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ABSTRACT 

 

Moving beyond the individual: large-scale observational and experimental approaches  

to understand collective motion in wild ungulates 

 

by 

 

Lacey Hughey 

 

Animal aggregations are common in nature and directly influence important 

biological processes such as resource acquisition, predator avoidance, and reproduction. Yet 

our ability to study the behavior of animal groups with precision has been limited by the 

challenge and expense of tracking multiple individuals at once. As a result, the majority of 

knowledge about collective behaviors – particularly in large, or far-ranging species – has 

been derived from detailed observations of relatively few individuals (i.e. field observations 

or marked individuals), or theoretical simulations lacking validation in the field. While these 

approaches have formed the foundation of animal behavior research, they frequently suffer 

from an inability to generalize individual-level observations to population-level processes.  

Recent advancements in high-resolution remote sensing now present exciting 

opportunities to overcome many of these limitations by obtaining a comprehensive view of 

individual behaviors and the full socio-environmental context in which they are embedded. 

By adapting high-resolution remote sensing technologies to study large groups of animals in 

the wild, I aim to examine the role of environmental and social forces in driving behavioral 



 

 x 

shifts in ungulate herds across multiple scales of space and biological organization (i.e. 

individuals to populations).  

To accomplish this, I first establish the historical context for these new techniques by 

conducting a literature review of modern and historic methods for studying collective animal 

behavior in the field. This review outlines the strengths and limitations of such 

methodologies while identifying opportunities for advancement afforded by recent and 

upcoming technological innovations. I then demonstrate the utility of this technology by 

developing a new method to study the distribution and behavior of tens of thousands of 

animals (white-bearded wildebeest; Connochaetes taurinus) identified in high-resolution (< 

50 cm) satellite imagery. This non-invasive method is directly scalable from individuals to 

populations and reliably predicts three behavioral states (82% accuracy overall) from a 

single metric of group structure (i.e. coordinated orientation). Such an advancement 

represents a step-change in our ability to study social processes under natural conditions and 

forecasted advancements in both resolution and automated image processing are likely to 

expand applications for this technique in the near future.  

Finally, I combine these new remote sensing techniques with traditional animal 

tracking methods (e.g. GPS telemetry and transect surveys) to evaluate the factors that drive 

habitat selection by a reintroduced, free-ranging ungulate (tule elk; Cervus canadensis 

nannodes) in a cattle-dominated ecosystem in northern California. These analyses confirmed 

that reintroduced elk largely avoided areas managed for and used by cattle across all seasons. 

Further, the use of remotely sensed data revealed that this pattern likely resulted from 

differential habitat preferences rather than outright avoidance behavior. As a result, the 

potential for conflict between cattle and reintroduced elk is expected to be minimal in this 

ecosystem, and managers may continue to rely on manipulation of resources (e.g. providing 
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artificial water sources) to limit interactions between the two species. By presenting this 

updated approach to the study of animal behavior, I aim to demonstrate the value of remotely 

sensed data for providing both basic and applied insights into the behavioral ecology of large 

animal systems. 
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Abstract  

Mobile animal groups provide some of the most compelling examples of self-

organization in the natural world. While field observations of songbird flocks wheeling in 

the sky or anchovy schools fleeing from predators have inspired considerable interest in the 

mechanics of collective motion, the challenge of simultaneously monitoring multiple 

animals in the field has historically limited our capacity to study collective behavior of wild 

animal groups with precision. However, recent technological advancements now present 

exciting opportunities to overcome many of these limitations. Here we review existing 
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methods used to collect data on the movements and interactions of multiple animals in a 

natural setting. We then survey emerging technologies that are poised to revolutionize the 

study of collective animal behavior by extending the spatial and temporal scales of inquiry, 

increasing data volume and quality, and expediting the post-processing of raw data. 

Introduction 

Group living is common in animals and directly influences important biological 

processes such as resource acquisition, predator avoidance and social learning (Parrish et al. 

2002). In addition to the biological and ecological significance of collective behavior, the 

spectacle of coordinated animal groups navigating the environment (e.g. flocking birds, 

marching locusts, schooling fish) continues to drive an intense interest in understanding the 

mechanics behind these impressive displays. The past several decades have marked a 

revolution in scientific understanding of the causes and consequences of collective behavior. 

This is due, in large part, to a feedback between high-precision measurements of the 

behaviors of animal groups, and mathematical and computational models that seek to re-

create these behaviors. In 1987, Reynolds took an unlikely but germinal step in this direction 

when he showed, via computer simulations, that complex collective motion resembling the 

flocking, herding, and schooling behaviors of animals could result from simple, local rules 

of interaction among individuals (Reynolds 1987). In the following decades, researchers 

extended these early models to describe larger groups of individuals with more sophisticated 

and biologically justifiable interaction rules (Axelsen et al. 2001; Couzin & Krause 2003;  

Gordon 2014). Simultaneously, advancements in videography and computer vision have 

made it possible to empirically test some of these models in the lab (Katz et al. 2011; Buhl et 

al. 2006; Herbert-Read et al. 2011; Strandburg-Peshkin et al. 2013). This feedback between 

https://paperpile.com/c/lWRljw/1F9LV
https://paperpile.com/c/lWRljw/1F9LV
https://paperpile.com/c/lWRljw/LKov6
https://paperpile.com/c/lWRljw/LSA00+UxxYG+00ePR
https://paperpile.com/c/lWRljw/LSA00+UxxYG+00ePR
https://paperpile.com/c/lWRljw/LAvST+DMZUV+C0MhE+CrBwD
https://paperpile.com/c/lWRljw/LAvST+DMZUV+C0MhE+CrBwD
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mathematical and computational models and high-resolution data from laboratory 

experiments has defined an era of hypothesis-driven research and facilitated the development 

of a mechanistic understanding of collective decision-making in animal groups. 

  Extending this theoretical-empirical feedback to include group-living species in their 

natural environments is a critical step toward understanding how the dynamics of collective 

behavior relate to broader ecological and evolutionary questions. Recent advances in field-

deployable tracking technologies (e.g. stationary imaging techniques, bio-loggers, and 

remote sensing; figure 1.1) present new opportunities for conducting field-based studies of 

collective behavior at ecologically meaningful spatiotemporal scales. By studying social 

interactions in wild animal groups, researchers are starting to identify the social and 

ecological mechanisms that drive collective behaviors in a broader range of animal species, 

to describe interaction rules quantitatively at the individual level that drive movement 

decisions at the group level, and to assess empirically the ecological significance of 

collective movement in the wild (Ballerini et al. 2008; Handegard et al. 2012; Strandburg-

Peshkin et al. 2017). In addition, we are poised to explore collective processes that cannot be 

studied in the lab, such as long-distance collective migration, predator-prey interactions in 

large, group-living species, and information transfer across the landscape. 

  This prospectus aims to provide an overview of existing and emerging technologies 

used to collect data on movements, behavior and interactions within animal groups in the 

field and highlights the challenges and opportunities presented by each. We have omitted a 

discussion of the extensive literature on collective behavior of wild social insects, as well as 

the literature on human groups, primarily because the techniques used in these systems often 

differ substantially from techniques used to study other social animals. Our aim is to survey 

https://paperpile.com/c/lWRljw/7t1tE+hWetz+5KikY
https://paperpile.com/c/lWRljw/7t1tE+hWetz+5KikY
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current and state of the art technologies used to study social animals in the wild, as well as a 

look towards the kinds of studies these technologies will make possible in the future. 

Stationary field imaging techniques 

High-resolution stationary imaging has been one of the most widely used methods 

for studying the collective behavior of wild animals. Modern imaging methods include three-

dimensional videography, high-speed single-camera and multi-camera videography, thermal 

infrared imaging, and imaging sonar. All of these methods are capable of recording high-

resolution data on both animals and environmental features within the camera field of view, 

facilitating the study of social and ecological interactions on a fine spatial scale. In addition, 

many stationary cameras have the advantage of being compatible with a large, external 

power supply. This can extend the duration and frequency of data collection, making 

stationary cameras appropriate for a wide range of taxa, habitats and movement modes (i.e. 

from disparate individuals to large, cohesive groups). However, the inherent limitation of 

imaging from a fixed location may reduce the utility of stationary cameras in complex 

environments or areas of low animal density.  In this section, we provide a selective review 

of some of these technologies and address challenges that arise when using stationary 

cameras to study collective behavior of animals in the field. 

  

Imaging large groups 

  Stationary cameras have provided some of the earliest opportunities to study 

collective behavior in the wild. For example, Cavagna et al. 2008 used carefully calibrated 

cameras placed atop a building to record individual positions and movements of starlings 

(Sturnus vulgaris) in large flocks. Similarly, Ginelli et al. 2015 used digital cameras placed 
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atop a tower to record the behaviors of large groups of domestic sheep (Ovis aries) in 

outdoor enclosures, and Theriault et al. 2014 reconstructed flight paths of groups of wild 

Brazilian free-tailed bats (Tadarida brasiliensis) and cliff swallows (Petrochelidon 

pyrrhonota) flying through volumes of up to 7,000 m3.  In all of these studies, researchers 

chose imaging equipment and configurations to strike a balance between achieving a wide 

field of view and maintaining sufficient resolution to allow tracking of individual 

movements. When it is not possible to film animals from a distance, or high-resolution 

images are required, multiple synchronized cameras may be used to increase the total field of 

view (e.g. an array of downward looking cameras in shallow water (Gil & Hein 2017); figure 

1.2). 

  When designing a camera setup, it is important to consider the speeds and spatial 

scale of the movements of the study animal, in addition to the method by which data will be 

analyzed. Many studies of collective behavior make inferences by studying covariance 

among positions, speed, or accelerations of tracked animals. This type of analysis requires 

tracks that are long enough to encompass the behavioral sequences of interest, but also 

replicated enough to detect correlations in the presence of noise. Using stationary cameras 

positioned far from the group of interest might make it possible to observe animals for 

longer periods of time before they leave the camera frame, but this typically comes at the 

cost of lower resolution, which can lead to increased tracking noise, tracking errors, and 

lower quality tracks. Therefore, it is worth performing power analyses on simulated data in 

advance of data collection to determine what kind of track resolution, track lengths, and 

replication will be needed to detect phenomena of interest. In some cases, the best strategy 

may be to dispense with tracking individuals altogether, and instead to focus on studying the 

detailed behaviors of individuals when they are present at a particular site using fixed-

https://paperpile.com/c/lWRljw/jhqhj
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location cameras (e.g. Gil & Hein 2017) or other means (e.g. PIT tag readers sensu Aplin et 

al. 2014). 

 

Tracking animal positions from field imagery 

  More often than not, image-based analyses of collective behavior involve tracking 

animal positions from one image to the next. This has become a highly streamlined task in 

laboratory studies (but see Berman et al. 2014 and Hong et al. 2015 for more challenging 

extensions), where behavioral arenas can be configured to minimize occlusions (i.e. 

instances where one animal passes between another individual and the camera), and to 

facilitate the use of inexpensive recording equipment and off-the-shelf tracking software (see 

Dell et al. 2014 for a review). 

  Tracking animals in field images with complex backgrounds and objects in the 

foreground is far more challenging. Moreover, the need to simultaneously track many 

individuals that may frequently occlude one another makes studying collective behavior 

using field imagery particularly difficult. However, in some field settings, one or more of 

these complications can be avoided. For example, Attanasi et al. 2014 achieved high-

precision three-dimensional reconstructions of individual fly (the midge, Cladotanytarsus 

atridorsum) trajectories by filming swarms in front of a suspended dark cloth background. In 

many cases, however, modifying the background will be either impossible or undesirable, 

and occlusions are almost inevitable when many animals interact in the same place at the 

same time. Alternatively, there are several technologies that have made it possible to extract 

high-precision tracks from field imagery, even when conditions are far from optimal. The 

most common of these are three-dimensional imaging and specialized filtering, detection, 

and tracking algorithms. 

https://paperpile.com/c/lWRljw/jhqhj
https://paperpile.com/c/lWRljw/j9uDO
https://paperpile.com/c/lWRljw/j9uDO
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  Three-dimensional information can help resolve ambiguities introduced when an 

individual passes in front of an object with similar color and texture. For example, in a 

laboratory study, Hong et al. 2015 used 3D cameras to record pairs of laboratory mice 

interacting in an experimental chamber. The authors were able to use the camera’s depth 

sensor to separate mice with low-contrast coat colors from the background and to resolve 

occlusion events in which mice passed over one another. 3D cameras remove some of the 

need for careful calibrations and multi-camera reconstructions; however, commercially 

available 3D cameras currently have relatively narrow working range. Depending on the 

camera model, depth information is generally only reliable for objects that are located within 

a few meters of the camera lens (Hong et al. 2015), although stereo camera systems with 

larger apertures have been developed for tracking animals at longer ranges (Hong et al. 

2015; Macfarlane et al. 2015). Moreover, the most common 3D technologies measure the 

depth of each pixel in an image by projecting an infrared beam and measuring the return 

time of that signal, limiting these tools to environments where emissions in the infrared 

range are not strongly attenuated. This limits the utility of 3D cameras in aquatic 

environments, although researchers have recently developed technologies that can improve 

the performance of 3D cameras for underwater use (Anwer et al. 2017). 

Heterogeneous, dynamic lighting is another challenge commonly encountered in field 

imagery, particularly in shallow water systems, where refraction of sunlight through surface 

waves results in rapidly changing illumination patterns on the substrate, known as 

“sunflicker” (Gracias et al. 2008). Sunflicker makes object tracking challenging because 

features that are useful for detecting an individual in one image may yield poor performance 

in the next if local light conditions change. Dynamic lighting also renders background 

subtraction – a standard technique in which a background image is subtracted from recorded 

https://paperpile.com/c/lWRljw/5hH8v
https://paperpile.com/c/lWRljw/5hH8v
https://paperpile.com/c/lWRljw/5hH8v
https://paperpile.com/c/lWRljw/NXha9
https://paperpile.com/c/lWRljw/TWBKf
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images to retain only moving objects – far less useful. 

  When it is not possible to avoid sunflicker altogether, it may still be possible to 

correct for dynamic lighting through video post-processing. Modern methods for correcting 

local dynamic light patterns in video were adapted from algorithms originally developed to 

produce smooth transitions between images in photo mosaics such as those created by cell 

phone apps (Gracias et al. 2008). De-flickering techniques apply similar methods to smooth 

the severe local gradients in pixel intensity produced when nearby regions of an image are 

illuminated to different degrees by sunflicker. Though these techniques have been applied to 

underwater imagery with promising results (Gracias et al. 2008; Shihavuddin et al. 2012), in 

our experience, they can require significant tuning. More recent methods for automatically 

tuning de-flickering filters may dramatically reduce the need for manual tuning, making it 

more feasible to correct lighting in long sequences of images from field video (Trabes & 

Jordan 2015). 

  Finally, cameras that record spectral bands outside of the visible range (e.g. thermal 

or acoustic imaging systems such as acoustic sonar) can be useful as either primary or 

secondary imaging devices. For example, Zheng Wu et al. 2009 used thermal imaging 

cameras to reconstruct large groups of free-ranging bats in nocturnal footage. Benoit-Bird 

and Gilly 2012 used split-beam sonar to track movements of individual jumbo squid 

(Dosidicus gigas) in the Gulf of California, which allowed them to measure the trajectory, 

velocity, tortuosity, and depth of multiple individuals at once. Other studies have used sonar 

to observe synchronous diving and foraging behavior of cetaceans (Benoit-Bird & Au 2003; 

Godø et al. 2016), and collective hunting and evasion in fish shoals (Handegard et al. 2012; 

Rieucau et al. 2015). Thermal and sonar imaging techniques are particularly exciting because 

they extend the range of environmental conditions where collective behavior can be studied 

https://paperpile.com/c/lWRljw/TWBKf
https://paperpile.com/c/lWRljw/TWBKf
https://paperpile.com/c/lWRljw/CHIxd
https://paperpile.com/c/lWRljw/CHIxd
https://paperpile.com/c/lWRljw/o8r7w
https://paperpile.com/c/lWRljw/VZWbX
https://paperpile.com/c/lWRljw/5KikY+54MyQ
https://paperpile.com/c/lWRljw/5KikY+54MyQ
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to include low-light environments previously hidden from traditional videography 

techniques. However, both spatial and temporal resolution is currently limited for these 

studies. 

  

 Postural tracking and fine-scale behaviors 

  Technological developments will undoubtedly continue to improve the usefulness of 

visual imagery for studying collective behavior. Among the most exciting of these is the 

development of algorithms that automatically extract more detailed information about 

individuals than body or head centroid locations. These include segmentation schemes, 

which may be able to provide postural information about individuals. For example, fully 

convolutional networks – relatively new tools from deep learning – appear to be well suited 

to semantic segmentation of complex images in which objects of interest can have variable 

size and shape, and be partially occluded (Shelhamer et al. 2017). Algorithms that explicitly 

model body orientation, structure, and limb orientation using multi-camera reconstructions 

(Cheng et al. 2016) or 3D cameras (Hong et al. 2015; Barnard et al. 2016) also appear 

promising.  

These and similar methods will allow researchers to access information about 

individuals that is not contained in the time series of positions typically collected from 

tracked field imagery. Access to features like body posture and gait could fundamentally 

deepen what we can learn from visual imagery. For example, in dense schools or swarms, 

postural tracking can allow one to reconstruct the visual information available to each 

individual within the group (see laboratory studies by Strandburg-Peshkin et al. 2013 and 

Rosenthal et al. 2015). Information about body posture, limb motion, and morphology may 

make it possible to apply new quantitative methods for characterizing behavioral states of 

https://paperpile.com/c/lWRljw/fOVBf
https://paperpile.com/c/lWRljw/1V3st
https://paperpile.com/c/lWRljw/5hH8v
https://paperpile.com/c/lWRljw/BDjgd
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individuals (Stephens et al. 2008; Berman et al. 2014; Hong et al. 2015; Berman et al. 2016) 

and to understand better how social interactions might influence these states. 

  

Remote sensing 

  While stationary cameras have facilitated some of the earliest field-based studies of 

collective animal behavior, remote imaging platforms now offer a promising opportunity to 

extend these investigations to organisms moving across increasingly large spatial scales 

(figure 1.3). In addition, the flexibility of remote operation makes it possible to track specific 

animals or entire groups of interest while executing experimental manipulations under 

natural conditions. Together, these capabilities afford an opportunity to expand the scope of 

theoretical and empirical insights to be gained from studying collective motion to a broad 

range of natural systems. 

  

Unmanned aerial vehicles (UAVs) 

UAVs currently provide the most affordable and flexible imaging platforms for 

obtaining an aerial perspective in the field. In addition to greatly expanding the simultaneous 

field of view afforded by stationary cameras, UAVs provide the ability to adjust camera 

positioning on the fly and at distances up to several kilometers from the operator. This 

capability facilitates truly non-invasive filming of collective animal behavior (but see 

guidelines below) and when combined with bio-loggers (e.g. Strandburg-Peshkin et al. 2017; 

figure 1.4) or computer vision techniques (e.g. Dell et al. 2014; Weinstein 2018; figure 1.5), 

can be used to track the fine-scale movements (e.g. individual positions, trajectories and 

turning angles) of entire groups over large distances and time scales. 

https://paperpile.com/c/lWRljw/5hH8v
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  In addition, a growing commercial market is continually increasing the utility and 

affordability of UAVs by offering a wide range of airframe designs, payload capacities, and 

technical configurations to suit the needs and budget of most academic research programs 

(Anderson & Gaston 2013; Lowman & Voirin 2016). Alternatively, a thriving DIY 

community offers limitless opportunities for researchers needing bespoke solutions at low 

cost. Given this range of equipment configurations and capabilities, specific 

recommendations will depend on the question of interest, focal species, budget, and 

logistical constraints of the field site. But in general, there are several technical and political 

considerations to be made before establishing any UAV-based research program for wildlife 

(see Anderson & Gaston 2013 for a more thorough treatment of these topics). 

  For example, the inability to film animals through dense canopy, turbid water, or to 

resolve smaller species (less than about 30 kg) at appropriate altitude is currently the largest 

limitation of UAVs for studies of collective animal behavior. However, thermal infrared and 

increasingly compact, high-resolution cameras are rapidly expanding future possibilities for 

filming under these conditions. Limited battery life presents an additional challenge, though 

significant gains stand to be made from utilizing alternative airframes. For example, fixed-

wing UAVs afford significantly longer flight times than compact, multi-rotor or “quad-

copter” designs (i.e. up to two days for the largest fixed wings vs. <1 hour for most multi-

rotor systems; Anderson & Gaston 2013). However, a multi-rotor system affords the 

advantage of hovering in place without the need to circle continuously as required by a 

fixed-wing aircraft. Regardless of design, all aerial platforms bring a suite of post-processing 

challenges such as image stabilization, correction for oblique filming angles, changing light 

and environmental conditions, plus many of the limitations outlined previously for 

processing footage from field cameras (see “Stationary field imaging techniques” above). 

https://paperpile.com/c/lWRljw/lw4tP
https://paperpile.com/c/lWRljw/lw4tP
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  In addition, many low-cost commercial systems can produce stimuli perceived to be 

threatening by many species (i.e. motor noise (Ditmer et al. 2015) or semblance to an aerial 

predator (Korczak-Abshire et al. 2016), though impacts may be reduced by modifying 

equipment or methodology (Hodgson & Koh 2016; Mulero-Pázmány et al. 2017). 

Furthermore, there is some evidence that UAVs may cause physiological changes in study 

animals (i.e. increased heart rate; Ditmer et al. 2015), which may not manifest as behavioral 

changes, but could confound results if not properly accounted for. Though all of these issues 

are addressed with increasing efficiency in new versions of hardware and software, there is 

no replacement for thoughtfully developed “best practices” for UAV use around wildlife 

(Hodgson & Koh 2016; Mulero-Pázmány et al. 2017). Alternatively, non-motorized 

platforms (i.e. kites and aerostats) offer some advantages over traditional UAVs, including 

reduced noise, significantly longer flight times, and increased payloads. Of course, these 

gains come at the cost of maneuverability, though this may be partially mediated by use of a 

remote-controlled camera gimbal. 

  Finally, depending on the study area, UAVs may present a multitude of legal 

challenges, which will generally require advance permitting and licensing at a minimum, and 

partial to total restriction of flights at a maximum. Thus, it is essential work with local 

stakeholders and law enforcement agencies during the early phases of project planning to 

clarify procedures and ensure compliance prior to beginning work. 

  

Satellites 

While UAVs offer unparalleled affordability, flexibility, and resolution for imaging 

animal groups from an aerial perspective, there have been notable advances in satellite 

remote sensing technology that will facilitate truly “landscape scale” studies of collective 

https://paperpile.com/c/lWRljw/rua7f
https://paperpile.com/c/lWRljw/TFWdU
https://paperpile.com/c/lWRljw/FBnBN
https://paperpile.com/c/lWRljw/EAuMI
https://paperpile.com/c/lWRljw/rua7f
https://paperpile.com/c/lWRljw/FBnBN
https://paperpile.com/c/lWRljw/EAuMI
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behavior in the very near future. Commercial satellite companies maintain the largest 

collection of archived images with the resolution appropriate for identifying individual 

animals (30 cm to 50 cm (Anonymous 2017a; Anonymous 2017b), but the random and 

disparate temporal distribution of coverage generally limits the use of archived images for 

studies of collective movement. While there is some promise for using new, commissioned 

images to capture time series of large animal groups moving across the landscape, this will 

require future increases in satellite availability for civilian use coupled with a significant 

decrease in cost. 

  Alternatively, the advent of “CubeSats” (i.e. miniaturized satellite constellations) has 

recently disrupted the traditional market for high-resolution satellite imagery by providing 

low-cost access to high-resolution still imagery (80 cm - 5 m) and video (1m, up to 90 

seconds at 30 fps) collected at daily or near-daily intervals (e.g. Urthecast Team 2017; Earth-

i Team 2017; Planet Team 2017). Obtaining such high-resolution, high frequency satellite 

imagery presents a first opportunity to study entire herds of large animals (e.g. migratory 

wildebeest, caribou, livestock) moving across hundreds of square kilometers without 

disturbance from observers on the ground. In addition, this truly multi-scale perspective will 

afford researchers the opportunity to better understand how social and environmental 

processes interact across environmentally relevant spatial scales and facilitate the study of 

collective behavior in more natural systems than ever before (figure 1.3). 

Bio-loggers 

  Animal mounted sensors (or bio-loggers) present another promising and 

complementary approach to imagery-based studies of collective behavior. Such on-board 

sensors – including GPS, accelerometers, magnetometers, pressure sensors, and acoustic 

https://paperpile.com/c/lWRljw/E2IUn+eKAg3
https://paperpile.com/c/lWRljw/TCE3k
https://paperpile.com/c/lWRljw/uYxyj
https://paperpile.com/c/lWRljw/uYxyj
https://paperpile.com/c/lWRljw/8msSd
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recorders, among others – are opening up new directions in a range of biological disciplines, 

as they allow data to be collected continuously and directly at the location of the study 

animal, irrespective of changes in accessibility or visibility of the animal, and without need 

for re-identifying the same individual repeatedly. For studying collective behavior in 

particular, on-board sensors allow animal position, movement and behavior to be monitored 

with increasing resolution and across a range of habitats and contexts (Kays et al. 2015; 

Fehlmann & King 2016). In addition, many tags now include multiple types of sensors 

integrated with one another, making it possible to test how the movements, vocalizations, 

behaviors, and social interactions of freely-moving animals influence one another (Cvikel et 

al. 2015). 

  However, the utility of bio-loggers is limited by the need to affix sensors to each 

monitored animal, a process that usually requires capture (for collars, backpacks, or glue 

attachment) or close-range physical interaction (for suction cup or dart attachments). 

Additionally, the need for animals to carry devices imposes strong weight and size 

restrictions, thereby limiting the sensor payload and battery size, and resulting in tradeoffs 

between sensor sampling rate, duty cycling, and battery life. Retrieving data can also present 

challenges. In some cases, it may be possible to download data remotely from tags, while in 

others, tags must be retrieved (either through recapturing animals or by having a remote 

drop-off system) to offload data. Another complication that is especially relevant to studies 

of collective behavior is the need to deploy many devices simultaneously. If instrumentation 

happens over an extended period of time, tags need a pre-programmed start time to 

maximize simultaneous recording time. Additionally, the internal clocks of independent tags 

will drift over time, and thus tags that do not include a GPS sensor will need a system for 

intermittently synchronizing tags. Lastly, on-board sensors are typically expensive, so 

https://paperpile.com/c/lWRljw/DTCpk+vjyxG
https://paperpile.com/c/lWRljw/DTCpk+vjyxG
https://paperpile.com/c/lWRljw/b6K6r
https://paperpile.com/c/lWRljw/b6K6r
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deploying many tags may become cost-prohibitive for some research projects. Despite these 

challenges, continued advances in technology have reduced the size and cost of on-board 

sensors while also increasing their spatial and temporal resolution. Due to these advances, 

their use in behavioral biology is rapidly growing, and they are becoming an increasingly 

powerful tool for studying collective animal behavior. We explore these advances and 

associated challenges in greater detail below. 

  

Monitoring location 

  Modern GPS tags are capable of monitoring animal locations at sub-second rates, 

and with spatial resolution that can achieve sub-meter precision. These advances mean that 

data can now be collected at the temporal and spatial scales necessary for studying fine-scale 

social interactions within groups (Kays et al. 2015). Several recent studies have deployed 

GPS tags on all or most individuals within animal groups to study collective movement 

dynamics, including work on pigeons (Columba livia domestica; Nagy et al. 2010), baboons 

(Papio anubis; Strandburg-Peshkin et al. 2015), domestic sheep (King et al. 2012), African 

wild dogs (Lycaon pictus; Hubel et al. 2016; King et al. 2012), and domestic dogs (Canis 

lupus familiaris; Ákos et al. 2014) (see figure 1.4 for an example with baboons). 

  Collecting movement data via GPS tags has a number of advantages. First and 

foremost, it is possible to monitor animals in areas where visual observation is impossible. 

Moreover, animals can be tracked over multiple spatial scales (from local interactions within 

groups to long-range collective migrations) and with an adjustable temporal rate. GPS 

sensors require a relatively large amount of power, but recent low-power GPS tags now 

allow for multi-week continuous (1 Hz position updates) tracking of medium-sized animals 

such as baboons (Strandburg-Peshkin et al. 2015). However, this increased spatial or 

https://paperpile.com/c/lWRljw/DTCpk
https://paperpile.com/c/lWRljw/BHEcY
https://paperpile.com/c/lWRljw/VC0Ak
https://paperpile.com/c/lWRljw/IUOUB
https://paperpile.com/c/lWRljw/IUOUB+6z0bS
https://paperpile.com/c/lWRljw/dEMYt
https://paperpile.com/c/lWRljw/VC0Ak


 

 16 

temporal resolution may not be high enough to resolve fine-scale movements and social 

interactions for some systems and contexts. Therefore, these methods are most appropriate 

for groups that are dispersed over at least tens of meters, or for addressing interactions that 

take place over such distances. In contrast to overhead imaging, there are no limits to 

maximum separation distance so it is more feasible to study social dynamics of fluid groups 

on the move. For smaller animals or more compact group interactions, high-resolution 

imaging from either stationary cameras or UAVs are likely better approaches to 

differentiating interactions. 

  For marine animals or other systems where a significant component of movement 

takes place vertically, cheap and power-efficient pressure sensors can monitor the depth of a 

tagged animal. Tags with pressure sensors generally store and transmit summary data or 

store raw depth measurements. This information can provide data on dive and foraging 

behavior, and can be merged with ARGOS positions to provide detailed data on foraging 

ecology of deep-diving animals (Robinson et al. 2012). Although it is possible to use 

pressure sensors to quantify dive initiation and other characteristics of leadership, so far this 

technology has only been used to a limited extent for studies of collective behavior 

(Akamatsu et al. 2013). This is due in part to problems with separating lack of coordination 

from lack of horizontal cohesion, and in part due to inevitable clock drift between 

independently sampling tags. Novel approaches to solve these two issues are therefore 

needed, such as synchronization pulses or incorporation of GPS or fast-lock GPS technology 

with accurate timing information. 

  

 

Detecting presence, proximity, and social networks 

https://paperpile.com/c/lWRljw/nbouj
https://paperpile.com/c/lWRljw/MtMuX
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  Even when precise positions are not known, information on the presence or 

proximity of animals to one another, or to fixed geographical locations, can still provide a 

useful quantification of social structure and interactions. Such methods can be particularly 

important for species whose size, environment, or behavior make continuous monitoring 

impractical or impossible, or for processes that span longer time scales such as social 

learning. A range of active and passive transponder systems have been used to obtain such 

data so far, and are thought to be increasingly important to future work (Krause et al. 2013). 

  Passive integrated transponder (PIT) tags are extremely small, lightweight and 

inexpensive devices that carry a unique barcode and are typically implanted internally in 

animals. PIT tags do not require an internal power source so they can usually remain with an 

animal for its entire lifetime and are well suited to automated setups. While PIT tag systems 

do not monitor position continuously, they are well suited to systems in which animals spend 

time at specific locations such as nests and foraging patches, or to monitor their movements 

through specific movement corridors such as rivers (e.g. during migration). Arrays of 

transponder readers can also give more detailed information on animal positions and 

movement directions (Lucas et al. 1999), and co-occurrences at specific locations can be 

used to infer social structure (Psorakis et al. 2015). A limitation of PIT tags is that their 

detection range is very short, typically on the order of a few meters or less.  In the context of 

collective behavior, PIT tags have been used to monitor decision-making, social network 

structure, and information transfer in populations of wild birds (Aplin et al. 2014; Farine et 

al. 2014; Aplin et al. 2015), bats (Myotis bechsteinii; Kerth et al. 2006) and house mice (Mus 

musculus; König et al. 2015), among others. 

  Active transponder tags, including VHF radio beacons or acoustic transponders that 

contain their own power source for signal generation, can provide a longer-range alternative, 

https://paperpile.com/c/lWRljw/uylof
https://paperpile.com/c/lWRljw/UqUy8
https://paperpile.com/c/lWRljw/WRV8w
https://paperpile.com/c/lWRljw/suBjg+j9uDO+P93UP
https://paperpile.com/c/lWRljw/suBjg+j9uDO+P93UP
https://paperpile.com/c/lWRljw/2vgaK
https://paperpile.com/c/lWRljw/4CdRb
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though these also require deployed receiving stations. Several lakes have recently been 

instrumented with relatively dense arrays of acoustic receivers to track active transponders 

implanted in multiple species of fish, allowing for a detailed perspective into interactions 

both within and between species in an ecosystem (Arlinghaus et al. 2009; Krause et al. 

2013). 

Proximity sensors are active transponder tags that can themselves receive 

information from other transponders and store information on time and ID of encountered 

tags (Ji et al. 2005). Tags can either be tuned to record signals above a certain threshold or to 

record signals and signal strength, where the latter can be used to infer encounter distance 

(Rutz et al. 2015). These tags have been used to automatically map association patterns and 

investigate social learning in free-ranging New Caledonian crows (Corvus moneduloides; 

Rutz et al. 2012) and to investigate social dynamics of zebras (Equus quagga; Zhang et al. 

2015) and sharks (Carcharhinus galapagensis; Holland et al. 2009; Guttridge et al. 2010). 

  

Estimating body orientation, activity, and behavior 

A full understanding of how animal groups coordinate movement will require 

information, not just on where animals are, but on the sensory information they are taking in 

and the behaviors in which they are engaging. Recent laboratory studies of animal groups 

have begun to incorporate sensory information, such as the visual field of each individual in 

a school of fish (Strandburg-Peshkin et al. 2013; Harpaz R 2014; Rosenthal et al. 2015), to 

build more predictive and biologically-motivated models of collective motion (Collignon et 

al. 2016). Onboard inertial sensors such as accelerometers, magnetometers, and gyroscopes 

provide an opportunity to obtain detailed behavioral information for animal groups in the 

wild, even when they cannot be directly observed by humans, and may also provide the 

https://paperpile.com/c/lWRljw/uylof+6Ok1p
https://paperpile.com/c/lWRljw/uylof+6Ok1p
https://paperpile.com/c/lWRljw/Ovook
https://paperpile.com/c/lWRljw/JIPPX
https://paperpile.com/c/lWRljw/GffvN
https://paperpile.com/c/lWRljw/XEAEU
https://paperpile.com/c/lWRljw/XEAEU
https://paperpile.com/c/lWRljw/Kn6HJ
https://paperpile.com/c/lWRljw/pKs3f
https://paperpile.com/c/lWRljw/CrBwD
https://paperpile.com/c/lWRljw/Y6Dzk
https://paperpile.com/c/lWRljw/zQCAr
https://paperpile.com/c/lWRljw/ckxog
https://paperpile.com/c/lWRljw/ckxog
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means for tracking body orientation and gaze direction of animals within moving groups. 

Both accelerometers and magnetometers are commonly used in bio-logging tags since they 

are compact, cheap, and power efficient (Ropert-Coudert & Wilson 2005; Brown et al. 

2013). Gyroscopes have some advantages when measuring energetics and body posture, but 

have seen only limited use in bio-logging tags due to their higher power consumption, drift, 

and complex data processing (Martín López 2016). 

Tri-axial accelerometers measure both static acceleration (caused by the gravitational 

field of the Earth) and dynamic acceleration (caused by acceleration of the animal and 

thereby the sensor itself) along three dimensions. Depending on sensor placement, dynamic 

acceleration can be related to the movement of the animal itself, and various proxies for 

energy expenditure or activity level using tri-axial accelerometers have been developed as a 

result (Wilson et al. 2006; Qasem et al. 2012;  Simon et al. 2012). Accelerometers may also 

be used to estimate body orientation, often quantified as the pitch, roll and heading of an 

animal. To measure all three axes of body orientation, an accelerometer and magnetometer 

are needed, and magnetic heading must be corrected for the magnetic inclination and 

declination at the study site. Magnetometers are seldom used by themselves because they 

cannot fully specify the orientation of the tag due to rotational ambiguity around the 

magnetic field vector. However, with triaxial accelerometers and magnetometers, time series 

of body orientation can be used to quantify the gait of an animal over time (Martín López et 

al. 2015). Packages combining accelerometers and magnetometers with gyroscopes provide 

a more robust quantification of both energetics and gait (Martín López et al. 2016; Ware et 

al. 2016). See Martín López et al. 2016 for a comparison between these approaches. 

  Since accelerometers and magnetometers are more power efficient, they can 

generally be sampled much faster (typically tens to thousands of times per second) than GPS 

https://paperpile.com/c/lWRljw/OiN69
https://paperpile.com/c/lWRljw/Mk2BK
https://paperpile.com/c/lWRljw/Mk2BK
https://paperpile.com/c/lWRljw/zdk00
https://paperpile.com/c/lWRljw/l5XnX
https://paperpile.com/c/lWRljw/ueVLB
https://paperpile.com/c/lWRljw/NzVW3
https://paperpile.com/c/lWRljw/VwHR8
https://paperpile.com/c/lWRljw/VwHR8
https://paperpile.com/c/lWRljw/Geow3+zdk00
https://paperpile.com/c/lWRljw/Geow3+zdk00
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tracking systems, which are constrained by battery power. Thus, there is increasing potential 

for using time series analysis to estimate movement influence and social interactions 

between simultaneously tagged animals at higher temporal resolution using inertial sensors 

than is possible using GPS sensors. Inertial sensors also offer the possibility of identifying 

specific behaviors (e.g. foraging events or prey capture success; Williams et al. 2014; 

Ydesen et al. 2014) and behavioral states (Wilson et al. 2008; Nathan et al. 2012; Fehlmann 

et al. 2017). To do this, a ground-truthed dataset consisting of time-synchronized behavioral 

observations is typically collected during a subset of sensor recordings. Based on this 

training dataset, machine learning techniques can then be used to develop an automatic 

behavioral classifier, allowing behaviors to be identified in the absence of direct observation 

(Williams et al. 2014). 

 

Improving positional data using inertial sensors 

Integrating data from sensors with different spatial or temporal resolutions can help 

improve tracking accuracy. For example, by merging high sample rate inertial data from 

accelerometers, magnetometers, and/or gyroscopes with low sample rate, larger error 

position data from GPS tags, it is possible determine the orientation of an animal, then 

combine this information with estimates of speed and integrate across velocity vectors to 

reconstruct movement tracks (Wilson & Wilson 1988). Such “dead-reckoning” methods 

(reviewed in Bidder et al. 2015) can help establish movement tracks without directly 

measuring positions (Ware et al. 2006) and can also be combined with GPS, ARGOS, or 

acoustic localization position data to improve the temporal resolution of movement tracks 

(Schmidt et al. 2010; Wensveen et al. 2015). Dead reckoning methods are also critical for 

species that live in areas where GPS reception is poor, such as marine environments and 

https://paperpile.com/c/lWRljw/7vTZq+qiSaK
https://paperpile.com/c/lWRljw/7vTZq+qiSaK
https://paperpile.com/c/lWRljw/p2ebz+3pPJE+BqHje
https://paperpile.com/c/lWRljw/p2ebz+3pPJE+BqHje
https://paperpile.com/c/lWRljw/7vTZq
https://paperpile.com/c/lWRljw/A5uwO
https://paperpile.com/c/lWRljw/3vbLj
https://paperpile.com/c/lWRljw/Tc0sM
https://paperpile.com/c/lWRljw/AQ594+0ptY4
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densely forested areas. However, it is important to note that errors in the inferred positions 

of animals will accumulate over the length of a track and rapidly limit the accuracy of dead-

reckoned position estimates, whereas estimated orientation will keep the same accuracy 

throughout. Thus, it is better to base studies of movement influence between animals on 

orientation estimates rather than dead-reckoned tracks. 

  

Interactions beyond proximity 

Collective behaviors are mediated by a variety of passive and active information 

flows between individuals in a group. Behaviors other than movement, such as vocalizations 

and gestures, are key to the coordination of movement in many species (primates, Fischer & 

Zinner 2011, King & Sueur 2011; meerkats (Suricata suricatta), Gall & Manser 2017; birds, 

Radford 2004; elephants (Loxodonta africana); Leighty et al. 2008; dolphins (Tursiops 

truncatus), Lusseau & Conradt 2009). Animal-mounted cameras, sound recorders or 

accelerometers provide a number of options for measuring interactions between individuals 

in the field, and linking these to individual-level movement decisions recorded 

simultaneously by GPS or other sensors. 

  Perhaps the most intuitive option is the use of still or video imaging from the 

perspective of the study animal itself (Marshall 1998; Marshall 2007; ). Animal-borne video 

can be used to identify or validate behaviors, especially as recorded by other lower cost 

sensors (e.g. accelerometers), and has been used extensively to understand foraging ecology 

of many species. It also has great potential for contributing to our understanding of collective 

behavior. Cameras can map encounters or social interactions with conspecifics that occur out 

of sight of observers (Yoda et al. 2011; Rosen et al. 2015; Troscianko & Rutz 2015). While 

technology is continuously improving, video cameras consume more power than many other 

https://paperpile.com/c/lWRljw/n7qOa
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sensors, analysis is often labor intensive, and it may be difficult to get a field of view that 

can capture all interactions of interest. 

  The last 15 years have seen an increase in animal-borne sound recorders, especially 

for research on cetaceans (Burgess 2000; Johnson & Tyack 2003; Akamatsu et al. 2005), but 

also on terrestrial mammals (Lynch et al. 2013), birds and bats (e.g. Cvikel et al. 2015; 

Stowell et al. 2017). Since acoustic communication is a fundamental means of information 

transfer in many systems, acoustic recorders that can pick up these signals from tagged 

animals open a wide range of possibilities for understanding collective behaviors, from 

active mediation of group cohesion (Gall et al. 2017) to negotiation of consensus decisions. 

  While manual processing of acoustic data can be time-consuming, automated 

detection and discrimination algorithms can speed up analysis dramatically (Dugan et al. 

2010; Stowell et al. 2017). One potential advantage over camera tags is that a single acoustic 

sensor can record sounds from the tagged animal, incoming sounds from other nearby 

conspecifics, and sounds from other sources in the environment (Cvikel et al. 2015). 

However, for many species, it can be a significant challenge to correctly discriminate 

vocalizations of the tagged individual from nearby conspecifics, and accurate differentiation 

of tagged animal vocalizations can be difficult to demonstrate without a ground-truthed 

dataset. Stereo tags may help since one can use time differences between channels to 

estimate a bearing to an incoming sound (Johnson et al. 2009), thereby more easily 

identifying sounds from the tagged animal (Jensen et al. 2011; Pérez et al. 2016). 

Additionally, high sample rate accelerometers may be able to pick up on body vibrations 

associated with sound production in both marine (Goldbogen et al. 2014) and terrestrial 

(Anisimov et al. 2014) systems. 

While bio-loggers that monitor the orientation and movement of animals are only 
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beginning to be employed in studies of collective animal behavior (Fehlmann et al. 2017; 

Isbell et al. 2017), their use offers great promise for achieving a deeper understanding of the 

mechanics governing collective motion. Such data will also provide valuable information 

about the context in which group coordination occurs, and will allow individual behaviors –

not just locations – to be incorporated into models of collective movement. At the same 

time, the ability to collect such detailed data opens up a new set of challenges, because 

integrating multiple streams of raw sensor data to obtain biologically relevant information is 

a difficult analytical and computational task, though software to facilitate this process is 

gradually becoming available (Walker et al. 2015). Furthermore, since instrumentation of 

animals is both costly and time intensive, future studies that combine animal bio-logging 

methods with other tools such as visual tracking of group members from overhead cameras, 

may facilitate studies of collective behavior while building on the strengths of each method. 

Discussion 

Deeper knowledge of the ecology and evolution of collective behavior is important 

for the advancement of both basic scientific understanding and for the conservation of 

fundamental ecosystem processes that occur in communities around the world (Parrish et al. 

2002; Guttal & Couzin 2010; Mueller et al. 2013; Berdahl et al. 2014). The technologies 

discussed above offer new, and in many cases, more efficient tools for studying the 

dynamics of these processes in the wild. Each of these approaches come with their own 

advantages and caveats, and thus the choice of study approach will depend heavily on the 

problem, especially the spatiotemporal scale at which data is needed. 

In general, both stationary and remotely sensed imagery afford the advantage of 

simultaneously capturing high-resolution data on environmental features and animal 
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movement, but differ in the range of spatiotemporal scales that can be captured. For 

example, fixed cameras provide high definition (and in some cases, 3D) imaging at a local 

scale that is constrained by the field of view of the (often immobile) camera, and thus are 

most suitable for monitoring movement interactions of small, less mobile animals, or for 

monitoring interactions in specific areas (e.g. fish moving around a reef, birds foraging in a 

tree). For larger, group living or highly mobile animals, UAVs offer a promising alternative. 

The choice of airframe design will depend on the scale of inquiry, with larger aggregations 

or longer time periods necessitating fixed-wing UAVs that fly higher and cannot hover, but 

that reach extended flight times of hours to days compared to the 10’s of minutes of 

commercial multi-copters. For landscape scale questions, high-resolution satellite imaging is 

becoming an increasingly accessible option that may allow for tracking mass movements of 

larger animals over time scales of weeks to months, albeit at low temporal scales that do not 

allow tracking of individual animals without the coordinated use of bio-loggers or stationary 

cameras. 

In contrast to field imaging techniques, bio-logging tags offer the ability to track 

unique individuals over time scales of weeks to years, which can be a significant advantage 

when studying highly mobile (Nagy et al. 2010; Strandburg-Peshkin et al. 2017) or highly 

fluid social groups. In addition, bio-loggers afford the advantage of incorporating 

environmental sensors such as cameras or microphones that can record social interactions in 

situ and allow researchers to test mechanistic hypotheses for the collective decision-making 

processes observed in a broad range of taxa. Finally, it may be advantageous to think about 

bridging these approaches, for example by combining fine-scale habitat mapping from UAV 

with high-resolution individual-level tracking of animals (Strandburg-Peshkin et al. 2017; 

figure 1.4). 
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While we have emphasized the new research opportunities these methods will 

facilitate, the methods themselves should not be viewed as a panacea, or as a replacement for 

more traditional techniques of field biology. As Hebblewhite and Haydon (2010) point out, 

higher resolution datasets do not necessarily lead to increased understanding of animal 

ecology. Additionally, one should critically evaluate the true costs of data collection (i.e. 

handling wildlife to apply sensors, or processing and analyzing large amounts of data) before 

adopting any new techniques for research. It is also important to note that there is no 

replacement for the deep intuition and novel questions born from directly observing animal 

behavior in the field. Thus, these new technologies should be viewed as complementary 

approaches to more traditional field methods and encourage deeper understanding of classic 

ecological theories through cross-discipline collaborations. 

Moving forward, there are a number of promising avenues for extending collective 

behavior research in both theoretical and applied directions through experimental, field-

based enquiry. Much of what we currently know about collective animal behavior, both in 

the laboratory and in the wild, comes from observational studies rather than experimental 

manipulations. With the aid of mathematical and computational models, these studies have 

shed considerable light on the interaction rules that generate phenomena such as coordinated 

motion (e.g. Vicsek et al. 1995; Ballerini et al. 2008; Lukeman et al. 2010; Herbert-Read et 

al. 2011; Katz et al. 2011) and collective predator evasion (e.g. Handegard et al. 2012; 

Rosenthal et al. 2015). However, it is becoming increasingly clear that hypotheses about the 

causes and consequences of collective behavior should be tested further through 

manipulative experiments in a natural setting. Several field studies (e.g. Templeton & 

Greene 2007; Gil & Hein 2017) have already begun to move in this direction, and recent 

technological advancements will enable researchers to build on these early efforts by 
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combining the power of modern animal tracking technology with traditional methods for 

studying behavior in the field. For example, acoustic playbacks (e.g. Templeton & Greene 

2007; Bousquet et al. 2010; Dechmann et al. 2010), food manipulation (e.g. Aplin et al. 

2015; Firth et al. 2016), and predator threat stimuli (Gil & Hein 2017) can be used in 

combination with any of the imaging or bio-logging technologies discussed above to 

experimentally test hypotheses about how information is transmitted among individuals and 

how that information affects collective dynamics across natural landscapes. 

In addition to these new applications, the technologies reviewed here hold 

tremendous potential to extend the study of collective behavior to contexts where it has 

seldom been studied in the past. Questions about what selects for and maintains collective 

migration, how collective foraging might influence nutrient dynamics and ecosystem 

processes, how individuals balance information they gather directly from the environment 

with information gleaned by watching neighbors, and how the demography and persistence 

of species might depend on social interactions have long fascinated biologists. The 

technological revolution that is currently taking place in the study of collective behavior is 

bringing answers to these questions more rapidly than ever been before, and should continue 

to strengthen the relationship between theoretical models, empirical observations and 

manipulative experiments in the years to come.  
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Figures 

 

Figure 1.1. Technology is changing our view of collective behavior, offering a variety of different 
perspectives on animal movement and interactions. High-resolution satellite imaging, and fixed-
wing or multicopter photography allows imaging groups of animals as they move across the 
landscape or migrate great distances. Stationary or semi-stationary imaging techniques allow for 
high-definition tracking of large groups, potentially in three dimensions, using standard cameras, 
imaging sonar, or infrared cameras or, and with both sonar and imaging sonar or infrared camera 
options that can be applied if visibility is low. Biologging tags that sample location, behavior, 
activity, or interactions with conspecifics instead provide a continuous stream of data from highly 
dense perspective on behaviors of tagged individuals, even in otherwise inaccessible locations or 
when moving across large distances. 
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Figure 1.2. Still frame from a video sequence showing movement tracks of individual fish filmed 
from a stationary camera array in shallow water (Gil and Hein 2017).  
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Figure 1.3. Remotely sensed imagery affords a unique opportunity to empirically study the ecology 
of collective motion in large animal systems. For example, satellite (a,b) and aerial (c) imagery of 
ungulate herds reveals aggregation patterns that are structurally similar to those previously described 
for smaller taxa in a laboratory setting: (a) Vacuole (fish), (b) Cruise (insects), (c) Wave front (slime 
mold). Remote sensing now enables hypotheses regarding the form and function of these repeated 
patterns to be experimentally tested under natural conditions and for a wider range of taxa than ever 
before. Images were reproduced with the following permissions: (a) Wildebeest: Google Earth, © 
2017 Digital Globe; (a) Fish: iStock.com/Connah/Cropped from original; (b) Insects: “A column of 
Matabele ants streaming towards a termite mound” by Piotr Naskrecki © 2013/Cropped from 
original; (c) Slime mold: "Physarum polycephalum (Physaridae)" by Norbert Hülsmann, used under 
CC BY-NC-SA-2.0 (https://creativecommons.org/licenses/by-nc-sa/2.0/)/ Cropped and rotated from 
original.  
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Figure 1.4. Combining bio-logging with UAV imagery enables investigation of how the 
environment shapes collective movement in wild animal groups over larger spatiotemporal scales 
than is possible with field imaging techniques alone. Colored lines show trajectories for the majority 
of baboons within a single troop (obtained using GPS collars), and background image shows 3-
dimensional point cloud rendering of their habitat (obtained from UAV imagery). White lines show 
scale (each line extends 50 m). Data from Strandburg-Peshkin et al. 2015 & 2017. 
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Figure 1.5. Still frame from a UAV video sequence demonstrating ability to automatically track 
unique individuals and species (e.g. zebra in red versus wildebeest in blue) across video frames 
(sensu Torney et al. 2016). Still frame video was reproduced with permission from Colin J. Torney. 
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Abstract 

The ability to generalize observations from individuals to populations has been a 

perennial challenge for researchers working in a number of ecosystems, particularly since 

individual decisions do not necessarily scale to the emergent properties of large groups. Such 

challenges are especially pertinent to the study of animal behavior, where individual 

responses may drive social processes at higher levels of biological organization (i.e. 

individual behaviors may impact a group’s ability to avoid predators, access forage, find 

mates, etc.). Yet our ability to study such processes in the wild has been hindered by the 
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technical limitations of conventional tools for animal observation. Recent advances in 

satellite remote sensing now provide a powerful opportunity to capture non-invasive, multi-

scale information on the behavioral dynamics of animal groups in the wild. Here, we 

introduce a new method for remotely studying the distribution and behavior of tens of 

thousands of animals (white-bearded wildebeest; Connochaetes taurinus) identified in high-

resolution (< 50 cm) satellite imagery. To develop this method, we: 1) identified and ground-

truthed group-level attributes of herd structure that were associated with common behavioral 

states of individuals, 2) used these observations to develop an automated classifier that 

reliably predicted three behavioral states (82% accuracy overall) from a single metric of 

group structure (i.e. coordinated orientation), and finally 3) applied the classifier to 

categorize the distribution of these same behavioral states in a high-resolution satellite image 

of nearly 50,000 wildebeest spread across a 25 km2 study area. The algorithm resulted in 

classifications for 62% (n = 30,711) of the wildebeest identified in the satellite image and, of 

these, the majority (77%; n = 23,667) were classified with high confidence (i.e. > 75%). This 

non-invasive method for mapping the behavior of animal groups presents a novel 

opportunity to study the social and environmental drivers of animal behavior across multiple 

scales of space and biological organization (i.e. individuals to populations). Forecasted 

reductions in cost and increases in the resolution of satellite imagery, coupled with advances 

in machine learning techniques for automated image analysis, are likely to expand 

applications for this technique in the near future.  
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Introduction 

The challenge of making population-level inferences from observations of a few 

well-studied individuals has been a major limitation to our capacity to study many social 

species (Calabrese et al. 2018; Hughey et al. 2018; Torney et al. 2018; Westley et al. 2018). 

These shortcomings are largely attributed to the difficulty of collecting behavioral data on 

multiple individuals with adequate precision, especially in large animal systems. For 

example, GPS collars afford long-term, high-resolution insights into the behaviors of single 

animals. But the challenge and expense of applying tags to multiple individuals limits our 

ability to obtain insights on the diversity of social processes thought to play an important 

role in most movement decisions (but see Nagy et al. 2010; King et al. 2012; Cvikel et al. 

2015; Strandburg-Peshkin et al. 2015; Hubel et al. 2016; Strandburg-Peshkin et al. 2017 for 

notable exceptions). Similarly, field observations and camera traps can provide detailed 

behavioral snapshots of tens to hundreds of animals at once, but these studies are inherently 

limited in spatial and temporal scope. Finally, laboratory and theoretical investigations have 

produced numerous and valuable insights into cross-scale patterns of animal behavior in a 

range of systems (Gueron & Levin 1993; Buhl et al. 2006; Herbert-Read et al. 2011; Katz et 

al. 2011), but those focused on large animal models are frequently lacking validation in the 

field (Hughey et al. 2018).  

Recent advances in high-resolution satellite technology now present a powerful 

opportunity to extend the current suite of animal observation tools by providing a high-

resolution, aerial perspective of animal groups across tens to hundreds of kilometers. This is 

made possible by a growing archive of high-resolution imagery (i.e. 30-50 cm) and the 

ability to commission new images on-demand for almost any location on earth (Hughey et 

al. 2018). Likewise, the burgeoning nanosatellite industry (i.e. miniaturized satellites 

https://paperpile.com/c/1TOPpk/NXxQy+xI0nR+9vCUH+yWbMS
https://paperpile.com/c/1TOPpk/m4QOY+JJ509+UoXPm+1q6lc+wexo7+GBDV8
https://paperpile.com/c/1TOPpk/m4QOY+JJ509+UoXPm+1q6lc+wexo7+GBDV8
https://paperpile.com/c/1TOPpk/aCULP+Lr1Dq+kWjCP+YuVeT
https://paperpile.com/c/1TOPpk/aCULP+Lr1Dq+kWjCP+YuVeT
https://paperpile.com/c/1TOPpk/xI0nR
https://paperpile.com/c/1TOPpk/xI0nR
https://paperpile.com/c/1TOPpk/xI0nR


 

 47 

weighing 1-10 kg) is making low-cost, sub-daily images at 2.5 m resolution a reality for 

scientists and practitioners alike. Alongside the rapid development of these constellations of 

imaging satellites, advances in machine learning and automated image processing present 

promising avenues for high-efficiency detection of large animals in this imagery (Torney et 

al. 2016; Xue et al. 2017). 

Although animal identification from satellite imagery is a nascent concept, 

researchers have demonstrated the potential value of this technique by using it to enumerate 

more than 20 vertebrate species in a variety of habitats, including African savannas, arctic 

tundra, and the open ocean (Febbo et al. 2017; Fretwell et al. 2017; LaRue et al. 2017; 

Hollings et al. 2018). These studies have formed the foundation of satellite-based animal 

observation, and the next logical step is to push this technology beyond the enumeration of 

species and towards the acquisition of broader ecological insights. Specifically, when 

combined with the knowledge that individual behaviors can result in unique and predictable 

patterns of herd structure, high-resolution satellites present a novel opportunity to obtain a 

deeper understanding of the behavioral and ecological processes that promote the persistence 

of social species. 

In this study, we focus on the migration of white-bearded wildebeest (Connochaetes 

taurinus; hereafter “wildebeest”) across the Serengeti-Mara ecosystem of Kenya and 

Tanzania to test a satellite-based approach to the study of animal behavior. The mass 

movement of 1.3 million wildebeest is an inherently social process that drives the ecological 

functioning of the entire Serengeti-Mara ecosystem (Sinclair et al. 2015). By collectively 

grazing and redistributing more than 4,500 tons of grass per day, wildebeest influence 

everything from nutrient cycles and trophic interactions to vegetation communities and fire 

regimes (Milner-Gulland et al. 2011; Subalusky et al. 2017). However, research into this 
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phenomenon has historically been focused on identifying environmental drivers of 

individual movements (Wilmshurst et al. 1999; Boone et al. 2006; Hopcraft et al. 2014; 

Sinclair et al. 2015), despite a growing body of literature suggesting that social processes are 

also likely to play an important role in determining the success of this highly gregarious 

species (Sinclair & Norton-Griffiths 1984; Holdo et al. 2009; Berdahl et al. 2016; Torney et 

al. 2018). The objective of this analysis is to develop and test novel techniques using satellite 

remote sensing to accurately classify the behavioral states of large groups of social animals 

at once. This forms the foundation for efficiently and non-invasively extracting information 

about collective behavior from wild free-living animals. 

To develop a method for remotely classifying and studying the behavior of 

wildebeest, we first recorded the behavior and spatial structure (i.e. geometric properties of 

the group) of wildebeest groups identified in the field. Using this ground-truthed data, we 

then trained an automated classifier (i.e. random forest model) to identify three behavioral 

states (e.g. encamped, mobile feeding, and transit; figure 2.1) that could be reliably predicted 

by the structural attributes of the group (e.g. orientation, nearest neighbor distance, and 

relative positioning; figure 2.2). Next, we applied this same classifier to a manually 

annotated, high-resolution satellite image covering 25 km2 and containing nearly 50,000 

individual wildebeest (figure 2.3 & figure 2.4). We then describe how large-scale, spatially 

explicit maps of behavior such as these may be used to conduct cross-scale investigations of 

social and environmental drivers of animal behavior and offer recommendations for further 

development of this method.  
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Methods 

 

Study area 

Field data collection took place between March and May of 2015, 2017, and 2018 in 

the medium and short grass plains of Serengeti National Park in northern Tanzania. 

Serengeti National Park is a federally protected conservation area and no hunting or off-road 

driving is permitted within the park. The boundaries of the protected area were historically 

defined by the movements of approximately 1.3 million wildebeest that travel more than 

2,600 km on their annual migration between a dry season refuge in southern Kenya and 

calving grounds on the shortgrass plains of Serengeti. The seasonal rains and rich volcanic 

soils of this area produce nutritious grasses and the open, flat landscape provides little cover 

for predators during the critical parturition period (Sinclair & Norton-Griffiths 1984).  

 

Ground-based measures of behavior and herd structure  

We relied on ground observations to identify common behavioral states and the 

associated spatial structure that defines these states in wildebeest herds. Wildebeest groups 

(n = 315; at least 400 m was maintained between observations of each group) were 

opportunistically located while driving on main roads and tracks across the short-grass plains 

of Serengeti National Park. When a group was located, a single observer (same observer was 

used throughout) randomly selected 10-15 focal animals and assigned each to one of the 

following behavioral categories after 10 seconds of observation at 50 to 100 m from the 

herd: 1) encamped (i.e. bedded or stationary > 10 seconds, or feeding followed by < 2 steps 

forward), 2) mobile feeding (i.e. feeding followed by > 2 steps forward), 3) transit (i.e. 

uninterrupted forward motion > 10 seconds), and 4) other (i.e. chasing, sparring; dropped 

https://paperpile.com/c/1TOPpk/GdVrA
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from analysis; Appendix 2.A). We then recorded the following metrics of herd structure for 

each focal animal: 1) orientation (i.e. direction of body axis visually estimated from 

compass bearing, plus orientation for each of its three nearest neighbors); 2) distance to each 

of its three nearest neighbors (visually estimated in units of wildebeest body-lengths); and 3) 

position (i.e. visually estimated angle of the focal animal’s location relative to the location of 

each of its three nearest neighbors; figure 2.2). Values were then averaged across the focal 

animal and its three nearest neighbors for each observation and metric, resulting in a single 

value per metric (i.e. orientation, distance, and position) per focal animal (n = 4,055). These 

mean values were obtained as follows: 

To calculate mean orientation for each focal animal, we first transformed 

unidirectional bearings to bi-directional bearings (i.e. 90० = 270०; (Davis 2011) so that 

results would be transferable to satellite images where direction of travel may not be 

discernable at the given resolution. We then measured the circular dispersion (i.e. 

uniformity) of all four orientations (i.e. focal animal plus three nearest neighbors; ‘circ.disp’ 

function in the ‘CircStats’ package in R (Agostinelli & Lund 2005). This resulted in a 

measure of coordinated orientation ranging from 0 to 1, where a measure of 0 indicates 

uniform dispersion (or low coordination of orientation) and a measure of 1 indicates 

concentration in one direction (or high coordination of orientation; figure 2.2). We then 

calculated mean distance for each focal animal by averaging across each group of four 

animals (i.e. focal animal plus three nearest neighbors; ‘spatstat’ package in R (Baddeley et 

al. 2014) and multiplying by this value by 2 (to convert from wildebeest body lengths to 

meters). Finally, we obtained a mean position for each focal animal by first transforming 

unidirectional angles to bi-directional angles so that, for example, neighbors positioned 
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immediately to the right of the focal animal received the same score as neighbors positioned 

immediately to the left of the focal animal (i.e. 90० = 270०). We then averaged these values 

across all three neighbors to obtain the average position for each focal animal. Relative 

position and orientation of the focal animal’s three nearest neighbors was not recorded for 

individual-level observations in 2015 (n = 3,256). As a result, values for orientation of 

individuals were inferred from group-level averages for each behavioral state and relative 

positions were estimated from observations in the 2017/2018 datasets with matching herd 

characteristics (n = 799; details in Appendix 2.B). 

 

Classifying behavioral state with random forest algorithms 

We employed random forest classification models (i.e. decision tree classifiers that 

fit various subsamples of the dataset and use averaging to improve predictive accuracy and 

control over-fitting) to assign one of three behavioral states (e.g. encamped, mobile feeding, 

transit) to focal animals based upon the three structural metrics described above (e.g. 

orientation, distance, and position). In our application of this method, we withheld 25% (n = 

200) of the 2017/2018 dataset in order to test the predictive power of the resultant algorithm 

with a novel dataset. Then we used the remaining data (n = 3,855) to train 500 decision trees 

with all three metrics of herd structure (e.g. orientation, distance, and position) as 

explanatory variables and three categories of behavior (e.g. encamped, mobile feeding, and 

transit) as the response variable (‘randomForest’ package, ‘randomForest’ function in R; 

(Liaw et al. 2002).  

https://paperpile.com/c/1TOPpk/c2m8y
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We then used the resulting algorithm to make categorical predictions of known 

behaviors in the testing dataset using the ‘predict’ function in R (R Core Team 2018). 

Results from this external validation procedure were then compared to results from a second 

validation procedure employed by the ‘randomForest’ package, in which 33% of the cases 

are withheld from a bootstrapped sample of the original data and then the withheld samples 

are used to test algorithm performance each time a tree is constructed. Finally, we employed 

a backwards stepwise selection routine in which each main effect (i.e. all three metrics of 

herd structure) and two-way interaction was dropped from the model, one at a time until the 

model offering the best predictive performance was identified. This procedure indicated that 

behavioral state was best predicted by the single metric of orientation (table 2.1). As a result, 

position and distance were excluded from the final algorithm. 

 

Satellite image annotation and processing 

A single contiguous satellite image encompassing an area of 25 km2 at 50 cm 

resolution (GeoEye acquired on August 10, 2009; Google 2009) was analyzed using an 

open-source, cloud-based computer program (BisQue; Kvilekval et al. 2010) designed for 

processing large images with associated spatial information. Trained analysts then used a 

purpose-designed plug-in to manually annotate the axis of orientation and/or geographic 

location of each potential wildebeest using three levels of certainty: 1) wildebeest with 

known orientation (annotated as a line along the central body axis without respect to head vs. 

tail), 2) wildebeest with unknown orientation (annotated as a point), and 3) possible 

wildebeest (annotated as a point; ultimately dropped from following analysis). Wildebeest 

were distinguished from inanimate or permanent objects using the following criteria: 1) 
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proximity to other objects similar in size (i.e. approximately 2 pixels long), oblong shape, 

and black color (figure 2.3) and 2) visual comparison with images of the same area collected 

on different dates (i.e. mobile objects should not be present in images taken on another date).  

The only other species visible at 50 cm resolution that may occur in the study area and in 

large enough numbers to be mistaken for wildebeest include zebra and domestic cattle. 

However, cattle are restricted from the Serengeti National Park study area and a preliminary 

analysis of ground-truthed satellite images indicated that both cattle and zebra can be 

reliably distinguished from wildebeest by their contrasting size and color (figure 2.3).  

We classified the behavioral state for all animals annotated in the satellite image by 

first measuring the degree of coordinated orientation between each animal and its three 

nearest neighbors (using the same methods as described above in the processing of the 

ground-based measurements). To do this, we first calculated the bearing for annotations with 

a known orientation by turning the endpoints of each line into a pair of nodes using the 

‘line2df’ function in the ‘stplanr’ package in R (Lovelace et al. 2015). We then calculated 

the bearing in circular degrees using the ‘bearing’ function in the ‘geosphere’ package in R 

(Hijmans 2016) and employed an angle doubling procedure to convert unidirectional 

bearings to bi-directional bearings (i.e. 90० = 270०; Davis 2011). This step facilitated 

calculation of circular dispersion in cases where the direction of travel was unknown due to 

an inability to distinguish head from tail in most satellite images. To facilitate transformation 

from degrees to radians (using the ‘rad’ function in the ‘CircStats’ package in R; Lund & 

Agostinelli 2007) and account for the circular nature of the dataset, we designated all 

bearings as circular data using ‘as.circular’ function in the ‘circular’ package in R (Pewsey et 

al. 2013). Then we calculated the circular dispersion for all points with at least two nearest 
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neighbors having known orientations by using the ‘circ.disp’ function in the ‘CircStats’ 

package in R (Agostinelli & Lund 2005); procedures for calculating position and distance 

from satellite images are described in Appendix 2.C & Appendix 2.D).  

 

Behavioral classification in satellite image 

To classify behavioral states for animals identified in a high-resolution satellite 

image, we used the random forest classifier developed with the ground observation data to 

make categorical predictions of behavior (e.g. encamped, mobile feeding, or transit) from the 

orientation calculated above. Again, while multiple parameters of herd structure (e.g. 

orientation, distance, and position) were tested for predictive accuracy when developing the 

random forest model, we relied solely on orientation data given the predictive success of this 

one measure as observed from the ground truthing procedure (table 2.1). We then mapped 

predicted behavioral states for all animals with defined orientations in the satellite image (n 

= 30,711; figure 2.4).  

 

Results 

 

Algorithm performance- ground observations 

Both unidirectional (i.e. orientation defined by direction of travel) and bidirectional 

(i.e. direction of travel is unknown within a plane of 180°) datasets had comparably low 

error rates across all three behavioral states (2.4% and 2.9% average error respectively with 

internal validation; 7.6% and 8.7% average error respectively with external validation). 

Between categories, transit had the lowest error rate overall (< 1% for both unidirectional 
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and bidirectional datasets) and mobile feeding had the highest (4.8% unidirectional, 5.7% 

bidirectional; table 2.2 & table 2.3). Classifications for both mobile feeding and encamped 

were most commonly confused with transit.  

 

 

Algorithm performance- satellite image classification 

When applied to the annotated satellite image, the random forest algorithm was able 

to classify behavior for 62% (n = 30,711) of the wildebeest identified in the satellite image. 

Of the animals classified, 77% of these (n = 23,667) were classified with high probability 

(i.e. > 75%) and 2% (n = 717) were classified with low probability (i.e. < 50%) in any class, 

meaning that behavioral states were assigned with little confusion between classes. No class 

occurred significantly more than another in either high or low confidence subsets. Finally, 

the encamped state was the most common behavioral classification in the satellite image 

(54%, n = 16,489), followed by transit (31%, n = 9,404), and mobile feeding (16%, n = 

4,818).  

Discussion 

Our study of the Serengeti-Mara wildebeest population presents a novel approach to 

conducting animal behavior research that is both non-invasive and directly scaleable from 

individuals to populations. Although further development of relevant technologies 

(especially machine learning) is needed to deploy this method at-scale, the perspective 

afforded by remotely sensed images stands to advance fundamental understanding of animal 

behavior by facilitating cross-scale research on the social and ecological mechanisms that 

drive behavioral decisions in animal groups. For example, by confirming that a small 

number of attributes (e.g. coordinated orientation) can be used to effectively predict complex 
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behaviors, we have created an opportunity to test whether basic rules of interaction at the 

individual level persist across space and higher levels of biological organization (i.e. 

individuals to populations). Such insights are critical for understanding how patterns of 

occupancy and distribution might depend on social interactions and how these dependencies 

might change with predicted shifts in environmental conditions. 

 

Broader ecological applications 

By creating a spatially explicit time series of individual behaviors across the 

landscape, we can quantitatively evaluate patterns of behavior in response to any number of 

environmental features, including the relative distribution of other animals and their 

associated behavioral states. This approach presents a step-change in our ability to measure 

the social context of behavioral transitions with precision and stands to improve the realism 

of predictive models resulting from these investigations. Further, the representation of 

animal behavior as both a social and a spatial process presents a powerful opportunity to 

investigate the interplay between proximity to features of interest and behavioral outcomes 

at multiple scales of enquiry. 

In the case of the Serengeti-Mara ecosystem, such methods may be used to better 

understand the non-lethal impacts of anthropogenic infrastructure on animal movement. In 

this system, roads are expected to negatively impact the persistence of the wildebeest 

population through direct mortality and impediment of migratory movements (Dobson et al. 

2010; Holdo et al. 2011).  However, the non-lethal impacts of roads and associated 

infrastructure has been shown to extend well beyond the immediate structural footprint 

(Loarie et al. 2009; Northrup et al. 2015; D’Amico et al. 2016; Prokopenko et al. 2017), so it 

is important to determine the degree to which this proposed development may cause 
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deviations in behavior associated with increased energetic costs or mortality risk. Although 

individual-level tracking data presents a useful starting point for answering such questions, it 

is unlikely to capture sufficient variability in individual behavioral response for a population 

this size. Further, it cannot afford insights into the complex relationships between group 

size, individual behavior, and proximity to roads that are necessary to properly contextualize 

observed patterns. In such cases, high-resolution satellites present a promising alternative 

that is both non-invasive and able to measure behavioral changes for tens of thousands of 

animals across large distances.  

In practice, this method also presents promising opportunities to augment 

conventional approaches to monitoring zoonotic disease transmission between wild and 

domestic species (e.g. biological sampling or tagging animals with GPS or VHF sensors 

(Boadella et al. 2011). Through increased behavioral monitoring, managers may be able to 

rapidly identify areas of concern (i.e. areas of overlap or shared feeding sites between wild 

and domestic species) and increase ground-based monitoring or mitigation efforts in these 

areas. Further research into the relationship between behavior and rates of disease 

transmission may reveal additional applications, such as predictive modeling of transmission 

rates or assessing the risk of behavioral interactions between wild and domestic species. 

Such advances are increasingly important as rangelands expand globally and generate 

additional points of contact between wild and domestic species (Gortázar et al. 2007; Perry 

et al. 2013).  

 

Challenges, opportunities, and future directions 

While there is clearly enormous potential for such advances to enrich the fields of 

animal behavior and wildlife management, the adoption of high-resolution satellite imaging 
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has been hindered to date by substantial financial and technological (i.e. spatial and temporal 

resolution) constraints. For example, at the time of publication, an archived, 25 km2, 4 band 

(e.g. Red, Green, Blue, Near Infrared) image collected at 30 cm resolution costs thousands of 

dollars, with commissioned images quickly reaching tens of thousands. Further, although 30 

cm resolution is a consequential improvement on the previous limit of 45-50 cm, this level 

of detail has only been publically available since 2014 and from two satellites (WorldView 3 

& 4), making it less tenable for research requiring historic data or high temporal resolution 

sampling. However, imagery at 50 cm resolution has been available since 2009 and a 

growing number of constellations (e.g. WorldView, GeoEye, Pleiades, and others) now 

make sub-daily revisits a possibility.  

 In addition, a growing number of granting organizations, federal agencies, and 

commercial satellite providers are facilitating access to high-resolution imagery at low or no 

cost through public-private partnerships and imagery granting programs. Further, we contend 

that after sufficient ground-truthing has taken place, remotely sensed data may reduce the 

need for investment in field-based infrastructure of comparable cost (e.g. vehicles, housing, 

airfare, etc.), which could render additional savings for established research programs. 

Finally, the recent introduction of low-orbiting nanosatellites has prompted a renaissance of 

earth observation research by offering low-cost, high-frequency, high-resolution (70 cm - 5 

m) imaging for a wide range of civilian applications (Staehle et al. 2013; Traganos et al. 

2017; Cooley et al. 2017; Ghuffar 2018; Hughey et al. 2018; Cooley et al. 2019). Though 

these resolutions are at the upper limit of being useful for behavioral analyses, anticipated 

improvements in remote imaging technology combined with rapidly expanding capabilities 

of automated image processing techniques (Chabot & Francis 2016; Torney et al. 2016; Gray 
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et al. 2018; Weinstein 2018) stand to rapidly increase the utility of satellite-based techniques 

for animal behavior research.  

However, we caution that even if access to imagery is secured, there are several 

considerations to be made before establishing a satellite-based research program for animal 

behavior. First, satellite imaging (in the visible spectrum) is inherently limited to cloud-free 

days over open, flat landscapes. Though many large, social species occur in this type of 

environment (i.e. caribou on the tundra, whales in the ocean, livestock on pastures), this 

caveat brings obvious limitations to the application of satellite imaging in tropical, forested, 

and mountainous regions of the globe. In addition, 30-50 cm resolution is not always 

sufficient for determining the orientation or identification of animals with a body size at or 

below the pixel size. In this study, orientations could not be confidently assigned for 56% (n 

= 27,738) of the nearly 50,000 animals identified, resulting in classifications for a fraction of 

the original dataset (62%, n = 30,711). Though this sample size could potentially be 

increased by relaxing the requirements for number or proximity of nearest neighbor 

calculations, this approach is untested and limited resolution is expected to remain 

problematic for applying this method to smaller species.   

Similarly, the extensive spatial coverage that lends this method its power should also 

be considered a liability for proper validation of behavioral classifications (i.e. it is not 

possible to simultaneously validate the behaviors of thousands of animals at the instant of 

image collection). For this reason, we have selected geometric properties of group structure 

that can be reliably measured both on the ground and in the air (e.g. orientation, position, 

distance). We have also shown that both unidirectional (i.e. orientation defined by direction 

of travel) and bidirectional (i.e. orientation defined along antipodal axis of travel) datasets 

have comparable misclassification rates, which suggests that this method is robust to the 

https://paperpile.com/c/1TOPpk/LFUDi+8Ps8Z+KsLRf+72IvX
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current limitations of satellite image resolution, even for animals at or near the pixel size. 

Lastly, we used a priori information to strengthen our method against spurious 

classifications by grouping fine-scale behaviors (i.e. feeding, standing, bedded) into higher-

level categories (i.e. encamped, transit, etc.). As a result, we note that there may be 

additional behavioral states that could be identified from alternative grouping strategies, and 

encourage independent evaluation of alternative groupings when applying this method to a 

new species. 

The final component required to expand these methods beyond a proof of concept 

depends upon further advances in automated image processing techniques. The method 

described here requires a team of trained volunteers to manually identify and annotate 

animals in selected images. Though humans currently outperform computer-vision 

techniques for identifying animals in satellite images, there is mounting evidence that 

machine learning can significantly improve the speed and accuracy of manual counts in 

images of sufficient resolution (Torney et al. 2016; Xue et al. 2017). Still, specific 

shortcomings remain, including the ability to distinguish objects of interest from shadows, 

slow processing speed, and generalization of algorithms between multiple datasets.  

If such caveats prove too limiting for a particular research program, we also advocate 

Unmanned Aerial Vehicles (UAVs) as a promising alternative, or addition to satellites. 

While most commercial UAV systems cannot match the spatial scope (or historic archive) of 

satellite imaging, they do afford high-resolution imaging of large animal groups and bring 

advantages in the form of improved flexibility, lower cost, and higher temporal resolution. 

Techniques for automated processing of aerial images are also more advanced and accessible 

compared to those for lower-resolution satellite images. Though our classification method 

has not been tested on aerial images, we expect that the improved resolution and overhead 

https://paperpile.com/c/1TOPpk/KsLRf+ci2Tt
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perspective afforded by this approach would facilitate analysis of both bidirectional and 

unidirectional data, resulting in improved algorithm performance over that reported for the 

satellite image used here. 

 

Conclusion 

The ability to accurately quantify the spatial and behavioral relationships for tens of 

thousands of animals across remote landscapes presents a promising first step towards 

realizing the full potential of remote imaging techniques. By capturing high-resolution data 

on the social and environmental context in which animals are embedded, researchers may 

begin to quantitatively assess the relative impacts of each on the behavioral dynamics of 

social species. In addition, the ability to study these processes for thousands of individuals 

on the scale of many kilometers presents a unique opportunity to understand how changes in 

individual behavior scale up to inform the movement of populations and how these 

relationships may change with a changing environment. Such insights are critical for 

identifying the behavioral mechanisms that drive individuals across the landscape and 

ultimately influence the persistence of populations. Projected advancements in remote 

imaging and machine learning capabilities only increase our confidence that the ability to 

capture behavioral data from an aerial perspective will become increasingly important to 

scientists of the digital age. 
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Tables and figures 

Table 2.1.  Model selection results to identify the best combination of predictors for wildebeest 
behavioral state. Internal validation: 33% of samples withheld and validated against bootstrapped 
samples in ‘randomForest’ package (Liaw et al. 2002) in R. External validation: 25% of samples 
withheld from training set and estimation procedure (Appendix 2.B). O: Orientation, D: Distance, P: 
Position. 

Model
% Error           

internal validation

% Error                             

external validation

O 1.76 17.7

O + D 3.18 17.7

O + D + O*D 3.31 17.7

O + P + D + O*P 4.84 20.2

O + P + D 4.68 21.3

O + P + D + O*P + O*D + P*D 4.9 21.3

O + P + D + O*P + O*D 4.73 21.3

O + P + D + O*D 4.73 21.3

O + P + D + O*P + P*D 4.94 21.3

O + P + D +  O*D + P*D 4.68 21.3

O + P 2.55 22.4

O + P + O*P 2.58 22.4

P + D 40.7 51.1

D + P + D*P 40.27 51.1

P 42.43 63.2

D 42.6 66.7
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Table 2.2.  Results of the internal validation procedure employed by the ‘randomForest’ classifier 
package (i.e. 33% of samples withheld and validated against bootstrapped samples; Liaw et al. 
2002) in R. The top model included “behavioral state” of each wildebeest (e.g. encamped, mobile 
feeding, transit) as the response variable and a single measure of relative orientation as the 
explanatory variable. Note that alignment values represent unidirectional data (i.e. direction of travel 
is known). 

 
 

 

 

 

 

 

Table 2.3.  Results of the internal validation procedure employed by the ‘randomForest’ classifier 
package (i.e. 33% of samples withheld and validated against bootstrapped samples; Liaw et al. 
2002) in R. The top model included “behavioral state” of each wildebeest (e.g. encamped, mobile 
feeding, transit) as the response variable and a single measure of relative orientation as the 
explanatory variable. Note that alignment values represent bidirectional data (i.e. direction of travel 
is unknown within a plane of 180°).  
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Transit Mobile feeding Encamped 

Nearest neighbor Focal animal 
 

 

Figure 2.1. Three behavioral states that can be reliably predicted by the structural attributes of a 
focal animal (white) relative to its three nearest neighbors (black). 
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Figure 2.2. Three metrics of herd structure were initially used to predict the behavioral state of a 
focal animal (white) based on measurements of the following attributes relative to its three nearest 
neighbors (black): 1) Orientation is the degree of circular dispersion exhibited by a focal animal and 
its three nearest neighbors, 2) Position indicates whether a focal individual is aligned head-to-tail or 
shoulder-to-shoulder with it three nearest neighbors, 3) Distance is a measure of the average 
distance between a focal animal and its three nearest neighbors. 
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Figure 2.3. Representative example of (a) wildebeest and (b) livestock identified in a high-
resolution (50 cm) satellite image (Anon 2009 (a); Anon 2016 (b)). Zebra (c) are shown in a 20 cm 
resolution aerial image (Anon 2016). Note the distinctive differences in size, patterns of 
aggregation, and coat color between species. 
 
 

https://paperpile.com/c/1TOPpk/cc1eQ
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Figure 2.4.  A high-resolution (50 cm) satellite image containing more than 30,000 wildebeest and 
covering 25 km2 (image shown is a subset of the full image; (Anon 2009) shows three predicted 
behavioral states for focal animals based on the degree of coordinated orientation relative to its three 
nearest neighbors. Inset (A) shows a detailed view of behaviors involved in crossing a road, with 
leading animals in transit, animals in the middle waiting to cross in an encamped or intermediate 
state of mobile feeding, and animals behind transiting to catch up to the group. Inset (B) shows a 
representative view of animals in an encamped state, and inset (C) is a representative view of 
animals in transit. 
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Appendices 

Appendix 2.A. Detailed protocol for classifying behavioral state in the field 

 

We located 315 groups of wildebeest in Serengeti National Park according to the methods 

detailed in the main text. When a group was selected for observation, we recorded a single 

behavior for each focal animal (n = 4,055) according to the definitions below. To improve 

the predictive power of the final model, these states were then aggregated into the three 

categories of behavior as shown below: 

 

Encamped:  

● Bedded: laying on the ground > 10 seconds 

● Standing: remaining stationary > 10 seconds in any posture except feeding or mobile 

feeding 

● Feeding in place: nose to the ground followed by < 2 steps forward 

 

Mobile feeding:  

● Feeding while walking forward: nose to the ground followed by > 2 steps forward 

 

Transit:  

● Walking: forward motion in a single direction for more than 10 seconds 

● Running: forward motion in a single direction for more than 10 seconds (e.g. not 

chasing or sparring with another animal). 
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Behaviors other than those described above composed less than 8% of the data (n = 322) and 

were dropped from the analysis. 

 

Appendix 2.B. Estimation procedure for values missing from 2015 dataset. 

 

Due to a change in protocol that occurred in 2017, observations conducted before this date 

do not contain information on the alignment or position of focal animals relative to their 

three nearest neighbors (distance was recorded following the same protocol as 2017). 

Instead, values for these parameters were estimated as below: 

 

Orientation: For data collected before 2017 (n = 3,256), orientation was recorded for 10-15 

randomly selected individuals across the group, without identification of their nearest 

neighbors. As a result, we calculated circular variance for each focal animal by first grouping 

observations by herd and behavior, then using R to calculate the circular variance for each 

behavior (following methods described in the main text). We then assigned this value to all 

animals exhibiting the same behavior in the same group.  

 

 

Position: For data collected before 2017 (n = 3,256), position was inferred from a categorical 

description of the group-level geometry. This descriptor consisted of the following 

categories and was assigned for all observations (2015-2018): 1) dispersed (e.g. animals 

distributed randomly in position and orientation across the focal area), 2) wave front (e.g. 

animals aligned shoulder to shoulder and head to tail with a defined leading edge, followed 

by gradually decreasing density of trailing individuals), 3) linear (e.g. animals aligned head 
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to tail, moving in a single coordinated direction). Thus, the resulting categories have inherent 

structural qualities related to the relative position of individuals that we used to infer 

position for cases where it was missing. To do this, we established the distribution of values 

for observations where position and group-level geometry was defined (n = 799) and 

replaced missing values with random draws from the appropriate distribution.    

 

Appendix 2.C. Calculating nearest neighbor distance from satellite image 

 

To calculate the average nearest neighbor distance from the satellite annotations, we first 

identified the midpoint of each wildebeest with known orientation using the gCentroid 

function in the rgeos package in R (R. Bivand and Rundel 2014). We then combined 

centroids with point annotations (e.g. wildebeest with unknown orientation; all possible 

wildebeest were dropped from further analysis) and converted all points to spatial points data 

frames using the SpatialPointsDataFrame function in the sp package in R (R. S. Bivand, 

Pebesma, and Gómez-Rubio 2013). Then we extracted the ID of each point’s three nearest 

neighbors using the knearneigh function in the spdep package in R (R. S. Bivand, Pebesma, 

and Gómez-Rubio 2013). Finally, we calculated the geographic distance between nearest 

neighbors with the distGeo function in the geosphere package in R (Hijmans 2016) and 

standardized all distances to units of “wildebeest body lengths” by dividing all results by 2 

meters (average wildebeest length) so as to be directly comparable with the field 

observations. 
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Appendix 2.D. Calculating position from satellite image 

 

We calculated the relative position of each point’s three nearest neighbors by following the 

same procedure outlined in “calculating circular variance from satellite images” to calculate 

the bidirectional bearing between the focal animal and each of its three nearest neighbors. 

We then averaged all three values (using the circ.mean function in CircStats; (Agostinelli 

and Lund 2005) to arrive at a single estimate for each animal. 
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Chapter III: Effects of human-altered landscapes on a reintroduced native ungulate: 

patterns of resource selection at the rangeland-wildland interface 
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1Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, 
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Abstract 

Over the past century, numerous wildlife reintroduction programs have been initiated 

to restore charismatic, large-bodied ungulates to parts of their former geographic range. 

Conserving these reintroduced, free-ranging taxa often presents the coupled challenge of 

achieving sustained population viability while minimizing potential conflicts with domestic 

cattle and other livestock. Understanding how reintroduced ungulates use cattle-dominated 

landscapes is critical for assessing the degree to which such conflicts may arise. In a national 

park in northern California, we used three distinct lines of evidence – long-term visual 

surveys, short-term GPS telemetry, and high-resolution satellite imagery – to evaluate the 

factors that drive habitat selection by reintroduced, free-ranging tule elk (Cervus canadensis 

nannodes) and to assess the degree to which grazing by domestic cattle (Bos taurus) 

mediates resource selection by this native ungulate. Our analyses revealed that reintroduced 
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elk largely avoided areas managed for and used by cattle across all seasons. This pattern 

likely resulted from differential habitat preferences rather than outright avoidance behavior, 

given that satellite-derived elk and cattle locations were consistent with a ‘no avoidance’ 

hypothesis. Furthermore, elk groups occasionally (ca. 4% of observations) entered into close 

proximity with cattle (≤ 50 m apart), although we did not observe groups of elk and cattle 

intermixed. Overall, our results suggest that potential for conflict between cattle and 

reintroduced, free-ranging tule elk is minimal in this human-altered landscape, and that 

coexistence between domestic and free-ranging ungulates is most likely facilitated via 

resource partitioning.   

 

Introduction 

  For centuries, human activities have driven significant changes in the abundance and 

distribution of wildlife populations throughout the world (Cardillo et al. 2008; Schipper et 

al. 2008; Dirzo et al. 2014). The compounding impacts of habitat loss, over-exploitation, and 

climate change have forced population declines and range shifts in species unable to adapt to 

the rapidly changing environmental conditions that characterize the Anthropocene (Dirzo et 

al. 2014). In the American west, such declines have been particularly profound and well-

documented in large mammals, owing to over-exploitation of these species by early settlers 

and frequent encounters with modern anthropogenic barriers like roads, fences, and 

fragmented habitats (Ripple et al. 2019). This loss of megafauna can have pervasive impacts 

on ecosystem functions, including changes to the physical and trophic structure of 

communities, shifts in spatial and temporal patterns of nutrient cycles, and in some cases, 

causing large-scale climatological shifts (Malhi et al. 2016).   

https://paperpile.com/c/bW5ptG/5h0F3+qdKRF+zCPaX
https://paperpile.com/c/bW5ptG/5h0F3+qdKRF+zCPaX
https://paperpile.com/c/bW5ptG/zCPaX
https://paperpile.com/c/bW5ptG/zCPaX
https://paperpile.com/c/bW5ptG/a3P0d
https://paperpile.com/c/bW5ptG/jmQ2R
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In response, a number of reintroduction programs have been initiated over the past 

century, aiming to restore extirpated large mammals to their historical range or to introduce 

them to new ranges (Seddon et al. 2007; Armstrong & Seddon 2008; Seddon et al. 2014).  

Nevertheless, many early reintroduction efforts suffered from a lack of oversight, poor 

planning, and failure to evaluate reintroductions within their broader ecological context 

(Johnson & Cushman 2007; Seddon et al. 2007). In many cases, these shortcomings have 

had unintended negative consequences for human and wildlife populations at recipient sites, 

including damage to crops and personal property, attacks on humans, zoonotic disease 

transmission, and opportunity costs for people living near reintroduction sites (Wolf et al. 

1996; Dickman 2010; Massei et al. 2010; Fontúrbel & Simonetti 2011). Although such 

impacts can be minimized via careful selection of reintroduction sites and rigorous post-

reintroduction monitoring, pristine reintroduction sites are rare, and human-wildlife conflict 

remains an important factor to address when planning or implementing reintroduction 

programs for large mammals.   

The potential for detrimental human-wildlife interactions can be particularly acute at 

the interface between rangelands and wildlands. Where the opportunity exists, some species 

of wild ungulates readily make seasonal excursions into managed pastures to take advantage 

of subsidies of water and high-quality forage (Brook & McLachlan 2009; Brook et al. 2013; 

M. Pruvot et al. 2014). Depending on the ecology of the site, the resulting overlap in habitat 

use between wild and domestic ungulates may have both positive and negative consequences 

for ungulates in the system. For example, grazing by wild or domestic species may inhibit 

the growth of forage types preferred by both groups, or facilitate the growth of low quality or 

invasive forage (Hobbs et al. 1996; Vavra & Sheehy 1996). Moreover, under certain 

conditions, increased overlap may also increase the likelihood of resource competition, 

https://paperpile.com/c/bW5ptG/hd1UT+Rcll3+CwFT7
https://paperpile.com/c/bW5ptG/hd1UT+CGXJ6
https://paperpile.com/c/bW5ptG/scxYC+iPRS9+pdrcu+f4aRj
https://paperpile.com/c/bW5ptG/scxYC+iPRS9+pdrcu+f4aRj
https://paperpile.com/c/bW5ptG/Mb4At+03QnM+bi5p9
https://paperpile.com/c/bW5ptG/Mb4At+03QnM+bi5p9
https://paperpile.com/c/bW5ptG/AE1zs+1GfrG
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negative social interactions, and disease transmission (Hobbs et al. 1996; Stewart et al. 2002; 

Mathieu Pruvot et al. 2014).  

As a result, there is a growing body of literature aimed at quantifying spatio-temporal 

overlap between wild and domestic ungulates across a range of ecological systems (Brook & 

McLachlan 2009; Proffitt et al. 2011; Barasona et al. 2014; Russell et al. 2015; Morris et al. 

2016; Merkle et al. 2018). Recommendations emerging from these studies have helped 

managers set priorities for a number of conflict mitigation scenarios, but the unique 

ecological and political landscape of each site can make it difficult to extend results to new 

ecosystems. In addition, it can be difficult to obtain accurate information on the density and 

distribution of livestock due to logistical, financial, and political constraints of working with 

commercial or private entities. As we demonstrate in this study, the latter shortcoming can 

be effectively addressed using archived, high-resolution satellite images to document the 

concurrent locations and densities of livestock and free-roaming ungulates within 

rangelands.  

In this study, we investigate the factors that drive habitat selection by reintroduced, 

free-ranging tule elk (Cervus canadensis nannodes) and assess the degree to which grazing 

by domestic cattle (Bos taurus) mediates resource selection by this native ungulate at the 

rangeland-wildland interface of Point Reyes National Seashore. Specifically, we integrate 

satellite-based counts of elk and cattle with long-term surveys and GPS telemetry to ask the 

following questions: 1) How do reintroduced ungulates select resources seasonally in this 

human-altered landscape? 2) How does grazing by cattle affect selection of resources by this 

reintroduced native species? 3) Are there legacy effects (including short-term effects, e.g. 

exploitation competition) of cattle grazing on movements and habitat selection by 

reintroduced ungulates? By combining insights from three distinct lines of evidence, our 

https://paperpile.com/c/bW5ptG/1GfrG+dQyD+kBrOK
https://paperpile.com/c/bW5ptG/1GfrG+dQyD+kBrOK
https://paperpile.com/c/bW5ptG/A7ZeE+4PRZb+Mb4At+90Nei+384aH+D3Og3
https://paperpile.com/c/bW5ptG/A7ZeE+4PRZb+Mb4At+90Nei+384aH+D3Og3
https://paperpile.com/c/bW5ptG/A7ZeE+4PRZb+Mb4At+90Nei+384aH+D3Og3
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goal is to provide a more complete understanding of the ecology of this ecosystem than 

would be possible with any one method alone, and to ultimately yield new insights about the 

effects of livestock on free-ranging ungulates in a cattle-dominated landscape. 

Methods 

Study area 

Our research was conducted from 2010-2018 at Point Reyes National Seashore in 

northern California. Point Reyes is a National Park Service unit, established in 1962 and 

located on a coastal peninsula in Marin County approximately 65 km northwest of San 

Francisco. The study site encompasses a 30 km2 area within the Pastoral Zone of the park 

(figure 3.1). This zone is a historic cultural and working agricultural landscape composed of 

fenced dairy cattle ranches that operate under leases or special use permits from the National 

Park Service. In addition to grazed rangelands (ca. 18 km2), the study site consists of areas 

that are not grazed by cattle (ca. 6.5 km2), but occur adjacent to active rangelands and are 

mainly composed of coastal scrub (Baccharis spp., Frangula spp.) and grasslands that 

consist of a mixture of annual and perennial grasses (Deschampsia spp., Carex spp., and 

Juncus spp.). Elevation of this area ranges from sea level to 60 m, mean annual temperatures 

during the study period ranged from 7° to 16° C, with mean annual precipitation ranging 

from 1 cm to 45 cm and high winds and dense fog occurring frequently in the summer (June 

to August).  

Study species 

Originally extirpated due to hunting and habitat loss, tule elk were absent from the 

study area (i.e. Drakes Beach and the surrounding landscape; fig. 3.1) for at least 100 years 
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before a small population (28 individuals) was reintroduced to a neighboring area in 1999 

(Carruthers & Millais 1915; Gogan & Barrett 1987; McCullough et al. 1996; Howell et al. 

2002). Soon after reintroduction, several of the reintroduced adults dispersed to the current 

study area and established a population that numbered 93 animals (81 adults) in 2016 

(Bernot & Press 2018). This group is known colloquially as the “Drakes Beach Herd” and 

inhabits a home range of 6 km2 within the Pastoral Zone of Point Reyes. Although males and 

females maintain separate groups outside of the breeding season (July-October), all group 

members frequently move between grazed rangelands and non-grazed areas, raising concerns 

about disease transmission (i.e. especially the incurable gastrointestinal “Johne’s Disease,” 

which was first documented in the Drakes Beach Herd in 2015 (Cook et al. 1997; Foley et al. 

1998; Howell et al. 2002; Manning et al. 2003; Crawford et al. 2006; Bernot & Press 2018), 

and competition for forage (Howell et al. 2002; Johnson & Cushman 2007; Cobb 2010) 

between elk and livestock. Hunting is prohibited throughout the study area and, although 

mountain lions (Puma concolor), bobcats (Lynx rufus), and coyotes (Canis latrans) are 

present in the park, previous research suggests that predation is not a significant source of 

mortality for elk in this ecosystem (Thomas & Toweill 2002; Cobb 2010).  

Elk activity and habitat characteristics 

We used three independent datasets to assess elk activity and resource selection 

within the study area: (1) long-term visual surveys with nearly complete coverage of the 

focal population, (2) satellite GPS collars with fine-grained movement data for 8 individuals 

(3 males and 5 females) within our focal population of 93 individuals, and (3) locations of 

elk and cattle derived from archived high-resolution (30-50 cm) satellite imagery. For all 

analyses, we partitioned tule elk activity into four seasons that are differentiated by changes 

https://paperpile.com/c/bW5ptG/qCbio+0m2hm+U5Ro7+BNlWk
https://paperpile.com/c/bW5ptG/qCbio+0m2hm+U5Ro7+BNlWk
https://paperpile.com/c/bW5ptG/bE44r
https://paperpile.com/c/bW5ptG/0pafW+q4ex8+KJOx1+zwYph+U5Ro7+bE44r
https://paperpile.com/c/bW5ptG/0pafW+q4ex8+KJOx1+zwYph+U5Ro7+bE44r
https://paperpile.com/c/bW5ptG/U5Ro7+4r4Ty+CGXJ6
https://paperpile.com/c/bW5ptG/4r4Ty+8RklR
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in behavior and thus selection of resources by elk: winter (November - March), summer 

(June - July), breeding (July - October), and parturition (April - June). 

Visual surveys: All visual surveys were performed between September 2010 and 

October 2017 by the same observer, who generally conducted elk counts 1 to 2 times per 

week during crepuscular hours (generally 06:00-10:00 and 17:00-19:00, although 15% of 

surveys occurred outside of these times) at 76 established survey points. At each survey 

point, all elk within an approximate 50 m radius were recorded (fig. 3.1). Survey points were 

originally selected to cover the presumed range of this elk population (100% minimum 

convex polygon for all historical observation points); a post hoc home range analysis of all 

GPS telemetry data confirmed this assumption, as the 95% autocorrelated kernel density 

estimate (AKDE) (‘CTMM’ package in R ;Calabrese et al. 2016) was fully covered by the 

76 visual survey points (figure 3.1). Due to reduced visibility (and therefore lower 

detectability) on days with heavy fog, we removed all surveys conducted under these 

conditions (< 4% of the data overall). We randomly rarefied the remaining data to no more 

than one survey per day (thereby eliminating 18% of surveys), resulting in an average of 138 

complete visual surveys per year. 

GPS telemetry: Between 2012 and 2018 (see SM1 for detailed deployment schedule), 

8 adult elk (3 males and 5 females) from the Drakes Beach herd were captured via chemical 

immobilization (see SM2 & SM3 for dosage details) and collared according to protocols 

approved by the National Park Service Institutional Animal Care and Use Committee and 

consistent with guidelines established by the American Society of Mammalogists for care 

and use of wild mammals for research (Sikes et al. 2016). Seven of these animals were fitted 

with Advanced Telemetry Systems GS110E/E2 Iridium GPS collars and one male (ID 

24034B) was fitted with a Vectronics GPS collar. All collars collected one point every three 

https://paperpile.com/c/bW5ptG/su1RD
https://paperpile.com/c/bW5ptG/JeGcC
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hours, 24 hrs per day (beginning at midnight) and were deployed for 3 to 31 months (16 

months on average). 

Satellite imagery: We used cloud-based, open-source image analysis software 

(Kvilekval et al. 2010) to manually digitize the locations of elk and cattle within fenced 

pastures at fixed points in time on the basis of archived, high-resolution satellite images (i.e. 

30 to 50 cm panchromatic images from the WorldView and GeoEye constellations) collected 

at 10:00 AM or 2:00 PM local time. Trained observers followed a standardized search 

protocol to classify objects as “cattle” or “elk” (no other livestock or large mammals 

detectable at this resolution occur in the study area) and the same expert observer manually 

validated all entries. Counts were conducted for all satellite images that were commercially 

available (n = 31) for the study area at the appropriate resolution, cloud cover (< 10%), and 

dates of interest (2013 to 2018). This resulted in the following distribution of seasonal 

counts: winter (n=13), parturition (n = 6), summer (n = 3), and breeding (n = 9). From these 

counts, we then calculated mean cattle densities within each pasture by dividing total counts 

by total pasture area. Temporary pens that held cattle adjacent to ranch compounds were 

excluded from analyses due to the limited size and extreme variability in densities of cattle 

in these areas. For analysis of cattle avoidance by elk (see below), only images where elk 

were observed in cow pastures were used (n = 28). 

Habitat characteristics: We obtained spatial data on the extent of grazed pastures, 

vegetation cover (e.g. percent grassland, percent coastal scrub), distance to ponds (m), slope 

(percent), aspect (radians), and elevation (m) from the Point Reyes GIS database. We then 

computed slope “northness” (i.e. a proxy for solar radiation) of the terrain as the cosine of 

aspect and used the Normalized Difference Vegetation Index (NDVI) for each season as an 

index of seasonal forage availability (computed using Landsat Tier 1 data accessed and 

https://paperpile.com/c/bW5ptG/QJoB6
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processed via Google Earth Engine; Gorelick et al. 2017). We then masked land cover types 

that might confound NDVI calculations (i.e. water, beaches, dunes, and riparian vegetation) 

and rasterized all vector datasets to 10 m resolution (‘raster’ package in R; Hijmans 2017). 

Raster cell values were calculated as mean percent cover (e.g. grazed pastures, vegetation), 

mean feature value (e.g. slope, elevation, aspect), or Euclidean distance to feature of interest 

(e.g. ponds). A summary of all variables tested is included in table 3.1. 

 

 

https://paperpile.com/c/bW5ptG/gP0lt
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Data analysis 

Visual surveys  

We subsetted data from visual surveys by season (winter, parturition, summer, 

breeding) and used the total number of elk observed at each survey site per visit as our 

primary response variable. In addition, we computed the mean value for all environmental 

covariates within a 50 m radius buffer around each of the 76 points (i.e. the same distance 

included around each point during surveys); these values then served as covariates in our 

count regression models (see below). To aid in model convergence and interpretation of 

effect sizes, we standardized all quantitative environmental covariates (including satellite-

derived cattle densities; see above) by subtracting the mean and dividing by 2X the standard 

deviation (Gelman 2008). 

We used a generalized linear mixed-effects modeling approach (GLMM) to assess 

the effects of an array of environmental covariates on daily elk counts for each season, 

alternately assuming (1) Poisson error distribution with a log-link, (2) negative binomial 

error distribution with a log link, and (3) zero-altered (hurdle) Poisson (ZAP) or negative 

binomial (ZANB) process model with a logit-link (zero-prediction component) and a log-

link (count-regression component) (‘glmmTMB’ package in R; Magnusson et al. 2016; Zuur 

et al. 2009). For the ZAP and ZANB models, we used the full set of environmental 

covariates to model both the zero-prediction and count components (see below). We selected 

the modeling framework that exhibited lowest AIC and adequate goodness-of-fit. We 

assessed goodness-of-fit by visually examining scaled (quantile) residuals and performing 

diagnostic tests (uniformity, overdispersion, zero-inflation, outliers) using the ‘DHARMa’ 

package in R (Hartig 2019). In all cases, the ZANB modeling framework was selected as the 

https://paperpile.com/c/bW5ptG/J1JCC
https://paperpile.com/c/bW5ptG/WqF3I
https://paperpile.com/c/bW5ptG/yzZkJ
https://paperpile.com/c/bW5ptG/yzZkJ
https://paperpile.com/c/bW5ptG/5sQ0I
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appropriate modeling framework (100% of AIC weight and adequate model fit), and 

therefore only results from these models were interpreted further.   

For the seasonal ZANB models (implemented in the ‘glmmTMB’ package in R; 

Brooks et al. 2017), we included the same set of potentially important covariates and two-

way interactions in the zero-prediction component and the count-regression model 

component (table 3.1). No covariates were highly correlated (i.e. r < 0.5; VIF < 3; O’Brien 

2007), so all were included in the full models for each season.  In addition, we modeled 

“Year” and “Site ID” as random-intercepts for both the zero-prediction and the count-

regression components.   

For each season, we then employed a two-step information-theoretic approach to 

model selection of resources, in each case selecting the lowest-AIC model (Burnham & 

Anderson 2007): (1) we first selected the best-performing cattle stocking rate estimate from 

among the four candidate estimates (mean, median, mean non-zero, median non-zero), and 

(2) then we used backward stepwise selection (‘buildmer’ package in R; Voeten 2019) to 

remove any variables and interaction terms that were uninformative for both the zero-

prediction and count-regression submodels.        

GPS telemetry 

We fitted seasonal Resource Selection Function (RSF) models separately for each 

individual collared elk using a generalized linear modeling framework (GLM) with a 

binomial error distribution and a logit-link (logistic regression; ‘glm’ function in R). Models 

exhibiting complete separation (leading to non-convergence using the ‘glm’ function) were 

fitted using Firth’s bias-reduced logistic regression (a form of penalized-likelihood 

regression; Heinze and Ploner 2018). GPS telemetry data for each individual were first 

partitioned into the four seasons (see “Environmental data”). The ‘used’ points for each 

https://paperpile.com/c/bW5ptG/bxyWg
https://paperpile.com/c/bW5ptG/bxyWg
https://paperpile.com/c/bW5ptG/IvIPG
https://paperpile.com/c/bW5ptG/IvIPG
https://paperpile.com/c/bW5ptG/0P8YK
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individual were paired with a set of ‘available’ (background) points randomly selected from 

inside the 100% minimum convex polygon enclosing the known locations (derived from 

collars and visual surveys) for all individuals in the study population (number of randomly 

sampled background points for each fitted model was 5X the number of telemetry 

observations). To account for error in GPS fixes, covariate values (listed in table 3.1) for 

‘used’ and ‘available’ locations were computed as the mean value within a 25 m radius of 

each location. To aid in model convergence and interpretation of effect sizes, we 

standardized all quantitative environmental covariates (including cattle densities derived 

from satellite images; see above) by subtracting the mean and dividing by 2X the standard 

deviation (Gelman 2008).  We used a custom bootstrapping algorithm to compute mean 

resource selection coefficients across all collared individuals and to estimate confidence 

intervals for these quantities. Specifically, we repeatedly sampled (1000x, with replacement) 

from among the seasonal used and background points for each individual (maintaining a 5:1 

ratio of background to used points), fitted logistic regression models to each individual, and 

computed mean seasonal selection coefficients across all individuals. Confidence intervals 

for each mean coefficient value were computed as quantiles from the resulting bootstrap 

distributions. It should be noted that although these models assumed independence among 

individuals, the Drakes Beach Herd regularly moves as a single group, so these bootstrapped 

confidence intervals should be interpreted with caution.  

Finally, we used data generated from GPS telemetry to calculate seasonal residence 

times in grazed vs. non-grazed areas, subdivided by sex and season (including only animals 

with collars active for the full season of interest). Residence times were calculated as the 

number and duration of revisits to a polygon based on the number and length of segments of 

a trajectory passing through the polygon (‘recurse’ package (Bracis et al. 2018) in R). 

https://paperpile.com/c/bW5ptG/J1JCC
https://paperpile.com/c/bW5ptG/jqZBo
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Satellite imagery 

We first examined differences in the spatial distributions of elk and cattle using a 

multi-response permutation procedure (MRPP; Talbert & Cade 2013) wherein we tested 

whether mean within-group Euclidean distances (i.e. cattle to cattle or elk to elk, aggregated 

across all 28 satellite images) were shorter than mean elk-cattle distances (Oehlers et al. 

2011; Stewart et al. 2015). We report the average within-group pairwise distance (or delta 

value), which is a descriptive metric of spatial dispersion, and a p-value from the 

permutation procedure (fraction of permutation-based delta values that are lower than the 

observed delta value (Talbert & Cade 2013).  

To test whether observed differences in space-use by elk vs. cattle resulted from 

behavioral avoidance, we developed a bootstrap procedure to generate a distribution of elk 

locations under a null model (no cattle avoidance). To do this, we first aggregated all elk 

locations across all images (n = 28) and constructed a kernel-density surface across our study 

site representing the probability of utilization by elk (‘kde2d’ function in the ‘MASS’ 

package; Venables & Ripley 2002). We then categorized elk into groups within each image 

(all elk within 50 m of another elk were considered part of the same group). Next, we used 

this kernel-density surface to generate hypothetical centroids for elk groups within each 

image (the number of simulated elk groups was held equal to the number observed in each 

image). For each image, we generated elk locations under the null model by sampling 

randomly from the observed distribution of location to group-centroid distances, holding the 

number of elk per group to observed values (directions from the group-centroid were 

generated randomly). For each bootstrap simulation replicate, we computed three test 

statistics: (1) the mean distance from each simulated elk location to the nearest observed 

https://paperpile.com/c/bW5ptG/kiN1Z
https://paperpile.com/c/bW5ptG/cUQJQ+Tpdvd
https://paperpile.com/c/bW5ptG/cUQJQ+Tpdvd
https://paperpile.com/c/bW5ptG/kiN1Z
https://paperpile.com/c/bW5ptG/1S7sk
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cattle location, averaged across all images (n = 28) (2) the minimum per-image distance 

from each simulated elk location to the nearest cattle location, averaged across all images, 

and (3) the proportion of elk groups occurring within 50 m of one or more cattle groups, 

averaged across all images. To test for avoidance of cattle by elk, we compared the observed 

test statistics (e.g. mean distance from elk to nearest cattle location) with the distribution of 

each statistic generated under the null (no avoidance) model, and we computed a p-value as 

the proportion of null test statistics suggesting equal or stronger avoidance behavior than the 

observed statistics. Finally, we used ordinary linear regression to test for a negative 

relationship between the total number of cattle occupying pasture areas commonly used by 

elk (cattle located within the 95% kernel density contour defined by all elk locations across 

all images) and the total number of elk occupying these pasture areas.        

Results 

Between 2010 and 2017, our visual count surveys resulted in 1,792 observations of 

elk groups over 589 surveys (average 34 elk per survey, ranging from 10 to 104 individuals). 

Our GPS telemetry monitoring resulted in 29,014 fixes for 8 individuals from 2012 to 2018 

(average 3,627 fixes per individual, ranging from 594 to 6,921). Finally, our satellite image 

analysis resulted in 1,608 elk locations and 26,943 cattle locations across 31 images. The 

average number of elk locations recorded per image was 51 (ranging from 0 to 98), and the 

average number of cattle locations recorded per image was 869 (ranging from 312 to 1,251).  

 

Results from both the visual surveys and GPS telemetry suggest that grazing status 

(i.e. pasture vs. non-grazed land) had a consistently large, negative effect on probability of 

resource selection by elk resource (figure 3.5). However, elk tended to occur more often, and 
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at higher abundances, near sources of water, which in our study area consisted of man-made 

cattle ponds (figure 3.5). The effect of cattle density on resource selection by elk was 

somewhat variable by season. For example, during the breeding season, cattle density had a 

large and negative effect on elk abundance and probability of occurrence (unless the pasture 

also had high NDVI values, in which case resource selection probability was high; figures 

3.5, 3.6, & 3.7). During the summer, cattle density had a weakly positive effect on elk 

abundance and occupancy (figures 3.5 & 3.6), but this pattern was again reversed for 

pastures with high NDVI values (figure 3.7). The effect of cattle density on resource 

selection by elk during the winter season was ambiguous, with negative selection coefficient 

from GPS telemetry and a positive selection coefficient from visual count records 

(occurrence sub-model; figure 3.5).  

In addition to the patterns of avoidance observed in the resource selection functions, 

our residency analysis concluded that elk do not generally remain resident on cattle pastures 

for long periods of time. Instead, GPS locations were consistent with short-term, or 

transitory use (i.e. < 1 day per year on average) across almost half (46.6%, 7.8 km2) of the 

pasture area included in the study. Additionally, if elk did remain resident on cattle pastures 

for extended periods (i.e. more than 3 days per year on average), they tended to occur 

consistently within small areas of specific pastures (i.e. < 0.1%, 0.01 km2 of pasture area 

included in the study) that were rarely used by cattle (see below).  

The satellite imagery provided clear evidence that the spatial distributions of elk and 

cattle within pasture areas were highly distinct and that cattle were more widely dispersed 

than elk in our study area (MRPP analysis; δcattle=2,711, δelk=1,203; P < 0.0001; figures 3.2, 

3.3, & 3.4). Despite strong evidence for spatial segregation between elk and cattle, we were 

unable to show behavioral avoidance of cattle by elk on the basis of satellite images; the 
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observed distances between elk and cattle locations in any given image (average distance 

from each elk to the nearest cattle was 516 m, ranging from 114 to 1,433 m; minimum elk-

cattle distance per image averaged 361 m and ranged from 23 to 1378 m) were generally 

consistent with a null model in which cattle locations had no effect on elk locations (p = 0.28 

for mean distances and p = 0.18 for minimum distances; figure 3.2). In addition, although 

specific cattle and elk were observed to come into direct contact very rarely (only 4% of 

observed elk groups overlapped with one or more cattle group, with overlap defined as any 

individual elk group member occurring within 50 m of a cattle individual), this result was 

also consistent with a null no-avoidance model (p = 0.31; figure 3.2). Furthermore, we 

detected a weakly positive relationship between elk use of pastures and the number of cattle 

occupying pasture areas commonly used by elk (p = 0.03, adjusted R2 = 0.13, n = 28; figure 

3.3), whereas a negative relationship might be expected under a cattle-avoidance hypothesis. 

Of the other environmental variables tested, aspect and elevation were consistently 

important for predicting elk resource selection across all seasons and data types. Specifically, 

high elevation sites and south-facing slopes were positively associated with the probability 

of occurrence (although the evidence was slightly less conclusive for the breeding season; 

figures 3.5 & 3.6). Telemetry data indicated that elk tended to select gentle slopes vs. steeper 

slopes, but this pattern was not corroborated by data from visual surveys (figure 3.5). 

Furthermore, the telemetry data suggested a weak interaction between slope and aspect in 

which shallow, south-facing slopes were preferred – although this interaction was not 

detected with the visual survey data (figures 3.5 & 3.6).  

NDVI was the most seasonally variable feature examined, with avoidance of high 

NDVI sites during the breeding season, moderate selection for high NDVI sites during 

parturition and winter, and a more complex selection pattern during summer (i.e. visual 
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surveys indicated a higher probability of occurrence with increased NDVI, but lower 

expected counts, figure 3.5). Further, telemetry data indicated that both grassland and scrub 

sites with high NDVI values were avoided across all seasons, but these terms had little 

influence on probability of selection from the visual survey data (figure 3.6). 

The effects of ponds, grassland, and scrub were consistent in their influence on the 

probability of habitat selection by elk based on telemetry data (increasing, decreasing, and 

decreasing probability of selection, respectively). However, those results were only weakly 

corroborated by the visual survey data, with increased abundance predicted near ponds for 

breeding and summer seasons only, decreased abundance predicted in scrub habitat during 

breeding and winter seasons only, and a negative association with grasslands for breeding 

season only (figure 3.5).  

Discussion 

In the western United States, cattle grazing is one of the largest drivers of 

anthropogenic change in an area that hosts the majority of ungulate biodiversity in the nation 

(Bigelow & Borchers 2017). Although this setting presents unique challenges for the 

reintroduction of free-ranging ungulates, a comprehensive understanding of potential 

outcomes will inform expectations and contribute to the continued success of reintroduction 

projects in this iconic ecosystem. This study aimed to advance understanding of habitat 

selection and use by reintroduced ungulates in the western United States by employing 

multiple complementary datastreams to evaluate the suite of habitat selection strategies 

employed by elk at a rangeland-wildland interface in Point Reyes National Seashore. 

Our results indicated that, even when 75% of the available grazing area occurs within 

cattle pastures, elk exhibited patterns of resource selection that naturally reduced the 

https://paperpile.com/c/bW5ptG/KGW7d
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potential for negative interactions with cattle (e.g. resource competition, potential disease 

transmission). Specifically, elk selected for habitat that was either not on grazed pastures, or 

was at high elevations that were rarely used by cattle. Although similar patterns of avoidance 

have been documented for many ungulate species in the western US (Loft et al. 1993; 

Bissonette & Steinkamp 1996; Stewart et al. 2002; Brook et al. 2013), additional research 

shows that this pattern may also be reversed if supplemental feed or water is accessible to 

elk – especially during times of nutritional stress (Proffitt et al. 2011; Pruvot et al. 2014). 

Therefore, we expected to see some plasticity in this avoidance response if the resource 

landscape were to change in a way that warranted additional overlap between the two species 

such as seasonal limitation of resources, pasture irrigation, or supplemental feeding of 

livestock. 

In fact, we have some evidence that this switch has already occurred within our study 

system, specifically when surrounding landscapes are sufficiently dry (i.e. summer), or if 

NDVI values are sufficiently high to warrant a shift in selection towards specific pastures 

(i.e. high density pastures during winter and breeding seasons). Surprisingly, this pattern of 

selection did not hold for high NDVI sites across grassland habitats (regardless of grazing 

status), which may suggest that elk are responding to some unobserved metric of forage 

productivity, or that grasslands are dominated by plant species that are relatively unpalatable 

to elk when mature. In addition, since 75% of the grassland habitat in the study area occurs 

within cattle pastures, we suspect that avoidance of this resource may be driven by 

avoidance of associated cattle grazing activities. However, without further investigation of 

conditions on the ground, it is not possible to sufficiently test this hypothesis.  

Despite these notable exceptions, data from archived, high-resolution satellite images 

provided further evidence that elk largely avoided cattle in this system. We found this by 

https://paperpile.com/c/bW5ptG/dQyD+03QnM+3HOZq+AG2fC
https://paperpile.com/c/bW5ptG/dQyD+03QnM+3HOZq+AG2fC
https://paperpile.com/c/bW5ptG/bi5p9+D3Og3
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reconstructing the historic distribution and abundance of both cattle and elk across the study 

area, and confirming the following: 1) that elk occurred in more compact groups relative to 

cattle, 2) that cattle rarely used pasture sites frequented by elk, and 3) that there was no 

evidence of commingling between the two species. Although additional data is needed to 

confirm that these patterns hold for cattle beyond satellite image collection times (e.g. 10:00 

AM and 2:00 PM local time), there is no evidence that elk and cattle commingle under 

normal circumstances (Dohna et al. 2014), and patterns of distribution observed in this study 

were consistent with distributions observed in other systems (Dohna et al. 2014; Proffitt et 

al. 2011).  

By facilitating this detailed assessment of the spatial distributions of individuals 

across the study area, the satellite data also revealed that, despite each species’ tendency to 

avoid the other, individuals from each group can occur in relatively close proximity (nearly 

5% of elk groups occurred within 50 m of cattle). This finding suggests that the observed 

patterns of avoidance were not driven by a behavioral intolerance for proximity to the other, 

but were instead attributed to contrasting patterns of habitat selection that resulted in 

decreased temporal overlap. Though several studies have suggested similar mechanisms for 

avoidance in other elk-cattle ecosystems (Stewart et al. 2002; Coe et al. 2004; Hibert et al. 

2010), this is the first study we know of to test this hypothesis with cattle counts derived 

from archived satellite data.  

This novel application of satellite-based animal counts presents a step-change in our 

ability to study ecological interactions in remote landscapes. By providing a comprehensive 

snapshot of the entire landscape at multiple points in time, high-resolution satellite images 

afford the rare benefit of a reproducible record and allow us to retroactively assess animal 

distributions in areas where access to such information may be limited or impossible. 

https://paperpile.com/c/bW5ptG/sxUE3
https://paperpile.com/c/bW5ptG/sxUE3+D3Og3
https://paperpile.com/c/bW5ptG/sxUE3+D3Og3
https://paperpile.com/c/bW5ptG/dQyD+b51N+Zo9b
https://paperpile.com/c/bW5ptG/dQyD+b51N+Zo9b
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Although access to such data is inherently limited by cost, processing power, and appropriate 

environmental conditions (i.e. cloud-free days in open landscapes), anticipated 

improvements in resolution, imaging frequency, and automated processing are likely to 

increase the utility of remotely sensed animal counts in the near future. 

Moreover, the patterns of proximity revealed by our satellite image analysis raises an 

important and oft-cited concern about the potential for increased risk of disease transmission 

in areas of overlap between elk and cattle (Stewart et al. 2002; Manning et al. 2003; Proffitt 

et al. 2011). In Point Reyes, there is specific concern surrounding the spread of Johne’s 

Disease (Mycobacterium avium paratuberculosis, or “MAP”), which is a contagious and 

usually fatal infection that is spread through contact with contaminated urine or feces and 

primarily affects the small intestine of wild and domestic ruminants (Chiodini et al. 1984). 

While there is no public information on infection rates in cattle of Point Reyes, Johne’s can 

persist in the environment for more than a year (Elliott et al. 2015) and has been documented 

in the Drakes Beach elk herd as recently as 2016, raising concerns over transmission risk 

between elk and cattle in the study area (Bernot & Press 2018). However, extensive research 

from other systems suggests that transmission risk cannot be accurately predicted from 

spatial overlap alone (Knust et al. 2011; Gerritsmann et al. 2014). Rather, there are often 

complex and site-specific interactions between contact rates, vaccine performance, host 

susceptibility, and the potential for additional wildlife reservoirs (e.g. badgers, rabbits) 

which highlight the need for focused investigation into these relationships before drawing 

conclusions from spatial overlap alone (Stevenson et al. 2009; Knust et al. 2011).  

Given that multiple independent datastreams confirm spatial overlap with temporal 

avoidance in this system, we propose that elk activity in rangelands of Point Reyes may 

present a risk of disease transmission, but that competition for cattle forage is highly unlikely 

https://paperpile.com/c/bW5ptG/dQyD+q4ex8+D3Og3
https://paperpile.com/c/bW5ptG/dQyD+q4ex8+D3Og3
https://paperpile.com/c/bW5ptG/56ry8
https://paperpile.com/c/bW5ptG/bEgI
https://paperpile.com/c/bW5ptG/bE44r
https://paperpile.com/c/bW5ptG/onEVE+C6UvW
https://paperpile.com/c/bW5ptG/i7mO1+onEVE
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under current conditions. We also recommend further investigation into whether cattle 

grazing activities may be limiting access to forage for elk and whether spatial overlap 

actually translates into increased transmission risk. In the absence of such data, the 

observation that elk occur on cattle pastures in highly concentrated and seasonally variable 

locations suggests that if conflicts do occur, temporally and spatially-targeted management 

strategies may be both efficient and effective in this ecosystem. 
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Tables and figures 

Table 3.1. Fixed and random effects included in the global model for visual survey and GPS 

telemetry datasets used to quantify habitat selection for tule elk in the Drakes Beach herd at Point 

Reyes National Seashore 2010-2018. 
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Figure 3.1. Map of study area within Point Reyes National Seashore, CA showing grazed cattle 

pastures (dark gray), ungrazed areas (white), visual survey route (gray line, representing roads), 

visual survey locations (circles shaded to indicate mean density of elk, with darker shades 

corresponding to increased density), and home range of the Drakes Beach elk population (dashed 

line, representing a 95% autocorrelated kernel density estimate). All data were collected from 2010-

2018. 
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Figure 3.2. Results from semi-parametric bootstrap analyses illustrating observed test statistics 

relevant to cattle-avoidance by elk (vertical blue lines) and the null distributions of the same test 

statistics (histograms) under a model whereby elk groups select locations without regard to the 

location of cattle. Specifically, histograms were generated via random cluster sampling, with cluster 

centroids sampled from the kernel density distribution of elk points aggregated across all satellite 

images (n = 28). Panel (a) depicts mean distances from each elk location (observed and random) to 

the nearest cattle location, averaged across images; panel (b) depicts minimum elk-cattle distances 

averaged across images; Panel (c) depicts the proportion of elk-cattle co-occurrences (defined as the 

fraction of elk groups for which any members were within 50 m of a cattle location), averaged 

across all images.   
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Figure 3.3. Relationship between the total number of elk observed using pasture lands (# Elk in 

pasture) and the total number of cattle occupying sections of pasture commonly used by elk (# Cattle 

in Elk Home Range), determined on the basis of annotated satellite imagery (n = 28). Specifically, 

the x-axis represents the number of cattle occupying the 95% kernel density contour defined by all 

elk points aggregated across all satellite images. 
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Figure 3.4. Illustration of spatial overlap between elk and cattle within pasture areas at our study 

site in Point Reyes National Seashore, CA. Figure depicts kernel density contours (isopleths; bolded 

contours enclose 95% of the kernel density for each species) for elk (red) and cattle (black) defined 

by all elk and cattle locations across all satellite images (n = 28, images collected from 2014-2018). 

Home range (red shaded polygon) represents a 95% autocorrelated kernel density estimate for all 

collared elk in the study area (n = 8, data collected from 2012-2017).  
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Figure 3.5. Estimated coefficients for tule elk resource selection across multiple seasons and 

datasets. Vertical lines indicate an effect size of zero, and gray regions represent (standardized) 

effect sizes between -2 and 2. Collar: modeled from GPS collar data collected at Point Reyes 

National Seashore from November 2012 to March 2018 (see SM1 for details). Count and P(1+): 

Modeled from visual surveys conducted at Point Reyes National Seashore from September 2010 to 

November 2017. Count represents probability that elk abundance will increase as a function of each 

covariate. P(1+) represents probability of elk presence (one or more elk observed) as a function of 

each covariate.  
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Figure 3.6. Estimated values for interactions between covariates related to patterns of resource 

selection by tule elk measured across multiple seasons and datasets. Vertical lines indicate an effect 

size of zero, and gray regions represent (standardized) effect sizes between -2 and 3. Collar: 

modeled from GPS collar data collected at Point Reyes National Seashore from November 2012 to 

March 2018 (see SM1 for details). Count and P(1+): Modeled from visual surveys conducted at 

Point Reyes National Seashore from September 2010 to November 2017. Count represents 

probability that elk abundance will increase as a function of each covariate. P(1+) represents 

probability of elk presence (one or more elk observed) as a function of each covariate. The asterisk 

(NDVI x stocking interaction during breeding season) denotes that the effect size for this effect was 

5X larger in magnitude that what is depicted here (for visual clarity). 
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Figure 3.7. Key interactions between variables of interest for estimating patterns of resource 

selection by tule elk measured across multiple seasons. Collar: modeled from GPS collar data 

collected at Point Reyes National Seashore from November 2012 to March 2018 (see SM1 for 

details). Count and P(1+): Modeled from visual surveys conducted at Point Reyes National 

Seashore from September 2010 to November 2017. Count represents probability that elk abundance 

will increase as a function of each covariate. P(1+) represents probability of elk presence (one or 

more elk observed) as a function of each covariate.  
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