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Abstract

- The structure of a polyatomic molecule derived from observed
gpectroscopic moments of lnertia differs appreciably from both the
equilibrium structure and the zero-point average structure. A

vpcrturbation expansion of the moments of inertia is derived nere
'in a form which allows the vibrational displacements to be referred

to any fized~configuration of the atoms as origin. A method for

"evaluating the expansion coefficients is glven which proceeds

"atom-by-atom." Iinear WXYZ, branched WXYZ, and symmetric WX,

molecules arevtreated in detail.

. Emerlcal data show that the anharmon101ty of the vibrations

‘gives rise to the most mportanc of the corrections required %o

obtain the equilibrium structure. Except for a few molecules, the
anharmonicity is not accurately known. Tt 1s shown, however, that

the anharmonic contributiono are complctely absorbed (to a
'practical approximation), in displacing the average conflguration

from the equilibrium one.  Therefore the moments of inertia for

. the zero-point average configura%ion‘of a -molecule can. be derived .

from the observed'effective moments'by applying corrections which

~depend only upon the harmonic part of the vibrational potential.

Presented in part at the Symposium on Molecular Structure and
Spectroscopy, Columbus, Chio, June, 1960. " Support recelved from
the Alfred P. Sloan Poundation, the U.. S. Atomic Energy Commission,

~and the National Science Foundation is gratefully acknowledged.



&

'.Thettfaditiénal model of pdint masaes‘éohnected by'Weightlessg'
rigid rods givés a‘fémarkably good fit to the rotational spectré oﬁ!l
nost moleoules., -Howeverg.molecular vibraﬁions.make the “effectiveﬁ*
moments of inertia obtained from a rigid rotor analysis differ

appreciably'from the moments for the equilibrium structure of th

molecule. Even in the ground state; the contribucion of zero- pownt
?lvibrations_to the effegtivegmoments is usually of the order of 1%.
This is,far’larger than experimental uncértainties in high

resolutlon spectroscopy, particularly microwave spectroscopy, which

commonlyhyieldS'moments accurate to 0.002% or better.

Exdépt for diatomic moleéules and.the.simpiest polyatomic
molecules;wexperimenéal‘détermihation of the vibpational contri-
butions haé not been feasible. Theoretiéal calculations have been
forestalled by thelr complexity as well as iack of sufficlent
iﬁfOrmatidn'about vibrational potential functions.  Some of the

conceptual deficultJ.eq are evident in the discussions,l enlivened

by scvewal wrong conclu51onss .which led %o Eckart's 1ormulatlon2 of

the conditlons necessawy to define an internal axis system that

2

. . 9
.would insure the maximum uncoupl;nw of vlbra 1on and rota51on,.

wﬁlson and Howard carried out a perturbation treaﬁmenu of he
vlbrauionarotaulon coupling and.showea tha* the ro é onal soeetrum
of most molecules {after allowanée for centrifugal ‘diétorgion)
should be that of a fictitious rigid rotor. Wilson.amd Howsrd
emnba31vec that che e;fect¢ve moments of iner ia are noﬁ S*mply
relaued.eicher to the average of the instanuanegus mOments or to

the average of their réciprocals, because of Coriolis forces. ahd



- moleculeu has theﬂefore renaxned intractable, and the generel

~

other interactilons, but‘this point has-since of ten been overlooked,-_]

’Nielseﬁ, DenniSong and o% hers ex tended the urea cment and derlved«

explicit expreesiOne relating'the éffective momente-tO'thevequiliﬁiffi'”'%_

rium 'momeni:sof;inertia.5 Unfortuna ely, bhe terms that are nearlyeeme: i
'alwaye bhe most 1mportant en these relations 1nvolve the anharmonlcv»'
pafc ‘of the v1bratlonal pouent*al, whlcn LS accuracely ynown for je'i‘ o
'only a few polyatomic molecules..g_ . ﬁl};e;;eif“ff";;f'Q  '~‘*1J ;§,. ’!
iho problem of derﬂvlng equillbrlum scruc ures LOP polyauomxc
pracclce has been %o maxe dlrect use of the effectlve moments. _The
.chactures obLained are usually refer%ed bo as r scructuweo.r' The
incons%scenmeq in T, parametefs caused by zewo~point vibratloqs
are parcicularly noviceable in michwave data.for‘lsotoplc molecules,
and‘a tempts have been made to es lmd e thelr efPect in a number‘

12 haG pwo00sed a general pro- ?

of uP@leiC cases.7 -11 Aleoﬁ;Coetaln
cedure of analysis, in wnich Kralcchman 5 equatlonsls-are USedvto
decermwne structures by fltting the al“”erences of the exfectvve
@pmencs of isotopic epeCLes rather shan the aosolube values of the'
moments. Cos stain has designated the pawametefs obtained by chis - %

"substitution" “method as tle Ps uGrquufe. _ He has snowq cages

~ where remarkably consistent Ty 'parameters are obtained eVen when o

there is uonsiderable varlaticn in the v, parameters obtainec vy f,

‘fittin airf erenu combinata.opq of the-absolute'values of the moments.
j,Pve 14 has' dlqcussed the use o? seeond:éiffe?ences in cases where )
nultib?c qutopic subs itutlons are maae. -Aithough these semi- |
empirical methods have giVen promisingyresults;;it has not/been-

clear whether they make the optimum use of the data, ahd'séVeralv‘ . .

.}-
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and the @uos%i&n e& ﬁhe propes ;rwceduru'far ,nalyz4ng data when

fall\atmms—h ave not bacn izotopleally subsﬁ"vueéé

',Gf hgaﬁcaaﬁ, ns bj éleh“fan.éi“ﬁWﬁ*tien

arises_ zoa the im%erent difference in the nat

"éiF&mys in many. deta;ls,v-In ﬁwf%iﬁﬂl r; bhe sreatmcnb 18 modif:

>

nuar priraiyal axeﬁg h@ meanu m& allan nrlﬁar nertial da;ectﬂ,

t

S

'9nﬁ 1cw Q&cﬁ@i@n whieh Lﬁ not yet resclved is the relatﬂon of

nha emﬁzmiaﬁllj daterw d ’, TP, s sbruct mﬂws %0 Bome well de f ed

1 pﬁyﬁiﬁal'e @cp@ suvh a8 tnﬁ couzlibvium utfv@%urﬁ or the average

%CPKuG&WG> With tﬁe -antxnaeﬁ fefincmemb oi Q&ect°0n dxffraﬂtlor

‘and Gthe ratheas 0? St?&ﬁu&?@ d@termin ieng‘it.is becoming more
dmp a?taﬂt Lo flnd a comman aa& fe conp rigon of ﬁtructu? l

.p“wqmbteww abta nﬂd bv aif ercnt tevhnxfue ' Rﬁseﬁt aecu”a e studlies

15 and b} 'i pouave ,Lycﬁ?On“

A -
ﬁapvg 9 iﬁ ey%np?cg hmVG gzven «;gn&fﬂcaz different valueﬂ For

Si bond 1cng$n it SGGmﬁvlikely"hac part-ef'the discrepancy

ture of the experi-

@

mén*aily~ﬁe%efmiﬁegAqgantmﬁia .
in tne pres ent study %he aim.has been to examine these praaﬁieal
ﬂromlems 9? sﬁructu e analysis from the viowpoinﬁ of the gcnmwall

-thocﬂy of Vsza ionnwatacvan 1n$evawbﬁansa- wiﬁh of the physical

eantc&» ana the heefetxcal met noms &pnlied here axe implicit in

e

Work alfe&ﬁy axistzng.b ﬁmweverg the ava ilable discugsions have

usually been ayﬁeﬁted oward the. int pretation of spectra rather

e
[#23

than w@y fla uvdef ﬁanﬂing i problems f‘ﬂtfu@@u?a &e$ermin#

t*@ﬂy and e hav@ f&uu& z% adva &ageaug to tak& an amwroaeh whiich
nere so ina th@ per%urb ﬁaﬁ Cfﬁ&ﬁ?l@ﬂ% are rct &udﬁriﬁﬁCd tc the

bqullﬂwau‘ configuration, buc may be. r,f *we& ta any 'a?@itf&?lly



'cnosen conflgu°ation of the atomg‘ From'this it 1s found fhét %he.
'mcmenos of 1nevtwa for the average conflguration of a molecule may
be oevlved from the observed effective monenta by applylng correc- o
"tlonq whlch depend only Upon the harmonic part of the vibracional |
potentlal 17 Also, the calculations are 31mplif1ed by a formulation
which takes advantage of WllSOn s methods,for vibracional analy31$.18
Thig papeﬁﬁoutlines the‘dérivations togethérywith someYQualitative:'
'conSiderations. Apolications to'ﬂtructuré ahalysisvare presented.

in succeeding papers . on the calculation of avnra@e scructuﬂes (Part

II), inertial defects (Pa:e’u IIT), and iSObOQlC substitution (Part
Iv). |

" PRELIMINARY ANALYSIS OF SIMPLE CASES
The bagis for approximations to be‘intrdduced in the general

treatment can be illustrated most simply with diatomic and triatomic

molecules;’

.DiatOMic Molecules

The vibrational average of any function of“internuclear ‘ j
distance is readily obtained from a series expansion in € = (r{re}/re,
the relative deviation from the equilibrium distance. Thus the -
average_g?h power of the bonq»distancedis given;by%? o

where the scale factor is

=14 <B> - Hin)t®H 4 (2)



'the same as the parametcr r (O) obtalned from electron diffraction.

The cowrespond?nﬂ correc»ion terms for moments of incrtia and

- fOtational constancs are glven by ‘

T  .—. 1..2 21 C : S E (Sa)
sewerfrax®, ()

  in @heéé_fgfmulasv | | | |
-<.<€>_)_ = ;-al.(sBe/vwe‘)‘(v + %«) ) | | | (4a)
 <€-2> =' ‘(ZBe/mé)(v - -) | - - (45)

s

«

where‘we is the harmonic vibrational frequency and aq is a

(dimension;ess) cubic anharmonic constant. 20 In Egs. (4) and else-

where only terms linear iﬂ”the'vibrational quantum number are
retained; this approximation is well justified empirically.

In Table I various kinds of average bond léngths are compared.

1For the ground vibrationai-qtate the direct average; <r», 1s essentially

21

This is always lafger than che effenclve bond 1envth, r, {n = -

aVerage)g obtained from rotational. qpec‘cfosco*oy,, which is in turn:

,larger thau Costain s,subscitktion parameter, Ty The inverse cube

average, <r*°>“l/5, appears in interaction constants measured in

magnetic resonancel9 or mierowave maserzz.‘xperiments

As inaicaued iﬁ Table I, the deviation of <> ffom Ty is due'
enﬁ;rely to anharmonicity. Furthermore, Eq. (1) gives ‘the same
anharmonic‘céntributionafor any g?h power aVerage, Any of these
averages can.theréfore be'derived from <f>,by means of a cofrécfion

which involves Jjust the'harmonic vibrational amplitude; -



<k

'.<r >_ = <r>-i(;~n)§§2>re:q~>, _-  T (B)

' jThﬂs g:’tveq rise to the parallellsm dmsplayed in Flg l, in Whlch
the value o; x - 1 for each bond lenguh is plotted versus the '";
'anharmonic conscanc. ”he ordinate gcale is narked in multiples o;

2>, thus 85 for a typical ground state value of <22 = 10 =3

, each;
dile1on POﬂresponds to an O. 1p deviation from L

:‘Lne anharmonlc congtant can be determined from ae, uhe apectro~
’ SCopA¢ Vlbkauionfrotationr1nte:action constant. ~Since
B =B - {v+d)a, . C(s)
v e . z? e , _

- comparison with Eq. (3b) gives
o, = -~,(GB§/we_)(1 to) - (7)

In structure analysﬁs it is convenient to use instead a parameter

€ which gives the correction to the ef ectlve moment of inert*a,

L R . )
I, = K/B, = Ie_+ {v +‘2)e | o (8)

m
il

i) = ~(ek/e ) +ay), ()
Where Kv= h/8ﬂ25, In terms'of €5 the,Scélé fé@tor'fog the effective
bond 1ength is | o | . _ |

=1 + «{v + 1)(e/ ) N  ' », ;’ . (10)
| Thé ratio of the anharmonié anthamenic”vibrational contri-

_ butions in Eq. {10) is just equal to the anharmonic constants

Gﬁ/eh = al P R o o - (11}



‘a1 = ué)

.differonces

‘as seen from Eq. (9). Since aq is between -2 and -4 for almost

23

all dﬂatomic-moleculesg the annarmonic uerm predominates, however,, -

.the harmonic term is of opposite sﬁ@n and compeHSQteﬂ for about 25p

th

Lo 50% of the anharmonic dlsplacemeno. For the aeneral n“? power f

E

avefage the ratio in Eq. {11) becomes 3al/(l-n), g0 only for n > 1

aoes the hafmonic tewm relnforce the anharmonic one. On the other

_ hand, only for 1arge negacive values of n does the cancellatlon

:becowe substancially complete {at n= -5 for aq = -2; at n = -11 for

P

The effect of vibrations on structures determined by.isotOpic

12 is considered in Parc lv, where 1% 1s shown that

;uhe bcale faccor for the ry bond 1ength is

R 10 | L

[

with

oy
] :

:(u/mi§[l+(ul/u)%l"; + (u/mz)[1+(u2/u)%]“1.' {12p)

Here ml and mé denote the masses of the atoms in the parent molecule

and ui, ué the reduced masses of the isotopically substituted

molecules. The factor £ varies only slightly with isotopic substi-

(tution, It approaches an upnef limlt of one-half when voth Hq and

Ko differ negiigibly from W, whereas f = 0.414 for deuterlum sub~
st itucion in H,. As seen by comparing Eqs. (10) and (12), the

" deviations from equillbrlum

H
1
]
i

f(‘l"v.-'re .

o
t

-1

1

£(1,-1,)



Cave- correSpondingly less uhan those for che effective bond lcngth.%z

| SLMll&TlJ; “found -that rs Wlll show about 50% lesq varlation

~ with 1sotopic snec;cs uhan doea .

v : Howevery the use-of~¢sotopic,-;““'
- o

airs erences aoes not alter tne ratio of anharmonic and harmonic -

'¢on§ribuc;onsg-whlch 18 st111 glven’by“Eq, éll),_hu,f:

. Tfiatomié Molecules
:Thé.effeétive:méméhﬁ-of inérﬁi&wfor a linear triatomic molecule,

I 1¥'I' + Ev(v?-+ii‘dw)é

v e st'g T2 s’7s?
contains ‘éo'ntributionq from the symmetric (s = 1) and antia;ymetrlc
{s = 3) stretching vibra’cional modes and from the doubl;y degenewate
bending{(s = 2, 4, = 2) mod . These corrections may;be-written in
a form | o . ' _ m‘b . : S
d ey = —(SKﬂmS)(HS‘{ Al) | o ) . 'I(;S)_

;Tanélogous ﬁo-Eq;.(9); .Thevhafmohiélterms Hs are readily evaluaﬁed'
| %rom formulas given in'Parﬁ It. HoweVer; eﬁdep“~f0r aifew cases,zé
the anharmonlc potential sonstants are not known saffzciently well
 to allow reliable values of the Ay to be calcu;ated. Experlmental '
values of some of the es coe;figlents are ava;lable for several |
,molecuies and'by}subtracting éalculated Valﬁeé df'the harmonic con—r
tributioné we have evaluafedAthe.As:tefms.' Table’ii lists the
‘patios | :'_' | .  | o L
é(@nhafmoriic }/e(harmonic) = 'A}S/HS
which were obtained."It is seen thét for all the linear molecules
the anharmonicv ontributiow is dominant and opnoswte in sign to the

harmonic contributﬂon, Ju~t_as for diatomic molecules._ For. the

Ly S

IR
N

Ay

-



1Lne anharmonlc contrlbution is cnhanwea cons ;dcr%bly in the other

symmetric stretching mode, the ratioc is roughly th@fsame as that

’

given by Eq. (11) for related disbomics.  In most cases, however,

S e

modes ard in the total Ccox rectiungv I R y
This patﬁcrn doesg not hold for HZO, c“ubciallv in. the beoding

mode. As yet there i.~ v1rtualiy no 1n;ormatwon available for other

nonlinear triatomic molecules.

Unlike the diatomic case, in isotopic differences.the ratio of

contributions from A_ and H, does not remain ccnstant. Often it is
1S [S] ' o : .

wid61J different for different modes. Again the anharmoniclty

nearly always gives the dominant contribution, as shown in Part IV,
Figure 2 indicates the relative contrlbution of the stretching
and bending modes. - Data i anluded for all poly%uomec molocules

4

for which the equilibrium moment of inertia is known. It is found
that the contributions from bending are usually ownposite in sign to
those from stretching, but somewhat smaller in magnitude. Conse-
quently, the total correction,
€ = Z e
sdscs’

' P

{shown by the solid points) in most cases falls substantially below

the dashed l1line, which gives the_correctione due to stretching alone.
Ancther éomparison {shown by open poiﬁts),with the sum of stretching
terms 1s obtained by assigﬁing to each bond the observed €g value
for the corresponding diatomic moieoule, Exceptﬂfor CoH,, HCN, and
HZO’ this proves to be a considerable underestimate. An example in
which the contribution from bending cutwelghs that from stretching

is the a-axis principal moment of inertia of H20.



For a 1¢near, symmetric XY2 no?eculeg 1t is ieaqlble to exnresg
the nth power average of the bond distance, <r 1/n
fOuation pafametefs of Eq. (13} as . explic1t Lunccions of the force
congtants, ‘atomic masses; and geomet%y. The results are collected in
- Table III.' As indicated, the quadratic and cubic force constants
refer to internal d;splacement cdofdinates, and symmetry allovs oniy}*

18 For the symmetric

'certain terms to appear in the potential energy.
stretching mode, the form of the vibrational parameter M, and the
CO@P“ nts ﬂl and Al is the same as in the diatomlc case; however,
this is not so for the other modes. The calculation of <rﬂ>L/n starts

from the'relation

or = Zre_+_Sl + Sz.

Up to terms linear in v 4+ %3 the only normal coordinate which enters
is the symmetric stretch, proportional to'-Sl + S.» and the vibrational
. . <)

averages may be evaluated as indicated in Egs. {34) and (35) and

&

Appendix C. It is found that Hqs. {1)-(3) and {5) still hold, but

l“"‘ m

€ is replaced by ~(Slﬁ-83) and the averages in ‘Eg. (4) take the values

o

given in Table III.
* From these results, it is readily shown that the effective
- rotational constant BV is not simply the vibrational average, <B>.

.mhe 1atcer is given by
o=l =2
B> = kI = {&/2n)<r” >,

.

where m is the mass of the Y atom. From Tables I and III; we find

1/n

P e S
}—K
e

B

<Y = <on - (1-n)(B /0 )y + 3)

, and che vibratign«

£




wllw-

=

he effective bond length, however, is given by

o | 1
with | .
‘? = 1 +‘l s {v 4—ld )(e /I ) RN
N ’ 2 S s 2 S b S e 37 "‘,/ -
as in Eq. {10}, Thus we find
— \ ) 1 | »

so that r, has terms involving H, and Hy not present in <r"2>“1/2.

‘As” shown for the general case in Eq. (26) and Appendix B, these

"extra® terms arise from Coriolis interactions. Only for diatomic

molecules is the effective rotational constant simply proportlonal

to <I™1>,

In Egs. (14) and (15) it is again found, however, that any of
Lhe n“h power avefage boqd lengths may be computed from the effective
bond length without knowledge oi the anharmonic force constants,
justvas in Eq. (5) for the diatomic case.

Table IV gives a detailed analysis of the contribubtions to

I~ Ie.for 002, It is seen that the Coriolls terms H2 and Hs are

<
comparable to Hl. Another typilcal feature, found for all the linear

“triatomic molecules of Pig. 2, is the substantial cancellation which

occurs between bending and stretching and between harmonic and

anharmonic terms.
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. GENERAL FORMULATION

The resgults found for the dlatomlc and linear KY2 molecules
suggest that even in a polyatomic molecule the main effect of vibra-
tional anharmonicity 1sg to displace the average configuration of the

atoms Irom the equilibrium one. We shall confirm this by deriving )

relations bebween the effective moments of inertia obtained from.

spectroscopy and the moments that correspond to varlous configurations
of the atoms. Although a peﬁturbation-treatment parallel to the
c , ,

usual one” gives the same repul g, another approachs; patterned after.

the treatment of diatomics, 1s used here to simplify the formulation.

Coordinates and Hamiltonian

The positiong of the atoms are specified by vectors gi whose
Carteslian components (aig Bsos vi)'are referred ﬁo a set of axes

moving with the molecule: {the so-called ”molecule« ixed" axes), A

standard configuration of the_atoms; which need not be the equilibrium

26 15 Gerined by

configuration but should not differ greatly from it,
a set of cocrdinates (aag 619 7.)° Vibrational dis placemants from
the st andard conflgvratﬁon are described by normal coordinates Q.

which are defined in terms of the’increments

ete. The increments are not all independent, but must satisfy the
‘ ’ ‘

Eckart conditions,

z.m.oa, = 0 o ST _ - {18)

Zimi(aiﬁﬁi - B,5a y =0, 3 _ - {1T)



¥

~13=

ete. These six conditlons serve both to define the molecule-~{ixed

axis system and to complete the trangformation equations which relate

the BN atomic displacements to the 3N-6 normal coerdinates.z’la
N 4/2 '(d)' : - »
and
Q, = 2 2“31/2 (“)oa. | ¢ (18v)

The mass adjustment makes the transformation orthonormal, so that
a) {o ' ' faay |
zﬁs)z( ) o B e B {(19) |

We shall consider later a method of evaluating the transformation
coefficients, as our final results will be expressed in terms of - ﬂ
them. . ) i

The potential energy associated with the vibrational displace-

ments is expanded as ‘ ' v ]

| 3, 20, 4 vee
2V = 2 V Q + 2 k Q + 3 kss Qb + SZsztksstQSQ% +

(20)

Unless the standard configuration is the equilibrium one, the

coeflficients of the linear terms will not vanish. In any case,

however, the normal coordinates can be chosen to eliminate cross

terms in the quadratic part of the potential energyo Furthermore,

~we can relate the coefficlents in {20) to the usuval parameters, :

which refer to an expansion about the equilibrium configuration. :
As shown in Eq. (42), for practical purposes Lh@ vibration frequencies
and cubic constants are unchanged and the coefficient of the linear

term. takes the form



14w

| S R e v
vém= —SEGSS<QS} +_Zt°ts<Qt>] ;o _'--_' o i21)§

'where the congtants Osg and ¢,._ are a 11peaL combenation of A g2 k.

“ts 4 , ss”’

The Hamiltonian ;or vior tlon and rotatLon may be wrltten as

PH = T b+ B @)*(P @) + 2V, - | €22}

as shown in Appendik A, (uec Tablc V for notatﬁoa.) If the molevule

viere -vibrating but not focating, only the ‘cermql8

ST ST S

would remain, whereas if the molecule were "frozen" 'in the standard

- configuration, only the kinetic energy of rigid rotation would appear,

dHrlgﬂd

w@ N o (@)

This involves just the inverse of the moment of inertia tensor for

the standard configuration and since principal axes are used

I, = zimi(si + y, ) : - _(ESa)

Iyp = ~23My%yPy = 0 . (25b)

In the vibrating molecule addntlonal contributions to the rotational
energy arise in'two ways. .One is the dependence of the moments of

inertia of the di»borted moTecule on the normal coordwnaues. This

can be evaluated by a straightlorward vrbraulonal average, using the

eigenfunctlons V*lb asgoclated with (23). The other contributions
come from the terms involving @ in (22). bz shown in Appendix A,

the operator (P is proportilonal tc % and represents the part of

.
g
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the vibrational momentum that arises from Coriolis forces in the
rotating molecule. A second order'perturbation treatment of these
Coriolis izﬁeTaCuLOﬂu»trefefOfe yields ﬁerﬂs quadratic in m which

contribute to the effective moments_of’inertia. . Hence the effective
moments are given by | - | o T
S I X e |
= <I ">~ + Coriolis terms. (26)

The vibrat’ nal average of X -1 is evaluated in the next section and

I
~v
the Coriolls terms are Lrea*ed in Appendix B.

The result of this perturbation treatment is Lo fepTace (25)

03

with an effec¢tive rotational Hamiltonian,
_pte o : :
Hoop =W B = 2,258, oM Mg | » (27)
in which the rocatlonal constants take the form

(K/Ia)§as - 2 (v, +»§'ds)agﬁ B (28)

The vibra*"on rotation Qnterucclon027 thus contribute both dlagonal
and nondiagonal tefmu to the 01“ect1ve moment of inertia tensor,

whose elements may ve written as

R

il

Igﬁ :IQE a + Z (v + % ds)ega-  : ‘ ' (29)

wWnere

S

P (IQIB/K}dgﬁy

as found by inverting (27). The calculation indicated in {26) will

provide expressions for the coefiicients e as functions of th

-

molecular geometry, atomlc masses, and pote ial energy parameters.



. Vibrational Averages _ : b 4

/ - _ S » | ; >

The components of the instantaneous moment of inertia tensor =

- way be expanded as 3 5
L = op B o 4.

Tap z 6QB + I atrQ, + z 2, s ; (30) i :

- v x | ‘ : 'y

vwhere the coexflcients _ A ' 4
adf = (1, 2q, ) ) . o -

af 2
Beg = (@ Iaﬁ/aQsaQt)*

are evaluated in terms of the trandforma ion relations (18) as . ?
indicated in Fq. {48). The corresponding expanslion of the inverse

moment of inertla tensor iz given by

3

re=dy oo L0B
{1 )aﬁ = aaa/xa Zal Qg

- 3.5 (2% - Aoy BV/& jo,Q, + o+ ()

In the vibraﬁional’average there is-ho mixing_of the contributions |
from the various parts of (ol) and the Coriolis terms of Appendix B, | %
as long as only tefms linear in v + % are retained. The cross terms
 <Q$Qt> also do not concrlbuce in this order of approximatlon. Thué;

‘after averaging and re-inverting {31) we have

-1 ,—1”_ o PN e |
LI ge> ™ = IByq + zsas <Qs>

o]
- .ap av, BY A o
+ 3 [AZF zvas /173<QS> + (32) |

 To this we must add the Corlolis contributions from Eg. (BB),
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- ez {CO‘LCS,C%S/(A )k I

in order to obtain the effective moment of inertia. The requisite

¥ - . Y 3
5

vibrational averages are given by

<Q_>

SR

Ry 2 ?
Gss)<Qs> * Zt(ktts‘ cﬁs)<g%éyhs (34)

I
i

3 |
- §[(ksss'

and . ' - S ' o

a2 e/ 1
<Qg> = (2/ag)lvg +5.4,)

(35)

]

as,shown in Appendix C. When {3¢) is substituted into (32), there
results a double sum over the nondiagonal cubic constants. However,
| 'tbis may be rearranged to make a common factor of'<Q§> appear in all

the terms. Thus We obtain -

ePlhar) = (2K/w ) (428 -3 aqyaﬂYVIy"4thgt5§t“s/(ks‘“t)]

y
| {36)

"e%Plannar) = (-38/0,)(a2P (ko) WA+ ZalP iy mo )]
(37)

ag the genéral formulas for the "harmonic® and'"anharmoniq“ parts of
the coefficients in Eq. (25) By comparison with (30) and (31) it
is ‘seen that the first term in ¢ (har) represents a dirvect average
over the 1nstantaneous moment of inertia, <I>; the second term arlses-
because it is the PeOLpFOGal moment which is accually averaged; and

the third term accounts for the Coriolis contfibu 1ons.28 The two

latter effects do not enter es(anhar), however. These'formulas
. - enable us to:.relate the moments of inertia for any choice of the

standard configuration to the observed effective moments.
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Comparison of Eaquilibrium and Average Configurations

' ss N
and the foxmulas {36) and (57) become equivalent to the results derived

~ When the equilibrium configuration is thé/standard, OLo = Gst'?} 1
_'by Nielsengs When thé,average configuration is taken as theAstandaﬁd,
‘we shall find that |
. . | A ]
%P(annar) = 0 . . v (38)
In the:foll¢wing comparisons, we indicate by an overhead bar
'jquantities which refer to the equilibrium configuration as the

standard. Thus from {(18) we have

-g =mY22 10T

Gg 7% Ty S5is%g?
and these normal coordinates of course differ somewhat from those used
when the average configuration is the standard."The displacement of

the average configuration from the equilibrium one is therefore given

by
ai - ai = <ai—ai>
_ 12 5 7o) g s .
= my ZSZiS Q> . (39)’

"Here the wavefunction ?Qib to Pe used;inlfhe vibrational averagé

also_fefers to the equilibrium configuration as the standard. From

'4(39}_we see that a displacement from the average configuration~may\
'bé.expressed as | | |

* _ -1/2 ¢ 50 1w L s
‘Qi A ] ZszisiQs ?Qs>}

6 that a comparison with (18) establishes the relations



o i
0, = 2,7, [T, @l o - (s08)
'aﬁd-;‘ - ST o A w: e |
B S
wﬁere' - | . | .l :
o .;,Tst - ziz (z o 1t) | 'i¢ B - (41a)

From Eq (40) we. can derive oorreqpondlng relations between’
'_the coef iclents chat appear in the expansion of the potential enemgy.

For example, the llnear term in Eq. (20) involves
 §“Vs = (av/agg)*_?,?t(av/aQt)%pT%8v

and S _ , S
Cnesam A m L B = 2
(B3R, )y = R<Tp> + P <G> 4 v

N |

N
~ &
" I

Only the first term in this derivative need be retained, as the others
will be at least quadratic functions of (v + ~) Furthermore, the

aifference between the two gets of Lranu;ormation cocefficients is so

»_'slighc that {41) may be approximated by

S88 888

Tap = Tos = Ot (1)
The-resulﬁfthen reduéés‘té | e
Vo= -3[Fyge <> + ZtkttS<Qt>] N S
 aftcr introduulng (34) Witn g ¥ Gts = O;. In.the séme Wayiwé fiﬁd
= (BZV/GQ )* SR e (am)
e B 4, N o (s2e)
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etec, The vibration frequencieé and cubic eonstants can be'takenvtof
be the game for both configurations, since in the effective R
Hemlltonlan of Eq. (27) the corrections thereby omitted would not

show up in the terms proporticnal to (v + %); ‘"For the same reason

we can omit the bars from the quantities in {42), Thus we obtain :

i'_ the form given in Eq. {21) and f£ind that
o, =k (¢3)

Va8 sss? s =¥

tts

when the standard is the average configuration. Substitution of

these results_in'the general Egs. (34) and (37) then leads to (38).

vThis_demqnstretes that (up to terms linear in v +_%) only the harmonic

part of the vibrationai potential is required in_erder'to calculaﬁe

: the moments of inertia for the average structure from the observed

“effective moments. Such calculatlons are glven for several molecules

‘in Part II of this series.

A similar derivation shows that other: cnolces for the standard
conflgufation.would again lead to Eq. (21) with Eqs. (43) replaced
by exprees;ons enalogous to those found in Tableli for the,diaéomic

case.

CALCULATION OF PARAMETERS'

The numerical evaluacion of the v1bratlon~rotatlon parameters'

“in Eqs (36) and {37) requires, in addition to the potential constants,

a calculation of the coeffieients, agﬁ and Agg, in the expansgion of

the moment of inertia and the Coriolis constants, ﬁa,. These quanti‘ies"

st
may be efpreseed in terms of the transformation coefficients E(a)

Unlch ae the normal coor'dma’ces.5 As seen from Eq.”(lB), the .

Y s nE

P

AN e LT A
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coefficients can be written as derivatives,
m;l/z KCi) (aai/aQ )w , - (4:48‘}%

but proper account must be taken of the Eckart conditlons (since

there are 3N displacement coordinates Ba, and only 3N-6 normal coor-

1
dinates Q ). This gives rise to a number of useful relationq'
"involvﬂng the parameters aSB AaB, and Cat, which have been fully
developga by Meal and Polo.- and by Cka and Mbrino.so Particularly -
‘convenient is the general re;ation,so

aB ay ,BY - - zp0B
{AS zvas /I 1 Az Cstc 3h_g

which enables us to rewrite Eq. (36) as

egg(har) = (-6K/ws)[A§§vf %Etﬁgtégt%t/(%tJXS)lv o (45)

The paramecers A ﬁ re unity or zero for several simple types of
molecules (including the linear XY2, XYz, and X,Yz molecules, ouo—of-
plane axis of bent XY, and tetrahedral XY,). Furthermore, the
.methods derived by Meal and Polo o%ten Ciﬁcumvent much or all of
the normal coordinate andysis in calculating the Coriolis-constants,zg
Thus, as illuétrated in Part II, there are several cases of interest
in which € B(har) can be evaluated without a normal coordinate analysis.
| We shall outline a convenient method of obtaining the ﬁ(a)

51 This will be used to derive

coe~¢iuien s for more general cases.
formulas for gsome examples (linear WXYZ, branched WXYZ, and synmecric
'axyzq molecules) and to- treat a model in which several of the vibrations

_are regarded as "frozen stiff."



Dﬂr¢vacives Subject to Eckart Condit;ons :
RN - o .

Tle derivatives in (44 ) are to be evaluated at the standard ' /

conf;guratlon and are referred to the principal axes system of (25)& :,

An arbitrary set of 1nuremenu in the coor dlnates,
=.(5aia 6Bim 575): | | .

 would not iﬁ”génerallsatisfy the Eckart conditions (16) and (17),
51ncc the distorted confi@uratﬂon (when viewed from the original i
molecule~¢ixea system) would have its center of mass displacea along

»uhe a-ahis by an amount
6? =.Zim.6ai/M' | - S (46a)
and would be rotated throu h an angle -

89, = zimi(aiasi - 5iaai)/17 | (460)
abput the ?~axis?2 However, any such set of displacements can be

"~ converted into a set

.Sgi:% (6@19 5519 Svi)

which does satisfy the Eckart conditions by subtracting the appropriate

_rlgld translations and rzgld rocations of the whole moleculeago-'ﬁrom .

Eqa. (40) we find

| 6&1 = Ba; - L “*(Via?s - B;69,) - : {47)

-t

The freedom which this formulatién allows in the cholce of the primed
displacements is an important advantage. Thus, a comparison with

(18) now shows that the derivatives in (44a) are given by.



Awhefe 5ais.dénotes the‘increment comﬁuted from {47) by chéosing a-
‘set of primed di¢p1acemenus such that Q =1 and all other normal
coordinates (t % s) vanish. = He »hali'refér td such‘a set of dis-
vlaoezents 5w g @8 an expahQion of normal mode Q oM |

Before pr°sentlng a ucheme for construutinm the special set of
increments, 1mt us note that thib ledds to a very simple formulacion

of the v1brablon rotation- voefficients Subgtitution of (44b) into

Nielsen® s'definltlonss gives

o _ * : S o ’
al” = 23 mi(ﬁ 5513 + Y640 - e : {482)
-oLaB * *, | 7\ f@fr' o . A4
agt = zimi(aiasis + ByBay ) N . . ‘(~8b)
A% = 3w [(sp, )2 & (o7, )21  (48c)
ss - TiTitY ris ' is |
CaaB o ' .l | 48
ACY = -Z,m.00, B8, | . B (48a)
» a

st = Z2img(08; 0%y = BY; 08 f (49)

These expréssions may aiso be obtained divectly from Ed. (18) and
{111) of Appendix A. From Eq. {30) we find that the moment of inertia
qompénents corfespondihg tc the expanded configuration specified by
{(44) are given by3é .

S(T + Briq) =TI 6(? )+ agB + A5° s

where Iaﬁ(gi) = Igﬁaﬁ, as glven by {25}). This may be confirmed by

inspection of {48). Also we see that

o _
AL = (a

Tog ~is (50)

and therefore
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of moments of inertia, there are already available several formula-

29

~;tions well auited to numerical caloulation.v_v The vector form,

‘9f§,t i l(aris X ﬁr t) ’ji,m~'a,w

oxten useful in iaentifying which of the oomponents of C .

near unity or zero.j Also we note that the relation

. vj‘,w..

'fimplied by the orthogonality condition (19) is frequently useful.gif'

Construction of Normal Mode Expansions

3 The expansion of a. mode can be readily evaluated in terms of

}

w
.
]

A
A

; stomary internal ooordinates Sk’ which measure deviations of

'rtheﬂbond lengths and angles from their values for the standard con--

18

Amfiguration.; A normal coordinate analysis provides the transfor~7?”

ff{mation equations;,", TR R s S S

.;The molecular configuration corresponding to Q ,J.,:'With'<_>ltbhe’1:-V_QJG = |
S0 e e B P
,f“O, is therefore given by :fﬁfﬁjiﬂfrﬁ SO T L e
Lo L o R Lot C S g - ; j
By means of 2 method borrowed from statistloal meohanicsgss’sa f;iiFf
By we may derive from (55) the 5N Cartesian displacements that’ comprisei"

”fﬁ the expansion of the mode.f This method, which will be described o




with the aid of Fig. 3, generates the disgplacements atom~by-atom.

In Pig. 3{a), we start with the atoms in thevstandard configuration,

, : € @ @
with coordinates (au».ﬁﬁpmw j.  Any atam may be Qhﬂo@n as the flpyst

one {i = 1) ana the others numbered in successlon, The internal

coordinates ave also specified; Sy 1s taken ag the 1- 2 bond stretch,
S, &8 the 2-3 vond stretch, S as the 1~2~S angle bend, etc., Since

the six extra degrees of freedom that aaﬁear in. the Cartesian trang -~

~eription of (55) are later to be eliminated by use of Zg. (47), we

“can begin with atom 1 a {ixed origin and also £ix the orientation

of the 1-2 bond and 1~2—a pl e, Nexbt, in Fig. 3{b}, the displace-
ment of atom 2 is obtained by shiftfing it {and all those "beyond®)

a digtance Lﬂs alonz the 12 bond direction. For atom 3 the dis-

placement is determined by two internal coovdinates, Therefore, in

Fig. aéc}; we first pull atom 3 and thosze beyond it ocubwards a

»

distance L, parallel to the 2-3 bond {op, if Lo, i® negative, we
: <
push’ them inwards }; and then change the 1-2-3 bond angle by shifting

atom 3 a distvance Pz L5m perpendlicular to the 2-3 bond. In the same

"way we find the displacements of atom ¢ {ziven by Lios L Len) and
3 20

58
the later atemsg wirich will each involve three internal aoordinates,57
The a?ray of displacements thus obtained does not; of course, give

a unigue expansion of the mode (as a different order of numbering

t,..!a

will lead vo d feront reﬂults}s ﬁfter tﬁe trang laﬁiena and

rotations are removed by use of E . {47), nowever, the description

Q
by
0
oy
o
[ul
e
@
h

torted cont iguratlon becomes unique; this final set of
‘ : the .
displacements ﬁéaigy‘ﬁ@isg vas) might be called*"Eckart expansion

- of mode QB,‘
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| :-gg_

) It should be empha31aed that the customaryla internal coordin-
ates S1 adopted here are def%ned eo-that they transform linearly‘to | | 3
Carbesﬁan and Lo normal coordinetee. Coneequencly, only for infinie i

'teqmal amnlltudes of vibfation does the stretohlnt courdinate Sps

for ezampleg meaeure the increment in the instantaneous dlstance o
betWeen atoms E.and 5.- The So coordinate aotually represents the’7”.
f?rogectlon of che true ¢n<tantaneous dlsplacemen of the atoms:onto ' _k

oﬁfthe original direction of the undisplaoed 2-3 ”ioond.“’8 This is why

‘bendine displacements take the form illustrated in Fig.-o(c) To - @

maincaln che progeoclon cons»antg we have to make the “benaing

-motion perpendicular to the bond, whereae, if instead the actual 2 3

distance had to be preserved, we- would need to swing atom 3 along

""an arc of leagth (rzs + LZS)L38 about atom 2. Since the dlsplacemeﬁte,} j

v‘vaS are generally qu1te large, these two operatlone glve appreciably
: oifferent results and it is important to use the firqt procedure |

In“thie we do;not presume the linear relations of Eas. (18) ana (54)

| tO'bevvelid beyohd small amplitude vibrations. Ra cher, in deriving

felaulonshlps between che transformatlon coeff101ents, we use the

" linear reiatlone merely,as definitions of the‘coefflcients, which

must.remain the same regardleqefof the size of the diSplaoements.Sg

An anaﬁytic form for the ezpaneion of a mode is readlly obtained.

The linearity of the transformationﬁ allows us to write
3 s = Zk EikLks}? N ' | .(56) _ :

where the e pgy are dieﬁlaoemen’ vectoru, eaoh chosen so that tne

1 _incfement 1n a particular coordinate-ak is'u Lty while all otner

Internal coordinates remaln fixed at ‘thelrjvalqee-for the standard

AN :
B



xconf¢guratlon.

Such vecbors have already been_lu"fod

'wé'

 ”00 Wilqon s well'

"own savecﬁors

vonds of the uadistorced-molecule. In pract&

581g_nficant contrlbucions from only a few internal coordinaces. AT
g_good=approxwma tion can usually be obtained by taklnq no more than

uhree of the transformation coefficients LK as aonzefo. Furthermore,

mosc of thc internal coordinaceu are defined in terms of oonds¢and

"angles ;avolvinw Just 2, 3, or é aTOMms.

l

For synmetrlcal molecules, the calculations are simplified by

use of symmetry coordinates formed from linear combinations of the

: intuflal coordlnates.la’*l

ir the sets of Pik VGcﬁdrs are chosen
B to have the appropriate symmetry, VLbPaLlOnS of each symmetry speciles
‘can be cqn31dered separatgly. Also, the Eckart corrections in Eq.
'(47) Vanish'unléss'thc corgasponalng translation or rotation naQ the
Qame,symmecry as the vibrational mode. -

-

To zind the appropriate pwk vectors, we h@ve to dlsplace the

W \\ .
symmetrxcally equivalent atoms simultaneously, rather than proceeding
atom-by-atom, but this is usually simple to do {as illustrated below).
Whenever. a symmetryISpecies_contains only one vibration, the Eckart

expansion of that mode will depend only on the atomic masses :.
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~and molenular geomecry. In thls case Eq (54) reduces o P A
£ks S‘ .;f le:a"” _,’;., 'ﬁ   L L“ v - _.  | ”  ;:

- ”and the trans;ormation coefficient,

£ks'= (&kk);zzi :. B . o- j ;i:'-z, .‘_ (57)

. involves Just a diagonal element of Wilson' 8 ﬂ—matrix. When there
‘ same ‘ o
-are“two or more. vibrations OL the/oynmetry, the transformatlon

coefficlents also involve the vibrational force constants and- must
i8

fbe found by solving a- secular equac;on. - Other points which arise
:1n the calculation of normal mode expan51one wlll be bought out in

'vbhe oourse of derlving lormulas for some examples.

. EXAMPLES
' Linear WXYZ Molecule

If we. choose che z-axls along the nolecular axxs, then for any

. X {
]llnear molecule the following quantitles all vanlsh. o s }

,518950 > B9 ,'50

|
I
' akis’-ﬁyis’ 0Tys y s 1
_ , . o

for the stretchlng vibrations and EERTRN R R ]
I , o o ‘ .

1

= » 5213 761' S,’ 6'&28; |

for the bending Vibrations; Flg.,ﬁ shows the numbering«of atoms }
_'and coordlnates. We may consider the stretches and bends sebarauely

‘since they are in oifferent symmetry species. The stretching coor-.

'Qinaoes are defined by |

55 = bz, - b2 . :



 _ f29~

 Therefore wekfind the expansion to be
ezl =0
ﬁzZs}ﬁ Lls
bagy = Ljg + Dsg | o
8250 = Ing *+ Igg + Igg . . o o ;
for any one of the three stretching normal modes. After accounting k

- for the Eckart conditions by use of (47), we have

Bz = [(ml*MBiI)Lis - (m3+m4)IBsfméISS]/M (59a)

for 1 = 1,2 and

8z, = lmyLy o + (my4my)La - (m4~Mﬁi4)IES]/M {(590)

for 1 = 3,4, These results are readily visualized; . for example,
when the 1-2 bond 1s stretched an amount L, , we find atom 1 moves

to the left a distance
[i-fm /M) = [lmg+mg+my )/MIL
and the other three atoms shift to the right a distance
(ml/M}Lls.
The bending coordinates in the X2 plane are defined by
So, = (6x2'~ le)/rlz + (6x2 - 8x5)/Tpz (60a)
Spg = (5:;3 - sxz)/r23'+ (623 - 6};4)/3?34 (GOb) :
'and analogous expreésions (with x replaced by y) hold for the yz
plane.: The simplésﬁ way éo'obtain an expansion of" a bending mdds is

to set all‘displacements equal_to zero except

(]

PR ; ' L
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The Eckart.eXPansion is_then found»td'be

o (mMByy myEye o .
0%1g = ( TR ) 12L2q S T TN

%

4 (%*i’f’i@ . ‘_f‘éiﬁ) 75l o (622)
for i=1, 2,0,4 These fornulas can be reaolly unecialiged bO

: simpler cases or extended to an even 1onger strlng of atoms.

| -Usually there are,many,posszble algernative choices for the

: primed displacements. The corresponding formulas for the Eckart
expansions ﬁill‘sometimes iook quite différénﬁg but the varioué
alternatives will giveAidentical'numerical results. The bending
vmodevof a linear XY2 moleculé provideswa cdhvenient examplekof this.
{In applying the forgoing resulfs, we disfegard‘the fourth atom and
vsec Lés = LSS O.) From Eq. (60) we see Lhat lnscead of ¢ 'he choice

given in (61) we could set all diSplacements equal to zero exnept

i pr
_6X23 - RLZS ’

. where R = rlzrzs/(r12+r° ) This Iead; to

(M~ MoZpZs o | ; '
27045 2 » o

N

x4 =

™, [

1

i = 1;2,3, instead of Eq. {62@, waeVer, the_center of mass cbnditiong
,Zimi 2y =:o, fco'gether with thevdeflinitions ry 5= 25 - Zgs _yieids the
relations o '

Mzg = (myPyg + mprps) .
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(and_others.obtained’by cyclio permutation of subScfipts) and from
these weieeé that Eq. (GZb) is actually ldentical to (62a)
B | To ilTthrate tne use of SJmmetry cooralnacesp we may consiaer
a 1¢near XéYé molecule such as acptyleneo Table VI gives tne deflni~
tions of the symmetry coordlnate&, as obtalned by the uqual met hods.18
The qpec}.es Whlch nave noavanithng kaavt uorrec510ns are found
from the cnaracter table of *he IL).,,,h group. According to Eq. (55), we
‘heed to finq displacements such chau*Z J% ='£ks. By inspection of
vTable VI and Eq. (58) we see that for the two Zg modes the appropriate
diublacements afe ‘ | | |
"Dzyg = B2y = 2~;/2 f1s ¥ %’523  ‘ o - (83)
0255 ?'éz"s =V%'£2s

and no Eckart corrections enter for this symmetry species. For the

+
Eu 'mode{

62, = bz}, = -2 /% o (64)
" ' :
’6223 —vaz Q 5

355

,'and after qubtractlng the tfanglational correctlon of Eq. (47) we

£ind the Eckart eypansion is

Bz 5z, = l/Z(mg/m) | “» k “J(SS)

]

43

is
v - L ’ —1/2

-6;28 = 82, = -2 (m /M)

 From Eq. {60) we‘obtain results of the same form as (64) but with

z replaced by x, for the x-component of the Hu,mgde; the results for



1@ he I mode also nave thlq form excen that the 31&n of 6XAS is

S ST -4

_ ﬁeversea,. ”hus we flnd the fOllOWlng Eckart expan31ons for the

" ‘bending vibrat;ons“”

.I!.‘

- -oxy

. 2 o

ﬂ,

e b 1/2 B
'zﬁfzs;; féASs) 2 (ml 1° z/l)r £és
| fof,éﬁe'ﬂg specxes and

Cpat Ll 1/2
ﬁx,z.sv- :5:;53_ . (m /I»'I)f l:

.}‘(56)

(67)

‘;or che F 89801es,- Only tnP Z* modeQ require the solutwon of a

- qecula; CQUthOﬁg for the others the QP; coafflclents can be evaluated

: ]from Eq. (57) and the é~matr1x e1ememus';nﬂTable-VI,

V'Bfanbhed WXYZ‘Mblecule .

Wher ‘expres sbd in the vector notaclon of Eqd." (56}, the procedure

indlcated in rxg.’ y;elds
oz is = o
505, = ~12L |
,5?’"lf? Brpg + epslpg + (8¢ % S25)Tpslsg o
' where

€ = (e21 x eZ") cse ¢155'

2

is a unit vector ﬁormal to the plane of the l~2€5 angle.

| 0 .

(69)

Addftion of

a fiourth atom incroduces the three new internal coordlnates shown in

 fFig. 5{8) the standafd conxigurablon of the molecule is planar,
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- wWe find

I 4 ) _. T . v .:“ ‘ . " ) . . : . ;:. "
5£4s = BIzg +'§24%4s + (Eé * Sealroilsg +;§¢r24Lsm-,'(70)1r

\ .

Th1q followq from Eg. (56) and the three P4y Vectors pictured in Fig.
S(b) The p vectors for the 8“4 bond strecch and 1-2-4 angle bend %v
are analogous to. those in (683, that for the out~of-plane vend is f
peﬂpendicular to che plune and of length r24. i the molocule is

nonplanar, the last two terms;in {(70) are replaced by"“

o1 €8¢ VyuaToulsg (924 x e3)rplgs (72)

Here ¥, is the dihedral angl%,between the 1-2-4 and 3~2-4 planes{i
€4t iq-given by (60) with the ubscrlpt 1 replaced by 4; and s isﬁ;
unit vector parallel to the 1~ 2 =3 plane and perpendlcular to the 2~4
bond. The p,, vectors are shoﬁn in Flg. 5(c). ote that the Q«vector
for the 1-2-4 a angle befd 7o 1onv°r lies in. tne plane of f he angle but
now is‘normalvto the plane of tﬁe,adjacen’ 3~2-4 angle; itsvlength is
also increased by the factor csc?WiéS i

- Except whbn cre301ng the simplest woWecule s, we have found 1t
exmedienb to first evaluate the prlmed dtsplacemencs numerically and =
then use EQ. {53), ‘rather chanvdquve analytic formulas for the
Eckart ex ban31ons., For any planéﬁ'molecule (with the out-of-plane axis
taken as The W—dLrection), the C greup character table shows that the

following guantities vanigh:

. "o (oA -
5? 37' PVxs? Bﬁys’

~ for the in-plane vibrations and

ot

s BT 3 BY

0445 Byi H 01 xs yx$ - —



"L 'preferable to work with the BEckart expaasion, which is given by

for'the out~ofeplane'vibratiohs.v As a planar molecvle'of-four

: aﬁons-has only one ou“~of—plane mode (s = 6), in this case ﬁt iﬂ';”@

52y, = Z(a.':~ m4 (XX m4V1y4 o | ;
16 [, i Tf)ﬂ“ ( T rzaLss’ - (r2);

'fori—lZS,-.

In applylng Eq.,(SG) to qymmetrical molecules, we may cake

'-  advancage“of the: fac ¢ thatv the symmetry coordinates are defined by

'an‘orthogonal”transtrmation'of the internal oOOrdinates,za’= Us
In most cases 1t is easy to chooue the p»vecforévfor the internal
e.coordinates S0 that under the g oupvoperations they'trahsform in
uthe same way aq the 1nternal coordinates;v Then by leply forming
“ﬁhe llnear comblnations dictated by the transformation U, _We can

cons truot the. appropriate Q. vectors foW each symnetry coordinate,

~ik.
A planaf WKYZ molecule such as formaldehyde offers a simole

,;example for thils method. The symmetry coordlnates are given in Table

VII. The coordinate 85 is the increment in the 3- 2-4 angle; to bring
“out"the symme ry it 1is used in prefevenoe to the coordinate 83 ehown
_dineFﬁg. 5(&) . The connection Wlth the prev1ous description is |

' obtalned from the redundancy relatlon,.

ss'+ Sg + st¢=0 . o f_».: '4'»“.‘_  (73)
By definltion,vthe pik vectors for a symmetry coordinace, for
eexample,'_ ' | . a

4, = "1/2 (S1 82).. ’

. _JS’A._ PO



®

thAmake ¢£ = 1 while the other symmetry coordinates remain zero.

=

If we find the p-vectors for Sl and ~82 in the way. alreadJ 11lustrated,

the sum of these will glve

d;- l/2(1 + 1) 21/2
Hence, to get the desired result we merely have to renormalize the

sum by dividing‘through by Zl/z."The‘orthogonality of the transfor-
mation guarantees that this procedure will altef-only J."The complete

eXpansion generated from Table VII in-this way 1s

s 5225 =0 - |
. 5§2s = epufss *+ Soleg (74)
t _ s=1/2 : /2
0rys = 2 921(313 4) 2 (%xe 21 )7 (Lpg £55)

for 1 = 1 (upper 51gn) and i = 3 (lower sign).
i Thils moleculevis simple enough to make explicit formulationquv
the Eckart expansion worthwhile. The'results can be tidily‘Written

by defining the quantities
sz = Sinva £ks - I cos o ££s
Yyp=cosal +rsina Log

where q is one~half of the 1-2-3 angle. The componentsbcf the diQQ -

placemencs pafallel to the symmetry axis are, for the Al spec1es.
L l/2, , . a -
by, = 2 / (ml/M)le-i- 5,4 ’(mé/M)]£33 .  (152)
i= 2,4 and

BYyg = BYsg = _g~1/2 [(mz-&-mé)/M]le - (my/M)E 55
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fof the B, specles:

Yoy = BY,q =0 . (78D)
: 2m.x 2m X,y
o _ _o~1/2 171 17191 -
015 = “BUzg = -2 7 [(1’ I ) Yas + I X45:}

The pefpen@icul&r components are, for the Ai species:

' ".-,,..83{25. == 6X4~S = 0 -

75¢)
_ -1/ (78

8xls = ~5x33 = 52 MR ST _
and for the By species:

| _ooi/2|(My MYy I S R ’ .

06Xy = 2 [( MtTI ) a5 T T Yas)e (75a)
i=2,4and

2 :
o =1yp[[mptmy  Emyyy | Amy Xy Yy
BXpg = DXz = -2 K moTTI fest T Yas

Only the B2 species has out-of-plane components and the formulas
for these are included in Eq. {72).

To obtain %he results for a bent XYZ‘mdlecule from the forgoing,
we discard terms involving £Ss’ £55, £63’ and mé. In addition,
however, we must readjust the normalization of £2

9
28

Eq. {(73) into Table VII we see that |

_ _o=1/2
Jz = =2 .33

and since Jé = 83 is the préper symmetry coordinate for a bent XYZ‘

: molecule, we neéd to repiace £28 by

v L,1/2
£Es = -2 223‘

On substituting



condition. The parametors £

and : : sf
o Y4
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Symmetric WX\_’z Mblecule

Tynlcal molecules of this type are the methyl halides, CHSX
The H atoms are numbered l 2 3; the C atom 4, the X atom 5. Bonds

and angles are denoted by R for CX, rs for CH, oy for HJCHk, and

i ;

' ‘ : o . . . 4
Bi_fOP XCHi. The general, nontetrahedral model will be considered.fé
The symmetry coordinates for the Al species are45

Jl = AR |
dy = S"l/B(Ar +-Ar2+-Aré)
l 2
Jé = / g %! ity - v(Aﬁl+A82%Ag7)J

A

- (2/3)1/ Ef(mlmz-.m )

where the qeoond form for d’ is obtained by use of the redundancy

and ' which are equal o un¢ty for the

etrahedral case, are defined by

fe= 21/2(1 +yf)yL/2

.o
o3
(o]

1/2

¥ = =3 cos B sec %a .

‘The coordinetes forvthe degehergte E species consist of pairs,

equivalent except for orlentation

Loa=l/2 A |
d, =6 (2Ax=l-Ar2~Ar3) |

and the two remaining pairs of coordinates, A% ang ¢%, are defined by

- replacing Ar, by Aa. and AB., respectively., -
i 1 i *




- The ¢0fm of the p~vect0rs for the internal coordinates has been
illustrated in the previous examples. Howevef, here we must Lake |
'somo care to start with a set wh;ch transforms under the group opeﬁ¥
'-vaclone in the same way ag the internal ooordinates., As in Figs. S(c)'
>and 5(b) and Edq. (68),-00 increase Ar; and AB by uﬁity we shlxt j |

atom Hi by

o (OF
pip = leus x o) mggylrosee. (7).

 These veotgrs_obviously'transform pr0perly'already, since they lie
 in-the XCHi'symmetry planes. vOn the othef hand, for Aa the p-vector -
used in Fig. 5{c) and Eq. {(71) would move eicher H, or Hk in an
unsymmetrical fashion. Therefore, to increase Aa by unity, we shlft
'boch atoms by half the usual distance and thus maintain symmetry with
respeot ‘to the. XCH, pTane. o |
Ej{Aai)'= 5{541 x'géj) r ¢sc ¥ ¢sc o {78a)
pk(Aai) = —«(e&k eéi)_r esc W cso'a '. (78b)

where 1, Js ¥ = 1, 2, 3 in cyclic order and v is the dihedral angle
"between sucocssive Hy CX and H cX planes. | _ -

. The p-vectors for the symmetry coordinates may now be constructed
by the method illustrated with formaldehyae.' For example, ag the 4

vector for d we take
N (2py4 - Bop = L3p):

This combination of displacements gives RN ?ky’
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Jéx = NX6"1/2€2 +1+1)

{since the Pip are defined so that AR, = 1) and therefore the normal-

i
ization constant is assignéd.the value.

1yn/oy1/2

W, = 3(5/2)7% 5

For the d% coordinate, the use of Egs. (78) leads to
' 'NBZa{Bi(AaJ)'+ Qi(Aak)] 2

where 1 = 1,2,3 and'N3 = 6fl/?/f.' Thus in this case thevdisplacement
of each H atom must be obtalned by addition of bwo vectors; it is
readily shown that the resultant liles in the XCHi plane and is glven
5y»' : . .

Ei(Aaj) + Ei(Aak) =_~Eiﬁ/y » . | (79)
in conformity with the redundancy relation.

The expan51on obtained for the Al modes is

ot . v
0Tgs = €45fyg8 BLye = Os

. (80a)
= : s .
BZjy = 24qWafog + LagNalsg -
(1 = 1,2,3) where N, = 372 ana Nt = -67%/ Z/yz.
For the E_ components of the degenerate modes,
| 5£15 = Ny |2e41845 + p1p{05s/Y + 22g5)] ;
' (80p)

oris = Nx[‘%4i£4s + p1plesg/T-255) + 3p1085g]

and 1 = 2,3. For the E/ components,
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551 ,*'Ny[ﬁl(mz) B EI(AO‘E)] “es |
, . o {s02)

: 5515 = “N [641343 + pia(£58/7 + £Gs)]"' Ela 58 s | %i
w5 e _ Y _ -1/2,'
with 1 = 2 (plus sign), 1=3 {minus sign); and Nyf— 277 % pig

" denotes . py{8ay), and the relation (79)»has béen‘uSed to simplify“séme

'_terms,_ Atoms 4 and 5 have zero dlsplacements." i | |
Carﬁcsian exnressions for che €44 and- Eiﬁ veetors are obtained

easily, but those for the gi(Aa ) vectors are rather awkward. It is

only necessary, however, to evaluate the components of p = pZ(Aa )s

I

‘whlch are |
” P, = ~ %-? csc @ siniwfvéos'ﬁ
oy =~ Froesycosy | _' o (e
?-Pz ='% r csc ¥ sin Y% sin B, | o

: whefe ¥ is the dihedral anglelbetween avXCHi_plane and the adjacent
'ﬁi@ﬁj plane. The z-axls points along the'475 bond and the x-axis lies
in'the XCH,y p;ane{ By reversing thevsign of the y-component in (81)
| gs(ﬁal) is dbﬁained and the relation | | |

py(hay) = pslay)
then provides the other COOrdinateé that enter Egs. {80). In terms
of interbond'angleé, the dihedral angles are given byv"

 son U = BN, 2.0
cog ¥ = gcos a #icos“p)/sin"p

cos. B8{(1 - cos,d)/(sin a sinvﬁ)ﬂv

cos ¥!



‘The Eckart correction for the A, modés involves just translation
along the symmetry ayls,- o | o

BT = mgl 1s Sml(cos B kz zq + sin ﬂ N~£38)

- For the degenerate.modesg.the nonzero corrections are 5Tx, soy for -

B BE_ and 871, ﬁﬁ for E

By NG v _

The expressions given above may aleo be applled to. synmetric
pyrimidal XYg molecules. Terms arising from J g%, and m, are
.01ucarded, d% is renormalized and accordiagly N %NS ; 5"1/2. It
- is convenient to retain the angles Bi’ Which are nOW‘defined with'

reference to the symmetry axls.

"partly Frozen" Model; Group Vibrations
The one or two normal modes of lowest ffequency are often found
to contribute the dominant.terme to Vibretionerotetion interactions. .
‘Examples which have been well characterized experimentally include

the toreional oscillations of methyl groups,46

47

the "warping" vibra-
tions of planar rings, ' and {as shown in Part III) a large class of
inertial defects. Molecular models in which various parts are
regarded as rigid have given good results for such cases. The form
of Egs. {47) and (56) makes it easy to derive a . "partly frozen"
approiimation for any type of molecule. Tc freeze an atom, its dis-
vblacement 62‘5 is merely set equal to ZefO.. In oontfast to prev*ous
examples in whlcn parts of 2 molecule were discarded, here the masses
of ‘the frozen atoms stiil enter,'by,Way ofvthe M and IQ elements in
the Eokaft‘corrections.e When all the atoms‘involved in an internal

coordinate are frozen, the coefficients for that cocrdinate vanish



A{for all s).  Moreover, bthe values of the £,  for other coordinates .

are in general altered somewhat. These coefficients are most con- 1

5

»venlenuly determined from a feaucad Vioraoional seculPr equation -

involving the G -1 elemerwto for the unfrozen cooralnates.és Fortun~ ;
ately, however, a matrix lnveruion can_be avuided since Polo:'has

‘derived %the relation40

N ée‘l)kk =z, mi(pik)z _‘1  ":'“ﬂ o o (ez)

'-Here thée Eckart corrections are to be included in the Pix and the
'éum'must be extended over all the atoms {including the frozen ones)
The sxmulest ezample to consider has a single auom ml v;brating
againsu the beauer of mass of a group. This is a ucefuluapprOk— '

imation for thé C-I stretch in CHBI. Eq,.(47) requires that

- Ofis = C1gh
By = “(ml/mg)ﬁfls
where if= 2,..,,N,ng = Zlmi is thé'mass of -the group, and

L = [mlmé/(ml+m‘)]-l/23}

Although L has tne same form as for a diatomic molacule; the contri- _

: butlons to the vibration-rotaoion parametevs also involve (via he‘
~lg factor) the dxreccion cosines between the princlpal axes and
the line joining my to the center'of mass. -

A< another example, con31der tPe symmetr;c bcnd wz for planar

WXY, or bent XY2 molecules. This mode often accounts for most of .

the inertial defect, as shown in Part III. If the stretching vibrations

of an XY2 molecule aré'fr0zen, thé secular equation reduces to

eh ca s bt Db N w8 St Tes et

et i T,
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_ -1 - 0.
Fos = MG T)os =0,

-where F22 is the bénding force constant andéo

’(Gfl)'lzz‘_ %—mylz[l - 2(mY/M) sin' oc]

 Eqs. (75&) and (750) yield the same result for a WXYZ molecule,
ekcept phac the factor of % is replaced.py'un cy because of the
change in normalization of Q%. The correépondlng values of
gy = @5
~ are used in Egs. (75), with the other L = 0, in order to calculate
the vibration-rotation constants for this model.

. Vibrationai fréquénciés'characteristic of é partiéular functional
group appéaf in many molecules.  From Ed. {45) i1t is seen that the
conbributions of these group?frequencies to ef{harmonic) can be con-
sidered;separatéi&;lprovided that'the Coriolis constanté Cst connecting
the'group and framework vibrations are suffiéieﬁtly émall.-_Even when
this does not holdg'the calculations can oPten be'simplified by use
of the treatment of group frequencies fecently presented by King

- and Crawford. 49



|  APPENDIX A
VIBRATION-ROTATION HAMILTONIAN

Previous ﬁreatmentss have all been based on Eckart's expression

- Tor thé‘classical kinetic energy.
or = o agfeh + tich DR CSEE
andvthe HamiT tonian deered from tbié by W1lson and Howard,% ) %
| (anm)'f_u(m-m) + TP + 2v L - (az2)
whefé'

m = Bc"l}?

~ . - - N |

(a3)

~~~

u = \A-BC 'D“*) -1,

Here che matr1A A is I, the moment of 1neftia Lensorg and for the

| usual ch01ce of nermal uoordlnates C is just E E, the unit matrix. The
matrix B 1nvolves the COPLQlLS coupllng coefxicients and is a 11near 
function of the nofmal coordinatesev'Thé fact that the matrix %'ié.

" not merely the inverse of the mdment of inertia.“ensor has éomp1i—
cated the for rulation and interpretation of vibra51on rotation

perturbations. This difficulty can be avoided by expressing the

- Hamiltonian in another form,

o

2H = mA™ " m + (- @)*R (P Q) + 2v . - | (85)

where | SR l - R N

1D
o
=
e
s
P
[
o
Sogegar



“ em e awm =

' The derivation proceeds from {Al) and the definitions
B nh“;_am/a@a and Pslé at.l‘/aQ.S $

WHich>yieldL

. . ‘/ ) . . , ' . “..-.v ‘. - i | ‘Vn’
L E= BTQ + C/g T ' S ) - (A8D)

3

»

‘Thug the total angular momentum M of the vibrating'fdtor contains

a contribution from the internal motion; likewise, the Vibrational
momentum g'includes cortribut ions depenaent on the ve¢001ty of over-

all rotation. For a rigid rotor the quantity

nt
wbula be equal to twicé‘the kinetic energy (& = 0); for the vibrating
rotor we Ffing | | |

27 - nﬁl m= QT[C-BTI 'Bly . | (a9

The matrix g; defined by the terms within square brackéts, may be

- regarded as a reduced mass matrix associated with the Vibrationsr

This suggestg that we wrilte

P=RA+Q L | - {ar0)
in wh;ch @ reprepentq the part of the total v1bratlonal momentum that
arises from the robation (vxa boriolis interaction). A comparison
of (AB) with -(A10) shows that @ must be defined as in (Ae) Sub-

stitution of (A10) into (A9) then~y1e1ds the desired'form of (A5).

As shown by Bckart,z the elements of the matrlces A (3x3), B

_(BXJN"G) and C (BN»GASV 6) are aeflned by



—d G

B@s.= zi i[a (agi/aq ) - Bi(oa /aQ )15 ._’_, - {a11)

Cstb= o aa ;199 )*(Bai/BQt)%>

1t may be remarked that these e“pressions and the Hamiltonian forms
(a2) or (AS) are quite general, and still hold (1) when the normal
coordlnates are yeplaced by any,set'of‘intgrﬁal coordinates; {ii)
when a configuration other than the equilibrium one is chosen as
the standard; and (iii)vwhether or not Eckart's second condition,
(17),‘is applled. . If internal.coordinates are used the c matrix
-1 18

bacomeo w¢lson*q G~ matrix.

~

When the second Hekart condition .

1 1s imposed; the g natrix becomes allinear fuhcfion:of the normal

coordinates. Accordingly R and @ as well as I are quadratically

~,depehden‘-on fhe hérmal coordinates.. However, ?of_a treatment in
1whlch only the v1bratlon—“otatlon interactions covrect to terms

;}linoar in (V e §) are required; itvis sufxicient to use just;the,
leading terms |

R=E+ ... T S {a12)

This 1s the case dealt with in the text and in Appendix B.

* To obtain the corrosponding quantun mechanical Hamiltonian, it
is necessary to evaluate f he proper Laplaulan operator..‘Thiu is
;awkwara 51ace the coefxlcients of the momenta are not constants and
the fotat¢onal momenta used are not conjugdte to.any coordinates. It

hasg been'verlfied‘that the procedures used by Wilson and Howard;4’18



can be apoWied to. {a5) with T and —§>taken as the quantuﬁ‘mechanicél

operators. ‘L”he ‘result has a form anu¢ogous to Eq. (;O), p. 280,

of WLLOanuO 18, W4th th» decerminant 01 I -1 GClaOinb that of e ]

|
i

Howeven, din tne perturbat ion treatmeit wha ~dis act ually used is an
exnanuion of the Hamiltonian up to term quadratic in Q and P. 'It:
is. Jound thab to: this order the correct fesu*ts are obtalned by
_merely symmetrlzing products @uch as P Q 1n the claSS1ca1

'hamll onian.
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APPENDIX B
~ TREATMENT OF CORIOLIS TERMS

'The_p@pturbaticn‘treatment'of the HamiitonianVgiven‘in (A5)

- conveniently Séoaraﬁes into twd»parts,‘ In the text the”contributiohs

'_from the 1ead1ng term have been evaluated by simply calculating the |

vibrat;onal average of the inverse moment of inertla. Here we shall

derive the additlonal contributlons that arlsu from the qecond term

"and involve che Coriolis constants. - In the apgroxxnation represented
by Ed. (29) of the. text, only thoqe tefms proportional to both‘mez

. and to {vg + §) will contribute~tq the effective moment of inertia,

Contributions of this form are contained in the term = .

and in the cross term - _ - _

_(@Tp + PT@) " - | - o (Bz)
| Accordlng %o (Als), the term (Bl) can be averaged dlrectly to give

<Q >c mamﬁ/z R | o (BS)

where s, t, as; and B are all summed ove (For convenlence the
oummatlon variables have been reshuffled Lo pud” s first. ) The cross
‘term {(B2) nust be evaluated as a second order perturbation since it

ihas only nondiagonal vibrational matrix elements,
| Z( iK)(w wwt){(v +1)(v +1)/w W, ]1/5 (BAa)

Vv |V tlav 41>

.§sttlvs+l’vé“1>

with

'z(.~ix)(wsmt);(vs;z-l)v;c/mé%}l/ 2 (B#h)

D e et




. Coriolis perturbations.’

7= 3 @“ O5/1
PO, and the other W1th &tSP,Q ,;f

stFs
have been comblned using the relation.éts Cst’ The second order -

The two terms. in (BZ), one wj.th £

percurbation surm reduces to the same form aS-{BB) with one more
factor . | - IR |

(3ng f-kt)/(xs - M) s R - (e

' The total Coriolis contribution to the effective rotational Hamiltonian

of Eq. {27) thus contains the factor -
L (A +n )/ (A = N) = 47\8/(7\8 )
" and in the coefficients of Eq. {36) appears as

egg(boriolis) ' ~(8Kﬁw )Z%ﬁalastl /(% "KL) | '(56).

In the effective moments of ¢neﬂt1a fOf the ground state (v uvt-...~o)

pairs of terms €q and €, may. be added tovether to ﬂlve

¥ " K M X . '
‘ b el - = , ‘. , (BT)
w X. Op t ?\ .wSTw‘t : ,

This shows that "resonant” Coriolis ﬁerﬁurbaﬁions will not appear in
_the ground vibrational state. | |
It should be mentioned that other Corioiis-effectngzg.are present
 for degenerate vibrations, These show up in sepa?até terms'involving
the angular momentum of the degenérate vibrations, and therefore are
not regarded as.part of the effective,moment of'inertia, Thus in

the forgoing the constants Cst which connect different components of

a degenerate vibration are ignored. ' There are, however, useful rela-

tions between (B6) and the coefficients associated with the degenerate
25,30 ' '
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APPENDIX C
ANHARMONIC VIBRATIOVAL AVERAGES

“In our treaument the linear and cubic termb in the potential
function of Eq. (20) are regarded as the primary perturbauions. The
first-order perturbed vibrational wavefunction ~obtained from Eq. éZG)
vis then uqed %o averawe the interaction terms in the klnetic energy,

a procedure equivalent to a second—order perturbacion treatment of
thelﬁamiltonian.so As showﬁ iﬁ the téxt;:the calcdlation redﬁces"
- just to evaluating | B o -

<@> = <¢Vib'QSleib> : o o (c1)

for n = 1,2. Only an approximation which yields the~1eading terms,
prbportional to the vibrational quantum numbers, is required.
In v b V~ + W the unnerturbed or "harmoniu part is the

}‘nroduct of haﬁmonlc 050111ator functions, one for each normal mode:
Ty ='lvs>ntlvt>3 o - S - {cz)

{where t = s) for a given v1brational state with quantum numbers

Vis oo ?Ss.,., V3N~6’ The "anharmonic™ part Va consists of a
linear combination of many nondiagonalvterms in which one or more

of the vibrational quantum numbers differ from those in.wh.' However,

the only terms which enter in the'eValuation of {Cl) are of the type
Uy = [ lv +1> + A_;lys—;u]_;:ztv,cx . . (c3)
' The coefficients *

by = <vslwgfvsi:12/(; hwé)v
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f iineaf or cublc functions of the sth normal coordinate, oy

~51 -

are formed from matrix elements of those perturbatlon terms that aro

b

.‘ ; 1. 3 5 P : ?
Vg = ?'Vst + 7 ¥5as% * ?"tkttthQs' | | Y

i
b2

 When v, is even (or odd), ¥, is an even (or odd) function of Q and’

s
va'is an odd {or even)'function. Therefore in (c1) we find

<Q.>

o> = Il v+ walogln>

and

i

<Qg> = <yl Qly> + <y lallv,>

The anharmonic part of <Q§> is dropped,'since'it contains only terms
at least quadratic in v + %. Thus we are left with Just the result

for a simple harmonic oscillator,
<QB> = (ZKym )(V 4‘2)
The two terms in <Qs> are equai and we find

<G> = 2[A+<VS l,Q;S ?‘_’s +1> + A_gvsloslvs - 11 .

- After introducing the harmonic oscillator matrix elements and the

~relation K/w = %(hws/xq), we oan reduoe this to .

- N ,
Q> = = 5 [y (<O + 2k vos _<Qt> + 5 v /A (c4)

This becomes EQ. (34) of the text when (21) is taken into account
It 1s Interesting to note that if we separate the potentilal
energy 1nto harmonic and anharmonlc parts, . :
. . ,

2Vh'= ZS}SQS :

2v
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s

: 'tnen {Cé) is equivalen tO‘the.COnditioﬁd

kS <Q > = <BVh/BQ > = »<av5/ags> ’
' orf  o o ‘
Qe =
(Aga¢n, juot terms llnear in'v. + ? are reta;ned )
 Often it is convenient to expreﬂs the potential energy in terms
of internal coordinates rather than normal coor nates, by use of
< {54). When cransforming results from one bagis to the other,
1t again proves useful to consiaer the expansion of a mode, as the
_ fpllowing,rela»;ons hold.ub -
g =2 v, ()
ssg = & Vé(i)

2@@Ja%y

o
|

1}

| I

22 (Bv /ask # th'

Here the symbol "i" indicates that bhe function is evaluated at

the conilguration Speoifiea in Eq. (55)

&
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. Substitution, r

Table I. (;‘ompariSOn‘o,\f bond lengths for
diatomic molecules.a“ '

s
——

Bond length - ko= r/re '
Effec‘cive', r, = <r"2>“1/2" 14+ <E>- %‘(&2>'
Average, <r> - l4<&
RMs, <eP>¥E 1+<€>+%—<€2>
Inverse cube, <r~>"¥3 1650 2

T -
. _1+f(<€>-§<§>)‘_

The quantities <&>, <£%>, and f are defined
in Egs. (4) and (12) of the text.:



Table ITI. Ratio of anharmonic to harmonic

“contribution to moment of inertia.a _

Molecule - €y €5 - , es- stses
- co, -2.86 - 3.48 - 8.22 . -B.72
S, ~ -2.45 - 7.66 ~-15.08  -5.40
ocs -3.32 - 4.33° -10.41  -T.26
0CSe  =3.55 - 5.40 -
5CTe 0T o8t -
HCN é2.46 - 2.07 =~ 3.59 -4.83
cicN - - - 5.37 -
BrCN -3.51 - 6.90 -
ICN -2.96 - 8.08 -
NNC . -3.04 - 2.04 - T7.83  -9.03
H,0
c-axis -2.42 - 0.316 - 1.82  -5,18
b-axis -2.09 - 0.392 - 1.37  -1.23
a-axls ~-2.86 . 0.669 -~ 4.16  -0.637

@References to experimental data are given
under Table III of Part II.
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Table III. Formulas for linear symrﬁéﬁ‘“rféyu XY, molecule.? |

Con (L aBYy o, o o (a2 .2
Vnar = Fi1(81+85) + 2F) 58,85 +Fpp(S55 +53,)

-

¢

oo e e3Py, «2a 2 ,""'2}"‘2.’
Varnay = F111(81 +85)+ 31505785 +8;85) + 3F; 55(5,+85) (Sz, + S33,)

i

By =1, Hy = (3hg +agMng=2p) 5 Hy = (shg+ M) 5= 2p)
Ay = vlFyyy #8150/ (g +Fy5)s Ay = (A/A)(4rF 55/ Fpp)s
hg = ‘()\3/?‘1)1“(Elli'FllB)/(Fll'Fls)_

..( BBe/CD]_ ): [A}_ (V1:+ %‘) + '12"(“51/‘”2 )A?(Vz ;\l ) + | (wl/ws )A2 (vé * %)] .

<& =
s 2o 1
<£ > = (2Be/w1)(v1+—-2-) -
a

o Br.s S. =5 1 S. = L e o L ' of 3 s
8 = Bryys Sp =6 i Sg = 51"_{"_’,'" € = 5(5,485). ;fzass of X atomvis»
M, of Y atom m, and g = 2mM/(2m+M).
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Table IV. Vfbration-rotation parameters for CQZ;-a

e tiamt e

e

i}

X S Mode Harmonic Anharmonic Total
1 -0.074T 0.213 0.139

2,2 0.0673 -0.234 -0.167

3 -0.0470 0.386 0.339

Sum ~-0.0544 ’ 0.365 0.311

8he tabulated quantities are the contri-
butions to %e = I -I_ (in amu A% unite).
Data used is from C. P. Courtoy [Can. J.
Phys. 35, 608 (1957)]: B, = 0.39162;
Q= 0.001262 oo =+~0. 00076, Qz = 0.003088,
w; = 1354.9, 0, = 673.02, wy = 2396.4 (al1

135%.9, ¢ 3
in em™~ units). ‘



Table V. Notation and units. E

Qg aBy2Yy

My

,(JJS

2.2

RS=4w'c mH@s

',K=h/8'nj2=

—— - T ——— :
Ao e ] . . * ”
== . o~

codrdinates of ith atom With respecﬁ to

. principal axis system, chogen from XsVs2 in L -

cyclic order (%).

—
—

normal. coordinates (gl/2 mole” 1/2 K)

. total vibrational momentum associated with
~sth normal coordinate

- part of vibrational momentum 4nich ar ieés
from Coriolis interaction,: defined in Eq.
:(A6) of Appendix A. |

components of total angular momentum along

. the principal axes

harmonic vibrational frequency (cm'l)

= 5.8893 x 10~ -7 2 {10 dynes cm -1 g“l mole)

cubic anharmonic vibratiu@aT constant (107 =11 :

ergs g “5/2 10162 g~ 3) é
16.883 g mole-l R% em~t

1

by
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Table VI. Symmetry analysis for a linear XY, ‘molecule.a

W‘W

N i | ( Symmetry  Eckart . Mode 4 : &
' " . Species ‘ Co_r‘x"._ " No. k “kk

2 s=1 = 2 Y (51+Ss) (2/my )+ (2/m5)

4 o ‘ -1/2 ' '
2 - 67, 3 2~/ (Sl-SS) (.L/ml)+ (1/m,)

e . “1/20q _a \ - ¢ 2y, 1 (1,22
o, wx,aﬁy 4 2" (32 13_4__)»;1. {1/myr )""rﬁg(r"'a)
m 67_,67. 5  2°%2(5 45) | ('—-:5-'+'—3-) 4
- Tu x* 'y ; 2'"4 g mo r’d

—

a — o - .._ » — @ — . -
Here PEP o= Tz3 R = Togs My = My3 My = Nz. The non

. diagonal element >512 for the E*g' modes has the value -2/m2,v



Table%%II, Symmetry coordinates for a planar wXXé moledulé;a

, Fckart ~ Mode - g
Sp¢¢ies Corp. No. . Sy
q:Al . 8y R 1 “ 27" (Sl+52)
| 3 “1/20q ot
2 27/ %{(sgsg)
B  BT_467 ' .4 o 2‘1/2(3 -85)
71 R S L "1 v2
?BZ 81‘2,‘61}}: ' 8 - o : Sg |

a-, ® . » s . ey saerq ey

‘ h = rz‘g:p I == 1‘12 == 1"233 ml == mss 'm').@z G-J\in.- '
~1is out-of-plane, the y-axis along the

- symmetry axis.
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Captions for Figures

fRelétiVé deviations from fe'for various types of
~ average bond lengths as a function of the

anharmonic constant. Ordinate scale is in

~multiples of the mean square harmonic vibrational

2.

 amplitude.

Comparison‘of‘vibrational contributions to
effective moment of inertia. Abscissa and dashed
line show sum of corrections for stretching modes.

Solid circles show total correction, the sum of

bending‘and stretching terms. Open circles show
,/sum obtained by assigning to each bond the

_observed correction for the correcspondlng diatomic

molecule.

Construction of a normal mode expansion.

Internal coordinates for a linear WXYZ molecule.
Internal coordinates and displacement vectors for

a branched WXYZ molecule,
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the information con-
tained in this report, or that the use of any information, apparatus, method,
or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method or process dis-
closed in this report.

As used in the above, "person acting on behalf of the Commission "
includes any employee or contractor of the commission, or employee of such
contractor, to the extent that such employee or contractor of the Commission,
or employee of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract with the Commis-
sion, or his employment with such contractor.






