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Abstract

Structures joined by lap-joints can present complex nonlinear dynamic behav-

ior as a function of the stress to which the lap-joint is subjected, including

contact stiffness variations and softening, along with hysteresis effects related

to frictional dissipation at the contact interface. Considering applications where

the use of non-parametric models that depend only on input and output data

is required, this work proposes and details the GP-NARX model’s use to ap-

proximate systems’ dynamics with hysteresis. Initially, the proposed model’s

predictive applicability is evaluated on a numerical application involving the

Bouc-Wen oscillator with hysteretic damping. Then, this work proposes a GP-

NARX model to describe the dynamics of the BERT benchmark, an experimen-
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tal system that contains a symmetric double bolted joint that is nonlinearly de-

pendent upon the applied excitation amplitudes, presenting as a friction joint’s

well-known softening effect. The structure also presents data variation related

to the presence of uncertainties in the measurement process. Thus, to accom-

modate the experimental variability, the training step of the GP-NARX model

considers several experimental realizations. The results indicate that GP-NARX

can make accurate predictions of the response of both investigated applications,

emphasizing its practical ability, where the confidence intervals of the proposed

model were able to accommodate the experimental measurements.

Keywords: hysteretic systems, jointed structures, GP-NARX, uncertainties.

1. Introduction

In engineering structural design, the benefits of using assembled structures

compared to monolithic ones lie in building complex, modular geometries, which

can reduce the overall weight or even facilitate the replacement of damaged

components [1]. Nevertheless, the transmission of movement in assembled com-5

ponents may occur nonlinearly due to the frictional contact between connected

interfaces. Such nonlinearities are amplitude-dependent, i.e., their behavior

depends upon the stress level to which the lap-joint is subject, and they are ob-

served as variations in contact stiffness (softening effects) and damping induced

by friction and partial slip (hysteretic effects) [2, 3]. Thus, to provide a greater10

understanding of jointed assemblies with the assessment of different vibration

environments, predicting such systems’ behavior is still a challenging topic of

interest in the research community [4].

Finite element (FE) models are commonly used on an industrial scale (even

millions of degrees of freedom) to predict energy dissipation and stress distri-15

bution of assembled structures. However, handling contact problems involves

complex nonlinearities governed by micro and mesoscale parameters, e. g., ge-

ometry, roughness, and contact pressure [5], which considerably increases the

complexity and computational cost of these numerical models. Some other nu-
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merical tools have been developed in recent years to accelerate such simulations,20

including quasi-static modal analysis (QSMA) [6, 7, 8], reduced-order models

(ROMs) [9, 10], and substructuring techniques based on the spatial decom-

position of the structure in a local basis partitioned into linear and nonlinear

subdomains, with the latter encompasses the region around the lap-type bolted

joint [11, 12].25

Although the advance in FE methods has been significant, some applica-

tions involving bolted joints, such as detection of bolt loosening for structural

health monitoring (SHM) purposes [13, 14], require predictive models that de-

mand relatively less-expensive computational cost while only relying on input

and output data. Towards this objective, data-based models that do not de-30

pend directly on physical parameters to be identified, so-called black-box mod-

els, emerge as an alternative to model structures assembled by bolted joints,

despite that they have been only slightly explored within this context or to

identify hysteretic systems. Worden et al. (2007) [15] conducted a survey on

identification techniques structured in grey and black-box approaches to predict35

friction effects present in a tribometer device by using, for instance, Nonlinear

Autoregressive with eXogenous inputs (NARX) and neural networks models.

Later, Worden and Barthorpe (2012) [16] proposed using a NARX structure

with model parameters expanded into a non-polynomial basis function to iden-

tify the input-output process of a Bouc-Wen oscillator. Leva and Piroddi (2002)40

[17] presented a NARX-based modeling strategy to describe hysterical dynamic

behavior for control purposes of magnetorheological dampers. Although the

authors consider an approach that the NARX model is not polynomial, but

that preserves linearity in its parameters, only one-step-ahead predictions were

performed, in which those future output predictions depend on the previously45

real output measurements of the system under analysis. Then, to generalize

polynomial NARX models for describing systems with hysteresis, Martins and

Aguirre (2016) [18] introduced a new way to construct NARX models by us-

ing the concept of bounding functions that seek to encode the hysteresis loop

into the structure of such models for estimating the data produced by a magne-50
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torheological damper. Noël et al. (2016) [19] proposed a framework to identify

the dynamic behavior of a Bouc-Wen model benchmark based on the nonlinear

state-space approach expanded into a nonlinear polynomial basis. However, a

potential limitation of black-box models lies in the fact that the model structure

should be carefully selected to reproduce the memory effect of hysteresis (input-55

output dependency [20]) while avoiding these models from being restricted to

reproduce only output signals with the same characteristics used during their

identification process.

In order to address the above-mentioned technical issues that black-box mod-

els may have in capturing hysteresis, this work aims to examine the GP-NARX60

model’s benefits to predict the dynamic output signals from structures assem-

bled by bolted joints. This model combines the machine learning Gaussian

Process (GP) regression model with the NARX framework, providing a repre-

sentation of the system of interest with natural probabilistic confidence intervals

based on the model uncertainties. Inclusion of the confidence intervals makes65

the GP-NARX framework very suitable for decision processes, like those re-

quired in SHM applications. One of the main advantages of considering the

GP-NARX model over other non-parametric models is that it considers the

Bayesian inference to learn from the available data, which decreases the pos-

sibility of overparameterizing the nonlinear function responsible for mapping70

the output given a known input. Additionally, the inference is performed di-

rectly over the nonlinear function that describes the input-output relation, and

not over model parameters. Therefore, it is a generalization of the Bayesian

inference commonly used to estimate nonlinear models, based on models’ pa-

rameters estimation. It is also important to highlight that, still in comparison75

with other non-parametric models, the model used in this work does not require

prior knowledge of its structure (model order), as the classic approach made

by NARX models [21]. This model should help monitor the hysteresis’ fluctu-

ations qualitatively caused by loss of torque applied in the bolts using indirect

measurement data.80

The paper is organized into five sections. First, section 2 introduces an
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overview of the main aspects present in the identification of a GP-NARX model.

To evaluate the applicability of the model to describe hysteretic systems, section

3 provides a numerical application of the GP-NARX model to approximate the

outputs and hysteresis loops of the Bouc-Wen benchmark proposed by Noël85

and Schoukens (2016) [22]. Then, after establishing a methodology of model

identification for the numerical benchmark with hysteresis, section 4 presents a

practical application of the proposed model to reproduce the nonlinear dynamic

behavior present in the first vibrating mode of a structure with a lap-type bolted

joint connection, named as BoltEd stRucTure (BERT). Finally, section 5 reports90

the final remarks, main conclusions, and the path forward for future enquiry.

2. On the GP-NARX Model for Nonlinear Identification

GP-NARX is a nonlinear model class widely known in the machine learning

community, with recent applications for identification purposes in engineering

[23], including the wave force prediction on offshore structures [24] and the95

identification of the vertical flow of water in the cascaded tanks benchmark

[25, 26]. This section begins with a brief description of the method, presenting

the main aspects of identifying the GP-NARX model throughout subsection

2.1. For further details, the readers are invited to find more information in

the literature made accessible. Then, subsection 2.2 outlines the step-by-step100

procedure to construct the GP-NARX model used in this work to reproduce the

behavior of dynamic systems with a hysteresis.

2.1. GP-NARX model

A GP regression model is based on the idea of Bayesian inference; however,

unlike the inference of the model’s parameters used in classic Bayesian regres-

sion, the GP model considers the inference directly over functional space [27].

Thus, this model can be described as a generalization of a Bayesian regression

method, in which any two or more observations that one wants to describe fol-

low a multivariate Gaussian distribution [28]. In this sense, consider a general
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regression problem to represent the process observations yi ∈ IR as

yi = f(xi) + ε
(y)
i , i = 1, 2, . . . , N samples (1)

where f(·) is a nonlinear function mapping the output to an input xi ∈ IRD,

and ε
(y)
i is a stochastic variable representing inherent randomness in the ob-

servations. This randomness is assumed to be Gaussian distributed with zero

mean

ε
(y)
i ∼ N

(
ε
(y)
i |0, σ

2
y

)
, (2)

where σ2
y is the variance of the Gaussian noise observations.

In this work, in order to map the nonlinear effects related to the hysteresis,

the NARX structure is considered as a nonlinear function that predicts the out-

put yi. Thus, the model’s input xi is formed by regression upon the excitation

and output signals

xi = [yi−1, ..., yi−ny , ui, ui−1, ..., ui−nu+1]T, (3)

where ui represents the oscillatory input signal at the ith sample, and nu and105

ny are the number of regressors in the input and output signals, respectively.

Keeping in mind that the regression in equation (1) is represented by a

Gaussian Process, the NARX structure f(xi) is then formed by the assumption

of a multivariate Gaussian prior distribution of zero mean

f = f(xi) ∼ N (f |0,K), (4)

resulting in the so-called GP-NARX model structure, where K ∈ IRN×N is

the covariance matrix whose elements are described as Ki,j = k(xi,xj). The

variable k(·, ·) is a covariance function, also named a kernel function, that models

the dependence between the function values at different input samples. Due to110

the versatility in the GP-NARX model, the zero mean is assumed for simplicity.

The construction of the model function used for the regression process de-
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pends directly on the knowledge acquired about the system of interest. Thus,

assuming a set of training data available and making use of a simplified notation,

one obtains

D = (xi, yi)
N
i=1 ≡ (X ,Y) , (5)

where X ∈ IRN×D is the regression matrix, and Y ∈ IRN is the output vec-

tor. Since data observations for training contribute Gaussian white noise, the

joint distribution of the training data and test samples, according to the prior

distribution, is given by [27]

Y
f∗

 ∼ N
Y

f∗

∣∣∣∣∣∣0,
K(X ,X ) + σ2

yI K(X ,x∗)

K(x∗,X ) K(x∗,x∗)

 , (6)

where f∗ denotes the predicted function at new input samples x∗. K(X ,X ) is

the covariance matrix computed between the training input samples each other

with elements k(xi,xj), K(X ,x∗) is the covariance matrix computed between

the training and new input samples with elements k(xi,x∗) and K(x∗,X ) =115

K(X ,x∗)T . Finally, K(x∗,x∗) is the covariance matrix between the new input

samples and I ∈ IRN×N is an identity matrix.

Then, the Bayesian inference strategy is used to condition a posterior predic-

tive distribution π(f∗|x∗,X ,Y) over f∗ based on the new available input, which

gives the main relationship for the GP regression [27]

π(f∗|x∗,X ,Y) ∼ N (f∗|µ∗, σ2
∗), (7)

where the posterior predictive mean is given by

µ∗ = k(x∗,X )
[
K(X ,X ) + σ2

yI
]−1 Y, (8)

and the posterior predictive variance is given by

σ2
∗ = k(x∗,x∗)−K(x∗,X )

[
K(X ,X ) + σ2

yI
]−1

K(X ,x∗). (9)
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Using equations (8)-(9), one can predict the new values of the function f∗ as

well as the values of y∗ taking into account the model uncertainties, once both

predictive distributions are similar. The variance σ2
y and the covariance function120

k(·, ·) need to be estimated based on the available data from the system under

analysis. Many covariance functions were proposed over the years, with special

attention to RBF, Exponential, Matérn 3/2, Matérn 5/2, Polynomial, Rational

Quadratic, among others. The choice of the best kernel structure depends on

the relations between the input/output data and the previous knowledge avail-125

able on the system behavior. It is noteworthy that new kernel functions can

also be proposed, just by considering a new formulation or even making use of

a combination of existing functions [29]. In the context of this work, which ex-

plores the application of the GP-NARX model to represent hysteretic systems,

the best results were achieved, considering the available data, by selecting a130

combination of two covariance kernels:

• Matérn 3/2:

k1(x,x′) = σ2
m

(
1 +

√
3 |x− x′|

l

)
exp

(
−
√

3 |x− x′|
l

)
(10)

where σm is the Matérn kernel variance and l the lengthscale.

• Cubic polynomial:

k2(x,x′) = σ2
p [s(xx′) + b]

3
, (11)

where σp is the Polynomial kernel variance, s the scale and b the bias

parameter.

Thus, the new additive kernel is given by

k(x,x′) = k1(x,x′) + k2(x,x′). (12)

Based on the unknown variables in the kernel, a vector of hyperparameters
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may be defined as Θ =
[
σ2
m, l, σ

2
p, s, b, σ

2
y

]
and then estimated by conducting a

maximization of the marginal log-likelihood of the observed data [30]

log π(Y|X ,Θ) = −1

2
log |K + σ2

yI| −
1

2
YT(K + σ2

yI)−1y − N

2
log(2π). (13)

Such a maximization procedure is performed using a gradient method, and135

the optimum model is used to predict new outputs as a consequence of new

inputs. The GP-NARX model can describe a wide variety of structural dynamic

behavior, taking advantage of its capability to consider modeling uncertainties

and predicting the trend curves of outputs with probabilistic confidences.

The GP-NARX model will be used as a surrogate model to predict the140

hysterical behavior present in complex systems dynamics. As mentionated pre-

viously, the advantage of dealing with the GP-NARX model when compared to

the classic NARX model [21] lies in the possibility of estimating the nonlinear

relation between the regressors and the output based directly on the inference

over the training data, which is a feature of GP regression, only by knowing the145

maximum number of input/output lags (ny and nu) [24].

2.2. Identification framework

The identification workflow proposed herein may be stated as follows:

• Step 1: Data acquisition

Systems with hysteresis present more pronounced nonlinear energy dissi-150

pation, which can be visualized through the opening of the hysteresis loops,

increasing the response amplitude [6]. Depending on the excitation amplitude

applied, these systems also present changes in their resonant frequencies due

to hardening or softening effects. In these circumstances, identifying the GP-

NARX model is conducted considering training data generated by swept sine155

excitation tests in the resonant frequency vicinity. These tests were also used

in the Model verification step, but considering different excitation amplitudes

from those used during the Model training step. Stationary sinusoidal testing

and white noise signals with several excitation amplitudes were considered to
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validate the proposed GP-NARX model. In numerical simulations it is inter-160

esting to add some synthetic white noise, avoiding overparameterization and

making the inversion of the matrix
[
K(X ,X ) + σ2

yI
]

easier when strongly cor-

related training data is considered.

• Step 2: Model training

This step comprises the optimization of hyperparameters Θ by maximizing

the marginal log-likelihood from equation (13) and also the estimation of the

maximum number of input/output lags. Based on the training data (X ,Y), a

surface involving the number of lags and the output fit measured at each com-

bination of lags is constructed. The model-fit, which corresponds to the mean

relative square error (MSRE) metric, is evaluated by the following formulation

fit [%] = 100×

1−

√√√√√√√√√√
N∑
i=1

(yexp,i − µ(ŷi))
2

N∑
i=1

y2exp,i

 , (14)

where yexp,i is the experimental output signal and µ(ŷi) is the model mean165

output signal, both at the ith instant of time. With the surface (ny × nu ×

fit) estimated, the number of lags is chosen in the region that guarantees the

best value of fit using a minimal number of lags. Of course, using a different

output signal in the lag estimations from the one used in the model training

step produces a better description of the system’s dynamics.170

• Step 3: GP-NARX model verification and validation

Once the model with the lags and hyperparameters has been defined, the

model’s predictive capability must be assessed. The reader will see that when

we consider infinite-step-ahead prediction or model predicted output [21], those

future output predictions depend on the previously predicted one that is approx-175

imated as a Gaussian random variable, defined by its mean µy and variance σ2
y.
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As a consequence, the GP-NARX formulation is affected by the backpropaga-

tion of the model uncertainties. Depending on the covariance function chosen,

the backpropagation of the uncertainties may be computed analytically [31].

However, for a more general formulation based on the model-predicted output180

as used in this paper, Monte Carlo simulations are instead used to propagate

all the model uncertainties, using the estimated Gaussian distribution [32].

3. Numerical Assessment of the GP-NARX model: The Bouc-Wen

Benchmark

This section introduces the use of the GP-NARX model first in a numerical185

application involving the Bouc-Wen benchmark, which is given by [22]

mÿ(t) + cẏ(t) + ky(t) + Z(y, ẏ) = u(t) (15)

Ż(y, ẏ) = αẏ(t)− β
(
γ|ẏ||Z(y, ẏ)|ν−1Z(y, ẏ) + δẏ(t)|Z(y, ẏ)|ν

)
, (16)

where m [kg], c [Ns/m] and k [N/m] are the mass, damping and stiffness coeffi-

cients, respectively, and α [N/m], β, γ [m−1], δ [m−1], and ν are the Bouc-Wen

model parameters. Additionally, ÿ(t) [m/s2], ẏ(t) [m/s], and y(t) [m] are the ac-

celeration, velocity, and displacement, respectively, for an excitation input u(t)190

[N]. Z(y, ẏ) [N] represents the hysteretic restoring force which obeys the ordi-

nary differential equation (16) of Ż(y, ẏ) [N/s]. This model presents challenging

issues for conventional system identification techniques such as the existence of

a hysteretic force with multiple solutions (non-smooth nonlinearity), memory

dependency, the presence of multiple harmonics in the oscillator output, among195

others. Further details involving the hysteretic benchmark are also addressed

by Bajrić and Høgsberg (2018) [33], Rebillat and Schoukens (2018) [34], Teloli

et al. (2019) [35] and Miguel et al. (2020) [36].

Table 1 shows the model parameters selected according to [22]. All simula-

tions with the benchmark presented in this work use a sampling frequency of 750200

Hz. The oscillator’s responses were obtained through a numerical integration

scheme with the 4th order Runge-Kutta method and variable time-step.
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m [kg] c [Ns/m] k [N/m] α [N/m] β γ [m−1] δ [m−1] ν
2 10 5 × 104 5 × 104 1 × 103 0.8 -1.1 1

Table 1: Bouc-Wen benchmark parameters [22].

It should be pointed out that the objective herein is to predict the Bouc-Wen

oscillator’s response described in equations (15) and (16) bounded by proba-

bilistic confidence intervals produced by the GP-NARX model. This work is205

different from that proposed by Bhattacharyya et al. (2020) [37], who consider

a stochastic version of the Bouc-Wen oscillator described by random variables

and then use the Kriging-NARX model to predict its response. Unlike the

GP-NARX version, which takes into account the inference over functions, the

Kriging-NARX model considers the stochastic expansion of the NARX model’s210

coefficients and then becomes not useful to describe dynamic systems subject

to white noise excitation for predicting statistically characterized responses.

3.1. Model training

One of the main aspects to be considered in constructing a numerical model

is related to the training data and how these are conditioned to the exci-215

tation signal applied in the dynamic system. Some key elements should be

highlighted within this context, such as the system operating range, vibra-

tion modes of interest, whether the nonlinearity is amplitude-dependent or

frequency-dependent, and so on. To encode and reproduce this nonlinearity

from the hysteretic oscillator, the GP-NARX model is constructed considering220

swept sine tests in the resonance frequency vicinity. Such tests provide an at-

tractive, cost-effective ratio between the excitation level amplitude, frequency

control, and testing time (particularly for practical applications).

Thus, the training data (X ,Y) used for the GP-NARX model inference and

estimation of hyperparameters Θ consist of a pair of responses of the Bouc-225

Wen oscillator for a swept sine test applied from 5 up to 150 Hz, with input

amplitude levels of 10 and 80 N (low and high) and both with a frequency

increase rate of ≈ 53 Hz/s. Additionally, to emulate experimental conditions

12



during the training, verification, and validation steps of the GP-NARX model

construction, white noise was added to the response data, considering 10% of the230

total energy of the response signal for input with the lowest level of excitation

amplitude (10 N).

In the lag optimization procedure, the GP-NARX model is estimated several

times, considering different combinations of nu and ny. In contrast, the model

performance is measured using Eq. (14), taking into account the same swept235

sine test, with an input amplitude level of 50 N (medium). Using a different

amplitude signal improves the procedure, ensuring that the number of lags will

be satisfactory in different motion regimes. Figure 1 presents the lags optimiza-

tion surface with emphasis on the optimal values found, which correspond to the

regression order of ny = 20 lags in the output and nu = 17 lags in the input for240

a fit of 92.4%. Then, having defined the model structure, the next step lies in

verifying its performance to reproduce the Bouc-Wen oscillator’s responses by

assuming sweep sine signals with the same characteristics and several excitation

amplitudes.

90

85

80

75

70

Figure 1: Lags optimization surface ny×nu×fit. The optimal value of the lags (•) corresponds
to 20 lags in the output and 17 lags in the input for a fit of 92.4 %.

3.2. GP-NARX model verification and validation245

Throughout this subsection, all the model statistics were estimated consider-

ing the backpropagation of uncertainties through Monte Carlo simulations with
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1024 samplings, ensuring that all the model uncertainty is considered in the pre-

dictions. Additionally, all figures consider 99% statistical confidence bounds.

Figure 2 presents the assessment of the GP-NARX model, considering a250

low level of excitation amplitude (10 N). Figs. 2(a) and (b) depict the model-

predicted output in direct comparison with the displacement response of the

Bouc-Wen model. The results show that the confidence bounds were able to

accommodate the model’s response, with a narrower band in the resonance re-

gion than near the end of the signal (≈ 1.5 and 2 seconds), primarily due to255

signal-to-noise. Figure 2(c) shows a close-up view of the power spectrum den-

sity (PSD) of responses over a frequency range of 5 − 150 Hz, evidencing that

the model-predicted output carries the same frequency content as the Bouc-

Wen oscillator response. All spectra presented throughout this subsection for

sweeping sine tests have been calculated with the Welch’s periodogram consid-260

ering a rectangular window over the entire signal length. Figure 2(d) exhibits

the numerically integrated hysteresis loop compared to the predicted one. Al-

though the hysteresis loop is almost closed to a low level of excitation amplitude,

the black-box model can accommodate the system’s accuracy with hysteresis,

having the model mean output enclosing substantially the same area as the265

Bouc-Wen oscillator in the restoring force versus displacement plane.

Figures 3 and 4 exhibit the model-predicted output with 99% of statisti-

cal confidence in comparison with Bouc-Wen data for two levels of excitation

amplitude, medium (50 N) and high (80 N), respectively. From these figures,

note that the GP-NARX model can reproduce the dynamics of the Bouc-Wen’s270

oscillator even at higher excitation amplitudes, where the effects of nonlinear

energy dissipation are evidenced through the pronounced opening of hysteresis

loops. A comparison between the spectra of Figs. 2(c), 3(c) and 4(c) shows

that the model is able to follow the hardening effect present in the Bouc-Wen

oscillator (γ + δ < 0) [38], which is characterized by increasing the resonance275

frequency for higher response amplitudes.

It is also important to note that the confidence bounds for a higher excitation

level are narrower about the mean prediction. This is due to the lower signal-
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(a) Time response (b) Zoom around resonance

(c) PSD (d) Hysteresis loop

Figure 2: Verification of the GP-NARX model for low excitation amplitude (10 N) considering

a swept sine test. B represents the 99% model-predicted output confidence bands, is the
model response mean and • represents the Bouc-Wen data obtained by numerical integration.

to-noise in higher amplitude signals and the fact that the model uncertainty is

lower in regions close to the training data.280

In general, the construction of black-box models may involve some pitfalls.

One of them is that these models can be over-conditioned by the training data

used in their construction, such as the Kriging-NARX model proposed by Bhat-

tacharyya et al. (2020) [37]. In other words, this might mean that a model

identified to describe a nonlinear system based on sinusoidal inputs as train-285

ing data may only be able to reproduce the responses of such a system that

feature the same characteristics in the input. In this context, this subsection

discusses the robustness and validity of the GP-NARX model in reproducing

the hysterical behavior of the Bouc-Wen benchmark assuming inputs different

from those used in its construction, such as a stationary sinusoidal and a ran-290

dom phase multi-sine excitation [22] for low (10 N), medium (50 N) and high
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(a) Time response (b) Zoom around resonance

(c) PSD (d) Hysteresis loop

Figure 3: Verification of the GP-NARX model for medium excitation amplitude (50 N) con-

sidering a swept sine test. B represents the 99% model-predicted output confidence bands,
is the model response mean and • represents the Bouc-Wen data obtained by numerical

integration.

(80 N) amplitude levels.

Figures 5, 6 and 7 provide an overview of the model-predicted outputs

in comparison with Bouc-Wen data for three levels of excitation amplitude,

low (10 N), medium (50 N) and high (80 N), respectively, for a sinusoidal295

input u(t) = A sin(2πωnt) with excitation frequency at the linear resonance

ωn = 35.59 Hz. On the one hand, for a low excitation amplitude, Fig. 5 de-

picts that the Bouc-Wen system operates with reduced severity of nonlinear

effects, showing through the Fig. 5(c) that the spectrum of responses has no

contributions of odd higher-order harmonics, e.g., third, fifth and seventh-order300

harmonics. Welch’s periodogram with a Hanning window every N = 29 samples

was used to reveal this. On the other hand, for medium and high excitation

amplitudes, Figs. 6(c) and 7(c) emphasize the GP-NARX model’s ability to re-

produce nonlinear distortions present in the Bouc-Wen’s system response while
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(a) Time response (b) Zoom around resonance

(c) PSD (d) Hysteresis loop

Figure 4: Verification of the GP-NARX model for high excitation amplitude (80 N) considering

a swept sine test. B represents the 99% model-predicted output confidence bands, is the
model response mean and • represents the Bouc-Wen data obtained by numerical integration.

accommodating the odd harmonics of the output within the confidence bands.305

The Bouc-Wen model carries the rate-independent hysteresis property, which

means that for the same excursion interval of the output bounded between

amplitudes ymin 6 y(t) 6 ymax, the restoring force Z(t) of the system will

present the same hysteresis loop when it is excited by a T−periodic input signal

with a loading-unloading regime defined in a period T ∈ IR+ [39, 35]. Therefore,310

note that the excursion intervals on displacement present in the hysteresis loops

of Figs. 5(d), 6(d) and 7(d) are approximately the same presented in Figs.

2(d), 3(d) and 4(d), respectively; this shows that the GP-NARX model is able to

reproduce the rate-independent hysteresis property through the model-predicted

outputs for input signals with a harmonic characteristic, also representing both315

system responses with a similar confidence bands, e. g., Figs. 5(d) and 2(d).

The model-predicted outputs for a random phase multi-sine excitation [22,
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(a) Time response (b) Zoom around 0.9 and 1 seconds

(c) PSD (d) Hysteresis loop

Figure 5: Validation of the GP-NARX model for low excitation amplitude (10 N) considering

a sinusoidal input with excitation frequency at the linear resonance ωn = 35.59 Hz. B
represents the 99% model-predicted output confidence bands, is the model response
mean and • represents the Bouc-Wen data obtained by numerical integration.

19] over a frequency range of 5 − 150 Hz are shown in Figs. 8, 9 and 10,

considering low (10 N), medium (50 N) and high (80 N) excitation amplitudes,

respectively. As the model is used to predict the system behavior for random320

characteristics that are substantially different from the data observed in training,

it should be stressed that the further away from the training data region one

wants to make predictions using the model estimated (e.g., using a random

excitation), more uncertainty will be present in the model’s output. This means

that the model will not necessarily make wrong predictions far from the training325

data, but the forecasts will be more uncertain, and in some situations, the mean

prediction value may become unrepresentative. For all the levels of excitation

considered, the confidence bands of the model-predicted outputs accommodate

the responses from the Bouc-Wen oscillator.
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(a) Time response (b) Zoom around 0.9 and 1 seconds

(c) PSD (d) Hysteresis loop

Figure 6: Validation of the GP-NARX model for medium excitation amplitude (50 N) con-
sidering a sinusoidal input with excitation frequency at the linear resonance ωn = 35.59 Hz.

B represents the 99% model-predicted output confidence bands, is the model response
mean and • represents the Bouc-Wen data obtained by numerical integration.

4. Experimental Assessment of the GP-NARX Model: The BoltEd330

stRucTure (BERT) Benchmark

4.1. Description of the experimental setup

This section considers the BoltEd stRucTure (BERT) benchmark1 shown in

Fig. 11 as a bolted jointed structure to test the robustness of the GP-NARX

model when dealing with experimental hysteretic systems. The experimental335

setup consists of two aluminum beams assembled in a clamped-free boundary

condition, each with dimensions of 270× 25.4× 6.35 mm and connected by two

M5 bolts, spaced along a length of 40 mm, with a tightening torque of 5 Nm. An

electromagnetic Modal Shop 2400E shaker is placed at 85 mm from the clamped

end to minimize shaker–structure interaction [40]. For observability purposes,340

1Data available on https://github.com/shm-unesp/DATASETBOLTEDBEAM
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(a) Time response (b) Zoom around 0.9 and 1 seconds

(c) PSD (d) Hysteresis loop

Figure 7: Validation of the GP-NARX model for high excitation amplitude (80 N) considering

a sinusoidal input with excitation frequency at the linear resonance ωn = 35.59 Hz. B
represents the 99% model-predicted output confidence bands, is the model response
mean and • represents the Bouc-Wen data obtained by numerical integration.

since this work considers the first mode of vibration of the structure in interest,

all measurements considered herein were made at the free end of the assembled

beam by a laser vibrometer Polytec OFV-525/5000S. The data acquisition was

performed by an LMS SCADAS system using a sampling frequency of 1024 Hz.

The input signals applied to excite the structure were conducted, assuming dif-345

ferent voltage amplitude levels applied to the shaker amplifier, from low to high

values (0.05, 0.10, 0.15 and 0.20 [V]). Further details regarding the excitation

are addressed in the following subsections. Figure 11 shows the schematic top

view of the test-rig.

Figure 12 illustrates a preliminary analysis of the nonlinear behavior of the350

BERT benchmark through the frequency response curves around its first reso-

nant frequency (≈ 18.8 Hz). Figure 12(a) corresponds to the magnitude plot of

the receptance, which was estimated from the structures’ response to the swept
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(a) Time response (b) Zoom around 0.88 and 1 seconds

(c) PSD (d) Hysteresis loop

Figure 8: Validation of the GP-NARX model for low excitation amplitude (10 N) considering a

random phase multisine excitation. B represents the 99% model-predicted output confidence
bands, is the model response mean and • represents the Bouc-Wen data obtained by
numerical integration.

sine test from 0 up to 40 Hz (sweep rate of 5 Hz/s) collected with 16384 samples

and a burst of 50 %, regarding low (0.05 V), medium (0.10 V) and high (0.20 V)355

levels of amplitude. One can verify that the FRFs do not overlay for different

input levels, exhibiting distortions, changes in resonance frequency, and a more

significant attenuation of vibration amplitude for higher excitation levels.

In a complementary way, Fig. 12(b) exemplifies the frequency response curve

of the assembled structure obtained from stepped sine tests sweeping up from360

3 to 23 Hz, with incremental steps of 0.1 Hz and 32 seconds of oscillations

to ensure steady-state condition at each excitation frequency. It is noteworthy

that, as well as several bolted jointed structures, the BERT benchmark presents

amplitude-dependent nonlinearity, with a decrease in the value of its resonant

frequency when increasing the input amplitude. This illustrates the fact that365

the lap-joint inevitably softens the total rigidity of the system. Recently, Teloli
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(a) Time response (b) Zoom around 1.38 and 1.46 seconds

(c) PSD (d) Hysteresis loop

Figure 9: Validation of the GP-NARX model for medium excitation amplitude (50 N) con-

sidering a random phase multisine excitation. B represents the 99% model-predicted output
confidence bands, is the model response mean and • represents the Bouc-Wen data
obtained by numerical integration.

et al. (2021) [41] demonstrated that the behavior of the benchmark around its

first mode of vibration could be well approximated by a stochastic version of

the Bouc-Wen oscillator.

Figure 13 exemplifies the data fluctuation on frequency response curves con-370

sidering several experimental measurements and is shown with 99% statistical

confidence bounds. The experimental measurements were conducted over differ-

ent days, and only the tightening torque in the joint connection was controlled

after each experimental realization.

4.2. Model training375

Following the same identification framework discussed in section 2.2 and ex-

emplified on the numerical benchmark of section 3, the training data set (X ,Y)

used for the GP-NARX model inference and estimation of hyperparameters Θ
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(a) Time response (b) Zoom around 0.92 and 1 seconds

(c) PSD (d) Hysteresis loop

Figure 10: Validation of the GP-NARX model for high excitation amplitude (80 N) consid-

ering a random phase multisine excitation. B represents the 99% model-predicted output
confidence bands, is the model response mean and • represents the Bouc-Wen data
obtained by numerical integration.

consist of a pair of experimental responses collected from the BERT system

for the swept sine test described previously and considering amplitude levels of380

0.05 and 0.20 V (low and high), respectively. In this work, the shaker amplifier’s

voltage signal is used as input data for training, verification, and validation of

the GP-NARX model. This approach is considered as excitation once this signal

is constant over a frequency range [42].

Also, to take into account the data fluctuation observed in Fig. 13 during385

the construction of the GP-NARX model, the training data consider data points

randomly chosen from 50 available experimental realizations, using only samples

of the time data acquired around the region of maximum response amplitudes

due to the presence of resonance. This procedure is performed to reduce the

computational cost necessary in the Model training step, considering only the390

part of the data that has the most predominating dynamics. Additionally, using
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Figure 11: BERT setup and the schematic representation illustrating the clamped-free beam
conveying a bolted joint connection.

Figure 12: Frequency response curves for different excitation amplitudes: is low (0.05
V), 4 medium (0.10 V), and ◦ high (0.20 V) amplitude levels.

this strategy, the model can predict the experimental uncertainty related to the

variability from one realization to another.

Figure 14 presents the surface ny × nu × fit [%] resulting from the GP-

NARX model lags optimization procedure considering signals from the swept395

sine test for an input amplitude of 0.10 V, which was used to improve the model

performance, as mentioned above. It was found that optimal values of 16 lags
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(a) Low level of excitation amplitude (0.05 V).

(b) High level of excitation amplitude (0.20 V).

Figure 13: Variation of the Frequency Response Function calculated for different excitation

amplitudes with 99% of confidence bands. B represents the confidence bands, whereas
is the mean values.

in the output and 10 lags in the input produced a fit of 96.1%.

95

90

85

80

75

70

Figure 14: Lags optimization surface ny × nu × fit. The optimal value of the lags (•)
corresponds to 16 lags in the output and 10 lags in the input for a fit of 96.1 %.
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4.3. GP-NARX model verification and validation

To ensure convergence in estimating the model’s statistical properties, all400

practical application results assume the backpropagation of the uncertainties

considering 4096 Monte Carlo simulations.

The model verification is presented through Figs. 15, 16 and 17 whereby the

GP-NARX model-predicted outputs are compared to the BERT benchmark’s

experimental results for low (0.05 V), medium (0.10 V) and high (0.20 V) lev-405

els of excitation amplitude, respectively. The black-box model presents good

agreement with the experimental measurements since the model training step

was conducted regarding these curves. The confidence bands accommodate

several experimental realizations, which indicates that the model can make ac-

curate predictions of the structure’s behavior and response, even in the presence410

of nonlinear effects and data variability. Figures 15(c), 16(c) and 17(c) show

that even with the increase in the excitation amplitude, an accurate fit of the

frequency components of the experimental responses is achieved by the model.

Nevertheless, special attention is given to Figs. 15(d), 16(d) and 17(d), which

present a comparison between the hysteresis loops obtained from the model415

response and those obtained from the experimental data. It can be seen that

the mean response of the model can capture the evolution of the experimental

data in the restoring force × displacement plane. It should be stressed that

the restoring force considered in this comparison represents the projection of all

nonlinear forces actuating on the first vibrating mode of the assembled structure420

around the resonance region (maximum amplitude).

Different input conditions are then tested from data that were not used

to infer the model’s parameters to validate the proposed model. Figure 18 de-

picts the model-predicted output considering the swept sine test with excitation

amplitude at 0.15 V. For this excitation with intermediate amplitude between425

medium and high levels, the model showed it was able to reproduce the exper-

imental measurements well. Although some points regarding the experimental

realizations have exceeded the limits of the confidence bounds, which is appar-

ent in the 18(d) concerning the hysteresis loops, there are no regions where the
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(a) Time response (b) Zoom around resonance

(c) PSD (d) Hysteresis loop

Figure 15: Verification of the GP-NARX model for low excitation amplitude (0.05 V) con-

sidering a swept sine test. B represents the 99% model-predicted output confidence bands,
is the model response mean and • represents ten experimental realizations.

dynamics visualized in the experiment are different from that predicted by the430

model.

Furthermore, in the context of model validation, the GP-NARX model-

predicted output for a sinusoidal excitation with an amplitude level of 0.15

V and conducted close to the first resonance frequency (18 Hz) of the test-rig

is shown in Fig. 19. From the PSD of the experimental response of the bolted435

structure present in Fig. 19(c), note that the numerical model can reproduce in

its response the presence of multiple harmonics (2 and 3 times the fundamental

frequency) that are also found in the experimental response. Although it overes-

timates the third-order harmonic component, the model is suitable to represent

the nonlinearities of even and odd harmonic order associated with the assembled440

structure’s behavior. Then, the GP-NARX model brings forward the hysteresis

curves predicted in Fig. 19, which illustrates that almost the same energy dis-
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(a) Time response (b) Zoom around resonance

(c) PSD (d) Hysteresis loop

Figure 16: Verification of the GP-NARX model for medium excitation amplitude (0.10 V)

considering a swept sine test. B represents the 99% model-predicted output confidence
bands, is the model response mean and • represents ten experimental realizations.

sipation is predicted compared to the experimental measurements. Besides, the

hysteresis loop’s asymmetry concerning the zero axes of the displacement has

been well-captured by the model.445

Figure 20 depicts the model’s performance in reproducing the behavior of

the experimental structure for a white noise input conducted over the frequency

range of 0− 110 Hz with an amplitude level of 0.30 V. As expected, since data

with random characteristics are distant from those used for model training, the

more uncertain is the model’s predictions. This is reflected through the larger450

confidence bands. Another factor contributing to the more significant uncer-

tainty of the model is related to the influence of noise on the experimental

response since the maximum response amplitude for the random input is illus-

trated in Fig. 20(b) is less than 2 mm. In this condition, the system still operates

close to the linear regime of motion, and the mean response of the model fits455
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(a) Time response (b) Zoom around resonance

(c) PSD (d) Hysteresis loop

Figure 17: Verification of the GP-NARX model for high excitation amplitude (0.20 V) con-

sidering a swept sine test. B represents the 99% model-predicted output confidence bands,
is the model response mean and • represents ten experimental realizations.

well the experimental realization. Figure 20(c) presents the frequency compo-

nents of both signals through their estimated PSDs, showing that the identified

model can adequately predict the experimental results.
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(a) Time response (b) Zoom around resonance

(c) PSD (d) Hysteresis loop

Figure 18: Validation of the GP-NARX model for medium excitation amplitude (0.15 V)

considering a swept sine test. B represents the 99% model-predicted output confidence
bands, is the model response mean and • represents ten experimental realizations.
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(a) Time response (b) Zoom around resonance

(c) PSD (d) Hysteresis loop

Figure 19: Validation of the GP-NARX model for a high excitation amplitude (0.15 V) con-

sidering a sinusoidal amplitude with excitation frequency at 18 Hz. B represents the 99%
model-predicted output confidence bands, is the model response mean and • represents
ten experimental realizations.
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(a) Time response (b) Zoom around 1 and 1.1 seconds

(c) PSD 

Figure 20: Validation of the GP-NARX model for an excitation amplitude of 0.30 V consid-

ering a white noise input. B represents the 99% model-predicted output confidence bands,
is the model response mean and • represents the experimental data.

5. Final Remarks

In this work, a GP-NARX model was used to approximate the response of460

nonlinear systems characterized by hysteresis effects. This work’s motivation

arises from the need to represent the dynamics of complex dynamic systems

in several operating regimes, such as structures joined by bolted joints that

experience transient and operational steady-state regimes of motion, using only

input and output data to construct the model. The identification framework465

of the GP-NARX model was based on the steps of data acquisition, training,

verification, and validation.

At first, attention was placed on Bouc-Wen’s benchmark. The model’s train-

ing to reproduce the oscillator behavior was done using swept sine tests with

different excitation amplitude levels. It is argued that from these data obtained470
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in a transient regime around the resonant region of the system, the black-box

model is trained to take into consideration the main aspects present in the

dynamics of Bouc-Wen’s oscillator, for example, the increase of the resonant

frequency and pronounced opening of the hysteresis loops as one increases the

excitation amplitudes. While the model verification was carried out assuming475

data of the same character as those used for training, the validation of the

GP-NARX considered data originated in a different way, such as sinusoidal ex-

citation in a steady-state regime applied at the linear resonant frequency of the

system and the random phase multi-sine excitation. In contrast, in both cases,

several levels of excitation amplitude were tested. Although the GP-NARX480

model’s predictions have become more uncertain for conditions distant from the

training data, the results indicate that the model has an adequate capacity to

make the Bouc-Wen oscillator response predictions.

Next, the work addressed the model’s performance in reproducing the BERT

benchmark’s behavior, taking into account uncertainties that result from the485

data acquisition procedure based on several experimental realizations. The ex-

perimental results were successfully correlated with predictions obtained from

the GP-NARX model, assuming the available data. Further to the observations

that have already been made for the numerical application case, it is encouraging

to note that in addition to inferring the model prediction uncertainties, the con-490

fidence bounds can also accommodate uncertainties related to the experimental

measurement process, highlighting the advantage of using the GP-NARX model.

This work paves the way to explore the GP-NARX model’s use in repro-

ducing the behavior of more complex real engineering structures involving the

presence of fastened joints. The results presented exemplify the model’s appli-495

cation for an available tightening torque applied to the experimental structure.

Future work lies in exploring the use of the black-box model to reproduce the

behavior of the structures with uncertainties in the measurement process for

several levels of tightening torque and, from that, explore features present in

the response of the GP-NARX model for structural health monitoring (SHM)500

purposes that aim to detect the loss of tightening torque.
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