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ABSTRACT
We consider the problem of political redistricting: given the

locations of people in a geographical area (e.g. a US state), the

goal is to decompose the area into subareas, called districts, so
that the populations of the districts are as close as possible and

the districts are “compact” and “contiguous,” to use the terms

referred to in most US state constitutions and/or US Supreme

Court rulings.

We study a method that outputs a solution in which each

district is the intersection of a convex polygon with the geo-

graphical area. The average number of sides per polygon is

less than six. The polygons tend to be quite compact. Every

two districts differ in population by at most one (so we call

the solution balanced).
In fact, the solution is a centroidal power diagram: each

polygon has an associated center in R3 such that

• the projection of the center onto the plane 𝑧 = 0 is

the centroid of the locations of people assigned to the

polygon, and

• for each person assigned to that polygon, the polygon’s

center is closest among all centers. The polygons are

convex because they are the intersections of 3D Voronoi

cells with the plane.

The solution is, in a well-defined sense, a locally optimal so-

lution to the problem of choosing centers in the plane and

choosing an assignment of people to those 2-d centers so as to

minimize the sum of squared distances subject to the assign-

ment being balanced.

A practical problemwith this approach is that, in real-world

redistricting, exact locations of people are unknown. Instead,

the input consists of polygons (census blocks) and associated

populations. A real redistricting must not split census blocks.

We therefore propose a second phase that perturbs the solution
slightly so it does not split census blocks. In our experiments,

the second phase achieves this while preserving perfect popu-

lation balance. The district polygons are no longer convex at

the fine scale because their boundaries must follow the bound-

aries of census blocks, but at a coarse scale they preserve the

shape of the original polygons.
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1 INTRODUCTION
In the context of elections, redistricting refers to decomposing

a geographical area into subareas called districts. The districts
are supposed to satisfy three properties.

First, in order to honor the principle of equal representation,

the districts are supposed to have equal population to the

extent possible. Although the Supreme Court has declined to

name a specific percentage limit on how much populations of

districts can differ, “a 2002 Pennsylvania redistricting plan was

struck down because one district had 19 more people . . . than

another.” [16, p. 499]

Second, districts are supposed to be contiguous to the extent
that is possible. “. . . Forty-nine [out of fifty] states require at

least one chamber’s state legislative districts to be contiguous

. . . the vast majority of congressional districts—perhaps every

one in the 2010 cycle—will be drawn to be contiguous” [24].

Contiguous can reasonably be interpreted to mean connected.
Third, is compactness. “Thirty-seven states require their

legislative districts to be reasonably compact; eighteen states

require congressional districts to be compact as well. Few

states define precisely what ‘compactness’ means, but a district

in which people generally live near each other is usually more

compact than one in which they do not.” [24]

There are other criteria considered by the states. Some

states require that district boundaries account in some way

for existing political boundaries such as county or city lines,

although there is flexibility in this rule.

In this paper, we focus on equal population, contiguity, and

compactness. Of these, compactness is the one that is not easy

to formalize. Some measures of compactness are based on

boundaries; a district is preferred if its boundaries are simpler

rather than contorted. Some measures are based on disper-

sion, “the degree to which the district spreads from a central

core” [24]. Idaho, for example, directs its redistricting commi-

sion to “avoid drawing districts that are oddly shaped.” Other

states loosely address the meaning of compactness: “Arizona

https://doi.org/10.1145/3274895.3274979
https://doi.org/10.1145/3274895.3274979
https://doi.org/10.1145/3274895.3274979
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-106 -104 -102 -100 -98 -96 -94Figure 1: (left) The current Texas districting plan for the 114th Congress [25], designed to respect some county bound-
aries. (middle) A solution to the idealized redistricting problem for Texas. (right) A solution that respects census
blocks. The middle and right figures are perfectly population-balanced.

and Colorado focus on contorted boundaries; California, Michi-

gan, and Montana focus on dispersion; and Iowa embraces

both” [24].

Fryer and Holden [16], two economists, state three proper-

ties that they argue every index of compactness should satisfy,

and formulated a measure of compactness they call relative
proximity index (RPI). They showed that any compactness

index satisfying their three properties ranks districting plans

identically to the RPI. The RPI is based on a quantity that

for this paper we will call the dispersion of a districting plan:

it is the sum, over all districts, of the sum, over all pairs of

residents in a district, of the squared distance between the

two residents. The RPI of a plan is the ratio of the plan’s dis-

persion to the minimum dispersion achievable. Achieving the

minimum dispersion is NP-hard. Fryer and Holden use a local-

search heuristic to upper bound the optimum, so as to estimate

the RPI of existing districting plans.

1.1 The idealized redistricting problem:
assuming known locations of residents

Here is one natural way to formulate redistricting as a compu-

tational problem: the input specifies the desired number 𝑘 of

districts and a set of points (the locations of the residents). The

output is a decomposition of the state into polygons. Assum-

ing this formulation, a minimum-dispersion set of districts has

the following desirable properties:

(P1) Each district is the intersection of the state with a con-

vex polygon.

(P2) The average number of sides per polygon is less than

six.

(P3) The populations of the districts differ by at most one

(or zero if the total population is divisible by 𝑘).

Districts that are convex polygons with few sides on average

are arguably not “oddly shaped” and have boundaries that are

not “contorted” [24]. Section 2 discusses a practical method

(“Phase One”) that achieves properties P1–P3. The middle of

Figure 1 shows the output of Phase One for Texas. For contrast,

the left of the figure shows the actual current districts (for the

114th Congress).

It is worth emphasizing Property P3: populations of districts

differ by at most one (zero if the total state population is

divisible by 𝑘). We say a districting plan with this property is

(perfectly) balanced.

1.2 A more practical redistricting problem:
respecting census blocks

The problem formulation in Section 1.1 is idealized. In reality,

the exact locations of residents are unknown. The input con-

sists of polygons (census blocks) and associated populations.

Because the locations of the residents within each census

block are unknown, a real districting plan must not split cen-
sus blocks. Unfortunately, ideal districts that satisfy properties

P1–P3 will have polygonal boundaries that cut right through

census blocks. To what extent can we preserve properties P1–

P3 while also respecting (that is, not splitting) census blocks?

Adding this requirement to the three legal requirements—

population balance, contiguity, and compactness—makes the

problem considerably more difficult. As far as we know, no

previously published redistricting method both respects cen-

sus blocks and achieves contiguity and perfect population

balance. Hess et al. [21] report population differences rang-

ing between 6.8% and 9.5%.
1
Garfinkel and Nemhauser [17]

tried to respect larger geographical units (counties) and had a

tradeoff between compactness and population deviation; for

one of their more difficult instances (Washington state), they

achieved 3.8% population deviation with a solution that was

slightly less compact than the existing redistricting plan. Hel-

big et al. [20] report a 2.84% difference between largest and

smallest. Mehrotra et al. [28] report that their method gener-

ated a plan whose maximum population deviation from exact

balance was 1.86% but that when they allowed greater devi-

ation, they obtained a more compact solution (with a better

objective value) with a deviation of 3.73% after postprocessing.

Spann et al. [31] limit the population deviation to at most 2%.

1
This is the percentage by which the greatest district population exceeds the

least in a given plane.
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Some of these methods respect (or try to respect) larger geo-

graphical units than census blocks (census tracts or counties),

which further impedes achieving population balance.

Our main contribution is a method that in all our experi-

ments succeeded in respecting census blocks while achieving

contiguity and perfect population balance. The method con-

sists of two phases:

• Phase One uses local search to find an idealized district-

ing plan satisfying properties P1–P3. For this phase,

the population of a census block is considered to be

located at the centroid of the block, but (if the center

is on a district boundary) this population may be split
and assigned to different districts.

• Phase Two assigns some census blocks, those that are

in a sense on the boundaries of the polygons, to nearby

districts, then reassigns the entire population of each

such block to its district. The assignment is guaran-

teed to respect census blocks and preserve connectivity.

It is chosen to minimize the maximum difference in

population between the resulting districts.

In each of our experiments, Phase Two achieved perfect popu-

lation balance.

Furthermore, since Phase Two only affects the boundary

census blocks, the resulting districts largely retain the virtues

of the Phase-One solution. The Phase-Two districts are no

longer convex polygons with few sides—the polygon bound-

aries become more complicated—but that complexity is in a

sense due to the complexity of the census-block boundaries.

At a large scale, the district boundaries still resemble those of

the Phase-One polygons. Moreover, since only boundary cen-

sus blocks are affected, Phase Two only slightly increases the

value of the dispersion measure. The right of Figure 1 shows

the output of Phase Two for Texas.

2 PHASE ONE: BALANCED CENTROIDAL
POWER DIAGRAMS

Proposals to use optimization for redistricting date as far back

as 1965 [17, 21]. See [2, 30] for additional references. In this

section we focus specifically on balanced centroidal power dia-
grams, which is what the first phase of our algorithm computes.

We start with definitions and relevant history.

Fix an input (𝑃, 𝑘), where 𝑃 , the population, is a set of𝑚
residents (points in a Euclidean space), and 𝑘 is the desired

number of districts. Given (𝑃, 𝑘), Phase One outputs a pair

(𝐶, 𝑓 ), where 𝐶 is a sequence of 𝑘 centers (points in the Eu-

clidean space) and 𝑓 : 𝑃 → 𝐶 is an assignment of residents to

centers. Let 𝑑 (𝑦, 𝑥) denote the distance from resident 𝑦 ∈ 𝑃 to

a possible center 𝑥 .

For given centers𝐶 and a weight𝑤𝑥 ∈ R for each center 𝑥 ∈
𝐶 , the power diagram of (𝐶,𝑤), denoted P(𝐶,𝑤), is defined as
follows. For any center 𝑥 ∈ 𝐶 , the weighted squared distance
from any point 𝑦 to 𝑥 is 𝑑2 (𝑦, 𝑥) −𝑤𝑥 .

The power cell 𝐶𝑥 associated with 𝑥 ∈ 𝐶 consists of all

points whose weighted squared distance to 𝑥 is no more than

the weighted squared distance to any other center in 𝐶 . The

power diagram P(𝐶,𝑤) is the collection {𝐶𝑥 : 𝑥 ∈ 𝐶} of

these power cells.
2
An assignment 𝑓 : 𝑃 → 𝐶 is consistent

with P(𝐶,𝑤) if every resident assigned to center 𝑥 belongs

to the corresponding cell 𝐶𝑥 . (Residents in the interior of 𝐶𝑥
are necessarily assigned to 𝑥 .) P(𝐶,𝑤, 𝑓 ) denotes the power
diagram P(𝐶,𝑤) augmented with a consistent assignment 𝑓 .

Power diagrams are well-studied [4]. If the Euclidean space

is R2, it is known that each power cell 𝐶𝑥 is necessarily a

(possibly unbounded) convex polygon.

If each weight 𝑤𝑥 is zero, the power diagram is the well-

known Voronoi diagram, and denotedV(𝐶). LikewiseV(𝐶, 𝑓 )
denotes the Voronoi diagram extended with a consistent as-

signment 𝑓 (which simply assigns each resident to a nearest

center).

A centroidal power diagram is an augmented power diagram

P(𝐶,𝑤, 𝑓 ) such that the assignment 𝑓 is centroidal: each center
𝑥 ∈ 𝐶 is the centroid (center of mass) of its assigned residents,

{𝑦 ∈ 𝑃 : 𝑥 = 𝑓 (𝑦)}. Compared to general power diagrams,

centroidal power diagrams are often preferred because their

cells tend to be more compact.

Centroidal Voronoi diagrams in particular have many appli-

cations [14]. A canonical application from graphics is down-

sampling a given image, by partitioning the image into cells,

then selecting a single pixel from each cell to represent the

cell. Lloyd’s method is a standard way to compute a centroidal

Voronoi diagramV(𝐶, 𝑓 ), given (𝑃, 𝑘) [14, § 5.2]. Starting with
a sequence𝐶 of𝑘 randomly chosen centers, themethod repeats

the following two steps just until Step (2) does not change 𝐶:

(1) Given 𝐶 , let 𝑓 be any assignment assigning each resi-

dent to a nearest center in 𝐶 .

(2) Move each center 𝑥 ∈ 𝐶 to the centroid of the residents

that 𝑓 assigns to 𝑥 .

The cost is
∑

𝑦∈𝑃 𝑑
2 (𝑦, 𝑓 (𝑦)). Step 1 chooses an 𝑓 of min-

imum cost, given 𝐶 . Step 2 moves the centers to minimize

the cost, given the assignment 𝑓 . Each iteration except the

last produces a lower-cost assignment, so the algorithm must

terminate. At termination, V(𝐶, 𝑓 ) is, as desired, a centroidal
Voronoi diagram, because Step 1 computes 𝑓 that is consistent

withV(𝐶), and (in the last iteration) Step 2 does not change

𝐶 .

At termination, (𝐶, 𝑓 ) is a local minimum with respect to

the cost in the following sense: by just moving the centers in𝐶 ,

or just changing 𝑓 to any other assignment, it is not possible

to reduce the cost.
3

Miller [29] and Svec et al. [32] and Kleiner et al. [23] ex-

plore the use of centroidal Voronoi diagrams specifically for

redistricting. The resulting districts (cells) are convex polygons,
and tend to be compact, but their populations can be far from

balanced.

2
Subtracting the same number from all weights does not change the power

cells. By subtracting an appropriate number, one can ensure that all weights

are nonpositive. Interpret each weight as the negative of the square of the 𝑧-

coordinate of the center; then the weighted squared distance from a point 𝑦 to

the center becomes the squared distance in 3-d from the point 𝑦 (now lying in

the plane 𝑧 = 0) to the center’s 3-d location. According to this interpretation,

each power cell is the intersection with the plane 𝑧 = 0 of the 3-d Voronoi cell

of the center.

3
Indeed, this condition is necessary and sufficient for V(𝐶, 𝑓 ) to be centroidal.
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A balanced power diagram is an augmented power diagram

P(𝐶,𝑤, 𝑓 ) (not necessarily centroidal) such that the assign-

ment 𝑓 is perfectly balanced as defined in the introduction—

for any two cells of P(𝐶,𝑤, 𝑓 ), the sizes of their populations
are the same, or differ by at most 1 if the total population is

not divisible by 𝑘 .

Aurenhammer et al. [5, Theorem 1] give an algorithm that,

given (𝑃, 𝑘) and 𝐶 , computes a weight vector 𝑤 and an as-

signment 𝑓 such that P(𝐶,𝑤, 𝑓 ) is a balanced power diagram,

and 𝑓 has minimum cost among all balanced assignments of

𝑃 to𝐶 .4 Their algorithm assumes a Euclidean metric and com-

putes a specific 𝑓 . As observed by Spann et al. [31], a slightly

stronger result is possible: for any metric, given any (𝑃, 𝑘,𝐶)
one can compute a weight-vector 𝑤 such that P(𝐶,𝑤, 𝑓 ) is
a balanced power diagram for every minimum-cost balanced

assignment 𝑓 .

Phase One: balanced centroidal power diagrams. Given (𝑃, 𝑘),
Phase One of our algorithm computes a balanced centroidal
power diagram, an augmented power diagram P(𝐶,𝑤, 𝑓 ) such
that 𝑓 is both balanced and centroidal. It does so using the

following capacitated variant of Lloyd’s method:

Starting with a sequence 𝐶 of 𝑘 randomly chosen centers,

repeat the following steps until Step (2) doesn’t change 𝐶:

(1) Given𝐶 , compute aminimum-cost balanced assignment

𝑓 : 𝑃 → 𝐶 . (Recall that the cost is
∑

𝑦∈𝑃 𝑑
2 (𝑦, 𝑓 (𝑦)).)

(2) Move each center 𝑥 ∈ 𝐶 to the centroid of the residents

that 𝑓 assigns to 𝑥 .

As in the analysis of Lloyd’s method, each iteration except

the last produces a lower-cost assignment, so the algorithm

must terminate. Furthermore, at termination the solution is a

local minimumwith respect to cost: by just moving the centers

in 𝐶 , or just changing 𝑓 to any other balanced assignment, it

is not possible to reduce the cost.

As Fryer and Holden observe [16], truly minimizing the

cost is essentially equivalent to minimizing the quantity we

called dispersion in Section 1.

The subproblem in Step (1) can be solved via Aurenhammer

et al.’s algorithm [5]. Instead, our implementation solves it by

reducing it to minimum-cost flow (see Section 4). This yields

both the stipulated 𝑓 and (via the dual variables) weights 𝑤

such that P(𝐶,𝑤, 𝑓 ) is a balanced power diagram. In the final

iteration Step (2) does not change𝐶 , so 𝑓 is also centroidal, and

P(𝐶,𝑤, 𝑓 ) is the desired balanced centroidal power diagram.

At termination, the pair (𝐶, 𝑓 ) is a local minimum in the fol-

lowing sense: by just moving the centers in𝐶 , or just changing

𝑓 (while respecting the balance constraint), it is not possible

to reduce the cost.
5

Given (𝑃, 𝑘), Phase One of our algorithm computes a bal-

anced centroidal power diagram P(𝐶,𝑤, 𝑓 ) using the above
method. The corresponding districts are the power cells of

P(𝐶,𝑤, 𝑓 ), clipped to the state boundaries.

Because P(𝐶,𝑤, 𝑓 ) is a power diagram, Property P1 holds:

each district is the intersection the state with a convex polygon.

4
They address themore general problem inwhich a target population is specified

for each center.

5
Indeed, this is a necessary and sufficient condition on (𝐶, 𝑓 ) for (𝐶, 𝑓 ) to
admit a balanced centroidal power diagram P(𝐶, 𝑤, 𝑓 ) (for some 𝑤).

Because the dual graph of these cells is planar, the average

number of sides per polygon is less than six; Property P2 holds.

Because P(𝐶,𝑤, 𝑓 ) is a balanced power diagram, Property P3

holds: the populations of the districts are balanced. Because

P(𝐶,𝑤, 𝑓 ) is centroidal, the districts tend to be compact.

Related algorithms sacrificing balance to respect census blocks.
Spann et al. [31] propose a variant of the algorithm in which,

in Step (1), the assignment 𝑓 is constrained to fully respect

census blocks: for each census block, 𝑓 must assign all resi-

dents within that block to the same center. As discussed earlier,

this is desirable but can make the balance condition harder

(or even impossible) to achieve. Spann et al. state that they

relax the perfect-balance requirement, initially allowing a 20%

deviation, and then reduce the allowed deviation with each

iteration. In principle, reducing the allowed deviation can in-

crease theminimum assignment cost, so some care is needed to

guarantee termination. The paper does not describe precisely

how this is done, or precisely how Step (1) is done. It states

that the algorithm terminates when the deviation is within 2%

of balanced. So, the resulting districts respect census blocks

but are not perfectly balanced, deviating by as much as 2%.

Hess et al. [21] (forty years before Spann et al.) propose an-

other variant that respects census blocks (then called “census

enumeration districts”). They also implemented their Step (1)

by solving a transportation (min-cost assignment), but with

some (apparently manual) adjustment to the assignment to

maintain connectivity of each district. They do not compute

power-diagram weight vectors nor otherwise mention power

diagrams. They report population differences of 6.8–9.5% be-

tween the resulting districts.

Helbig et al. [20] propose another variant that respects cen-

sus blocks (then called “population units”). But they use a

different cost function—the sum of distances, not the sum of

squared distances — so do not achieve a power diagram. The re-

sulting districts are not generally convex. Even noncontiguous

districts can result, although this was not observed in practice.

Their mathematical program constrains population balance

using an indirect heuristic, which interferes with convergence,

and they allow their algorithm to stop before reaching a true

local minimum. They report population differences of 2.84%

between districts.

Other related algorithms. Balzer et al. [6, 7] propose a variant
of the algorithm we describe above, differing in that it uses

a local-exchange heuristic (updating 𝑓 by swapping pairs of

residents) to carry out Step (1). For some inputs, local-exchange

with pairwise swaps is not sufficient to reach a minimum-cost

assignment 𝑓 . Consequently, for some inputs, their algorithm

outputs an assignment 𝑓 that is not actually consistent with

any balanced power diagram.

Many other papers on balanced centroidal power diagrams

address applications (e.g. in graphics) that have very large in-

stances, and for which it is not crucial that the power diagrams

be exactly centroidal or exactly balanced [6, 7, 12, 26, 33]. This

class of algorithms prioritize speed, and none are guaranteed

to find an assignment 𝑓 so that (𝐶, 𝑓 ) is a local minimum as

described above, or has a balanced centroidal power diagram.
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3 PHASE TWO: REASSIGNING
BOUNDARY BLOCKS

Given input (𝑃, 𝑘), Phase One solves the idealized redistricting
problem (without census blocks), computing a perfectly bal-

anced centroidal diagramP(𝐶,𝑤, 𝑓 ). The resulting power cells
form idealized, relatively compact districts with the desired

properties P1–P3 as described above.

Phase Two, described next, modifies the assignment 𝑓 so as

to meet the practical requirement that districts must respect

(not split) census blocks while preserving connectivity. Phase

Two itself consists of two parts. The first part establishes which

blocks can be assigned to which districts, with some associated

constraints we call dependencies. The second part finds an

assignment that obeys these constraints and minimizes the

maximum population difference between districts.

3.1 Computing candidate districts and
dependencies

The first part of the Phase Two algorithm operates indepen-

dently on each power cell. Fix some power cell 𝐶 . First the

algorithm constructs the census-block graph, where each cen-

sus block that intersects 𝐶 is a vertex, and two vertices are

adjacent if their census blocks share a boundary within 𝐶 .

Next, the algorithm Next it identifies interior census blocks.
—census blocks 𝑏 that lie strictly within𝐶 . The interior census

blocks induce a subgraph of the census-block graph. The algo-

rithm computes the largest connected connected component

of that subgraph; the census blocks comprising this connected

component are unconditionally assigned to the district corre-

sponding to the power cell; we refer to the set of these blocks

as the core of the district. Generally they comprise the vast

majority of blocks intersecting 𝐶 .

The algorithm then computes a breadth-first-search for-

est in the census-block graph from the core to the noncore

blocks in the graph. For each noncore block 𝐵, the candidate
districts for 𝐵 with respect to𝐶 are all the districts whose cells

intersect some ancestor of 𝐵 in the breadth-first-search forest.

The dependee of 𝐵 with respect to 𝐶 is the parent of 𝐵 in the

breadth-first-search forest if that parent is a noncore block.

The meaning of these notions is that 𝐵 is allowed to be as-

signed to any of its candidate districts, as long as its dependee

is assigned to the same district. The latter constraint is called

a dependency.
The above procedure is applied to each power cell.

Lemma 3.1. Consider the blocks not in any core. Fix a dependency-
respecting assignment of noncore blocks to candidate districts. For
every block 𝐵, if𝐶 is the power cell corresponding to the district to
which𝐵 is assigned then there is a sequence 𝐵=𝐵0, 𝐵1, . . . , 𝐵𝑘
of blocks, all assigned to the same district, such that 𝐵𝑘 is in the
core of that district’s power cell and, for 𝑖 = 1, . . . , 𝑘 . 𝐵𝑖−1 shares
a boundary with 𝐵𝑖 .

Because each power cell’s core is itself connected, it fol-

lows as a corollary that all blocks assigned to a district are

connected.

3.2 Finding an assignment with integer
linear programming

Part two of Phase Two is responsible for finding an dependency-

respecting assignment of noncore census blocks to candidate

districts so as to minimize the maximum interdistrict popula-

tion difference.

In our experiments, we formulated this optimization prob-

lem as an integer linear program (ILP) in a standard way, then

solved the ILP using the commercial ILP solver, Gurobi. The

ILP’s are not small. For example, the ILP for California has

about 15k constraints, 19k binary variables, and 32k non-zeros

in the constraint matrix. Nonetheless, Gurobi solved all the

ILPs. For example, California took about thirty seconds.

We speculate that the ILP has a relatively easy combinatorial

structure, perhaps having to do with the structure described

in the next section, which describes an alternative, dynamic-

programming, approach to solving the problem.

3.3 Introduction to the dynamic program
We will now show that the Phase Two problem has special

structure that enables it to be solved by a dynamic program.

For for the sake of simplicity, we will ignore dependency rela-

tionships. We will also assume that the intersection of each

census block with each power-cell boundary segment is a sin-

gle subsegment. It is not hard to adapt the dynamic program to

take into account dependency relationships and handle census

blocks with more complicated intersections, as long as these

are in a sense well-behaved.

Under these simplifying assumptions, the running time of

the dynamic program is 𝑛𝑂 (𝑑)𝑚 where 𝑛 is the per-district

target population,𝑚 is the number of census blocks, and 𝑑 is

the breadth-first-search depth of the planar dual of the power

diagram. We explain the depth 𝑑 in greater detail below. For

now, suffice it to note that it tends to be small in the context

of power diagrams for redistricting. For our most complicated

state, California, the depth is three.

3.4 Dynamic program and sphere-cut-like
decomposition

We will now show that the Phase Two problem has special

structure that enables it to be solved by a dynamic program.

For the sake of simplicity, we will ignore dependency relation-

ships. We will also assume that the intersection of each census

block with each power-cell boundary segment is a single sub-

segment. The power-diagram graph 𝐺𝐷 is a graph in which

each edge represents a maximal line segment that bounds a

power cell, see Figure 2. Consider one such line segment 𝐿.

Let 𝐿1, . . . , 𝐿𝑝 be the subsegments that are the intersections

of census blocks with 𝐿, in the order in which they appear

on 𝐿, not including intersections that include the endpoints

of 𝐿. Subdivide the edge 𝑒 corresponding to 𝐿, replacing it

with a path 𝑣0𝑒0𝑣1𝑒1𝑣2 . . . 𝑣𝑝𝑒𝑝+1𝑣𝑝+1 where 𝑣0 and 𝑣𝑝+1 are
the original endpoints of 𝑒 . Each vertex 𝑣𝑖 (for 𝑖 = 1, . . . , 𝑝

and possibly also for 𝑖 = 0 and/or 𝑖 = 𝑝 + 1) corresponds to a

subsegment of 𝐿, and thus to a census block that intersects 𝐿.

This is called the subdivided power-diagram graph. We denote
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Figure 2: Top left: In bold black the edges of the sub-
divided power diagram graph. The green vertices are
the vertices of the power diagram graph. The blue ver-
tices result from the subdivision of the edges of𝐺𝐷 . The
blue vertices (and likely the green vertices) correspond
to boundary census blocks. Green and blue vertices to-
gether with the bold lines form 𝐺𝐷 .
Top Right: Red lines together with red squares respec-
tively define edges and vertices of the dual of 𝐺𝐷 . Bold
red lines showa breadth-first-search tree𝑇 of this graph
rooted at the infinite face.
Bottom Left: Blue lines show the interdigitating tree of
𝐺𝐷 associated with 𝑇 .
Bottom Right: Pink lines show a fundamental cycle in
the dual of𝐺𝐷 . This cycle is associated with the edge of
𝑇 ∗ that it intersects.

it by 𝐺𝐷 and give an example in the top left of Figure 2. Note

that it is a planar graph.

Next, consider the planar dual of𝐺𝐷 . The planar dual has a

vertex for each face of𝐺𝐷 (including the infinite face), and, for

each edge 𝑒 of𝐺𝐷 , a dual edge that crosses 𝑒 at approximately

a right angle. The subdivisions in𝐺𝐷 give rise to parallel edges

in the dual, as shown in the top right of Figure 2.

Let𝑇 be any spanning tree of the dual of𝐺𝐷 . Each edge 𝑥𝑦

of the dual that is not part of 𝑇 defines a simple cycle in the

dual; the cycle consists of 𝑥𝑦 together with the simple 𝑥-to-𝑦

path in𝑇 . This cycle is called the fundamental cycle of 𝑥𝑦 with

respect to 𝑇 . It passes through some vertices, of which all but

at most one (the infinite face) correspond to power cells and

thus to districts.

In particular, let 𝑇 be a breadth-first search tree of the dual.

We define the breadth-first search depth 𝑑 to be the maximum

number of edges on any root-to-leaf path. Then any fundamen-

tal cycle with respect to 𝑇 passes through at most 2𝑑 vertices

that correspond to districts.

Let 𝑇 ∗
be the set of edges of 𝐺𝐷 that do not correspond to

edges of 𝑇 . A basic result in planar graph theory states that

the edges of 𝑇 ∗
form a spanning tree of 𝐺𝐷 . For each edge 𝑢𝑣

of 𝑇 ∗
, let 𝑒 be the corresponding edge of 𝐺𝐷 , and let 𝐶 be the

fundamental cycle of 𝑒 with respect to 𝑇 . Orient 𝑢𝑣 from the

vertex enclosed by 𝐶 towards the vertex not enclosed by 𝐶 . In

this way,𝑇 ∗
becomes a rooted spanning tree of𝐺𝐷 , where the

root is a vertex with only one incident edge of 𝑇 ∗
. For each

vertex 𝑢 of 𝑇 ∗
, let 𝑇 ∗ (𝑢) be the set of descendants of 𝑢 in 𝑇 ∗

.

For each nonroot vertex𝑢, the parent edge𝑢𝑣 corresponds to a

cycle 𝐶 (𝑢) in the dual such that 𝐶 (𝑢) separates the vertices of
𝑇 ∗ (𝑢) from the vertices of𝐺𝐷 not in 𝑇 ∗ (𝑢). Let 𝐷 (𝑢) denote
the set of districts (power cells) corresponding to the vertices

on 𝐶 (𝑢).
Thus we obtain a recursive binary decomposition of the

vertices of 𝐺𝐷 .
6

3.5 Dynamic program
Fix a threshold 𝜆. The dynamic programwill determinewhether

there is an assignment of census blocks to districts so that the

maximum discrepancy is at most 𝜆.

Let 𝑢 be a nonroot vertex of 𝑇 ∗
. Consider an assignment

of the census blocks in 𝑇 ∗ (𝑢) to power cells they intersect.

Making this assignment (without otherwise changing the pop-

ulation assigned to power cells) induces a change Δ(𝑐𝑖 ) in the

population assigned to power cell 𝑐𝑖 . We say that this assign-

ment is feasible with respect to 𝑢 if, for every power cell not in

𝐷 (𝑢), the absolute value of the change is no more than 𝜆. Each

feasible assignment induces a labeling of the power cells in

𝐷 (𝑢); namely, cell 𝑐𝑖 is labeled with Δ(𝑐𝑖 ). We call this labeling

a feasible labeling with respect to 𝑢. The number of feasible

labelings with respect to 𝑢 is at most 𝑛 |𝐷 (𝑢) |
, which is in turn

at most 𝑛2𝑑 .

The dynamic program finds, for each nonroot vertex 𝑢,

the set of all feasible labelings with respect to 𝑢. To do this,

the dynamic program works up 𝑇 ∗
from leaves to root. For

each vertex 𝑢, the feasible labelings of 𝑢 can be derived by

considering the feasible labelings of each of its children and the

different cells that 𝑢 itself can be assigned to. For each vertex

𝑢, the time to compute the feasible labelings with respect to

𝑢 is proportional to the product of the number of feasible

labelings of each of its children. Since each vertex has at most

two children in 𝑇 ∗
and each child has at most 𝑛2𝑑 feasible

labelings, the time for each vertex is 𝑛𝑂 (𝑑)
. Similarly, from

the sets of feasible labelings of the root’s children, it can be

determined whether there is any assignment of census blocks

to power cells for which the maximum discrepancy is at most

𝜆. The total time is 𝑛𝑂 (𝑑)𝑚.

4 STEP (1) OF PHASE ONE
Aurenhammer et al. [5] provide an algorithm that, given the set

𝑃 of locations of residents and the sequence 𝐶 of centers, and

given a target population for each center (where the targets

sum to the total population), finds a minimum-cost assignment

𝑓 of residents to centers subject to the constraint that the

6
This decomposition resembles a structure called a sphere-cut decomposi-

tion [13] (see also the chapter on branchwidth in [22]).
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number of residents assigned to each center equals the center’s

target population. Their algorithm also outputs weights 𝑤

for the centers such that the assignment 𝑓 is consistent with

P(𝐶,𝑤). Their algorithm can be used to find a minimum-cost

balanced assignment by using appropriate targets.

In the implementation here, we take a different approach

to computing the minimum-cost balanced assignment: we

use an algorithm for minimum-cost flow. Aurenhammer et

al. [5] acknowledge that a minimum-cost flow algorithm can

be used but argue that their method is more computationally

efficient. As we observe below, the necessary weights𝑤 can

be computed from the values of the variables of the linear-

programming dual to minimum-cost flow.

The goal is to find a balanced assignment 𝑓 : 𝑃 → 𝐶 of

minimum cost,

∑
𝑦∈𝑃 𝑑

2 (𝑦, 𝑝 (𝑦)). Let 𝑢𝑥 ∈ {⌊𝑚/𝑘⌋, ⌈𝑚/𝑘⌉}
be the number of residents that 𝑓 must assign to center 𝑥 ∈ 𝐶 .

Consider the following linear program and dual:

minimize𝑎
∑

𝑦∈𝑃,𝑥 ∈𝐶 𝑑2 (𝑦, 𝑥) 𝑎𝑦𝑥
subject to

∑
𝑦∈𝑃 𝑎𝑦𝑥 = 𝜇𝑥 (𝑥 ∈ 𝐶)∑
𝑥 ∈𝐶 𝑎𝑦𝑥 = 1 (𝑦 ∈ 𝑃)

𝑎𝑦𝑥 ≥ 0 (𝑥 ∈ 𝐶,𝑦 ∈ 𝑃)

maximize𝑤,𝑧
∑
𝑥 ∈𝐶 𝜇𝑥 𝑤𝑥 +∑

𝑦∈𝑃 𝑧𝑦

subject to 𝑧𝑦 ≤ 𝑑2 (𝑦, 𝑥) −𝑤𝑥 (𝑥 ∈ 𝐶,𝑦 ∈ 𝑃)

This linear program models the standard transshipment
problem. As the capacities 𝜇𝑥 are integers with

∑
𝑥 𝜇𝑥 = |𝑃 |,

it is well-known that the basic feasible solutions to the linear

program are 0/1 solutions (𝑎𝑦𝑥 ∈ {0, 1}), and that the (opti-

mal) solutions 𝑎 correspond to the (minimum-cost) balanced

assignments 𝑓 : 𝐶 → 𝑃 such that 𝑎𝑦𝑥 = 1 if 𝑓 (𝑦) = 𝑥 and

𝑎𝑦𝑥 = 0 otherwise. The implementation here solves the linear

program and dual by using Goldberg’s minimum-cost flow

solver [18] to obtain a minimum-cost balanced assignment 𝑓 ∗

and an optimal dual solution (𝑤∗, 𝑧∗). For any minimum-cost

balanced assignment 𝑓 (such as 𝑓 ∗) the resulting weight vector
𝑤∗

gives a balanced power diagram P(𝐶,𝑤∗, 𝑓 ):

Lemma 4.1 (see also [31]). Let (𝑤∗, 𝑧∗) b any optimal so-
lution to the dual linear program above. Let 𝑓 be any balanced
assignment. Then P(𝐶,𝑤∗, 𝑓 ) is a balanced power diagram if
and only if 𝑓 is a minimum-cost balanced assignment.

5 EXPERIMENTS
we ran our algorithm on all forty-three US states having more

than one congressional district. For each, the algorithm ob-

tained a districting plan in which every two districts differed

in population by at most one. For each of these states, we used

the following data provided by the US Census Bureau [10]: for

each census block, we used the geometric description of the

census block, and the population from the 2010 census. In the

very rare case where a census block consisted of several poly-

gons, we made the assumption (usually but not always correct)

that the census block’s population was zero. For each state, for

the number of districts we used the number of representatives

the state sends to the US House of Representatives.

Examples of our results are depicted in Figure 1 and Fig-

ure 3. The reader is directed to http://district.cs.brown.edu for

other examples and an interactive viewer. See also [11]. We

note that in all cases the Phase One algorithm converged to a

local optimum, and the Phase Two found a solution that pre-

served connectivity (aside from bodies of water) and perfect

population balance.

The implementation is available at https://github.com/pnklein/

district. It is written in C++ and Python3. Our implementa-

tion makes use of a slightly adapted version of a min-cost

flow implementation, cs2 due to Andrew Goldberg and Boris

Cherkassky and described in [18]. The copyright on cs2 is

owned by IG Systems, Inc., who grant permission to use for

evaluation purposes provided that proper acknowledgments

are given. For our experiments, the programs were compiled

using g++ version 7.

6 CONCLUDING REMARKS
In our implementation, we used the randomized method of [3]

to initialize the centers. It would be interesting to explore the

impact of the initial center locations on the resulting power

diagram. Perhaps iterated use of the algorithm with different

random starts would provide a suitable probability distribution

of districting plans for comparison to existing plans, as in,

e.g., [8, 27]. Alternatively, perhaps a careful choice of initial

centers could achieve other goals, such as preserving similarity

to an existing districting plan or increasing the likelihood of

avoiding the splitting of a particular community into different

districts.

We have focused in this paper on the Euclidean plane. This

ensures that each district is the intersection of the geographical

region (e.g. state) with a polygon. Moreover, there is potential

for using the fact that the metric is Euclidean to speed up

the Phase One (see [1]). However, in view of the fact that the

method explored here might generate a district that includes

residents separated by water, mountains, etc., one might want

to consider a different metric, e.g. to take travel time into ac-

count (as is done in [15]). Suppose, for example, the metric is

that of an undirected graph with edge-lengths. One can use es-

sentially the same algorithm for finding a balanced centroidal

power diagram. In Step 2, the algorithm must move each cen-

ter to the location that minimizes the sum of squared distances

from the assigned residents to the new center location. In a

graph, we limit the candidate locations to the vertices and

possibly locations along the edges. Under such a limit, it is not

hard to compute the best locations.

One might want to incorporate the goal of avoiding split-

ting larger geographical units such as counties. It would be

interesting to explore incorporating into the dynamic program

or integer linear program costs for splitting such units.

Acknowledgements. Thanks toWarren D. Smith and Alexan-

der Dubbs for informing us of some important references.
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Figure 3: Florida, idealized districting plan (left) and plan that preserves census blocks (right)
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