
UCLA
UCLA Electronic Theses and Dissertations

Title
Modeling and Optimization for Customized Computing: Performance, Energy and Cost
Perspective

Permalink
https://escholarship.org/uc/item/6g7663zw

Author
Zhou, Peipei

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6g7663zw
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Modeling and Optimization for Customized Computing:

Performance, Energy and Cost Perspective

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Peipei Zhou

2019

© Copyright by

Peipei Zhou

2019

ABSTRACT OF THE DISSERTATION

Modeling and Optimization for Customized Computing:

Performance, Energy and Cost Perspective

by

Peipei Zhou

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Jingsheng Jason Cong, Chair

This dissertation investigates design target, modeling, and optimization for field-

programmable gate array (FPGA) customized computing at chip-level, node-level

and cluster-level. FPGAs have gained popularity in the acceleration of a wide range

of applications with 10x-100x performance/energy efficiency over the general-purpose

processors. The design choices of FPGA accelerators for different targets at different

levels are enormous. To guide the designers to find the best design choices, modeling

is inevitable.

Chip-level performance and energy modeling for embedded and low-power devices.

We first study the single chip performance and energy model for FPGA-based pipelined

design. Customized pipeline designs that minimize the pipeline initiation interval (II)

maximize the throughput of FPGA accelerators designed with high-level synthesis

(HLS). However, II>1 can reduce dynamic energy below II=1 due to interconnect

savings. We use analytic models to describe accelerator performance and energy,

explore the trade-offs of energy and accelerator performance. and find the energy

ii

optimal design point.

Chip-level performance and frequency improvement through locality-aware transfor-

mation in HLS. We then study timing degradation problems in HLS-based accelerator

design and classify four patterns: scatter, gather, broadcast, and reduce in the context

of on-chip data movement. We observe that the on-chip data path delay in these

patterns scales up when the design size increases, but HLS tools do not estimate the

interconnect delay correctly or make a conscientious effort to control or cap the growth

of long interconnect delays at the HLS level. We propose a Latte microarchitecture

that features pipelined transfer controllers (PTC) to reduce critical path and improves

timing by 1.50x on average.

Node-level performance and cost modeling for FPGA-enabled, storage-optimized

public cloud instances. At node level, We study performance and cost models for

customized computing in light of the fact that performance and cost are primary

concerns when deploying applications and services in a pay-as-you-go public cloud.

The performance and cost modeling are discussed in two aspects, computation

resources, with CPUs and locally PCIe-attached accelerators, and storage resources

including SSDs and HDDs.

For computation resources, improved performance using accelerators is accom-

panied by a higher cost per hour. We discuss the performance and cost modeling

of deploying FPGA accelerators, offer insights on accelerator kernel design, and

discuss when we should scale up by using FPGA in a node or by choosing a larger

instance which has more CPU cores per node. For storage resources, storage systems

(SSD/HDD) need to be carefully chosen to match the performance improvement

introduced by accelerators while achieving the optimal cost. We conduct quantitative

iii

performance analysis on the Spark-based production-quality genome analysis toolkit.

We then propose I/O-aware performance analysis and modeling for a broad set of

Spark applications. Based on the model, we optimize the cost of genome sequencing

in the public cloud by 38%, compared to a configuration recommended by the Spark

Official website.

Cluster-level performance and cost modeling for sharing FPGAs among different

instances. From a node-level performance and cost model, we learn that simply

offloading accelerated kernels from CPU hosts to PCIe-based FPGAs does not guar-

antee improvement in terms of out-of-pocket cost when using pay-as-you-go services

in a public cloud. We analyze the application execution and conclude that the extra

cost is attributable to insufficient application-level speedup by Amdahl’s law. To

achieve cost saving with the use of FPGA accelerators in the public cloud, we propose

to share one FPGA among multiple CPU instances when the number of CPU cores

in one instance cannot fully utilize the FPGA accelerator computation resource.

By implementing this idea, we present Mocha framework in this dissertation as a

distributed runtime system to optimize the out-of-pocket cost while keeping high

speedup and throughput.

To demonstrate the performance improvement and cost saving of modeling in

customized computing, we use genome pipeline optimization in the public cloud and

private cloud as case studies showing how to conduct optimal scheduling under certain

constraints. In the public cloud, where cost is the primary concern, we formulate how

to select instances and schedule genome stages to achieve the least cost given certain

deadline constraints as a MILP (mixed integer linear programming) problem. In a

private cloud, where hardware (CPU cores, storage disks) is given, we formulate the

scheduling of multiple genomes to achieve the least latency, as a MILP problem.

iv

The dissertation of Peipei Zhou is approved.

Anthony John Nowatzki

Jae Hoon Sul

Glenn D. Reinman

Jingsheng Jason Cong, Committee Chair

University of California, Los Angeles

2019

v

To Xuxia, Zhongze and my fiancée Hao

for always being there for me

no matter what happens

vi

TABLE OF CONTENTS

1 Introduction . 1

1.1 Chip-Level Performance and Energy Modeling 5

1.1.1 Energy Efficiency of Full Pipelining 5

1.1.2 Locality-Aware Transformation for High-Level Synthesis . . . 7

1.2 Node-Level Performance and Cost Modeling 10

1.2.1 Computation Resources . 10

1.2.2 Storage Resources . 12

1.3 Cluster-Level Performance and Cost Modeling 16

1.4 Applications: Modeling and Optimization in Public Cloud and Private

Cloud . 18

1.4.1 Public Cloud . 19

1.4.2 Private Cloud . 19

2 Energy Efficiency of Full Pipelining 21

2.1 Related Work in Energy Modeling . 21

2.2 Matrix-Multiplication Kernel . 22

2.2.1 Baseline Kernel . 22

2.2.2 Optimized Kernel . 27

2.3 Energy Model . 29

2.3.1 Computation Energy . 29

vii

2.3.2 Memory Energy . 30

2.3.3 Interconnect Wire Energy . 32

2.3.4 Leakage . 34

2.3.5 Total Energy . 35

2.4 Results . 36

2.5 Discussion for Baseline Kernel . 39

2.5.1 Model of Energy Overhead . 39

2.5.2 Results . 40

2.6 Conclusion and Future Work . 41

3 Latte: Locality Aware Transformation for High-Level Synthesis . 43

3.1 Motivation and Challenges . 43

3.2 Latte Microarchitecture . 49

3.2.1 Pipelined Transfer Controller (PTC) 49

3.2.2 Automation Framework . 53

3.3 Experimental Evaluation . 53

3.4 Conclusion . 55

4 Node-Level Performance and Cost Modeling: Computation Resources

58

4.1 Whole Genome Sequencing Pipeline 58

4.2 Analysis for Straightforward CPU-FPGA Integration 60

viii

4.3 Generic Model . 65

4.4 General Discussions . 66

4.4.1 Cost Modeling Analysis . 66

4.4.2 Insights and Optimization . 68

4.4.3 Different Cost Ratios (CR) . 69

4.5 Conclusion . 69

5 Node-Level Performance and Cost Modeling: Storage Resources . 73

5.1 Introduction . 73

5.2 Background . 74

5.2.1 Apache Spark . 74

5.2.2 Genome Analysis ToolKit (GATK4) 75

5.2.3 Experiment Setup . 76

5.3 GATK4 Performance Analysis . 78

5.3.1 GATK4 Performance Profile 78

5.3.2 I/O-intensive Operations . 80

5.3.3 Effective I/O Bandwidth under Various Data Request Sizes . . 82

5.4 I/O-Aware Spark Analytical Model 85

5.4.1 Model Variable Definition . 85

5.4.2 Different Execution Phases . 86

5.4.3 Generic Model . 88

5.5 Model Evaluation Results . 88

ix

5.5.1 Applying Model to GATK4 89

5.5.2 Generality of Our Model: Other Applications 93

5.6 Application of The Performance Model—A Case Study for Cost Opti-

mization in Public Cloud . 96

5.6.1 Cost Modeling for HDDs . 97

5.6.2 Model Verification on Google Cloud 98

5.6.3 Cost Modeling for SSDs . 100

5.6.4 Modeling Results . 100

5.7 Related Work . 101

5.7.1 Spark Performance Analysis and Modeling 101

5.7.2 Impact of I/O on Parallel and Distributed Computing 102

5.8 Conclusion . 103

6 Cluster-Level Performance and Cost Modeling 105

6.1 CPU-FPGA Integration and Cost Modeling 106

6.2 Cost Model Implementation . 109

6.3 Mocha Runtime . 110

6.4 Case Study: Accelerate Genome Variant Calling on Public Clouds . . 115

6.4.1 Evaluation of PairHMM Accelerator 116

6.4.2 Evaluation of FCS GATK Acceleration Solution 118

6.5 Related Work . 120

6.6 Conclusion . 121

x

7 Cost Optimization with Composable Instances in Public Cloud . 122

7.1 Modeling . 123

7.1.1 Input Parameters . 123

7.1.2 Variables . 124

7.1.3 Objective Function . 125

7.1.4 Constraints . 125

7.2 Experiment Setup and Evaluation . 129

7.2.1 Profiling . 129

7.2.2 MILP Solving . 130

7.2.3 When Mocha is Applied . 130

7.2.4 Multiple Genomes . 132

7.3 Discussion on Spot Instances . 134

7.4 Related Work in Scheduling for Optimal Cost 136

8 Latency Optimization for Domain Specific Application in Private

Cloud . 141

8.1 Modeling . 142

8.1.1 Input Parameters . 142

8.1.2 Variables . 143

8.1.3 Objective Function . 144

8.1.4 Constraints . 144

8.2 Evaluations . 147

xi

8.2.1 Configurations of Optimal Results 148

8.2.2 Heuristics . 149

8.2.3 Experiments . 154

8.3 More Genomes: When #genome is Larger Than #storage space . . . 155

8.3.1 Input Parameters . 157

8.3.2 Variables . 157

8.3.3 Objective Function . 158

8.3.4 Constraints . 158

8.3.5 Evaluations . 158

8.4 Discussions on Other Applications . 159

8.5 Related Work in Scheduling for Optimal Runtime 161

9 Conclusions . 168

References . 169

xii

LIST OF FIGURES

1.1 Xilinx Zynq UltraScale+ multiprocessor system-on-chip (MPSoC) com-

prised of ARM cores and 16nm programmable logic [Xilb]. 2

1.2 Amazon AWS EC2 F1 FPGA instance [Amaa]. 3

1.3 Sharing FPGA among instances through network. 4

1.4 Microsoft configurable cloud [CCP16]. 4

1.5 Frequency vs. area: Freq decreases as design size scales out. 8

2.1 Pseudo code of square matrix multiplication. 22

2.2 Snapshot for N = 6, II = 1, k = 0, i = 0 24

2.3 Snapshot for N = 6, II = 6, k = 0, i = 0, j = 0 25

2.4 Optimized pseudo code of square matrix multiplication. 27

2.5 Architecture for optimized code, N = 6, II = N = 6 28

2.6 Complete partition of b matrix in column direction to enable fully pipelin-

ing, i.e., II = 1 . 30

2.7 Cyclic partition of b matrix in column direction when cyclic factor is 2,

i.e., II = N/2 . 31

2.8 Routing of broadcasting a[i][k] to all 24 multipliers, N = 24, II = 1 . . . 33

2.9 Energy Scaling with II for N = 64 Matrix Multiply 37

2.10 Scaling with N for Matrix Multiply . 38

2.11 Energy Scaling with II for N = 48 Matrix Multiply Baseline Kernel . . . 41

xiii

3.1 HLS accelerator design template. 45

3.2 Accelerator microarchitecture. 46

3.3 HLS baseline buffer load and store. 47

3.4 Layout of accelerator architecture. 47

3.5 HLS baseline broadcast and reduce. 48

3.6 Microarchitecture of PTC in scatter. 49

3.7 Code snippet of HLS implementation for PTC in scatter. 51

3.8 Microarchitecture of PTC in gather. 52

3.9 Microarchitecture of PTC in broadcast and reduce. 52

3.10 An example of Latte pragma. 53

3.11 Performance and P2A ratio in GEMM with 512 PEs. 55

3.12 Freq. degradation much less severe in Latte optimized design. 56

3.13 Layout for PTC chains in FFT, N=64, GS=4, GN=16. 57

4.1a CPU-Only System . 61

4.1b CPU-FPGA System Case A, CPU is bottleneck 61

4.1c CPU-FPGA System Case B, FPGA is bottleneck 62

4.2 Cost Efficiency Index (I) vs. kernel ratio (r) and accelerator speedup (S)

when CR = 25 on AWS EC2 F1. 67

4.3 Cost Efficiency Index (I) vs. kernel ratio (r) and accelerator speedup (S)

when CR = 20. 70

xiv

4.4 Cost Efficiency Index (I) vs. kernel ratio (r) and accelerator speedup (S)

when CR = 15. 71

4.5 Cost Efficiency Index (I) vs. kernel ratio (r) and accelerator speedup (S)

when CR = 10. 72

5.1 The Spark RDD flow of GATK4 pipeline. 76

5.2 Runtime for different stages in GATK4 using 500M read pairs input. . . 77

5.3 Runtime for 2HDD and 2SSD cases when the number of CPU cores per

node P = 12, 24, 36. 78

5.4 An illustration of the groupByKey operation. 80

5.5 Read bandwidths and IOPs for HDD and SSD on different block sizes. . 80

5.6 Execution model for (a) P ≤ b, no I/O contention; (b) b < P ≤ λ × b,

I/O contention is hidden by the CPU computation; and (c) P > λ × b,

I/O becomes a bottleneck, and increasing the number of CPU cores P

does not help. 84

5.7 Comparison of measured runtime (exp) and model predicted runtime

(model) for GATK4. 91

5.8 Comparison of measured runtime (exp) and model predicted runtime

(model) for Logistic Regression (LR), small dataset. 91

5.9 Comparison of measured runtime (exp) and model predicted runtime

(model) for Logistic Regression (LR), large dataset. 92

5.10 Comparison of measured runtime (exp) and model predicted runtime

(model) for Support Vector Machine (SVM). 92

xv

5.11 Comparison of measured runtime (exp) and model predicted runtime

(model) for PageRank (PR). 92

5.12 Comparison of measured runtime (exp) and model predicted runtime

(model) for Triangle Count (TC). 94

5.13 Comparison of measured runtime (exp) and model predicted runtime

(model) for Terasort (TS). 94

5.14 Cost for using different sizes of HDDs . 99

5.15 16vCPU: Comparison of measured runtime model (exp) and predicted

runtime (model) for GATK4 when using different sizes HDD as Local

(HDFS is set to 1TB HDD). 100

5.16 Cost for using different sizes SSD as Local (HDFS is set to 1TB HDD). . 101

6.1 Mocha framework overview . 106

6.2 Partial task offloading . 108

6.3 Mocha launches new nodes within a placement group. 110

6.4 Configuration file. 111

6.5 Code snippet of client in an user program 112

6.6 (a) The communication protocol between Client and Node Accelerator

Manager (NAM), (b) NAM enhanced by Mocha 113

6.7 Protobuf specifying metadata of data blocks. 114

7.1 Cost under different time constraints. 131

7.2 Cost under different time constraints when Mocha framework is used. . . 132

xvi

7.3 Cost under different time constraints when number of genome is one and

two. 133

7.4 Cost under different time constraints when spot instances are used. . . . 135

8.1 Configurations of optimal cost when #genome = 3. 149

8.2 Number of variables and constraints (Y axis) for different numbers of

genomes (X axis). 150

8.3 Heuristic 1: schedule by using #genome = 1,2. 151

8.4 Comparing optimal configuration versus heuristic 2, #genome = 3, problem

size Case C (#core = 56, # storage space = 8). 153

8.5 Heuristic 2, #genome = 5, problem size Case C (#core = 56, # storage

space = 8). Runtime of “balance-aware” heuristic 2 is longer than heuristic

2. 154

8.6 Heuristic 2, #genome = 6, problem size Case C (#core = 56, # storage

space = 8). Runtime of “balance-aware” heuristic 2 is shorter than

heuristic 2. 155

8.7 Runtime of modeling and experiment measurements for stages. 156

8.8 Runtime of method 1 and method 2 when N = 9..100. 159

8.9 Runtime different between method 1 and method 2 when N = 9..100. . . 160

8.10 Runtime of modeling and experiment measurements for stages in VCPA

pipeline. 162

8.11 Total CPU time of modeling and experiment measurements for stages for

each genome in VCPA pipeline. 163

xvii

LIST OF TABLES

1.1 Price comparison of CPU and FPGA instances on public clouds 11

2.1 HLS reported resource usage for multiplier and adder under different IIs,

N=24 . 29

3.1 Benchmarks and Achilles’s heel patterns in baseline designs. 48

3.2 Baseline design vs Latte optimized design. 56

4.1 Analysis of Cost Efficiency Index I for HTC and Mutect2 on Amazon EC2

f1.2xlarge, S = 40, P = 8, CR = 25. 65

4.2 Analysis of Cost Efficiency Index I for HTC and Mutect2 on Huawei Cloud

fp.1c, S = 43, P = 32, CR = 23. 66

5.1 Software and hardware configuration . 76

5.2 Spark and HDFS configuration . 77

5.3 Hybrid configurations of HDDs and SSDs 77

5.4 I/O data size (GB) in different GATK4 stages 79

5.5 Disk price in Google Cloud platform . 97

6.1 The resource utilization of FCS PairHMM accelerator on AWS F1 and

Huawei Cloud FP1 FPGAs. The number on the right side of each cell is

the available resource for users excluding the platform static region. . . . 116

xviii

6.2 Comparison of performance and cost efficiency among state-of-the-arts

and FCS PairHMM accelerator. 117

6.3 Time breakdown (secs) of a representative PairHMM task with 3MB input

and 40KB output. 118

6.4 Mocha system configuration for HTC and Mutect2 on AWS EC2 and

Huawei Cloud. For example, eight f1.2x:8 means we launch eight f1.2x

instances, each with 8 CPU cores. 118

6.5 Comparison of performance and cost of pure CPU solution, Blaze and

Mocha. 119

7.1 Amazon EC2 instances series and CPU type. 123

7.2 Amazon EC2 instances, number of CPU cores, memory sizes and on-

demand prices (dollars per hour). 123

7.3 Amazon EC2 instances and runtime (seconds) for different stages. 130

7.4 Minimum cost per genome when number of genome(s) are 1,2,3,4 and 5. 134

7.5 Amazon EC2 instances and highest spot instance prices within three

months (dollars per hour). 135

8.1 Constant and parallelizable runtime in private cloud. 148

8.2 Optimal runtime when there are different numbers of genomes. 148

8.3 Optimal results and heuristic results for problem size Case A. 151

8.4 Optimal results and heuristic 1 results for problem size Case B. 152

8.5 Optimal results and heuristic 1 results for problem size Case C. 152

8.6 Optimal, heuristic 1, heuristic 2 results for problem size Case B. 152

xix

8.7 Optimal, heuristic 1, heuristic 2 results for problem size Case C. 153

8.8 Optimal, heuristic 1, heuristic 2,“balance-aware” heuristic 2 results for

problem size Case C. 155

8.9 Constant and parallelizable runtime in private cloud for VCPA pipeline. 161

xx

ACKNOWLEDGMENTS

Having experienced seven years of pursuing my Ph.D. degree at UCLA, a few para-

graphs can not fully express my sincere gratitude to all the people that I want to

thank. Out of these, I would like to first express my sincerest gratefulness to my

advisor, Professor Jason Cong, for his vision as a computer scientist, patience and

support as an advisor, and caring as one would care for a family member. As a new

graduate student with barely any research experience, Professor Cong guided me

into research areas focused on computer architecture, computer-aided design and

analytic modeling. He showed me the systematic way to approach a research problem,

the sense of describing a problem from a mathematical modeling point of view, the

pursuit of finding the optimal solution. All of these are of the upmost value to me,

and I will cherish what I have learned from him in my future life. I feel honored and

blessed from bottom of my heart to have Professor Cong as my master’s and doctoral

advisor.

I am also very grateful to my doctoral committee members, Professor Glenn D.

Reinman, Professor Jae Hoon Sul, and Professor Anthony John Nowatzki, for their

time, patience and insightful suggestions for improving the quality of my dissertation.

I thank Professor Reinman for his insightful instruction when I took an advanced

computer architecture course and his invaluable research inputs when we collaborated

on the Composable Heterogeneous Accelerator-Rich Microprocessor (CHARM) project

in my very early stage of graduate research study. I also thank Professor Jae Hoon

Sul for his research suggestions proposed in my oral exams on genome pipeline

optimization in the private cloud. Additionally, I thank Professor Tony Nowatzki for

xxi

spending valuable time with me discussing the CGRA architecture, which broadened

my research horizons in computer architecture.

I wish to thank all my fellow researchers who collaborated with me, contributed

to this dissertation and enriched my research experience.

• Bingjun Xiao and Hui Huang are two of the most important fellow researchers

who guided me in the CHARM prototyping project—which laid the foundation

for my hardware and software design expertise. Bingjun spent an enormous

amount of time instructing me on proposing research ideas, approaching research

problems, writing research papers, and presenting research ideas.

• Peng Wei, Cody Hao Yu and I shared more than five graduate study years.

We collaborated on multiple projects, and I learned so much from these fellow

researchers. Projects included CS-BWAMEM, bandwidth optimization, the

composable parallel pipeline (CPP) architecture, Latte and the CPU-FPGA

communication pipeline.

• Professor Zhenman Fang and I collaborated on projects that included energy

efficiency of the full pipeline, ARAPrototyper, Caffeine and Doppio. Zhenman

and I spent a large amount of time together, discussing such things as formula-

tions, and from him I learned how to better present research ideas in academic

writing.

• Chen Zhang and I worked together on Caffeine. His knowledge in convolutional

neural networks inspired me to learn more in this challenging and promising

area of research.

xxii

• Yu-Ting Chen and I collaborated on CS-BWAMEM and ARAPrototyper. His

endurance and work/life fitness attitude influenced me significantly.

• My collaborative work with Zhenyuan Ruan on Doppio and ST-Accel was

scientificly rewarding, encouraging, and enlightening.

• Yuze Chi and I worked together on the SODA research. I also thank Yuze for

his patience and constant support with the lab servers.

• Di Wu and I collaborated on Mocha. He was a supportive mentor when I

worked as a software engineer intern for Falcon Computing Solutions.

• Professor André DeHon and I collaborated on research focused on energy

efficiency for the full pipeline. His instructions to me on the analytic modeling of

energy efficiency in FPGA architecture laid the foundation for my understanding

of computer architecture analytic modeling.

I want to thank other collaborators—including Mohammad Ali Ghodrat, Michael

Gill, Beayna Grigorian, Jiayi Sheng, Michael Lo, Brian Hill, Professor Zhiru Zhang,

Professor Vivek Sarkar, Professor P. Sadayappan, Louis-Noël Pouchet, Peng Zhang,

Xuechao Wei, Yuxin Wang, Max Grossman, Professor Chiyuan Ma, Professor Jie Lei,

David Roazen, Megan Shand, Myron Peto, Paul Spellman, Peichen Pan, Professor

Guangyu Sun, and Bojie Li.

Thanks also to my amazing fellow researchers—Young-kyu Choi, Bo Yuan, Mo

Xu, Karthik Gururaj, Yuchen Hao, Zhengrong Wang, Weikang Qiao, Jason Lau,

Licheng Guo, Libo Wang, Junyi Xie, Zhe Chen, Xinfeng Xie, Bug Huang, Atefeh

Sohrabizadeh, Karl Marrett, and Nikola Samardzic.

xxiii

I want to express my gratitude to Alexandra Luong for her seven years of fantastic

work preparing the paperwork related to my graduate studies, supporting the CDSC

reviews, and many other lab events.

I also want to express my thankfulness to Janice Martin-Wheeler for her incredible

work editing my research papers and dissertation. She is always the most trustworthy

one.

Thanks also to my fellow researchers and best friends Jie Wang, Muhuan Huang,

and Meng Li for supporting me and cheering me on through all the challenges and

down moments.

I especially thank my parents, Zhongze and Xuxia. They are the best role models.

Their love and understanding mean everything to me.

I want to thank myself for never giving up.

Finally, I would like to quote the song lyrics (with adaptions) from Can’t Stop

Love [Dar10] given by my favorite singer Darin, “We stand here today, together as

one. Hao, you brighten my days, just like the sun. They said this love was the

impossible kind. But we are strong enough to fight for this life. I can’t stop this love.

No matter what they say. I love you.”

The research studies in this dissertation are partially supported by the Customiz-

able Domain-Specific Computing Project (NSF-0926127); the Intel Corporation with

matching funds from the NSF under the Innovation Transition (InTrans) Program

(CCF-1436827); funding from CDSC industrial partners including Samsung, Google,

Huawei, Baidu, Fujitsu Labs, Mentor Graphics, and VMWare; C-FAR, one of the six

centers of STARnet—a Semiconductor Research Corporation program sponsored by

MARCO and DARPA; and AWS Research Credits on Amazon EC2 services.

xxiv

VITA

2008–2012 B.S., School of Electronic Science and Technology,

Chien-Shiung Wu Honor College, Southeast University, Nanjing, China.

2012–2014 M.S., Electrical Engineering Department,

University of California, Los Angeles, U.S.A.

2014–present Graduate Student Researcher, Computer Science Department,

University of California, Los Angeles, U.S.A.

PUBLICATIONS

Y. Chi, J. Cong, P. Wei, P. Zhou, SODA: stencil with optimized dataflow architecture,

ICCAD, 2018. Best Paper Nominee

Y. Chi, P. Zhou, J. Cong, An Optimal Microarchitecture for Stencil Computation

with Data Reuse and Fine-Grained Parallelism (Poster), DAC, 2018 and FPGA, 2018.

J. Cong, P. Wei, H. Yu, P. Zhou*, Latte: Locality Aware Transformation for High-

Level Synthesis, FCCM, 2018.

Z. Ruan, T. He, B. Li, P. Zhou, J. Cong, ST-Accel: A High-Level Programming

Platform for Streaming Applications on FPGA, FCCM, 2018.

xxv

P. Zhou*, Z. Ruan, Z. Fang, M. Shand, D. Roazen, J. Cong, Doppio: I/O-Aware Per-

formance Analysis, Modeling and Optimization for In-Memory Computing Framework,

ISPASS, 2018. Best Paper Nominee

C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, J. Cong, Caffeine: Towards Uniformed

Representation and Acceleration for Deep Convolutional Neural Networks, TCAD,

2018 and ICCAD, 2016. 2019 TCAD Donald O. Pederson Best Paper Award

J. Cong, P. Wei, H. Yu, P. Zhou, Bandwidth Optimization Through On-Chip Memory

Restructuring for HLS, DAC, 2017.

P. Zhou*, H. Park, Z. Fang, J. Cong, A. DeHon, Energy Efficiency of Full Pipelining:

A Case Study for Matrix Multiplication, FCCM, 2016.

Y. Chen, J. Cong, Z. Fang, and P. Zhou, ARAPrototyper: Enabling Rapid Prototyping

and Evaluation for Accelerator-Rich Architecture (Poster), FPGA, 2016.

Y. Chen, J. Cong, J. Lei, S. Li, M. Peto, P. Spellman, P. Wei, and P. Zhou, CS-

BWAMEM: A fast and scalable read aligner at the cloud scale for whole genome

sequencing (Poster), HiTSeq, 2015. Best Poster Award

J. Cong, H. Huang, C. Ma, B. Xiao, P. Zhou*, A Fully Pipelined and Dynamically

Composable Architecture of CGRA, FCCM, 2014.

xxvi

CHAPTER 1

Introduction

The classic von Neumann architecture allows efficient sharing of the executions of

different instructions on a common pipeline. However, general-purpose computing still

faces challenges in heat dissipation, performance, and cost issues. One architectural

trend is to offload most computation tasks from general-purpose CPU cores to

accelerators. Field programmable gate arrays (FPGAs) have been widely used

as hardware accelerators for different applications by customization before task

executions; this brings 10x-100x performance/energy efficiency [CSR11] over the

general-purpose processors. FPGA accelerators span a broad spectrum, and can be

categorized by design levels into chip level, server node level, and cluster level. We

first discuss FPGA accelerators in each design level and identify corresponding design

targets. Then we discuss modeling and optimization for each design level in the

following subsections.

Chip Level : Embedded FPGAs are FPGA chips or FPGA IP blocks that are

integrated in the system-on-chip (SoC) used in mobile devices, Internet-of-Things

(IoT) or other battery-backed devices. Figure 1.1 the shows Xilinx Zynq UltraScale+

multiprocessor system-on-chip (MPSoC) and its architecture diagram [Xilb]. For

accelerators in embedded FPGAs, performance and power efficiency are the primary

design issues. We first study the energy efficiency of full pipelining and propose

1

(a) Zynq UltraScale+ ZU9EG MPSoC chip (b) Zynq UltraScale+ MPSoC Architecture

Figure 1.1: Xilinx Zynq UltraScale+ multiprocessor system-on-chip (MPSoC) com-
prised of ARM cores and 16nm programmable logic [Xilb].

performance and energy modeling for chip-level design. Then we study timing

degradation problems in the HLS-based accelerator design. We propose the Latte

microarchitecture to add pipelined transfer controllers in data paths to improve timing

of baseline designs.

Node Level : The inclusion of FPGA into public data centers marks the beginning

of a new era of democratizing customizable computing. For example, Amazon Web

Services (AWS) Elastic Compute Cloud (EC2) provides F1 FPGA instances (as

shown in Figure 1.2 [Amaa]). AWS F1 instance features a CPU host and locally

PCIe-attached FPGA (Xilinx Virtex Ultrascale+ VU9P) [Amaa]. It is priced higher

than CPU-only general-purpose instances. For FPGA accelerators at the server node

level, performance and cost efficiency are the primary issues.

Cluster Level : In addition to treating FPGAs as local coprocessors connected

to CPUs through the PCIe interface, it is also possible to share FPGAs among

different nodes. For example, as shown in Figure 1.3, we can allocate one host

CPU thread in an Amazon AWS F1 instance to communicate with local FPGA and

2

Amazon

Machine

Image (AMI)
Amazon FPGA

Image (AFI)

EC2 F1

Instance

CPU

Application

on F1

DDR-4

Attached

Memory

DDR-4

Attached

Memory

DDR-4

Attached

Memory

DDR-4

Attached

Memory

DDR-4

Attached

Memory

DDR-4

Attached

Memory

DDR-4

Attached

Memory

DDR-4

Attached

Memory

FPGA Link

PCIe
DDR

Controllers

Launch Instance

and Load AFI

An F1 instance

can have any

number of AFIs

An AFI can be

loaded into the

FPGA in less than

1 second

FPGA Acceleration Using F1

Figure 1.2: Amazon AWS EC2 F1 FPGA instance [Amaa].

multiple general-purpose instances, e.g., M2 instances, through the network. Thus,

we achieve sharing FPGAs among nodes to enable full pipelining of CPU and FPGA

computation. Another finer-grained sharing can be achieved in architectures where

FPGA resources are decoupled from the CPU hosts [WAH15, CCP16]. For example,

Microsoft proposes a configurable cloud [CCP16] where the FPGA is placed between

the network interface card and network switch, as shown in Figure 1.4. Each FPGA

can process network packets without host intervention.

Similar to accelerators in the node level, for accelerators deployed at the cluster

level, performance and cost efficiency are among the most important issues. Matching

throughput of CPUs and FPGAs among nodes improves the overall cost efficiency.

3

Network

Figure 1.3: Sharing FPGA among instances through network.

TOR

TOR TOR

TOR

L1 L1

Expensive
compression

Deep neural
networks

Web search
ranking

Bioinformatics

Web search
ranking

L2

TOR

(a) (b)

Fig. 1. (a) Decoupled Programmable Hardware Plane, (b) Server + FPGA schematic.

tion hardware is tightly coupled with the datacenter network—
placing a layer of FPGAs between the servers’ NICs and
the Ethernet network switches. Figure 1b shows how the
accelerator fits into a host server. All network traffic is routed
through the FPGA, allowing it to accelerate high-bandwidth
network flows. An independent PCIe connection to the host
CPUs is also provided, allowing the FPGA to be used as a local
compute accelerator. The standard network switch and topol-
ogy removes the impact of failures on neighboring servers,
removes the need for non-standard cabling, and eliminates the
need to track the physical location of machines in each rack.

While placing FPGAs as a network-side “bump-in-the-wire”
solves many of the shortcomings of the torus topology, much
more is possible. By enabling the FPGAs to generate and
consume their own networking packets independent of the
hosts, each and every FPGA in the datacenter can reach
every other one (at a scale of hundreds of thousands) in
a small number of microseconds, without any intervening
software. This capability allows hosts to use remote FPGAs for
acceleration with low latency, improving the economics of the
accelerator deployment, as hosts running services that do not
use their local FPGAs can donate them to a global pool and
extract value which would otherwise be stranded. Moreover,
this design choice essentially turns the distributed FPGA
resources into an independent computer in the datacenter,
at the same scale as the servers, that physically shares the
network wires with software. Figure 1a shows a logical view
of this plane of computation.

This model offers significant flexibility. From the local
perspective, the FPGA is used as a compute or a network
accelerator. From the global perspective, the FPGAs can be
managed as a large-scale pool of resources, with acceleration

services mapped to remote FPGA resources. Ideally, servers
not using all of their local FPGA resources can donate
those resources to the global pool, while servers that need
additional resources can request the available resources on
remote servers. Failing nodes are removed from the pool
with replacements quickly added. As demand for a service
grows or shrinks, a global manager grows or shrinks the pools
correspondingly. Services are thus freed from having a fixed
ratio of CPU cores per FPGAs, and can instead allocate (or
purchase, in the case of IaaS) only the resources of each type
needed.

Space limitations prevent a complete description of the
management policies and mechanisms for the global resource
manager. Instead, this paper focuses first on the hardware
architecture necessary to treat remote FPGAs as available
resources for global acceleration pools. We describe the com-
munication protocols and mechanisms that allow nodes in
a remote acceleration service to connect, including a proto-
col called LTL (Lightweight Transport Layer) that supports
lightweight connections between pairs of FPGAs, with mostly
lossless transport and extremely low latency (small numbers
of microseconds). This protocol makes the datacenter-scale
remote FPGA resources appear closer than either a single local
SSD access or the time to get through the host’s networking
stack. Then, we describe an evaluation system of 5,760 servers
which we built and deployed as a precursor to hyperscale
production deployment. We measure the performance charac-
teristics of the system, using web search and network flow
encryption as examples. We show that significant gains in
efficiency are possible, and that this new architecture enables a
much broader and more robust architecture for the acceleration

Figure 1.4: Microsoft configurable cloud [CCP16].

4

1.1 Chip-Level Performance and Energy Modeling

1.1.1 Energy Efficiency of Full Pipelining

To meet the ever-increasing demand for high computation performance and energy

efficiency, numerous commodity acceleration platforms have been proposed and

developed, including the well-known many integrated cores (MICs, or Intel Xeon

Phi processors), graphical processing units (GPUs), field-programmable gate arrays

(FPGAs), and application-specific integrated circuits (ASICs) [DK12, CLS08, PYC06].

The utilization wall [Tay12] has stimulated interest in FPGAs, since FPGAs provide

both low power and customization capability to accelerate different applications (more

flexible than ASICs).

Compared to the general-purpose MICs and GPUs, FPGAs allow designers to

look beyond parallelization and customize accelerators. The customized pipeline

design has been one of the most successful and widely used optimizations to improve

the performance of FPGA accelerators [LZP15, CHM14, CJL11]. At the same time,

the recent success of commercial HLS tools like Xilinx Vivado HLS [Xila] has made

design space exploration for a customized pipeline easier compared to conventional

register transfer level (RTL) designs.

Among various tunable parameters in such pipeline customization, the pipeline

initiation interval (II)—which is defined as the number of cycles between two con-

secutive pipeline iterations [Lam88]—is one of the most important customization

parameters since it reflects the throughput of the pipeline design and has been widely

studied (e.g., [LZP15, CHM14, CJL11]). Most prior studies, except [LZP15], have

focused on minimizing the pipeline II so as to maximize the throughput of FPGA

5

accelerators. Meanwhile, there are also examples [CHM14] indicating that a smaller

pipeline II can reduce the energy consumption of FPGA logic gates. Motivated by

these studies, Chapter 2 begins to explore a key question: Does a customized pipeline

with the minimum II always minimize energy? If not, how does the pipeline II affect

energy consumption?

To get initial insight into this question, we focus on the classical matrix-multiplication

(MM) algorithm specified in C for HLS. We build an analytical model of the energy

consumption for the kernel as a function of matrix dimension, N , and pipeline II,

including the effects of computation, interconnect, memory, and leakage energy. This

allows us to identify how the energy should scale with problem size and II. We

synthesize the HLS kernel with Vivado HLS and fit constants within the analytical

model.

We find that energy for the logic component remains flat, while energy for the

memory and leakage components increases with II, but interconnect energy can

decrease with increasing II. Interconnect savings are large enough that we can

identify cases where II > 1 minimizes energy. Nonetheless, we see that the increasing

energy term is modest, such that the II = 1 case is always within a few percent

of energy optimal design point for MM that can fit on a single FPGA today. The

energy framework identified here should translate to other HLS kernels, but will have

different compute and interconnect scaling that should be characterized and better

understood in future work.

In summary, Chapter 2 makes the following contributions.

1. The first set of high-level analytical model that studies the impact of the pipeline

II on the energy consumption for a customized MM accelerator pipeline designed

6

in HLS on commodity FPGAs, which maintains an average error rate within 5%.

2. Insights into choosing the pipeline II to minimize energy for the MM accelerator—

when interconnect energy decreases at first and other parts of energy remain flat,

we can achieve energy optimal design where II > 1.

3. Observations of limitations in commercial HLS tools—inefficient register sharing,

and lack of power-gating for unused memory banks. We explain the register sharing

inefficiency in the baseline MM kernel in Section 2.2.1, show how we fix this by

code rewriting in Section 2.2.2, and discuss the energy model before code rewriting

in detail in Section 2.5.

This work is published in Proceeding of 2016 International Symposium on Field-

Programmable Custom Computing Machines [ZPF16].

1.1.2 Locality-Aware Transformation for High-Level Synthesis

Field-programmable gate arrays (FPGAs) have gained popularity in accelerating a

wide range of applications with high performance and energy efficiency. High-level

synthesis (HLS) tools, including Xilinx Vivado HLS [Xila] and Intel OpenCL [Int],

greatly improve FPGA design feasibility by abstracting away register-transfer level

(RTL) details. With HLS tools, a developer is able to describe the accelerator in

C-based programming languages without considering many hardware issues, such

as clock and memory controller, so the accelerator functionality can be verified

rapidly. Furthermore, the developer can rely on HLS pragmas that specify loop

scheduling and memory organization to improve the performance. In particular,

kernel replication is one of the most effective optimization strategies to reduce the

overall cycle latency and improve resource utilization. However, as reported in

7

previous work [Wan16, Zoh16, Wan17, TT14], the operating frequency of a scaled-out

accelerator after place and route (P&R) usually drops, which in the end diminishes

the benefit from kernel replication.

Fig. 1.5 illustrates the frequency degradation for a broad class of applications

(details in Section 3.3). Each dot point shows frequency and corresponding resource

utilization for an application with a certain processing element (PE) number. The

(black dashed) trend line characterizes the achieved frequency under certain resource

usage. On average, HLS generated accelerators sustain a 200 MHz on 30% resource

usage. However, the frequency drops to 150 MHz when usage increases to 74% (shown

in two triangle markers). An extreme case is when dot A runs at as low as 57 MHz

when using 88% resource.

y = -112.6x + 233.74

0

50

100

150

200

250

300

0% 20% 40% 60% 80% 100%

baseline

(30%, 200MHz)

(74%, 150MHz)

fr
eq

u
en

cy
 (

M
H

z)

res. util.

(88%, 57MHz)A:

Figure 1.5: Frequency vs. area: Freq decreases as design size scales out.

We investigate such cases and spot the Achilles’ heel in HLS design that has

attracted less attention—in particular, one-to-all or all-to-one data movement between

off-chip DRAM interface and on-chip storage logic (BRAM or FF), or inside the com-

putation logic. Using terminology from the message passing interface (MPI) [Sni98],

we introduce four collective communication and computation patterns: scatter, gather,

8

broadcast and reduce. They are used in most, if not all, accelerators. Different from

MPI, the four patterns in HLS are in the context of on-chip data movement,

instead of movement between servers. We observe that the on-chip data path delay in

these patterns scales up when the design size increases, but HLS tools do not estimate

the interconnect delay correctly or make a conscientious effort to control or cap the

growth of long interconnect delays at HLS level.

A common solution to long critical paths is to insert registers in the datapath in

the RTL [Che13], logic synthesis or physical synthesis phase. However, it requires

nontrivial efforts in buffering at the RTL level, which calls for a high-level solution.

Also, prior work in systolic array applications [TT14, Tuc17, Ruc15, ZCL15] and com-

pilers [LJS89] feature neighbor-to-neighbor interconnect in tightly coupled processing

units and eliminate global interconnect. However, classic systolic array requires the

application to have a regular data dependency graph, which limits the generality of

the architecture. Moreover, neighbor-to-neighbor register buffering introduces logic

overhead to each processing unit and incurs non-negligible overhead in the total area.

To address the above-mentioned challenges in low-level buffer insertion, generality

and non-negligible area overhead, we propose the Latte microarchitecture. In data

paths of the design, Latte features pipelined transfer controllers (PTC), each of which

connects to only a set of PEs to reduce critical path. Intrinsically, Latte is applicable

to general applications as long as the patterns occur. In addition, to improve the

resource efficiency, we also explore the design choices of Latte in the number of PTC

inserted, and offer performance/area-driven solutions. We implement Latte in HLS

and automate the transformation for PTC insertion, which eases the programming

efforts. In summary, Chapter 3 makes the following contributions:

9

• Identifying four common collective communication and computation patterns—

scatter, gather, broadcast and reduce in HLS that cause long critical paths in

scaled-out designs.

• Latte microarchitecture featuring customizable pipelined transfer controllers to

reduce critical path.

• An end-to-end automation framework that realizes our HLS-based Latte imple-

mentation.

Our experiments on a variety of applications show that the Latte-optimized design

improves timing of the baseline HLS design by 1.50× with 3.2% LUT overhead on

average, and 2.66× with 2.7% overhead at maximum.

This work is published in Proceeding of 2018 International Symposium on Field-

Programmable Custom Computing Machines [CWY18a].

1.2 Node-Level Performance and Cost Modeling

1.2.1 Computation Resources

Recent trends have shown that FPGA-powered computation intensive nodes are

launched in many public clouds, e.g., Amazon Elastic Compute Cloud (EC2), Huawei,

Baidu, Alibaba, etc. Unfortunately, even though we have a well- designed, high-

performance FPGA accelerator, the system-level speedup could be moderate due

to inefficient CPU-FPGA communication and data transfer. As a result, prior

work applied several approaches to improve the system efficiency by overlapping

communication routines between CPU host and FPGA [CWY18b], caching reused

10

data [CHW, HWY16], and orchestrating multiple CPU cores and FPGA based on

dataflow execution models [CFH18].

However, very few prior work investigated out-of-pocket cost, one of the most

important issues in public cloud while using FPGAs. To illustrate the cost issue in

public clouds with FPGAs, we conduct case studies that adopt FPGA accelerators

in widely used genome variant calling programs in a Genome Analysis Toolkit

(GATK) [MHB10]: HaplotypeCaller (HTC) [Ins19] and Mutect2 [CLC13]. As one of

the most significant tools in computational genome analysis, GATK has helped make

progress in advancing precision medicine. In particular, HTC and Mutect2 are two of

the most time-consuming applications in GATK that aim to find germline variants

for pair-end sequence reads (HTC) and tumor sequence reads (Mutect2). Both

applications include a high-complexity algorithm called Pair Hidden Markov Model

(PairHMM) [DEK98] that can be an accelerator candidate on FPGA. Unfortunately,

while Mutect2 costs only 0.73× on an f1.2xlarge AWS EC2 instance with an FPGA

when compared to the cost on an m4.2xlarge general-purpose CPU instance, HTC

costs 2.56×, which incurs extra cost overhead even though the execution time is

reduced. As a result, a key question is being raised: How does using FPGA accelerators

impact an application’s out-of-pocket cost in public cloud services?

Table 1.1: Price comparison of CPU and FPGA instances on public clouds

CPU Instance CPU-FPGA Instance

AWS EC2 [Ama19b] 8 vCPU, $0.4/hr
8 vCPU + 1 Xilinx VU9P,
$1.65/hr (4.125×)

Huawei Cloud [Hua19] 32 vCPU, $1.64/hr
32 vCPU + 1 Xilinx VU9P,
$2.83/hr (1.725×)

Since FPGA instances are priced higher than general-purpose CPU instances

11

in most cloud vendors, applying FPGA accelerators has to bring a high enough

application-level speedup to achieve cost saving. Taking AWS EC2 as an example,

Table 1.1 shows that its FPGA instance is priced at $1.65/hour, which is 4.125×

over the price of a CPU instance with the same type and number of virtual CPU

cores (vCPU). In this case, if adopting FPGA in AWS does not achieve 4.125×

application-level speedup, this solution is not as cost-efficient as pure CPU solutions.

In fact, our baseline CPU-FPGA system, which lets all eight CPU cores send all

PairHMM tasks to the FPGA, only demonstrates 1.6× application-level speedup for

HTC, causing 2.56× costs over the CPU-only system. Note that since the proportion

of the PairHMM kernel in the whole application is 39%, the optimal application-level

speedup of HTC is only 1.64× by Amdahl’s law.

In summary, Chapter 4 makes the following contribution: We analyze out-of-

pocket cost in using node-level CPU-FPGA platforms on the public cloud, summarize

two cases when computation throughput of CPU and FPGA does not match, and

explain how these two cases bring extra cost over pure CPU solutions.

1.2.2 Storage Resources

Within the past decade, there has been great success in programming frameworks that

support efficient development and deployment of large-scale applications in datacenters.

Examples include the pioneering MapReduce framework [DG08a] initially proposed

by Google, the open-source Hadoop MapReduce framework [Whi12a], and the more

recent Apache Spark framework that improves the performance of Hadoop by up to

100x through in-memory cluster computing [ZCD12a]. Due to its high performance

efficiency, Spark has attracted increased attention from both academia and industry.

12

In such big data computing frameworks, I/O used to play an important role in

system performance, and it attracted a significant amount of research [KC14, ORR15,

WK15, Awa16]. For example, Kambatla et al. reports in [KC14] that SSDs can

deliver up to 70% performance improvement for Hadoop MapReduce workloads. On

the other hand, a recent work [ORR15] from the Apache Spark community claims

that eliminating I/O accesses in Spark SQL processing workloads can reduce job

completion time by a median of at most 19%. Thus, I/O tends to no longer be the

bottleneck for the Spark in-memory computing framework. Such studies present

quite different implications of the I/O impact based on their application domains and

hardware resources; this often confuses users. As a result, the following key question

arises: How does I/O impact the big data application performance running on top of

in-memory cluster computing frameworks like Apache Spark?

Having a quantitative understanding of a complex distributed system like Spark

is not trivial. Unfortunately, previous studies in modeling Spark performance [WK15,

VYF16, GRB17] usually overlook the impact of I/O in their models. To better answer

the above question, we first measure the performance impact of I/O on Spark by

conducting an in-depth case study on the Spark-based production-quality Genome

Analysis ToolKit (GATK4) [Ins17b]. GATK4 is one of the most important tools

in computational genomics, and it has great potential for providing personalized

medicine [GMP10]. Since it involves various types of Spark operations, it is typical

and complex enough for our motivation study. A brief introduction to Apache Spark

and the GATK4 application will be presented in Section 5.2.

Different than [ORR15], we observe that I/O can still play a heavy role—even

in the in-memory computing framework of Spark. In addition to the HDFS read

and write for the input and output data which introduce I/O access, we make three

13

other observations; these are analyzed in Section 5.3. First, to avoid the time-

consuming recomputation, certain RDD (resilient distributed dataset) operations like

groupByKey will perform shuffle write/read to write/read intermediate data to/from

storage between different Spark stages. Second, there is usually some non-cached

intermediate data (RDD) as it is too large to be totally put into memory. For example,

for GATK4, to cache a 30x coverage whole genome intermediate data, it requires at

least 3.2TB total CPU memory. And even more for higher coverage genome inputs.

Third, effective I/O bandwidth differs under various data request sizes for different

I/O devices including HDD and SSD. For example, bandwidth difference between

HDD and SSD for HDFS read operation in GATK4 is 3.7x, however, 32x for shuffle

read operation. In that way, performance under HDD and SSD varies a lot for some

spark stages while not much for others.

To gain more insights into how I/O impacts the performance of Spark applications,

we propose a generic I/O-aware analytical model to reason the underlying behavior

of different Spark RDD operations and model their performance in Section 5.4. In

this model, we analytically combine all the following factors together, which often

have been overlooked in past studies.

1. We incorporate the effective I/O bandwidths under different data block sizes during

different RDD accesses, including HDFS read/write, shuffle read/write, and persist

read/write.

2. We incorporate the I/O bandwidth contention from different CPU cores, and

quantify the break point (i.e., number of CPU cores) after which the I/O bandwidth

is saturated.

3. We also incorporate the overlap between the CPU computation and I/O accesses

14

from different data partitions, where we assume a simple but effective pipeline

execution model.

To validate the accuracy of our proposed I/O-aware analytical model, we choose

a set of representative Spark applications, including GATK4 and five other typical

applications of iterative algorithms and shuffle-heavy algorithms. As detailed in Sec-

tion 5.5, experimental results show that our model achieves a performance prediction

error rate within 10%, and well explains the runtime behavior of different stages in

those applications.

This quantitative model enables us to better understand the performance of

Spark applications for further optimizations. Moreover, our model can also be applied

in the public cloud. In Section 5.6 we conduct a case study to use our model to optimize

the cost of genome sequencing in Google Cloud, where the cost of execution can be mod-

eled as Cost = f (CoreNum, DiskSizeHDFS, DiskSizeSpark Local, Time). Using the basic

application profile and platform configuration (CoreNum, DiskSizeHDFS, DiskSizeSpark Local),

our model can derive the application execution Time. Therefore, we can explore

the platform configuration space to find the optimal one with the minimum cost.

Experimental results demonstrate that we can save 38% to 57% cost compared to

recommended default configurations from Spark [Spa17c] and Cloudera [Clo13].

Although we only discuss the above usages, our model can be utilized for other

purposes as well. For example, in a shared cluster environment with a job sched-

uler, our performance prediction model can allow the scheduler to know ahead the

approximating job execution time and thus enable better job scheduling with less job

waiting time.

In summary, Chapter 5 makes the following contributions:

15

1. A quantitative performance analysis on the Spark-based production-quality genome

analysis toolkit.

2. An accurate I/O-aware performance analytic model for a broad set of Spark

applications.

3. A model-driven cost optimization study for genome sequencing in the public Google

Cloud.

In addition, we open source our toolset Doppio1 incorporating the I/O-aware

model to the community, which can be accessed at [cds17].

This work is published in Proceedings of 2018 IEEE International Symposium on

Performance Analysis of Systems and Software [ZRF18a].

1.3 Cluster-Level Performance and Cost Modeling

For node-level straightforward CPU-FPGA integration, the mismatch of computation

throughput of CPU and FPGA might bring extra cost over pure CPU solutions. For

example, in the Amazon EC2 f1.2x FPGA instance, the PairHMM accelerator on

FPGA is capable of achieving 40× speedup over a single-core CPU, and eight vCPU

cores cannot fully utilize the computation resource in the accelerator, which results

in 2.56× costs over a CPU-only system. In fact, we could borrow more vCPU cores

from other pure CPU instances via network to fully utilize the accelerator. In this

case, we could achieve cost saving by accelerating many HTC tasks on a system with

one FPGA and multiple CPU instances.

1Doppio is the anagram for I/O-aware Performance analysis, moDeling and OPtimization for
in-memory computing framework.

16

Built upon this idea, in Chapter 6, we design and implement a framework called

Mocha to guarantee the cost saving for arbitrary applications with FPGA accelerators

in the public cloud. Mocha first profiles the given application and identifies the

performance bottleneck (CPU or FPGA). For the CPU bottleneck and applications

such as HTC Mocha improve FPGA utilization by sharing one FPGA among multiple

nodes through network. For the FPGA bottleneck, applications like Mutect2, Mocha

orchestrate CPU cores to schedule originally offloaded tasks back to CPU cores

(partial task offloading) instead of sending tasks to FPGA. As a result, Mocha could

improve the overall system resource utilization and thus reduce the application cost

for any applications, no matter how small proportioned the kernel is as long as the

FPGA kernel speedup is higher than the cost ratio.

To demonstrate the cost efficiency improvement from using Mocha, we give

concrete and solid accelerator integration case studies on HTC and Mutect2 in GATK

in Section 6.4. As detailed in Section 6.4.2, experiment results show that, on different

public cloud platforms, when compared to straightforward CPU-FPGA integration

with our PairHMM accelerator, Mocha framework saves the cost of HTC by 2.82x and

cost of Mutect2 by 1.06x on AWS. On Huawei Cloud, Mocha framework saves cost by

1.22x for HTC and 1.52x for Mutect2. We make makes the following contributions:

• We propose performance and cost modeling that balances the throughput

of CPU cores (by partially offloading kernel tasks) and FPGA (by sharing

FPGA among multiple nodes) to achieve full computation resource utilization

(Section 6.1).

• We propose a framework called Mocha that enables FPGA sharing among

multiple nodes through network and partial task offloading policy for CPUs in

17

order to fully utilize FPGA and CPUs for any applications. Mocha guarantees

that the cost efficiency of a CPU-FPGA solution is higher than a pure CPU

solution as long as the FPGA kernel speedup is higher than the cost ratio

(Section 6.2, 6.3).

• We design and implement a cutting-edge PairHMM accelerator on Xilinx FPGAs.

By adopting an effective architecture with various optimization techniques, our

accelerator almost exhausts the floating-point computing power of both AWS

F1 and Huawei FP1 FPGAs (Section 6.4).

• We present performance and cost efficiency of our accelerator and provide model-

driven cost optimization case studies for Genome Variant Calling applications

HTC and Mutect2 in two public cloud platforms—Amazon EC2 and Huawei

Cloud. By using Mocha, our CPU-FPGA solution achieves the state-of-the-art

performance while saving cost by 2.82x for HTC, 1.06x for Mutect2 on AWS,

and 1.22x, 1.52x respectively on Huawei Cloud. (Section 6.4.2).

1.4 Applications: Modeling and Optimization in Public Cloud

and Private Cloud

Finally, we show how to utilize modeling for cluster-level CPU-FPGA integration

together with storage resource to have optimal scheduling in public cloud and private

cloud. We use applications in whole-genome sequence pipeline as studied applications.

18

1.4.1 Public Cloud

In the public cloud where different instances have a different number of CPU cores,

CPU types, disks and prices, out-of-pocket cost is the primary concern. In Chapter 7

we formulate how to select instances and schedule genome pipeline stages to achieve

the least cost given certain deadline constraints as a MILP (mixed integer linear

programming) problem. In this chapter, we make the following contributions:

• We present an MILP formula of optimal cost scheduling under deadline con-

straints, while taking into consideration different CPU instances, disk size and

type, and execution time of genome pipeline stages on the studied instances

(Section 7.1).

• We evaluate the modeling on the Amazon EC2 cluster (Section 7.2). We

first profile the execution time of genome pipeline stages in different instances

(Section 7.2.1), and solve the optimal cost for a single genome (Section 7.2.2)

given deadline constraints from loose to tight. We show in Section 7.2.3 that

composable instances enabled by Mocha framework save the cost by 20% in

GATK pipeline. We also consider, in Section 7.2.4, that when there are multiple

genomes, how does optimal average cost per genome change.

1.4.2 Private Cloud

In the private cloud, once the infrastructure is built, hardware (CPU cores, storage

disks) is given as fixed. The goal is to minimize the latency and improve the

throughput. In Chapter 8, we formulate how to schedule multiple genomes to achieve

the least latency as a MILP problem. In that chapter, we make the following

19

contributions:

• We present the MILP formula of optimal latency scheduling while taking into

consideration different CPU cores and storage space in a server (Section 8.1).

• We evaluate the modeling in our local UCLA CDSC cluster (Section 8.2). After

examining the optimal scheduling results for cases when number of genome is

small (Section 8.2.1), we propose three heuristics in Section 8.2.2 for cases the

when number of genome increases.

• We verify the modeling by running experiments on NA12878-Garvan [Sta16]

and comparing the difference in Section 8.2.3. The experiment results show that

our modeling achieves less than 4% error rate. When the number of genomes is

large, we propose two methods in Section 8.3 to construct the scheduling by

reusing base case configurations.

Chapter 9 concludes the dissertation.

20

CHAPTER 2

Energy Efficiency of Full Pipelining

The power and utilization walls have led to a drastically growing interest in customiz-

able accelerator designs on FPGAs. The customized pipeline design has been one

of the most important optimizations and widely used to improve the performance

of FPGA accelerators. In particular, prior studies have focused on minimizing the

pipeline initiation interval (II) so as to maximize the throughput of accelerators.

However, the impact of the pipeline II on the energy efficiency of accelerator designs

remains unclear. In this chapter, we propose a set of high-level yet accurate analytical

models to investigate the impact of the pipeline II on the energy consumption of

FPGA accelerators designed in high-level synthesis (HLS). Using a matrix-multiply

accelerator, we show that matrix multiplies with II>1 can sometimes reduce dynamic

energy below II=1 due to interconnect savings, but II=1 always achieves energy close

to the minimum. We also identify sources of inefficient mapping in the commercial

HLS tool flow.

2.1 Related Work in Energy Modeling

FPGA energy models have been widely used to provide guidance in design space

explorations. Recent studies in [DeH15] developed analytical models to characterize

21

energy consumption of designs ranging from a sequential design (processor) to a

spatial design (FPGA), using Rent’s rule [LR71] as a modeling tool. Earlier works

[PWY05, LLH05, RA11] employed models to provide in-depth analysis of FPGA

power decomposition and the impact of look-up table (LUT) size, cluster size, and

segment lengths on power consumption. Recent work introduced FPGA memory

models to analyze the effect of the memory architecture (including block size, banking,

physical spacing) and parallelism on an application’s energy efficiency [KLD15].

While these works present detailed energy models, they do not directly address the

microarchitectural structure that results from tuning the II in HLS designs. To the

best of our knowledge, this work is the first to model the impact of the pipeline II on

energy consumption of FPGA accelerators from a high-level perspective.

2.2 Matrix-Multiplication Kernel

2.2.1 Baseline Kernel

1 void matrix_multiply(float a[N][N], float b[N][N], float c[N][N]) {

2 int i, j, k;

3 k_loop: for(k = 0; k < N; k++) {

4 i_loop: for(i = 0; i < N; i++) {

5 #pragma HLS PIPELINE II = II_i

6 j_loop: for(j = 0; j < N; j++) {

7 #pragma HLS UNROLL

8 c[i][j] += a[i][k] * b[k][j];

9 } } } }

Figure 2.1: Pseudo code of square matrix multiplication.

To make it easier to understand, we use square N ×N matrix-multiplication as an

22

example to demonstrate the energy model for mapping applications onto a commodity

FPGA. We first develop the HLS code as shown in Figure 2.1. To pipeline the i loop

with a specific II (e.g., II i = 1), we apply the HLS PIPELINE pragma below the

i loop and set different II i value in the pragma. Consequently, the inner-most j loop

inside the i loop will be unrolled automatically (HLS UNROLL pragma is shown to

illustrate this unroll but not needed explicitly). In the j loop, one row of c matrix,

c[i][0], c[i][1], ..., c[i][N − 1] are updated using a[i][k] and one row of b matrix, b[k][0],

b[k][1], ..., b[k][N − 1]. The PIPELINE II of i loop (i.e., II i, for simplicity, we will

directly use II for II i in the rest of the paper) determines the throughput, resource

utilization and energy to execute this matrix multiplication kernel. If PIPELINE II is

set to 1, one row of c matrix (i.e., one iteration of the i loop) is updated every cycle

and it needs the following resources:

1. N distinct sets of PEs, where each set of PEs includes a floating point multiplier

and a floating point adder.

2. Simultaneous memory (FPGA on-chip BRAM) accesses to each element within

a row of b matrix and c matrix every cycle. This requires full memory partition

along the column direction for b and c matrix. In this way, each column of b or c

matrix are stored in an independent memory bank.

To get a deep understanding of the pipeline resource consumption when II changes

under a given N, we analyze the microarchitectures of the matrix multiplication

example in two extreme cases: II = 1 and II = N. For illustration purposes, we set N

to 6 in our analysis.

23

Figure 2.2: Snapshot for N = 6, II = 1, k = 0, i = 0

2.2.1.1 Analysis of II = 1

We first analyze the computation pipeline for the i loop when II = 1 and N = 6, by

taking a snapshot of one i loop execution when k = 0 and i = 0. As demonstrated in

Fig. 2.2, to finish one i loop iteration, there are 6 logical pipeline stages as explained

below.

1. a[0][0] is read from memory into input register Ain. Meanwhile, all the elements in

the first row of b matrix b[0][0], b[0][1], ..., b[0][5] are read from memory into input

registers Bin0 to Bin5.

2. Ain is broadcast to all the multipliers while each Bin register goes to a distinct

multiplier. And all 6 pipelined floating-point multipliers will do the computation

concurrently. Note that each pipeline stage here is a logical stage and the physical

multiplier in this logical stage is also piplined to achieve II = 1.

3. Results from multipliers are written into temporary result registers tmp0 to tmp5.

Meanwhile, all the elements in the first row of c matrix c[0][0], c[0][1], ..., c[0][5]

are read from memory into input registers Cin0 to Cin5.

24

Figure 2.3: Snapshot for N = 6, II = 6, k = 0, i = 0, j = 0

4. Each tmp register and Cin register go to a distinct adder. And all 6 pipelined

floating-point adders will do the computation concurrently.

5. Results from adders are written into output registers Cout0 to Cout5.

6. All Cout registers are written into distinct c memory banks simultaneously.

In Fig. 2.2, the red lines show the wires from memory ports to the input registers

or output registers to memory ports. t1, t2, t3 are time markers when the input

are read from memory into registers and results are written back to memory. Since

PIPELINE II in the i loop is 1, the i loop takes new inputs every clock cycle. That

is, for the next iteration when k = 0 and i = 1: at t1 + 1, the row of b matrix b[1][0],

b[1][1], ..., b[1][5] are read into input registers; at t2 + 1, the next row of c matrix

c[1][0], c[1][1], ..., c[1][5] are read into input registers and the corresponding results

are written back to memory at t3 + 1.

25

2.2.1.2 Analysis of II = N

Now we analyze another extreme pipeline for the i loop when II = N, i.e., II = N = 6.

In this case, every N (II = N) cycles, the pipeline processes one iteration of the i loop;

that is, every cycle, the pipeline processes one iteration of the j loop. We illustrate

the pipeline execution by taking a snapshot of one j loop execution when k = 0, i

= 0 and j = 0, as shown in Fig. 2.3. Though the architecture generated by Vivado

HLS has only one multiplier and adder, the register resource remains unchanged.

Here, there are N (6) Bin registers (similar for tmp, Cin and Cout registers) in the

architecture. And one j loop execution is like the following:

1. Every cycle one b element is read from memory into one input register like Bin0,

..., Bin5. The solid line marks the input register that has been written with valid

value b[0][0] and dash lines mark the registers that have not been changed. While

for one a element, it is read from memory for every II (6) cycles and is reused for a

row of b matrix b[0][0], b[0][1], ..., b[0][5].

2. There is only one multiplier. One value from Bin0 to Bin5 will be selected using

an II-to-1 MUX and used as the input to the multiplier. Ain is the other input to

the multiplier.

3. One tmp register will be written with result from the multiplier, and one Cin input

register will be changed with the new input c[0][0].

4. There is only one adder. It will select the correct input values from two II-to-1

MUXes.

5. One Cout output register takes the result from the adder.

6. One Cout output register will be selected from an II-to-1 MUX to be written back

26

to the c memory.

For the next iteration: at t1 + 1, the second element in the b matrix, b[0][1], is

read into its input register; at t2 + 1, the second element in the c matrix, c[0][1], is

read into its input register and the corresponding result is written back to memory

at t3 + 1. It takes II cycles (here II is N) in total for one b or c matrix row to finish.

Here, we identify the inefficiency in the generated architecture. As II increases

from 1 to 6, the Bin, tmp, Cin and Cout registers are not shared as floating point

multipliers and adders. As II is larger than 1, there are II-to-1 MUXes needed to

select the correct input, which will incur extra energy in MUXes compared to II = 1.

In addition, 1-to-II fan-out and II-to-1 fan-in interconnect will further increase the

energy.

2.2.2 Optimized Kernel

1 void matrix_multiply(float a[N][N], float b[N][N], float c[N][N]) {

2 int i, j, k, p;

3 k_loop: for(k = 0; k < N; k++) {

4 i_loop: for(i = 0; i < N; i++) {

5 //i_loop PIPELINE II = II_i

6 p_loop: for(p = 0; p < N; p += N/II_i) {

7 #pramga HLS PIPELINE II = 1

8 j_loop: for(j = 0; j < N/II_i; j++) {

9 #pragma HLS UNROLL

10 c[i][p+j] += a[i][k] * b[k][p+j];

11 } } } } }

Figure 2.4: Optimized pseudo code of square matrix multiplication.

To fix the inefficient register sharing problem by Vivado HLS tool, we optimize the

HLS code by adding p loop in i loop. As shown in Figure 2.4, to pipeline the i loop

27

Figure 2.5: Architecture for optimized code, N = 6, II = N = 6

with a specific II (e.g., II i = 1), we change the increment value of the p index in the

p loop and apply the HLS PIPELINE II = 1 pragma. In the p loop, every cycle, N
II i

elements within one row of the c matrix, c[i][p], c[i][p+ 1], ... , c[i][p+ N
II i
− 1] are

updated using a[i][k] and N
II i

elements within one row of b matrix, b[k][p], b[k][p+ 1],

... , b[i][p+ N
II i
− 1].

The architecture generated by the optimized code will share the registers perfectly.

For example, when N = 6, II = 6, the generated architecture is shown in Fig. 2.5.

Compared to architecture generated by baseline code shown in Fig. 2.3, there are no

extra MUXes, registers or interconnects. The energy model for different II in Section

2.3 and Section 2.4 are based on the architecture generated by the optimized code.

Section 2.5 discusses the baseline model in more details.

After optimization, the resources and cycles to finish the matrix multiplication

kernel can be generalized in terms of problem size N and PIPELINE II of the i loop:

1. There are N
II

multiplier(s) and N
II

adder(s), and each computes II elements within

one row. The number of B or C input/output registers and temporary registers

between multipliers and adders is N
II

.

2. There are N
II

independent memory bank(s) for the b matrix, each with II column(s).

It is the same for the c matrix. Only one memory bank is needed for the a matrix

28

Table 2.1: HLS reported resource usage for multiplier and adder under different IIs,
N=24

II 1 2 3 4 6 8 12 24
DSP 120 60 40 30 20 15 10 5
FF 8520 4260 2840 2130 1420 1065 710 355

LUT 8376 4188 2792 2094 1396 1047 698 349

since a[i][k] is shared within one i loop iteration.

3. The number of cycles to finish the kernel is N2 × II.

2.3 Energy Model

2.3.1 Computation Energy

The computation energy includes arithmetic energy (multiply-add operations) and

register energy for holding the inputs, outputs, and temporaries. We can perfectly

share these PEs and registers by factor of II, making the total PE and register energy

consumption:

Ecompute ∝
N

II
×
(
N2 × II

)
= N3 (2.1)

For Xilinx 7 Series FPGAs, each multiply-add needs three DSP48E [Xilc] for the

floating-point multiplier and two DSP48E for the adder along with a fixed number

of LUTs and FFs. Table 2.1 shows the resource usage for multipliers and adders

decreasing as 1
II

since PEs are perfectly shared.

29

Figure 2.6: Complete partition of b matrix in column direction to enable fully
pipelining, i.e., II = 1

2.3.2 Memory Energy

In order to fully pipeline the matrix multiplication, each PE needs to access each

column of the b and c matrix simultaneously. HLS provides comprehensive partition

pragmas [Xila] to easily partition an array into individual memory banks. For example,

when II = 1, we use the complete partition pragma to partition b along the column

direction as shown in Fig. 2.6. Each column, b[..][N], becomes an individual memory

block.

As II increases, the number of simultaneous accesses to the b matrix decreases,

which means more columns can be placed in the same memory bank with size of

N × II. In this design, cyclic partition pragma is applied to the b and c matricies to

automatically split the memory along the column direction in N
II

equally sized blocks

interleaving the original array as shown in Fig. 2.7.

30

Figure 2.7: Cyclic partition of b matrix in column direction when cyclic factor is 2,
i.e., II = N/2

In general, there are N
II
b or c banks; within each, II columns of data are stored.

We need to consider the total memory energy when accessing these banks. In total,

there are N3 b memory reads, N3 c memory reads and writes, and N2 a memory

reads, which we could safely ignore when N is large enough. Each memory access is

from a logic memory bank with size of N × II. On Xilinx 7 series FPGAs, all the

logic memory banks are constructed using the embedded BRAM18K memory banks

31

on the chip [Xild].

If we activate a single BRAM for each read within a bank, the total energy reading

from BRAMs is constant at:

Emem ∝
N

II
×
(
N2 × II

)
= N3 (2.2)

When the logical memory bank size is larger than physical BRAM18K bank size,

it needs to be constructed using multiple BRAM18K banks, and the area of each

logical memory bank increases. This impacts the wiring as we see in the next section.

2.3.3 Interconnect Wire Energy

The wire energy can be decomposed into wires within PEs and wires connecting PEs

and memory. Wiring within the PE is fixed and will scale with the compute energy.

Ewire.in.pe ∝
N

II
×
(
N2 × II

)
= N3 (2.3)

Wire transferring broadcast data. In this matrix-multiply algorithm, broadcast

wires must transfer a[i][k] from the memory bank storing the a matrix to the multi-

pliers as shown in Fig. 2.8. The BRAM blocks storing the a matrix are close to the

input register, Ain, and close to one multiplier. This broadcast should take energy

proportional to the total area of all the PEs it is feeding.1 As II increases, the total

PE area scales as N
II

, until we can no longer fit N × II elements of the b matrix into

1[Lei80] shows the H-tree layout has linear layout area, which implies linear wirelength in the
area, which in turn implies linear energy.

32

Figure 2.8: Routing of broadcasting a[i][k] to all 24 multipliers, N = 24, II = 1

a single BRAM. Thus the total energy for broadcasting a[i][k] is:

Ewire.share.A ∝
N

II
×N2 =

N3

II
(2.4)

After N × II > BRAM18K, this scaling changes in interesting ways. At this point,

the total layout area for all the PEs becomes dictated by BRAMs not DSPs, and the

area does not change with II. If we must broadcast to all the BRAMs, this means the

broadcast energy does not shrink with II.

Ewire.share.A ∝ N2 ×N2 = N4 (2.5)

33

However, we really only need to broadcast to a few BRAMs within a PE, allowing

the broadcast energy to continue to shrink with increasing II. Current synthesis tools

do not exploit this opportunity.

Wire transferring private data. When the logical memory bank size N × II

is smaller than size of the physical BRAM18K bank (18432 bits, 576 floating-point

numbers), the wiring between the private c and b matrix memory banks and the PE

logic is constant, so the total energy for wiring also scales proportionally, independent

of II:

Ewire.priv.B,C ∝
N

II
×
(
N2 × II

)
= N3 (2.6)

When the logical memory bank size is larger than physical BRAM18K bank size,

the wiring between the private b and c memory banks and the PE logic also grows as

the square root of the memory capacity or
√
N × II. Thus, the total energy routing

memory is

Ewire.priv.B,C ∝ N

II
×
(
N2 × II

)
×
√
N × II

∝ N3.5II0.5 (2.7)

2.3.4 Leakage

During the computation, the FPGA will also leak energy proportional to the time

for the computation and the resources that leak during the computation. If we

put nothing else on the FPGA and use a fixed size FPGA that does not offer any

power gating for unused components, leakage increases with runtime and hence II

34

(PFPGA leak is the leakage power for the FPGA chip):

Eleak ∝ N2 × II × PFPGA leak (2.8)

However, if we use a design with perfect power gating of unused components, the

leakage should scale with the utilized logic. For the case where N×II < BRAM18K:

Eleak ∝
N

II
×N2 × II = N3 (2.9)

If we exploit the smaller resources of the II > 1 designs to use a smaller FPGA, we

can get some of the effects of Eq. 2.9. Similarly, if we exploit the smaller resource

utilization of the II > 1 to put additional logic onto the FPGA that fills the resources

unused by the matrix-multiply, the leakage attributable to the multiply should scale

closer to Eq. 2.9.

2.3.5 Total Energy

Putting all the energy components together and assuming perfect power gating

(Eq. 2.9), we have total energy as the follows:

Etotal = Ecompute + Ememory + Ewire + Eleak

=

N3
(
c1 + c2

II

)
,

if N × II ≤ BRAM18K

N3 (c3 + c4×N + c5× II0.5) ,

if N × II > BRAM18K

(2.10)

35

2.4 Results

For small N , when the design is not memory dominated, we can expect to see

decreasing energy until N × II = BRAM18K driven by broadcast wiring energy.

Beyond that, we expect to see energy increase with II due to memory and wiring

energy between BRAMs.

We mapped the HLS designs to an Virtix-7 XC7VX485T chip using Vivado

2015.1.5. We simulated each mapped design in Vivado with random a and b matricies.

We then used the Switching Activity Interchange format (SAIF) file generated from

post-implementation simulation to estimate the energy required by the mapped

designs. From the mapped designs, we used linear regression fit to determine the

constants c1–c5 in Eq. 2.10.

Fig. 2.9 shows how the energy components scale with II from the Vivado mapped

designs along with the total energy model from our fit model. We can see the mostly

flat DSP and logic energies that match the analytic description. We also see that the

interconnect energy and the overall energy drop with increasing to II = 16 where

N × II = BRAM18K. We see the interconnect energy grow after that as expected.

However, we also see that BRAM energy, rather than remaining flat, increases with

II after II = 16. Here, Vivado mapped designs are unnecessarily activating all of the

BRAMs, not just the BRAM that holds the data needed on each cycle. This makes

the total design energy unreasonably high for large II. It should be possible to avoid

activating the unused BRAMs as illustrated in [TBN07, KLD15]. Making the perfect

power gating assumption, we see that energy is minimized at II = 8. However, the

effect is small and the benefit over II = 1 is less than 3%. If we get less than perfect

power gating, this effect will easily be dominated by an increase in leakage energy

36

Figure 2.9: Energy Scaling with II for N = 64 Matrix Multiply

with II.

Fig. 2.10 shows how energy scales with N , including how this effects the optimal

II and our model fit. The II for the minimum energy point decreases with N since

larger N means the single BRAM capacity is reached at a lower II. Since all energy

components scale as N3 for the region where N × II ≤ BRAM18K, the energy

proportions remain the same as N grows.

Note that all the PEs are generating the same addresses for their local b and c

37

Figure 2.10: Scaling with N for Matrix Multiply

memories. Consequently, the design can use a single address generator for all the

BRAMs. However, for some values of N and II, Vivado HLS will not share the

address generators, resulting in much larger logic energy at those design points. Also,

as we pointed out earlier, without adding the p loop in Listing 1, the HLS tool fails

to share the registers properly.

38

2.5 Discussion for Baseline Kernel

2.5.1 Model of Energy Overhead

Before optimizing the code, there are inefficiency in sharing registers for baseline

kernel when II > 1. Energy overhead includes energy on MUXes and 1-to-II fan-out

and II-to-1 fan-in interconnect.

2.5.1.1 Energy Overhead on MUX

When pipeline II is not 1, each PE is shared and there are input MUXes to select the

correct input from different input registers in each cycle as shown in Fig 2.3. The

number of II-to-1 MUXes depends on the number of PEs N
II

, and each MUX switches

every cycle in N2 × II cycles. When II is small, it is cheap to use LUT resource to

implement the II-to-1 MUX. The power of II-to-1 MUX implemented using LUT is

proportional to the number of input. Thus the energy spent on MUXes is

Emux ∝
(
N

II
×N2 × II

)
× II = N3 × II (2.11)

As II increases, energy on MUXes increases, which leads to an increase in compu-

tation (logic part) energy.

2.5.1.2 Energy Overhead on Interconnect

When II increases, II input registers needs to be routed to the same PE through

II-to-1 MUX and II output registers needs to be routed through the same c memory

port. For example, as shown in Fig. 2.3, when II = N, there is only one b memory

39

port and it needs to be routed to different input registers Bin0 to Bin5 through

1-to-II fan-out wires. And the multiplier needs to select from one input registers

through II-to-1 MUX. Similarly, there are fan-in and fan-out wires associated with

the adder. As II increases, the number of registers (area) associated with one PE

increases as II. The average length of each wire2 scales as
√
II and there are N wires

as number of Bin, tmp,Cin and Cout registers remain the same. In every II cycles,

only one of II nets are valid and are switching. So each wire switches N2 times in

total N2 × II cycles. Thus, the total energy for wiring b[k][j], intermediate results

and c[i][j] through 1-to-II fan-out and II-to-1 fan-in interconnect is

Ewire ∝
(
N ×

√
II
)
×N2 = N3 ×

√
II (2.12)

2.5.2 Results

Fig. 2.11 shows the energy components scale with II from both measurement and

model that takes overhead into account for baseline kernel. We see the logic energy

constantly increases as II increases, which matches with the overhead from MUXes.

The interconnect energy also increases, which imply that the energy overhead in

fan-in and fan-out interconnect diminish the energy saving in transferring broadcast

data. In this way, II = 1 will always achieve the minimum energy consumption.

The optimization process showed in baseline kernel and optimized kernel is impor-

tant in designing customized accelerator in terms of energy saving. Understanding

the underlying architecture generated by HLS tool will help us understand the source

of inefficiency and improve the design by code rewriting.

2we assume the average wire length scales with
√
area

40

Figure 2.11: Energy Scaling with II for N = 48 Matrix Multiply Baseline Kernel

2.6 Conclusion and Future Work

Interconnect energy within our matrix-multiply kernel is minimized for an II that

is typically greater than one. With efficient power gating or alternate use of chip

resources, this can lead to minimum total energy at a point other than the fully

pipelined, II = 1 point. Nonetheless, the effect is small and the fully pipelined design

often uses the least energy in practice, both due to leakage, inefficient coding style

and other discrete and non-ideal scaling effects.

41

The energy modeling framework illustrated here should be adaptable to other

kernels. However, there is good reason to believe that kernels will differ in how they

scale in key areas. We expect interconnect energy to scale differently for other tasks

or even implementations of the same task. For example, using the systolic-array

implementation of matrix multiply [JCP05], one may see different scaling. Our

matrix-multiply kernel had near perfect sharing of logic as II increased, which will not

be the case for less regular tasks. Consequently, it will be useful to characterize how

these components scale for other tasks and develop a suitably parameterized energy

model that can be adapted to various tasks characteristics. Ultimately, we hope

model generation can be automated and provide high-level guidance for designers.

As illustrated here, these models may also help to identify inefficiencies in current

mapping tools that should be addressed to achieve energy efficient designs.

42

CHAPTER 3

Latte: Locality Aware Transformation for

High-Level Synthesis

In this chapter we classify the timing degradation problems using four common col-

lective communication and computation patterns in chip-level HLS-based accelerator

design: scatter, gather, broadcast and reduce. These widely used patterns scale

poorly in one-to-all or all-to-one data movements between off-chip communication

interface and on-chip storage, or inside the computation logic. Therefore, we propose

the Latte microarchitecture featuring pipelined transfer controllers (PTC) along data

paths in these patterns. Furthermore, we implement an automated framework to

apply our Latte implementation in HLS with minimal user efforts. Our experiments

show that Latte-optimized designs greatly improve the timing of baseline HLS designs

by 1.50x with only 3.2% LUT overhead on average, and 2.66x with 2.7% overhead at

maximum.

3.1 Motivation and Challenges

In this section we use a common practice accelerator design template shown in Fig. 3.1

to illustrate the low operating frequency in scaled-out designs generated by HLS tools.

The app defines an accelerator that has input buffer local in and output buffer

43

local out. In each iteration, it reads in BUF IN SIZE data (line 13) from off-chip to

on-chip buffers, processes in NumPE kernels (line 14, 26), and then writes to off-chip

from on-chip buffers (line 15). Here, double buffer optimization (A/B buffers) is

applied to overlap off-chip communication and computation. Loop unroll (lines 23-26)

and local buffer partitioning (lines 6-9) are applied to enable PE parallel processing.

In the remainder of the section, we summarize the design patterns from the

corresponding microarchitecture in Fig. 3.2(a) and analyze the root cause of the

critical path.

One-to-all scatter. In Fig. 3.2(a), buffer load function is executed to read in

data from DRAM using AXI protocol. As shown in Fig. 3.3, a common way to do

this in HLS is either using memcpy (line 2) or in a fully pipelined loop (lines 3-6) to

enable burst read. We observe that when we increase NumPE, the HLS report gives

a constant estimated clock period for buffer load, which is not the case in real

layout. First, local in is partitioned for parallel PE processing. Each partitioned

bank (BRAM or FF) is routed to close to the corresponding PE logic, which results

in scattered distribution of local buffers. We show the layout of a scatter pattern in a

real application in Fig. 3.4(a). The yellow area highlights on-chip input buffers which

span the whole chip. The white arrows show the wires connecting AXI read data

port (with high fan-out) to buffers. Since HLS optimistically estimates the function

delay without considering wire delay and schedule data from the AXI read port to

one BRAM bank every clock cycle, the highlight wire is supposed to switch every

clock cycle, and this is one cause of the critical path.

All-to-one gather. Fig. 3.2(a) shows the buffer store module connecting par-

titioned buffer banks and the AXI write port. In order to select the data from a

44

1 #define BUF_IN_PER_PE BUF_IN_SIZE/NumPE

2 #define BUF_OUT_PER_PE BUF_OUT_SIZE/NumPE

3 void app(int data_size,

4 int *global_in, int *global_out) {

5 // local buffer

6 int local_in_A[NumPE][BUF_IN_PER_PE];

7 int local_in_B[NumPE][BUF_IN_PER_PE];

8 int local_out_A[NumPE][BUF_OUT_PER_PE],

9 int local_out_B[NumPE][BUF_OUT_PER_PE];

10 for (int i = 0; i < data_size/BUF_IN_SIZE+1; i++) {

11 // double buffer

12 if (i % 2 == 0) {

13 buffer_load(local_in_A, global_in+i*BUF_IN_SIZE);

14 buffer_compute(local_in_B, local_out_B);

15 buffer_store(global_out+i*BUF_OUT_SIZE, local_out_A);

16 }

17 else {

18 buffer_load(local_in_B, global_in+i*BUF_IN_SIZE);

19 buffer_compute(local_in_A, local_out_A);

20 buffer_store(global_out+i*BUF_OUT_SIZE, local_out_B);

21 } } }

22 void buffer_compute(int** local_in, int** local_out) {

23 for (int i=0; i<NumPE; i++) {

24 #pragma HLS unroll

25 // kernel replication

26 PE_kernel(local_in[i], local_out[i]);}

27 }

Figure 3.1: HLS accelerator design template.

particular bank in one cycle, A NumPE-to-1 multiplexer (MUX) is generated. We

highlight buffer store in violet and MUX logic in yellow in an accelerator layout

shown in Fig. 3.4(b). Similarly, long wires from partitioned storage banks to the AXI

port through distributed MUX are the cause of long interconnect delay.

One-to-all broadcast. As distinct PEs span a large area, they incur long wires

45

PE PE PE PEPE PEPE

buffer_load

buffer_store

AXI

MUX

Scatter

Gather

n_match[0..NumPE] from PEs

final_match
Reduce

n_match[0..NumPE] from PEs

final_match
Reduce

local_key[0][KEY_SIZE]

to local_key[1..NumPE][...]
or to PEs directly

Broadcast
local_key[0][KEY_SIZE]

to local_key[1..NumPE][...]
or to PEs directly

Broadcast

(a) scatter and gather

(b) broadcast

(c) reduce

local_out [NumPE][...]

local_in [NumPE][...]

Figure 3.2: Accelerator microarchitecture.

to broadcast data to computation logic directly (bc in compute), e.g., matrix A is

broadcast to multiplier-accumulators in matrix-multiplier [Zho16]) or to local copies

of shared data within each PE (bc by copy), e.g., Advanced Encryption Standard

(AES) [DR13] broadcasts a shared key to all processing elements that perform

encryption tasks independently.

All-to-one reduce. Reduce is a common operation that returns a single value by

combining an array of input. One example is the string matching application KMP to

count the number of a certain word found in a string, where different string matching

engines need to accumulate their results to get the final count.

We show architecture of broadcast and reduce in Fig. 3.2(b)(c) and baseline code

in Fig. 3.5. Layout of broadcast wires are similar to those in scatter and reduce as in

gather patterns.

The four patterns are common and appear in most accelerator designs. As shown

in Table 3.1, we have implemented several accelerators from a variety of domains of

applications and reported location of the critical path in the baseline designs. Except

46

1 void buffer_load(int local_in[NumPE][], int* global_in) {

2 // memcpy(local_in, global_in, BUF_IN_SIZE);// burst read

3 for(int i = 0; i < NumPE; i++)

4 for(int j = 0; j < BUF_IN_PER_PE; j++) { // for each PE

5 #pragma HLS pipeline II = 1

6 local_in[i][j] = global_in[i*BUF_IN_PER_PE + j];}

7 }

8 void buffer_store(int* global_out, int local_out[NumPE][]) {

9 memcpy(global_out, local_out, BUF_OUT_SIZE);

10 // for loop (similar to buffer_load, not shown)

11 }

Figure 3.3: HLS baseline buffer load and store.

(a) Scatter pattern (b) Gather pattern

Figure 3.4: Layout of accelerator architecture.

NW and VITERBI, where critical paths lie in the computation PEs, all the other

designs have critical paths that result from the four patterns.

47

1 // broadcast_in_compute omit here due to space limit

2 // broadcast_by_copy defined

3 void bc_by_copy(int local_key[NumPE][], int* global_key) {

4 memcpy(local_key[0], global_key, KEY_SIZE);// to 1st copy

5 for(int j = 0; j < KEY_SIZE; j++){

6 #pragma HLS pipeline II = 1

7 for(int i = 1; i < NumPE; i++){

8 #pragma HLS unroll

9 // 1st copy to the rest

10 local_key[i][j] = local_key[0][j];}}

11 }

12 // each element in int* n_match is from a PE

13 void reduce(int &final_match, int n_match[NumPE]) {

14 for(int i = 0; i < NumPE; i++){

15 #pragma HLS pipeline II = 1

16 final_match += n_match[i];}

17 }// other reduction operations are similar

Figure 3.5: HLS baseline broadcast and reduce.

Table 3.1: Benchmarks and Achilles’s heel patterns in baseline designs.

Benchmark Domain Scatter Gather Broadcast Reduce

AES Encryption X X X
FFT Signal X X
GEMM Algebra X X X
KMP String X X X
NW Bioinfo. X X
SPMV Algebra X X X
STENCIL Image X X X
VITERBI DP X X

Checkmark X represents the design has the pattern.
A star represents that a critical path lies in the pattern.
For broadcast, GEMM uses bc in compute while others use
bc by copy.

48

3.2 Latte Microarchitecture

In order to reduce the wire delay in the critical paths in the patterns while keeping

the computation throughput, i.e., not changing NumPE, we introduce the pipelined

transfer controller (PTC), the main component of the Latte microarchitecture in the

data path.

3.2.1 Pipelined Transfer Controller (PTC)

0 1 ... gs-1

PTC#0

... 2gs-1

PTC#1

gs+1gs ... NumPE-1

PTC#GN-1

...
NumPE-

gs

...

...
PE PE ... PEPE PE ... PE

FIFO_IN FIFO_OUT

local_in
[GN][GS][...]

from AXI

to PEs to PEs

tmpfifo #i

PTC #i

local_in[#i][GS][BUF_IN_PER_PE]

cnt > C

cnt <= C

tmpfifo #i

PTC #i

local_in[#i][GS][BUF_IN_PER_PE]

cnt > C

cnt <= C

(a) PTC chain in scatter

(b) intermediate ptc_in #0..GN-2 (c) boundary ptc_in #GN-1

tmp

PTC #GN-1

local_in[#i][GS][BUF_IN_PER_PE]

tmp

PTC #GN-1

local_in[#i][GS][BUF_IN_PER_PE]

tmp

PTC #GN-1

local_in[#i][GS][BUF_IN_PER_PE]

AXI to PTC #i+1

fifo #i fifo #i+1

PTC put

Figure 3.6: Microarchitecture of PTC in scatter.

Fig. 3.6(a) shows the microarchitecture of PTC chains in a scatter pattern. PTCs

are chained in a linear fashion through FIFOs, and each PTC connects to a local

set of buffers in PEs to constrain the wire delay. We denote the local set size as

group size GS and number of sets as group number GN. The corresponding HLS

implementation is also presented in Fig 3.7. To access local in from different sets in

49

parallel, we first redefine it as local in[GN][GS][BUF IN PER SIZE](line 2). PTCs

are chained using FIFOs (hls::stream), and a dataflow pipeline (line 5) is applied

to enable function pipeline in the PTC modules defined below (lines 7-10). There are

three types of PTCs: ptc put, intermediate and boundary ptc in. In ptc put (lines

13-17), it reads in data from AXI in a fully pipelined loop and writes to the first

FIFO. Intermediate ptc in reads in data from the previous PTC through FIFO. It

first writes to local set of PE buffers and then writes the rest to the next FIFO (lines

18-33), as shown in Fig 3.6(b). Similarly, Fig 3.6(c) shows boundary ptc in, where it

reads data from the last FIFO and writes all the data to a local set of PE buffers.

In addition, we show the microarchitecture of the PTC chain in gather pattern in

Fig. 3.8(a). Similarly, there are three types of PTC: boundary ptc out (Fig. 3.8(b)),

intermediate ptc out (Fig. 3.8(c)) and ptc get. The modules are similar to those in

scatter with a difference in the opposite data transfer direction.

The microarchitectures of PTC broadcast and reduce patterns are similar to

those for scatter and gather, which we leave out due to the space limitation. PTC

is somewhat similar to the idea of multi-cycle communication in the MCAS HLS

system [CFH04].

We finally show the microarchitecture of PTC in broadcast and reduce pattern

in Fig. 3.9(a), and (b), respectively. PTC in broadcast is similar to that of scatter.

On the other hand, PTC in broadcast forwards data that read from the previous

FIFO to both FIFO in the next and also local set of buffers (bc by copy) or PEs

(bc in compute) directly. PTC in reduce is similar to that of gather. The difference is

that PTC in reduce has a reduction operation within each PTC to do local reduction

of result from the previous FIFO and local set of buffers.

50

1 #include <hls_stream.h>

2 int local_in[GN][GS][BUF_IN_PER_PE]; // redef.

3 void PTC_load(

4 int local_in[GN][GS][], int* global_in) {

5 #pragma HLS dataflow

6 hls::stream<int> fifo[GN];// FIFOs, in Fig. 7a

7 ptc_put(global_in, fifo[0]);

8 for(int i = 0; i < GN-2; i++){

9 ptc_in(fifo[i], fifo[i+1], local_in[i], GN-1-i);}

10 ptc_in(fifo[GN-1], local_in[GN-1]);

11 }

12 void ptc_put(int* global_in, stream<int> &fifo){

13 for (int i=0; i<NumPE; i++)

14 for(int j = 0; j < BUF_IN_PER_PE; j++){

15 #pragma HLS pipeline

16 fifo << global_buf[i*BUF_IN_PER_PE+j];}

17 }

18 void ptc_in(// #0..GN-2 ptc_in, in Fig. 7b

19 stream<int>&fifo_in, stream<int> &fifo_out,

20 int local_set[GS][BUF_IN_PER_PE], int todo){

21 int i, j, k; int tmp;

22 for(i= 0; i < GS; i++){ // to local first

23 for(j = 0; j < BUF_IN_PER_PE; j++){

24 tmp = fifo_in.read();

25 local_set[i][j] = tmp;

26 } }

27 for(k=0; k < todo; k++) // to next ptc

28 for(i= 0; i < GS; i++){

29 for(j = 0; j < BUF_IN_PER_PE; j++){

30 tmp = fifo_in.read();

31 fifo_out.write(tmp);

32 } }

33 }

Figure 3.7: Code snippet of HLS implementation for PTC in scatter.

51

local_out[0][GS][BUF_OUT_PER_PE]local_out[0][GS][BUF_OUT_PER_PE]local_out[0][GS][BUF_OUT_PER_PE] local_out[#i][GS][BUF_OUT_PER_PE]local_out[#i][GS][BUF_OUT_PER_PE]

0 1 ... gs-1 ... 2gs-1gs+1gs ... NumPE-1...
NumPE-

gs...

(a) PTC chain in gather

PE PE ... PEPE PE ... PE from PEsPE PE ... PE from PEs from PEs

MUXMUXMUX
to AXI

PTC#0 PTC#1 PTC#GN-1...FIFO_IN FIFO_OUT
MUXMUXMUX MUXMUXMUX

MUXMUX MUXMUX

cnt <= C

cnt > C

local_out
[GN][GS][..]

PTC get

(b) boundary ptc_out #0 (c) intermediate ptc_out #1..GN-1

tmp

PTC #0

tmp

PTC #i to PTC #i+1
fifo #0 fifo #i fifo #i-1

0 1 ... gs-1 ... 2gs-1gs+1gs ... NumPE-1...
NumPE-

gs...

(a) PTC chain in gather

PE PE ... PE from PEs from PEs

MUX
to AXI

PTC#0 PTC#1 PTC#GN-1...FIFO_IN FIFO_OUT
MUX MUX

MUX MUX

cnt <= C

cnt > C

local_out
[GN][GS][..]

PTC get

(b) boundary ptc_out #0 (c) intermediate ptc_out #1..GN-1

tmp

PTC #0

tmp

PTC #i to PTC #i+1
fifo #0 fifo #i fifo #i-1

Figure 3.8: Microarchitecture of PTC in gather.

It is possible to manually implement the Latte microarchitecture in HLS. However,

the implementation expands over 260 lines of code (LOC), which is 10× more than

the baseline code shown in Fig. 3.3 and Fig. 3.5. To relieve the burden of manual

programming effort in implementing Latte, we provide an automation framework

that reduces the 260-LOC implementation to simply a few directives.

PE PE PE PEPE PEPE

buffer_load

buffer_store

AXI

MUX

Scatter

Gather

n_match[0..NumPE] from PEs

final_match
Reduce

n_match[0..NumPE] from PEs

final_match
Reduce

local_key[0][KEY_SIZE]

to local_key[1..NumPE][...]
or to PEs directly

Broadcast
local_key[0][KEY_SIZE]

to local_key[1..NumPE][...]
or to PEs directly

Broadcast

(a) scatter and gather

(b) broadcast

(c) reduce

0 1 ... gs-1

PTC#0

... 2gs-1

PTC#1

gs+1gs ... NumPE-1

PTC#GN-1

...
NumPE-

gs

...

...
PE PE ... PEPE PE ... PE

FIFO_IN FIFO_OUT

local_in
[GN][GS][...]

from AXI

to PEs to PEs

local_out [NumPE][...]

local_in [NumPE][...]

tmpfifo #i

PTC #i

local_in[#i][GS][BUF_IN_PER_PE]

cnt > C

cnt <= C

tmpfifo #i

PTC #i

local_in[#i][GS][BUF_IN_PER_PE]

cnt > C

cnt <= C

(a) PTC chain in scatter

(b) intermediate ptc_in #0..GN-2 (c) boundary ptc_in #GN-1

tmp

PTC #GN-1

local_in[#i][GS][BUF_IN_PER_PE]

tmp

PTC #GN-1

local_in[#i][GS][BUF_IN_PER_PE]

tmp

PTC #GN-1

local_in[#i][GS][BUF_IN_PER_PE]

AXI to PTC #i+1

local_out[0][GS][BUF_OUT_PER_PE]local_out[0][GS][BUF_OUT_PER_PE]local_out[0][GS][BUF_OUT_PER_PE] local_out[#i][GS][BUF_OUT_PER_PE]local_out[#i][GS][BUF_OUT_PER_PE]

fifo #i fifo #i+1

PTC put

tmpfifo #i
PTC #i

local_key[#i][GS][KEY_SIZE]

tmpfifo #i
PTC #i

local_key[#i][GS][KEY_SIZE]

(a) ptc broadcast

to PTC #i+1

fifo #i+1

(b) ptc reduce

tmp

PTC #i

MUXMUX
cnt > C to PTC #i+1

fifo #i fifo #i-1

local_out[#i][GS][..]

++

to both

or to PEs directly
cnt <= C

0 1 ... gs-1 ... 2gs-1gs+1gs ... NumPE-1...
NumPE-

gs...

(a) PTC chain in gather

PE PE ... PEPE PE ... PE from PEsPE PE ... PE from PEs from PEs

MUXMUXMUX
to AXI

PTC#0 PTC#1 PTC#GN-1...FIFO_IN FIFO_OUT
MUXMUXMUX MUXMUXMUX

MUXMUX MUXMUX

cnt <= C

cnt > C

local_out
[GN][GS][..]

PTC get

(b) boundary ptc_out #0 (c) intermediate ptc_out #1..GN-1

tmp

PTC #0

tmp

PTC #i to PTC #i+1
fifo #0 fifo #i fifo #i-1

0 1 ... gs-1 ... 2gs-1gs+1gs ... NumPE-1...
NumPE-

gs...

(a) PTC chain in gather

PE PE ... PE from PEs from PEs

MUX
to AXI

PTC#0 PTC#1 PTC#GN-1...FIFO_IN FIFO_OUT
MUX MUX

MUX MUX

cnt <= C

cnt > C

local_out
[GN][GS][..]

PTC get

(b) boundary ptc_out #0 (c) intermediate ptc_out #1..GN-1

tmp

PTC #0

tmp

PTC #i to PTC #i+1
fifo #0 fifo #i fifo #i-1

Figure 3.9: Microarchitecture of PTC in broadcast and reduce.

52

3.2.2 Automation Framework

We implement a semiautomatic framework to make use of Latte by having a user-

written HLS kernel with simple Latte pragmas. The Latte pragma indicates the

on-chip buffer with the pattern to be optimized. For example, Fig. 3.10 presents an

example of using a Latte pragma to enable scatter pattern with PTCs for the on-chip

buffer from Fig. 3.1.

1 #pragma latte scatter var="local_in_B"

2 int local_in_B[NumPE][BUF_IN_PER_PE];

Figure 3.10: An example of Latte pragma.

After parsing the kernel code with pragmas, we perform code analysis by leveraging

the ROSE compiler infrastructure [rosrg] to identify the kernel structure, array types

and sizes. Subsequently, we apply predefined HLS function templates of Latte by

performing source-to-source code transformation. Corresponding optimization, such

as memory partitioning, memory coalesce [CWY17], and so forth, are applied as

well. We implement a distributed runtime system that launches multiple Amazon

EC2 [amac2] instances for exploring the PTC group size with Vivado HLS [Xila] in

parallel to determine the best design configuration. Note that since we only search

the group size that is a divisor of the PE number, the design space is small enough

to be fully explored.

3.3 Experimental Evaluation

We use Alpha Data ADM-PCIE-7V3 [Alpdf] as an evaluation FPGA board (Virtex-7

XC7VX690T) and Xilinx Vivado HLS, SDAccel 2017.2 [Xila] for synthesis. For each

53

benchmark listed in Table 3.1, we implement the baseline design and scale out N

times until fully utilizing the on-chip resource or failing to route. We then obtain

the baseline frequency as F and baseline area as A. Then for N of an application,

we choose GS as divisors of N. For each GS, Latte optimizations are applied on

all existing patterns, and frequency is reported as FGS, area as AGS. Thus, the

performance ratio of the Latte optimized design and baseline is expressed as FGS/F ,

performance-to-area (P2A) ratio as FGS/AGS

F/A
= FGS

F
/AGS

A
(in terms of latency, each

PTC introduces one extra cycle, which is negligible compared to the cycle number of

the original design). Latte enables design space exploration for both ratios as shown

in Fig. 3.11 for GEMM. As can be seen, GEMM achieves the optimal performance when GS

is four, which has 227 MHz operating frequency with 35% LUT overhead. In addition,

P2A optimal design is identified when GS is 16, achieving 207 MHz with only 8%

area overhead. On the other hand, we can observe the performance degradation

when GS decreases from four to one. The reason is that the critical path has been

moved from data transfer to PEs when GS is four, and further reducing the data

transfer wire delay will not improve the performance. This illustrates the motivation

for selecting a suitable GS instead of always setting GS to one. Smaller GS means

more PTS, and it only introduces more area overhead. Thus, neighbor-to-neighbor

PTCs design is not necessarily the Perf. optimal nor Perf./Area optimal.

In addition, we report the resource utilization and operating frequency for baseline

designs under N PEs (ori.) and the corresponding Latte designs with optimal P2A

GS (latte) in Table 3.2. The Latte optimized design improves timing over baseline

HLS design by 1.50× with 3.2% LUT, 5.1% FF overhead on average. For FFT, it even

achieves 2.66× with only 2.7% LUT and 5.1% FF overhead. Even for designs such as

NW and VITERBI where critical paths in baseline lie in PEs, the Latte optimized design

54

0
0.4
0.8
1.2
1.6

2

1 2 4 8 16 32 64 128 256 512

Perf

Perf/Area

GS

ra
ti

o
GS=4, 1.72x Perf,
1.27x Perf/Area,

1.35x Area

GS= 16, 1.58x Perf,
1.46x Perf/Area,

1.08x Area

Figure 3.11: Performance and P2A ratio in GEMM with 512 PEs.

is still beneficial. A possible reason is that the Latte design helps the placement of

PEs, which helps routing within PEs. In summary, the average frequency has been

improved from 120 MHz to 181 MHz.

Finally, the overall frequency to area in Latte designs are shown in Fig. 3.12. It

achieves 200 MHz on 61% chip area, and 174 MHz on 90%, which helps greatly in

frequency degradation. We also show the layout of PTCs in gather pattern in FFT

with 64 PEs and 16 PTCs in Fig 3.13, where PTCs are connected in linear fashion

and scale much better.

3.4 Conclusion

In this chapter we summarize four common collective communication and computation

patterns (i.e., scatter, gather, broadcast and reduce) in HLS that generate long

interconnects in scaled-out design and result in degraded frequency. To achieve

a high frequency, we propose the Latte microarchitecture which features pipeline

55

Table 3.2: Baseline design vs Latte optimized design.

Bench. type N / GS LUT FF DSP BRAM Freq.

AES ori. 320 / 50.4% 17.3% 0.1% 76.3% 127
latte / 32 1.017 1.009 1 1 165, 1.30x

FFT ori. 64 / 50.5% 23.2% 88.9% 78.5% 57
latte / 4 1.027 1.056 1 1 152, 2.66x

GEMM ori. 512 / 37.8% 29.6% 71.1% 69.7% 131
latte / 16 1.044 0.962 1 1 207, 1.58x

KMP ori. 96 / 5.0% 3.0% 0.2% 52.3% 126
latte / 24 1.045 1.174 1 1 195, 1.54x

NW ori. 160 / 65.1% 50.7% 0.0% 78.2% 174
latte / 80 0.995 0.997 1 1 177, 1.02x

SPMV ori. 48 / 19.1% 11.9% 18.9% 93.2% 160
latte / 6 1.029 1.037 1 1 192, 1.20x

STENCIL ori. 64 / 12.9% 10.9% 48.1% 87.1% 141
latte / 16 1.094 1.139 1 1 188, 1.33x

VITERBI ori. 192 / 72.0% 25.7% 10.8% 39.3% 155
latte / 12 1.008 1.031 1 1 168, 1.08x

Average ori. / NA NA NA NA 120
latte / 1.032 1.051 1 1 181, 1.50x

fr
eq

u
en

cy
 (

M
H

z)

y = -86.289x + 252.49

0

50

100

150

200

250

300

0% 20% 40% 60% 80% 100% 120%

Latte

(61%, 200MHz)
(90%, 174MHz)

(88%,152MHz)A’:

res. util.
120%

Figure 3.12: Freq. degradation much less severe in Latte optimized design.

transfer controllers in the four patterns to reduce wire delay. We also implement an

automated framework to realize HLS-based Latte implementation with a only few

56

ptc_1
ptc_2

ptc_3
ptc_0

ptc_4

ptc_5ptc_6

ptc_7ptc_8

ptc_9

ptc_10

ptc_11

ptc_12

ptc_13

ptc_14 ptc_15

ptc_get

ptc_1
ptc_2

ptc_3
ptc_0

ptc_4

ptc_5ptc_6

ptc_7ptc_8

ptc_9

ptc_10

ptc_11

ptc_12

ptc_13

ptc_14 ptc_15

ptc_get

Figure 3.13: Layout for PTC chains in FFT, N=64, GS=4, GN=16.

lines of user-provided derivatives. Experiments show that the Latte optimized design

improves frequency from 120 MHz to 181 MHz with 3.2% LUT, 5.1% FF overhead

on average.

57

CHAPTER 4

Node-Level Performance and Cost Modeling:

Computation Resources

In this chapter we first give a brief introduction to the driving applications discussed

in subsequent chapters—that is, the whole genome sequencing pipeline explored in

Section 4.1. Then, in Section 4.2 we analyze and reason the cost inefficiency of

commonly adopted CPU-FPGA system integration considering two scenarios that

either CPU or FPGA is the performance bottleneck. In Section 4.3 we combine the

analysis result and generalize the performance and cost model to further conclude

optimization opportunities that motivate the proposed framework in Chapter 6.

4.1 Whole Genome Sequencing Pipeline

In this chapter and the following chapters we use the whole genome sequencing

pipeline as our driving application. Next-generation sequencing (NGS) technologies

[BT13] have revolutionized genome research. Currently, according to the Broad

Institute, an entire human genome with 30x coverage can be sequenced within a day,

and the Broad Institute generates more than 43000 30x whole human genomes every

year [Insa]. The advancement of high-throughput sequencing techniques establishes

the need for faster subsequent genome alignment and analysis tools. We introduce

58

the main tools in GATK best practices [ACH13, Insb].

Alignment (BWA-MEM). BWA-MEM (Burrows-Wheeler Aligner) is the pre-

processing step of the genome processing pipeline. It takes raw sequence data in

FASTQ [CFG09] format, maps the genome data to the reference human genome

and outputs analysis-ready binary alignment/map formats (BAM files [BM13]). In

BWA-MEM, about 30%-50% of computation time is spent on a dynamic programming

algorithm kernel, the Smith-Waterman (S-W) algorithm. The Smith-Waterman algo-

rithm has quadratic time complex, and it is suitable for FPGA acceleration [Com18].

Performing base-quality score recalibration (GATK). Raw reads from DNA

sequencers are error-prone, and each read has a possibility of misinterpreted nucleotide

bases. For each base, a Phred quality score is reported, and it characterizes the

confidence of the base accuracy [Ins17a]. Quality scores affect the downstream of

analyses such as the genome-wide association study of cancer or precision medicine.

The base quality score recalibration (BQSR) aims to detect and correct patterns of

cosystematic biases by generating a model using the confidence scores reported from

the DNA sequencer.

Performing data compression (Samtools). Samtools provides compression tools

to convert the sequence alignment/map (SAM) to BAM files [BM13, LHW09]. In

compression, the Deflate algorithm, which is the core of many lossless compression

standards, is a good candidate for FPGA acceleration [QDF18].

Calling variants (GATK). After the data is properly processed as an analysis-

ready BAM file, we use HaplotypeCaller (HTC) [Ins19] to find germline variants for

pair-end sequence reads and Mutect2 [CLC13] for tumor sequence reads to identify

the variation relative to the reference genome. Both applications include a high-

59

complexity algorithm called Pair Hidden Markov Models (PairHMM) [DEK98] that

is suitable for the FPGA accelerator [Com18]. PairHMM has high time-complexity

and heavy floating-point operations. In the current GATK implementation where

Intel AVX intrinsics are used in the kernel, PairHMM typically dominates 39% and

89% of overall execution time in HTC and Mutect2 respectively .

4.2 Analysis for Straightforward CPU-FPGA Integration

Starting from Google’s MapReduce [DG08b] in 2004, most modern widely used big

data analytic systems such as Apache Hadoop [Whi12b] and Spark [ZCD12b] embrace

dataflow and parallel pattern programming models. For example, programmers can

use a parallel pattern map to specify that all tasks are completely independent and can

be executed in parallel using multiple CPU cores. We first analyze the performance

and cost for an application that consists of only map tasks on a single-node multiple-

core CPU platform, where the execution timeline is shown in Figure 4.1a. For

illustration purpose, we use the same input size and execution time of each task. We

consider the following factors in our analysis:

• M is the total number of tasks.

• P is the total number of CPU cores in a single node.

• t is the time of each task on a CPU core.

• r is the proportion of kernel that can be offloaded to a FPGA accelerator.

• S is the FPGA accelerator speedup compared to a single-core CPU. It includes

the CPU-to-FPGA communication overhead.

60

1-r r
1
2

..…

p
i-1 i i+1

..…

..…

..…

..…

..…

Figure 4.1a: CPU-Only System

1
2…

p
batch	i-1

..…
..…

..…

1-r r/s

batch	i batch	i+1

Figure 4.1b: CPU-FPGA System Case A, CPU is bottleneck

• c is the cost per unit time of a CPU core.

• CR is the cost ratio of FPGA compared to a single-core CPU. For example, on

AWS f1.2xlarge instance, CR = ($1.65/$0.4*8-8) = 25.

• P̃ is the Matching Core Number. When P = P̃ , CPU and FPGA have the

same throughput.

As shown in Figure 4.1a, in each batch, P CPU cores are executed in parallel. In

total, there are M
P

batches of tasks. The total runtime T0 and cost C0 is:

T0 =
M

P
× t,

C0 = T0 × P × c = M × t× c
(4.1)

61

1
2

…
…

p

batch	i-1

batch	i+1

gap

batch	i

P=6	is	
equivalent	
to	P=4

Figure 4.1c: CPU-FPGA System Case B, FPGA is bottleneck

Since the parallel programming model adopted by many modern big data ana-

lytic systems provides clear semantic information, it is an opportunity for system

developers to offload as many time-consuming computational tasks as possible to

FPGA accelerators to improve the performance. As a result, intuitive CPU-FPGA

runtime systems [HWY16] usually ask all CPU workers to send all their tasks to the

FPGA. Many of the systems include an accelerator task queue to deal with tasks

requested from different workers. In this scenario, workers have to stay idle before

their request can be fulfilled on the FPGA accelerator. In this subsection, we analyze

the performance and cost of such systems.

Depending on r, S, and P, there are two cases when the computation throughput

of CPU and FPGA are not balanced. Here we gradually increase P to illustrate these

two cases.

Case A, P<P̃ : FPGA is underutilized. Even if we can ask multiple CPU cores

to send tasks to an FPGA, the offloaded tasks still need to be fulfilled sequentially on

the FPGA. As shown in Figure 4.1b, cores 1 and 2 to core P offload tasks on FPGA

in a pipeline fashion. After core 1 finishes batch i, it starts the non-accelerated part

62

of batch i+1 on a new data partition.1 And when it is about to request accelerator

in batch i+1, all the tasks in the previous batch have already finished execution on

the FPGA. Therefore, its kernel acceleration request can be fulfilled without waiting.

Thus, core 1 has no idling cycles, as well as the other cores. In this case, for any CPU

core, it only needs to wait r
S
× t when the FPGA is working on a kernel part and

there are no other idling cycles. Runtime for each batch task is t× (1− r + r
S

). And

total runtime T1a is :

T1a =
M

P
× t× (1− r +

r

S
), (4.2)

For a platform with P CPU cores and one FPGA, total cost per unit time is

(P + CR)× c; total cost to run the application C1a is:

C1a = T1a × (P + CR)× c

= M × t× c× (1− r +
r

S
)× (1 +

CR

P
)

(4.3)

For FPGA, the utilization is not 100% so there are idling cycles between offloaded

tasks. Comparing C1a in Equation 4.3 to C0 in Equation 4.1, we can have Cost

Efficiency Index I = C1a

C0
= (1− r + r

S
)(1 + CR

P
).

When we gradually increase P to P̃ , the FPGA reaches 100% utilization. This

happens when total runtime of offloaded tasks from P̃ cores equals the runtime of a

1Here we plot the accelerated part at the end of the task, which simplifies the illustration. In
real applications, the accelerated kernel can be in anywhere in a task.

63

single batch task time, that is, P̃ × r
S
× t = (1− r + r

S
)× t. We call P̃ a Matching

Core Number, and it can be calculated as P̃ = (1−r)×S
r

+ 1.

Case B, P>P̃ : FPGA becomes a bottleneck and CPU has idling cycles.

When P is larger than P̃ , the FPGA is fully utilized and CPU cores have to wait

more cycles in addition to r
S
× t. As shown in Figure 4.1c, after core 1 finishes the non-

accelerated part of batch i, it sends requests to the accelerator task queue. Since the

offloaded task from core P in batch i-1 has not finished yet, core 1 needs to wait extra

gap cycles before its task can be executed on the FPGA. In this case, launching more

CPU cores than P̃ does not further improve the application performance. Application

runtime now equals the total runtime for FPGA to finish kernel execution from all M

tasks, as T1b = M × r×t
S

. Equivalently, the application runtime is equal to the total

runtime for CPU cores to finish M

P̃
batches of tasks, which is T1b = M

P̃
×(1−r+ r

S
)×t. As

P̃ = ((1−r)×S
r

+1), we can rewrite T1b = M

P̃
×(1−r+ r

S
)×t = M

P̃
×(1−r)(1+ r

(1−r)×S)×t =

M

P̃
× (1− r)(1 + 1

P̃−1
)× t = M

P̃−1
× (1− r)× t. Using basic algebra rules, we have

T1b = M × r

S
× t =

M

P̃ − 1
× (1− r)× t,

= M × t× r + (1− r)
S + P̃ − 1

=
M

P̃ − 1 + S
× t

(4.4)

Actually, T1b = M

P̃−1+S
× t is quite intuitive to understand, as there are in total M

tasks, each with time t, and in the system there is a fully utilized FPGA that works

as S CPU cores, and P̃ equivalent CPU cores. The minus 1 CPU core accounts for

the penalty of CPU time that is spent on waiting for the FPGA kernel to be finished.

As we have T1b, the total cost is:

64

C1b = T1b × (P + CR)× c = M × t× c× (
P + CR

P̃ − 1 + S
) (4.5)

Comparing C1b in Equation 4.5 to C0 in Equation 4.1, Cost Efficiency Index I =

C1b

C0
= P+CR

P̃−1+S
= r(P+CR)

S
.

4.3 Generic Model

We summarize the above two cases and derive a generic model for the Cost Efficiency

Index of a straightforward CPU-FPGA system compared to a CPU-only system:

I =

(1− r + r

S
)(1 + CR

P
) if P ≤ P̃ = (

(1− r)× S
r

+ 1)

P+CR

P̃−1+S
= r(P+CR)

S
if P > P̃ = (

(1− r)× S
r

+ 1)

(4.6)

Table 4.1: Analysis of Cost Efficiency Index I for HTC and Mutect2 on Amazon EC2
f1.2xlarge, S = 40, P = 8, CR = 25.

Application r S P̃ Case A or B I

HTC 39% 40 64 A (8 < 64) 2.56×
Mutect2 89% 40 6 B (8 > 6) 0.73×

As shown in Table 4.1, HTC and Mutect2 both use the PairHMM kernel. But the

kernel proportions are different. Typically, pairHMM kernel in HTC takes only 39%,

while taking 89% in Mutect2. We get these two numbers by profiling the portions of

PairHMM in all the datasets shown in Table 6.5. We implement a PairHMM kernel

on an FPGA board on the Amazon EC2 f1.2xlarge instance; it has 40× speedup

65

Table 4.2: Analysis of Cost Efficiency Index I for HTC and Mutect2 on Huawei Cloud
fp.1c, S = 43, P = 32, CR = 23.

Application r S P̃ Case A or B I

HTC 39% 43 68 A (32 < 68) 1.06×
Mutect2 89% 43 6 B (32 > 6) 1.14×

than a single CPU core. To match the computation throughput of CPU cores with

the PairHMM kernel in HTC, we need P̃ = (1−39%)
39%

× 40 + 1 = 63.6 cores, which is

much larger than the number of CPU cores (P = 8) on that AWS f1.2xlarge. In

this case, the FPGA board in HTC is severely underutilized. As shown in Table 4.1,

Cost Efficiency Index I in HTC using FPGA is about 2.56× than using pure CPUs.

On the other hand, for Mutect2, we only need six cores (P̃ = 6), which means that

equivalently there are only six working CPU cores, and two other cores are idling.

Similarly, Table 4.2 shows I on the Huawei Cloud fp.1c instance that has 32

CPUs and CR = $2.83/$1.64*32-32 = 23. For HTC on this platform, when there

are 32 CPU cores, FPGA utilization is better than that on the Amazon f1.2xlarge

instance. However, it is still not fully utilized and I is still larger than 1. For Mutect2,

Matching Core Number P̃ is 6, which leaves 26 CPU cores idling. Thus, I is higher

and now it is 1.14× larger than 1.

4.4 General Discussions

4.4.1 Cost Modeling Analysis

We apply the analytic model to two real-world platforms, e.g., Amazon AWS F1

where P is 8 and CR, cost ratio is 25, and Huawei Cloud fp.1c where P is 32 and

66

CR, FPGA cost ratio CR is 23. Figure 4.2 shows Cost Efficiency Index I versus

different accelerator kernel ratio r and speedup S. Depending on P and P̃ , there are

two regions: region A is when P < P̃ and FPGA has idling cycles; region B is when

P > P̃ and FPGA is fully utilized. Within the two regions, depending on whether I

is larger than 1 or not, we further divide the region A into regions A1 and A2 and

the region B into regions B1 and B2.

Figure 4.2: Cost Efficiency Index (I) vs. kernel ratio (r) and accelerator speedup (S)
when CR = 25 on AWS EC2 F1.

Region A1: Cost inefficiency in region A where FPGA has idling cycles

and P < P̃ . CPU cores are all allocated to the non-accelerated part of the program.

And maximum computation throughput of FPGA is faster than that of CPUs. In

other words, CPUs become the system bottleneck, and FPGA has idling cycles.

Depending on the kernel ratio r and speedup S, for example, when r is too small and

67

S is large, the FPGA can be idling most of the time, which wastes the extra CR

dollars per hour that users have paid. Idling of FPGA resource in this case is the

root cause of cost inefficiency.

Region A2: Cost efficiency in region A where FPGA has idling cycles and

P < P̃ . All CPU cores are allocated to work on the non-accelerated part of the

program. FPGA always waits for CPUs in this case. However, the cost benefit from

FPGA acceleration is larger than the waste on the idling cycle, and the overall cost

efficiency is still improved.

Region B1: Cost inefficiency in region B where FPGA is fully utilized

and P > P̃ . FPGA accelerator speedup S is smaller than CR in this region. In

other words, FPGA costs the same as CR CPU cores, but it does not bring as much

speedup as CR cores. This is the root cause of cost inefficiency.

Region B2: Cost efficiency in region B where FPGA is fully utilized and

P > P̃ . FPGA accelerator speedup S is larger than CR in this region. Both CPUs

and FPGAs are busy all the time. These facts explain why the CPU-FPGA platform

achieves a better cost efficiency than the CPU-only solution.

4.4.2 Insights and Optimization

For accelerator design, from Equation 4.6, we offer the following insights:

1. To achieve higher cost efficiency for the CPU-FPGA platform, speedup S should

be larger than CR. This can also be seen in Figure 4.2, when S < CR = 25, Cost

Efficiency Index I is always larger than 1.

2. To achieve a higher cost efficiency for the CPU-FPGA platform, ratio r should be

68

larger than 1− P
P+CR

. This can also be seen in Figure 4.2. When r < 0.758, Cost

Efficiency Index I is always larger than 1.

3. If an application falls into region A1, we should use more CPUs to improve the

performance instead of using FPGAs. This usually happens when the accelerated

kernel consumes a small fraction of the total application and FPGA kernel speed-up

is huge.

4.4.3 Different Cost Ratios (CR)

We show Cost Efficiency Index I on different kernel ratio (r) and accelerator speedup

(S) when CR are different in Figure 4.3 (CR = 20), 4.4 (CR = 15) and 4.5 (CR

= 10) respectively. When CR decreases, there are more regions that could achieve

Cost Efficiency Index I smaller than 1. For example, in GATK pipeline, the FPGA

accelerator developed by Falcon Computing Solutions [Com18] for Smith-Waterman

in BWA achieves speedup (S) as 16. For AWS and Huawei Cloud, using FPGA

accelerator can be more cost-efficient than CPU solutions if FPGA instances are

priced lower than current price such that CR is smaller than 16.

4.5 Conclusion

To sum it up, for straightforward CPU-FPGA integration, I depends on r, S, P, CR

and is not guaranteed to be smaller than 1, which means the out-of-pocket cost is

not optimized because either the CPU or FPGA is underutilized. This motivates

us to implement a more efficient CPU-FPGA integration framework to improve

the utilization of FPGA (Case A) or CPU (Case B) in order to reduce the overall

69

Figure 4.3: Cost Efficiency Index (I) vs. kernel ratio (r) and accelerator speedup (S)
when CR = 20.

application cost and achieve a higher cost efficiency than CPU solutions—that is, a

lower I that is smaller than 1 in Chapter 6.

70

Figure 4.4: Cost Efficiency Index (I) vs. kernel ratio (r) and accelerator speedup (S)
when CR = 15.

71

Figure 4.5: Cost Efficiency Index (I) vs. kernel ratio (r) and accelerator speedup (S)
when CR = 10.

72

CHAPTER 5

Node-Level Performance and Cost Modeling:

Storage Resources

5.1 Introduction

In conventional Hadoop MapReduce applications, I/O used to play a heavy role

in the overall system performance. More recently, a study from the Apache Spark

community—state-of-the-art in-memory cluster computing framework—reports that

I/O is no longer the bottleneck and has a marginal performance impact on applications

like SQL processing. However, we observe that simply replacing HDDs with SSDs

in a Spark cluster can have over 10x performance improvement for certain stages in

large-scale production-quality genome processing. Therefore, one key question arises:

How does I/O quantitatively impact the performance of today’s big data applications

developed using in-memory cluster computing frameworks like Apache Spark?

In this chapter we select an important yet complex application—the Spark-

based Genome Analysis ToolKit (GATK4)—to guide our modeling. We first use

different combinations of HDDs and SSDs to measure the I/O impact on GATK4

and change the CPU core number to discover the relation between computation

and I/O access. Combining with Spark underlying implementations, we further

73

analyze the inherent cause of the above observations and build our model based on

the analysis. Although building upon GATK4, our model maintains generality to

other applications. Experimental results show that we can achieve an performance

prediction error rate within 10% for typical Spark applications of both iterative and

shuffle-heavy algorithms. Finally, we further extend our model to a broader area -

that of optimal configuration selection in the public cloud. In Google Cloud, our

model enables us to save 38% to 57% cost for genome sequencing compared with

its recommended default configura- tions. Currently, more and more companies are

adopting cloud computing for specific workloads. Our proposed model can have a

huge impact on their choices, while also enabling them to significantly reduce their

costs.

5.2 Background

5.2.1 Apache Spark

Apache Spark [ZCD12a] is a widely used in-memory large-scale data processing

framework. Spark exposes a programming model to big data application developers

based on resilient distributed datasets (RDDs). The RDD abstraction provides a

series of transformations (e.g., map, filter) and actions (e.g., collect, count) that

enable lazy evaluation of data partitions over a cluster of nodes. By caching RDDs in

memory and thus reducing I/O accesses, Spark often achieves significant performance

improvement over the Hadoop MapReduce [Whi12a] framework.

A typical Spark application launches its driver program on a master node and

then distributes its tasks (data partitions) into a cluster of slave/worker nodes for

74

parallel processing. Each slave node will read its data partitions from a distributed

file system (e.g., HDFS [SKR10]) and perform parallel computations. In addition,

each slave node in Spark has its local storage directory (spark.local.dir) to store data,

including RDDs, that persist on disk specified by a user program, or intermediate

data [Spa17a, Spa17b] preserved by the Spark framework. In the following we will

interchangeably use the term Spark Local to refer to this local directory.

5.2.2 Genome Analysis ToolKit (GATK4)

Building a performance model for a complex distributed system like Spark is not trivial.

Therefore, we first analyze a realistic and complex Spark application—GATK4—and

use its analyzing result to guide our modeling.

GATK4 is a Spark-based production-quality genome analysis toolkit widely used

in computational genomics. It includes three major stages: 1) MarkDuplicate (MD),

which groups reads (small DNA fragments from the biochemical sequencing machine)

by alignment information and marking duplicate reads; 2) BaseRecalibrator (BR),

which builds a statistical model on how to update the quality scores of the aligned

reads; and 3) SaveAsNewAPIHadoopFile (SF), which updates the quality scores

and saves the analysis-ready reads into storage. In addition to the genome reads

in the BAM file [LHW09, NKS12], GATK4 also takes two other input files: 1) the

VCF file that contains all known genome variations, and 2) the reference genome file

to which all the genome reads are aligned. The output of GATK4 can be used to

conduct genome-wide association studies (GWAS, also known as population studies)

to discover unknown genome variations. The main data flow of GATK4 in the Spark

perspective is shown in Fig. 5.1.

75

filter: isPrimary?
Yes, followed with Map

RDD: nonPrimaryReads

RDD:
primaryReadsRDD: intialReads

No

ShuffleRead

newAPIHadoopFile union

RDD: primaryReads-
Transformed UnionRDD:

markedReads

groupByKey

ShuffleWrite

ShuffleWrite
local file

MarkDuplicate stage BaseRecalibrator stage

BAM input

Reference

VCF
broadcast

map treeAggregate

bqsrReportShared variable: Reference

Shared variable: VCF

RDD: finalRead BAM output

saveAsNewAPIHadoopFile

SaveAsNewAPIHadoopFile
stage

Figure 5.1: The Spark RDD flow of GATK4 pipeline.

5.2.3 Experiment Setup

Table 5.1 describes the system software and hardware configuration for each slave

node. Table 5.2 describes the default Spark and HDFS configuration in our cluster

setting unless otherwise specified. Although we use fixed Spark configurations here,

out proposed model can work for other configurations as well. We will revisit this in

Section 5.4.

Table 5.1: Software and hardware configuration

Linux kernel 2.6.32-642
System CPU 2×Intel Xeon CPU E5-2699 v3 = 36 cores

RAM size 128 GB
Network 10Gb/s
Model Western Digital 4000FYYZ-01UL1B2

HDD RPM 7200
Capacity 4 TB

max sectors kb 512 KB
Model SAMSUNG MZ7LM240HCGR-0E003

SSD Capacity 240 GB
max sectors kb 512 KB

As an example, we process a single whole human genome with 30x coverage

sampled from a patient with breast cancer (HCC1954 [GKV98]). This genome

contains 500 million read pairs, each read with around 101 nucleotides. This input

genome in a compressed BAM file is around 122GB, and the output analysis-ready

76

Table 5.2: Spark and HDFS configuration

version spark-1.6.2
Spark SPARK WORKER CORES 36

SPARK WORKER MEMORY 90 GB
version hadoop-2.6.0

HDFS dfs.blocksize 128 MB
dfs.replication 2

JAVA version jdk 1.8.0 73

genome file (also in compressed BAM format) is around 166GB. To measure the

impact of I/O on the GATK4 performance, we test its performance under four

different HDD/SSD configurations for each node, as summarized below.

Table 5.3: Hybrid configurations of HDDs and SSDs

Configuration 1 2 3 4
HDFS 1 SSD 1 HDD 1 SSD 1 HDD

Local (spark.local.dir) 1 SSD 1 SSD 1 HDD 1 HDD

We leave the description of five other typical Spark applications in Section 5.5.

0
20
40
60
80
100
120
140

MD BR SF

SSD	HDFS,		SSD	Local

HDD	HDFS,	SSD	Local

SSD	HDFS,	HDD	Local

HDD	HDFS,	HDD	Local

1x
1.3x

3.7x3.9x

1x
1.9x

9.5x
11x

1x 1x
2x 2x

ru
nt
im

e	
(m

in
s)

stage
Figure 5.2: Runtime for different stages in GATK4 using 500M read

pairs input.

77

0

20

40

60

80

100

120

140

MD BR SF

P=12 P=24 P=36

stage
0

10

20

30

40

50

60

70

MD BR SF

P=12 P=24 P=36

stage

SSD HDFS , SSD Local HDD HDFS , HDD Local

ru
n

ti
m

e
(m

in
s)

Figure 5.3: Runtime for 2HDD and 2SSD cases when the number of CPU cores per
node P = 12, 24, 36.

5.3 GATK4 Performance Analysis

Using the Spark-based GATK4 as a motivational example, we first measure the

impact of I/O on its performance under different execution stages with different

RDD operations, and different numbers of CPU cores. After that, we summarize the

observations that motivate us to build an I/O-aware performance analytical model

for Spark applications. A four-node small cluster (one for master) is used in this

example.

5.3.1 GATK4 Performance Profile

We break down the I/O impact into different GATK4 stages using 500M read pairs

input and 36 Spark executor cores. As shown in Fig. 5.2, we find that the performance

impact varies considerably in different stages with different RDD operations. The IO

data sizes for different stages are shown in Table 5.4.

78

Table 5.4: I/O data size (GB) in different GATK4 stages

I/O (GB) HDFS read Shuffle write Shuffle read HDFS write
MD 122 334 0 0
BR 122 0 334 0
SF 122 0 334 166

1. Changing the HDFS folder from HDD to SSD has no performance gain for the MD

stage (though MD has the same I/O data access size as the BR stage according

to Table 5.4), up to a 30% and 90% performance gain for the BR and SF stages,

respectively.

2. The sensitiveness to Spark Local bandwidth varies in the different stages. It is

interesting that the major time-consuming stage changes from BR to SF and BR

when switching Spark Local from HDD to SSD.

3. Spark Local is much more IO-sensitive than HDFS.

Finally, we evaluate the I/O impact on different stages under different numbers of

CPU cores, using 500M read pairs input. As shown in Fig. 5.3, when the number of

cores (P) increases from 12 to 36, the runtime for the BR and SF stages decreases

in the 2SSD configuration but stays the same in the 2HDD configuration. For the

MD stage, the runtime almost stays the same when P changes in the 2SSD as well

as 2HDD configurations. We observe that when there are more cores, SSDs might

achieve a larger performance gain than HDDs.

As observed above, I/O still plays a heavy role in the GATK4 performance. As

we will demonstrate in Section 5.5.2, even in typical Spark iterative algorithms where

intermediate data is cached in memory, I/O can play an important role with a small

iteration number (less than 100). The performance gap between HDD and SSD can

be as large as 2x.

79

sort by key&
spill to disk spark.local.dir

(b,14),(a,10),
(f,23),(c,55),(d,72)

(b,41),(a,12),
(f,32),(c,65),(z,39)

(a,10),(b,14),
(c,55),(d,72),(f,23)

(a,12),(b,41),
(c,65),(f,32),(z,39)

(a,10),
(a,12)

(b,14),
(b,41)

(c,55),(c,65),
(d,72)

(f,23),(f,32),
(z,39)

mapPartition

Shuffle Write

Shuffle Read

(a,[10,12]) (b,[14,41])
(c,[55,65]),

(d,72)
(f,[23,32]),

(z,39)

mapper

reducer

Figure 5.4: An illustration of the groupByKey operation.

0

50

100

150

0
100
200
300
400
500 bandwidth IOPS

shuffle read 15MB/s

HDFS read 143MB/s

IO
PS

ba
nd

w
id

th
 (M

B/
s)

(a) HDD

IO
PS

0
100
200
300
400
500
600

0

10000

20000

30000

40000

50000
bandwidth IOPS

shuffle read 480 MB/s HDFS read 530 MB/s

ba
nd

w
id

th
 (M

B/
s)

(b) SSD

Figure 5.5: Read bandwidths and IOPs for HDD and SSD on different block sizes.

5.3.2 I/O-intensive Operations

After a detailed analysis, we find there are two other major I/O-intensive operations

in GATK4, in addition to the HDFS read and write of the input and output file.

These two operations are discussed in detail in the following.

5.3.2.1 Shuffle-Heavy RDD Operations

Certain RDD operations in Spark, such as groupByKey() and repartition(), involve

very time-consuming shuffle operations. During shuffling, mappers write all the

intermediate data into the Spark Local. Later, reducers read those intermediate

results from the mappers’ local storage [Spa17a, Spa17b]. Such RDD operations

involve a significant amount of I/O accesses.

Fig. 5.4 presents an overview of the groupByKey() operation used in Spark, which

80

has two phases: ShuffleWrite and ShuffleRead. To redistribute and group the data

based on its key, the ShuffleWrite phase generates map tasks to sort the data based on

its key and spills the output from the mapper side onto Spark local storage after data

serialization and compression. The ShuffleRead phase generates reduce tasks to collect

and aggregate data from all the mappers. In this phase, data is read from the Spark

local storage and network, and then decompressed and deserialized. ShuffleRead is

the phase where both disk and network are involved, and data redistribution among

different data partitions occurs. In GATK4, the MD and BR stages are separated by

the ShuffleWrite and ShuffleRead phases as shown in Fig. 5.1. Though shuffle-related

operations also involve network communication, the 10Gbps network usually is not

the bottleneck of Spark applications [Cut15]. Hence, we mainly focus on the analysis

and modeling of the I/O part.

5.3.2.2 Large RDDs NOT Cacheable in Memory

Another major source of I/O access comes from multiple references to large RDDs

that consume a large amount of memory and cannot be cached in memory. One

example is the UnionRDD markedReads in GATK4, which is used by both the BR

and SF, as shown in Fig. 5.1. Since this RDD is not cached in the memory, each time

the program uses and performs actions on it, it will be 1) read from the persist storage

(Spark Local) if there is a persist write for this RDD, or otherwise 2) recomputed

using input data from either the HDFS or Spark Local.

To explain why this UnionRDD cannot be cached in memory in GATK4, we

change the original GATK4 to cache it for a small input (compressed, serialized data),

and then measure its runtime memory consumption (decompressed, deserialized data).

81

Based on this information, we find that caching this single UnionRDD for the whole

genome with 122GB input requires around 870GB memory space. Assuming that

around 40% of the entire Spark executor memory is used as storage memory to cache

this UnionRDD, the total Spark memory required would be around 2.18TB. Each

server that we use has 128GB RAM, and if we allocate 90GB for the Spark executor,

we need 25 slave nodes in total, which is quite expensive for practical usage. Therefore,

such large RDDs can not be fully cached in memory and need to be persisted in disk

or simply be rebuilt from input anytime that a program uses them. Both of these

approaches will incur a large amount of I/O access.

5.3.3 Effective I/O Bandwidth under Various Data Request Sizes

As previously analyzed, the big performance gap of different storage configurations is

mainly caused by switching the Spark Local from HDD to SSD. We find that the

effective I/O bandwidth in the shuffle read stage has up to a 32x gap for SSD and

HDD, which is much larger than the 3.7x gap of their peak bandwidths. In this

section we use 36 Spark executor cores and the whole genome input unless otherwise

specified.

After a detailed analysis, we find that unlike the HDFS read/write that usually

involves large data block accesses (e.g., 128MB), shuffle read incurs many small block

size I/O accesses, where HDDs have a much lower effective bandwidth than SSDs.

As a result, replacing a HDD with a SSD for the Spark Local for BR and SF stages

can achieve up to 3.7x and 9.5x performance gains, respectively.

82

5.3.3.1 Effective I/O Bandwidth on HDD and SSD

We use fio [SAA11] to test the input/output operations-per-second (IOPS) and

effective bandwidth on different read block sizes for HDD and SSD to simulate the

shuffle read operation and HDFS read operation in Spark. As shown in Fig. 5.5a

and 5.5b, when block size is 30KB, the average bandwidth is 15MB/s for HDD and

480MB/s for SSD, which means a 32x bandwidth gap. For such a small data access

size, shuffle read I/O in HDD becomes the bottleneck of the system, while shuffle

read I/O in SSD does not. The bandwidth gap between HDD and SSD is higher

when the block size is smaller. When the block size is 4KB, the gap can be as high

as 181x. When the block size is 128MB (default in HDFS block size), the gap is only

around 3.7x.

5.3.3.2 Why Shuffle Read Accesses Small Data Blocks

Now we analyze why shuffle read involves numerous small data block accesses. As

shown in Fig. 5.4, assume the mapper side has M partitions. There are M local output

files that are indexed with all the reducer IDs. On the reducer side, assume there are

R tasks. Each reducer reads shuffle data indexed with its own reducer ID from M

separate files in the mapper side, and dynamically merges the data. To fit the data

read by each reducer in memory for use in later RDD operations (e.g., unionRDD

in GATK4), there is usually a fixed data size for each reducer (e.g., each reducer in

GATK4 reads 27MB shuffle data). Since the fixed amount of data in each reducer

comes from M mapper files, when M is large it will incur a large amount of small

block size I/O accesses.

In GATK4, the number of mappers M is determined by the partition number of

83

shuffle
read

CPU
operation

T=60MB/s
BW=

120MB/s
P=b=2

t_avg

CPU
operation

t_avg

shuffle
read

λ =4

(a) P ≤ b
λ = 4T=60MB/s

P=10 or P=20 is
the same as P>8

BW=120MB/s
λ*b =8

t_avg D/BW

(c) P > λ× b

λ =4

P=6 < 8BW=120MB/s

T=60MB/s

t_avgt_avg t_avgt_lat

λ*b =8

t_avgt_avg t_avg

(b) b < P ≤ λ× b
Figure 5.6: Execution model for (a) P ≤ b, no I/O contention; (b) b < P ≤ λ × b,
I/O contention is hidden by the CPU computation; and (c) P > λ× b, I/O becomes
a bottleneck, and increasing the number of CPU cores P does not help.

the RDD initialReads as shown in Fig. 5.1, i.e., the number of HDFS blocks of the

input HDFS file. When the input is a whole genome, M = 122GB*1024(MB/GB) /

128(MB/HDFS block) = 973. The number of reducers R is set so that each reducer

task reads in 27MB shuffle data as tuned in the original GATK4. On average, each

reducer reads around 27MB / 973 = 30KB data from each mapper. We also use

iostat to measure the average I/O request size (in sectors, 512B per sector) in the BR

and SG; the average request size is 60, which corresponds to the 30KB (≈512B×60)

block size.

5.3.3.3 Shuffle Performance Analysis

According to Fig. 5.5a and 5.5b, the HDD small block access bandwidth is only

15MB/s, which also matches the result of iostat. Hence, the time needed for shuffle

read (334GB as in Table 5.4) is 334 * 1024(MB) / 3 / 15(MB/sec) / 60(sec/min) =

126mins, which perfectly matches the execution time of both BR and SF shown in

Fig. 5.2. This further indicates that all computation time is overlapped by HDD

84

access. One may notice in Table 5.4 and Fig. 5.4, although the shuffle data size of

MD is exactly the same as BR and SF, the execution time of MD is much shorter.

That is because the block size of shuffle write is much larger than shuffle read—about

365MB in this case since mappers write data in sorted chunks (as described in Section

5.3.2.1).

5.4 I/O-Aware Spark Analytical Model

To reason and quantify the underlying behavior of Spark tasks with different RDD

operations, we propose an I/O-aware analytical model that considers the effective

I/O bandwidths under different data request sizes and different numbers of CPU

cores, and the overlap between the CPU computation and I/O access. For illustration

purposes, we use Spark shuffle read as an example to explain our model, which works

similarly for other I/O or computation-intensive RDD operations.

5.4.1 Model Variable Definition

Shown in Fig. 5.6a, we define the following variables used in our model.

1. T is the I/O (here, shuffle read) throughput per core when there is no I/O bandwidth

contention. Usually we can test this T under the SSD configuration using a single

core for the Spark executor. Assume T = 60MB/s for illustration purposes, which

might not be the real measured throughput.

2. Similarly, t avg is the average execution time of a single task (for a single data

partition).

3. λ is the average time ratio of the entire task execution to the I/O access. Assume

85

λ = 4 in this example.

4. BW is the effective I/O bandwidth under the average data request size in the I/O

operation. Assume BW = 120MB/s in our example.

5. b = BW
T

is the break point for the number of CPU cores per node, after which the

CPU cores will contend for the limited I/O bandwidth. In the example shown in

Fig. 5.6a, b = 2.

6. D is the entire data access size.

7. P is the number of actual launched executor cores per node.

8. N is the number of nodes.

9. M is the number of tasks (data partitions).

5.4.2 Different Execution Phases

When we gradually increase P from 1 to the number of maximum executor cores,

there are three phases where the runtime model and I/O access are different.

P≤b: no overlap with I/O and CPU computation. In this case, I/O is not

a bottleneck as the number of executor cores does not exceed the bandwidth break

point. As shown in Fig. 5.6a, after a batch of P tasks finish their execution, another

batch of P tasks are launched. Here we only show two batches of tasks, and there

is no overlap with I/O access (shuffle read) and CPU computation. Therefore, the

estimated runtime formula is M
N∗P × t avg.

b<P≤λ×b: overlap with I/O and CPU computation within a batch. As

shown in Fig. 5.6b (right column of Fig. 5.6), P tasks are launched in a batch. Since

b tasks already saturate the I/O bandwidth, the next b tasks start I/O operations

86

after the first b tasks finish their I/O operation.1 When P ≤ λ× b, the first b tasks

in the second batch start the I/O operation (and also include some computation-like

decompression) right after the first b tasks in the first batch finish, i.e., when the

CPU cores are available. Here we show three batches of tasks. After an initial latency

t lat, each batch of tasks finishes in t avg. Therefore, the estimated runtime formula

is M
N∗P × t avg + t lat.

We find that in this case, the estimated runtime formula is almost the same as

that of the P ≤ b case, since the CPU computation can hide the I/O access. We

conclude that the performance of parallel part (that is the left part of above formula)

scales with the number of CPU cores P as long as P ≤ λ × b, where I/O does not

hit the bandwidth break point or is hidden by the CPU computation. We can define

B=λ×b, as the turning point where I/O starts to become a bottleneck.

P>λ×b,i.e.,P>B: I/O becomes a bottleneck. As shown in Fig. 5.6c, when

P increases further, there is more overlapping of I/O and CPU operations. Since

λ × b determines the maximum parallelism of CPU tasks, if P is larger than that,

it means I/O becomes a bottleneck. In this case, the estimated runtime formula is

D
N×BW

+ t avg, which is determined by the entire data access size and effective I/O

bandwidth. That is, further increasing the number of CPU cores P does not help the

system performance when P > B.

1In the real case, all P tasks are launched at the same time, where Fig. 5.6b draws equivalent
sequential I/O access with no I/O contention for easy illustration.

87

5.4.3 Generic Model

Therefore, our model can be generalized as follows: for each stage i, its runtime tstage

is:

tstage = max (tscale, tread limit, twrite limit),

tscale =
M

N ∗ P
× t avg + δscale

tread limit =
Dread

N ∗BWread

+ δread,

twrite limit =
Dwrite

N ∗BWwrite

+ δwrite

(5.1)

Here tscale is the execution time when none of the I/O read and write is a bottleneck,

and its parallel part scales with N ∗ P . tread limit (twrite limit) is the I/O read (write)

time when it becomes a bottleneck, i.e., P > Bread (P > Bwrite). We add a constant

δ to each term to accommodate the linear part of the code. The model is built for

each stage, and for the entire application, the total runtime is the sum of each stage’s

runtime, tapp =
∑
tstage.

Note that our model relates to disk bandwidth rather than disk number. Thus,

it is general enough to support the multi-disk case. In addition, different hardware

platforms or Spark configurations will lead to different t avg. Therefore, our model

can still correctly capture the execution time.

5.5 Model Evaluation Results

To demonstrate how to use our I/O-aware model to explain and predict the runtime

behavior of Spark programs, we first apply it to GATK4 and validate the model

88

accuracy. To better illustrate the generality of our model, we later apply it to typical

big data applications from SparkBench [LTW15] and BigDataBench [WZL14]. Our

experimental results demonstrate that our model can predict their performance with

an error rate less than 10%, and can well explain their behaviors under different

configurations. An eleven-node (one for master, ten for slave nodes) cluster is used

for the experiments in this section.

5.5.1 Applying Model to GATK4

5.5.1.1 MD Stage

Changing the HDFS folder from an HDD to an SSD for the MD stage gives no

performance gain when P = 36, as shown in Fig. 5.2. The HDFS read operation in

MD only occupies a small portion of the task execution time. The time ratio of the

entire task execution over I/O access λ = 12 is already pretty large. Although the

break point b is different for HDD and SSD for HDFS read (4.3 and 16, respectively),

B in both cases is larger than 36, the maximum number of executor cores per node

in our setting.

When using SSD as Spark Local, the runtime is calculated as t = tscale =

M
N∗P × t avg + δscale. To be noted here, in Fig. 5.3 MD stage time does not scale

for SSDs. This is not because the I/O is the bottleneck, it is because the garbage

collection time increases with larger P and dominates the execution time of MD,

which is currently not included in our model and will be dealt with in future work.

When using HDD as Spark Local, shuffle write becomes the I/O bottleneck, BWwrite

= 100MB/s, B = 10, and runtime does not scale for P = 12, 24, 36.

89

5.5.1.2 BR and SF Stage

There are two kinds of tasks in the BR stage. One starts from the RDD nonPrima-

ryReads that need HDFS read, with a λ = 1.3; i.e., the CPU computation time is

small compared to the I/O access time. However, since most read records are filtered

out after the filter() function, as shown in Fig. 5.1, this task only occupies a small

portion of the total BR execution time. The other task starts from the shuffle read,

and the CPU computation time is long, with a λ = 20. And this task dominates the

BR execution time. Due to space constraints, we will mainly illustrate the modeling

for the latter task.

We first explain the case when both the Spark Local and HDFS are set to separate

SSDs. For shuffle read, if there is no I/O contention, each core’s read throughput T is

around 60MB/s. And λ, the time ratio of the entire task execution over shuffle read

task time, is 20. The SSD shuffle read bandwidth BW is around 480MB/s. Thus the

break point b = BW
T

= 8. In this way, the BR stage runtime scales with the number of

executor cores P up to B = 160 cores. This matches well with the results in Fig. 5.3:

when P increases from 12 to 24 to 36, the runtime of BR decreases accordingly.

However, when changing the Spark Local to an HDD, where HDD shuffle read

bandwidth for 30KB block size is only 15MB/s, even one core suffers the I/O

contention in some sense, that is, b=1. Compared to the shuffle read time in SSD,

the shuffle read time in HDD in each core is 4x longer, which means that λ here is

5. Thus, B = 5; this means the runtime of BR does not further decrease when P is

larger than 5. Based on the above analysis, there is no performance gap between the

HDD and SSD when P is small. As P > 5, it further increases the performance gap

between the two storage configurations on BR, as seen in Fig. 5.3. This also explains

90

how the SF runtime scales with P. Since in SF λ is smaller, the performance gap

when changing Spark Local from SSD to HDD starts even earlier than the BR.

5.5.1.3 Model Accuracy Results for GATK4

Fig. 5.7 presents the real measurements compared to model predicted runtime for

different stages under different I/O configurations, when there are ten slave nodes,

and P= 6, 12, 24. The average error rate is less than 6%, which is true for other

omitted cases as well.

0
20
40
60
80

100
120

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P =
24

conf0 conf1 conf2 conf3

MD BR SF

HDD HDFS
SSD Local

SSD HDFS
SSD Local

HDD HDFS
HDD Local

SSD HDFS
HDD Local

ru
nt

im
e

(m
in

ut
es

)

24

gatk4

Figure 5.7: Comparison of measured runtime (exp) and model predicted runtime
(model) for GATK4.

0

500

1000

1500

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P =
24

conf0 conf1 conf2 conf3

dataValidator iteration

HDD HDFS
SSD Local

SSD HDFS
SSD Local

HDD HDFS
HDD Local

SSD HDFS
HDD Local

ru
nt

im
e

(s
ec

on
ds

)

24

Figure 5.8: Comparison of measured runtime (exp) and model predicted runtime
(model) for Logistic Regression (LR), small dataset.

91

0
500

1000
1500
2000

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P =
24

dataValidator iteration

ru
nt

im
e

(m
in

ut
es

)

HDD HDFS
SSD Local

SSD HDFS
SSD Local

HDD HDFS
HDD Local

SSD HDFS
HDD Local

24

Figure 5.9: Comparison of measured runtime (exp) and model predicted runtime
(model) for Logistic Regression (LR), large dataset.

0
5

10
15
20
25

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P =
24

dataValidator iteration subtract

HDD HDFS
SSD Local

SSD HDFS
SSD Local

HDD HDFS
HDD Local

SSD HDFS
HDD Local

24ru
nt

im
e

(m
in

ut
es

)

Figure 5.10: Comparison of measured runtime (exp) and model predicted runtime
(model) for Support Vector Machine (SVM).

0
20
40
60

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P =
24

conf0 conf1 conf2 conf3

graphLoader iteration saveAsTextFile

HDD HDFS
SSD Local

SSD HDFS
SSD Local

HDD HDFS
HDD Local

SSD HDFS
HDD Local

ru
nt

im
e

(m
in

ut
es

)

24

Figure 5.11: Comparison of measured runtime (exp) and model predicted runtime
(model) for PageRank (PR).

92

5.5.2 Generality of Our Model: Other Applications

5.5.2.1 Logistic Regression

Logistic Regression in Spark Mllib [MBY16] is a typical iterative machine learning

algorithm. It consists of two stages: dataValidator and iteration. In our experiment,

We take two datasets generated by SparkBench: 1,200 (small) and 4,000 (larger)

million examples, each with 20 features. The iteration number is set to 50 in this

experiment. For the small dataset, the RDD parsedData generated from dataValidator

can be cached in memory. For the large dataset, it is too large to be totally cached in

memory and will be put in Spark Local. The sizes of RDD parsedData for the small

and large datasets are 280GB and 990GB respectively. Results are shown in Fig. 5.8

and Fig. 5.9 with an average error rate of 5.3%.

5.5.2.2 Support Vector Machine

Support Vector Machine [SV99] is another typical iterative machine learning algorithm.

It consists of three phases: dataValidator, iteration and subtract. Input dataset has

12 million samples, 1000 features, 1200 partitions. Iteration number is set to 10, and

each iteration reads in 82GB in-memory cached RDD generated from dataValidator.

The subtract phase incurs shuffle, and total shuffle size is 170GB. Results are shown

in Fig. 5.10 with an average error rate of 8.4%.

5.5.2.3 PageRank

PageRank [PBM99] in Spark GraphX [XGF13] is an iterative graph algorithm that

ranks the relative importance of webpages. It consists of three phases: graphLoader,

93

0
20
40
60

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P =
24

graphLoader computeTriangleCount

HDD HDFS
SSD Local

SSD HDFS
SSD Local

HDD HDFS
HDD Local

SSD HDFS
HDD Local

ru
nt

im
e

(m
in

ut
es

)

24

Figure 5.12: Comparison of measured runtime (exp) and model predicted runtime
(model) for Triangle Count (TC).

0
20
40
60
80

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

Ex
p

M
od

el

P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P =
24

newAPIHadoopFile saveAsNewAPIHadoopFile

HDD HDFS
SSD Local

SSD HDFS
SSD Local

HDD HDFS
HDD Local

SSD HDFS
HDD Local

ru
nt

im
e

(m
in

ut
es

)

24

Figure 5.13: Comparison of measured runtime (exp) and model predicted runtime
(model) for Terasort (TS).

iteration, and saveAsTextFile. We generate a dataset that has 20 million vertices,

4800 partitions (other data generator parameters are set as default). Iteration number

is set to 10, and each iteration reads in cached RDD data from the last iteration

and generates new RDD data for the next iteration to compute. The cached RDD

total size is as large as 420GB, and it is larger than total executor storage memory

space (assume 40% total executor memory is for storage) and persist in Spark Local.

Results are shown in Fig. 5.11 with an average error rate of 5.2%.

94

5.5.2.4 Triangle Count

Triangle Count [SV11, KMP12] in Spark GraphX is a graph algorithm to count three-

vertex small graphs within a large graph. It consists of two phases: graphLoader,

computeTriangleCount. The computeTriangleCount phase will first repartition the

graph to canonicalize [Spa17d] the graph so that there are no self loops or duplicated

edges and all edges are oriented, and then compute the triangle count. We generate

a dataset that has 1 million vertices, 2400 partitions. ComputeTriangleCount phase

incurs 49GB in-memory cached RDD and 396GB total shuffle data. Results are

shown in Fig. 5.12 with an average error rate of 3.6%.

5.5.2.5 Terasort

Terasort in Spark is another shuffle-heavy algorithm. There are two stages in Terasort:

newAPIHadoopFile (NF) and saveAsNewAPIHadoopFile (SF). In the NF stage, input

records are read from HDFS and sorted by ranges, and then the shuffle data is written

to Spark Local. In the SF stage, each partition reads in the shuffle data that belongs

to its range, sorts the record by key within the range and writes the output to HDFS.

We take one example dataset generated by SparkBench: it has 10 billion records,

with a total size of 930GB data. Results are shown in Fig. 5.13 with an average error

rate of 3.9%.

Summary: For iterative algorithms, when dataset is small and cached in memory,

runtime difference between HDD and SSD comes from HDFS read (write), and can

be as large as 2x in LR (Fig 5.8). When dataset is large and persist on disk, runtime

difference mainly comes from persist read (write) on Spark Local in each iteration, as

shown in iteration phases for LR (7.0x in Fig 5.9) and PR (2.2x in Fig 5.11). For

95

iterative algorithms with shuffle phase and shuffle-heavy algorithms like Terasort,

runtime difference between using HDD and SSD as Spark Local can be modeled as

shown in subtract phases in SVM (6.2x in Fig 5.10), TC (6.5x in Fig 5.12), and

Terasort (2.6x in Fig 5.13). In summary, our model enables users to quantitatively

analyze and understand application runtimes on in-memory computing frameworks

like Apache Spark.

5.6 Application of The Performance Model—A Case Study

for Cost Optimization in Public Cloud

As reported by Broad Institute in 2017, 17 TB of new genome data is generated per

day, and in total 45PB of data is managed. Moreover, according to [SLF15], with

the advancement of DNA sequencing, it is estimated that 20 exabytes of genome

data will be produced every year by 2025. Huge data in genome analysis requires

enormous CPU, memory, and I/O resources. Consequently, private institutions may

not be able to afford the cost. Public cloud providers, e.g., Google Cloud, Amazon

EC2 and Microsoft Azure, offer abundant CPU and associated memory and disk I/O

resources that users may request. However, to process 20 exabytes genome data in

Google Cloud means about 1.6× 1010 CPU hours in GATK4, which is about 0.53

billion dollars for CPU cost only. Moreover, users have to pay for the requested

I/O resources as well. Cloud providers support different disk I/O options. While

SSD offers a much higher bandwidth compared to HDD, it is charged at a much

higher price (4.2x in Table 5.5). An important question naturally arises from such

observations: In a public cloud, how does one effectively find the optimal configuration

to minimize cost for its required workload?

96

This is not a trivial question. While a higher configuration can deliver shorter

execution time, the cost per time unit is increased. On the other hand, although

adopting a lower configuration guarantees lower cost per time unit, the total execution

time rises. Hence, a balance needs to be discovered.

Table 5.5: Disk price in Google Cloud platform

Type Price (per GB/month)
Standard provisioned space $0.040

SSD provisioned space $0.170

5.6.1 Cost Modeling for HDDs

With GATK4 as an example, we demonstrate that with our I/O-aware analytic

model, users can quickly find the optimal hardware configuration from a large set of

configurations in a public cloud to save on cost. In this section, all the results we report

are genome sequencing with 500 million read pairs, as described in Section 5.2.3.

In Google Cloud, users can specify the CPU instance with a different number of

virtual CPU cores. The disks are also virtualized in Google Cloud. According to

their datasheet [Pla17], the virtual disk bandwidth is related to its configured size.

Size and type (e.g., HDD or SSD) are the determinant factors of the disk price.

First, we create lookup tables for HDD and SSD persistent disk under different

sizes. The read bandwidths for different request sizes of HDD and SSD can be found

in [cds17]. Three profiling runs are executed to get the model parameters.

After getting the model, the configuration selection problem is converted to mini-

mize a discrete multivariate function Cost = f (P, DiskSizeHDFS, DiskSizeSpark Local, Time).

Here P denotes the core number per node and Time denotes the execution time

which can be derived from our model. This optimization problem can be solved by

97

the gradient descent method. The optimal configuration that we get is the P = 16,

DiskSizeHDFS = 1TB, DiskSizeSpark Local = 2TB.

In order to give readers an idea of the trend of cost function, in Fig. 5.14a and Fig.

5.14b we present the cost results under DiskSizeHDFS = 1TB and DiskSizeSpark Local = 2TB.

There are two recommended hardware configurations for reference: R1 [Spa17c] hard-

ware provisioning from the Apache Spark official website, suggesting 1:2 ratio of disks

to CPU cores; R2 [Clo13] hardware provisioning for Hadoop cluster from Cloudera,

suggesting two hex-core machines with 12 disks (1TB), with 1:1 ratio of disks to

CPU cores. If a 16 vCPU is used as a worker node, the estimated cost for R1 with

8TB disk is $6.06, and for R2 with 16TB disk it is $8.65. Interestingly, the estimated

cost found by our model is $4.12, which is 32% and 52% lower than R1 and R2 cost,

respectively.

5.6.2 Model Verification on Google Cloud

True, the virtualized environment is much different than the physical one. However,

as shown in Section 5.4, all of the model factors are only related to the system

performance experienced at the user level, whether or not the underlying runtime

is virtualized. That means the abstraction of our model is at user level—which is

higher than the underlying system level. Therefore, our model can still work well in

the cloud environment, and this is proved by the following experiment results.

Due to our limited Google Cloud credit, we verify our analytic model for using

ten slave nodes, each with 16vCPU and 1TB as HDFS, while changing the HDD

Local size. The measured runtime and predicted runtime from models are compared

in Fig. 5.15. When HDD Local size increases from 200GB to 2TB, runtime decreases.

98

0

5

10

15

20

25

30

8 12 16 24 32

200G 400G 800G 1T 2T 3T

4T 8T 12T 16T 24T 32T

vCPU

Our,2T
$4.12

co
st

 (
$

 d
o

lla
rs

) R1,8T
$6.06

R2,16T
$8.65

vCPU vCPUvCPUvCPU

(a) Cost as Local size changes (HDFS is set to 1TB HDD).

0

5

10

15

20

25

8 12 16 24 32

200G 400G 800G 1T 2T 3T

4T 8T 12T 16T 24T 32T

Our, HDFS 1T
$4.12

co
st

 (
$

 d
o

lla
rs

)

vCPU vCPUvCPUvCPUvCPU

(b) Cost as HDFS size changes (Local is set to 2TB HDD).

Figure 5.14: Cost for using different sizes of HDDs

99

After 2TB, runtime remains flat as expected. The average error rate is less than 4%.

0
20
40
60
80

100
120

200G 400G 800G 1T 2T 3T

Exp Model
Local 2T

runtime does not
further decrease

ru
nt

im
e

(m
in

ut
es

)

Figure 5.15: 16vCPU: Comparison of measured runtime model (exp) and predicted
runtime (model) for GATK4 when using different sizes HDD as Local (HDFS is set
to 1TB HDD).

5.6.3 Cost Modeling for SSDs

Fig. 5.16 shows the case where SSD is used for Spark Local, with estimated cost and

runtime for different numbers of executor cores P using different sizes SSD as Local

(from 20GB to 3.2TB). The optimal cost of using SSD is less ($3.75) which is another

1.1x as compared to $4.12 using HDD as Spark Local. The measured runtime of

using 200GB SSD as Spark Local is 43 mins, while the estimated runtime from the

model is 45 mins (error rate 4.6%). Last, considering SSD as HDFS does not bring

further cost savings. We omit the details due to space constraints.

5.6.4 Modeling Results

In conclusion, using 200GB SSD as Spark Local and 1TB HDD as HDFS achieves the

cost-optimal hardware configuration for 16vCPU as a worker node. The cost is $3.75,

which is 38% and 57% lower than the cost of suggested configurations in R1 [Spa17c]

100

0

5

10

15

20

25

30

35

8 12 16 24 32

20G 40G 80G 100G 200G 300G

400G 800G 1.2T 1.6T 2.4T 3.2T

Our,
Local 200GB

$3.75

co
st

 (
$

 d
o

lla
rs

)

vCPU vCPU vCPUvCPUvCPU

Figure 5.16: Cost for using different sizes SSD as Local (HDFS is set to 1TB HDD).

and R2 [Clo13] respectively.

5.7 Related Work

5.7.1 Spark Performance Analysis and Modeling

K. Ousterhout et al. [ORR15] use blocked time analysis to study the impact of

network, I/O and stragglers on Spark performance. In their paper, for the SQL

workloads and the hardware setup they study, optimization on the network and I/O

storage reduces the runtime by at most 2% and 19%, respectively. The conclusion on

I/O part can also be explained by our model: 1) Average megabytes transferred to or

from disk MB/s per node in their SQL workload is 10 MB/s (98MB/s in GATK4); 2)

CPU:Disk Ratio in their cluster is 4:1 (18:1 in our cluster). By applying this number

in Equation 5.1, I/O is not bottleneck in their application and cluster setup. On

network part, A. Trivedi et al. [TSP16] point out that moving from a 1Gbs to a 10Gbs

network reduces the Spark runtime by up to 2.5x, and the network performance still

matters. Others study Spark performance from an architecture perspective [ABV16],

101

NUMA [WXW16, ABV16, CO16], huge page [WXW16], hyperthreading [ABV16,

CO16], tuning JVM parameters and OS parameters [CO16], or from an application

perspective [LTW15].

E. Gianniti et al. [GRB17] use Fluid Petri Nets to model the performance of

MapReduce and Spark applications. It focuses on a scenario of the user-shared

cluster, using previous execution information to study the distribution of the task

time which is used for future prediction. Yet, our model can work in a much wider

scenario, and the methodology we adopt is quite different than their statistical way.

CherryPick [ALC17] leverages Bayesian optimization and builds the non-parametric

performance model. However, it picks a cost-saving configuration from a limited

number (66) of predefined cloud configurations. Studies like Ernest [VYF16] and

[WK15] build analytic models to predict the Spark performance on iterative machine

learning algorithms when there are more slave/worker nodes. However, in their

models, the I/O impact on different data request sizes is not considered; this has

a significant impact on performance, especially for the HDD case (as we studied in

Section 5.3.3 and Section 5.5.2).

5.7.2 Impact of I/O on Parallel and Distributed Computing

Work in [KC14, AP15] studies how SSD and HDD impact the MapReduce performance.

In [KC14] the runtime difference between SSDs and HDDs is compared: the number

of SSD and HDD is matched as 1 to 11 on equivalent sequential I/O bandwidth. We

do not match the number of disks as in [KC14] because the I/O bandwidth of SSDs

and HDDs is not constant and varies significantly with application-requested I/O

block size (as explained in Section 5.3.3). Thus, matching on sequential I/O does

102

not mean matching on random I/O. Other work like [ZZR16, DJ09] studies the SSD

performance with its internal mechanism.

Work in [GAB15, HAL16] characterizes I/O impact for HPC clusters and pro-

poses job scheduling algorithms to optimize the system throughput among different

applications. Opass [YWZ15] analyzes how remote and imbalanced read accesses

impact system performance in distributed file systems and proposes optimization to

maximize data locality and access balance. I. S. Choi et al. [CYK15] leverage PCIe

SSD to optimize the I/O performance of Spark. Work in [CMC16] discusses how to

scale Spark in HPC clusters where a global parallel file system is used instead of

local disks. In summary, to the best of our knowledge, we are the first to propose an

I/O-aware analytic model to quantitatively analyze and model the impact of I/O on

applications running on top of the in-memory computing framework Spark.

5.8 Conclusion

In this chapter we observe that I/O can still play a heavy role—even in the in-memory

cluster computing frameworks like Apache Spark. After a quantitative analysis,

we find that the performance gap is mainly caused by a large number of (random)

intermediate data accesses with small data blocks to the Spark local storage, where

SSDs can achieve a much more effective bandwidth than HDDs. Such Spark local

storage accesses are often used to avoid recomputation of time-consuming sort in

shuffle operations, or persist large RDDs that consume a large amount of memory if

cached. More importantly, we propose an I/O-aware analytical model to reason the

performance of Spark programs, where it brings together the effective I/O bandwidth

under different data access sizes and different numbers of CPU cores, and the overlap

103

between the CPU computation and I/O accesses which has been often overlooked

in past studies. Our proposed model can analytically explain and predict (within

a 10% error rate) the runtime behavior of the production-quality genome analysis

toolkit GATK4, and typical iterative algorithms that are computation-heavy, as well

as typical shuffle-heavy algorithms. Finally, we demonstrate our model’s usage by

doing cost optimization in Google Cloud, which can quickly find the optimal hardware

configuration in large exploration space and help us save 38% and 57% in cost for

genome sequencing compared to two other recommended Spark cloud configurations.

104

CHAPTER 6

Cluster-Level Performance and Cost Modeling

In this chapter we propose the Mocha framework to optimize overall application cost

on public clouds. We first present the key approach of Mocha framework in Section 6.1

that balances the throughput of CPU cores (by partially offloading kernel tasks) and

FPGA (by sharing FPGA among multiple nodes) to achieve full computation resource

utilization. It means that Mocha guarantees the cost efficiency for any applications

as long as FPGA speedup S is larger than cost ratio CR.

According to the approach, Figure 6.1 depicts an overview of Mocha framework.

By taking the user application and an instance list of the public cloud, Mocha first

launches its profiling application to obtain kernel proportion r, kernel speedup S, cost

ratio CR of CPU-FPGA instance and number of CPU cores P on CPU instances.

The information is used as the input of our cost model to achieve cost efficiency

by determining the system configuration (e.g., number and type of instances to be

launched, the percentage of total kernel tasks to be offloaded to FPGAs) to generate

the Mocha configuration in Section 6.2.

By taking the generated system configuration, Mocha runtime (Section 6.3) creates

clients in the user application on each instance that needs to leverage the FPGA

accelerator. The runtime, shown in the right part of Figure 6.1, includes client and

node accelerator manager (NAM). The client is launched on CPU instances to offload

105

partial tasks to the instance with an FPGA accelerator via network. NAM is launched

on CPU-FPGA instances to receive tasks from multiple clients and schedule tasks on

the accelerator.

Profiling
App:	r

Accelerators:
S

Platform	(AWS)
m4.2x,	CPU#:	8,	$0.4,	CR:	1
m4.4x,	CPU#:	16,	$0.8,	CR:	1
m4.10x,	CPU#:	40,	$2,	CR:	1
f1.2x,	CPU#:	8,	$1.6	,	CR:	25

Modeling

Mocha	config:
nodes:	{
name:	htc-f1.2x,	type:	f1.2xlarge
name:	htc-m4.10x,	type:	m4.10xlarge
name:	htc-m4.2x,	type:	m4.4xlarge	}
delta:	1

FPGA

NAM Client

App
Client

App
Client

config

config config

htc-f1.2x

htc-m4.10xhtc-m4.2x

Figure 6.1: Mocha framework overview

6.1 CPU-FPGA Integration and Cost Modeling

In Chapter 4, we summarize two cases when the computation throughput of CPU

and FPGA are not equal to each other: Case A happens when number of CPU cores

P is smaller than Matching Core Number P̃ and FPGA is underutilized; Case B

happens when number of CPU cores P is larger than Matching Core Number P̃ and

CPU is underutilized. In this section, we explain methods to either improve FPGA

utilization or CPU utilization for Case A and Case B respectively.

FPGA Utilization Improvement: For applications of Case A like HTC, one

opportunity to reduce I is to improve FPGA utilization by sharing the FPGA

among multiple nodes through the network. In other words, when P̃ is larger than

the maximum number of CPU cores on a single node P0 in a datacenter, we can

106

launch more CPU node(s) to request the same FPGA. In Equation 4.6, if we set

P = P̃ = ((1−r)×S
r

+ 1), we can achieve optimized cost efficiency I ′ as:

I ′ = (1− r +
r

S
)(1 +

CR

P̃
) = (1− r +

r

S
) + (1− r +

r

S
)× CR

P̃

= (1− r +
r

S
) + (

P̃ × r
S

)× CR

P̃
= 1− r +

r × (CR + 1)

S

(6.1)

We can see from the Equation that when S >CR + 1, I ′ is guaranteed to be smaller

than 1. For HTC on AWS, if we set P̃ as 64, I ′ is 0.86 <1, as opposed to I as 2.56×

in straightforward integration.

CPU Utilization Improvement: For Mutect2 on Huawei Cloud as shown in

Table 4.2, PairHMM kernel dominates 89% of overall execution time so its matching

core number P̃ = (1−89%)
89%

× 43 + 1 = 6. As there are in total 32 CPU cores on the

Huawei FP1 instance, CPU is severely underutilized and I is 1.14× over pure CPU

solutions.

For applications of Case B like Mutect2, one opportunity to reduce I is to improve

CPU utilization by a partial task offloading policy. As demonstrated by Figure 4.1c,

for core 1 in batch i, instead of waiting extra gap cycles on the FPGA resource, core

1 can directly work on the shadow part (though using more time) to avoid waste of

CPU resource. Intuitively, the most efficient way to utilize FPGA and CPU in this

case is to schedule part of the kernel tasks (M1) on FPGA and the other tasks (M2)

on CPU, as shown in Figure 6.2. Thus, the overall application runtime T ′1b and tasks

number M1, M2 follow equations as:

107

P"	cores	
M1	tasks

P − P"	cores
M2 tasks

Figure 6.2: Partial task offloading

T ′1b =
M1

P̃ − 1 + S
× t =

M2

P − P̃
× t,

M1 +M2 = M,

(6.2)

We can rewrite Equation 6.2 to T ′1b = M1+M2
P−1+S

× t = M
P−1+S

× t. As a result, the

optimized cost efficiency I ′ = T ′1b × (P + CR)× c× /C0 = P+CR
P−1+S

, and I ′ < 1 when

CR <S -1. This is achieved when we offload δ = M1

M
= P̃−1+S

P−1+S
of total kernel tasks

on FPGA and schedule 1− δ = P−P̃
P−1+S

of total kernel tasks on CPU. We define δ as

offloading task ratio. For Mutect2 on Huawei, if we set δ = 6−1+43
32−1+43

=0.65, I ′ is 0.74

<1, as opposed to I as 1.14× in the straightforward integration.

To sum things up, it doesn’t matter that P̃ is larger or smaller than the number

of CPU cores in a single node P0, we have Optimized Cost Efficiency Index I ′ as:

I ′ =

1− r + r×(CR+1)

S
if P̃ > P0, set P = P̃ on multi-nodes

P+CR
P−1+S

= P0+CR
P0−1+S

if P̃ < P0, set δ =
P̃ − 1 + S

P − 1 + S
, P = P0

(6.3)

108

Consequently, as long as S − 1 > CR, I ′ is guaranteed to be smaller than 1 in both

cases. This modeling gives quantitative support of CPU-FPGA integration for Mocha

to set up a cluster with appropriate CPU-FPGA nodes and pure CPU nodes to

achieve full resource utilization within the cluster.

6.2 Cost Model Implementation

After profiling the application and FPGA accelerator to get r, S, Mocha calculates P̃

as described in Equation 6.3. Specifically, with r, s and the platform information

which lists available CPU instances and number of CPU cores within an instance, we

can obtain the proper number and type of CPU nodes we should launch to optimize

the cost efficiency. For example, on Amazon EC2, m4 series instances have m4.x,

m4.2x, m4.4x, m4.10x and m4.16x which have 4, 8, 16, 40, 64 cores respectively.

According to Equation 6.3, if P̃ is larger than P0, we set a cluster with in total P̃

cores. For example, for HTC on AWS EC2, P̃ is 64, which is larger than 8. We first

select f1.2x instance, and then select other CPU nodes to get the remaining 64-8

= 56 CPU cores. We iteratively pick up the largest possible instance until all the

remaining cores are allocated. Thus, we first pick up m4.10x which has 40 cores, and

update the remaining cores as 56-40 = 16. Then we pick up m4.4x and the number

of remaining cores reaches zero. As a result, three instances, including f1.2xlarge,

m4.10xlarge, and m4.4xlarge with 8, 40, 16 cores, are selected. If P̃ is smaller

than P0 cores, we use only one CPU-FPGA instance, and set δ, offloading task ratio

accordingly. For example, for Mutect2 on AWS EC2, P̃ is 6, we can simply select

f1.2xlarge and calculate δ = 95% based on Equation 6.3.

According to the determined system configuration, Mocha launches new instances

109

and broadcasts the necessary information to them. For example, Figure 6.3 shows

how we launch instances on Amazon EC2 by using AWS Command Line Interface

(CLI). In order to have a low-latency and high-throughput network among multiple

nodes in AWS EC2, Mocha first creates an AWS EC2 placement group [Ama19a] and

places all instances in the same group. In this case, all instances within a group have

a network performance as high as 10 Gb/s (m4.2x and m4.x have 5 Gb/s network

bandwidth as node limit). After all nodes are created, the IP address of each node is

updated in the configuration file as (shown in Figure 6.4) and the configuration file is

broadcast to each node. On the Huawei Cloud, all general computing instances have

a 6 Gb/s network bandwidth.

1 #create a placement group called "htc-cluster"

2 aws ec2 create-placement-group --group-name htc-cluster --strategy

cluster

3 #launch nodes in the placement group

4 aws ec2 run-instances --image-id amiId --count 1 --instance-type

f1.2xlarge --placement GroupName="htc-cluster"

5 aws ec2 run-instances --image-id amiId --count 1 --instance-type

m4.10xlarge --placement GroupName="htc-cluster"

Figure 4: Mocha launches new nodes within a placement
group.

I ′ =

{
1 − r + r×(CR+1)

S if P̃ > P0, set P = P̃ on multi-nodes
P+CR
P−1+S =

P0+CR
P0−1+S if P̃ < P0, set δ = P̃−1+S

P−1+S , P = P0
(9)

Consequently, as long as S − 1 > CR, I ′ is guaranteed to be smaller
than 1 in both cases. This modeling gives quantitative support of
CPU-FPGA integration for Mocha to setup a cluster with appropri-
ate CPU-FPGA nodes and pure CPU nodes to achieve full resource
utilization within the cluster.

3.2 Cost Model Implementation
After profiling the application and FPGA accelerator to get r, S,
Mocha calculates P̃ as described in Equation 9. Specifically, with r,
s and the platform information which lists available CPU instances
and number of CPU cores within a instance, we can obtain the
proper number and type of CPU nodes we should launch to optimize
the cost efficiency. For example, on Amazon EC2, m4 series instances
have m4.x, m4.2x, m4.4x, m4.10x and m4.16x which have 4, 8,
16, 40, 64 cores respectively. According to Equation 9, if P̃ is larger
than P0, we set a cluster with in total P̃ cores. For example, for HTC
on AWS EC2, P̃ is 64, which is larger than 8. We first select f1.2x
instance, and then select other CPU nodes to get the remaining
64-8 = 56 CPU cores. We use greedy algorithm to iteratively pick
up the largest possible instance until all the remaining cores are
allocated. Thus, we first pick up m4.10x which has 40 cores, and
update the remaining cores as 56-40 = 16. Then we pick up m4.4x
and number of remaining cores reaches zero. As a result, three
instances including f1.2xlarge, m4.10xlarge, and m4.4xlarge

with 8, 40, 16 cores are selected. If P̃ is smaller than P0 cores, we use
only one CPU-FPGA instance, and set δ accordingly. For example,
for Mutect2 on AWS EC2, P̃ is 6, we can simply select f1.2xlarge
and calculate δ = 95% based on Equation 9.

According to the determined system configuration, Mocha
launches new instances and broadcasts the necessary information
to them. In order to have a low-latency and high-throughput net-
work among multiple nodes in AWS EC2, Mocha first creates an
AWS EC2 placement group [2] and places all instances in the same
group. In this case, all instances within a group have a network per-
formance as high as 10 Gb/s (m4.2x and m4.x have 5 Gb/s network
bandwidth as node limit). On Huawei cloud, all general computing
instances have a 6 Gb/s network bandwidth.

3.3 Mocha Runtime
After the cluster has been launched, Mocha runtime starts executing
the application. In Mocha runtime, there are twomajor components:

1 {

2 "nodes": [// nodes details after creation

3 {"name": "htc-f1.2x", "type":"f1.2xlarge", "ip": "10.0.0.1"},

4 {"name": "htc-m4.10x", "type": "m4.10xlarge"", "ip": "10.0.0.2"},

5 {"name": "htc-m4.2x", "type": "m4.4xlarge", "ip": "10.0.0.3"}

6],

7 "nam_ip": "10.0.0.1", // IP of the CPU-FPGA instance

8 "delta": 1// percentage of tasks offloaded to FPGA

9 }

Figure 5: Configuration file.

CPU client and node accelerator manager (NAM). The CPU client
is launched on all instances to communicate with the NAM for
data sharing as well as task offloading to the FPGA accelerator
(locally and remotely). The NAM in Mocha runtime is adapted from
Blaze [15, 33] node manager, an open source framework that en-
ables FPGA accelerators as a service (FaaS) by abstracting multiple
physical FPGA accelerators as a single logic accelerator. Mocha
enhances the NAM by adding a feature that can divide a powerful
FPGA accelerator into multiple logic accelerators so that the FPGA
can always be fully subscribed.

In the rest of this section, we explain the communication mecha-
nism among the CPU client, NAM, and the accelerator.

Client NAM

Task

start() process()

Control	Signal

Data	Signal

(a)

NAM
Task	Q

K1Q

K2Q

K3Q

FPGA1

Kernel1 Kernel2 Kernel3

PCIe

(b)
FPGA2

Figure 6: (a) The communication protocol between Client
and Node Accelerator Manager (NAM), (b) NAM enhanced
by Mocha

1 std::string nam_ip = "10.0.0.1"; //ip of the CPU-FPGA node

2 // Create a Client with name "PairHMM", 2 input, 1 output

3 Client_ptr client(new Client("PairHMM", 2, 1, nam_ip));

4 if (delta != 1 && ((double)rand()/(double)RAND_MAX > delta)){

5 compute(); // run on CPU

6 }

7 else{ // run on FPGA

8 // client setup input blocks from user program

9 client->setupInput();

10 // client connects to NAM, call fpga and receive output

11 client->start();

12 client->getOutput(result);

13 }

Figure 7: Code snippet of client in an user program

Communication between CPU client and NAM: As shown in
Figure 6a, CPU client first connects to the instance with FPGA
accelerator according to the system configuration broadcast by
Mochamaster. The client sendsmessage ACCREQUEST to NAM to ask
for accelerator with accelerator ID “PairHMM”. If NAM has loaded
the requested accelerator bitstream on FPGA, it sends ACCGRANT to
acknowledge the client to send metadata and the input data block(s)

5

Figure 6.3: Mocha launches new nodes within a placement group.

6.3 Mocha Runtime

After the cluster has been launched, Mocha runtime starts executing the application.

In Mocha runtime, there are two major components: CPU client and node accelerator

manager (NAM). The CPU client is launched on all instances to communicate with the

NAM for data sharing as well as task offloading to the FPGA accelerator (locally and

110

1 #create a placement group called "htc-cluster"

2 aws ec2 create-placement-group --group-name htc-cluster --strategy

cluster

3 #launch nodes in the placement group

4 aws ec2 run-instances --image-id amiId --count 1 --instance-type

f1.2xlarge --placement GroupName="htc-cluster"

5 aws ec2 run-instances --image-id amiId --count 1 --instance-type

m4.10xlarge --placement GroupName="htc-cluster"

Figure 4: Mocha launches new nodes within a placement
group.

I ′ =

{
1 − r + r×(CR+1)

S if P̃ > P0, set P = P̃ on multi-nodes
P+CR
P−1+S =

P0+CR
P0−1+S if P̃ < P0, set δ = P̃−1+S

P−1+S , P = P0
(9)

Consequently, as long as S − 1 > CR, I ′ is guaranteed to be smaller
than 1 in both cases. This modeling gives quantitative support of
CPU-FPGA integration for Mocha to setup a cluster with appropri-
ate CPU-FPGA nodes and pure CPU nodes to achieve full resource
utilization within the cluster.

3.2 Cost Model Implementation
After profiling the application and FPGA accelerator to get r, S,
Mocha calculates P̃ as described in Equation 9. Specifically, with r,
s and the platform information which lists available CPU instances
and number of CPU cores within a instance, we can obtain the
proper number and type of CPU nodes we should launch to optimize
the cost efficiency. For example, on Amazon EC2, m4 series instances
have m4.x, m4.2x, m4.4x, m4.10x and m4.16x which have 4, 8,
16, 40, 64 cores respectively. According to Equation 9, if P̃ is larger
than P0, we set a cluster with in total P̃ cores. For example, for HTC
on AWS EC2, P̃ is 64, which is larger than 8. We first select f1.2x
instance, and then select other CPU nodes to get the remaining
64-8 = 56 CPU cores. We use greedy algorithm to iteratively pick
up the largest possible instance until all the remaining cores are
allocated. Thus, we first pick up m4.10x which has 40 cores, and
update the remaining cores as 56-40 = 16. Then we pick up m4.4x
and number of remaining cores reaches zero. As a result, three
instances including f1.2xlarge, m4.10xlarge, and m4.4xlarge

with 8, 40, 16 cores are selected. If P̃ is smaller than P0 cores, we use
only one CPU-FPGA instance, and set δ accordingly. For example,
for Mutect2 on AWS EC2, P̃ is 6, we can simply select f1.2xlarge
and calculate δ = 95% based on Equation 9.

According to the determined system configuration, Mocha
launches new instances and broadcasts the necessary information
to them. In order to have a low-latency and high-throughput net-
work among multiple nodes in AWS EC2, Mocha first creates an
AWS EC2 placement group [2] and places all instances in the same
group. In this case, all instances within a group have a network per-
formance as high as 10 Gb/s (m4.2x and m4.x have 5 Gb/s network
bandwidth as node limit). On Huawei cloud, all general computing
instances have a 6 Gb/s network bandwidth.

3.3 Mocha Runtime
After the cluster has been launched, Mocha runtime starts executing
the application. In Mocha runtime, there are twomajor components:

1 {

2 "nodes": [// nodes details after creation

3 {"name": "htc-f1.2x", "type":"f1.2xlarge", "ip": "10.0.0.1"},

4 {"name": "htc-m4.10x", "type": "m4.10xlarge"", "ip": "10.0.0.2"},

5 {"name": "htc-m4.2x", "type": "m4.4xlarge", "ip": "10.0.0.3"}

6],

7 "nam_ip": "10.0.0.1", // IP of the CPU-FPGA instance

8 "delta": 1// percentage of tasks offloaded to FPGA

9 }

Figure 5: Configuration file.

CPU client and node accelerator manager (NAM). The CPU client
is launched on all instances to communicate with the NAM for
data sharing as well as task offloading to the FPGA accelerator
(locally and remotely). The NAM in Mocha runtime is adapted from
Blaze [15, 33] node manager, an open source framework that en-
ables FPGA accelerators as a service (FaaS) by abstracting multiple
physical FPGA accelerators as a single logic accelerator. Mocha
enhances the NAM by adding a feature that can divide a powerful
FPGA accelerator into multiple logic accelerators so that the FPGA
can always be fully subscribed.

In the rest of this section, we explain the communication mecha-
nism among the CPU client, NAM, and the accelerator.

Client NAM

Task

start() process()

Control	Signal

Data	Signal

(a)

NAM
Task	Q

K1Q

K2Q

K3Q

FPGA1

Kernel1 Kernel2 Kernel3

PCIe

(b)
FPGA2

Figure 6: (a) The communication protocol between Client
and Node Accelerator Manager (NAM), (b) NAM enhanced
by Mocha

1 std::string nam_ip = "10.0.0.1"; //ip of the CPU-FPGA node

2 // Create a Client with name "PairHMM", 2 input, 1 output

3 Client_ptr client(new Client("PairHMM", 2, 1, nam_ip));

4 if (delta != 1 && ((double)rand()/(double)RAND_MAX > delta)){

5 compute(); // run on CPU

6 }

7 else{ // run on FPGA

8 // client setup input blocks from user program

9 client->setupInput();

10 // client connects to NAM, call fpga and receive output

11 client->start();

12 client->getOutput(result);

13 }

Figure 7: Code snippet of client in an user program

Communication between CPU client and NAM: As shown in
Figure 6a, CPU client first connects to the instance with FPGA
accelerator according to the system configuration broadcast by
Mochamaster. The client sendsmessage ACCREQUEST to NAM to ask
for accelerator with accelerator ID “PairHMM”. If NAM has loaded
the requested accelerator bitstream on FPGA, it sends ACCGRANT to
acknowledge the client to send metadata and the input data block(s)

5

Figure 6.4: Configuration file.

remotely). The NAM in Mocha runtime is adapted from the Blaze [HWY16, UCL16]

node manager, an open source framework that enables FPGA accelerators as a service

(FaaS) by abstracting multiple physical FPGA accelerators as a single logic accelerator.

Mocha enhances the NAM by adding a feature that can divide a powerful FPGA

accelerator into multiple logic accelerators so that the FPGA can always be fully

subscribed.

In the rest of this section, we explain the communication mechanism among the

CPU client, NAM, and the accelerator.

The CPU Client: A client is launched in the user application program by taking

system configuration broadcast from the Mocha master. In particular, it refers to

the δ from the system configuration and δ determines the ratio of offloading the task

to FPGA. As shown in Figure 6.5, if δ is not 1, a random number between 0 and

1 is generated and compared to δ. If the random number is larger than δ, kernel

computation falls back to use CPU by calling compute(). Otherwise, the accelerator

client prepares input data and calls start() to connect to NAM to send task. After

task is finished, the output data is read from the client to result.

111

1 #create a placement group called "htc-cluster"

2 aws ec2 create-placement-group --group-name htc-cluster --strategy

cluster

3 #launch nodes in the placement group

4 aws ec2 run-instances --image-id amiId --count 1 --instance-type

f1.2xlarge --placement GroupName="htc-cluster"

5 aws ec2 run-instances --image-id amiId --count 1 --instance-type

m4.10xlarge --placement GroupName="htc-cluster"

Figure 4: Mocha launches new nodes within a placement
group.

I ′ =

{
1 − r + r×(CR+1)

S if P̃ > P0, set P = P̃ on multi-nodes
P+CR
P−1+S =

P0+CR
P0−1+S if P̃ < P0, set δ = P̃−1+S

P−1+S , P = P0
(9)

Consequently, as long as S − 1 > CR, I ′ is guaranteed to be smaller
than 1 in both cases. This modeling gives quantitative support of
CPU-FPGA integration for Mocha to setup a cluster with appropri-
ate CPU-FPGA nodes and pure CPU nodes to achieve full resource
utilization within the cluster.

3.2 Cost Model Implementation
After profiling the application and FPGA accelerator to get r, S,
Mocha calculates P̃ as described in Equation 9. Specifically, with r,
s and the platform information which lists available CPU instances
and number of CPU cores within a instance, we can obtain the
proper number and type of CPU nodes we should launch to optimize
the cost efficiency. For example, on Amazon EC2, m4 series instances
have m4.x, m4.2x, m4.4x, m4.10x and m4.16x which have 4, 8,
16, 40, 64 cores respectively. According to Equation 9, if P̃ is larger
than P0, we set a cluster with in total P̃ cores. For example, for HTC
on AWS EC2, P̃ is 64, which is larger than 8. We first select f1.2x
instance, and then select other CPU nodes to get the remaining
64-8 = 56 CPU cores. We use greedy algorithm to iteratively pick
up the largest possible instance until all the remaining cores are
allocated. Thus, we first pick up m4.10x which has 40 cores, and
update the remaining cores as 56-40 = 16. Then we pick up m4.4x
and number of remaining cores reaches zero. As a result, three
instances including f1.2xlarge, m4.10xlarge, and m4.4xlarge

with 8, 40, 16 cores are selected. If P̃ is smaller than P0 cores, we use
only one CPU-FPGA instance, and set δ accordingly. For example,
for Mutect2 on AWS EC2, P̃ is 6, we can simply select f1.2xlarge
and calculate δ = 95% based on Equation 9.

According to the determined system configuration, Mocha
launches new instances and broadcasts the necessary information
to them. In order to have a low-latency and high-throughput net-
work among multiple nodes in AWS EC2, Mocha first creates an
AWS EC2 placement group [2] and places all instances in the same
group. In this case, all instances within a group have a network per-
formance as high as 10 Gb/s (m4.2x and m4.x have 5 Gb/s network
bandwidth as node limit). On Huawei cloud, all general computing
instances have a 6 Gb/s network bandwidth.

3.3 Mocha Runtime
After the cluster has been launched, Mocha runtime starts executing
the application. In Mocha runtime, there are twomajor components:

1 {

2 "nodes": [// nodes details after creation

3 {"name": "htc-f1.2x", "type":"f1.2xlarge", "ip": "10.0.0.1"},

4 {"name": "htc-m4.10x", "type": "m4.10xlarge"", "ip": "10.0.0.2"},

5 {"name": "htc-m4.2x", "type": "m4.4xlarge", "ip": "10.0.0.3"}

6],

7 "nam_ip": "10.0.0.1", // IP of the CPU-FPGA instance

8 "delta": 1// percentage of tasks offloaded to FPGA

9 }

Figure 5: Configuration file.

CPU client and node accelerator manager (NAM). The CPU client
is launched on all instances to communicate with the NAM for
data sharing as well as task offloading to the FPGA accelerator
(locally and remotely). The NAM in Mocha runtime is adapted from
Blaze [15, 33] node manager, an open source framework that en-
ables FPGA accelerators as a service (FaaS) by abstracting multiple
physical FPGA accelerators as a single logic accelerator. Mocha
enhances the NAM by adding a feature that can divide a powerful
FPGA accelerator into multiple logic accelerators so that the FPGA
can always be fully subscribed.

In the rest of this section, we explain the communication mecha-
nism among the CPU client, NAM, and the accelerator.

Client NAM

Task

start() process()

Control	Signal

Data	Signal

(a)

NAM
Task	Q

K1Q

K2Q

K3Q

FPGA1

Kernel1 Kernel2 Kernel3

PCIe

(b)
FPGA2

Figure 6: (a) The communication protocol between Client
and Node Accelerator Manager (NAM), (b) NAM enhanced
by Mocha

1 std::string nam_ip = "10.0.0.1"; //ip of the CPU-FPGA node

2 // Create a Client with name "PairHMM", 2 input, 1 output

3 Client_ptr client(new Client("PairHMM", 2, 1, nam_ip));

4 if (delta != 1 && ((double)rand()/(double)RAND_MAX > delta)){

5 compute(); // run on CPU

6 }

7 else{ // run on FPGA

8 // client setup input blocks from user program

9 client->setupInput();

10 // client connects to NAM, call fpga and receive output

11 client->start();

12 client->getOutput(result);

13 }

Figure 7: Code snippet of client in an user program

Communication between CPU client and NAM: As shown in
Figure 6a, CPU client first connects to the instance with FPGA
accelerator according to the system configuration broadcast by
Mochamaster. The client sendsmessage ACCREQUEST to NAM to ask
for accelerator with accelerator ID “PairHMM”. If NAM has loaded
the requested accelerator bitstream on FPGA, it sends ACCGRANT to
acknowledge the client to send metadata and the input data block(s)

5

Figure 6.5: Code snippet of client in an user program

Communication between CPU client and NAM: As shown in Figure 6.6a, the

CPU client first connects to the instance with FPGA accelerator according to the

system configuration broadcast by the Mocha master. The client sends message

ACCREQUEST to NAM to ask for accelerator with accelerator ID “PairHMM.” If NAM

has loaded the requested accelerator bitstream on FPGA, it sends ACCGRANT to

acknowledge the client to send metadata and the input data block(s) of the tasks in

ACCDATA. After all input data blocks are ready in NAM, NAM enqueues the task with

input blocks to a task queue. After the task is finished, NAM sends back ACCFINISH

with the metadata of output data block(s) to the client.

In Figure 6.6a, solid lines are message data with metadata information of acceler-

ator and input/output blocks. The single-headed dashed lines are accelerator data

transfer processes between a client and NAM. The tail side in a single-headed dashed

line creates SHARED DataBlock by using metadata of OWNED DataBlock created at

112

Client NAM

Task

start() process()

Control	Signal

Data	Signal

(a)

NAM
Task	Q

K1Q

K2Q

K3Q

FPGA1

Kernel1 Kernel2 Kernel3

PCIe

(b)
FPGA2

Figure 6.6: (a) The communication protocol between Client and Node Accelerator
Manager (NAM), (b) NAM enhanced by Mocha

the arrowhead. The metadata of input/output data blocks is shown in Figure 6.7 in

protocol buffers format [Goo19]. When a client and NAM are on the same node, data

are shared between directly through memory mapped files. In this case, metadata

simply includes the memory mapped file path which lets SHARED DataBlock access

directly. On the other hand, when a client and NAM are on different nodes, data

are shared through the network by using Boost.Asio [Koh16] library. Thus, the IP

address and port at which the OWNED DataBlock is listening are needed for SHARED

DataBlock to connect to and read from.

Communication between NAM and accelerator: In the original Blaze, the

task queue directly dispatches tasks to platform queues. Each platform queue is

associated with a physical FPGA device. This leads to a potential underutilized

problem when the task granularity size is too small to saturate the computing power

113

1 message DataMsg {

2 // data size

3 optional int32 element_size = 1;

4 optional int32 num_elements = 2;

5 optional int64 scalar_value = 3;

6 // same node: memory-mapped file name

7 optional string file_path = 4;

8 // diff nodes: ip, port

9 optional string data_ip = 5;

10 optional int32 data_port = 6;

11 }

Figure 5: Protobuf specifying metadata of data blocks.

schedules a task to the kernel queue that has the least number of
tasks to balance the load among all the kernels.

4 CASE STUDY: ACCELERATE GENOME
VARIANT CALLING ON PUBLIC CLOUDS

In GATK, HTC and Mutect2 are very time-consuming applications
because they both use a dynamic programming (DP) algorithm,
PairHMM [12] to calculate the relation probability of two sequences.
PairHMM has high time-complexity and heavy floating-point op-
erations, it typically dominates 39% and 89% of overall execution
time in HTC and Mutect2 respectively in the current GATK im-
plementation where Intel AVX intrinsics are used in the kernel. In
this section, we develop a PairHMM accelerator on FPGA which
achieves competitive speedups as state-of-the-art PairHMM accel-
erators to accelerate both HTC and Mutect2 to demonstrate the
optimization of cost efficiency after Mocha framework is used. We
first briefly analyze the characteristics of PairHMM algorithm in
Section 4.1. In Section 4.2, we present the architecture design of our
PairHMM accelerator, followed by the implementation details in
Section 4.3 to illustrate how we match the state-of-the-art speedups.

4.1 Analysis of PairHMM Algorithm
PairHMM is an align model that computes the likelihood between
two sequences via a series of matching (M), insertion (I), and dele-
tion (D) of nucleotides [12]. The pseudo code of PairHMM is dis-
played in Algorithm 1 and Algorithm 2. For simplicity, we do not
dive into the details of PairHMM algorithm but only analyze its
computing characteristics.

Algorithm 1 The pseudo Code of PairHMM Algorithm
Require:

set R withM reads (10 to 150 bps);
set H with N haplotypes (100 to 1000 bps)

Ensure:
matrix S withM × N likelihood scores

1: for r = 0; r < M , r + + do
2: for h = 0; h < N , h + + do
3: S[r][h] = computeFullProb(R[r], H[h])
4: S[r][h] = log10(S[r][h]) - log10f(ldexp(1.0, 120.0));
5: end for
6: end for

As shown in Algorithm 1, the input of PairHMM is a set of reads
and haplotypes that have different lengths. Reads and haplotypes
are strings whose characters are represented using A, C, G, T, and

Algorithm 2 The pseudo Code of computeFullProb()
Require:

One read R with length L(10 to 150 bps) One haplotype H with
lengthW (100 to 1000 bps)

Ensure:
One likelihood score

1: ROWS = L + 1, COLS = W + 1
2: for r = 1; r < ROWS ; r + + do
3: for c = 1; c < COLS ; c + + do
4: if R[r] == H[c] OR R[r] == ’N’ OR H[c] == ’N’ then
5: distm = 1 - distm;
6: else
7: distm = distm / 3;
8: end if
9: M[r][c] = distm * (M[r-1][c-1] * p[r][0] + X[r-1][c-1] *

p[r][1] + Y[r-1][c-1] * p[r][1]);
10: X[r][c] = M[r-1][c] * p[r][2] + X[r-1][c] * p[r][3];
11: Y[r][c] = M[r][c-1] * p[r][4] + Y[r][c-1] * p[r][5];
12: end for
13: end for
14: for c = 0; c < COLS ; c + + do
15: result += M[ROWS-1][c] + X[ROWS-1][c];
16: end for
17: return result

N. The average number and length of reads and haplotypes are
displayed in Table 4. For each pair of a read and a haplotype, the
DP algorithm, as shown in Algorithm 2, is invoked to compute
the relation probability. One cell of the DP matrix contains three
single-precision floating-point (FP) numbers (M, X, Y). The initial-
ization of the first row and first column of the matrix is done by
a series of exponential and logarithmic operations The update of
each cell is called Forward Algorithm (FA), which is illustrated from
line 4 to line 11. Each cell update includes one FP division, 8 FP
multiplications and 5 FP additions. The return value is the sum of
the last rows of M and X matrices.

Table 4: The statistics of PairHMM inputs
reads # haplotypes # read length haplotype length

min 3 2 10 2
max 9284 203 150 643
avg 104 6.93 104 216

We conclude three key characteristics of the PairHMM algo-
rithm that should be taken into consideration when designing the
accelerator as followings:
• The PairHMM kernel is a pairwise dynamic programming prob-
lem with high compute complexity. Considering the data-access
pattern and intensive floating-point operations within, this prob-
lem is compute-bound rather than memory-bound.

• The input sizes have large variations.
• There are rich intra and inter task parallelism to be explored.
Each pairwise DP calculation is independent (inter task) and
DP algorithm has natural parallelism (intra task) on the anti-
diagonal dimension.

6

Figure 6.7: Protobuf specifying metadata of data blocks.

of a full FPGA. This problem can be addressed by partially reconfiguring a large

powerful FPGA as multiple small kernels. In addition, the FPGA accelerator design

philosophy prefers multiple smaller kernels rather than one large kernel since it helps

improve timing. Mocha enhances the NAM by supporting multiple kernels in a single

FPGA. As shown in Figure 6.6b, each kernel queue is associated with an FPGA

kernel instead of an FPGA device. The NAM always schedules a task to the kernel

queue that has the least number of tasks to balance the load among all the kernels.

114

6.4 Case Study: Accelerate Genome Variant Calling on Pub-

lic Clouds

In GATK, HTC and Mutect2 are very time-consuming applications because they both

use a dynamic programming (DP) algorithm, PairHMM [DEK98], to calculate the

relation probability of two sequences. PairHMM has high time complexity and heavy

floating-point operations. It typically dominates 39% and 89% of overall execution

time in HTC and Mutect2 respectively in the current GATK implementation where

Intel AVX intrinsics are used in the kernel. In this section, the PairHMM accelerators

developed by FCS (Falcon Computing Solutions [Com18]) are evaluated on both AWS

EC2, and Huawei Cloud and compared with the other FPGA and GPU PairHMM

accelerators in Section 6.4.1. The accelerator has a speedup S larger than CR+1,

which guarantees improvement of cost efficiency of CPU-FPGA solutions after Mocha

framework is used. In Section 6.4.2 we give a detailed evaluation of how Mocha

framework improves the overall application performance and cost efficiency of CPU-

FPGA solutions for HTC and Mutect2 on AWS EC2 and Huawei Cloud. Compared

to a straightforward CPU-FPGA solution in Blaze [HWY16], Mocha saves cost by

2.82x with only 4.9% performance degradation for HTC, and saves cost by 1.05x

with 1.05x performance improvement for Mutect2 on Amazon EC2. Similarly, on

Huawei Cloud, Mocha saves cost by 1.22x with only 2.8% performance degradation

for HTC and saves cost by 1.52x with 1.52x performance improvement for Mutect2.

For each application on both platforms, the optimized cost efficiency I ′ is smaller

than 1, which implies that the CPU-FPGA solution is more cost efficient than the

pure CPU solution by using a Mocha framework.

115

6.4.1 Evaluation of PairHMM Accelerator

Table 6.1 shows the resource utilization of FCS PairHMM accelerator on the AWS F1

and Huawei Cloud FP1 FPGAs. Both platforms use Xilinx Ultrascale+ VU9P chips.

However, we find that the user resource budgets are different. This is because the

AWS F1 platform has a larger static region than the Huawei Cloud FP1 platform.

Therefore, we can only fit 184 PEs on AWS F1 but can fit 200 PEs on Huawei Cloud

FP1. Although there is still DSP resource idling, we cannot further improve the

number of PEs because the frequency degrades significantly due to routing congestion.

Table 6.1: The resource utilization of FCS PairHMM accelerator on AWS F1 and
Huawei Cloud FP1 FPGAs. The number on the right side of each cell is the available
resource for users excluding the platform static region.

PE# LUTs LUTRAMs Flip-Flops BRAMs URAMs DSPs Fmax

AWS F1 184 560k/946k (59%) 31k/562k (6%) 802k/2M (40%) 1082/1.8k (58%) 164/917 (18%) 4612/6831 (68%) 186 MHz

Huawei Cloud FP1 200 607k/978k (62%) 31k/562k (6%) 870k/2.1M (42%) 1174/1.8k (63%) 172/960 (18%) 5012/6830 (73%) 191 MHz

A common metric to evaluate the performance of PairHMM is giga cell updates

per second (GCUPs). Equation 6.4 shows how to compute it. Both the average and

peak GCUPs of FCS designs are measured by running through all the datasets listed

in the second column in Table 6.5 (The first three samples are whole exome sequence,

NA12878Garvan is a whole genome sequence, and TCRBOA1 is a tumor sequence).

GCUPs =
read length× haplotype length

PairHMM time
(6.4)

The design beats the best CPU performance shown in the third row by around

40x. To the best of our knowledge, the PairHMM accelerator demonstrates the best

GCUPs on FPGA instances in public clouds.

116

Table 6.2: Comparison of performance and cost efficiency among state-of-the-arts
and FCS PairHMM accelerator.

Implementation Performance Cost Efficiency

Tech Make Model Parallelism Part# Freq Code Avg GCUPs Peak GCUPs CR Avg S CR
S−1

CPU [RPA16] Intel Broadwell singe-core AVX E5-2686 v4 2.3GHz GKL 0.676 0.699 NA NA NA

GPU [WXC17] Nvidia Volta 5120 CUDA cores V100 1.2GHz CUDA 61.1 195 53 [Ama19b] 90 0.59

FPGA (FCS [Com18]) Xilinx aws-vu9p-f1 184 PEs XCVU9P 186MHz SDAccel 26.9 32 25 [Ama19b] 40 0.64

FPGA (FCS [Com18]) Xilinx huawei-vu9p-fp1 200 PEs XCVU9P 191MHz SDAccel 29.4 35.8 23 [Hua19] 43 0.54

Performance of the best GPU PairHMM accelerator [WXC17] is shown in the

fourth row. The authors open sourced the PairHMM GPU implementation [Wan19],

and we measured its GCUPs by testing it on the AWS EC2 p3.2x instance. The

instance has one Nvidia V100 GPU, 8 vCPU, and it is priced at $3.06/hr [Ama19b].

For this GPU, CR = ($3.06/$0.4*8-8) = 53. There exists a 2x gap on GCUPs

between FCS design (29.8) and the GPU accelerator(61.1). However, if we consider

cost efficiency, as shown in Equation 6.3, when r, P0 are the same, I ′ is determined

by both CR and S. Here we use CR
S−1 as a metric to compare the cost efficiency of

different accelerators in a public cloud. As shown in the last column of Table 6.2,

among the GPU accelerator, FPGA accelerator on AWS EC2 and Huawei Cloud, the

FPGA accelerator on Huawei Cloud achieves the highest cost efficiency.

When multiple nodes are launched in a cluster in the Mocha framework, data

blocks are shared through the network. As S is the end-to-end FPGA accelerator

speedup, in addition to PCIe communication overhead, network latency also needs

to be taken into consideration. For the PairHMM kernel on AWS EC2 and Huawei

Cloud, we give one representative task breakdown as shown in Table 6.3. Here, PCIe

bandwidth is assumed as 6GB/s and network bandwidth is 6Gb/s.

After including network latency, S changes from 39.8 to 39.7, which means network

does not have a lot of effect on S for clients that are not on the same node as NAM.

In general, for other applications, a similar analysis is needed to perform to get an

117

Table 6.3: Time breakdown (secs) of a representative PairHMM task with 3MB input
and 40KB output.

CPU task FPGA kernel PCIe network

88 2.29 0.0005 0.004

updated S for remote clients and an updated Matching Core Number in the modeling

phase.

6.4.2 Evaluation of FCS GATK Acceleration Solution

To demonstrate how Mocha improves the overall application cost for HTC and

Mutect2 on different platforms, we run these two applications on AWS EC2 and

Huawei Cloud respectively for the dataset as specified in Table 6.5. We have two

baselines: pure CPU solution and straightforward CPU-FPGA integration solution

in Blaze. For each dataset, we measure the time by running it 10 times and taking

the average latency.

As shown in detail in Section 6.2, on each platform, for each application, Mocha

generates system configuration file which specifies the number and type of CPU nodes

we should launch to fully utilize CPU and FPGA. To do a fair comparison of Mocha

with two baselines, we launch instances for each baseline with same number of CPU

cores as P̃ in Mocha modeling. We summarize instances for pure CPU, Blaze and

Mocha in Table 6.4.

Table 6.4: Mocha system configuration for HTC and Mutect2 on AWS EC2 and
Huawei Cloud. For example, eight f1.2x:8 means we launch eight f1.2x instances,
each with 8 CPU cores.

Application
AWS EC2 Huawei Cloud

P̃ pure CPU Blaze [HWY16] Mocha P̃ pure CPU Blaze [HWY16] Mocha

HTC 64 m4.16x :64 eight f1.2x: 8 f1.2x: 8, m4.10x: 48, m4.2x: 8 64 s2.16x: 64 two fp.1c: 32 fp.1c:32, s2.8x:32

Mutect2 6 f1.2x:8 f1.2x: 8 f1.2x: 8 6 fp.1c: 32 fp.1c: 32 fp.1c: 32

118

Table 6.5: Comparison of performance and cost of pure CPU solution, Blaze and
Mocha.

Application SampleID
AWS EC2 Huawei Cloud

pure CPU Blaze [HWY16] Mocha pure CPU Blaze [HWY16] Mocha
Time Cost Time Cost Time Cost Time Cost Time Cost Time Cost

HTC NA12878 [Ill19]
578 $0.51 362 $1.33 386 $0.48 577 $0.55 361 $0.58 378 $0.49
1x 1x 1.60x 2.61x 1.50x 0.94x 1x 1x 1.60x 1.07x 1.53x 0.89x

HTC NA12891 [Ill19]
592 $0.53 381 $1.40 404 $0.50 591 $0.57 369 $0.60 373 $0.48
1x 1x 1.55x 2.64x 1.47x 0.93x 1x 1x 1.60x 1.06x 1.58x 0.84x

HTC NA12892 [Ill19]
549 $0.49 352 $1.29 374 $0.46 542 $0.52 349 $0.57 356 $0.46
1x 1x 1.56x 2.63x 1.47x 0.94x 1x 1x 1.55x 1.09x 1.52x 0.88x

HTC NA12878Garvan [Sta16]
2767 $2.46 1731 $6.35 1767 $2.18 2709 $2.61 1710 $2.79 1778 $2.30
1x 1x 1.60x 2.58x 1.57x 0.89x 1x 1x 1.58x 1.07x 1.52x 0.88x

HTC Average 1x 1x 1.58x 2.62x 1.50x 0.93x 1x 1x 1.58x 1.07x 1.54x 0.87x

Mutect2 TCRBOA1 [BCM18]
16784 $1.86 3047 $1.40 2885 $1.32 4196 1$.90 2807 $2.21 1850 $1.45

1x 1x 5.51x 0.75x 5.82x 0.7x 1x 1x 1.49x 1.16x 2.27x 0.76x

Table 6.5 gives a comparison of performance in seconds and cost in dollars of

pure CPU solution, Blaze, and Mocha on four sequences for HTC and one sequence

for Mutect2 in AWS and Huawei Cloud. We also give normalized performance

improvement and application cost of Blaze and Mocha as compared to the pure CPU

solution. The average normalized value of HTC and Mutect2 are shown in bold font

to highlight the performance and cost difference of pure CPU, Blaze and Mocha. As

shown in the row of averaged normlized value for HTC, Blaze incurs 2.62x more

extra cost than pure CPU. This corresponds to I in Table 4.1, where inefficiency

comes from FPGA underutilization. Mocha improves cost efficiency by borrowing

cores from CPU nodes to send tasks to a single f1.2x instance to do acceleration.

As a result, Mocha can spend less dollars per hour than Blaze, while achieving 1.5x

performance improvement than pure CPU, which has a 5% degradation compared to

1.58x fpr Blaze. Equation 6.3 gives an estimated I ′ = 0.86, and experimental result

gives 0.93. In other words, our modeling accuracy is as high as 92%. For Mutect2,

according to Table 4.1, P̃ is 6, very close to 8 CPU cores on f1.2x, which implies a

narrow optimization space for Mocha. In this case, by partially offloading kernel tasks

from FPGA to CPU, Mocha further improves the performance compared to Blaze

119

by 5.82
5.51

=1.06x. As in Mutect2, all three solutions use the same instance, and they

all spend the same amount of dollar per hour. The 1.06x performance improvement

naturally translates to a 1.06x cost savings. Similar analysis can be performed on

Huawei Cloud. As opposed to Blaze, Mocha improves cost efficiency of HTC by

1.07
0.87

= 1.22x with a 3% performance degradation. For Mutect2, Mocha improves

performance by 2.27
1.49

= 1.52x, and that translates to 1.52x cost savings.

6.5 Related Work

Cost Optimization on Cloud Systems. There is a lot of existing work that dis-

cusses optimizing the cost saving on cloud systems on aspects other than accelerators.

Authors in [MH11b] presented an approach to minimize the cost given a hard job

deadline. HCloud focused on cost saving on reserved and on-demand hybrid cloud

systems with quality of service (QoS) constraints [DK16]. Paris reduces cost by

accurately predicting performance of users across cloud providers [YHG17]. Tributary

targeted the cost savings on spot instances [HCT18]. Selecta [KLK18] and Doppio

[ZRF18b] both attempted to reduce storage cost while maintaining performance of

workload.

FPGA Sharing on Cloud Systems. In past few years, researchers have devoted

a lot of effort to integrating FPGAs into the current cloud computing environment by

providing vitalization infrastructures for FPGAs. Authors of [WZH16] presented a

framework to scatter and gather data on FPGAs in a MapReduce manner. Iordache

et al. [IPS16] proposed a notion called FPGA Groups to share FPGAs among

multiple tenants who wish to use the same circuit design. A similar model called

Blaze [HWY16] was proposed to reduce the programming efforts of the FPGA groups.

120

Authors of [TLF17] built a framework that can create and manage FPGA clusters on

cloud systems based on OpenStack.

PairHMM Accelerator Designs on FPGAs. Previous PairHMM accelerator

designs on FPGAs mostly used a systolic array architecture [RPA16, HMR17, IO16,

PRA16, RSA15]. The systolic array architecture only performs well on Arria10 FPGAs

with the help of hardened DSP blocks [RPA16, HMR17]. On Xilinx platforms, the

PairHMM design is either bound by LUTs resource [PRA16, IO16, BET17] or has

relatively low frequency [RSA15].

6.6 Conclusion

There exists a computation throughput mismatch problem between the CPU and

FPGA for many applications. On current public clouds such as AWS and Huawei

Cloud, which leads to extra out-of-pocket costs for the CPU-FPGA integration

solution over a pure CPU solution. To address this problem, We propose a framework

called Mocha that enables FPGA sharing among multiple nodes through network and

partial task offloading policy for CPUs. Mocha guarantees that the cost efficiency of

a CPU-FPGA solution is higher than the pure CPU solution as long as the FPGA

kernel speedup is higher than the cost ratio. We present a performance comparison of

FCS accelerator and provide model-driven cost optimization case studies for Genome

Variant Calling applications, HTC and Mutect2, in two public cloud platforms—

Amazon EC2 and Huawei Cloud. On AWS, adopting Mocha gives a 2.82x cost saving

for HTC, 1.06x for Mutect2, and on Huawei Cloud it gives 1.22x, 1.52x cost savings

respectively.

121

CHAPTER 7

Cost Optimization with Composable Instances in

Public Cloud

In Chapter 6, we have proposed Mocha framework that enables FPGA sharing among

multiple nodes through network and partial task offloading policy for CPUs. Mocha

framework creates composable instances where CPUs and FPGA throuoghput are

balanced. These composable instances achieve the best cost efficiency in CPU-FPGA

integration by fully utilizing CPUs and FPGA resources for a given application with

certain kernel ratio r and accelerator speedup S. In this chapter we will discuss the

application of modeling performance and cost at the public cloud where composable

instances are enabled—that is, optimize the overall cost of running whole genome

processing given certain deadline constraints. In a public cloud, the primary concern

is how to run an application with the least out-of-pocket cost; i.e., that is, how

to choose instances and schedule genome pipeline stages to achieve the least cost

given different deadline constraints? We first show in Section 7.1 how we model this

question as a MILP problem. In Section 7.2, we present the experiment results on

AWS EC2 and the instance choices for each stage that achieve the optimal cost given

certain deadlines.

122

7.1 Modeling

In a public cloud, we consider that there are multiple CPU instances. Different

instances have different CPU types, as shown in Table 7.1. In each CPU type series,

different instances have a different number of CPU cores, memory sizes and prices

[Ama19b], as shown in Table 7.2. For each instance, there is a different execution time

for genome pipeline applications. We can schedule genome pipeline stages on different

instances, upload and download intermediate data through the AWS S3 bucket to

achieve optimal cost while meeting the deadline targets. In the following sections

we abstract away these factors as parameters and explain how we formulate the

scheduling problem by introducing the variables, objective function and constraints.

Table 7.1: Amazon EC2 instances series and CPU type.

instance CPU

m4 Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz

m5 Intel(R) Xeon(R) Platinum 8175M CPU @ 2.50GHz

c5 Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz

f1 Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz

Table 7.2: Amazon EC2 instances, number of CPU cores, memory sizes and on-demand
prices (dollars per hour).

m5.large m4.x m5.x c5.2x m4.2x m5.2x f1.2x c5.4x m4.4x m5.4x m4.10x f1.16x

cores 2 4 4 8 8 8 8 16 16 16 40 64

memory (GB) 8 16 16 16 32 32 122 32 64 64 160 976

price ($/hr) 0.096 0.2 0.192 0.34 0.4 0.384 1.65 0.68 0.8 0.768 2 13.2

7.1.1 Input Parameters

The following parameters need to be provided as inputs in the optimization problem:

123

DDL: Deadline to finish whole genome pipeline processing.

I: Set of different types of compute instances.

M : Maximum number of instances for each type of instance.

N : Set of whole genomes to be processed.

T : Set of stages in genome pipeline. For genome pipeline, stage t depends on stage

t− 1.

pi: On-demand price of instance i ∈ I.

setup: Setup time of an instance. This time is used to install necessary tools and

packages.

stagei,t: Runtime of instance i for stage t. The value is an integer.

uploadi,t: Upload time of intermediate data for stage t on instance i. The value is an

integer.

downloadi,t: Download time of intermediate data for stage t on instance i. The value

is an integer.

7.1.2 Variables

We introduce the following variables in the optimization problem:

C: Total out-of-pocket expense of running whole genomes in the public cloud.

gi,m: Total running time of type i, m-th instance. The value is an integer.

ivi,m: A flag indicating whether type i, m-th instance is launched (ivi,m = 0) or not

(ivi,m = 1). If the instance has not been scheduled with any stages for any genomes,

it is considered not launched. The value is binary.

124

As,t,i,m: Allocation variable indicating genome s, stage t is allocated to type i, m-th

instance. The value is binary.

As0t0,s0t1,i0m0,i1m1 : Allocation variable indicating task edge of genome s, stage t0 to

stage t1 is mapped to physical edge of type i0, m0-th instance and type i1, m1-th

instance. The value is binary.

Ss,t : Computed start time of genome s, stage t. The value is an integer.

Es,t : Computed end time of genome s, stage t. The value is an integer.

Os0t0,s1t1 : A flag indicating whether two tasks (genome s0, stage t0 and genome s1,

stage t1) overlap. The value is binary.

7.1.3 Objective Function

The objective function defines the optimal solution target. The optimal solution

ensures executing genome pipeline processing on the given public cloud using the least

amount of out-of-pocket cost while meeting a given deadline constraint. Therefore,

the objective function is:

minC (7.1)

7.1.4 Constraints

The optimization problem needs to first consider the out-of-pocket cost constraints

as cost is the optimization target. Then, scheduling needs to consider the hardware

constraints including that all tasks are allocated to exactly one of the instances, and

if two tasks are scheduled on the same instance, they can not overlap one another.

Last, scheduling needs to meet the deadline constraints.

125

To account for cost constraints, we add the following set of constraints:

The first constraint is the definition of C, the total out-of-pocket cost. It is the sum

of the cost of all the instances. For each instance, cost is the multiplication of price

per hour pi and total running time gi,m.

C =
∑

i∈I,m∈M

pi × gi,m (7.2)

To capture the total running time of type i, m-th instance gi,m, we should add up the

setup time, stage run time, upload time (if the subsequent stage is scheduled onto

a different machine) and download time (if the previous stage is scheduled onto a

different machine). Setup time is only counted in if an instance is launched (ivi,m =

0). Stage run time is the time to execute stages that are assigned on the instance.

Upload time is the total time spent if a stage is scheduled on the instance and the

subsequent stage is scheduled on a different instance. The condition of different

instances are characterized as i0 6= i1 OR m0 6= m1. Similarly, download time is the

total time spent if a stage is scheduled on the instance and the previous stage is

scheduled on a different instance. Therefore, we add the following constraint:

gi,m = (1− ivi,m)× setup +
∑

s∈N,t∈T
As,t,i,m × stagei,t

+
∑

s0∈N,t0∈T \ last stage,t1=t0+1,i0=i,m0=m,i0 6=i1∨m0 6=m1

As0t0,s0t1,i0m0,i1m1 × uploadi0,t

+
∑

s0∈N,t1∈T \ 0th stage,t1=t0+1,i1=i,m1=m,i0 6=i1∨m0 6=m1

As0t0,s0t1,i0m0,i1m1 × downloadi1,t

126

To capture an invalid variable ivi,m of type i, m-th instance, that is, ivi,m is only 1

when all As,t,i,m are 0. If any of the stage is mapped to the instance, that is, one of

As,t,i,m is 1, then ivi,m = 0:

ivi,m +
∑

s∈N,t∈T

As,t,i,m ≥ 1 (7.3)

ivi,m ≤ 1− As,t,i,m,∀s ∈ N, t ∈ T (7.4)

To account for hardware constraints, we add the following set of con-

straints:

To capture that all the tasks are allocated to exactly one of the instances, that is ,

As,t,i,m can only be 1 for 1 instance, 1 machine, we have the following constraint:

∑
i∈I,m∈M

As,t,i,m = 1 (7.5)

To capture that for each task edge, there is one mapping for the edge to one same

node or the physical communication between two nodes, that is, As0t0,s0t1,i0m0,i1m1

can only be 1 for just one connection between two machines or one machine:

∑
As0t0,s0t1,i0m0,i1m1 = 1 (7.6)

In addition, to capture that for each task edge, As0t0,s0t1,i0m0,i1m1 is 1 for 1 if As0,t0,i0,m0

and As1,t1,i1,m1 are both 1, we have the following constraint:

As0t0,s0t1,i0m0,i1m1 − As0,t0,i0,m0 − As1,t1,i1,m1 ≥ −1 (7.7)

127

To capture the overlapping CPU cores constraints, for each pair of tasks executing

on the same instance a, check that two tasks do not overlap. In other words, for any

(s0t0,s1t1) pairs when there is no dependency for task as genome s0, stage t0 and task

as genome s1, stage t1, we have the following constraints:

Ss1,t1 − Es0,t0 ≥ −Φ×Os1t1,s0t0

Ss1,t1 − Es0,t0 < −Φ× (1−Os1t1,s0t0)

Ss0,t0 − Es1,t1 ≥ −Φ×Os0t0,s1t1

Ss0,t0 − Es1,t1 < −Φ× (1−Os0t0,s1t1)

As0t0,i,m + As1t1,i,m +Os1t1,s0t0 +Os0t0,s1t1 ≤ 3

Φ is a large enough integer constant to bound the difference.

To account for deadline constraints, we have the following set of con-

straints:

To capture that the whole pipeline processing needs to be finished by deadline DDL,

end time of last stage (T-1) in every genome should be smaller than DDL, we have

the following constraints:

Ss0,T−1 +
∑

i∈I,m∈M

As0,t=T−1,i,m × stagei,t=T−1

+
∑

t1=T−1,t0=T−2,i0 6=i1∨m0 6=m1

As0t0,s0t1,i0m0,i1m1 × downloadi1,t

≤ DDL, ∀s0 ∈ N

128

To capture the precedence in the stages within a genome, the start time of the

subsequent stage is larger than the finish time of the previous stage, we have the

following constraints:

Ss0,t +
∑

i∈I,m∈M

As0,t,i,m × stagei,t

+
∑

t1=t+1,t0=t,i0 6=i1∨m0 6=m1

As0t0,s0t1,i0m0,i1m1 × uploadi0,t

+
∑

t1=t,t0=t−1,i0 6=i1∨m0 6=m1

As0t0,s0t1,i0m0,i1m1 × downloadi1,t

≤ Ss0,t+1,∀s0 ∈ N,∀t ∈ T \ T − 1

To capture that start time of the first task in each genome is larger than setup time,

we have the following constraints:

Ss,0 ≥ setup (7.8)

7.2 Experiment Setup and Evaluation

On the AWS amazon EC2, there are many CPU instances to choose from. Dif-

ferent instances have different CPU types (Table 7.1), number of CPU cores and

prices [Ama19b] (Table 7.2).

7.2.1 Profiling

The runtimes of a whole genome sequence NA12878-Garvan (Table 6.5) of each stage

in different CPU instances are profiled in Table 7.3.

129

Table 7.3: Amazon EC2 instances and runtime (seconds) for different stages.

m5.large m4.x m5.x c5.2x m4.2x m5.2x f1.2x c5.4x m4.4x m5.4x m4.10x f1.16x

Aligner NA NA NA NA 77076 65654 73688 36080 40283 33297 19684 11889

BQSR 24536 19401 12820 16896 9988 8073 10107 12352 5722 3650 3065 2374

HTC 73800 46246 37597 42875 27319 23726 17251 15728 17539 13931 11607 4442

7.2.2 MILP Solving

We use the profiling data to build ILP formulation as described in Section 7.1.

We automate the modeling part by writing Python scripts to generate MIP LP

files [IBM18b] that consider different deadline constraints. The generated LP files are

solved by calling IBM’s CPLEX solver [IBM18a]. CPLEX solver gives the optimal

configuration that costs the least under certain time constraints. We sweep the

deadline time constraints from 19000 seconds (5.3 hours) to 99000 seconds (27.5

hours), get the cost and corresponding configurations as shown in Figure 7.1. We

conduct a polynomial curve fitting and the fitting equation is y = −3E−23x5 +

2E−17x4 − 4E−12x3 + 4E−07x2 − 0.0174x+ 295.55 with R2 = 94%.

7.2.3 When Mocha is Applied

As explained in Chapter 6, on Amazon EC2, running HTC can use the Mocha

framework to improve the latency and cost at the same time. In this way, we introduce

the new instance type that combines one f1.2xlarge and m4.16xlarge instance; that

is, f1.2x + m4.16x. f1.2x + m4.16x runs HTC as fast as f1.16xlarge.1 However,

they are priced at 1.65+ 3.2 = 4.85 dollars per hour, which is much less than 13.2

dollars per hour of f1.16x. We take into consideration this instance, and sweep

1Runtime of three stages for this configuration are 15657, 2380, 4267 seconds.

130

Figure 7.1: Cost under different time constraints.

the deadline time constraints from 19000 seconds (5.3 hours) to 99000 seconds (27.5

hours). The cost and corresponding configurations are shown in Figure 7.2. As shown

here, when using f1.2x+m4.16x, the cost to meet a deadline as small as 19800 seconds

(5.5 hours) reduces from $70 to $56. We conduct a polynomial curve fitting and the

fitting equation is y = −9E−22x5 + 3E−16x4− 3E−11x3 + 2E−06x2− 0.0478x+ 518.53

with R2 = 95%.

131

Figure 7.2: Cost under different time constraints when Mocha framework is used.

7.2.4 Multiple Genomes

When there are multiple genomes, we can sweep the time deadline to a larger range

and examine the cost. When a deadline is smaller than 123800 seconds, the optimal

configuration for #genome = 1 and #genome = 2 are the same. When there are two

genomes and the deadline constraint is larger than 123800 seconds, the cost to run

two genomes can be further reduced from $10.603 to $10.563. The minimum cost of

running two genomes is $10.551, where two genomes run in sequential on the same

machine. Here, after the first genome has finished execution of BQSR, HTC on the

132

m5.xlarge instance, the second genome starts execution of BQSR HTC stages. The

savings from $10.603 to $10.563 comes from reusing the same machine, thus saving

the one-time effort in machine setup.

Figure 7.3: Cost under different time constraints when number of genome is one and
two.

When there are more genomes—for example, three, four and five genomes—the

costs show trends similar to when there is only one genome. However, when there are

more genomes, the minimum cost-per-genome further reduces, as shown in Table 7.4.

The reason is that when there are more genomes and the deadline constraints are loose

enough, it is possible to execute all the genomes in the same machine sequentially.

Thus, the savings is in the one-time effort to set up the machine. However, this saving

gives less and less marginal benefits. In this way, duplication of configurations when

133

the number of genomes = 2 is good enough for any given number of genomes (larger

than 2).

Table 7.4: Minimum cost per genome when number of genome(s) are 1,2,3,4 and 5.

#genome(s) deadline (seconds) minimum cost per genome marginal benefits (%)

1 87800 10.603 NA

2 138200 10.551 0.49%

3 188600 10.533 0.17%

4 239000 10.524 0.09%

5 289400 10.519 0.05%

7.3 Discussion on Spot Instances

Amazon AWS offers spot instances that are unused and priced much lower than

on-demand prices. Instead of fixed prices for on-demand instances, spot instances are

priced dynamically based on demand. The spot instances will be interrupted when

the bid prices are lower than current spot prices [Amab]. We look at three months of

pricing history [Amae, Amad, Amac, Bri] for spot instances in US regions and report

the highest spot instance prices for each instance as shown in Table 7.5 (accessed on

July 10th 2019). We request the spot instances at the highest prices within three

months to minimize the interrupted rate (less than 5% in a month [Amab]).

We sweep the deadline time constraints from 19000 seconds to 99000 seconds

when spot instances are considered; the cost and corresponding configurations are

shown in Figure 7.4. As shown here, the total out-of-pocket cost is reduced from when

f1.2x+m4.16x is used; cost that meets a deadline as small as 19800 seconds reduces

from $56 to $17—which saves around 70% of on-demand instances. When the deadline

134

constraint is loosened to more than 87800 seconds (24 hours), the out-of-pocket cost

can be as small as $4.84 (less than $5) per whole genome.

Table 7.5: Amazon EC2 instances and highest spot instance prices within three
months (dollars per hour).

m5.large m4.x m5.x c5.2x m4.2x m5.2x f1.2x c5.4x m4.4x m5.4x m4.10x f1.16x m4.16x

on-demand price ($/hr) 0.096 0.2 0.192 0.34 0.4 0.384 1.65 0.68 0.8 0.768 2 13.2 3.2

spot instance price ($/hr) 0.0323 0.0615 0.0771 0.1365 0.1236 0.1592 0.495 0.2805 0.2548 0.3566 0.6155 3.96 0.9847

Figure 7.4: Cost under different time constraints when spot instances are used.

We also design a mechanism to check whether a spot instance is interrupted. Once

each launched task starts, we append one line of information in corresponding instance

status files shared on the S3 bucket. For each launched spot-instance, the instance

135

status file includes input genome information, stage information, and start/finish

flags. Once the task finishes, we append another line of information in the instance

status file. The master node that is responsible for launching all the spot-instances

and tasks periodically (every minute) checks the status of all launched spot-instances.

Once it detects that a spot-instance is interrupted, it checks the corresponding status

file and relaunches the task that does not have the finish tag line information.

7.4 Related Work in Scheduling for Optimal Cost

We first summarize the scheduling problem for optimal cost. Many prior work study

optimal cost scheduling on public clouds considering using different computation

resources, storage resources and data management. [DSL08] examines the cost

of running scientific workloads (astronomy application) on public clouds by using

different execution and resource provisioning policies that includes different numbers

of provisioned processors requested for the application and different data management

solutions. This paper uses simulator to evaluate different execution cost models.

Many other work use integer programming model to solve the cost optimal scheduling

problem. [VVB10] studies the cost-optimal scheduling in hybrid clouds, where internal

private IT infrastructures are in tandem with the public cloud services. It formulates

the problem as a linear programming problem and investigates when there are

different instances with different memory, CPU, and data communication overheads.

However, the paper does not consider the persistent storage cost. [ZZT13] also

studies the cost optimal scheduling problem for hybrid clouds where external public

cloud resources are requested when private local resources are not efficient. They

propose integer programming models to solve the problem. In their modeling, they

136

omit the storage resource in the model as well. HCOC [BM11] decides what tasks in

a workflow are executed in a private cloud or in a public cloud provider to minimize

the monetary costs and makespan at the same time in hybrid cloud settings. [MH11a]

propose auto-scaling methods to guarantee that the jobs are finished within specified

deadlines at minimum cost. They assume the application owners do not know the

workloads ahead. Thus, it requires a monitor-control loop, where in each loop a

new scheduling and a splicing decision are reevaluated based on updated workload

information. This also belongs to dynamic scheduling problems while our work

belongs to static scheduling problems. [MJD15] discuss new scheduling algorithm

based on both static and dynamic strategies for task scheduling and cloud resource

provisioning. They also take into consideration runtime prediction uncertainties,

task failures and provisioning overheads. [Man15] focuses on virtual machine (VM)

allocation problems to minimize costs using the host, with an emphasis on cost from

energy consumption and penalties in migrations of VMs while meeting quality of

service (QoS) requirements. [CCS10] investigates the cost optimization by using

spot instances (SIs) for MapReduce workloads. Unlike on-demand and reserved VM

instances, SIs are inexpensive; however, they are prone to early termination.

Instead of extensively profiling each application in each instance ahead of time,

many prior work [DK13, DK14] use feature extractions and predictions to characterize

an a new workload. Paragon [DK13] is an online datacenter scheduler that considers

heterogeneity and interference to guarantee QoS. Instead of extensively profiling every

single application in each instance, Paragon uses collaborative filtering algorithms

to characterize every new application by using the historical data of previously seen

applications in the system. Paragon is very scalable and applies to a large number of

servers (over tens of thousands) and experiment results show that Paragon achieves

137

91% performance guarantees and improves server utilization in large-scale cloud

systems where large amounts of workloads are collocated. Heterogeneity comes

from the fact that servers are usually replaced in 15-years. Heterogeneity incurs 2x

runtime difference for a single application. Interference stems from the fact that

multiple workloads are usually scheduled on a same server to achieve higher utilization

and cost efficiency. However, these workloads usually impair performance of each

other as caches, memory, networking, and storage resources are shared. Paragon

uses offline training on previously seen applications and requires minimal profiling

for a newly arrived workload. Experiment results show that Paragon effectively

characterizes new workloads while maintaining high QoS for different workload cases.

Quasar [DK14] presents a cluster management system that solves the low resource

utilization issue in the public cloud and provides high QoS at the same time. When

users do not understand the workload characteristics and resource requirements, they

might allocate too many reserved instances and the reserved resource is underutilized

(<20% as demonstrated in this paper for a production cluster at Twitter). Low

utilization in the cloud incurs wasted energy and unnecessary operational expenses.

Quasar is a cluster manager that determines how to allocate the appropriate resources

for each workload and how to choose the right instances. In order to achieve these

goals, it needs to meet performance and resource utilization targets at the same

time. Quasar lets users to simply tell the performance requirements instead of

detailed planned resource reservations, which allows transparent handling of resource

allocations to end users. In addition, Quasar uses small profiling information from

the newly arrived workload, compares it to the previously scheduled workloads, and

performs machine learning algorithms to evaluate the impact of scaling-up, scaling-out,

different server configurations, and collocated workloads interference. Quasar then

138

predicts results to allocate the right set of resources that are needed for the workload.

If the performance severely differs from the QoS requirements, Quasar adjusts the

resource allocation during the runtime. Quasar is evaluated on public cloud servers

with a broad range of application workloads—including data analytic frameworks,

latency-driven workloads, and batch workloads as well. Experiments show that server

utilization is improved by 47% and individual workload performance is also improved.

These two work can be useful in our framework to ease the burden to do extensive

profiling for the studied application.

While our work mainly studies scheduling strategies for on-demand resources

in public cloud, some other work also take reserved resources into consideration.

HCloud [DK16] presents hybrid scheduling strategies that use both reserved and on-

demand resources in the public cloud considering the overall workload and instance

unpredictability. There are two types of resources in the public cloud—reserved

instances and on-demand resources. For each type of resource, there are different

types and sizes of instances. The paper studies general workload scenarios that

include three different sets that have a combination of batch (throughput-driven) and

latency-driven applications with varying levels of load variability. Knowledge of the

applications is not needed to be known ahead of scheduling. HCloud, as a hybrid

provisioning system, uses both reserved instance and on-demand instance, which

provides the best cost efficiency for both long-term and short-term loads. There

are three baseline scheduling strategies: statically reserved resources strategy (SR),

dynamic on-demand full (OdF), dynamic on-demand mixed scheduling (OdM). There

are also two hybrid provisioning strategies: one only uses larger (HF) and stable

on-demand instances (16 vCPUs) and the other uses a mix (HM) of different instance

types including smaller instances. HCloud determines the number of resources

139

and where to schedule the workload to satisfy QoS constraints. By leveraging the

lightweight profiling information [DK14], hybrid strategies HF and HM achieve within

8% of the performance of SR strategy and outperform OdF and OdM strategies. In

terms of cost, HF and HM incur lower costs than SR, OdF and OdM. Although these

prior work made significant contributions to cost optimization in public cloud, to

the best of our knowledge, we are the first to propose composable instances from a

combination of general purpose instances and CPU-FPGA instances in public cloud

to save more in cost optimization.

140

CHAPTER 8

Latency Optimization for Domain Specific

Application in Private Cloud

In this chapter we discuss the application of modeling performance in the private cloud

level—that is, optimizing the overall latency of running a specific application, e.g.,

whole genome processing given certain cloud settings. We study latency optimization

in private workload specific clusters (WLSC) considering this scenario: an institute,

a hospital or a company has a highly repetitive workload and need to finish all the

work as soon as possible. Optimizing the latency of these workloads in these private

WLSC is of the most importance. WLSC tend to have more constraints because the

hardware resource is more likely to be fixed after the private clusters are setup. For

example, there are certain number of CPU cores in a cluster node, and there are

certain size of storage space in a cluster node. Moreover, the workload to be studied

has more detailed performance characterization and modeling. For example, the

whole genome sequencing pipeline we study has two stages and the runtime of each

stage is characterized as a sequential part and a parallizable part. A key question

arises: how can we schedule highly repetitive workloads on these WLSC in a minimum

latency? We show in Section 8.1 that we can model this problem as a MILP problem.

In Section 8.2, we present the results from the solver for small problem sizes when

the number of genomes in the workload is small. When the number of genomes is

141

larger, runtime from the solver is huge. We propose three heuristics that achieve

smaller optimality gap with those of the optimal solution, and use the runtime from

heuristics as base cases to construct optimal scheduling when there are more genomes.

The proposed heuristics are scalable to a larger number of genomes. Due to the time

constraint, we consider CPU optimization only and leave the integration of FPGA

accelerations as future work.

8.1 Modeling

In a private cloud, we consider that there are multi-core servers with certain sizes

of storage disks (SSDs or HDDs). When running genome processing in a server,

launching multiple threads can reduce the execution time for a single genome. Based

on this observation, we model the runtime of each processing stage as a sequential

part c0 and parallelizable part t0. The sequential part represents time in reading the

reference genome, dbsnp files, or other constant overheads. The parallelizable part

represents time in processing genome base pairs that can be fully distributed among

multiple threads. If scheduling a genome to use all the threads, every thread is paying

idle CPU cycles while waiting for the constant parts. If scheduling a genome to use

just one thread and there are multiple genomes running in parallel, then it requires

a lot of storage space for intermediate data. Therefore, we first model the problem

as an optimal latency scheduling problem under certain CPU core constraints and

storage space in the following sections.

8.1.1 Input Parameters

N : Set of whole genomes to be processed.

142

T : Set of stages for all genomes.

R: Set of cores in a server.

Y : Set of storage spaces. Each storage space is for a whole genome.

c0, t0, c1, t1: Time for series part and parallel part for stage 0 and stage 1 in genome

processing. For example, when there are 4 cores for a stage 0 task, runtime of the

task is c0 + t0
4

.

8.1.2 Variables

pi,j : Allocated number of cores variables of genome i, i ∈ N , stage j. Runtime of a

stage is cj +
tj
pi,j

The value pi,j is an integer.

Si,j : Computed start time of genome i, stage j. The value is an integer.

Ei,j : Computed end time of genome i, stage j. The value is an integer.

Ai,j,a : Allocation variables indicating genome i, stage j is allocated to core a, a ∈ R.

The value is binary.

Ci,b: Allocation variables indicating genome i is scheduled to storage space b, b ∈ Y .

The value is binary.

Oi0j0,i1j1 : A flag indicating whether two tasks overlap (on a same CPU core). The

value is binary.

Qi,j: A flag indicating whether two genomes overlap (on a same storage space). The

value is binary.

X: An artificial variable that represents the makespan of the application. The value

is an integer.

143

8.1.3 Objective Function

The objective function defines the optimal solution target. The optimal solution

ensures executing genome pipeline processing on the given private cloud using the

least amount of time given a set of CPU resource and storage resources. Therefore,

the objective function is:

minX (8.1)

8.1.4 Constraints

The optimization problem needs to first consider deadline constraints since the

latency is the optimization target. Then, scheduling needs to consider the hardware

constraints including that there are a certain number of cores allocated for a genome

stage, there is one storage space allocated for a genome, and if two tasks are scheduled

on the same CPU core or storage space, they can not overlap with one another. Last,

in order to obtain a MILP problem, we use piecewise-linear approximation to replace

the nonlinear terms 1
pi,j

.

To account for deadline constraints, we have the following set of con-

straints:

Runtime X is the maximum end time of the last stage (here is stage 1) in every

genome:

Si,1 + c1 +
t1
pi,1
≤ X, ∀i ∈ N (8.2)

To capture the precedence in the stages within a genome, the start time of the later

144

stage is larger than the finish time of the earlier stage:

Si,1 ≥ Si,0 + c0 +
t0
pi,0

, ∀i ∈ N (8.3)

To account for hardware constraints, we have the following set of con-

straints:

To capture that there are pi,j cores allocated for the task genome i, stage j:

∑
a∈R

Ai,j,a = pi,j (8.4)

To capture that each genome needs one storage space:

∑
b∈Y

Ci,b = 1 (8.5)

To capture the overlapping CPU core constraints, for each pair of tasks executing on

the same node a, check that two tasks do not overlap. Therefore for any (i0j0,i1j1)

pairs when there is no dependency for task as genome i0, stage j0 and task as genome

i1, stage j1, we have the following constraints:

Si1,j1 − Ei0,j0 ≥ −Φ×Oi1j1,i0j0

Si1,j1 − Ei0,j0 < −Φ× (1−Oi1j1,i0j0)

Si0,j0 − Ei1,j1 ≥ −Φ×Oi0j0,i1j1

Si0,j0 − Ei1,j1 < −Φ× (1−Oi0j0,i1j1)

Ai0j0,a + Ai1j1,a +Oi1j1,i0j0 +Oi0j0,i1j1 ≤ 3

145

Φ is a large enough integer constant to bound the difference.

To capture the overlapping storage resource constraints, for each pair of genomes

executing on the same storage space b, check that two genomes do not overlap. Then

for any pairs of two genomes (i,j), we have the following constraints:

Sj − Ei ≥ −Φ×Qi,j

Sj − Ei < −Φ× (1−Qi,j)

Si − Ej ≥ −Φ×Qj,i

Si − Ej < −Φ× (1−Qj,i)

Ci,b + Cj,b +Qi,j +Qj,i ≤ 3

To be noted here, depending on j is 0 or 1, the end time for genome i, stage j is :

Ei,j = Si,j + cj +
tj
pi,j

(8.6)

The start time of genome i is the start time of genome i, stage 0 and end time for

genome i is end time of genome i, last stage (here is stage 1).

Si = Si,0, Ei = Ei,1 (8.7)

Transformation of nonlinear 1
pi.j

terms into piecewise-linear approxima-

tion:

The above constraints have nonlinear terms 1
pi,j

. In order to obtain a MILP problem,

we transform pi,j into discrete values and introduce split factors as the following

146

spliti,j,a: Split flag indicating genome i, stage j has used a cores to do processing.

The value is binary. After introducing this value, end time of genome i, stage j is

rewritten as the following:

Ei,j = Si,j + (cj +
tj
1

)× spliti,j,1 + (cj +
tj
2

)× spliti,j,2 + ...+ (cj +
tj
R

)× spliti,j,R (8.8)

To capture that only one split factor is valid, we have the following constraint:

spliti,j,1 + spliti,j,2 + ...+ spliti,j,R = 1 (8.9)

To capture that there are in total pi,j cores, Equation 8.4 is rewritten as:

∑
a∈R

Ai,j,a = pi,j = 1× spliti,j,1 + 2× spliti,j,2 + ...+R× spliti,j,R (8.10)

8.2 Evaluations

We evaluate the private cloud setting in the CDSC cluster where each server is a

56-core machine. The CPU is Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz. Each

server has 2TB HDD storage space. For the WGS genome pipeline, the vcf file needs

20GB, fasta file needs 3GB. Input fastq file and bam file needs around 100GB. Thus,

in a server, there can be at most 8 concurrent whole genomes being processed. We

profile a BWA, GATK pipeline (BQSR+HTC) stage on the server, and obtain the

constant runtime and parallelizable runtime as the following:

By using the profiling runtime, we automate the modeling part by writing Python

scripts to generate a corresponding MILP LP file for a different number of input

147

Table 8.1: Constant and parallelizable runtime in private cloud.

stage constant part parallel part

BWA 5075 580122

BQSR+HTC 3994 372040

genomes. The generated MILP file is solved by the IBM CPLEX solver. The optimal

runtime for different numbers of genomes is shown in Table 8.2.

Table 8.2: Optimal runtime when there are different numbers of genomes.

#genome optimal runtime (seconds)

1 26071

2 43074

3 60269

4 77080

8.2.1 Configurations of Optimal Results

When #genome is 1, both stages use all CPU cores. When #genome is 2, both stages

in two genomes use 28 cores. Thus runtime is 5075 + 580122
28

+ 3994 + 372040
28

= 43074.

When #genome is 3, the three genomes are allocated with # cores as shown in

Figure 8.1.

When #genome is 4, both stages in four genomes use 14 cores.

More genomes. When #genome is larger than 4, it takes an extremely long time

to get the optimal solution. For example, when #genome = 6, the solver can not give

optimal results after 366 hours even if the solver is calculating using multithreading.

As shown in Section 8.1, the number of variables is 6N + 5NR +NY + 5C2
N . The

number of constraints is 9N + 20× C2
N + 4C2

N ×R + C2
N × Y . We show the number

148

Figure 8.1: Configurations of optimal cost when #genome = 3.

of variables and constraints for different numbers of genomes in Figure 8.2. The

fast-growing number of variables and constraints account for the long runtime in

solving the MILP problem. In the following section, we propose three heuristics and

compare their optimality gaps against the optimal solutions.

8.2.2 Heuristics

In order to compare the heuristics results with the optimal results, we design three

problem sizes and try to obtain the optimal solutions as references for heuristic results.

• Case A: #cores = 14, #storage space = 2, which means the disk size is large

enough for two genomes to be processed in parallel.

149

Figure 8.2: Number of variables and constraints (Y axis) for different numbers of
genomes (X axis).

• Case B: #cores = 28, #storage space = 4.

• Case C: #cores = 56, #storage space = 8.

We propose three heuristics as demonstrated in the following sections.

Heuristic 1: Construct from smaller sequential patterns.

When there are more genomes, we can accomplish scheduling by using smaller

sequential patterns then when there are fewer genomes, given the observations that

calculating #genomes = 1,2 are fast for all three problem sizes. When the optimal

solutions are known for #genome = 1, and #genome = 2, we can use these base

results to construct any number of genomes. For example, we show how we can

schedule #genome = 3, 4, 5 by using patterns of #genome = 1, 2.

We show the optimal results and heuristic 1 results in the following table for

problem size Case A.

150

Figure 8.3: Heuristic 1: schedule by using #genome = 1,2.

Table 8.3: Optimal results and heuristic results for problem size Case A.

#genome optimal heuristic 1 optimality gap

1 77080 77080 0.000%

2 145091 145091 0.000%

3 221392 222171 0.352%

4 290182 290182 0.000%

5 365340 367262 0.526%

6 435273 435273 0.000%

7 510431 512353 0.377%

8 580364 580364 0.000%

We also show optimal results and heuristic 1 results in the following Table 8.4

and 8.5 for problem size Cases B and C .

Heuristic 2: Distribute cores among genomes as evenly as possible. When

#genomes ≤ #storage space, we can always distribute cores among genomes evenly.

For example, for problem size Case C, we can distribute the cores for the three

genomes as 19,19,18—in total 56 cores as shown in the left part of Figure 8.4.

We show optimal results and heuristic 2 results in the following Tables 8.6 and

151

Table 8.4: Optimal results and heuristic 1 results for problem size Case B.

#genome optimal heuristic 1 optimality gap

1 43074 43074 0.000%

2 77080 77080 0.000%

3 113586 120154 5.782%

4 145091 154160 6.251%

Table 8.5: Optimal results and heuristic 1 results for problem size Case C.

#genome optimal heuristic 1 optimality gap

1 26071 26071 0.000%

2 43074 43074 0.000%

3 60269 69145 14.727%

4 77080 86148 11.764%

8.7 for problem size Case B and C . Compared to heuristic 1, heuristic 2 further

reduces the optimality gap compared to the optimal results.

Table 8.6: Optimal, heuristic 1, heuristic 2 results for problem size Case B.

#genome optimal heuristic 1 optimality gap heuristic 2 optimality gap

1 43074 43074 0.000% 43074 0.000%

2 77080 77080 0.000% 77080 0.000%

3 113586 120154 5.782% 114864 1.125%

4 145091 154160 6.251% 145091 0.000%

We examine one optimal result versus heuristic 2 when the optimality gap is not

0% for problem size Case C—that is, when #genome = 3 in Figure 8.4. The optimal

solution does not schedule the same number of cores for all the stages of a genome.

If a genome is scheduled with fewer cores than other genomes in the first stage, it

might result in less runtime if it is given more cores in the second stage than than

152

Table 8.7: Optimal, heuristic 1, heuristic 2 results for problem size Case C.

#genome optimal heuristic 1 optimality gap heuristic 2 optimality gap

1 26071 26071 0.000% 26071 0.000%

2 43074 43074 0.000% 43074 0.000%

3 60269 69145 14.727% 61966 2.816%

4 77080 86148 11.764% 77080 0.000%

5 NA 103151 NA 95628 NA

6 NA 129222 NA 114864 NA

7 NA 146225 NA 128089 NA

8 NA 172296 NA 145091 NA

Figure 8.4: Comparing optimal configuration versus heuristic 2, #genome = 3,
problem size Case C (#core = 56, # storage space = 8).

being scheduled with the same cores as in the first stage. We call this “balance-aware”

heuristic 2. For other #genome values when mod(#core,#genomes) is not 0, we

examine whether “balance-aware” heuristic 2 further improves the runtime compared

to heuristic 2.

However, this strategy does not always work. For example, when #genome = 5,

as shown in Figure 8.5, heuristic 2 schedules five genomes with cores 12, 11, 11, 11,

11. If each genome that is scheduled with 11 cores is scheduled with one more core in

153

the second stage, the genome that is scheduled with 12 cores in the first stage will be

scheduled with 8 cores in the second stage. The total runtime increases to 103917

seconds and is worse than the heuristic 2 result.

Figure 8.5: Heuristic 2, #genome = 5, problem size Case C (#core = 56, # storage
space = 8). Runtime of “balance-aware” heuristic 2 is longer than heuristic 2.

When #genome = 6, as shown in Figure 8.6, the “balance-aware” heuristic 2

improves the execution compared to heuristic 2. We summarize the runtime from

optimal results, heuristic 1, heuristic 2 and “balance-aware” heuristic 2 in Table 8.8

for problem size Case C.

8.2.3 Experiments

As shown in Figure 8.7. The modeling results achieve average error rate less than

4%, we verify the modeling by running NA12878Garvan [Sta16] on local clusters and

comparing the experiment results with the modeling results of heuristic 2.

154

Figure 8.6: Heuristic 2, #genome = 6, problem size Case C (#core = 56, # storage
space = 8). Runtime of “balance-aware” heuristic 2 is shorter than heuristic 2.

Table 8.8: Optimal, heuristic 1, heuristic 2,“balance-aware” heuristic 2 results for
problem size Case C.

#genome optimal heuristic 1 optimality gap heuristic 2 optimality gap “balance-aware” heuristic 2 optimality gap

1 26071 26071 0.000% 26071 0.000% 26071 0.000%

2 43074 43074 0.000% 43074 0.000% 43074 0.000%

3 60269 69145 14.727% 61966 2.816% 60269 0.000%

4 77080 86148 11.764% 77080 0.000% 77080 0.000%

5 NA 103151 NA 95628 NA 95628 NA

6 NA 129222 NA 114864 NA 113586 NA

7 NA 146225 NA 128089 NA 128089 NA

8 NA 172296 NA 145091 NA 145091 NA

8.3 More Genomes: When #genome is Larger Than #stor-

age space

By using the proposed heuristics and optimal solutions, we get a set of configurations

for running genomes when #genome ≤ #storage space. We can use these configura-

155

(a) BWA

(b) GATK (BQSR+HTC)

Figure 8.7: Runtime of modeling and experiment measurements for stages.

156

tions as base cases to construct configurations for any number of genomes. Here we

also propose two methods for the construction.

• Method 1: Treat every 8 genomes as a batch. For the last batch, pick the

configuration from the base cases.

• Method 2: Formulate overall runtime as an ILP problem by introducing the

number of base case, Ai—that is, using Ai times of base case i configuration to

achieve optimal overall runtime.

We explain method 2 in detail in the following sections.

8.3.1 Input Parameters

N : Set of whole genomes to be processed.

Y : Limit of storage spaces. Each storage space is for a whole genome. For example,

Y is 8 means at most 8 genomes can run in parallel.

Ti: Runtime of base case i. Base case i is the configuration of running i <= Y

genomes, that is base case 1, 2, 3, 4, 5, 6, 7, 8.

8.3.2 Variables

Ai : Allocated number of base case i, that is using Ai times of base case i configuration.

Integer.

X: An artificial variable that represents the makespan of the application.

157

8.3.3 Objective Function

minX (8.11)

8.3.4 Constraints

Runtime X is the sum of runtime of using all base cases:

∑
i∈Y

Ai × Ti ≤ X (8.12)

To capture the number of genomes to be processed is N :

∑
i∈Y

Ai × i = N (8.13)

8.3.5 Evaluations

We write Python scripts to simulate method 1 and generate LP files for method 2 to

solve. We plot the runtime for the two methods as #genome increases from 9 to 100

in Figure 8.8.

Method 1 and method 2 achieve same runtime for some cases while method 2 ILP

composition are better for some N values. We plot the runtime difference of method

1 minus method 2 on different numbers of genomes in Figure 8.9. We highlight three

representative cases and explain the difference here. When #genome = 11, method

1 gives the scheduling for running 8 genomes in parallel followed by 3 genomes in

parallel, while method 2 gives base cases running 7 genomes in parallel followed by

4 genomes in parallel. Method 2 saves 191 seconds. When #genome = 14, method

158

Figure 8.8: Runtime of method 1 and method 2 when N = 9..100.

1 schedules running 8 genomes in parallel followed by 6 genomes in parallel, while

method 2 gives base cases running 7 genomes in parallel followed by 7 genomes in

parallel. Method 2 saves 2499 seconds. When #genome = 21, method 1 schedules

running two batches of 8 genomes in parallel followed by 6 genomes in parallel, while

method 2 gives base cases running three batches of 7 genomes in parallel. Method 2

saves 1543 seconds.

8.4 Discussions on Other Applications

In order to examine the generality of our proposed methodology, we take another

genome pipeline, VCPA (Variant Calling Pipeline and data management tool) [LVC18]

as an example, run the experiments on local clusters and compare this to the modeling

results. VCPA was developed to consistently and efficiently process sequencing data

for the Alzheimer’s disease according to whole-genome sequencing (WGS) and whole-

exome sequencing (WES) genome analysis best practices. The VCPA pipeline follows

159

Figure 8.9: Runtime different between method 1 and method 2 when N = 9..100.

GATK 3.7 best practices on Germline Single Nucleotide Polymorphisms (SNPs)

and Insertion/Deletion (Indel) Discovery [DBP11]. It contains the following stages:

Mapping: This stage generates BAM files using BWA-MEM and marks duplicated

reads.

Local Realignment: This stage performs local realignment near known indel sites

(Align) and performs base quality scores recalibration (BQSR) by using GATK3.

Variant Calling: This stage performs variant calling on SNPs and indels. It

generates genome variant call format (gVCF) files for each sample by using GATK3.

We profile the mapping stage (BWA) and local realignment and variant call-

ing (Align+BQSR+VariantCalling) stage by using GATK3.7 in the CDSC cluster

for NA12878-Garvan and obtain the following constant runtime and parallelizable

runtime.

By applying the modeling formulation as shown in Section 8.1 and scheduling

methods in Section 8.2, we verify the modeling by comparing the experiment results

160

Table 8.9: Constant and parallelizable runtime in private cloud for VCPA pipeline.

stage constant part parallel part

BWA 5633 642490

Align+BQSR+VariantCalling 5072 473935

with the modeling results of heuristic 2 in Figure 8.10. The modeling results achieve

an average error rate of less than 3%. For “balance-aware” heuristic 2, we observe

that the runtime experimental results reduce by 3% and 2% than heuristic 2 when

number of genomes is set to 3 and 6, which match with with modeling results.

The total CPU time of each genome of modeling and experiment measurements

for stages in VCPA pipeline are shown in Figure 8.11. When the number of genomes

running in parallel increases, each genome is allocated with less CPU cores. Therefore,

less constant overhead is paid in each CPU core, which leads to less total CPU time.

8.5 Related Work in Scheduling for Optimal Runtime

In this section we summarize the scheduling problem for an optimal runtime. Many

prior work use MILP formulation to do optimal runtime scheduling considering

computation resources including CPUs, GPUs and FPGAs, storage resources and I/O

communications. [BSH18] presents a generic MILP formulation for the performance

modeling of a heterogeneous cluster with active storage devices and an accelerator as

well. In the heterogeneous cluster, there are different types of compute nodes, including

client nodes, middleware servers, and high performance nodes with accelerators and

SSDs. The paper formulates the optimization problem to achieve the least latency

given applications represented by directed acyclic graphs (DAG) and heterogeneous

161

(a) BWA

(b) GATK 3.7 (Align+BQSR+VariantCalling)

Figure 8.10: Runtime of modeling and experiment measurements for stages in VCPA
pipeline.

162

(a) BWA

(b) GATK 3.7 (Align+BQSR+VariantCalling)

Figure 8.11: Total CPU time of modeling and experiment measurements for stages
for each genome in VCPA pipeline.

163

system topology. It gives optimal solutions for small-scale clusters and genetic

algorithms for larger sized problems. This work belongs to the static task scheduling

problem to achieve max performance. Our work is most related to this work as we

use similar method in MILP formulation. However, our work studies a repetitive

workload with two stages and propose efficient heuristics to solve the scheduling

problem.

In our work, we model the runtime of a task when using different cores as a

nonlinear function of the number of cores. This is inspired by the runtime model

proposed in [NST18], which studies fork-join malleable tasks scheduling. Malleable

tasks are those that can be split into multiple subtasks and can be executed by

multiple cores simultaneously. The scheduling is fine grained and each CPU core is

considered as a hardware resource. The runtime of the task is a nonlinear function

of the specified parallelism.Our work also adopts split factors in ILP formulation to

describe task runtime given a set of CPU cores from the paper. The paper employs

the ILP approach. In the ILP approach, splitik factors, indicating tasks i split into k

subtasks are introduced to determine the parallelism of task i. Our work puts forward

heuristics that achieve very small optimality gaps and are more scalable solutions to

larger input.

Instead of using ILP, there are also other approaches to solve the optimality

problem. [SM91] present the approach of multiprocessor scheduling by using the

theory of optimal control. They assume that every task can be executed by an

arbitrary continuous number of processors at any time in parallel.

Our work only considers homogeneous computation resources and some other work

take adaptive multicores and other heterogeneous systems into consideration. [PM13]

164

addresses optimal scheduling problems where parallel and sequential applications both

exist on an adaptive multicore system. Smaller cores can also be coalesced at runtime

to join as a complex core for sequential applications that can exploit instruction-level

parallelism. For parallel applications that exploit thread-level parallelism, multiple

simple cores are executed in parallel. HDSS [BBG13] proposes a dynamic load

balancing self-scheduler for loop iterations on heterogeneous systems to optimize

performance. HDSS also dynamically sends block size to an accelerator (GPU or

FPGA) to minimize underutilization and load imbalance between host machines and

accelerators. [SRF12] creates a runtime system that partitions an accelerated OpenMP

code region across the CPU cores and GPU cores to achieve performance improvement

over using CPUs or GPUs only. The paper also discusses three schedulers: static,

dynamic and combined scheduling policies. [ATT10] designs a versatile distributed

framework and proposes dynamic task scheduling policies on heterogeneous clusters

that have CPUs, FPGAs, and GPUs to optimize the performance. The paper considers

computation and communication patterns on different hardware platforms. It also

takes into consideration the synchronization and data communication overhead across

hosts and accelerators. [BLB11] presents a supervised online learning approach to

evaluate the performance of CPU/GPU/FPGA systems for incoming computational

tasks in discrete time steps. The paper evaluates the proposed learning module and

subsequent dynamic scheduling and resource allocation policies for workloads where

performance of the underlying hardware resource is not known ahead.

While our work assumes finishing a large number of tasks that can be processed in

batches, there are also many prior work in real time systems that study optimal latency

scheduling problems for dynamic real-time system tasks that arrive dynamically or

in a periodic fashion. They use online scheduling algorithms. [ZR87] studies the

165

problem of scheduling n tasks in a system with r resources. Each task has a processing

time TP , deadline TD and required resources. The paper discusses dynamic real-time

systems where tasks arrive dynamically, and new decisions are made regarding whether

the newly arriving tasks are schedulable—while guaranteeing that the previously

scheduled tasks are retained. The online scheduling algorithm used in such dynamic

real-time systems is important in real-time application environments. Experiments

show that a few linear combinations of heuristics achieve very low optimality gaps to

the optimal algorithms that do exhaustive search. [ZRS87] studies tasks that have

hard real-time limits. While most prior work and also our work assume complete

and accurate prior knowledge of tasks ahead, the paper develops a flexible scheduling

algorithm where prior information is not needed and the loosely coupled distributed

system dynamics are also taken into consideration. The basic approach proposed in

the paper assumes that each node has a local scheduler, a bidder and a dispatcher.

The local scheduler tries to make sure that a new task can finish before the deadline

constraint. If an estimate is made that the tasks will not be finished on time, the

bidder on the node then sends a request for the tasks, and also evaluates bid requests

from other nodes, and then sends the tasks to the best bidder node. The node also has

a dispatcher that schedules the guaranteed tasks. In this work, tasks are independent

and resources are assumed to be always available to the executing tasks, including

CPU and I/O storage. The algorithm proposed focuses on an extension of the local

scheduler portion of the hard real-time scheduling scheme, and it is applied to perform

scheduling for tasks that are in a batch, or in a periodic fashion. [RSZ89] proposes

a set of heuristic algorithms that dynamically schedule essential tasks considering

deadlines and resource constraints in distributed systems. Essential tasks are tasks

that have deadlines. If deadlines are not met, system performance becomes severely

166

impaired. While much prior work assume that users have prior knowledge of task

runtime and use static scheduling and allocation strategies, the paper addresses

inflexibility, low resource utilization, incompatibility of deadline and task priority

problems from static scheduling. Their proposed scheduling guarantees that the local

scheduler first attempts to finish the task before its deadline within the node. If it

fails, four heuristic corrective methods are proposed to let other nodes cooperate

with the local node to finish the task, and communication delay is considered. The

methods achieve the highest guarantee ratio—that is, the number of tasks are finished

before the deadlines among all tasks.

167

CHAPTER 9

Conclusions

This dissertation discusses various design targets, analytic modelings, and summarizes

optimization problems for field programmable gate array (FPGA) based customized

computing at chip level, node level and cluster level. FPGAs have gained popularity

in the acceleration of a broad range of applications with 10x-100x performance/energy

efficiency over the general-purpose processors. The design spaces of FPGA accelerators

at different levels for different design targets are enormous. Modeling is inevitable

for designers to optimize energy consumption, performance, and cost given certain

constraints. At chip-level, we first study the energy efficiency of full pipelining and

propose performance and energy modeling for chip-level design. Then we propose

the Latte microarchitecture to address timing degradation problems in the high-level

synthesis (HLS-based) accelerator design. At node level, We propose a Doppio

framework to understand performance and cost models for customized computing

in light of the fact that performance and cost are primary concerns when deploying

applications and services in a pay-as-you-go public cloud. The performance and cost

modeling are discussed in two aspects—computation resources, with CPUs and locally

PCIe-attached accelerators, and storage resources including SSDs and HDDs. At the

cluster level, we propose the Mocha framework as a distributed runtime system to

share one FPGA among multiple CPU instances, or co-schedule accelerated kernels

168

on CPUs and FPGAs to improve underlying hardware utilization in order to optimize

the out-of-pocket cost. To demonstrate the performance improvement and cost

saving of modeling in customized computing, we use genome pipeline optimization

in both the public cloud and private cloud as case studies showing how to conduct

optimal scheduling under certain deadline constraints or hardware (CPUs, storage)

constraints.

169

References

[ABV16] Ahsan Javed Awan, Mats Brorsson, Vladimir Vlassov, and Eduard

Ayguade. “Architectural Impact on Performance of In-memory Data

Analytics: Apache Spark Case Study.” CoRR, abs/1604.08484, 2016.

[ACH13] Geraldine A Van der Auwera, Mauricio O Carneiro, Christopher Hartl,

Ryan Poplin, Guillermo Del Angel, Ami Levy-Moonshine, Tadeusz Jordan,

Khalid Shakir, David Roazen, Joel Thibault, et al. “From FastQ data to

high-confidence variant calls: the genome analysis toolkit best practices

pipeline.” Current protocols in bioinformatics, 43(1):11–10, 2013.

[ALC17] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram

Venkataraman, Minlan Yu, and Ming Zhang. “CherryPick: Adaptively

Unearthing the Best Cloud Configurations for Big Data Analytics.” In

14th USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI 17). USENIX Association, 2017.

[Alpdf] AlphaData. “ADM-PCIE7V3.”, https://www.alpha-data.com/pdfs/adm-

pcie-7v3.pdf.

[Amaa] Amazon. “Amazon EC2 F1 instance.” https://aws.amazon.com/ec2/

instance-types/f1/.

[Amab] Amazon. “AWS Spot Instance Interruptions.” https://docs.aws.

amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html.

[Amac] Amazon. “AWS Spot Instance Pricing History.” https://us-west-1.

console.aws.amazon.com/ec2sp/v1/spot/home?region=us-west-1.

170

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html
https://us-west-1.console.aws.amazon.com/ec2sp/v1/spot/home?region=us-west-1
https://us-west-1.console.aws.amazon.com/ec2sp/v1/spot/home?region=us-west-1

[Amad] Amazon. “AWS Spot Instances Advisor.” https://aws.amazon.com/

ec2/spot/instance-advisor/.

[Amae] Amazon. “AWS Spot Instances Pricing.” https://aws.amazon.com/

ec2/spot/pricing/.

[Ama19a] Amazon. “Amazon EC2 Placement Groups.” https://docs.aws.amazon.

com/AWSEC2/latest/UserGuide/placement-groups.html, 2019. [On-

line; accessed Jan-2019].

[Ama19b] Amazon. “AWS EC2 Pricing.” https://aws.amazon.com/ec2/pricing/

on-demand/, 2019.

[amac2] “Amazon EC2.”, https://aws.amazon.com/ec2.

[AP15] Sungyong Ahn and Sangkyu Park. “An Analytical Approach to Eval-

uation of SSD Effects under MapReduce Workloads.” JOURNAL OF

SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 15(5):511–518,

2015.

[ATT10] HT Anson, David B Thomas, Kuen Hung Tsoi, and Wayne Luk. “Dynamic

scheduling Monte-Carlo framework for multi-accelerator heterogeneous

clusters.” In 2010 International Conference on Field-Programmable Tech-

nology, pp. 233–240. IEEE, 2010.

[Awa16] Ahsan Javed Awan et al. “How Data Volume Affects Spark Based Data

Analytics on a Scale-up Server.” In Big Data Benchmarks, Performance

Optimization, and Emerging Hardware. Springer International Publishing,

2016.

171

https://aws.amazon.com/ec2/spot/instance-advisor/
https://aws.amazon.com/ec2/spot/instance-advisor/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/spot/pricing/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

[BBG13] Mehmet E Belviranli, Laxmi N Bhuyan, and Rajiv Gupta. “A dynamic self-

scheduling scheme for heterogeneous multiprocessor architectures.” ACM

Transactions on Architecture and Code Optimization (TACO), 9(4):57,

2013.

[BCM18] BCM. “HGSC Resources.” https://www.hgsc.bcm.edu/resources,

2018. [Online; accessed Jan-2019].

[BET17] Subho S Banerjee, Mohamed El-Hadedy, Ching Y Tan, Zbigniew T

Kalbarczyk, Steve Lumetta, and Ravishankar K Iyer. “On accelerating

pair-HMM computations in programmable hardware.” In 2017 27th

International Conference on Field Programmable Logic and Applications

(FPL), pp. 1–8. IEEE, 2017.

[BLB11] Marcin Bogdanski, Peter R Lewis, Tobias Becker, and Xin Yao. “Improv-

ing scheduling techniques in heterogeneous systems with dynamic, on-line

optimisations.” In 2011 International Conference on Complex, Intelligent,

and Software Intensive Systems, pp. 496–501. IEEE, 2011.

[BM11] Luiz Fernando Bittencourt and Edmundo Roberto Mauro Madeira.

“HCOC: a cost optimization algorithm for workflow scheduling in hy-

brid clouds.” Journal of Internet Services and Applications, 2(3):207–227,

2011.

[BM13] James K Bonfield and Matthew V Mahoney. “Compression of FASTQ

and SAM format sequencing data.” PloS one, 8(3):e59190, 2013.

[Bri] Simon Briggs. “Cheapest Amazon EC2 Spot Price Region.” https:

//simonpbriggs.co.uk/amazonec2/.

172

https://www.hgsc.bcm.edu/resources
https://simonpbriggs.co.uk/amazonec2/
https://simonpbriggs.co.uk/amazonec2/

[BSH18] Mohammed S Bensaleh, Yaman Sharaf-Dabbagh, Hazem Hajj, Mazen AR

Saghir, Haitham Akkary, Hassan Artail, Abdulfattah M Obeid, and

Syed Manzoor Qasim. “Optimal Task Scheduling for Distributed Cluster

With Active Storage Devices and Accelerated Nodes.” IEEE Access,

6:48195–48209, 2018.

[BT13] Sam Behjati and Patrick S Tarpey. “What is next generation sequencing?”

Archives of Disease in Childhood-Education and Practice, 98(6):236–238,

2013.

[CCP16] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-

man, S. Heil, M. Humphrey, P. Kaur, J. Y. Kim, D. Lo, T. Massengill,

K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and

D. Burger. “A cloud-scale acceleration architecture.” In 2016 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pp.

1–13, Oct 2016.

[CCS10] Navraj Chohan, Claris Castillo, Mike Spreitzer, Malgorzata Steinder,

Asser N Tantawi, and Chandra Krintz. “See spot run: using spot instances

for mapreduce workflows.” HotCloud, 10:7–7, 2010.

[cds17] “Google Cloud Disk Profile.” [url deleted to maintain the integrity of the

review process], 2017.

[CFG09] Peter JA Cock, Christopher J Fields, Naohisa Goto, Michael L Heuer,

and Peter M Rice. “The Sanger FASTQ file format for sequences with

quality scores, and the Solexa/Illumina FASTQ variants.” Nucleic acids

research, 38(6):1767–1771, 2009.

173

[CFH04] J. Cong, Yiping Fan, Guoling Han, Xun Yang, and Zhiru Zhang. “Archi-

tecture and synthesis for on-chip multicycle communication.” TCAD, pp.

550–564, April 2004.

[CFH18] J. Cong, Z. Fang, M. Huang, L. Wang, and D. Wu. “CPU-FPGA

Coscheduling for Big Data Applications.” IEEE Design Test, 35(1):16–22,

Feb 2018.

[Che13] R. Chen et al. “Energy efficient parameterized FFT architecture.” In

FPL, 2013.

[CHM14] J. Cong, Hui Huang, Chiyuan Ma, Bingjun Xiao, and Peipei Zhou. “A

Fully Pipelined and Dynamically Composable Architecture of CGRA.” In

Field-Programmable Custom Computing Machines (FCCM), 2014 IEEE

22nd Annual International Symposium on, pp. 9–16, May 2014.

[CHW] Jason Cong, Muhuan Huang, Di Wu, and Cody Hao Yu. “Invited -

Heterogeneous Datacenters: Options and Opportunities.” In Proceedings

of the 53rd Annual Design Automation Conference, DAC ’16.

[CJL11] Jason Cong, Wei Jiang, Bin Liu, and Yi Zou. “Automatic Memory

Partitioning and Scheduling for Throughput and Power Optimization.”

ACM Trans. Des. Autom. Electron. Syst., 16(2):15:1–15:25, April 2011.

[CLC13] Kristian Cibulskis, Michael S Lawrence, Scott L Carter, Andrey

Sivachenko, David Jaffe, Carrie Sougnez, Stacey Gabriel, Matthew Mey-

erson, Eric S Lander, and Gad Getz. “Sensitive detection of somatic

point mutations in impure and heterogeneous cancer samples.” Nature

biotechnology, 31(3):213, 2013.

174

[Clo13] Cloudera. “How-to: Select the Right Hardware for Your New

Hadoop Cluster.” http://blog.cloudera.com/blog/2013/08/

how-to-select-the-right-hardware-for-your-new-hadoop-cluster,

2013.

[CLS08] Shuai Che, Jie Li, J.W. Sheaffer, K. Skadron, and J. Lach. “Accelerating

Compute-Intensive Applications with GPUs and FPGAs.” In Application

Specific Processors, 2008. SASP 2008. Symposium on, pp. 101–107, June

2008.

[CMC16] Nicholas Chaimov, Allen Malony, Shane Canon, Costin Iancu, Khaled Z.

Ibrahim, and Jay Srinivasan. “Scaling Spark on HPC Systems.” In Pro-

ceedings of the 25th ACM International Symposium on High-Performance

Parallel and Distributed Computing, HPDC ’16, pp. 97–110, New York,

NY, USA, 2016. ACM.

[CO16] Tatsuhiro Chiba and Tamiya Onodera. “Workload characterization and

optimization of TPC-H queries on Apache Spark.” In ISPASS, April

2016.

[Com18] Falcon Computing. “Enabling Faster, More Cost-Eective

Genomics Analytics Through Heterogeneous Computing So-

lutions.” https://www.falconcomputing.com/download/

cost-effective-genomics-analytics-white-paper/, 2018. [On-

line; accessed May-2019].

[CSR11] J. Cong, V. Sarkar, G. Reinman, and A. Bui. “Customizable Domain-

175

http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster
https://www.falconcomputing.com/download/cost-effective-genomics-analytics-white-paper/
https://www.falconcomputing.com/download/cost-effective-genomics-analytics-white-paper/

Specific Computing.” IEEE Design Test of Computers, 28(2):6–15, March

2011.

[Cut15] Shannon Cutt. “Investigating Sparks performance.” https://www.

oreilly.com/ideas/investigating-sparks-performance, 2015.

[CWY17] Jason Cong, Peng Wei, Cody Hao Yu, and Peipei Zhou. “Bandwidth

Optimization Through On-Chip Memory Restructuring for HLS.” In

DAC, 2017.

[CWY18a] J. Cong, P. Wei, C. H. Yu, and P. Zhou. “Latte: Locality Aware Trans-

formation for High-Level Synthesis.” In 2018 IEEE 26th Annual Interna-

tional Symposium on Field-Programmable Custom Computing Machines

(FCCM), pp. 125–128, April 2018.

[CWY18b] Jason Cong, Peng Wei, and Cody Hao Yu. “From JVM to FPGA: Bridging

Abstraction Hierarchy via Optimized Deep Pipelining.” In 10th USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud 18). USENIX

Association, 2018.

[CYK15] I. S. Choi, W. Yang, and Y. S. Kee. “Early experience with optimizing

I/O performance using high-performance SSDs for in-memory cluster

computing.” In 2015 IEEE International Conference on Big Data (Big

Data), pp. 1073–1083, Oct 2015.

[Dar10] Darin. “Can’t Stop Love.” Universal Music, 2010.

[DBP11] Mark A DePristo, Eric Banks, Ryan Poplin, Kiran V Garimella, Jared R

Maguire, Christopher Hartl, Anthony A Philippakis, Guillermo Del Angel,

176

https://www.oreilly.com/ideas/investigating-sparks-performance
https://www.oreilly.com/ideas/investigating-sparks-performance

Manuel A Rivas, Matt Hanna, et al. “A framework for variation discovery

and genotyping using next-generation DNA sequencing data.” Nature

genetics, 43(5):491, 2011.

[DeH15] André DeHon. “Fundamental Underpinnings of Reconfigurable Computing

Architectures.” Proceedings of the IEEE, 103(3):355–378, March 2015.

[DEK98] Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme Mitchison.

Biological sequence analysis: probabilistic models of proteins and nucleic

acids. Cambridge university press, 1998.

[DG08a] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-

cessing on large clusters.” Communications of the ACM, 2008.

[DG08b] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-

cessing on large clusters.” Communications of the ACM, 51(1):107–113,

2008.

[DJ09] Cagdas Dirik and Bruce Jacob. “The Performance of PC Solid-state Disks

(SSDs) As a Function of Bandwidth, Concurrency, Device Architecture,

and System Organization.” In Proceedings of the 36th Annual Interna-

tional Symposium on Computer Architecture, ISCA ’09, pp. 279–289, New

York, NY, USA, 2009. ACM.

[DK12] A. Duran and M. Klemm. “The Intel Many Integrated Core Architec-

ture.” In High Performance Computing and Simulation (HPCS), 2012

International Conference on, pp. 365–366, July 2012.

[DK13] Christina Delimitrou and Christos Kozyrakis. “Paragon: QoS-Aware

177

Scheduling for Heterogeneous Datacenters.” In Proceedings of the Eigh-

teenth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), March 2013.

[DK14] Christina Delimitrou and Christos Kozyrakis. “Quasar: Resource-Efficient

and QoS-Aware Cluster Management.” In Proceedings of the Nineteenth

International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), March 2014.

[DK16] Christina Delimitrou and Christos Kozyrakis. “HCloud: Resource-

Efficient Provisioning in Shared Cloud Systems.” SIGARCH Comput.

Archit. News, 44(2):473–488, March 2016.

[DR13] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the

advanced encryption standard. Springer Science & Business Media, 2013.

[DSL08] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John

Good. “The cost of doing science on the cloud: the montage example.” In

SC’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing,

pp. 1–12. Ieee, 2008.

[GAB15] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir.

“Scheduling the I/O of HPC Applications Under Congestion.” In 2015

IEEE International Parallel and Distributed Processing Symposium, pp.

1013–1022, May 2015.

[GKV98] Adi F Gazdar, Venkatesh Kurvari, Arvind Virmani, Lauren Gollahon,

Masahiro Sakaguchi, Max Westerfield, Duli Kodagoda, Victor Stasny,

H Thomas Cunningham, Ignacio I Wistuba, et al. “Characterization of

178

paired tumor and non-tumor cell lines established from patients with

breast cancer.” International journal of cancer, 1998.

[GMP10] Alan E Guttmacher, Amy L McGuire, Bruce Ponder, and Kári Stefánsson.

“Personalized genomic information: preparing for the future of genetic

medicine.” Nature Reviews Genetics, 2010.

[Goo19] Google. “Protocal Buffer.” https://developers.google.com/

protocol-buffers/, 2019. [Online; accessed Jan-2019].

[GRB17] Eugenio Gianniti, Alessandro Maria Rizzi, Enrico Barbierato, Marco

Gribaudo, and Danilo Ardagna. “Fluid Petri Nets for the Performance

Evaluation of MapReduce and Spark Applications.” SIGMETRICS

Perform. Eval. Rev., 44(4):23–36, May 2017.

[HAL16] Stephen Herbein, Dong H. Ahn, Don Lipari, Thomas R.W. Scogland,

Marc Stearman, Mark Grondona, Jim Garlick, Becky Springmeyer, and

Michela Taufer. “Scalable I/O-Aware Job Scheduling for Burst Buffer

Enabled HPC Clusters.” In Proceedings of the 25th ACM International

Symposium on High-Performance Parallel and Distributed Computing,

HPDC ’16, pp. 69–80, New York, NY, USA, 2016. ACM.

[HCT18] Aaron Harlap, Andrew Chung, Alexey Tumanov, Gregory R Ganger, and

Phillip B Gibbons. “Tributary: spot-dancing for elastic services with

latency SLOs.” In 2018 USENIX Annual Technical Conference. USENIX

Association, 2018.

[HMR17] Sitao Huang, Gowthami Jayashri Manikandan, Anand Ramachandran,

Kyle Rupnow, Wen-mei W Hwu, and Deming Chen. “Hardware ac-

179

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

celeration of the pair-HMM algorithm for DNA variant calling.” In

Proceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pp. 275–284. ACM, 2017.

[Hua19] Huawei. “Elastic Cloud Server Price Details.” https://www.

huaweicloud.com/en-us/price_detail.html#/ecs_detail, 2019.

[HWY16] Muhuan Huang, Di Wu, Cody Hao Yu, Zhenman Fang, Matteo Interlandi,

Tyson Condie, and Jason Cong. “Programming and Runtime Support to

Blaze FPGA Accelerator Deployment at Datacenter Scale.” In Proceedings

of the Seventh ACM Symposium on Cloud Computing, SoCC ’16, 2016.

[IBM18a] IBM. “CPLEX for Python users.” https://www.ibm.com/support/

knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/

UsrMan/topics/APIs/Python/01_title_synopsis.html, 2018. [On-

line; accessed May-2019].

[IBM18b] IBM. “MIP features in LP file format.” https://www.ibm.com/

support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/

CPLEX/FileFormats/topics/LP_MIP.html, 2018. [Online; accessed

May-2019].

[Ill19] Illumina. “Illumina Downloads.” https://support.illumina.com/

downloads.html, 2019. [Online; accessed Jan-2019].

[Insa] Broad Institute. “Broad Institute sequences its 100,000th whole human

genome on National DNA Day.” https://www.broadinstitute.org/

news.

180

https://www.huaweicloud.com/en-us/price_detail.html#/ecs_detail
https://www.huaweicloud.com/en-us/price_detail.html#/ecs_detail
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/APIs/Python/01_title_synopsis.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/APIs/Python/01_title_synopsis.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/APIs/Python/01_title_synopsis.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/FileFormats/topics/LP_MIP.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/FileFormats/topics/LP_MIP.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/FileFormats/topics/LP_MIP.html
https://support.illumina.com/downloads.html
https://support.illumina.com/downloads.html
https://www.broadinstitute.org/news
https://www.broadinstitute.org/news

[Insb] Broad Institute. “Introduction to the GATK Best Practices.” https:

//software.broadinstitute.org/gatk/best-practices/.

[Ins17a] Broad Institute. “Base Quality Score Recalibration (BQSR)Methods and

Algorithms.” The Broad Institute, 2017.

[Ins17b] Broad Institute. “GATK.” https://github.com/broadinstitute/

gatk, 2017.

[Ins19] Broad Institute. “Genome Analysis Toolkit HaplotypeCaller.”

https://software.broadinstitute.org/gatk/documentation/

tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_

haplotypecaller_HaplotypeCaller.php, 2019.

[Int] Intel. “Intel FPGA SDK for OpenCL.” http://www.altera.com/.

[IO16] Megumi Ito and Moriyoshi Ohara. “A power-efficient FPGA accelerator:

Systolic array with cache-coherent interface for pair-HMM algorithm.”

In Low-Power and High-Speed Chips (COOL CHIPS XIX), 2016 IEEE

Symposium in, pp. 1–3. IEEE, 2016.

[IPS16] Anca Iordache, Guillaume Pierre, Peter Sanders, Jose Gabriel

de F Coutinho, and Mark Stillwell. “High performance in the cloud

with FPGA groups.” In Proceedings of the 9th International Conference

on Utility and Cloud Computing, pp. 1–10. ACM, 2016.

[JCP05] Ju wook Jang, Seonil Choi, and Viktor K. Prasanna. “Energy-Efficient

Matrix Multiplication on FPGAs.” TVLSI, 13(11):1305–1319, November

2005.

181

https://software.broadinstitute.org/gatk/best-practices/
https://software.broadinstitute.org/gatk/best-practices/
https://github.com/broadinstitute/gatk
https://github.com/broadinstitute/gatk
https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php
https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php
https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php

[KC14] Karthik Kambatla and Yanpei Chen. “The Truth About MapReduce

Performance on SSDs.” In 28th LISA. USENIX Association, November

2014.

[KLD15] Edin Kadric, David Lakata, and André DeHon. “Impact of Memory

Architecture on FPGA Energy Consumption.” In Proceedings of the 2015

ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, FPGA ’15, pp. 146–155, New York, NY, USA, 2015. ACM.

[KLK18] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. “Selecta: heteroge-

neous cloud storage configuration for data analytics.” In 2018 USENIX

Annual Technical Conference, pp. 759–773. USENIX Association, 2018.

[KMP12] Mihail N. Kolountzakis, Gary L. Miller, Richard Peng, and Charalampos E.

Tsourakakis. “Efficient Triangle Counting in Large Graphs via Degree-

Based Vertex Partitioning.” Internet Mathematics, 8(1-2):161–185, 2012.

[Koh16] Christopher Kohlhoff. “Boost. asio.” Online: http://www. boost. org/-

doc/libs/1, 48(0):2003–2013, 2016.

[Lam88] M. Lam. “Software Pipelining: An Effective Scheduling Technique for

VLIW Machines.” In Proceedings of the ACM SIGPLAN 1988 Conference

on Programming Language Design and Implementation, PLDI ’88, pp.

318–328, New York, NY, USA, 1988. ACM.

[Lei80] Charles E. Leiserson. “Area-efficient graph layouts (for VLSI).” In

Foundations of Computer Science, 1980., 21st Annual Symposium on, pp.

270–281, Oct 1980.

182

[LHW09] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan,

Nils Homer, Gabor Marth, Goncalo Abecasis, Richard Durbin, et al.

“The sequence alignment/map format and SAMtools.” Bioinformatics,

25(16):2078–2079, 2009.

[LJS89] Wayne Luk, Geraint Jones, and Mary Sheeran. “Computer-Based Tools

For Regular Array Design.” In Systolic Array Processors, 1989.

[LLH05] Fei Li, Yan Lin, Lei He, Deming Chen, and J. Cong. “Power model-

ing and characteristics of field programmable gate arrays.” Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

24(11):1712–1724, Nov 2005.

[LR71] B.S. Landman and Roy L. Russo. “On a Pin Versus Block Relationship

For Partitions of Logic Graphs.” Computers, IEEE Transactions on,

C-20(12):1469–1479, Dec 1971.

[LTW15] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura.

“SparkBench: A Comprehensive Benchmarking Suite for in Memory Data

Analytic Platform Spark.” CF. ACM, 2015.

[LVC18] Yuk Yee Leung, Otto Valladares, Yi-Fan Chou, Han-Jen Lin, Amanda B

Kuzma, Laura Cantwell, Liming Qu, Prabhakaran Gangadharan,

William J Salerno, Gerard D Schellenberg, et al. “VCPA: genomic

variant calling pipeline and data management tool for Alzheimers Disease

Sequencing Project.” Bioinformatics, 35(10):1768–1770, 2018.

[LZP15] Peng Li, Peng Zhang, Louis-Noel Pouchet, and Jason Cong. “Resource-

Aware Throughput Optimization for High-Level Synthesis.” In Pro-

183

ceedings of the 2015 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, FPGA ’15, pp. 200–209, New York, NY, USA,

2015. ACM.

[Man15] Zoltán Ádám Mann. “Allocation of Virtual Machines in Cloud Data Cen-

ters&Mdash;A Survey of Problem Models and Optimization Algorithms.”

ACM Comput. Surv., 48(1):11:1–11:34, August 2015.

[MBY16] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram

Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,

Sean Owen, et al. “Mllib: Machine learning in apache spark.” Journal of

Machine Learning Research, 17(34):1–7, 2016.

[MH11a] M. Mao and M. Humphrey. “Auto-scaling to minimize cost and meet

application deadlines in cloud workflows.” In SC ’11: Proceedings of 2011

International Conference for High Performance Computing, Networking,

Storage and Analysis, pp. 1–12, Nov 2011.

[MH11b] Ming Mao and Marty Humphrey. “Auto-scaling to minimize cost and

meet application deadlines in cloud workflows.” In High Performance

Computing, Networking, Storage and Analysis (SC), 2011 International

Conference for, pp. 1–12. IEEE, 2011.

[MHB10] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kris-

tian Cibulskis, Andrew Kernytsky, Kiran Garimella, David Altshuler,

Stacey Gabriel, Mark Daly, et al. “The Genome Analysis Toolkit: a

MapReduce framework for analyzing next-generation DNA sequencing

data.” Genome research, 2010.

184

[MJD15] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski.

“Algorithms for cost-and deadline-constrained provisioning for scientific

workflow ensembles in IaaS clouds.” Future Generation Computer Systems,

48:1–18, 2015.

[NKS12] Matti Niemenmaa, Aleksi Kallio, André Schumacher, Petri Klemelä, Eija

Korpelainen, and Keijo Heljanko. “Hadoop-BAM: directly manipulating

next generation sequencing data in the cloud.” Bioinformatics, 28(6):876–

877, 2012.

[NST18] Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, and Hiroyuki

Tomiyama. “Scheduling of Malleable Fork-Join Tasks with Constraint

Programming.” In 2018 Sixth International Symposium on Computing

and Networking (CANDAR), pp. 133–138. IEEE, 2018.

[ORR15] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and

Byung-Gon Chun. “Making Sense of Performance in Data Analytics

Frameworks.” In NSDI. USENIX Association, May 2015.

[PBM99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. “The

PageRank Citation Ranking: Bringing Order to the Web.” Technical

Report 1999-66, Stanford InfoLab, November 1999. Previous number =

SIDL-WP-1999-0120.

[Pla17] Google Cloud Platform. “Storage Options.” https://cloud.google.

com/compute/docs/disks/, 2017.

[PM13] Mihai Pricopi and Tulika Mitra. “Task scheduling on adaptive multi-core.”

IEEE transactions on Computers, 63(10):2590–2603, 2013.

185

https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/

[PRA16] Johan Peltenburg, Shanshan Ren, and Zaid Al-Ars. “Maximizing systolic

array efficiency to accelerate the PairHMM forward algorithm.” In Bioin-

formatics and Biomedicine (BIBM), 2016 IEEE International Conference

on, pp. 758–762. IEEE, 2016.

[PWY05] Kara K. W. Poon, Steven J. E. Wilton, and Andy Yan. “A Detailed

Power Model for Field-programmable Gate Arrays.” ACM Trans. Des.

Autom. Electron. Syst., 10(2):279–302, April 2005.

[PYC06] Hee Kong Phoon, M. Yap, and Chuan Khye Chai. “A Highly Compatible

Architecture Design for Optimum FPGA to Structured-ASIC Migra-

tion.” In Semiconductor Electronics, 2006. ICSE ’06. IEEE International

Conference on, pp. 506–510, Oct 2006.

[QDF18] Weikang Qiao, Jieqiong Du, Zhenman Fang, Michael Lo, Mau-

Chung Frank Chang, and Jason Cong. “High-throughput lossless com-

pression on tightly coupled CPU-FPGA platforms.” In FCCM, pp. 37–44,

2018.

[RA11] S.T. Rajavel and A. Akoglu. “An analytical energy model to accelerate

FPGA logic architecture investigation.” In Field-Programmable Technol-

ogy (FPT), 2011 International Conference on, pp. 1–8, Dec 2011.

[rosrg] “ROSE Compiler Infrastructure.”, http://rosecompiler.org/.

[RPA16] Chris Rauer, George Powley, Mir Ahsan, and Nicholas Finamore. “Ac-

celerating Genomics Research with OpenCL and FPGAs.” Altera, Now

Part of Intel, Tech. Rep, 2016.

186

[RSA15] Shanshan Ren, Vlad-Mihai Sima, and Zaid Al-Ars. “FPGA accelera-

tion of the pair-HMMs forward algorithm for DNA sequence analysis.”

In Bioinformatics and Biomedicine (BIBM), 2015 IEEE International

Conference on, pp. 1465–1470. IEEE, 2015.

[RSZ89] Krithi Ramamritham, John A. Stankovic, and Wei Zhao. “Distributed

scheduling of tasks with deadlines and resource requirements.” IEEE

Transactions on Computers, 38(8):1110–1123, 1989.

[Ruc15] E. Rucci et al. “Smith-Waterman Protein Search with OpenCL on an

FPGA.” In IEEE Trustcom/BigDataSE/ISPA, 2015.

[SAA11] Khaled Salah, M Al-Saba, M Akhdhor, O Shaaban, and MI Buhari.

“Performance evaluation of popular Cloud IaaS providers.” In Internet

Technology and Secured Transactions (ICITST), 2011 International Con-

ference for, pp. 345–349. IEEE, 2011.

[SKR10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

“The Hadoop Distributed File System.” In MSST, May 2010.

[SLF15] Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell,

Chengxiang Zhai, Miles J Efron, Ravishankar Iyer, Michael C Schatz,

Saurabh Sinha, and Gene E Robinson. “Big data: astronomical or

genomical?” PLoS Biol, 13(7):e1002195, 2015.

[SM91] GN Srinivasa Prasanna and Bruce R Musicus. “Generalised multiprocessor

scheduling using optimal control.” In Proceedings of the third annual

ACM symposium on Parallel algorithms and architectures, pp. 216–228.

ACM, 1991.

187

[Sni98] Marc Snir. MPI–the Complete Reference: the MPI core, volume 1. MIT

press, 1998.

[Spa17a] Spark. “Apache Spark Shuffle Operations.” http://spark.apache.org/

docs/latest/programming-guide.html#shuffle-operations, 2017.

[Spa17b] Apache Spark. “Apache Spark Shuffle Operations Performance Im-

pact.” http://spark.apache.org/docs/latest/programming-guide.

html#performance-impact, 2017.

[Spa17c] Apache Spark. “Hardware Provisioning.” http://spark.apache.org/

docs/latest/hardware-provisioning.html, 2017.

[Spa17d] Apache Spark. “Triangle Count in Spark.” https://github.com/

apache/spark/blob/master/graphx/src/main/scala/org/apache/

spark/graphx/lib/TriangleCount.scala, 2017.

[SRF12] Thomas RW Scogland, Barry Rountree, Wu-chun Feng, and Bronis R

De Supinski. “Heterogeneous task scheduling for accelerated openmp.”

In 2012 IEEE 26th International Parallel and Distributed Processing

Symposium, pp. 144–155. IEEE, 2012.

[Sta16] Standford. “GIAB Resources.” http://jimb.stanford.edu/

giab-resources/, 2016. [Online; accessed Jan-2019].

[SV99] Johan AK Suykens and Joos Vandewalle. “Least squares support vector

machine classifiers.” Neural processing letters, 9(3):293–300, 1999.

[SV11] Siddharth Suri and Sergei Vassilvitskii. “Counting Triangles and the

Curse of the Last Reducer.” In Proceedings of the 20th International

188

 http://spark.apache.org/docs/latest/programming-guide.html#shuffle-operations
 http://spark.apache.org/docs/latest/programming-guide.html#shuffle-operations
http://spark.apache.org/docs/latest/programming-guide.html#performance-impact
http://spark.apache.org/docs/latest/programming-guide.html#performance-impact
http://spark.apache.org/docs/latest/hardware-provisioning.html
http://spark.apache.org/docs/latest/hardware-provisioning.html
https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/TriangleCount.scala
https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/TriangleCount.scala
https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/TriangleCount.scala
http://jimb.stanford.edu/giab-resources/
http://jimb.stanford.edu/giab-resources/

Conference on World Wide Web, WWW ’11, pp. 607–614, New York, NY,

USA, 2011. ACM.

[Tay12] Michael B. Taylor. “Is Dark Silicon Useful? Harnessing the Four Horese-

men of the Coming Dark Silicon Apocalypse.” In Design Automation

Conference, 2012.

[TBN07] R. Tessier, V. Betz, D. Neto, A. Egier, and T. Gopalsamy. “Power-

Efficient RAM Mapping Algorithms for FPGA Embedded Memory Blocks.”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 26(2):278–290, Feb 2007.

[TLF17] Naif Tarafdar, Thomas Lin, Eric Fukuda, Hadi Bannazadeh, Alberto Leon-

Garcia, and Paul Chow. “Enabling flexible network FPGA clusters in a

heterogeneous cloud data center.” In Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, pp. 237–

246. ACM, 2017.

[TSP16] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Radu Stoica, Bernard

Metzler, Ioannis Koltsidas, and Nikolas Ioannou. “On The [Ir]relevance

of Network Performance for Data Processing.” In HotCloud, June 2016.

[TT14] A. Tavakkoli and D. B. Thomas. “Low-latency option pricing using

systolic binomial trees.” In FPT, 2014.

[Tuc17] L. Di Tucci et al. “Architectural optimizations for high performance

and energy efficient Smith-Waterman implementation on FPGAs using

OpenCL.” In DATE, 2017.

189

[UCL16] UCLA-VAST. “Blaze: Deploying Accelerators at Datacenter Scale.”

https://github.com/UCLA-VAST/blaze, 2016.

[VVB10] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove. “Cost-Optimal

Scheduling in Hybrid IaaS Clouds for Deadline Constrained Workloads.”

In 2010 IEEE 3rd International Conference on Cloud Computing, pp.

228–235, July 2010.

[VYF16] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin

Recht, and Ion Stoica. “Ernest: Efficient Performance Prediction for Large-

Scale Advanced Analytics.” In 13th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 16), March 2016.

[WAH15] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf. “Enabling

FPGAs in Hyperscale Data Centers.” In 2015 IEEE 12th Intl Conf on

Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf

on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on

Scalable Computing and Communications and Its Associated Workshops

(UIC-ATC-ScalCom), pp. 1078–1086, Aug 2015.

[Wan16] Z. Wang et al. “A performance analysis framework for optimizing OpenCL

applications on FPGAs.” In HPCA, 2016.

[Wan17] S. Wang et al. “FlexCL: An analytical performance model for OpenCL

workloads on flexible FPGAs.” In DAC, 2017.

[Wan19] Jie Wang. “PairHMM using shared memory/shuffle instructions.” https:

//github.com/whbldhwj/IPDPS, 2019. [Online; accessed Jan-2019].

190

https://github.com/UCLA-VAST/blaze
https://github.com/whbldhwj/IPDPS
https://github.com/whbldhwj/IPDPS

[Whi12a] Tom White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

[Whi12b] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[WK15] K. Wang and M. M. H. Khan. “Performance Prediction for Apache Spark

Platform.” HPCC-CSS-ICESS ’15. IEEE Computer Society, 2015.

[WXC17] Jie Wang, Xinfeng Xie, and Jason Cong. “Communication Optimization

on GPU: A Case Study of Sequence Alignment Algorithms.” In Parallel

and Distributed Processing Symposium (IPDPS), 2017 IEEE International,

pp. 72–81. IEEE, 2017.

[WXW16] Li Wang, Tianni Xu, Jing Wang, Weigong Zhang, Xiufeng Sui, and

Yungang Bao. “Understanding the Behavior of Spark Workloads from

Linux Kernel Parameters Perspective.” In 17th International Middleware

Conference, Middleware Posters and Demos ’16, pp. 1–2, New York, NY,

USA, 2016.

[WZH16] Zeke Wang, Shuhao Zhang, Bingsheng He, and Wei Zhang. “Melia: A

mapreduce framework on opencl-based fpgas.” IEEE Transactions on

Parallel and Distributed Systems, 27(12):3547–3560, 2016.

[WZL14] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang,

Yongqiang He, Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, Chen

Zheng, Gang Lu, Kent Zhan, Xiaona Li, and Bizhu Qiu. “BigDataBench:

A big data benchmark suite from internet services.” In 20th IEEE Inter-

national Symposium on High Performance Computer Architecture, HPCA

2014, Orlando, FL, USA, February 15-19, 2014, pp. 488–499, 2014.

191

[XGF13] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica.

“GraphX: A Resilient Distributed Graph System on Spark.” In First

International Workshop on Graph Data Management Experiences and

Systems, GRADES ’13, pp. 2:1–2:6, New York, NY, USA, 2013. ACM.

[Xila] Xilinx. “Vivado High-Level Synthesis.”.

[Xilb] Xilinx. “Xilinx UltraScale+ MPSoC.” https://www.xilinx.com/

products/silicon-devices/soc/zynq-ultrascale-mpsoc.html.

[Xilc] Xilinx 7 Series DSP48E1 Slice User Guide.

[Xild] Xilinx 7 Series FPGAs Memory Resources.

[YHG17] Neeraja J Yadwadkar, Bharath Hariharan, Joseph E Gonzalez, Burton

Smith, and Randy H Katz. “Selecting the best vm across multiple public

clouds: A data-driven performance modeling approach.” In Proceedings

of the 2017 Symposium on Cloud Computing, pp. 452–465. ACM, 2017.

[YWZ15] J. Yin, J. Wang, J. Zhou, T. Lukasiewicz, D. Huang, and J. Zhang. “Opass:

Analysis and Optimization of Parallel Data Access on Distributed File

Systems.” In 2015 IEEE International Parallel and Distributed Processing

Symposium, pp. 623–632, May 2015.

[ZCD12a] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin

Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion

Stoica. “Resilient Distributed Datasets: A Fault-tolerant Abstraction for

In-memory Cluster Computing.” In NSDI, Berkeley, CA, USA, 2012.

192

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

[ZCD12b] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin

Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion

Stoica. “Resilient Distributed Datasets: A Fault-tolerant Abstraction

for In-memory Cluster Computing.” In Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation, NSDI’12,

pp. 2–2, Berkeley, CA, USA, 2012. USENIX Association.

[ZCL15] Jianfeng Zhang, Paul Chow, and Hengzhu Liu. “CORDIC-Based En-

hanced Systolic Array Architecture for QR Decomposition.” TRETS,

2015.

[Zho16] P. Zhou et al. “Energy Efficiency of Full Pipelining: A Case Study for

Matrix Multiplication.” In FCCM, 2016.

[Zoh16] H. R. Zohouri et al. “Evaluating and Optimizing OpenCL Kernels for

High Performance Computing with FPGAs.” In SC, 2016.

[ZPF16] P. Zhou, H. Park, Z. Fang, J. Cong, and A. DeHon. “Energy Efficiency of

Full Pipelining: A Case Study for Matrix Multiplication.” In 2016 IEEE

24th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), pp. 172–175, May 2016.

[ZR87] Wei Zhao and Krithi Ramamritham. “Simple and integrated heuristic al-

gorithms for scheduling tasks with time and resource constraints.” Journal

of Systems and Software, 7(3):195–205, 1987.

[ZRF18a] P. Zhou, Z. Ruan, Z. Fang, D. Roazen, M. Shand, and J. Cong. “Doppio:

I/O-Aware Performance Analysis, Modeling and Optimization for In-

193

Memory Computing Framework.” In 2018 IEEE International Symposium

on Performance Analysis of Systems and Software, pp. 1–11, April 2018.

[ZRF18b] Peipei Zhou, Zhenyuan Ruan, Zhenman Fang, Megan Shand, David

Roazen, and Jason Cong. “Doppio: I/O-Aware Performance Analysis,

Modeling and Optimization for In-Memory Computing Framework.” In

Performance Analysis of Systems and Software (ISPASS), 2018 IEEE

International Symposium on, pp. 22–32. IEEE, 2018.

[ZRS87] Wei Zhao, Krithi Ramamritham, and John A. Stankovic. “Scheduling

tasks with resource requirements in hard real-time systems.” IEEE

transactions on software engineering, (5):564–577, 1987.

[ZZR16] Z. Zhuang, S. Zhuk, H. Ramachandra, and B. Sridharan. “Designing SSD-

Friendly Applications for Better Application Performance and Higher

IO Efficiency.” In 2016 IEEE 40th Annual Computer Software and

Applications Conference (COMPSAC), June 2016.

[ZZT13] Xingquan Zuo, Guoxiang Zhang, and Wei Tan. “Self-adaptive learning

PSO-based deadline constrained task scheduling for hybrid IaaS cloud.”

IEEE Transactions on Automation Science and Engineering, 11(2):564–

573, 2013.

194

	Introduction
	Chip-Level Performance and Energy Modeling
	Energy Efficiency of Full Pipelining
	Locality-Aware Transformation for High-Level Synthesis

	Node-Level Performance and Cost Modeling
	Computation Resources
	Storage Resources

	Cluster-Level Performance and Cost Modeling
	Applications: Modeling and Optimization in Public Cloud and Private Cloud
	Public Cloud
	Private Cloud

	Energy Efficiency of Full Pipelining
	Related Work in Energy Modeling
	Matrix-Multiplication Kernel
	Baseline Kernel
	Optimized Kernel

	Energy Model
	Computation Energy
	Memory Energy
	Interconnect Wire Energy
	Leakage
	Total Energy

	Results
	Discussion for Baseline Kernel
	Model of Energy Overhead
	Results

	Conclusion and Future Work

	Latte: Locality Aware Transformation for High-Level Synthesis
	 Motivation and Challenges
	Latte Microarchitecture
	Pipelined Transfer Controller (PTC)
	Automation Framework

	Experimental Evaluation
	Conclusion

	Node-Level Performance and Cost Modeling: Computation Resources
	Whole Genome Sequencing Pipeline
	Analysis for Straightforward CPU-FPGA Integration
	Generic Model
	General Discussions
	Cost Modeling Analysis
	Insights and Optimization
	Different Cost Ratios (CR)

	Conclusion

	Node-Level Performance and Cost Modeling: Storage Resources
	Introduction
	Background
	Apache Spark
	Genome Analysis ToolKit (GATK4)
	Experiment Setup

	GATK4 Performance Analysis
	GATK4 Performance Profile
	I/O-intensive Operations
	Effective I/O Bandwidth under Various Data Request Sizes

	I/O-Aware Spark Analytical Model
	Model Variable Definition
	Different Execution Phases
	Generic Model

	Model Evaluation Results
	Applying Model to GATK4
	Generality of Our Model: Other Applications

	Application of The Performance Model—A Case Study for Cost Optimization in Public Cloud
	Cost Modeling for HDDs
	Model Verification on Google Cloud
	Cost Modeling for SSDs
	Modeling Results

	Related Work
	Spark Performance Analysis and Modeling
	Impact of I/O on Parallel and Distributed Computing

	Conclusion

	Cluster-Level Performance and Cost Modeling
	CPU-FPGA Integration and Cost Modeling
	Cost Model Implementation
	Mocha Runtime
	Case Study: Accelerate Genome Variant Calling on Public Clouds
	Evaluation of PairHMM Accelerator
	Evaluation of FCS GATK Acceleration Solution

	Related Work
	Conclusion

	Cost Optimization with Composable Instances in Public Cloud
	Modeling
	Input Parameters
	Variables
	Objective Function
	Constraints

	Experiment Setup and Evaluation
	Profiling
	MILP Solving
	When Mocha is Applied
	Multiple Genomes

	Discussion on Spot Instances
	Related Work in Scheduling for Optimal Cost

	Latency Optimization for Domain Specific Application in Private Cloud
	Modeling
	Input Parameters
	Variables
	Objective Function
	Constraints

	Evaluations
	Configurations of Optimal Results
	Heuristics
	Experiments

	More Genomes: When #genome is Larger Than #storage space
	Input Parameters
	Variables
	Objective Function
	Constraints
	Evaluations

	Discussions on Other Applications
	Related Work in Scheduling for Optimal Runtime

	Conclusions
	References

