
UC Riverside
UC Riverside Previously Published Works

Title
A note on the identifiability of nonparametric and semiparametric mixtures of GLMs

Permalink
https://escholarship.org/uc/item/6g88440m

Authors
Wang, Shaoli
Yao, Weixin
Huang, Mian

Publication Date
2014
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6g88440m
https://escholarship.org
http://www.cdlib.org/


A Note On the Identifiability of Nonparametric and

Semiparametric Mixtures of GLMs

Shaoli Wanga, Weixin Yaob, Mian Huanga,∗

aSchool of Statistics and Management and Key Laboratory of Mathematical Economics at SHUFE,
Ministry of Education, Shanghai University of Finance and Economics (SHUFE), Shanghai

200433, P. R. China
bDepartment of Statistics, Kansas State University, Manhattan, KS, 66506

Abstract

Recently, many semiparametric and nonparametric finite mixture models have been

proposed and investigated, which have widened the scope of finite mixture models.

However, these works either lack identifiability results or only give identifiability re-

sults on a case-by-case basis. In this article, we first propose a semiparametric mixture

of generalized linear models (GLMs) and a nonparametric mixture of GLMs to unify

many of the recently proposed nonparametric and semiparametrc mixture models.

We then further establish identifiability results for the proposed two models under

mild conditions. The new results reveal the identifiability of some recently proposed

nonparametric and semiparametrc mixture models, which are not previously estab-

lished, and thus provide theoretical foundations for the estimation and inference of

those mixture models. In addition, the methods can be easily generalized for many

other semiparametric and nonparametric mixture models which are not considered in

this article.

Keywords: Mixture Models; Identifiability; GLMs; Semiparametric and Nonpara-

metric Models.
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1. Introduction

The finite mixture model is a powerful tool for modeling data sampled from a

heterogeneous population which consists of relatively homogeneous subpopulations

if the subpopulation identity of each observation is unknown. Please see, for ex-

ample, Titterington et al. (1985), Lindsay (1995), McLachlan and Peel (2000), and

Frühwirth-Schnatter (2006), for a general overview of mixture models.

Identifiability is of fundamental importance and has been one of the important

research topics for finite mixture models. Without the identifiability result, the mix-

ture model parameters might not be estimable and some of the related statistical

inference might be meaningless. One well known feature for the mixture model is

that the identifiability of each component density can not guarantee the identifiabil-

ity of the corresponding mixture model. See, for example, Titterington et al. (1985),

Hennig (2000), and Lindsay (1995). Therefore, one usually needs to investigate the

identifiability of mixture models case by case. Classical identifiability results given

by Teicher (1963) and Yakowitz and Spragins (1968) provide a foundation for finite

mixtures of parametric distributions. For the identifiability results of mixtures of

linear regression models for continuous responses, and mixtures of generalized linear

models (GLMs) for binary or count responses, please see Hennig (2000), Grün and

Leisch (2008a), and Grün and Leisch (2008c) and references therein.

Some generalization efforts have recently been made to relax the usual parametric

assumptions on mixtures of linear regression models and mixtures of GLMs. Grün

and Leisch (2008b) discussed the parameter estimation for mixtures of GLMs with

varying proportions. Cao and Yao (2012) proposed a mixture of binomial regression

models with a degenerate component, assuming mixing proportions and a component

success probability function are nonparametric functions of time. Young and Hunter

(2010) and Huang and Yao (2012) generalized mixtures of linear regression models by

allowing varying mixing proportions that depend nonparametrically on a covariate.

Huang et al. (2013) further extended mixtures of linear regression models by assum-
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ing the conditional mean and variable functions, and the mixing proportions are all

nonparametric functions of a covariate. These nonparametric and semiparametric

extensions of mixtures of GLMs enable more flexible modeling and widen the scope

of applications of mixture models. However, these works either lack of identifiability

results, such as Grün and Leisch (2008a), Young and Hunter (2010), and Cao and

Yao (2012), or only give identifiability results on a case-by-case basis.

In this article, we propose two unified models for the nonparametric and semipara-

metric generalizations of finite mixtures of GLMs and prove their general identifiabil-

ity. The first model, which we will call a semiparametric mixture of GLMs, assumes

that the mixing proportions depend on some covariates nonparametrically and the

canonical parameters are linear functions of covariates with constant dispersion pa-

rameters. The second model, which we will call nonparametric mixture of GLMs,

assumes that the mixing proportions, the canonical parameters, and the dispersion

parameters are all nonparametric functions of some covariates. The models proposed

by Grün and Leisch (2008b), Young and Hunter (2010), Cao and Yao (2012), Huang

and Yao (2012), and Huang et al. (2013) are all special cases of the proposed two

models. We prove that the proposed two classes of mixture models are identifiable

under some mild conditions, and thus build a foundation for estimation, inference,

and applications of these models.

The rest of the paper is organized as follows. In Section 2, we give formal formu-

lation of the two classes of mixture models. In Section 3, we prove the identifiability

results for the two classes of models. Some discussions are given in Section 4. All

proofs are given in the appendix.

2. Nonparametric and Semiparametric Mixtures of GLMs

GLMs and Finite Mixtures of GLMs: McCullagh and Nelder (1989) intro-

duced generalized linear models (GLMs) as a flexible generalization of ordinary linear

regression models, which allows for both discrete and continuous response variables

3



if they are from the exponential family. Assume that {(Xi, Yi), i = 1, · · · , n} is a

random sample from the population (X, Y ), where Y is a scalar response and X is

a p-dimensional vector of covariates. The conditional density of Y given X = x is

assumed to be from a one-parameter exponential family

f{y; θ(x), ϕ} = exp[ϕ−1{yθ(x) + b(θ(x))}+ κ(y, ϕ)],

where b(·) and κ(·) are known functions, θ(x) is the natural or canonical parameter,

and ϕ is the dispersion parameter. Under the canonical link function g = (b′)−1,

θ(x) = g(µ(x)), where µ(x) = E(Y |X = x) is the conditional mean function of Y

given x. In GLMs, the canonical parameter θ(x) is assumed to be a linear function

of x, i.e., θ(x) = xTβ.

Finite mixtures of GLMs can be viewed as a generalization of GLMs and finite

mixtures of ordinary linear regression models. Grün and Leisch (2008a) discussed

the identifiability and parameter estimation for finite mixtures of GLMs with fixed

covariates. In the mixture of GLMs, there is a latent class variable C which has a

discrete distribution P (C = c | X = x) = πc, c = 1, 2, . . . , C, where C is the number

of components and assumed to be known in this article. Conditioning on C = c and

X = x, Y has a distribution f{y; θc(x), ϕc} from the exponential family. Since the

latent variable C is unobservable in general, conditioning on X = x, the response

variable Y follows a mixture distribution:

Y |X = x ∼
C∑
c=1

πcf{y; θc(x), ϕc}, (2.1)

where the canonical parameters θc(x) = xTβc are assumed to be linear functions of

the covariates, and the proportions πc and the dispersion parameters ϕc are constant.

Note that the Gaussian mixture of linear regressions with normal errors is a special

case of (2.1). Therefore, all the results given in this article are applicable to Gaussian

mixtures of linear regressions.

Next, we propose two models to relax the linear assumption on the canonical
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parameters, and the constant assumption on the proportions and the dispersion pa-

rameters.

Semiparametric Mixtures of GLMs: The first class of mixtures of GLMs is

called semiparametric mixtures of GLMs, which assumes that the mixing proportions

in model (2.1) are smoothing functions of a covariate z, while the canonical functions

remain linear functions of covariates and the dispersion parameters remain constant.

More specifically, conditioning on X = x,Z = z, C has a discrete distribution

P (C = c|X = x,Z = z) = πc(z), c = 1, 2, . . . , C. The conditional distribution of Y

given X = x,Z = z is

Y |X = x,Z = z ∼
C∑
c=1

πc(z)f{y;xTβc, ϕc}, (2.2)

where
∑C

c=1 πc(z) = 1 and z can be part of or the same as x. A constant 1 might be

included in the vector of covariates to allow for an intercept in each GLM component.

Compared to the model (2.1), the new model (2.2) allows to incorporate the covariates

information into the mixing proportions and thus can better cluster the data. Note

that the models proposed by Grün and Leisch (2008b), Young and Hunter (2010), and

Huang and Yao (2012) are special cases of (2.2). The model estimation and inference

of (2.2) can be done similarly to Huang and Yao (2012).

In (2.2), similar to πc, we can also allow the component dispersion parameter

ϕc to depend on z nonparametrically. The identifiability results can be established

similarly to the model (2.2).

Nonparametric Mixtures of GLMs: The second class of mixtures of GLMs is

called nonparametric mixtures of GLMs, in which the mixing proportions, the com-

ponent canonical parameters, and the component dispersion parameters are all non-

parametric functions of covariates.

More precisely, we assume that conditioning on X = x, C has a discrete dis-

tribution P (C = c|X = x) = πc(x), c = 1, 2, . . . , C. Conditioning on C = c and
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X = x, Y has a distribution f{y; θc(x), ϕc(x)} with the canonical parameter θc(x)

and the dispersion parameter ϕc(x). We further assume that πc(x), θc(x), and ϕc(x)

are unknown but smooth functions. Therefore, without observing C, conditioning on

X = x, the response variable Y follows a finite mixture of GLMs

Y |X = x ∼
C∑
c=1

πc(x)f{y; θc(x), ϕc(x)}. (2.3)

The model estimation and inference of (2.3) can be performed similarly to Huang

et al. (2013). Compared to the models (2.1) and (2.2), the model (2.3) can relax the

linear assumption about the canonical parameters θc. Note that the models proposed

by Cao and Yao (2012) and Huang et al. (2013) are special cases of (2.3).

3. Identifiability

Identifiability results for finite mixtures of ordinary linear models and finite mix-

tures of GLMs are available, see Hennig (2000) and Grün and Leisch (2008a); but

these results are not applicable to models (2.2) and (2.3) as some of parameters are

nonparametric functions of covariates.

Seminal papers of Teicher (1961, 1963) and Yakowitz and Spragins (1968) es-

tablished the fundamental identifiability results for finite mixtures models. Lindsay

(1995) gave an elegant account of the identifiability of finite mixtures of discrete dis-

tributions from one parameter exponential family. For more references, see also Chan-

dra (1977), Titterington et al. (1985), McLachlan and Peel (2000), and Frühwirth-

Schnatter (2006). Based on existing results, we know that many finite mixtures

of continuous distribution families are identifiable. These include finite mixtures of

univariate normal distributions, finite mixtures of multivariate normal distributions,

finite mixtures of exponential distributions, finite mixtures of Gamma distributions,

etc. As to finite mixtures of discrete one parameter families, we know that finite mix-

tures of Poisson distributions and finite mixtures of negative binomial distributions

are identifiable. In addition, finite mixtures of binomial distributions are identifiable
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if the number of components is not greater than half of the number of trials of the

binomial distributions. In this section, we assume that the one-parameter exponen-

tial family distribution f(y; θ, ϕ) generates identifiable finite mixtures models, i.e.,

the mixture model
∑C

c=1 πcf{y; θc, ϕc} is identifiable.

Next, we establish the identifiability results of the proposed two models. We first

formally define the identifiability for the model (2.2) and model (2.3).

Definition 3.1. Let
∑C

c=1 πc(z)f{y;xTβc, ϕc} and
∑D

d=1 λd(z)f{y;xTγd, ψd} be any
two semiparametric mixture of GLMs of the form (2.2), where πc(z) > 0, c = 1, . . . , C,∑C

c=1 πc(z)=1, λd(z) > 0, d = 1, . . . , D,
∑D

d=1 λd(z) = 1. The model (2.2) is said to
be identifiable, if

C∑
c=1

πc(z)f{y;xTβc, ϕc} =
D∑

d=1

λd(z)f{y;xTγd, ψd} (3.1)

for all x ∈ X and z ∈ Z implies that C = D and that the summations in (3.1) can
be reordered such that πc(z) = λc(z), βc = γc, and ϕc = ψc, c = 1, . . . , C.

Definition 3.2. Let
∑C

c=1 πc(x)f{y; θc(x), ϕc(x)} and
∑D

d=1 λd(x)f{y; γd(x), ψd(x)}
be any two nonparametric mixtures of GLMs of the form (2.3), where πc(x) > 0,
c = 1, . . . , C,

∑C
c=1 πc(x)=1, λd(x) > 0, d = 1, . . . , D,

∑D
d=1 λd(x) = 1. The model

(2.3) is said to be identifiable, if

C∑
c=1

πc(x)f{y; θc(x), ϕc(x)} =
D∑

d=1

λd(x)f{y; γd(x), ψd(x)} (3.2)

for all x ∈ X implies that C = D and that the summations in (3.2) can be reordered
such that πc(x) = λc(x), θc(x) = γc(x), and ϕc(x) = ψc(x), c = 1, . . . , C.

The following theorem provides identifiability conditions for the model (2.2) and

the proof is given in the appendix.

Theorem 3.1. The model (2.2) is identifiable if the following conditions are satisfied:
(i) the domain X of x contains an open set in Rp, and the domain Z of z has no

isolated points.
(ii) πc(z) > 0 are continuous functions, c = 1, . . . , C, and (βc, ϕc), c = 1, . . . , C,

are distinct pairs.
(iii) the parametric mixture model

∑C
c=1 πcf{y; θc, ϕc} is identifiable.
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Based on the above theorem, we can see that the proposed semiparametric mix-

tures of GLMs are identifiable under some mild conditions. Note that the identifi-

ability result proved in Huang and Yao (2012) is a special case of Theorem 3.1. In

addition, our Theorem 3.1 proves that the models considered by Grün and Leisch

(2008b) and Young and Hunter (2010) are also identifiable, which are not previously

established for their models.

The following theorem provides identifiability conditions for the model (2.3) and

the proof is given in the appendix.

Theorem 3.2. The model (2.3) is identifiable if the following conditions are satisfied:
(i) The domain X of x is an open set in Rp.
(ii) πc(x) > 0 are continuous functions, and θc(x) and ϕc(x) have continuous first

derivative, c = 1, . . . , C.
(iii) For any x and 1 ≤ j ̸= k ≤ C,

1∑
l=0

∥θ(l)j (x)− θ
(l)
k (x)∥2 +

1∑
l=0

∥ϕ(l)
j (x)− ϕ

(l)
k (x)∥2 ̸= 0,

where g(l) is the lth derivative of g and equal to g if l = 0.
(iv) the parametric mixture model

∑C
c=1 πcf{y; θc, ϕc} is identifiable.

The third condition of Theorem 3.2 requires that the canonical parameter func-

tions and the dispersion parameter functions of any two components can not be

tangent to each other at the same x. Based on the above theorem, we can see that

the proposed nonparametric mixtures of GLMs are identifiable under some mild con-

ditions. Note that the identifiability result proved in Huang et al. (2013) is a special

case of Theorem 3.2. In addition, Theorem 3.2 proves that the model proposed in

Cao and Yao (2012) is identifiable, which is not previously proved.

4. Discussion

The model identifiability is of great importance for the study of finite mixture

models, since it is the necessary theoretical foundation for the estimation and in-

ference. Recently, many semiparametric and nonparametric extensions of existing

8



parametric finite mixture models are proposed and some of them are lack of identifi-

ability results. In this article, we proposed a semiparametric mixture of GLMs and

a nonparametric mixture of GLMS, which include many recently proposed nonpara-

metric and semiparametrc mixture models as special cases. We further established

identifiability results for the proposed two models under mild conditions. In partic-

ular, our result verifies that the semiparametric and nonparametric mixture models

proposed by Grün and Leisch (2008a), Young and Hunter (2010), and Cao and Yao

(2012) are identifiable under the conditions given in Theorems 3.1 and 3.2.
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Appendix

Proof of Theorem 3.1. The proof is similar to Huang and Yao (2012).

Let x = (1,xT
s )

T . Suppose that model (2.2) admits another representation

Y |X = x,Z = z ∼
D∑

d=1

λd(z)f(x
Tγd, δd),

where λd(z) > 0, d = 1, . . . , D,
∑D

d=1 λd(z) = 1, and (γd, δd), d = 1, . . . , D, are

distinct.

For any two distinct pairs of parameters (βa, ϕa) and (βb, ϕb), if ϕa = ϕb, then

βa ̸= βb. When βa ̸= βb, the set {xs ∈ Rp : xTβa = xTβb} is a (p− 1)-dimensional

hyperplane in Rp, and thus has zero Lebesgue measure in Rp. This implies that there

are at most a finite number of (p−1)-dimensional hyperplanes on which (xTβa, ϕ
2
a) =

(xTβb, ϕ
2
b) for some a, b. Hence the union of these finite number of hyperplanes has
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zero Lebesgue measure in Rp. The same thing is true for the set of parameters (γd, δ
2
d),

d = 1, . . . , D.

Noting that the domain X of xs contains an open set in Rp, based condition (iii),

for any given (x, z) such that both sets of parameters (xTβc, ϕ
2
c), c = 1, . . . , C, and

(xTγd, δ
2
d), d = 1, . . . , D, are distinct pairs, respectively, model (2.3) conditioning

on u = (x, z) is identifiable. Therefore, C = D and there exists a permutation

ωu = {ωu(1), . . . ,ωu(C)} of set {1, . . . , C} depending on u, such that

λωu(c)(z) = πc(z),x
Tγωu(c) = xTβc, δ

2
ωu(c) = ϕ2

c , c = 1, . . . , C. (4.1)

Since there are only a finite number (C!) of possible permutations of {1, 2, . . . , C} and

the domain X of xs contains an open set in Rp, there must exist a permutation ω∗ =

{ω∗(1), . . . ,ω∗(C)}, such that (4.1) holds on a subset of X with nonzero Lebesgue

measure. Hence, γω∗(c) = βc, δ
2
ω∗(c) = ϕ2

c , c = 1, . . . , C. Because that (βc, ϕ
2
c),

c = 1, . . . , C are distinct and (γc, δ
2
c ), c = 1, . . . , C are distinct, it follows that ω∗ is

the unique permutation such that (4.1) holds on a subset of X with nonzero Lebesgue

measure. If z is not from x, then λω∗(c)(z) = πc(z), c = 1, . . . , C for any z ∈ Z. If

z is from x, λω∗(c)(z) = πc(z), c = 1, . . . , C, for all z ∈ Z but a zero Lebesgue

measure set. Because πc(z) are continuous and the domain of z has no isolated point,

the values of πc(z) at those zero Lebesgue measure set are also uniquely determined.

This completes the proof.

Proof of Theorem 3.2. The proof is similar to Huang, et al. (2013). For simplicity,

here we only give the proof for the univariate covariate case. The proof for the

multivariate covariate case is similar. Let

T = {x ∈ R : (θj(x), ϕj(x)) = (θk(x), ϕk(x)) for some 1 ≤ j ̸= k ≤ C}

be the set of points where some component regression curves intersect. Let ηj(x) =

(θj(x), ϕj(x))
T , j = 1, . . . , C. Based on Theorem 3.2 (iii), if ηj(x) = ηk(x) for some

x and 1 ≤ j ̸= k ≤ C, then η′
j(x) ̸= η′

k(x). Therefore, any point in T is an isolated
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point. This implies that set T ⊂ R has no limit point and contains countably many

points. Without loss of generality, we assume that xl < xl+1 and (xl, xl+1) ∩ T = ∅,

l = 0,±1,±2, . . . .

Assume that model (2.3) admits another representation

Y |X = x ∼
D∑

d=1

λd(x)f(y; γd(x), δd(x)),

where λd(x) > 0, d = 1, . . . , D, and
∑D

d=1 λd(x) = 1.

Based on condition (iv), we know that for any given x ̸∈ T , model (2.3) is identifi-

able. It follows that C = D, and there exists a permutation ωx = {ωx(1), . . . ,ωx(C)}

of set {1, . . . , C} depending on x, such that

λωx(c)(x) = πc(x), γωx(c)(x) = θc(x), δωx(c)(x) = ϕc(x), c = 1, . . . , C. (4.2)

Since all component regression curves (θj(x), ϕj(x)) are continuous, and no pair of

component regression curves intersect on any interval (xl, xl+1), the permutation ωx

must be constant on (xl, xl+1) and will be simply denoted by ωl.

Next, we will prove that ωl = ωl+1 and ωl = ωxl+1
for any l. If the above

statement is true, then ωx will be the same over the interval (xl, xl+2) for any l. By

taking different l values, we can know that ωx will be constant over the whole space

of x.

Note that any pair of component regression curves have different derivatives at xl+1

if they intersect at xl+1. Since equation (4.2) implies that the identity of derivatives

of parameter curves on either side of xl+1, ωx must be constant on the neighborhood

of xl+1. Therefore, ωl = ωl+1 and there exists a permutation ω = {ω(1), . . . ,ω(C)}

of set {1, . . . , C} which is independent of x such that

λω(c)(x) = πc(x), γω(c)(x) = θc(x), δω(c)(x) = ϕc(x), c = 1, . . . , C.

This completes the proof of identifiability.
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