly to the

rotational polarization subsystem and the lattice.
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RETURN TO EQUILIBRIUM

l e At Relaxation

Lattice

With Rotational Coupling

Zeeman Rotational
—_’
States States
l l 2 channels
Lattice
-\t -Aot
C,e ' + Coe 2 Relaxation

XBL 803-8419

Figure I1.19 Return to equilibrium. After RF irradiation the Zeeman

subsystem returns to equilibrium by losing energy to the lattice, If
there is only one coupling to the lattice,the relaxation is exponential.
If the Zeeman subsystem couples to rotational polarization,the

relaxation is bi-exponential.
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2,6—Dimethylphenol
19°C 106.2 MHz
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Figure II.20 Bi-exponential T1 relaxation observed for a poly-

crystalline sample of 2,6-—dimethylphenol. The line for the

fast component was obtained by subtracting the slow componert

from the measured curve.
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13.2 Time Dependence of Rotational Polarization

Once the Zeeman system is driven from equilibrium (i.e., heated
by the RF pulses), it in turn drives the rotational polarization
system away from equilibrium [19,23}. The size of the rotatiomnal
polarization whicﬁ is generated may be monitored through the Zeeman
signal as follows.

The Zeeman system is given a T pulse and then allowed to relax
for a time tp. During this time the rotational polarization
subsystem is being pumped. Immediately after tp the Zeeman system
is saturated by a series of 90° pulses and then sampled at a time
t later as shown in Figure I1I.21. If there were no rotational
polarization,the size of the sampled Zeeman signal would depend
only on the time_interval t. However, since rotational polarization
is not affected when the Zeeman system is saturated, Pr(tp) is
present after saturation, and this in turn influences the Zeeman
recovery. The Zeeman signal is dependent upon both evolution
periods and is written explicitly as ﬂ(tp,t). Pr(tp) may be
measured through the changes in i(tp,t) as a function of tp.

From Egs. (11.17a)-(11.18b)

(Mt , ©)-H(0, )] /M = =2/6 K P (£} [exp(-A £)~exp(-Ay£)]/ [y -2, ]

(13.1)

and
2/6 K Pr(tp)/Meq = ZOlell)(Az—sll)Iexp(e)\ltp)—exp(r-lztp)]/(Al—)\?_)

(13.2)
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Figure II.21 Pulse sequence for determining the time dependence of

rotational polarization. The rotational polarization is pumped

by the Zeeman relaxation during the time tp, and its magnitude

is determined by its effect on the Zeeman relaxation during the

time t.
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where

(13.3a)

it
1
N

M(O,O)/Meq

(13.3b)

[
o

Pr(o)/Meq

The quantity [ﬁ(tp,t)ng(o,t)J/Meq,which is directly proportional
to Pr(tp)/Meq’waS measured for 1,4,5,8-tetramethylanthracene as
a function of tp with t equal to 6 sec. The data are plotted in
Figure 1I.22, and apart from the poor signal to noise the data do
show the rise and fall of Pr(tp) as predicted by Eq. (13.2).

.The T1 relaxation curve of 1,4,5,8-tetramethylanthracene was

measured (see section 13.5.1) to obtain the quantities Al’ AZ’ and

C Using these measured quantities and Eqs. (11.17a)-(11.18b),

1°
(13.1)-(13.3b), the predicted time dependence of Pr(tp) is shown
in Figure II1.22. Presumably a part of the discrepancy between

the predicted curve and the experimental data may be attributed to
the fact that the non-exponentiality of the Tl curve contains
contributions from rotational polarization plus powder anisotropy

(i.e., incomplete spin diffusion), whereas the data of Figure IT1.22

are strictly a measurement of rotational polarization.
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TIME DEPENDENCE OF ROTATIONAL POLARIZATION
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Figure II.22 Time dependence of rotational polarization. The sample

was polycrystalline 1,4,5,8-tetramethylanthracene. The proton
resonance frequency was 185 MHz, and the temperature was 25°C.
The abscissa is the time tp, and the time t was fixed at 6 sec
(see Figure 11.21). The theoretical curve was calculated using

Eqs. (11.17a)-(11.18b), (13.1)-(13.3b), and the ’I‘l relaxation data

of Figure IT.32.
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13.3 Angular Dependence of Rotational Polarization

The rotational polarization quasi-constant was shown to be

[Eq. (11.16)

—

P_(t) = z:cos(ei) R, (t)
1

where Ri(t) is the Ea—Eb population difference of the ith methyl
group and ei is the angle between the methyl C3 axis and the
magnetic field. Considering Ri(t) as a vector of length Ri(t)

parallel to the ith

C3 axis, Pr(t) is the total projection of
rotational polarization along the magnetic field. Ri(t) may be

written:

gi(t) = [sinei cosn,X + sinei sinniy + cosGiE]Ri(t) (13.4)

i

where n, is the azimuthal angle and X, ¥, £ are the unit axis

i

vectors. If the sample is rotated about the x axis by the angle
¢, then the new rotational polarization quasi-constant immediately

after rotaion is:

Pr(t,®) = Ei:[cosei cosd - sinei sinni sin¢]Ri(t) . (13.5)

Assuming that a powder average is valid, then the average value of

sinn is zero, and from Eqgs. (11.16) and (13.5):

Pr(t,®) = cos (d) Pr(L,O) (13.6)

where the notation has been changed to account for the sample
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rotation. Eq. (13.6) may be tested experimentally to confirm
the vector nature of rotational polarization and the validity
of the z projection Pr as the correct quasi-constant.

Pr(tp,O) was pumped as demonstrated in the previous section,
the sample rotated (see Figure II.23), and resultant rotational
polarization measured by its effect on the Zeeman T1 recovery.
The necessary pulse sequence is shown in Figure II1.24 with the
first sample rotation (< 0.2 sec) being controlled by the pulse
programmer (automated probe described in section 12.4.3).
Incorporating the time intervals tp and t and the rotation
angle ¢ into the notation, there follows from Eqs. (11.17a)-

(11.18b):
(e ,@,0)-M(x ,0,£)1/M, = —2/€K[pr(cp,¢)-Pr(tp,0)]
x [exp(—klt)—exp(—lzt)]/[(Xl—XZ)Meq]
(13.7)

According to Eq. (13.6)

Pr(tp,Q)-Pr(tP,O) = (cosd-1l) Pr(tp,O) . (13.8)

Thus,

[ﬂup,@,t)-i«(tp,o,c)l/[i<cp,n,t>-f4<cp,o,c)1 — (1-cosd)/2

- (13.9)

where Eq. (13.7) is taken relative to its value for a 7

rotation of the sample.
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Figure 11.23 Effect of a 180° sample flip on the Zeeman (Z) and

rotational polarization (R) subsystems. The Zeeman subsystem
depends only on spin coordinates and is unaffected, therefore, by
a sample flip. Rotational polarization is associated with the
spin symmetries which are coupled to the spatial symmetries
through the Pauli exclusion principle. Thus, rotational
polarization follows the motion of the methyl C3 axes and is

inverted by a sample flip.
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RECYCLE DELAY o f DETECTION

o
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Figure I1.24 Pulse sequence for determining the angular dependence

of rotational polarization. The rotational polarization is pumped
by the Zeeman relaxation during the time tp. The sample is then
quickly rotated ly an angle ¢, and the resulting rotational
polarization measured by its effect on the Zeeman relaxation

during the time t.
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The quantity expressed in Eq. (13.9) has been measured for a
1,4,5,8~tetramethylanthracene powder with tp =t =9 sec, and
the results are plotted in Figure II1.25 as a function of . The
agreement between the experimental results and Eq. (13.9) is fair
considering that there should be some contribution to the results

from Tl anisotropy in the powder.
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Figure I1.25 Angular dependence of rotational polarization. The
sample was polycrystalline 1,4,5,8-tetramethylanthracene. The
proton resonance frequency was 185 MHz, and the temperature was
25°C. The abscissa is the angle ¢; the times tp and t were
fixed at 9 sec (see Figure II1.24). The theoretical curve was

calculated from Eq. (13.9).



11.13 255

13.4 Equilibrium Rotational Polarization

Implicit in the use of C3 symmetry for the methyl group is
the degeneracy of the Ea and Eb rotor states within a torsional
level (it is assumed throughout this discussion that degeneracy
refers either to‘an individual torsional level or to an average
over torsional levels). This may be rigorously affirmed on the
basis of time reversal since the E? and Eb states are mirror
images of one another. However, in the presence of an external
magnetic field the two symmetries need not be degenerate; since
time reversing the methyl group does not change the direction of
the field. The degree to which the field breaks the degeneracy
‘and the C3 symmetry depends upon the degree of interaction between
the methyl group rotation and the magnetic field; This inter-
action will now be elucidated.

In the gas phase the rapidly rotating (2 1O13 Hz) methyl

group of methyl iodide CH,I generates a magnetic moment which can

3
be detected through shifts in the rotational spectrum of CHBI in

a magnetic field [34]. The magnetic moment may be written:

u = Bg+J (13.10)

~ ~

where 8 is the nuclear magneton, g the molecular g-~tensor, and
J the angular momentum of the molecule, Considering only the
component due to rotation of the methyl group about its C3 axis:

UCH3 =8 81 h m (13.11)

where 8y is the methyl group g-factor and m is the angular
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momentum quantum number along the C3 axis (see section 10.1)
8y has been measured for a few molecules: CH3F, CH3Br, CHBI,
CH3CCH [35,36]. All of the measured values are v 0.3 with the
value for CH,I equal to 0.310 % 0.016 [35].

In section 10.1, Eq. (10.5) it was shown that although angular
momentum is no longer a good quantum number for hindered rotors,
hindered methyl groups do rotate and an expectation value of
angular momentum <m> can be associated with each E? and Eb
state (see Figure II.4). Furthermore, by calculating a Boltzmann
average over the torsional states, it is possible to associate a
temperature-dependent expectation value of angular momentum with
Veach_symmetry manifold E2 and Eb. Thus, in the presence of an
external magnetic field the E? and Eb spin states which are
associated with the Eb and E? rotor states, respectively, through
the Pauli principle are no longer degenerate [18]. This is
illustrated in Figure 11.26 where the energy hwRP is associated
with rotational polarization. The net effect of this is that
at equilibrium the populations of the E? and Eb spin states are
no longer equal so that Pr,eq is non~zero.

Experiments were performed to measure the equilibrium value
of rotational polarization P ,eq for solid CH3I at -103°C. The
non-exponential relaxation of solid CH3I is shown in Figure II1.27.

From the temperature dependence of Tl (measured at -103 and -150°C)

the barrier to CH, rotation was found to be 420 * 60 cal/mole.

(V8]

r,eq was measured by the combination of pulse sequences shown in
’

Figure II.28. 1In the first sequence a 90° pulse is given to the

spins, after a time tp the sample is flipped by 180°, and then
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Figure IT1.26 The energy levels of the three protons of a methyl

group considering the Zeeman, intramethyl dipolar, and tunneling
interactions and the coupling between the methyl group rotation and
the external magnetic field. Because the magnetic field lifts the
degeneracy of the E? and Eb states, the methyl group symmetry is

only approximately C3.
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Figure I1.27 Bi-exponential Tl relaxation observed for a sample of

frozen methyl iodide.
component are accurate to within 207%, and the parameters for the
slow component are within a factor of 2.Additional values which were

included in the fit but not plotted are: 2.47 at 176 sec, 0.48 at

219 sec, and 0.35 at 263 sec.
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The parameters for the fast relaxation
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Figure II.28 Pulse sequences used for determination of equilibrium

rotational polarization. The rotational polarizatibn is pumped by
the Zeeman relaxation during the time tp’ and it is observed by

its effect on the Zeeman relaxation during the time t. Pulse
sequence (a) contains a 180° sample flip. The difference in Zeeman
signals from sequences (a) and (b), for given values of tp and t,
is directly proportional to the rotational polarization present

at time t . By fixing t and increasing tp’ the data may be
extrapolated to obtain the equilibrium rotational polarization.
Note: since the difference of (a) and (b) was recorded, the second

m/2 pulse of each sequence was unnecessary.
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after a time t the Zeeman signal is sampled. The second sequence
is the same except the sample flip is omitted. The difference
between the two Zeeman signals (i.e., flip and no flip) is
proportional to Pr(tp) [see Eqs. (13.7), (13.8)]. By increasing
tp while holding t fixed, the asymptotic equilibrium value Pr,eq
may be measured. The results of such an experiment are shown
in Figure II.29.

Pr(tp) appears to be converging to a non-zero equilibrium

value although the data are far from conclusive. A non-linear

least squares routine was used to fit the data to the equation:
f(t) = A + B exp(-At) (13.12)

where A and A are related to P eq and AA, respectively. The

fit was performed using the FORTRAN subroutine 'VARPRO" [37,38,39]
obtained from the Lawrence Berkeley Laboratory Computer Center.

It is not advisable to take the logarithm of Eq. (13.12) and use
a linear least-squares method since this is ill-behaved for

f(t) near zero and meaningless for a negative f(t). The results

of the VARPRO fit are:

A = 0.004 £ 0.002 (13.13a)

B = 0.2 + 0.1 (13.13b)
-1

A =0.022 + 0.006 sec . (13.13c)

From Egqs. (13.7) and (13.8) and the experimental parameters
obtained from the data of Figures II1.27 and II.29 there is

obtained:
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Figure I1.29 Measurement of the equilibrium rotational polarization

Pr eq of solid methyl iodide. The proton frequency was 106.2 MHz,

and the temperature was ~103°C., The time t was fixed at 15 sec
(see Figure 1I1.28). A non-linear least squares fit of the data
gave a decay time of 50 % 25 sec, in fair agreement with A2 of
Figure II1.27, and an equilibrium value Pr /Meq of 0.003 + 0.002

s

(note: the data in the figure are scaled up by a factor of 100).
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P /M = 0.003 + 0.002 (13.14)
r,eq eq

where K was calculated from Eqs. (11.4a) and (11,18a) assuming

a powder average for sll'

The program '"'methyl" (Appendix C) was used to calculate the

theoretical value of P /M as follows. With the high
r,eq eq

s

temperature approximation

o
It

hug /KT = B g h[<n(E")> - <m(EP)>1H (13.15a)

B gy hH ~ (13.15b)

M h w /kT
eq z

where gy is the proton g-factor. With
b a
<m(E")> = -<m(E7)> (13.16)
by time reversal symmetry, it follows that

a _ a
Pr’eq/Meq = 2 <(E")> g, /gy = 0.111 <m(E")> (13.17)

where the experimental values of gk(0.31) and gH(5.585) have

been used. Using "methyl" to calculate the temperature-dependent
r,eq/Meq (i.e., the angular momentum of the rotor is temperature-

dependent) for a 420 cal/mole barrier, the results of Figure I11.30
are obtained. Given the negligible value predicted at -103°C,

the experimental results of Figure 1I1.29 and Eq. (13.14) nmust

be considered very tentative. Furthermore, in the calculation

all methyl groups were assumed paralilel to the field H, whereas a

powder average would be more appropriate. With the magnetic

interaction given by u°H, the energy varies as cos0. Performing
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a powder average, the calculations of Figure II.30 are reduced
by a‘factor of two (note: methyl groups pointing in opposite
directions do not cancel since the coupling to the Zeeman system
is proportional to cos@).

An interesting calculation would be to see if a larger value
of P is predicted for a sixfold rather than a threefold

r,eq

barrier.
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Figure I1.30 Theoretical equilibrium rotational polarization Pr eq

as a function of temperature. The activation energy 420 * 60 cal/mole,
which was obtained from the CH3I relaxation data, was used as the
barrier to methyl group rotation. All methyl groups were assumed

to have their C3 axes along the magnetic field. For an isotropic
distribution of methyl groups the above calculation should be

reduced by a factor of 2.
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13.5 Methyl-methyl Steric Interaction

13.5.1 Strong and Weak Coupling

The molecules 1,4,5,8-tetramethylanthracene and 1,4,5,8-
tetramethylnapﬁthalene (see Figure II.31) provide an interesting
comparison for observing the effect of steric interaction on
rotational polarization. 1In 1,4,5,8-tetramethylanthracene the
' methyl groups are well separated, and the bi-exponential relaxation
of independent methyl groups is expected. The Tl relaxation
curve of 1,4,5,8~tetramethylanthracene 1s shown in Figure II.32.
The data are fitted well with a bi-exponential decay curve (the
nonlinear least-squares fitting routine "VARPRO" [37,38,39] was
used to fit all of the relaxation data discussed in sections
13.5.1 and 13.5.2). |

On the other hand, 1,4,5,8-tetramethylnaphthalene, which has
very strong steric interaction between adjacent methyl groups,
exhibits the strictly exponential decay behavior shown in
Figure I1I1.33. This is in exact accordance with the predictions
of section 11.3.2 for strongly coupled methyl groups. According
to Eq. (11.24) the coupling between Zeeman and rotational
polarization depends on the difference [sla(ei)-sla(ei+l)] for two
coupled methyl groups. This difference is zero for 1,4,5,8-
tetramethylnaphthalene since both members of each coupled pair
are parallel (or nearly so), and, therefore, the Zeeman system
relaxes independently (and expomentially) of rotational

polarization. The strong coupling is found to persist from 20°
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Figure I1I.31 Examples of weak and strong steric coupling. The

well-separated methyl groups of 1,4,5,8-tetramethylanthracene
(top) are expected to relax as independent methyl groups, whereas
the closely-spaced methyl groups of 1,4,5,8-tetramethylnaphthalene

(bottom) are expected to relax as strongly geared methyl groups.
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o 1,4,5,8~Tetramethylanthracene
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Figure II.32 Bi-exponential T1 relaxation observed for a poly-

crystalline sample of 1,4,5,8-tetramethylanthracene. The line
for the fast component was obtained by subtracting the slow
component from the measured curve. The bi-exponential relaxation

is indicative of independent methyl groups.
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Figure TT.33 Exponential Tl relaxation observed for a poly-
crystalline sample of 1,4,5,8-tetramethylnaphthalene. The relaxation
times are accurate to within 1%. The exponential relaxation can be

attributed to the combined effects of strong methyl gearing and

intermethyl relaxation.
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to 60° as shown in Figure II.33. Assuming an Arrhenius law for
the correlation time, the calculated barrier to methyl group
reorientation is 3,1 * 0.1 kcal/mole. This value is essentially
the same as that for 1,8-dimethylnaphthalene which has been
reported as 3.2 * 0.1 kcal/mole [40] and 3 kcal/mole [41]; the
barriers for other dimethylnaphthalenes range from 0.4 to 2.5
kcal/mole [40].

The objection could be made that the intermethyl contribution
to the relaxation seriously alters the treatment of section 11.3.2.
This may be easily checked. It was previously stated that
increases Sll and 844 but not 814 [25]. Assuming that

€ .
D,inter

either Sll and S44 become large due to ﬂb,inter or S14 becomes

small due to the steric interaction, then Al , may be expanded
. b

2 2 ,
in the quantity 4 S14 /(811—844) to obtain from Eq. (11.14) or

(11.23)
Al = Sll + x (13.18a)
Ay 28, - x (13.18b)
where
=5, %/(5,.-5,,) (13.19)
® 14 117°44 y :
And with Pr(O) equal to zero,
C; = [(811—844+x)/(sll-s44+2x)]M(O)/Meq (13.20a)
C, = [x/(Sll—844+2x)]M(0)/Meq . (13.20b)
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As x goes to zero, C2 goes to zero, and the relaxation is

exponential. Thus, this technique cannot distinguish S going

14

to zero from S 844 becoming very large.

11’

From Figures I1.32 and II1.33 it is seen that Sil of
1,4,5,8-tetramethylnaphthalene 1is about ten times larger than
that of 1,4,5,8-tetramethylanthracene. If this difference is
due to ﬂb,inter’ then the effects due to steric coupling may
be diluted considerably. However, if the difference is due to
the tetramethylnaphthalene having a much larger methyl group
rotational barrier than the tetramethylanthracene, then the steric
coupling model is correct since Sll’ 844, and 514 are all
proportional to the correlation time and scale by the same factor.
Thus, it is necessary to distinguish between changes due to
barrier height and changes due to inter methyl relaxation.
Two methods are suggested below for determining this.

S44 for 1,4,5,8-tetramethylnaphthalene may be obtained
by measuring the dipolar relaxation rate 855 [42] since S44
and S55 are equal [see Eqs. (11.4c) and (11.44)]. Sll is
obtained‘simply from Figure II1.33. If Sll and S44 have changed
by a common factor relative to the same quantities for 1,4,5,8-
tetramethylanthracene, then it may be assumed that the rates
have simply scaled with the increase in barrier. Alternatively,
if one methyl group of each coupled pair were deuterated, then

the relaxation could be measured at the same barrier but minus

the intermethyl contribution. In the absence of #_ | and

D,inter

coupled rotational polarizations, the relaxation should be

bi-exponential as well as being slower. Until either the
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dipolar relaxation or deuteration experiment is performed, the
exponential relaxation of 1,4,5,8-tetramethylnaphthalene may be
taken to be the combined result of strong steric coupling and

intermethyl relaxation.

13.5.2 Intermediate Coupling

An interesting situation arises when cases of steric
interacﬁion intgrmediate to the above two are considered.
Durene (1,2,4,5-tetramethylbenzene) and 2,3-dimethylmaleican-
hydride have similar methyl-methyl geometries. When the Tl
relaxation of durene is measured near room temperature, it is
found to be strictly exponential as shown in Figure 1I.34. On
the other hand, 2,3,-dimethylmaléicanhydride shows a non-
exponential relaxation neaf room temperature (see Figure II.35).
The measurements were performed using both single crystal (the
durene used in the single crystal had one ring position deuterated)
and powder samples, and the results were unchanged for both
compounds. One possible explanation for the difference between
the two compounds is as follows.

If the steric coupling is strongly dependent upon the fraction
of time each methyl rotor is above the barrier in energy, then a
small difference in the intermethyl barrier may cause a large
difference in the observed relaxation at a given temperature.
That is, ignoring the barrier to rotation ffom other molecules
which is essentially stationary, the barrier which one methyl

rotor sees is dependent upon the angular orientation of the
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Figure I1.34 Exponential T, relaxation observed for a polycrystalline

1

sample of 1,2,4,5-tetramethylbenzene. The relaxation time at 19.3°C
is accurate to within 17, and the value at 60°C is accurate to

within 27%.
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Figure II.35 Bi-exponential Tl relaxation observed for a polycrystalline

sample of 2,3-dimethylmaleicanhydride at 22°C. The short and long

relaxation times are accurate to within 107 and 15%, respectively.
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adjacent methyl rotor. Now if one methyl has sufficient energy
to exceed the barrier height, then it may rotate freely without
regard to the orientation of the adjacent methyl, and the motion
of the two methyls is uncorrelated. If, on the other hand, the
methyl rotors lie far below the barrier height in energy, then
they must either tunnel, which is slow, or move in correlated
fashion: as one methyl rotates, the barrier moves, aﬁd the
other methyl must follow. If durene and 2,3-dimethylmaleicanhydride
are in the region of marginal steric coupling, then it should be
possible to detect the transition from weak to strong coupling.
To test this hypothesis the temperature dependence of T1 was
studied.

The results for durene at 19° and 60°C are shown in Figure
I1.34. Except for some scatter in the smaller data points at
60°C there is no indication that the relaxation is becoming
non-exponential at the higher temperature. The activation
energy for the methyl reorientation is determined from the data
to be 1.9 i_O.l kcal/mole. This energy has also been reported
as 1.6 * 0.1 kcal/mole by NMR Tl measurements [43a] and 2.03 *
0.16 kcal/mole by neutron scattering [43b]. The deviation of
the 1.6 kcal/mole value from the other two may be an artifact of
the data Qnalysis which was used: 'I‘1 data from 90 to 350 K was
fitted assuming a single activation energy [43b], and it is now

known that the T, of methyl groups may exhibit a smaller activation

1
energy at low temperature than at high [44].
2,3-dimethylmaleicanhydride was studied extensively to see

1f the transition from weak to strong coupling could be detected.
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In Figures II1.36 to II.39 is shown the temperature dependence
of the relaxation of a 2,3-dimethylmaleicanhydride single
crystal at a fixed orientation. From the plots there is no
trend to be discerned other than the increases of the rates
as the correlation time becomes longer. Using the routine
"VARPRO" to solve for Cl (C1 + C, are normalized to one), Al
and AZ’ the single crystal data and that from powder experiments
were analyzed; the results are plotted in Figures II.40 and
IT.41. The predominant feature of Figure II.40 is that the
relaxation becomes more exponential (i.e., C1 increases) as
the tempezmature i1s increased. 1In fact, the relaxation for the
powder was exponential at the highest temperaturg (i.e., 70°C
which is well below the melting point of 93-96°C) measured as
shown in Figure II.42. Unfortunately, the single crystal
relaxation was not measured at 70°C also. Excluding the methyl-
methyl steric interaction W and ﬂb,inter’ Egqs. (11.18a) and
(11.27a) predict no temperature dependence for Cl since this
quantity involves a ratio of rates. Another peculiar feature
of Figure II.40 is that the powder shows a much stronger
temperature dependence than the single crystal. The temperature
dependences of Al and AZ are shown in Figure II.41.

From Cl’ Al,
(11.27a)] were derived the rate constants Sll’ 844, and 814‘ Sll

AZ’ and Eqs. (11.14), (11.18a) [or Egqs. (11.23),

and S44 are shown in Figures II.43a and I1.43b as a function
of temperature. The interesting feature of Figure I1.43 is that

S and § have slightly different temperature dependences; that

11 44

is, they are relaxed by motions which have different activation
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Figure II.36 Bi-exponential Tl relaxation observed for a single

crystal of 2,3-dimethylmaleicanhydride at 25°C. The short and

long relaxation times are accurate to within 10% and 15%,

respectively.
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Figure I1.37 Bi-exponential T, reélaxation observed for a single

1

crystal of 2,3-dimethylmaleicanhydride at -40°C.

times and percentages are accurate to within 107.

The relaxation
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Figure 11.38 Bi-exponential Tl relaxation observed for a single
crystal of 2,3-dimethylmaleicanhydride at -80°C. The relaxation

times and percentages are accurate to within 10%.
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Figure II1.39 Bi-exponential 'I‘l relaxation observed for a single

crystal of 2,3-dimethylmaleicanhydride at -110°C. The relaxation

times and percentages are accurate to within 10%.
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Figure II.40 Temperature dependence of the degree of bi-

exponentiality for 2,3-dimethylmaleicanhydride. Open circles are
data for a polycrystalline sample, and the solid circles are data
for a single crystal at a fixed orientation. The maximum deviation
from exponential relaxation is for Cl/(Cl+C2) equal to 0.5. At

the highest temperature used (70°C) the polycrystalline sample

showed exponential relaxation (see Figure 1T.42).
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Figure 11.41 Temperature dependence of Kl and XZ for 2,3-

dimethylmaleicanhydride.

(a) Single crystal at a fixed

orientation. (b) Polycrystalline sample.
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Figure II1.42 Exponential Tl relaxation observed for a polycrystalline

sample of 2,3~dimethylmaleicanhydride at 70°¢C.
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Figure 1I1.43 Temperature dependence of Sll and S44 for 2,3-

dimethylmaleicanhydride.

orientation.

(a) Single crystal at a fixed

(b) Polycrystalline sample.
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energies. This is not predicted by Eqs. (11l.4a), (1l.4c) which
describe intramethyl relaxation. Thus, the discrepancy is
probably due to intermethyl contributions to S11 and 844. It
is not unusual that they are affected differently since Zeeman
and rotational polarizations may be relaxed by different
transitions.

The temperature dependence of S14 is shown in Figure II1.44.
There is no sudden change as a function of temperature which
would indicate a transition from independent [Eq. (11.15)] to
coupled [Eq. (11.24)] methyl groups. The results on Cl’ however,
indicate that if there is a transition it occurs at the highest
temperature measured; 814, of course, could not be determined
for the exponential decay at 70°C.

The activation energies associated with each of the -
relaxation rates are compiled in Table I1I.4. Although the
single crystal values are comparable to that measure for durene,
the powder values are substantially different. The difference
between the single crystal and powder results is not understood.
Furthermore, the temperature dependence of T1 did not reconcile
the difference between durene and 2,3-dimethylmaleicanhydride.
It may be that intermolecular couplings dominate the durene
relaxation and therefore invalidate comparisons made on the
basis of molecular structure.

A single crystal of 2,3~dimethylmaleicanhydride containing
10% perdeuterated material was grown in the hope that the crystal
could be aligned via the angular dependence of the deuterium

quadrupole splitting (see section 12.1). This was unsuccessful
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Figure II.44 Temperature dependence of S14 for single crystal

and polycrystalline samples of 2,3-dimethylmaleicanhydride.
The proton frequency is 185 MHz for the single crystal data and

106.2 MHz for the powder data.
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due to the complexity of the deuterium NMR spectrum. The
angular dependence of the relaxation was studied nevertheless,
to see how great the anisotropy is. The angular dependence of

Cl’ A and A, are recorded in Figures II.45a and IT1.45b, and

1’ 2
the derived values of Sll’ 844, and S14 are shown in Figures II1.46a
and I1.46b. There is a region where the relaxation becomes
exponential (see Figure II.45a), but since the molecular
orientations could not be identified, it is not éossible to
correlate the results with the predictions for either independent
or coupled methyl groups. It would be very interesting to study
the temperature dependence of the anisotropy, particularly

with regard to understanding the difference between powder and

single crystal (Table II.4).
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Table II1.4 Activation Energiesa for the Relaxation Rate
Constants of 2,3-Dimethylmaleicanhydride at

High Temperature

Powder Single Crystal
Relaxation Rate Constant E, kcal/mole E_ kcal/mole
Sll 1.7 £ 0.1 2.1 0.1
544 3.8 * 0.4 2.4 + 0.1
514 2.9 + 0.4 2.3 £ 0.1

aThe activation energies (Ea) are ostained from the.data
of Figures II.43 and I1I.44. An Arrhenius expression is
assumed for the correlation time Tc which is proportional
to each of the relaxation rate constants through Egs.

(11.4a)-(11.4c) and (11.5).
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Figure II.45 Angular dependence of C

1’ )\1, and )\2 for a single
crystal of 2,3-dimethylmaleicanhydride, The proton frequency was
185 MHz, and the temperature was 25°C. (a) Cl/(Cl+C2) is plotted;

the relaxation appears exponential from 112° to 155°. (b) )\2 is

undefined for the region of exponential relaxation.
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crystal of 2,3-dimethylmaleicanhydride, The proton frequency was
185 MHz, and the temperature was 25°C. S44 and 814 are undefined

for the region 112° to 155° where the relaxation is exponential.



I11.13 290

13.6 Temperature Dependent Tunneling Frequency

In section 10.1 the standard model (slightly modified from
Reference 11) was presented for explaining the temperature dependence
of the observable tunneling frequency W, - Calculations from the
computer program ''methyl' are now presénted in order to point out
some of the interesting features as well as precautions which
are'inherent in the use of Eq. (10.7) for W, .

In Figure II.47 the theoretical temperature dependence of we
is plotted for a barrier V3 of 1 kcal/mole. The low temperature
plateau value of w, is the ground state tunneling splitting AO'

As the temperature increases from zero the tunneling splittings

A ... of alternating sign average together so that w

Ao’ Al, 2’

falls rapidly around 50 K. This is the familiar behavior of we

t

as observed experimentally [12,13,45,46]. To be noted in
Figure II.47 is the reappearance of a negative w, around 200 K.
This author knows of no experiments in which a high temperature
tunneling splitting of this sort has been observed. O0f the
experimental techniques available, Pintar's spin-locking
experiments [46], which involve a resonant transfer of energy,
are probably best suited for such a measurement. NMR lineshape
and relaxation studies would be insensitive to W since at high
temperature both are dominated by fast stochastic methyl group
reorientation.

An anomalous case of the temperature dependence will serve

to illustrate the limitations of Eq. (10.7). 1In Figure I1I.48a is

shown the calculation of wt for a 4 kcal/mole barrier. Rather
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47 Theoretical temperature dependence of the average

tunneling splitting w, for a Cy rotor with a 1 kcal/mole rotation

barrier..

The torsional energies and tunneling splittings were

calculated with the program "methyl.f4p'", and w, was calculated

with Eq.

(10.7) .
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Figure II1.48 Theoretical temperature dependence of the average

tunneling splitting wt for a C3 rotor with a 4 kcal/mole rotation

barrier. The torsional energies and tunneling splittings were

1

calculated with the program "methyl.f4p." (a) w,_ was calculated
with Eq. (10.7). (b) w, was calculated using only the two lowest

torsional levels.
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than falling, there is an almost monotonic increase of w, with
increasing temperature. This is in marked contrast to the work
of Johnson and Mottley [12] where a barrier of 4 kcal/mole is
reported, and yet their data show a tunneling splitting which
decreases from a low temperature value of 21 kHz to zero at 85 K.
Pintar [46] studied the same compound (CH3CDZI), and although his
experimental fitting parameters do not correspond to a 4 kcal/mole
barrier, his data do show a drop in w, from 48 kHz at low
temperature to near zero at 90 K. 1In both cases the authors were
able to fit their data by using only the two lowest tunneling
splittings, AO and Al, in calculating w, . They are right in
assuming that the population of higher levels is quite small,

but these levels still contribute significantly to the average

since for a barrier of 4 kcal/mole:

8,1 >> lagl o 141 (13.21)

for i > 1.

The underlyiﬁg assumption of the Boltzmann average of Eq.
(10.7) 1is that the averaging process (i.e., the transitions
between torsional states) takes place at a rate much higher than

the tunneling frequencies being averaged. For a 4 kcal/mole

barrier:
4
AO = 6.8 x 10 Hz
5
Al = -6.3 x 10° Hz
7
A, = 6.6 x 100 Hz

2 s
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and the torsional splittings are

690 cal/mole

|
]
[

652 cal/mole

L]
1
o
[l

Since the energy differences between the torsional levels are
comparable, it may be assumed that the phonon induced transitions
between them all proceed at about the same rate 2. If the phonon

density is such that

8,1 >a> ], (8], | (13.22)

!

then:

1) The condition of fast exchange [47] applies to AO and
Al, and an average tunneling splitting appears which is weighted
by the Boltzmann factors for e, and ey and

2) slow exchange applies to A2 so that A2 does not contribute
to the average, but rather appears as a distinct tunneling
splitting with intensity given by the Boltzmann factor for €5

1f condition (13.22) holds at temperatures < 100 K, then it
is correct to include only the two lowest levels in the averaging
process. The results of such a calculation are shown in Figure
11.48b.

It is interesting to note that Johnson and Mottley [12]
reported that in some experiments their main observed spectrum
for w, was superposed with a low intensity spectrum corresponding
to a much larger tunneling splitting. Furthermore, Allen [14]

used an exchange theory with the two lowest levels to fit Johnson
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and Mottley's data; the derived exchange rate was 2 = 10 AO. The
result of these observations is that it is more appropriate to use
an exchange theory [14,47] than the thermodynamic average

Eq. (10.7) to treat wt at low temperature.

Along other lines, it is interesting to compare the classical
rotation rate of the hindered methyl rotor with its tunneling
frequency. Using the program '"methyl" to calculate the expectation
value <m>i for the E state of the ith torsional level, the
rotation frequency <v

>, is:
R i S

<\)R>i = <m>i h/(211) (13.23)

~4
where I is the methyl group moment of inertia, 5.5 x 10 0 g cm2

{10]. .In Table I1.5 are listed <\)R>i and Ai for the first several
torsional levels of a methyl rotor with a 1 kcal/mole barrier.
Since <m> alternates in sign from level to level, this provides,
perhaps, a more intuitive view of why coherent tunneling rotation
stops at high temperature. That is, as a methyl group in a given
torsional level begins to rotate in a clockwise direction, then
it is excited to another level and rotates in a counter-clockwise
direction, then it decays to a lower level and rotates again in ;
clockwise direction, etc., with the net effect being that if the
transitions are fast enough, the methyl group essentially stands
still. This kind of "tunneling blocking' has been referred to in
other contexts as well [48,49]. |

The advantage of viewing the averaging as taking place over

<vR>i rather than Ai is simply that the frequency of rotation can
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be used to characterize the levels above and below the barrier in
energy, whereas it is not evident that the tunneling splitting is
a meaningful quantity to apply to the free-rotor-like wave
functions above the barrier. In either case there is little

quantitative difference as indicated by Table II.S5.
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Table II.5 Comparison of Classical Rotation Rate and
Tunneling Frequency of a Methyl Rotor with

a 1 kcal/mole Barrier.

Torsional Level <VR>i X 10_12 Hz? Ai x 10—12 sz
0 0.00052 0.00044
1 -0.0174 -0.0146
2 0.232 0.167
3 -0.722 ~0.920
4 1.95 1.49
> -2.33 ~2.50
6 3.00 2.84
7 -3.32 ~-3.48
8 3.95 3.79

? -4.26 4. 41

a . . L a
<\)R>i is the classical rotation rate of the E state of

the methyl rotor in the ith torsional level.

bAi is the tunneling frequency of the ith torsional level.
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14. SUMMARY AND DISCUSSION

The experiments of the preceding chapter provide an overview
of the possibilities and difficulties of using Zeeman spin-
lattice relaxation to probe methyl group rotation and torsion.
The mathematical.ffamework for analyzing the experiments is
presented in the sections on independent (11.3.1) and coupled
(11.3.2) methyl groups. The treatment of independent methyl
groups follows from the work of Emid [6,23,25], while the solution
of the coupled methyl group problem is new to this work. At
high temperature all of the spin thermodynamics can be viewed
as relating solely to the spin states with the coupling between
spin and rotor being a consequence of the Pauli exclusion
principle. At low temperature the complexity of the treatment
increases rapidly [11,50,51,52] as w, becomes comparable to the
frequency of stochastic methyl group reorientation.

The experiments of sections 13.1, 13.2, and 13.3 illustrate
the basic features of the coupling between Zeeman and rotational
polarization and demonstrate the validity of the rotational
polarization quasi-constant as written 1in Eq. (11,16). The
experiments on equilibrium rotational polarization (section 13.4)
are important, because they provide a crucial test of the
coupling between spin and spatial wave functions via the Pauli
principle; the existence of this coupling at high temperature
has been called into question by a few authors {17,18,53].
Unfortunately, sufficient signal to noise was not achieved to

conclude that Pr eq is definitely non-zero.
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The study of methyl-methyl gearing (section 13.5) is perhaps
the area where rotational polarization can play its most useful
role. The results on 1,4,5,8~tetramethylanthracene and 1,4,5,8-
tetramethylnaphthalene are entirely consistent with the
expectations for independent and geared methyl groups, respectively.
These measurements, however, are made questionable by the presence

of K This is not an irresolvable point though; using

D,inter’
dipolar relaxation measurements to obtain 344, the contribution
of intermethyl relaxation is readily determined.

The differences between durene and 2,3-dimethylmaleicanhydride
and between powder and single érystal samples of 2,3~dimethyl-
maleicanhydride are not understood. From molecular considerations
any differences are expected to be slight. An especially
interesting study would be to orient a single crystal of, for
instance, 2,3-dimethylmaleicanhydride and compare directly the
predictions for independent and geared methyl groups with
experiment. The orientations where the relaxation is expected
to change from non-exponential to exponential are quite different
in the two coupling extremes, and trial calculations with the
program ''couple.c" (Appendix E) indicate large changes in Kl, AZ
as well. This study in conjunction with dipolar relaxation
measurements is required if definitive statements about rotational
polarization and steric coupling are to be made. Once such a
study is completed, then the foundation is laid for using

rotational polarization to make general observations about the

degree of methyl-methyl gearing in different molecules.
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In conclusion, the comments on the temperature dependence of
the tunneling frequency are intended as a warning regarding the
use of the various expression for wy appearing in the literature.
The remarks on the relationship between <\)R>i and Ai are included
for the purpose of demystifying the disappearance of tunneling at

high temperature.
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APPENDIX A: Program 'sing5.f4p"
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proaram singS

singS5 calculates the singlet character as a function ot time for the
two electrons ot a radical pair, up to 4 bhyperfines can be input
for each ranical, other input consists of the two g-factors, the
maanetic field, and time values for the calculation., the singlet
character is outout (along with "time"™ and "delta~-time”™) into the
file "sing.val”®™ for further processing to cetermine the
recorbination vield,

OO0 000000

common/Iblkl/mat (5,32),mtv(32),mpicx(1lv)
common/ioikd/nplkt(32),nevl(e),inblkl{o),inevi{o),loc)(32)
common/tblkS5/npike(32),nevi(o),inclkl2(b),inev2(b),loc2(32)
common/iblkb/ol,0?
common/ibik7/cl1(252),evi(32),c2(252),ev2(32)
common/l1tlkR/nsinas,nblksi,nblks?

gimension mats(4,2%6),hmat(10,10),u(10,10),a1(d4),ac(4d)
aimension $(1000),t(i0V0),at(100V)

equivalence (mat(1,1),mats(1,1)),(p1(3),hmat(t,1))
equivalence (p2(1),u(t,1))

complex pl1(252),p2(252)

input routine

00

call intoS(nil,al,gl,ni2,s82,92,hs100pP1,100p2s10003,100pd,100pP5)

calculations for ragical 1
{1. construct spin configurations

O o000

call setuo(nil,nucl,nronl,ncoll)
mt=nrowl

nblksizsmt+l

inc=1l

ine=1

2. pirck all configurations of a given angular momentum

3., construct hamiltonian matrix tor these configurations
diagonalize the hamiltonian matrix

5. repeat the proceacure for each possible angular momentum

a0 0000
[
.

oo 100 i=1,nblksl
call pick(mt,ncoli,ntns,nnlki,locl,i)
call hamil{nrowl,nfns,atl,al,n,nmat)
call hagiagthmat,nfns,cl(incl),evi(ine),u)
nevi(i)=nfns
inevi(i)zine
innixkl(i)=inc
inezi1ne+nfns
inc=inc*ntnsxnfns
mtZmt=2
i0v continue
c
c the above S~steo procedure is repeatea for the secong radical
c
call setup(ni2,nucl2,nrowl,ncolld)
mt=nrowl
nhblks2=mt+]
inc=1
inex=1
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call pick(mt,ncol2,nftns,nblkl,loc2,i)

call hamil(nrowl2,nfns,al2sa2,h,nhmat)

call hdiag(nmat,nfns,c2(incl)rsev2(ine), u)

nev2(i)=nfns

inev2(i)=ine

inblk2(1)=ingc

ineSine+nfns

incsinctnfnstnfng

mtSmt=2

continue

write{o,209)

format(1lx,"diagonalization completed = beain time
¢ develooment?)

¢ construct the matrix of all singlet configurations

call sing(nucl,nuce,mats,nsinas)

¢ calculate the evolution of sinaglet character with time

(o]

300

400

500

600

700

a8no

90¢

1000

1100

1200

1300

1400

15060

ti=0,

loop=0

if(loont.3t,0) call stimeS(ti,l.e~11,l00p0t,)l00p,S,rt,0t,mats)
if(looo2.3t.0) call stimeS(ti,l.e=10,100p2,!00p,S,t,at,mats)
if(loop3.3t.0) call stimeS(ti,}.e=V9,10003,1000,5,t,a0t,mats)
1t(loopd,.gt,u) call stimeS(ti,l,e=04,100p4,100pP,8,t,0t,mats)
if(loonS,3t.0) call stimeS(ti,1.e=07,10005,00n,8,1,0t,mats)

outout sectyion

open(unitz0i,name="sing.val’,tyne="new’)
write(1,300)

format(1x,”°"si1ng.val” = output file for "sing%"’)
write(1,400) nil

format(/,1x,i1,° hyoerfines on radical %)
1f(n11.gt.0) write(1,500) (al(i), 1=21,nil)
format(Sx,t8.3,° gauss”’)

write(i,600) gl

format(/,5x,t6.,4° = g=value”)

write(1,700) niZ2

format(/,1x,11,” hyoerfines on racdical 2:7)
if(ni12.9t.0) write(1,500) (a2(i), i=1,ni2)
write(l1,000) a2

write(1,800) n

tormat(/,1x,e11.3,° gauss external magnetic field’)
write(1,900) nsinos

format(/,1x,15,° singlets calculatea”’)
write(1,1000) loopo

format(/,1x,15,° different time values calculated:”)
write(1,1100) loopl

format(Sx,15,° x 1.0e=11 sec”)

write(1,1200) loop?2

tormat(5x,i5,° x 1,0e=10 sec”)

write(1,1300) looni

tformat(Sx,iS,° x 1,0e=9 sec’)

write(1,1400) loopd

format{(Sx,15,° x 1.,0e-8 sec’)

write(1,1500) loon5S

format(Sx,15,” x 1.0e~7 sec”)

write(1,1500)
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1600V tormat (/,1x," time s(t) at(t) )
write(l,17u0) (t(i),s(i),at(i),i=1s100pP) .
1700 format(1x,3e15.5)

close(unit=01)
ena
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c

c subroutine intoS5 follows,

c

subroutine intobgni1,9},q§'nie,9a,gz,n,Ioopl.]oopd,|oop$;
c loopqyloopb)

c

¢ input routine written for program ‘sing5”

c X . _

dimension al(4),a2(4)
write(o,100)
100 tormat(lx, “program 8inQ%... ¢/ s1x,
c’cidnp singlet calculation,/7,1x,
c’enter number of spins on each radical (up to 4 for each): “,3)
read(%,150) nil,nid : ) T B oot s T

150 tormat(2i2)
write(o,200)
200 tormat(/,1x,"note: hyperfine constants and magnetic tieid”,/,

c/x,"must have the same units (gauss)”®,/)
1¥(nil.eq.t) go to 350
write(o,300) nil B

300 tformat{lx,’enter the’,12,° hyperfine constants tfor radical 1°)
read{5,305) (al(i),iZl,nil) ' ’ T T

305 tormat (10¢9,0) ~ .

350 if(ni12.eq.v) go to 450
write(o,400J) nid

400 tormat{lx,”enter the’,12,° hyperfine constants for radical 27)
read(%,305) (a2(1),izl,ni2) ’ oo T

459  write(o,%00) = o

900 tormat{/,1x,"enter the g=tactor for radical 1: *,3)

readis,505) gl
writelo,600)

600 tormat(lx,”enter the g=tactor for radical &: ‘,3)

’ readi>,305) g¢ ' T CT
write(o,700)

700 tormat(/,1x,"enter the magnetic fieid strengthl 7,3)
read(5,%05) n ’ o
write(o,800)

800 tormatt/,1x,°time increment i1ntormation = enter the numper of’

cr/s1xs*iterations (1000 total) for each ot the 1o|ﬁouinq'tvmes.:!
write(6,81%) ) o . .

815 tormat(1x,’1.Ve=11 sec : °,9%)

- readi(S,865) loopl R
writel(o,825)

825 tormat{ix,"1.0e~10 sec

i readi{5,865) loope
write(o,85%5)

839 tormat(ix, 1.0e=09 sec
readiyS,865) loops
write(o,845) '

845 tormat{1lx, 1.0e=u8 sec
read(5,86%) loopd
write(o,859) ’

859 tormat(1lx,*1.0e=07 sec
readiS,865) loopY

865 tormat(14)
write(6,900)

900 format{/,1x,“thank=you ang may you have a good calculation’, /)
return ' ’ ) : T
end

“ed)

“r3)

'15)_

“e3)
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subroutine setup foljous.
subroutine setup(ni,nucs,nrow,ncol)

gsets up the matrix of all possiple spin configurations
for a given radical = uses binary counting fof generating
all ot the permutgtions of up and down spins

common/Iblkl/mat(5,32),mtv(s2),mpick(10)
nuc=<xani ’ ) ) I ‘ o
nrowsni+l
ncol=nuc+nuc

oo 6V0 nca=l,nuc
ncb=ncat+nuc
mat(l,nca)=1
ﬁbt(irnCDj=‘l
miz0 ’
ifinrow,eq.1) go to 550
numznca=1
Jbin3nuc

do 450 j=Z2.nrow
jbyn=jpin/se
kSnum=jbin

if(k) S0,150,350
mat(j,nceis=1"
mat(j,ncpi==}
mizsmi=l

go to 450
mat(j,nceicl
mat{j,ncb)=1
miz=mi+] ’
1tlj.eq.Nnrow) Qo to 550
i13j+1

do 250 nr3jl,nrow
mat(nr,nca)z=1
mat(ner,ncol)==1
misSmi=]l

continue

go to 9550
mat(),nca)=1
mat{j,ncb)s1
mi=miel

num=k

continue
mtv(ncal)=mit+l
mtv(ncb)zmi=1
conti1nue

return

ena

subroutine pick follows,
subroutine pick(mt,ncol,ntns,nblk,loc,i)

picks out all pasis functions of a given totgl
angular momentum

common/lblkl/mat{S,32),mtv(32),mpick(10)
cimension nbik(1f,10c(1) o
nftns=0 ’ T
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do 100 j=l,ncol
1f(mtvijl.ne.mt) go to 100
nfnssnins+l )
mpick(nfns)=]j

nolk(jl=i

loc(j)=nfns

continue

return

eng

subroutine hamil follows,

suoroutine hamil(nron,nfns.a,g,n.hmytq

constructs the hamiltonian mgtrix for & group of
spIn stptes

common/iblikl/mat(5,32),mtvi{s2),mpick(10)
gimension hmat(nfns,nfns),alllsmcol(5)shvec(10)
gfreezg,0u2s22 oo c :
go 100U i=l,ntns

nbtzmpick(i)

ms=mat(1l,nDt)

mcolllj=ms

sec=v,

1f(nrow.eq.1) go to 150

do SV 1goz2,nrow

mismat(igosnbt)

mcol(igo)=mi

nhyp2igo=1

seczsec+alnhyp) *#mi

continue '
hmatlis,1)=msx(gen/gfreetsecx,5)ix .5
11{i.eq.nfns) go to 1100 )

iotfsi+]

do 250 igo=ioff,nfns

hvecligo)=0,

continue

ifims.,eq.~1) go to 550

mcoltl)==1

do 450 ‘igo=2,nrow

nhypsigo=1

1f(mcolligo).eq.l) go to 450

mcoiligo)=1l ’

do 3550 irunzioff,nfns

nbfl2smpick(irun)
itticheck(mcol,mat(l,nbf2),nrow).eq.0) go to A5V
hveclirunj=alnhyp)n.b ' ' ’ B
continue

mcoltigo)==1

continue

go to 850

mcol(1)=]

do /50 igo=2snrow

nhyp=igo=l

1t({mcol(igo).eq.=1) go to 750

mcolligo)==1 '

do 650 irunzioff,nfns

nofl=mpick{(i1run)
vfgicheckgdcol'éat(lpnbfz);nrou).eq.O) go to 65V
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hveclirun)salnhypl*,5

650 continue
mcolligo)=l
750 continue
850 ago 950 i1go=ioff,nfns

hmatii,igo)shvec(igo)
hmattigori)=hvec(igo)

950 continue
1000 continue
1100 return
’ end
c
c function 1check follows,
c
tunction ichecklivec,jvec,nrow)
c
¢ it two vectors are not identical the function returns zero
¢ otherwise it returns 1 ’ '
c
dimension ivec(l),jvec(l)
1check=0 ’ )
do 100 i=]l,nrow
1flivec(iJ.na.jvecl(i)) go to 2V0
100 continue o
tcheck=1l
200 return
end
c 4
€ subroutine hdiag follows,
c
subroutine hdilag(h,n,cvsev,u)
c
c diagonalirzation routine
¢ based on the method of jacobi, it diagonalizes a real
C symmetric matrix by performing a rotation whenever the
¢ angle is greater than a given threshold. this process
C continues with the threshold angle being decreased unty|
¢ some minimum angle criterion is met,
c
gimension h(n,n),ul(n,n),cvil),ev(l)
go 100 is1,n o7 ’ o o
do SV j=si,n
uli,sl)=0,
uljrii=o,
50 continue
uli,r)=t,
100 continue
nr=v
1fi{n.eq.1) go to 700
angmin=0,017
ang=u,1745
1stop=n=1
200 test=tan(ang)*.,5
300 do 4V0 i=l,istop
ip=si ’
hivshti,i)
igo=v+l :
do 350 j=jgo,n
ip=}

hijizn€r,j)
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c
c

hjjzn(j,j)
adi=nit=hjj

it(aps(hijl.gt.teatrabs(adj)) go to Sou

continue

continue
if(ang.lt.angmin) go to 70U
ang=angx.35335

go to 200

nrEnr+]

oppP=d.%xhi}j
theta=arctan(oppsadj)l*.5
c=cos(theta)
s=sin(theta)

do 6v(0 k=1l,n

1¥(k.1t,ip) hik=h(k,ip)
1f(kegt.ip) hik=h(iprk)
if(k,1t.jo) hjk=n(k,jp)
it(k.gt.jo) hjk=n(jprkJ

1f(Kelt,ipeand.k ne.jp) hik,1p)=hikacthjkrs
it(Kegt.iP.and.k.ne.jp) h{ip,kiZhrikxc+njkxs
it(koeltejpeand.k.ne.ipJ hik,jpJ==hikasthjkxc
it(koeQtejDeaNd.k ,Nne.iP) h{Jpsk)==hikrsthjknc

uki=ulksip)’
uxkjzulk, jo)
ulksi1p)Sukinctukjns
u(ksJpiz=ukiestuxjnc
continue

cosé3cxc

8ing=s*sg

Cross=2.%xhi jacng
h(iprjp)=U.
n(1psrip)=niircoslecrossthjjrsing
n{jprip)eniirgsind=crosst+hjjrcosc
go to 500

inga=y

do 8U0 jsSl¢n
ev(il=nljsi)

do 75U 1=1,n
indsind+l
cviind)=suli,))
continue ’
continue

return

end

function arctan tollows.,

tunction arctanloppsadj)

computes the arc-tangent of opp/adj

erct9n=1.570790527
if(adj.eq.0.) go to 100

1t(aps(e0j).1t.absloppl*l.e~20) go to 100

srg=opp/adj
arctanzatan(arg)
return .

end

subroutine sing follows,

313
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" subroutine sing(nucl.nucd,mgts,nsjngs)

0

sets up the matrix ot 9)! possible singlet configurations

dimension mats(4,25%0)
nsingssnucl*nuc?d o
1col=0 ) )
do 1U0 i=1l,nucl
dgo SU j=l,nuce
1col=icoi+]
matsil,icol)=y
mats(2,icol)=j+nuc?
mats{3,icol)=itnucl
mats(4,icol)=j

50 continue V

100 continue
return
end

subroutine prod follows,

(eI o}

subroutine prodl(c,ev,t,nblks,inblk,inev,nev,p)

computes the product of the eigenvector matrix

('n vector form) with the phase vector and with the
transpose ot the eigenvector matrix, gives the
time gevelopment of the wave tunctions,

oo o0on

dimension c(l),ev(1),inbik(l),inevil),nev(l)
compiex pt1) ’

tig is “time in inverse gsuss’, i.e, the conversion from gauss to
radians,

0oO0o0n

tigster}],75%e07

do 100 i=l,nblks

inczinol k(i)

inezinev(1)’

call psubtlcl(inc),eviine),tig,neviv),plinc))
100 continue ’ . i . '

return

end

subroutine psud follows.

0

subroutine psub(c,ev,tsnev,p)
c multiplies diagonpl block mgtraces tor routine prod

dimension cll)revil)

complex ptlj,phase(l0),phola

do 10U x={,nev =~

arg=evik)xt

Ttiabps(arg).gt.100.) arg=arguelevik),t)

phase(k)=cmplx(costarg),=sinlarg))
100 contiynue o o ’ T o

do 500 1=1l,nev

ipart=(i~=l)anev

go 2507 j=i,nev
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jpart=(j=l)snev
1j2jpartey
ji=ipert+)
pholdscmplix(0.,0,)
go 150 ksi,nev
kpartz(k=})*xnev
TkZkpart+l
jk=xkpartej
pholazphold+clik)xphase(k)rcljk)
150 continye ’ ’ ’ T
p(yvj)=phold
pljiJ=pnoig
250 continue
300 continue
return
end

(2]

tunction argue follows,

(o]

tunction argue(evst)

reduces a large trigonometric argument (the product
ot ev and t) to a small one ’

0O0n o0

twop1=6.285185308
wzev/twopl

iwWsSw

rWEweiw

1t=t

rtEt=it

alS1wrrt

ii=al

r1saleil

a2=itarw

12282

ré=ad=1¢
argues(rler2trwart)xtwopi
return’ '
end

0

subroutine stina follows,

oo

subroutine sf1nd(m9tn.scharg

routine to project the singlet character out ot
those states originating in the singlet ngn\fold.

o000

common/iblk4/nbikl(32)snevi(o),anbiklilo),ineviiol,sloclise)
common/1bik5/nbix2{32jsneveibi,inbik2(6),ineve(6),l0ce(3e)
common/iblk6/pl,pld T T T R
common/\pbikd/nsings,nblksl,nolkse

dimension mats(4,256) ’

compiex pl(252),p2(252),8coet

scharsv., i ’

go 4U0 {=l,nsings

1s1zmats(i,i)

1s2=mats(e,si)

iss=mats(3,i)

isdzmats(d,i)

ibi=nbikl(isl)
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ibé=nbikelisd)
ibsznblki{is3)
'bU-nblkZ(asMJ
do 550 J-l;ns1ngs
jsizZmats{l,y)
ysczmats(y,))
)ss=mats(3,j)
jsd=matrs(4d,j)
jbi=noikiijsl)
Jb2z=notk2ijs2)
jos=noiki{js3)
ivd=npik2{jsaJ
1t{ibl.ne.jbl) go to SV
1t{ib2.ne.jp2) go to 55V
indlazinadlinbikl(ipl),nevitibl),locl{ysl),loclli181))
ynaepsind(inblke{ib2),nev2iibel,locelisel),loceirszi)
inolozind{1nbik1{ib3),nevi{1psi,ioc1(jss),loc1{183])
|no£a-1ndlvnb|ke(!na),nevetvnu),Ioce(jau),loce(»su)J
lcoef-pl(lndla)*pé(lncdbjfplllndlb)ﬁpd(1nd£aJ )
c‘real(3coettcon)9(scoef)J
@o to 250

S0 it(ipi.,ne,.jb3) go to 15V
1t{(ip2.ne.jb4) go to 35V
vn01-|nd(tnb|kll\bl),nevltlbl),locl(JsS).locltisl))
tnoé-\no(tnolkZ(\bZ);nevdlloE),locd(]s“),locd(\sdJ)
scoetzpl(inol)*pllinge)
uzrealllcoe"conjgtscoef))
go to 250

150 ytlibs,ne.jbl) Qo to 3OV
it{yod.ne.jb2) go to 350
ynal=ind(inplkl(ib3),nevitips),loclljsl),lochtiss))
1no£-\nd(1nolkdl\b“)rnevdllou)pIocd(JBdelocdtlsa))
scoet=pl{(indl)np2linae)
.-reallscoe'tconjg(scoef)l

250 |1l).9t.l) s3snd,
lchar scharts
350 continue
400 continue
schars schart.as
return
gnd
c
¢ tunction 1nd follows,
c
tunction indginblk.nev:i'){
[
c computes 1ndex for vector entry
c
lnd:(;°l)'ncv9|03nb|k 1
return
end
c
¢ subrouting stimeb tollows.
c
subroutine otineblti.oel;ntipes;loop,s,t,dtyngt:{
c
c calculate the esvolution of singlet ;hgrgcter with time
c

1 1te)1nblikltb) ineviibl,locltised)
7B(Bdg'nev2(§1,1nn|k2(b),\nev¢(of,Iocd(be)

common/!

bleas
common/1blk>/n
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common/iblke/pl,pe
common/Ibik//cl{252),evi(32),cl(252),evd(52)
common/iblk&/nsings,nblksi,nplkse =~ =~
gimension s({1000),t(10UV),dLL100V),mate(4,256)
compiex pl(259¢2),p2(25¢2) ° . ’ ’ o o
ndelizy T : ’
go 1V0 1=tloopti,looptntimes
tiztit+del '
tlr)=ti
at(iJ=gel
ndeisngel+l
call prodiclsevli,ti,nblksl,1npikl,inevi,nevi,pl}
call proai{cereve,ti,nbiksc, 1 nolkd,ineve,neve,plj
<
¢ project the singiet character out ot each of the developing stgtes
c
call sftind(mats,schar)
sli)=schar/nsings =~
100 continue’
' loop=looptnael
return
enda
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APPENDIX B: Program "diffus.fé4p"
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proarem diffus

program written to accompany "singS", "sing5" calculates tne
singlet character ot a given racgical pair system as 2

function of time., "diffus" accepts s{(t) odata for c=12 ano c-13
raagical pairs trom the files "cl2.dat” ana "cl3.dat", respectively.
diftusion and reaction parameters are input from the file
"diffus.dat”,

real s12(1000), t12(12090), dtt2(1000)
real s13(1900), t13(1000), 4t13(1000C)
common rcol, rzero, lamda, fs, ncol
real kloss, lamda

data p1/3.14159/

input section
input oceneral oarameters for rauvicals ann solvent

open( units0l, namnez‘qgiffus.gat’, tynve="0ld”, readonly )
read(1, 50)

reacdll, 5S9)
format(ix)
reaall,159) rcol
rcol = rcol * 1.,0e=H
format (f7.0)

reaall, 59)
readt1,150) rzero
rzero = rzero s 1.,0e=8
read(l, 50)
rean(1,2%0) kloss
format(el5,5)
reaagll, 50)
rea1tl,15v) fs
readtl, 5S0)
read(1,25V) pmin
reas(l1,250) pmax
read(t, 59)
readll,35U) num
format (15)

reat(l, Sv)
reaall,150) lamda
reaall, Sv)
reaa(1,3%50) ncol
close( unit=01 )

input t, s(t), and dt for c=12 radical pairs

openl unit=01, name=°cl2.dat”, typez‘old”, reaagonly )
reaa(l, S0)
rean(l, Sv)
readll,400) ni
tormat(11)
go 450 i = 1, nit+3
reac(i, 5S0)
readgll,400) ni
go 550 1 = 1, ni+7
reaagl(l, S0)
read(1,350) 1Ipl2
go 650 1 = 1, 7
read(1, 590)
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read(1,75u) ( t1e2(i), s12(i), dti12tli), i = 1, lpgl2 )
750 format(3el15.5)
close( unit=01 )
c
¢ input t, s(t), ana dt for c=13 racical pairs
c
open( unit=0l, name=“"cl3.dat’, typex‘ola’, readonly )
read(1, So¢): '
reaall, S50)
read{(1,409) m
dgo 850 i = 1, nit3
850 reaa(l, S¢)
read(l,409) ny
go 950 i = 1, ni+?
950 reac(l, Sv)
read(1,359) 1013
do 1050 1+ = 1, 7
1050 reaa(l, Su)
read(1,750) ( t13(i), s13(i), otl13(i), i = 1, 1pl3 )
close( unit=01 )

c
¢ output tne input parameters
c
write( 6, 1100 )
1100 format( /,1xs°0cutout from “diffus.fdp””)
writel 6, 1110 ) rcol
1110 tormat(/,1x,"radical=radical collision radius :%,e11.3)
write{ 0, 1120 ) rzero
1120 tormat(1x,”initial raofcal separation radius t°,e10.3)
write( 6, 1130 ) kloss
1130 tormati/,1x,°chemical loss rate constant (hz):",elv.3)
write( 6, 1140 ) fs
1140 format(ix,”initial fraction of singlet: “»15.3)
write( 6, 1150 ) lamda
1150 tormat{lx,”singlet reactivity per collision: “,¢5.3)
write( 6, 1160 ) ncol
1160 tormat(/,1x,’number of collisions in calculation:i’,ic2)
write{l 6, 1170 ) Iple2
1170 tormat(lx, “number of c=12 time values:’,i5)
writel 6, 1180 ) 1pl3
1180 tormat(ix, numper of c=13 time values:®,i5)
write( 6, 1130 )
1190 tormat(/,1x,"selft=giffusion®,6x,°c=12%,6x,°c=13",3 )
write( 6, 1200 )
1200 format( 6x,’enrichment’,5x,“enhancement”)
write{ 6, 1250 )
1250 format( 1x,° coefficient “,b6x,°yield’,5x, yiela’,3)
write( 6, 1300 )
1300 tformat( Sx,” factor ‘,Sx,”factor=1.,07)
c .
¢ set up parameters needed for the calculations.
c -
trp = 1.0 7/ kloss
pmul = exo( alog( pmax 7/ pmin ) / num )
aselt = pnin
c
c loop to perform calculation as a function of diffusion coefficient,
c

num = num + 1
go 1000 1dif = 1l,num
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calculate the enricnment factor
factor

Adrel = 2.0 * oselt

calculation of recombination yiela for ¢~12 radical pairs

rl2 = recom( sl1e, tl2, otlls trb, crel, 1pll )

calculation of recombination yiela for ¢~13 radical pairs

ri3 = recom( s13, t13, otl13, trp, orel, Ipl3 )

qQ".
enr = ( efl3 = r12 ) /7 ( 1.0 = r12 )
aQ = r13 / r12

output section

write( 6, 1350 ) oselit, r12, r13, enr, a = 1.0
format( Ix,012.4,8x,10.4,Ux,16,4,5x,1f5.,3,10x,15.3)
dself = dself = pmul
continue

endg giffusion coefficient loor.

end

enr™ ang the enhancement
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functions for tnhe program "ciffus®™: recom(), pi1()
the function “"recom()” tollows.
tunction recom( s, t, at, trp, arel, loop )

function written to sccompany "diftfus,.fdp®™, “recom()" calculates
the recombination yield for the radical pair,

common rcol, rzero, lamda, fsl, ncol
real s(1u00), t(1000), at(iouQ)

real lamaa

Qata pi1/73.14159/

set up parameters needed for the calculations,

tdecay = =trp * aloqg(.999)
tmax = 7,9 * trp

¢l = (rcol / rzern) * (rzero = rcol) / sqrt(d,0 » pi = drel)
c2 = =( rzero = rco) )xx2 / ( 4,0 » gdrel )

r1s0.

r2s0.

r3z=v.

al = = (1,0 = 4,0 » ¢s1 ) / 3.0

ol = ( 1,0 = fs1 ) 7/ 3,0

calculation ot the recombination yielo "recom®
iteration looo for the first re-ancounter fraction "ri"

3o SuH il=l, looo
if( t(il) .gt,. tmax ) go to oUC

calculate the re-encounter propability for tne first collision,

prool = ol t(i1), cl, €2 ) * at(i})
it( t(il) .gt, toecay ) probl = probl * exp(=t(il) 7/ trp )

calculate tne singlet character of the radical pair.
sl = a1l * g(i1) ¢+ blI
calculate the inteqgrated vyiela.

rl = rl ¢+ prool] * sl
it( ncol .1t., 2 ) no to SO0

iteration loop for the secono re=encounter fraction "r2"

U = lamoa ) » 81 /7 ( 1,0 - lamga * sl )

32 = = (1,0 = 4,0 ~ ¢s82 ) / 3.0
b2 = ( l.,u = ¢t32 ) / 3.0

col?2 = 0,0

do 310 i12=1, loop

time = t{i1) + t(3i2)

if( time .,gt. tmax ,or, time ,gt, t(loop) ) go to 400
probld = pl( t(i2), cl, c2 ) » at(i2)

1f{ t{i2).gt.tdecay J} probed = prob2 * exp{ =t(i2) 7/ trp

s2 = a2 * s(i2) + ©2



iteration

function

coll + probd » s2
.dlt. 3 ) go to 30u

col2 =
1f( ncol

ts3 = (1.0 = lamga ) = s2 / (
a3 = = (1,0 - 4,0 =~ ¢ts3 ) / 3,0
b3 = ( 1,0 = fs3 ) / 3.0
colld = 0.0
go 1U0 i3=1, loop
time = t(11) ¢+ t(12) + t(13)
it( time .9t. tmax ,or, time
oroh3 = pi( t(i3), c1,

if(t(i3).gt.tugecay) orobd =

s3> = a3 * g(i13) + b3
cols = col3d + prond x g3
continue
r3 = r3d + (colld % proplr(l.(-lamdarsl)

third re=encounter loon.

continue

re = r2 ¢+ ( cole » probl x ( 1,0 =
second re=encounter loop.
continue
first re-encounter loop,
recom = lamaoa * (. r1l + r2 ¢ r3 )
return
end
"pl()” ftollows,
tfunction ol1( t, ¢cl, c2 )
pl = ¢l /7 tex]l,5
arqg = ¢c2 / t
1t ( arg Jle. =75,0 ) pl = 0,0
it ( arn .gt. =75.,0 ,ang. arg .lt.
return

end

loop for the third re-encounter fraction

«Qto,
c2 ) * ot(i3)
probl = exp(

1.0 =

lamda x si

-0.,u01 ) ot =

t(loop)
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LE A

lamda * 82 )

) go to 200

=t (i3) / trp )

t prob2x(l.0=lamgaxs2))

)} )

pl * exp{ arg )
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APPENDIX C: Program "methyl.fé4p"
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program methvl

c
¢ proaram to calculate the eneray, levels of a c3=rotor in a cos(3x)
¢ type ootential, tne levels consist of three types corresoonding
¢ to the symmetries (a,ea, and ep) of the three irregucible
¢ representations of a c3-svystem (i,e., 3 methvyl group),
¢ because Of tha maanetic moment o0f the rotating
¢ methyl qgroup, the gegeneracy hetween "ea" and “"ep™ States of the
¢ Same eneray level 1s proken in the pPresence of a Maanetic fielqg,
c this maanetic interaction 15 incluged in the caleculiation, the
¢ nurpose of the orogram is to calculate D(ea)=n(eb) relative to the
¢ proton maanatization ana n(al=(o(ea)+r(eb)) as a function of
¢ temperature for a given barrier height where o( ) indicates
¢ population,
¢ written by larry 1, sterna = novemper 1979,
¢
implicit adouble precision (a=h,o0~2)
Adimension e(15), a(15), h(15,15), ev(1S5), u(1S,15), effm(15)
dimension effma(15), effme(1S), t(35), ep(35), wt(35)
integer nval(15)
write(h,100)
100 format(/,1x,’program methyl _ ..",/,1x,
c’proaram to calculate the level oonulations of a methylerotor?,/,
clx,’as a function of temperature for a given parrier heiaht’,//,
clx,’enter the numuer of temperatures: “,%)
read(5,15u) ntemps
150 format(12)
write(6,200) ntemps
200 format(ix,’enter the *,i2,° temperatures (kelvin):?)
do 400 v = l,ntemps
write(6,300) i
300 format(ox,id,°) temperature = 7,%)
read(5,350) t(i)
3150 format (f7,0)
aon continue
write(6,450)
450 format(1x, outout eiaenvectors? enter 1 for ves, 0 for no: “,%)
reaa (-5, 150 ) igen
write(6,500)
500 format(lx, “enter the barrier height (kcal/mole): “,8)
read(5,35u) v3
c
¢ set up constants needed in the calculation,
c hbar = hbar x 1,e+20
c ergs = conversion from kcal/mole to ergs/molecule
c bcon = bholtzmann’s constant
c pi = i
c gch3 = methy|l group g=tfactor
c goro = oroton g=tfactor
c ch3i = methyl group moment of inertia x l.e+40
¢ hamiltonian terms
c ekin = kinetic enerqgy term
c epot() = secular potential energv term
c epot3 = non=secular potential energy term
c
hbar = 1,05443e=07 ’
eras = 6,949R0e=14
bcon = 1.5R044e=10
o1 = 3,140159
achl = v,.3
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apro = S.5%85486
ch3i = 5.5
exkin = (hpoar*a2)/(2, * ch3i )
epotd = (v3 ~ erasl)/2.
epotd = =(v3 x ergs)/4.
c
c calculate the energies of the "a" ang "ea” states in the absence of
¢ a magnetic field,
c R
if ( 1aen .ea. 1 ) ooen( unit=0l,name="eigen.val’,type="new’ )
do 1350 Y = 1,°2
c
c 00 the "a" states first.,
c
nval (1) = =21
c
¢ do the "ea™ states secong.
¢
if(l.en.?) nval(l) = =20
do 700 j = 2,15
nval(j) = nval(j=1) + 3
700 continue
c
¢ set up the hamjiltoanian matrix,
c
do 900 v = 1,185
h(iy,i) =2 ( ekin 2 nval{y)x*2 ) ¢+ epotl
do 800 ) = 1,15
ifl{i=1).,eq.1) h(i,)) = epot?
Vtl(j=1),9t.1) hi(rv,j5) = 0,
h(jei) = nly, i)
AQ0 continue
Qoun continue
c
¢ diaqonalize the hamiltonian matrix
c
call agiaquo(h,ib%,ev,u)
c
¢ calculate the "effective” m=value (i,e. angular momentum) of
c each ernenstate,
C
do 1100 j = 1,15
effm(j) = 0.0
Ao 1000 § = 1,15
effm(j) = etfm(j) + (ulirj)x*2) » nval(i)
1000 continue
1100 continue
c
c iif specified (i.e,, igen = 1), output the eigenvectors, etc.
¢ into the file "eigen.val™,
c

it ( taoen .ne, 1 ) go to 1170
ifll.en.1) write(1l,1105) v3
1105 format(ix, " a-eigenstates for barrier hevaht = *,$5,3,
¢’ kcal/mole’,/)
if()l.,eq.2) write(1,1110) v3
1110 format(1x,"ea-eiqenstates for barrier height = *,f5.,3,
c’ ¥cal/mole’,/)
[af) llbn i = "15
write(1,1120) j,ev(j),etfm(;),nval(1l),u(l,j)
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1120 format(lx,i12,5%x,e12,5,5x,f9.4,5x,13,5%x,19,6)
write(1,1180) (nval(i).uli;}),i32,15)
1140 format (39x,13,5x,f9.6)
write(1,1150)
1150 format (/)
1160 continue
1170 continue
c
c orger the eigenvalues ang m=values,
c
do 1300 i = 1,15
Iinew = 1
enew = ev(i)
eold = ev(i)
do 17200 j = 1,15
if(ev(jle.lt.enew) inew = j
iflev(jl.lt.enew) enew = ev(]j)
1200 continue
evii) = enew
eviinew) = eold
it(l.eq.1) a(i) = ev(i)
ifll,en.?) e(i) = ev(y)
oldm = effm(1i)
affm(i1) = effm(inew)
effm(inew) = olam
if(l.ea,1) efftma(i) = effm(y)
ifrl,eq.?) effme(i) = effm(i)
130¢ continue
1350 continue
it ( iagen .ea. ! ) close( unit=01 )
c
c calculate the level populations, rotational polarization,
¢ tunnellina fregquency, anad averaqe rotation rate (hertz)
¢ as a function of temperature,
c
do 1Sv0 n = 1,ntemps
bt = bcon * t(n)
c
C avgwt = avVeraage tunnelling splitting (wt)
cC avgma (avame) = averaqge mevalue of the a(e)~states
c avyma should be zern =« nonzero value indicates
c roung~off error 1n diagonalization,
¢ za(e) = partition function for the a(e)=torsional levels,
c
avama = 0.0
avame = 0,0
avawt = 0.0
za = 0,0
ze = 0,0
do 1400 7 =1, 1S
c
c a8f{l) is the lowest possible energy for the rotor,
c

bta fexndo( = ( a(i) = a(l) ) 7/ bt )

bfe fexpap( = ( e(i) = a(1) ) / bt )

avowt = avawt ¢+ ( e(i) = al(i) ) = ( bfa + bfe )
?a = za + bfas

7e = ze + hfe

avama = avama + effma(i) = pbfa

avame = avQme + effme(i)} = pfe
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1400 continue
avama = avamna / za
avame = svame / ze

c
c the rotational polarization "rp" is uvefineo 'n terms of the
¢ percent of the broton zeemah magnetization,
c
rp(n) = 2,0 » avame * 100, * gch3/apro
c
c "wt"” is the tunnellina splittinag, i.e. the average enerqgy
¢ difference hetween the a- and e=states.
c
wt{n) = avawt /7 { 2za + ze )
wti(n) = wt(n) /7 ( 2,0 = pi » nbar * 1,0e=20 )
1500 continue
c
¢ outnmut the results.
c
open{ unit=z0i,name=’rotor.val“,typez"new’ )
write(1,1900) v3 .
1900 format(lx,“®"rotor.val” = outnut from “"methvli™?®,//,
cbx, “harrier height = *,t5.,3,7 kcal/mole’,//,16x,°e=energy’,
cRx,’effective’,8x, a~enerav’,8x,’effective’,/,5x,"level *,5x,
c’(kcal/mnle)’,Sx,""ea”™ m=value’,5x,“(kcal/mole)*,5x,
c’"a" m=value’)
write(1,2000) (i,e(i)/eras,effme(i),a(i)/erys,etfma(il), i=1,15)
2000 format( é6x, iZ, Tx, ft.3, 10x, tR,4, Tx, tR,3, 9x, 8,4 )
write( 1, 2020 )
2020 format(/,15x,*tunnelling splitting’,S5x,”tunnelling splitting”,
c/,5x,"level “,9x, (kcal/mole)’,lox, (hertz)’)
no 206N i = 1,15
tunnel = el(1) = a(i)
write(t,2040) i, tunnel 7/ erqgs, tunnel*l_ 0e+20 / (2.*xpixhbar)
2040 formatf{ 6bx, i2, 12x, tRA.5, 1bx, e12.5 )
2060 continue
write(1,2100)
2100 format(/,5x, temperature’,6x,°rotational”,9%,’tunnelling’,
c/sbx,°(kelvin)’,Tx,’nolarization x?,4x,°splittina (hz)”)
write( 1, 2200 ) ( 1, t(i), rpli), wt(i), ¥ = 1, ntemps )
2200 format{( 2x, 12, *) “s t7.2, 9x, fbold, 11x, 10,3 )
write( 1, 2370 )
2300 format(/,1x,"°x",/,2x,°rotational polarization is percent of
¢ proton zeeman magnetization,”)
close( unitz=01 )
write( o6, 2400 )
2400 format( /, 1x, “=ax output in the file “rotor.val® x2x",/)

stow
end
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subroutine diasgdo follows « double precision version,

subroutine diaado(h,n,ev,u)
diagonalization routine written for anymwag...version 1
based on the method of jacobi, it diaaonalizes » real
symrnetric matrix by performing a rotation whenever the
angle is qreater than s given threshold. this process
continues with the threshold angle being decreased until
some minimum angle criterion is met,
modified for Drogram “methyl®,
"hdiaqg" uses tne function "arctan®,
written by larrvy 1, sterna

implicit Jouble orecision (a=h,0~2)

dimension h(n,n),uln,n),ev(l)

do 100 i=il,n

do 50 j=i,n

w(i,})=0.

u(ji,i)=0,

continue

u(i,i)=1,

continue

nr=Q

if(n.eq.1) 3o to 700

angmin = 0.,000017

ang=0,1745

istoo=n=1

test=dtan(anag)*,5S

do 400 ji=1l,istop

ip=i

hiti=h(t,1)

jgo=i+t

do 350 jsjqo.,n

ip=j

hijsh(i,])

hjlsn(j, i)

adjzhifehj]

if(dabs(hijl.gt.testergabs(adj)) qo to 500

continue

continue

if(ang 1t .ananin) go to 700

sng=angwn,33333

Qo to 200

nrEnrddl

opD=2.2hi

theta=darctn(opo,adj)%,.5

c=dcos(theta)

s=dsin(theta)

do 600 k=1,n

fflkolti12) hikzh(k,ip)

ff{k.gt.12) hik=h(in,k)

Ff(ko1t.)2) hjk=h(k, }p)

fflkegte]2) hjkz=h(]jork)

if(k.1t.io.and.k.ne,.Jp) h(k,ip)=hikncehjkns

tf(k.gt.io.and.k.ne.jp) h(fp,k)=hikacthjkns

ft(k.lt.]Jo.and.k.ne.ip) h(k,Jpl==hikrsthjk*c

tf(k.gt.)ouand.k,ne,ip) h(Jpsk)==hikes+h]k*c

ukizu(k,ia)

uk izul(ksJ2)

u(k,ip)zukirctukjns
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ulky,jol==ukirgrukjrc
600 continue
cos2=c*c
Sin2=s*s
Crosss2,xhijrcxs
h(iprjn)=0,
h{(ip,ip)=nfircos2+crossehjjrsin?
h(josjo)=hiinxgin2=cross+hjjrcos?
o to 300
700 do 800 j=1,n
ev(j)=h(i,r})
800 continue
return
end

function darctn follows,

o0

function Jarctn(ooo,ad]})

function written for anymag...version 1}
comoutes the arc-tangent of opo/adj

o0 nNnon

implicit double orecision (a=h,0~z)
darctn=1,570796327
{f(adj.eq.0,) qgo to 100
if(ans(adj).lt.abs(ooplrl.e=20) go to 100
arq=oon/sij
darctnz=datan(arg)

100 return .
end

0

function fexpds follows.,

no

function fexngp(arg)
function computes the rea! exponential of "araq™. if "arg”
is smaller than =75, "fexn”™ returns the value 0, the
puroose of this function is to prevent the "unix™ gystem
from returning a "floating overflow messaae” which occurs
when the minimum storsge size of the machine is approached,

N0 o0o

imolicit Jouble orecision (a=h,o-2)
fexpdo = 0,

ft(arg.gt.=75.) fexodp = dexp(arg)
return

end
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APPENDIX D: Reduction of (N+1) x (N+1) Set of Relaxation Equations

to 2 x 2 System

The relaxation eigenvectors for the systen of N methy
groups are obtained from the characteristic equation of the

relaxation matrix:

S117A 514810 51,0 5,08y

514(61)/N S,,~) ' 0 0
det(s-AD) = |5,,(8,)/x 0 5,4 0

814(635/N - 0 0 5,4 :

(D.1)

To reduce this equation to the 2 x 2 system of equations which
describe the Zeeman relaxation, it is only necessary to consider

the eigenvalues. These may be obtained by induction from the
solution of a 4 x 4 relaxation matrix (i.e., three methyl groups).
The analogy between the (N+1) x (N+1) case and the 4 x 4 case is
made by writing the characteristic equation for each and then
expanding the determinant of each into its second row minors.

By comparison of the corresponding minors the solution of the 4 x 4
case is straightforwardly generalized. It follows that for N methyl
groups there are N-1 eigenvalues Ai equalrto S44 and two eigenvalues

kl, Xz which are given by [1]
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_ 1 2 2.1/2
>‘1,2 = (311+344)/2 * 3 [(811"544) + 48, ] (D.2)
where
2 2
S, = ? Sy, (8,)/N . (D.3)
It follows very simply from the equation
(5-A;1) 9, =0 (D.4)

4 =

that the N-1 eigenvectors wi with Ai = S44 are all uncoupled from
the Zeeman system. Consequently, the Zeeman system is a linear

combination of only two eigenvectors, wl and wzz

M(t)/Meq = Cl exp(—Alt) + C, exp(-kzt) . (D.5)
It follows that
M(t)/Meq = —chl exp(-Xlt) - A2C2 exp(—lzt) (D.6)
and from the relaxation equation
N .
By = -5 M) - B 8,00 @I, - O

The following parameter is defined {2,3]:

N N
P _(t) = );j 51,(8;) R (£)/(2/6 K) = zlj cos(8,) R.(t) (D.8)
making Pr(t) the net projection of rotational polarization along
the magnetic field. Since both M(t) and Pr(t) are sums over all

of the methyl groups, division by Meq normalizes both. For
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treatment of experimental data, sums such as Eqs, (D.3) and
(D.8) must be replaced by single crystal or powder averages.

It now follows that from Eqs. (D.5)-(D.8) that

2/6 K Pr(t)/Meq = (Al—sll)cl exp(-A;t) + (A,=51,)C, exp(-A,t)

(D.9)
By taking the values of Egs. (D.S)-(D.B) at t=0,the coefficients

Cl and C2 are found to be:

(@]
|

= [(S1;72,)M(0) - 2V6 K Pr(O)]/[(Al—xz)Meq] (D.10a)

and

(@]
|

= [M(O)'Cl]/Meq . (D.10b)

The crucial element in simplifying the relaxation equations
into a 2 x 2 set is that all of the individual rotational
polarizations have the same auto-relaxation rate constant 844.
At low temperature when 544 becomes angular dependent, the
relaxation of the Zeeman system becomes multi-exponential, and

no simplification is possible [3].
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APPENDIX E: Program 'couple.c"
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finclude <stdlo.h>
fdellne pl 3014159
fdefine r 1,8e-08
fdefline hbar 1.05443e-27
fdefine gamma 26753.0

asinil)

/* Progras couplese.s */
7® Tnis prograa calculates the relaxation of two */
/% methyl groups shizh are stericaliy coupled s> as */
7% to rotate In a geared tashion. The two methrl */
/% groups sre sssused to be attached to s rigid */
/°® molecular frame 32d separated by » fixed angle. *
7* The calcyutation (s an extenslon of tnhne SRSO sotel */
/% developed Enid ana Wina, */
/* The prograa uses the sudbroutine “diag” and the ¢/
/% tunction "arctan.” %/
/®* Urftten by Larry L. Sterna */

fweiieeee—. = . 4® Dapartaent of Zhenistry % . _ .
/®* Universlity of Catiforniay Berkeley */
/7% June 1980 */

double phias pnibsy dele aloha, sila, silb, Slbar S14d¢ Ssbepnsiis

double tays, w, COSasy COSDy Sind

double rOs sL20) [20]s cf20) [208)s c5L3) [3)s ev(3)e DOCIY 3 _. . . _ — -
double pow()e cosll)e sIn(), sart(), arctan() 3

Iint §, ) ¢

FILE ®fopen(), *fp 3

/7°® Input section */

print? ( ™ Projram coublesse\n™ } ¢

orintt ( “ Proaram to caiculate the zoupied relaxation behavior = ) | .
printf ( "of! two metny! grouns with\n sterjc interaction which * )
print?t ( “couofies the two rotational polarizations.\n\n®" )} ;

printf ( ™ Entar the angle (Jegrees) of the first methyt! groust ™ ) 3
scant { “x1”, tonla )

printf ( * Enter the angle (degrees) separating the two sethyl™ §}
orintt ( * groups \n In the wmolecular frames “ 1) 3_ . . _ __ ... -
scanf ( 21", Ldel ) §

orintf ( ™ Enter the azimsuthal angle {degrees) of the second eethylt )3
scant ( "Xt*, Laslphs )} ¢ -

orinyf ( = Enter the correlation tims for setnhy! aotiont “ ) ¢

scanft ( “x1%, (tau ? 3

printf { ™ Enter the strength (Hz) _of the steric couptings =) 5 _
scanf ( "Xf*, tw ) 3

orintt ( "\n Enter the initial conditionseee™ ) §

orintt ( “\n (Z - Zeg} 7 Zeas " ) ¢

scanft { “xf=, LbOLO] ) 3

orintt ( = R1 ¢ R2¢ " ) 3

.scant . { Txt%, Ap0OL1) ). 3 . ___ _ JR—
printt ( = -R1 ¢ R2t " ) 3

scant ( *x1“, Lb0(2) ) 3

/% Spew back the [nput parameters. */

fo = fopen ( “coadle.val®™, "= )
forintt ( fo, * Outsut froe \“couole\".ee™ ) 3
forintt { fp, "\n Anglie of {irst sethyl grouo s 2.1f degrees. ,onia }.3

forintt ( (p, “"\n Methyi-methy! separation angle = X 1f degrees.",dei) 3
forintt ( fp, "\n Azimutha! angle of second sethyi! group = ) 3

forintt ( fps ™ .1l degrees,“, afoha ) 3

fprintt ( tpe “\n Methyt group correflation time = X,3e seconds.”, tau)
forintt ( fp, “\n Methyi-msethyl steric coupling strengthn = X.2f Hz.",m)
forint! ( ftpe “\n\n Initia{l conditionsess™ ¥ 3
forintt ( tp, "\n Quantity vatue®™ } 3§

tprintt ( fpe "\n (I - Zeq) / Zeq X5.20%« DOLOI } ¢

forintt ( tps "\n RL ¢+ R2 x5.21%, DOC1) )} 3

forintt ( fpy “\n -R1 ¢ R2 X5.21t%. 00(2] V¥ 3

/% Set up paramesters, satrices, etc, for calcutation. */

r0 = hber / pow ( ry 3.0 )
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rd = r0 ®* r0 ®* powl gamma, 4.0 ) * tau ®* 27.0 /7 128.0 3
ohia = 2.0 ®* 21 * snla /7 3600 : - -
del = 240 * pil * del 7 360.0
alpha =2 2.0 * o1 * atona 7/ 360.0 3
cosa = cos ( phia ) 3
e m —— . —£OSD = coS{del) * _cosiphla) =_gin{del) ® _coslalipha) * . sialpnial) §.
sinb = gart ( 1,0 - cosb ® cosb } 3
ohia = phia * 360.0 7 t 2.0 * pi ) 3
phib = arctan { sinb, cosd ?» * 360.0 7 ( 2.0 ® oi )
w=w / ( 2.0 * 0Dl )} 3§

/7% Parameters of the relaxation satrix s. */ .
$1la = 1645 * r) * £ 1.0 ¢+ 3.0 ®* cosa ®* cosa )}
s1ib = 1640 ® r0 * { 2.0 ¢+ 3.0 ® cosdb ® cosb )
$143 x 160 ® sg~t { 6.0 ) ®* r0 ®* cosa /7 3.0 3
siub = 1640 * sqa~t ( 6.0 ) ®* rQ * cosb / 3.0 ¢
skl = 8,0 * rd
s(C] (0} = ¢ si1a ¢+ siiD

- . SID) £1) = ( sSl&a + si4D
s[0} (2) =2 (~siea + slbD
S{1] (1] = sbb + 240 *

=

=

/ g3
[ B U,
’2.

S be

o W b

s(1] (2] 0.0 3
st21 (2) shi 3
for ( f = 0 31 <z 2 3 ¢+l )
for () 3023 1 <=1 8 #+ 3 ) .. .. _
s(1) (1) = sC)) €1} 3
forintt ( tps “\n\n Initjal elaxation Hatrixess™ ) 3
for (1 =206 301 <s 2 % ¢¢f )
€
tprintt ( fo, "\n®" ) 3
.- for () =0 §$ ) csx 2 3 ##} ) . _ _ . _ . e e e el
forintt ( tpy "X13.,8t", slil} [}) ) 3
)
/® Diagonslize the relaxation matrix. */
diag ( 3¢ Se Cy av )} 3
/7® Construct the relaxatjion equations for the systes defined by the Initial ¢/
/% conditions. */ e e m e e . . .
tor ( 4 =2 0 3 | € 2 3 o1 )
C

psil = G0 ¢
for () =0 $ § «n 2 5 +41 )
psl0 = psiG ¢ cl)) (1) * dOC}) 3§
for ( 3} 20 3 ) «x 2 3 ##¢} ) .-
c0f})) (1) = psi0 ® cM})) (1) 3

/7°* Qutput section. */
forintt ( fps “\n\n Elgenvector Matrixeses\n
for ( 1 = 0 3 1 < 2 3 ¢o1 )
forintt t to, * Psi-XZd™, . 4.3. 3 . . . e — .
forintt ( tps °\n (Z - Zeq)/Zeq” ) 3
for ( ) = 0 3 ) = 2 3 +¢) )
forintt t fp, “x12.51", ct0) (}11 ) 3
forint? ( tps “\n R1 ¢ R2 =)
for ( J s 3 7 ) <a 2 § ¢4} )
PR . forint? ( fope “X12,.51% cf1) £31.)_ 3 . L -
torintf ¢ fp, "\n -R1 ¢ R2 ) 3
for ()} = 0 3 ) ecx 2 § ¢¢3 )
forintt ( tp, “¥12.%0", cf2) (11} ) 3
forintt (fpe"\n\n Eigenstate Relaxation Rate Relaxation Tiwme™) 3
for (1 82 0 3 | <u 2 3 ¢e¢if )
——eie . forintf [ fps "\n X53 ZT18,6f X18.31%: 1, evill, LoD /7 ev(l]) ) 3
forint? ( fpe "\n\n Fleld angle ot first methyl = Y.1! degrees.",onial
forintt ( 1ps “\n Field angle of second methyt = X.1f degrees.™, ohid)

forintt C fp, “\n\n Relaxation Coetficient Matrixeess\n |
for ( 1 =0 3 1 < 2 3 ¢¢1 )
forintft ( fo, * Psi-xd*, 1 ) 3

forintt ( ftpy "\n (T -~ Zeq)/leqa™ ) ¢

. ws 9w



for C} = 0 3
fprintt
forintt ( tp,
for ( }J = 0 %
forintt
forinttl ( tp,
for ( J .= C 3
forintf
forintt ( top,

1
{

€x 2 1 +¢) )
foe "X12.51%

“\n R1 + R2

«x 2 § *+] )

( fo, “x12.5t",
“\n -R1 ¢ R2

<z 2 § #+) )
fpe “X12.51",

“\n" ) 3

c0I03 (31 )
- 3

clr1l (11 )

el RS S

c0f21 131 )

.
.
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#lnclude <stdio.h>
foetine angmax 1.745e-1
fdefine angmin 1.745e-5
diag ( ny hy uye ev }
/% Dlagonalization routine %/
/% Based on the method of Jacobis, thlis routine */
/7% diagonalizes a reatl syametric matrix by pertorzing */
/® a rotatjon to zerd> an off-djagonal elesent %/
/7% the rotation angle ls greater than a glven */
/® tnresholide This process continues with the */
/* thresnold angle being dec~eased unt il some %/
/® minimum angle criterion is mete The method Is */
/* intended to miniwize the nusber of unnesessa~y */
/% rotations and the~eby reduce rouni-off error. */
/% Tne tunction “arctan()™ (s used. */
/® Meitten by Lartry .. Sterna %/
/® Department of Chealistry */
/7®* University of Zalitfornias Berkeley *7 _ . .
7% June 1980 */
dJoudle h{) [20]), ul) (2G1y evi] 3
int n 3
C
double ang, op2y adly test, theta, Cc» Sy C0O$2y SIN2, Cross 3§
double hile hl)e hi)e Nhike hike ukl, uk} 3§ ._____ . .
double cos()y sinld)y fabs()e arctan() 3
int iy Jo ke nry nrold §
7®* u Is the unjitary matrix ot rotations which dlagonalizes h., The colusns %/
/7® of u are the eigenvectors. */
7® Set u equal to the identity msatrix Initially., %/
for { 1 2 0 3 1 <s n~1 3 ¢¢1) .
for ( ] = 80 3 ) ¢c= n=1 § ¢+ )
It ¢ | == } )
4011 (31 = 1.0 3
el se
sl i) (31 = 0.0 ¢
/® Olagonaliration section %/. . e
ne = 0 3
i1t t nt=x 1) .
for { sng = angmax { sng »s angaly 3 ang = ang 7 3.0 )
€
tes? = sin ( 2.0 ®* sang ) /7 cos ( 2.0 ®* ang ) 3
nrold = =1 3§ _ __
uhile ( nr > arold )
€
nrold s nr §
for (1 = 0 $ 1 <= n=-2 % ¢¢j )
for ( J = o) 3 ) <= n=1 3 o] )

nil = b)Y (1) 3
ni} = nlil ()) 3
niy = nYY L)) 3
opp = 2.0 * ni) 3
ad} = nil - n)}) $

/7°® Check angle of rotation nesded to zero the off-diagonal mtrix slewent */
It { fabs ( opp } > fabs ( 3d] ) * test )
7® Pertorm rotation ani Incresent nr = the nuasber of rotationse. */
C
theta = arctan { oppe 8d] ) /7 2.0 %
c = cos ( theta ) ¢
————— e . s a2 Sin Lt theta ¥ ¢ e
for ( Kk =2 ) 3 K <= n~1 3 ¢¢k )
C
11 ( kKt J EL & t= § )
C
1t (k<)
hik = hEk] (1) 2
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el se
- - nik = nl1) IK)? 3
it (( k ¢ ) )
hik » nlk] )3 3
el se
o ¥ B i Y O I I o S
i1 (kK < {1}
nikl (I] = hik ® c ¢ N}k * 5
el se
hii) (x] = hik ® c ¢ h)k ®* s 3
it (kK <) )
———————ee— e . DIk ]) L} )= -mnik * s & DRk *
el se
)] (k) = ~nik ® 5 ¢ h)k * ¢ 3

a0

do
I

3}
uki = k) (1)
uk] = ulk] (31

.
’
*
.

e e e K] {d) m uk] * c #uk] * S
ulk] ()] = =ukli ® s ¢ ukj ®* c ¢
)} 7/®° end “for”™ {000 over k */

cos2 = ¢ * ¢
s4n2 = s * g 3
cross = 2.0 ® ni1 ‘c's:
e e e e BT L)) mBW8 3o - -
hli) (1) = nil ® cos2 ¢ cross ¢ hll * gin2
h(}) ()) = nit ® sin2 - cross ¢ n)] * zos2
ar = nr ¢ 1 ¢
3 /% end *"it™ condition for rotatian %/
) /7® end ®for*” loop over | ( and I ) ®/
LYoo . . /4% end "wnhiie”™ for nr » nrota %/
/® end “for®™ (oop over ang */

3 .
7® Fi11 the vector of ailgenvalues with the diagonal efements of n, ¥/

}

qouble

double

for

arcta

doub
TR ¢

Y N §

retu

(1 2 031 «<x n=1 3 ¢¢1 )
ev(il] = N4} (1] 3

n ( opps ad] )
/*% Funztion written for “diag.c™, */
/* Calculates the arc-~-tangent of opp/ad] even It
/® arguaent Is intinite. %/

ad} 3

l;'val' 'aos(). .'on(l 3
fabs ( adl ) < fadbs ( opp ) * 1.00—20 ]
val = 1.578796327 3

val = atan. ( obp 7 83} ) 3

ad] < 0.0 ) _ . _ U e

val = val ¢ 3-1&159 $
rn  vat ) 3

the ®/
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APPENDIX F: Synthesis and Crystal Growing

The syntheses of compounds used in this work are described
below unless they are commercially available. Zone refining
and crystal growing are discussed at the end.
13C—dibenzylketone (1,3—dipheny1-2—propanone—2—13C) was
prepared by pyrolysis of phenylacetic acid—l—lBC calcium salt
ina procedure similar to that of H. Apitzsch [4].

a—l3C—toluene was prepared from benzoic acid—l—lBC by lithium
aluminum hydride reduction followed by bromination with»PBr3 and
again reducti&n by lithium aluminum hydride.

2,3-dimethylmaleicanhydride—d6 which is a previously unknown
compound was prepared as follows. 1In a stainless steel bomb of
150 ml capacity was placed 4g of 2,3-dimethylmaleicanhydride, 80 ml
D20 (99.8% D), and 0.42 g of anhydrous potassium carbonate. The
bomb was heated in an oven at 155-159°C with the temperature
controlled by a thermostatic thermometer touching the outside of
the bomb. Temperature control was very critical. After ~ 20 hours
the bomb was opened, and the contents were acidified with dilute
HC1 and extracted with methylene chloride after saturating the
aqueous phase with NaCl. The organic phase was dried with MgSOA,
evaporated, and distilled on a bulb-to-bulb apparatus at 20 torr.
2.35 g of material was obtained which was found by mass spectroscopy
to be 957 deuterated. 4 g of the 957 deuterated material was
prepared and then re-exchanged as above to obtain 1.74 g of material
after recrystallization in petroleum ether. The 2,3-dimethyl-

maleicanhydride~d, had a melting point of 93-94° and was 99.3%

6
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deuterated as determined by mass spectroscopy.

Durene-d; (1,2,4,5—tetramethylbenzene—3—dl) was synthesized
by metallation of bromodurene with butyllithium followed by
quenching with DZO‘

1,4,5,8—tet;amethylanthracene was gynthesized according to
the procedure of Ellison and Hey [5].

1,4,5,8-tetramethylnaphthalene was synthesized according to
the procedure of Mosby [6]. '

. The durene and all of the compounds used for single crystal
preparation were zone refined. The zone refiner has 22 2zones,
10 of which were used; 50 passes were typically run.

Single crystals are grown from a melt using the Bridgman
technique [7,8]. A.vertical growth technique is used where an
evacuated pyrex tube containing the zone refined material is
lowered through a heating solenoid. The pyrex tubes are conical
with a moulded constriction at one end to facilitate seed growth.
Typically, 1.5 g of material is used, and the conical single
crystals obtained are 4 cm long and have a 12 mm diameter at
the larger end. The growth rate for a 2,3-dimethylmaleicanhydride

crystal is about one week.
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