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Abstract

Creating, imaging, and exploiting collective excitations of a multicomponent Bose-Einstein
condensate

by

Ryan Ewy Olf

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dan M. Stamper-Kurn, Chair

Ultracold atomic gas systems provide a remarkably versatile platform for studying a wide
range of physical phenomena, from analogue particle physics and gravity, to the emergence
of subtle and profound order in many body and condensed matter systems. In addition,
ultracold atomic gas systems can be used to perform a range of precision measurements,
from time keeping to variations in the fine structure constant. In this dissertation, I describe
our efforts to build a new apparatus capable testing a range of techniques for performing
precision measurements in a magnetic storage ring for cold, possibly Bose-condensed, lithium
and rubidium atoms. Next, I briefly touch upon our explorations of spin vortices in a
ferromagnetic rubidium Bose-Einstein condensate before presenting an exhaustive account
of our work using free-particle-like magnon excitations of the ferromagnetic gas to cool it
and measure its temperature in a never-before-seen regime of low entropy. Using magnons as
a thermometer, we measure temperatures as low as one nanokelvin in gases with an entropy
per particle of about one thousandth of the Boltzmann constant, 0.001 kB. I conclude by
presenting the details of our procedure for calculating the entropy of our coldest, lowest
entropy gases in the regime where the local density approximation does not apply.
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Chapter 1

Introduction

1.1 Purpose of this dissertation

The modern dissertation serves many purposes. First and foremost, it documents the au-
thor’s innovations and novel contributions to his or her field, fulfilling the requirements for
a Ph.D. My first priority is to accomplish this to the satisfaction of my committee members.

Equally important, though, at least among my experimental colleagues, a thesis docu-
ments the process behind the most substantive and summary figures, which are typically
published in journal articles. For projects that did not ultimately lead to results, the disser-
tation serves to mark important lessons learned and sets signposts for future work. Thus,
when results or details can be readily found elsewhere, I will generally defer to the most
suitable reference. The bulk of this dissertation focuses on process and intermediate results,
some of which paved the way to publication and some of which did not.

Finally, a good dissertation documents important toy models and “tricks of the trade”—
be they technical or practical—that enabled or facilitated the work being discussed. While
not necessarily original work, these tricks and toys constitute a significant part of the produc-
tivity advantage a Nth-year student enjoys over a first-year. Thus, primarily with younger
practitioners in mind, this dissertation will, at some points, take a pedagogical turn.

1.2 Prologue

I began my journey to this dissertation some years ago in the summer of 2006. I had
graduated from Caltech in 2005 without much in the way of plans and moved to Berkeley
with my wife Kayte, who would complete her Ph.D. here at Berkeley in 2009. I had enjoyed
majoring in physics, but I had never really found my research groove and I wasn’t sure that
graduate school was for me. I took a year to try new things, and to step away from the
insular world of elite academics.

Obviously, I ultimately made the questionable decision of pursuing a Ph.D. in physics,
but the experiences of that year have proven to have enduring value. Apropos to this thesis,
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I spent a fair amount of time at the Exploratorium, eventually as a volunteer, and my hours
there there have helped me to better understand (or at least frame) what makes science so
interesting to me.

I had been to the Exploratorium, San Francisco’s “museum of science, art, and human
perception,” many times as a kid, but I don’t recall ever feeling as much awe at the wonders
of nature as when I returned after graduating from Caltech. Far from diminishing the
experience, budding scientific expertise put myriad interactive experiments into perspective.
Questions streamed through my mind, and I felt like I could have spent days wandering the
museum, pen and paper in tow, weaving threads of curiosity into a satisfying blanket. Even
today, it’s not infrequent that I notice something new, or perhaps something old, but in a
new light, even with a familiar exhibit. With the right tools, deep science can be found in
deceptively simple packages.

At some base level, the brain— mine, at least— does not distinguish between discov-
eries that are novel and discoveries that are merely new-to-me. Anyone with a frontier—
and everyone has a frontier— can be an explorer. At the Exploratorium, as in real life, a
handmade musical instrument, a lens, or a slinky can be someone’s Large Hadron Collider.
However, even as the reward centers of the brain crave novelty of any stripe, the Ph.D. is
not just about a human’s knowledge, it’s about human knowledge.

Keeping eyes on that prize—discovering something truly new—has been a huge challenge
for me. Ultimately, it’s been a very rewarding one. In part, the reward has been goals
achieved, uncovering some small bits of new knowledge and giving it to the world. But in
part, the reward has been due to a surprise turn: an education that has been, like many of
the most sought after quantum states, narrow in one sense, but incredibly broad in another.

1.3 Why ultracold AMO?

According to the United Nations, 44% of the world’s population lives within 150 km of the
coast [60], far more than would be expected if population were distributed randomly, but far
fewer than might be expected if proximity to ocean were paramount to the viability of human
life. The coast is generally convenient to have nearby, but not necessarily vital. Especially
astonishing to me, though, is that even if one nullifies the practical amenities that the nearby
ocean provides—food and transport are widely available even inland these days—the coast
still draws us. The coast provides a diversity of ecologies, climates, and topographies that
feed our competing needs for variety and integration. Our own San Francisco Bay area is
a paragon of the compelling dynamics of life on the edge, at the confluence of mountains,
plains, sea, river, and estuary.

Like our University, ultracold atomic physics sits at a multitude of appealing, if less
poetic, interfaces:

http://www.exploratorium.edu
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These junctions avail us access to an unusually wide array of canonical physical models.
Moreover, by meeting these models at the edge of applicability, our community of scientists
pushes these models to their breaking points and watches them wash up on the shores of their
neighbors. Deep physical puzzles like emergence and universality are nowhere more apparent,
and tantalizingly deconstructable, than in cold-atom systems, where one can observe an
analogue of Hawking radiation [84], a Higgs mode [17], and topologically-driven quantum Hall
conductivity [30] in apparatuses that, even to most physicists, are nearly indistinguishable.

These features make systems comprised of cold, trapped atoms an attractive place to look
for scientific breakthroughs1, and there has been ample funding to support ambitious research
programs around the world, leading to the sort of consistent growth that makes the academic
job market abnormally viable. Beyond academia, the practical side of AMO puts cold atoms
and cold atom analogues to work in strange places—clocks, precision sensors, computers,
and computer networks—to great success. The practical work of building and running a
cold atom experiment relies on a wide range of technical skills, leaving its practitioners with
a range of (hopefully) employable engineering skills, in addition to scientific ones.

A scientists’s tools can be both boon and burden: Abraham Maslow was speaking of
scientists when he coined the aphorism, “it is tempting, if the only tool you have is a hammer,
to treat everything as if it were a nail.” [51] We must not be too attached to our favorite
models and tools. One of the privileges of pursing a Ph.D. is the freedom to hammer in a
screw a few times, and to deal with the fallout. The diversity of tools and models employed
in ultracold AMO guarantees countless such opportunities for young practitioners. Seeing
the need for new, better tools takes practice, and it’s something we get to practice a lot.

For the curious, technically minded young physicist, life in AMO can provide quite an
education. Here, indeed, simple ingredients come together to yield remarkable depth.
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Figure 1.1: Lab then and now. Over several years, the empty lab (left) was filled with
equipment and experimental apparatus (right), much of it custom built and designed.

1.4 Outline: An empty room

The story of this dissertation begins with an empty room, Fig. 1.1, left2, and an ambitious
vision. While the details of our long-term experimental goals were not entirely clear, the
immediate technical goals of our apparatus were sufficient to get us running. Building on
previous work in our group [23], we wanted to design and build a new apparatus for trapping
ultracold, possibly Bose-condensed, rubidium and lithium in a ring-shaped potential. The
magnetic potential, and the magnetic environment, would be well controlled so that opposing
objectives could be achieved: the ring would encircle a large area (we would shoot for roughly
1 mm diameter, but the exact size would be adjustable in situ) and the trapping potential
would be level enough to allow a Bose-Einstein condensate to fill it.

The team that Dan assembled to lead the experimental effort initially consisted entirely of
two inexperienced young students: myself and Ed Marti. The two of us would work together
closely for nearly eight years. A year after Ed and I began work on the experiment, with
apparatus design and construction underway, we were joined by a talented postdoc, Toni
Öttl. Over several years, the three of us, with assistance from a few others, most notably

1I estimate that there has been, on average, approximately one new research article based on trapped
atoms in Science or Nature each week since I began watching these journals carefully in 2006. This would
correspond to nearly 1 out of every 30 articles that these journals publish! Nobel prizes have been awarded
to achievements related to trapped atoms at a similar rate. In the last 20 years, 4 years have yielded such
prizes, corresponding to 1 in 15 science Nobels (or 1 in 20 if you count Economics as a science).

2A minor detail: the empty room shown is actually the second empty room we encountered. Construction
on the experiment began in one empty room before relocating to another.
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Enrico Vogt, a diploma student from Germany, built 95% of the apparatus that would be
required to achieve our lofty ring trapping goals. Unfortunately, the missing 5% was spread
over a number of sub-systems, and ultimately Dan, Ed, and I decided to abandon the dual-
species magnetic ring trap effort and to focus our efforts elsewhere. Many of the details of
our efforts during this period will be lost to history3, though a few of our more novel and
substantive efforts are documented here.

I describe some of our progress towards our lofty dual-species ring-trapping goals in Chs. 2
and 3. In particular, filling the ring would require a lot of rubidium and lithium atoms and
to achieve this we designed and built the optimized dual-species atom trapping apparatus
that is described in Ch. 2 and the accompanying references. To make precise, well con-
trolled magnetic fields, we turned to microfabrication. Pertinent details of the construction
of the actual ring-potential-producing coils can be found in Ch. 3 and references therein.
Documentation of some of our other ring-trapping efforts can be found in Ed’s dissertation,
Ref. [49].

We ultimately did build a working ring trap interferometer, but the trap was formed
optically instead of magnetically, it was a 30 micron wide doughnut rather than a 1 mm
wide hula hoop, and instead of interfering atoms we interefered phonons, collective acoustic
excitations of a BEC. While I’m quite proud of my work on this project, it is well described
in our publication [46] and in Ref. Marti2014a, and I won’t be covering that work here. Even
so, the ring trap work is important to this dissertation for two reasons.

First, on a conceptual level, our work with phonons got us thinking about collective
excitations of the BEC in general, and collective excitations were a core theme of our later
work on the dispersion of magnons [47], collective spin modes of the spinor BEC, and the use
of magnons as a thermometer and coolant [62], the subject of Chs. 5 and 6. On a practical
level, in playing with the interaction between our ring BEC and a spherical quadrupole trap,
we accidently made our first interesting magnetic excitation, a spin vortex, the subject of
Ch. 4.

3Or, if not lost to history, are buried in obscure grant reports for our primary funding agencies during
this period, DTRA and DARPA.
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Chapter 2

Dual-species apparatus

2.1 Overview

All of the fundamental physics relating to the experiments reported in this dissertation take
place in a relatively small volume—at most a cubic millimeter, for example in the time-of-
flight expansion of a barely degenerate gas, but typically much less than that, less than 0.0001
cubic millimeters—but as is quite common in experimental science, the entire apparatus for
allowing and observing that physics occupies a much larger space. Most of our apparatus is
quite standard, with individual components well described in a variety of places. The basics
of laser cooling and trapping are covered in detail in Metcalf and van der Straten [57]. Our
dual-species oven design was based on Stan and Ketterle [81] and Stan [80]. For detailed
guidance on assembling a BEC system, we like Lewandowski et al. [40]. Our optical trapping
procedure was inspired heavily by Lin et al. [43]. Finally, several other theses from our group
describe constructing apparatus very similar to our own, either because ours was built in
their shadow [26], or because ours was built contemporaneously and benefited from many
mutual exchanges of ideas [24].

Finally, my close collaborator in designing, building, characterizing, and using the present
apparatus has covered many of its aspects in Marti [49]. Fig. 2.1 shows an overview of the
vacuum system employed in this work. In this chapter, I will focus on two areas of the system:
the dual-species oven and Zeeman slower. The accompanying optical setup is discussed in
Marti [49] and will not be discussed here, except as necessary to understand the Zeeman
slower. Details of the apparatus relevant to particular experiments will be covered in their
respective chapters.

2.2 Dual species oven

The original design for our oven is based heavily on the work of Stan and Ketterle [81], with
minor modifications pertaining to the substitution of rubidium (in our system) for sodium
(in his). The nozzle design in our oven has seen several iterations and is quite distinct from
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Figure 2.1: The vacuum chamber. Most aspects of its design and construction can be
found in the references. In this chapter, we discuss a few of its novel elements, the oven
and the Zeeman slower.

that of Stan and Ketterle [81], but I will not be covering that aspect of our oven as it is
discussed sufficiently in the thesis of Marti [49].

The role of the dual species oven is to output a bright, roughly collimated atomic beam
directed towards the region of the magneto-optical trap. The oven is separated from the
main vacuum system by a nozzle that serves to collimate the atomic beam and whose low
conductance allows for a large differential pressure. The flux of the atomic beam is generally
controlled by varying the temperature, and thus the pressure, on the oven side of the nozzle.
In general, turning up the pressure increases atomic flux. Like most cold atom experiments,
we operate our nozzle in the molecular flow regime, wherein the mean free path of the atoms
is much larger than the diameter of the tubes comprising the nozzle. These basic facts, and
the reasons behind them, are discussed in numerous variations in a variety of references.
Beyond those sources already mentioned in this chapter, I enjoy the thesis of Higbie [26] and
the extremely useful text Building Scientific Apparatus [58]. In particular, the contents of
the “vacuum technology” section of this later reference (Ch. 3 in my copy) should be familiar
to the reader before continuing. O’Hanlon [61] provides more in-depth coverage of a range
of topics in vacuum technology.

In designing the parameters of the oven, it is helpful to work backwards from the oven
nozzle and the desired atomic beam, and to keep in mind several constraints. First, the
nozzle should be the hottest part of the oven to avoid clogging. The coldest part of any
contiguous bit of vacuum chamber should be the atomic reservoir. We want gas-phase atoms
to condense primarily at the atom reservoir and nowhere else. In this way, the steady-state
vapor pressure in each chamber of the oven will be primarily determined by the temperature
of the atom reservoir. The nominal temperature limit for Conflat flanges is 450◦C. In reality,
Conflat flanges can be operated at higher temperatures, however to be safe, we will plan to
operate our nozzle at a maximum of 450◦C.
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Figure 2.2: The dual-species oven and parameters. Approximate operating pressures,
temperatures, and conductances are indicated. Band heaters are shown in dark red. A
cross section of the cold surface is shown in orange and is maintained at around -15◦C. The
nozzle is attached to a copper mount (shown in red) that is press-fit into a steel nipple. The
oven nozzle heater is placed around the nipple and heat is conducted to the nozzle through
the copper. Water cooling coils, indicated in blue, keep the heat from the oven from heating
the rest of the vacuum chamber. Oven insulation is schematically represented by the dotted
black line.

2.2.1 Pressures and conductance

As covered in the thesis of Marti [49], we want to operate with a mean free path λmfp & 1 cm
in the mixing chamber, which is attached directly to the lithium reservoir. This implies
partial pressures for both rubidium and lithium in the range of 10−4–10−3 Torr in the mixing
chamber. The lithium partial pressure is controlled directly by the lithium reservoir temper-
ature. The equilibrium rubidium partial pressure in the mixing chamber (P

(mix)
Rb ) depends

on the conductance of the intermediate (Cint) and main (Cmain) nozzles and the rubidium

pressure in its reservoir (P
(res)
Rb ):

P
(res)
Rb Cint = P

(mix)
Rb Cmain.

Here we have assumed that the pressure in the mixing chamber is negligible compared to
the pressure in the rubidium reservoir, and similarly that the pressure outside the oven is
negligible compared to the pressure in the mixing chamber.

Vapor pressure curves for the alkali elements can be found in many places. The CRC
Handbook [41] has comprehensive data, while the particular properties of 6Li and 87Rb
are conveniently cataloged online by Gehm [20] and Steck [82], respectively. The optical
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properties of 7Li can be found in Ref. [73]. At 400◦C, the vapor pressure of lithium is just
2×10−4 torr, which handily sets the maximum lithium pressure at which we will operate. We
have much more leeway with rubidium as the range of pressures achievable in the reservoir
can reach several torr, if we desire.

In order to nail down the intermediate nozzle conductance, we’ll consider one additional
criterion: that lithium not back flow into the rubidium reservoir. This criterion is likely
not critical, but it has some potential advantages. First, the vapor pressure of lithium in
the rubidium reservoir will be vanishingly small, so allowing lithium to accumulate there is
wasteful. That said, the lithium source should last for a long time, regardless, as five grams
of lithium constitutes many more atoms than five grams of rubidium. Second, as we will
see shortly, the temperature of the rubidium reservoir will be on the order of the lithium
melting point. Lithium and rubidium can alloy and/or react in both solid and liquid forms,
so it is possible that lithium in the rubidium reservoir could soak up rubidium, reduce its
vapor pressure, and render it inaccessible. For more information on binary mixtures of alkali
atoms, refer to, for example, Massalski et al. [52].

In order to avoid backflow, we would like the mean free path of lithium in the intermediate
nozzle to be much less than the nozzle length. We accomplish this by using a relatively
long intermediate nozzle (3–5 centimeters long) and small diameter (1.2 millimeters) with
conductance a few orders of magnitude lower than the main nozzle, Cint ≈ 0.01 L/s versus
Cmain ≈ 2 L/s. The pressure in the rubidium reservoir would then need to be roughly 10−1

Torr, and the mean free path would be on the order of 10 microns with the temperature
at 200◦C. In this regime, the flow is viscous, not molecular, and conductance depends on
the pressure and temperature both directly and via the viscosity. Many useful details on
calculating mean free path, viscosity, and conductance in a wide range of regimes (including
the presence of multiple species with different cross sections) can be found in the text of
O’Hanlon [61].

In our case, when the gas mean free path is much less than the diameter of a tube, in
the so called viscous regime, the viscosity can be calculated as

η =
1

2
nmvλmfp,

with v the thermal velocity, m the mass, and n the number density. The conductance of
a long tube can then be calculated for a gas in the viscous regime via the Hagen-Poiseuille
equation,

C =
πd4

128ηl
∆P,

with d the tube inner diameter, l the tube length, and ∆P the pressure difference. The
pressure and density in the intermediate nozzle are not determined by the nozzle temperature
alone (they depend on the reservoir temperature as well), complicating the precise application
of these formulas. However, using the mixing chamber density and nozzle temperature is
sufficient to yield a ballpark estimate. Using these equations, for example, we calculate the
conductance of the intermediate nozzle of Stan and Ketterle [81] to be within a factor of two
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of the measured value. The viscosity of rubidium in our nozzle is expected to be roughly
2× 10−5 Poise. In practice, we have a lot of latitude in the rubidium temperature and will
optimize both rubidium and lithium atom flux by turning all the knobs at our disposal.

2.2.2 Temperature control

Once the nozzles are fixed and the physical design of the oven fixed, maintaining the tem-
perature of the oven becomes a primary concern. We follow Stan and Ketterle [81] and use
Mi-Plus band heaters with built-in thermocouples from TEMPCO to heat the oven chamber
in multiple places, shown in red in Fig. 2.4. The Mi-Plus heaters can be ordered in a range of
peak powers (the peak power is obtained by driving them with 120V AC), sizes, and geome-
tries. Two relevant geometries that we consider are one-piece, two-piece, and expandable.
Two-piece or expandable heaters should be used where a one-piece band heater cannot be
slid in place. However, we have found that 1.5 inch 2.75 inch one-piece heaters and can be
stretched and wrapped directly onto 1.5 inch vacuum nipples and 2.75 inch flanges without
breaking them, if necessary.

We found elementary order-of-magnitude calculations of heat flow to be sufficient to
determine the required power of each heater. For the most part, any underestimate of the
required heater power can be fixed with additional insulation. Overestimates can be corrected
by reducing the voltage to the heater or by pulse-width-modulation, which in our case is
automatically performed by PID controllers that stabilize the temperature as measured at
the heaters. The main concern one should have in choosing heaters and insulation is that
the requisite thermal gradients can be maintained in the oven.

For example, in our oven design, we may wish for the rubidium reservoir to be maintained
at 150–175◦C while the intermediate nozzle temperature is fixed at 450◦C by the desire to
prevent lithium accumulation. Heat will flow from the nozzle through the steel to the ru-
bidium flange and reservoir. Maintaining the appropriate thermal gradient will require a
sufficiently powerful heater on the intermediate nozzle and a sufficiently small amount of in-
sulation around the rubidium reservoir and flange. A rough calculation using the parameters
of steel and the heat flow equation

Q̇ =
kA∆T

L
,

with Q̇ the heat flow rate, k ≈ 21 W/m·K the thermal conductivity, ∆T the temperature
difference, and L and A the steel tube length and cross sectional area, respectively, with
equal amounts of radiation and convective heat loss from the rubidium flange and reservoir,
convinced us that a 300 W heater on the nozzle flange would be more than sufficient. It’s not
necessarily bad to have too much power. Keep in mind, though, that the fuses and cables
that power the heaters need to be sized according to the peak power in order to handle more
peak current.

Based on our experience with the heaters and insulation, roughly one half watt per degree
celsius desired, as well as good fiberglass insulation, seems to be sufficient for maintaining
temperature. We went a little overkill and used 300 W and 400 W heaters for the nozzle
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Figure 2.3: Self-latching relay circuit. The solid-state relay used is controlled by an AC
voltage. Using a relay that requires DC control would require some sort of rectification.

flanges. By monitoring the temperature of the oven during operation, one can note areas
that either are pulled above their setpoint by other heaters, or cannot reach their setpoint.
Before swapping heaters, one should try adding and trimming insulation, in general keep-
ing insulation the thinnest where the temperature should be minimal (the bottom of the
reservoirs) and thickest where it should be maximal (the nozzle flanges).

One more word of caution: if one uses overpowered heaters, beware that should a heater
be left running at full power, parts of the chamber may heat far above the desired temper-
ature. If this happens, one may find the pressure rise to the point where the atom sources
are reduced to nothing quickly, necessitating an oven change. Even worse, a vacuum leak
may be created that contaminates the entire vacuum system. Excessive thermal gradients
across flanges should be avoided (generally by ramping the temperature slowly, at most a few
degrees per minute), and our 400 W heaters are more than capable of heating the chamber
locally well over the 450◦C maximum for Conflat. When our PID feedback is working, and
the PID parameters set appropriately, such overheating or rapid heating should never hap-
pen. However, we have had the solid state relays that modulate power to the heaters break
in the closed position. Additionally, after a total power loss, our PID controllers recall their
old (possibly hot) setpoint and may attempt to heat the chamber up quickly once power is
restored.

We have adopted a few strategies to avoid such situations. First, the power to the heater
runs through percentage controllers that set a maximum duty cycle for the pulse width
modulation. This reduces the maximum average power output of the heaters to a safe level
while still allowing our temperatures to ramp as desired. Running the heater power through
an autotransformer (variac) would be better, reducing both the average and the peak power.
Second, the heaters and their PID controllers are powered via a self-latching relay, shown in
Fig. 2.3. When the system loses power, the self-latching relay opens and thus when power
is restored, the PID controller and heaters will not automatically regain power. The self-
latching relay must then be closed by activating a momentary switch, at which point the
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Figure 2.4: Original oven design (left) and improved oven design incorporating lessons
learned (right). (a) Fewer flanges are used, and the flanges present are oriented horizontally
to avoid alkali accumulation. The flanges are farther from the reservoirs, allowing them
to be heated more. (b) The intermediate nozzle is welded in place, avoiding the manifold
issues associated with the original double-sided flange. (c) The nozzle assembly includes a
larger gap between the nozzle heater and the high vacuum chamber, reducing the thermal
gradient across the flange that affixes the oven to the oven chamber.

relay will close and remain closed. In practice, the self-latching relay that I built only opens
upon power failure when a load is attached, seemingly because of some quirks of the solid
state relay. This is fine for turning off power to the PID controller and heaters, but in general
is an unwanted bug. Using a spring-loaded mechanical relay in the same circuit would be an
obvious improvement.

2.2.3 Iterating on the design

Several drawbacks to the initial oven design were revealed over a few years of operation, which
included several catastrophic leaks. While we eventually switched to a less fraught single-
species rubidium oven for the bulk of the work described in this dissertation, we designed
and built an updated dual-species oven that incorporates several important improvements.
A cross sectional schematic of the updated design is shown in Fig. 2.4. The problems we
encountered, and proposed solutions incorporated, are discussed below.

First, lithium is well known to react slowly with copper gaskets. Thus, it is commonplace
to use nickel gaskets at flanges with substantial lithium exposure. Nickel is not an ideal
gasket material, however, as it is much less pliable than copper. This makes nickel gaskets
less forgiving of knife-edge imperfections and, in our experience, repeated cycles of thermal
expansion and contraction. The updated oven design minimizes the number of flanges and
their exposure to lithium. In this design, only one flange is exposed to lithium at a modest
pressure, and this flange does not have to transmit any torque. A nickel gasket can safely be
used for this flange. Importantly, the flange that affixes the oven to the vacuum system and
transmits a torque is “outside” the oven. A normal copper gasket, or better, a silver coated
copper gasket (so that it is less likely to stick to the steel when it is time to replace it), can
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Figure 2.5: Schematic of zeeman slower. Atoms have a Maxwell-Boltzmann velocity
distribution in the oven. The atoms that emerge from the oven are collimated and those with
a longitudinal velocity vz < vmax are slowed and cooled by scattering light in the Zeeman
slower. As the atoms travel towards the MOT, their transverse phase space distribution
evolves owing to both the passage of time and light scattering. Some fraction of the atoms
will have a longitudinal velocity and transverse position such that they can be be captured
by the MOT.

be used there.
Our original design included a double-sided flange in the construction of the intermediate

nozzle. This required using long threaded bolts to affix the adjoining oven parts, and these
bolts had to apply pressure to two different knife edges, one of which required a nickel gasket.
Long bolts expand more than short ones when thermally cycled, and the requirement that
strong force be applied to two knife edges made this junction particularly troublesome.
When the nickel gasket originally used at the lithium side of the double-sided flange failed,
we replaced it with a softer silver-coated copper gasket. However, the orientation of the
flange at the intermediate nozzle allowed liquid lithium to accumulate in a cold spot and
the copper gasket was eaten away slowly in spite of its silver coating. The new oven design
avoids the double-sided flange. Instead, an intermediate nozzle is welded in place.

Finally, the nozzle assembly incorporates a longer gap between where the nozzle is heated
and the rest of the vacuum system. This allows the large thermal gradient between the oven
nozzle heater and the vacuum system to be more gradual. As a result, the flange affixing
the oven should experience less thermal stress.
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2.3 Dual species Zeeman slower

The basics a Zeeman slower are well described in a number of the aforementioned sources [57,
26]. Please refer to one of these resources for an overview of the basic operating principles.
In this section, I will only briefly mention the basic elements of a Zeeman slower that are
most relevant to the design and construction of our novel dual-species design.

A schematic of a single-species Zeeman slower is shown in Fig. 2.5, which illustrates some
of the essential trade offs in Zeeman-slower design. An ideal slower decelerates an atom at
some fraction η of the maximum deceleration amax, which is given for a saturated atom by

amax = ~kΓ/2m = vrΓ/2,

for an atom of mass m slowed by a counter-propagating laser of wavenumber k on a transition
with linewidth Γ. The recoil velocity is vr. Increasing the length of the slowing region
increases the length over which deceleration can occur, and thus the maximum velocity that
will be entrained in the slower. For a slowing length Lz the maximum velocity entrained is

vmax =
√
v2
f + 2ηamaxLz,

where vf is the velocity of the slowed atoms at the exit of the slower. Since the number flux
of atoms in the atomic beam rises initially like the velocity cubed, there is generally some
advantage to be had by increasing the slower length above zero. On the other hand, as the
slower is lengthened, the solid angle subtended by the MOT decreases, reducing the number
of atoms in the beam with the appropriate trajectory for capture. Transverse heating of
the atomic beam owing to spontaneous emission may also reduce the number atoms with a
trajectory suitable for capture.

2.3.1 Optimizing the slower length

For heavy atoms like rubidium, transverse heating can more or less be ignored in slower
design, making the resulting calculation of ideal slower length essentially a problem of ge-
ometry, as in Higbie [26]. For lighter atoms, transverse heating cannot be ignored, as we
will see, and it can be important to account for its effects. We optimize the slower length
by considering the slow (capturable) atom flux at the MOT. To calculate the slow flux, we
consider the effect of the slower on two main factors: the transverse phase space and the
longitudinal velocity distributions. We begin by considering a single-species slower.

To model the transverse phase space, illustrated in Fig. 2.5, we will derive equations for
its first and second moments. The first moments, which correspond to the mean transverse
velocity, are trivially zero, so we focus on the second moments only. Using the definition
of the expected value 〈〉 and the relationship between the phase space variables (in one
dimension), vx = ∂tx, with ∂t a short hand for the partial time derivative, we can derive a
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simple differential relationship between the second moments,

∂t
〈
x2
〉

(t) = 2 〈xvx〉 (t) (2.1)

∂t 〈xvx〉 (t) =
〈
v2
x

〉
(t) + 〈x∂tvx〉 (t)

∂t
〈
v2
x

〉
(t) = r(t)(∆v)2,

where r(t) is the rate of photon scattering and ∆v is the root mean square transverse velocity
imparted by each scattering event. The term 〈x∂tvx〉 can be non-zero, for example when
the transverse beam profile is inhomogeneous and the scattering rate depends on transverse
position. For simplicity we will ignore such effects for now, effectively modeling the cooling
beam as translation invariant in the transverse plane. When r(t) is constant, Eqs. (2.1) are
easy to solve analytically. One can account for initial atomic beam distributions that have
nonzero higher moments (i.e. are not Gaussian) by the appropriate convolution of the initial
beam and a narrow Gaussian kernel propagated via Eqs. (2.1); however, for simplicity we
will consider beams that are initially Gaussian and can be described by the second moments
directly. The estimated capturable flux is sensitive to assumptions about the initial beam
and the slowing process, a fact that has some implications for the manner in which we
operate the slower.

To solve Eqs. (2.1) for the transverse phase space distribution at the MOT of atoms with
a particular longitudinal velocity vf < vz < vmax, we break the trajectory into three phases:
first, the atoms travel ballistically from the oven nozzle into the slower, with r(t) = 0, for a
time t1 such that

vzt1 = Ld + Lz − (v2
z − v2

f )/(2amaxµ).

Here, Ld is the distance between the oven nozzle and start of the slower, and the later terms
account for the fact that an atom with initial velocity vz < vmax will travel in the slower for
some distance before it is Zeeman shifted into resonance with the cooling light. Second, once
the atoms are brought into resonance with the cooling light, they scatter light at a constant
rate as they are slowed, with r(t) = ηΓ/2, for a time

t2 = (vz − vf )/(vrr(t)).

Finally, the atoms once again travel with r(t) = 0 from the end of the slower to the position
of the MOT during a time t3 = Lm/vf . Atoms with vz < vf travel the whole length of the
slower ballistically. The capturable fraction of atoms with initial longitudinal velocity vz is
then computed by comparing the marginal probability of a slowed atom having a position
within the capture range of the MOT to that of an unslowed ballistic atom from the same
beam. Assuming a Gaussian atomic beam, integrating the phase space distribution is trivial
and the capturable fraction f takes a trivial form:

f(vz) =

(
erf

(
MOT size√
2 〈x2〉 (vz)

)
/ erf

(
MOT size√
2 〈x2〉0 (vz)

))2

. (2.2)
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Figure 2.6: Capturable fraction without transverse cooling (dotted/dashed lines) and
with transverse cooling and with variable initial beam sizes (narrow beam: violet, broad
beam: red, in reverse rainbow order). Dotted curve neglects transverse heating. Without
transverse cooling, the reduction in the capturable fraction is dominated by the reduction
of the longitudinal velocity without a commensurate reduction in the transverse velocity.
This “blooming” effect can be minimized by focusing the slower beam on the oven aperture,
effectively cooling the transverse motion in proportion to the longitudinal motion. The solid
rainbow curves have such transverse cooling applied. The presumed distance between the
slower and the MOT is 10 cm, each atom is presumed to slow at 0.7amax, and the final
velocities are vf = 30 m/s for rubidium and vf = 90 m/s for lithium.

Here, “MOT size” refers to the transverse extent over which atoms with longitudinal velocity
less than vf will be entrained in the MOT. Typically, this size is taken to be roughly the
size of the beams that form the MOT. An assumption inherent in this formula is that
there is a sharp cutoff in the transverse direction between 100% and 0% of atoms with
speed vf being captured. In reality, there is not a sudden cut-off, but we have found this
simplifying assumption to yield actionable results nonetheless. More nuanced expressions
for the capturable fraction that consider a more detailed model of the MOT can certainly
be produced, but considering the level of approximation employed in our treatment thus far,
they are unlikely to contribute much additional actionable information.

Fig. 2.6 shows some sample capturable fractions and highlights the importance of some
amount of transverse cooling of the atomic beam. With longitudinal cooling only, the beam
blooms dramatically because the ratio

√
〈v2
x〉/vz increases as the slower reduces vz. As shown

by comparing the dotted and dashed curves, even for the lighter lithium, this sort of beam
blooming dominates transverse heating in the reduction of capturable flux. Zeeman slowers
are typically operated with a slowing laser that is focused near the oven aperture, applying,
in the ideal case, transverse and longitudinal cooling in (at least) equal proportion.

The effect of slowing in the presence of such transverse cooling, which we model by assign-
ing our atom beam zero initial transverse velocity, is indicated by the rainbow colored curves
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in Fig. 2.6. The different colors correspond to different initial (spatial) beam sizes. Here,
the reduction of the capturable flux is due to transverse heating. Under the assumptions
of our simple model, the effects of transverse heating exhibit a strong dependence on the
model parameters. For beams with initial Gaussian width much larger than the MOT (not
physically realistic), transverse heating has little effect in our model, as atoms are equally
likely to be redirected toward the MOT as away from it. On the other hand, for very small,
focused atomic beams (such as those emerging from a very small aperture), a substantial
amount of transverse heating must take place before any atoms are lost. The true physical
situation inside our slower lies between these extremes, as the extent of the atomic beam
and the cooling laser are both finite. The most physically relevant atomic beam size that
works with our model is thus initially slightly smaller than the MOT, giving the “worst case”
dark blue curves. Numerical simulations of the slowing process can allow one to implement
more elaborate models, allowing, for example, atoms to exit the cooling beam and cease
scattering, or to have spatially dependent scattering rates. For estimating the ideal slower
length, however, such simulations are almost certainly overkill, as we have found that in-
cluding more sophisticated physical models beyond what we have already presented changes
the ideal lengths by relatively small amounts, even if it does shed better light on the overall
atom flux that can be expected.

We are now ready to estimate the impact of the slower on the capturable flux by combin-
ing our model slower with a model oven. We take the model oven to operate with a pressure
of P = 2× 10−4 Torr at T = 400K and to have a thin round aperture with 5 mm diameter.
The flux emitted into solid angle πθ2 at velocity vz is then, using the Maxwell-Boltzmann
velocity distribution [35],

I(vz) = πθ2nAvz

(
m

2πkBT

)3/2

v2
z exp

(
−mv2

z

2kBT

)
, (2.3)

where A is the aperture area and n is the atom density in the oven at pressure P and temper-
ature T . With πθ2 set to the solid angle subtended by the MOT at the oven aperture, and
therefore a function of the slower length, the estimated capturable flux Ṅ can be calculated
as

Ṅ =

∫ ∞
0

I(vz)f(vz)dvz. (2.4)

Note that when the lithium and rubidium partial pressures are equal, as we are assuming,
the total lithium flux emerging from the oven far exceeds the rubidium flux emerging from
the oven owing to the higher average velocity of the lithium atoms at the same temperature.
As noted in Sec. 2.2, the lithium and rubidium partial pressure, and thus the corresponding
number fluxes, can be varied independently.

Estimated slow fluxes for a single species slower are shown in Fig. 2.7 for particular design
parameters. Notably, we consider a slower with initial dead length of only 10 cm. In general,
some amount of dead space, wherein the atoms are not being slowed, is required to allow
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Figure 2.7: (Left) Estimated slow flux for single species slower as a function of slower
length Lz, with slowing efficiency η = 0.7, Ld = 10 cm, Lm = 10 cm, final velocities vf for
rubidium and lithium of 30 m/s and 90 m/s, respectively, and oven parameters described
in the text. The dotted curve indicates the slow flux of lithium in a slower optimized for
rubidium. (Right) The slow fluxes from the left panel (solid lines) are compared to the slow
fluxes that would be estimated without accounting for transverse heating (dashed lines). In
our simple model, transverse heating reduces the optimal lithium slower length considerably.

room for vacuum hardware in between the atomic beam nozzle and the Zeeman slower1.
Our initial chamber design did not account for a second differential pumping stage, which
increases the dead length. Notably, operating a slower designed for rubidium does increase
the capturable lithium flux by some amount, but is far inferior to a dedicated lithium slower
and strongly favors rubidium flux over lithium flux2. In the next section we talk about
improving the lithium performance of a primarily rubidium-focused slower.

2.3.2 Dual-species slower design

Our main innovation in slower design is to take advantage of the large differential in amax

between rubidium and lithium by adding slowing sections that (ideally) impact lithium
without impacting rubidium, as shown in the annotated magnetic field profile in Fig. 2.8.
Because of more pronounced transverse heating of lithium, and because it can be slowed
a great deal in a small amount of space, additional slowing of lithium at the end of the
rubidium slower provides the greatest returns in terms of slow lithium flux with the least
cost in slow rubidium flux. With the parameters modeled in Fig. 2.9, the model predicts
that slow lithium flux jumps 3.5 times by the addition of an optimized 3 cm section at the
end of the rubidium slower. The rubidium flux drops by a mere 15% with the same addition.

While the stage III slower provides a generous return, its length is limited by the require-
ment that rubidium cease its slowing and that lithium be slowed effectively by the stage II

1Recently, a permanent magnet Zeeman slower has been developed [44] that can be placed in vacuum
very close to the atomic beam nozzle, allowing a very short dead space and thus a very short optimal length.

2Recall that owing to its smaller amax, a slower optimized for lithium cannot slow rubidium.
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Figure 2.8: Dual-species slower design with three sections. Section I (shown as 18 cm
long) slows lithium only. Section II (here 61 cm long) slows rubidium primarily, but lithium
comes along for the ride. Section III (merely 2 cm long) slows lithium only. The kink in the
field going from section II to III is important. In order for rubidium to exit the slower with
the desired final velocity, its velocity must be unable to track the change in the magnetic
field at that spot. This places limits on the length of the final lithium slower section, as
discussed in the text.

slower. This condition may seem at first glance to be trivially satisfied owing to the fact that
a

(Rb)
max < a

(Li)
max, but it is not, because if the velocities of lithium and rubidium are different, the

acceleration required for the velocity to follow a particular magnetic field will be different.
Rather than thinking about dv/dt we need to consider dv/dz = (1/v)× dv/dt.

The requirement that rubidium not be slowed in the stage III slower can be expressed as

ηa(Li)
max/v

(Li)
III > a(Rb)

max /(ηv
(Rb)
III ), (2.5)

where we have written vIII for the velocity of rubidium/lithium at the end of stage II/beginning
of stage III. We have used the fact that the stage III magnetic field is designed to slow lithium
at a rate ηa

(Li)
max and, for simplicity, we have arbitrarily imposed a requirement that the accel-

eration required to slow rubidium exceed its maximum value by a factor of 1/η. In deriving
Eq. (2.5), note that the magnetic moments of lithium and rubidium in their optically-pumped
states are the same. Likewise, the requirement that lithium be slowed in stage II takes the
similar form

ηa(Li)
max/v

(Li)
III > ηa(Rb)

max /v
(Rb)
III . (2.6)

For 0 < η < 1, both Eq. (2.6) and Eq. (2.5) are satisfied if Eq. (2.5) is.

Using the fact that v
(Rb)
III = v

(Rb)
f and v

(Li)
III =

√
v

(Li)2
f + 2ηa

(Li)
maxLIII, the restriction on the
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Figure 2.9: Dual-species slower trade-offs. (Left) Slow flux of rubidium and lithium is
plotted as a function of total lithium slower length. Lithium length is applied first to the
stage III slower, up to its maximum length, indicated by the vertical dashed gray line.
Additional length is allocated to the stage I slower. Rubidium slower (stage II) length is set
to maximize rubidium flux at the particular slower length. The stage II length is plotted
at the right. Adding lithium sections to the rubidium slower decreases the rubidium flux,
but over a wide range of parameters the fractional gain in slow lithium flux far exceeds the
cost in rubidium. The lithium performance of the dual-species slower does not approach
that of a slower optimized for lithium alone. Parameters used here are η = 0.7, Ld = 10 cm,
Lm = 10 cm, and final velocities vf for rubidium and lithium of 30 m/s and 90 m/s,
respectively, and oven parameters described in the text.

length of stage III can be written

LIII <
η3a

(Li)
maxv

(Rb)
f

2a
(Rb)2
max

−
v

(Li)2
f

2ηa
(Li)
max

. (2.7)

In essence, this condition is meant to guarantee that the kink in the desired magnetic field
at the interface of section II and III is sufficiently large. In reality, the slope of the magnetic
field cannot be made to increase abruptly. In the physical design of our slower, we will have
to make sure it changes fast enough. Like the factors η in the designed rate of deceleration,
the margin 1/η in Eq. (2.5) is meant to help accommodate the differences between an ideal
and an actual slower.

Even with a limit on the length of section III, increasing the total length of the lithium
slower, by including section I, may be advantageous, as shown in Fig. 2.9. Section I offers
an additional benefit that will be apparent in Sec. 2.3.3: some of the coils that produce the
field for section I can be made large, such that their field extends into the oven chamber. To
some extent, this allows additional slowing of lithium without increasing the total length of
the slower; rather, dead space at the beginning of the slower is reduced. In addition, it is
advantageous for a rubidium Zeeman slower to operate on top of a large, at least 250 G bias
field, at which point the excited state hyperfine structure is in the Paschen-Back regime, in
order to reduce the likelihood that an atom is pumped to a dark state [57]. Lithium, which
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reaches the Paschen-Back regime at much lower field, might as well be slowed as the bias
field is ramped on.

2.3.3 Designing the slower windings

Now that we have a decent model that allows us to weigh the effect of various choices of
slower lengths and parameters η, which determine the magnetic field profile Btarget(z), we
consider what sort of slower we can actually build. Our general approach to this problem is
to try certain parameters, producing a target magnetic field profile, and then see if we can
expect to build an approximation of that profile that is “good enough” by playing with a
model of the magnetic field produced by an achievable configuration of coils and currents.

We found it helpful to break down what constitutes “good enough” into a manageable
list of quantitative metrics. The key ingredients are as follows.

Correct vmax and vf The parameters that produced the target magnetic field imply or
assume a maximum velocity and final velocity for each rubidium and lithium. Even if
the actual field deviates from the target field, we will insist on the difference between
its minimum (the magnetic field at which slowing begins for a particular species, which
is determined by the slower laser detuning) and maximum (the field at which slowing
ceases) maintain the desired velocity limits.

Achievable deceleration The target field is meant to produce uniform deceleration. In
reality, it’s fine if the deceleration is not uniform, as long as the rate of deceleration
expected by the actual field is achievable given the local laser power. Recall that we
are assuming a focused beam, so the intensity is highest at the beginning of the slower.
Given an expected field B(z), the condition of achievable deceleration is

µ

m

vz(z)

vr

dB(z)

dz
<

s(z)

1 + s(z)
amax, (2.8)

where µ is the magnetic moment, m the mass, and s(z) the local intensity in units of
the saturation intensity. Keep in mind that this equation does not consider the effects
of finite (perhaps even power broadened) linewidth. However, we will seek to satisfy
it completely and hope that linewidth will help us overcome imperfections in the field
produced by imperfections in the actual winding.

Rubidium must stop being slowed at the right point Related to the first point, but
worth explicit mention, in order for rubidium to exit the slower with the right velocity,
the acceleration required for rubidium to remain in the slower must substantially exceed
the acceleration achievable at a particular value of the magnetic field. Thus, we look for
violation of Eq. (2.8) for rubidium the appropriate location. Here, the finite linewidth
is a potential liability. We can be hopeful, though, as the beam is weakest at the end
where rubidium exits the slower. Nonetheless, it will be prudent to look for a large
and sustained violation of the achievability condition.
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Figure 2.10: Slower winding and target field on same linear position scale. The main
section consists of two layers of double-diameter hollow core wire with up to sixteen layers
of narrow gauge solid wire on top. The large diameter windings shown at the left are the
“stretch” coils that extend the section I field into the oven chamber. The section III field
is aided by a high-current “boost” winding, shown in blue to the right. The field peak is
sharpened by the high current “anti-gradient” winding, shown in green to the right.

We modeled our physical slower by considering a configuration of closed loops of wire
in various positions and with various currents. In reality, we constructed our slower from
helical windings; the closed loop approximation should be good as long as the coil spacing
is much less than the coil diameter. To assist in finding a configuration of coils that is
good enough, it helps to have additional constraints. These constraints should incorporate
physical restrictions in the slower winding. To get a sense of the constraints we employed,
take a look at the winding pattern we ultimately used in our slower, shown with the target
field in Fig. 2.10.

We chose to have five distinct sets of coils. The main section of the slower would comprise
two sets of coils: one set composed of 1/8 inch wire and another of 1/16 inch wire. Up to
two layers of the 1/8 inch diameter hollow wire would be spaced at multiples of 1/7 inch
and covered by up to sixteen layers of 1/16 inch wire, which would be spaced at multiples of
1/14 inch. The 1/8 inch base layer of coils were to be wound on a one inch outer-diameter
tube. Each subsequent layer would rest on the layer below, giving the layers 1/8 or 1/16 inch
spacing in the radial direction. A key constraint imposed on these windings was that every
coil be placed on top of another coil. Gaps in the winding were allowed only on exposed
layers. In addition, the average winding pitch was constrained to increase from left to right,
as shown in the zoomed in regions of Fig. 2.10. All of the wire in the main section was
designed to operate at the same current, but in optimizing the winding pattern the current
required was allowed to vary between five and ten amperes. Water can be run through the
1/8 inch hollow layers to prevent some of the heat generated by the slower windings from
conducting through to the vacuum chamber.



CHAPTER 2. DUAL-SPECIES APPARATUS 23

A large diameter coil was included in the coil optimization routine. The first layer of this
“stretch” coil was fixed at an inner diameter of five inches in order to allow the magnetic
field to stretch into the oven or differential pumping region. Up to six layers of winding with
1/8 inch wire were allowed in the stretch section. The axial position of the stretch coils were
constrained to limit the overlap with the main section. The designed stretch coil current,
like the inner diameter, was constrained to be five times the current in the main section,
reducing the number of free parameters and increasing the speed of finding the optimized
winding pattern.

The final two sets of coils are meant to facilitate the fast rise in magnetic field at the
end of the slower. The “boost” coil consisted of up to two layers of the 1/8 inch wire wound
on top of the two layers of 1/8 inch wire from the main section. In retrospect, winding the
boost directly on the 1 inch tube would have been a better choice, allowing the field slope
to change more abruptly and making it easier to stop slowing rubidium. The boost coil
current was allowed to reach several hundred amperes. The final coil is the “anti-gradient”
coil, which is wrapped on 1.5 inch tube that can fit over the mini-flange that connects the
slower vacuum tube to the MOT chamber. The anti-gradient coil consisted of three turns of
1/8 inch wire running up to 200 amperes.

The particular pattern of winding for the main and stretch coils, along with the currents
of all of the coils, was optimized using an iterative algorithm that involved adding and
removing turns of simulated wire in various places, subject to constraints already mentioned,
and varying the currents in order to minimize a target function. The target function weighed
five criteria:

1. The squared difference between the target field and calculated field,

2. The condition that the acceleration required, Eq. (2.8), was achievable as necessary in
the three stages,

3. The condition that rubidium cease accelerating at the appropriate place,

4. The condition that the gradient field at the MOT be minimal, and

5. The condition that the field reaches the right maximum value so that the final velocity
of lithium is correct.

Condition 4, in retrospect, was not important as the gradient due to the slower can be made
to add constructively with the gradient of the MOT coil, and does not hurt the operation of
the MOT. We would not include it if we were to perform the optimization again. The bias
field of the slower is canceled by compensation coils.

Each of the terms in the target function was weighted empirically to assist the algorithm
in finding a suitable local minimum. Once a winding and current set were found, tweaks
were made by hand to further optimize the field (e.g. increase the likelihood of rubidium
ceasing deceleration at the expense of larger gradient field at the MOT) and to make the
winding pattern easier to produce (e.g. make the spacing more even so that fewer changes
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Figure 2.11: Design field (left) and acceleration required (right). (Left) The target field
is shown in solid blue, and the calculated field from the coil winding is shown in dashed
orange. (Right) The acceleration required is expressed in terms of amax for each species.
Divisions between the sections, based on the target values of the magnetic field, rather
than the design lengths L, are shown as vertical dashed lines. The maximum acceleration
achievable given the laser power, assuming a minimum intensity I/Isat = 2.5 10 cm past
the end of the slower, at the presumed position of the MOT, is shown in solid dark gray.
As desired, the acceleration required of rubidium exceeds the maximum possible under the
simple model that does not account for finite linewidth or transverse variation in the laser
power.

in spacing would be required). Throughout the optimization process, we kept tabs on a
plot of the acceleration required and a comparison of the actual and target field, as shown
in Fig. 2.11. The target field parameters ultimately employed included a 5 cm transition
region between stage I and stage II in which the target field did not change. Additionally,
the design parameter η varied from section to section. The parameters were LI = 18 cm,
LII = 61 cm, LIII = 2.6 cm, ηI = 0.78, ηII = 0.67, and ηIII = 0.68. Lithium and rubidium
final velocities vf were 40 m/s and 30 m/s, respectively. We later realized that higher final
velocities up to 100 m/s for lithium could have been used.

2.3.4 Winding the slower

The ambitious nature of the dual-species slower requires precise winding. The main innova-
tion that we employed to reach the desired precision was the use of the threading functionality
of a lathe in laying each turn of wire. In the process of winding the main and boost sec-
tions of the slower, which are wrapped on a single tube, the threading gears were always
engaged and the turns of the chuck (performed by hand rather than by motor) were carefully
counted. In this manner, each layer of wire could be absolutely referenced to a particular
“home” position of the compound tool holder.

The use of the lathe’s threading facility was inspired by the fortuitous fact that both seven
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Figure 2.12: An overview of the first half of the wound slower. One-quarter, one-half,
three-quarter, and full density turns are clear.

and fourteen threads-per-inch are standard pitches for 1-1/4” and 7/16” bolts, respectively,
and are thus among the limited options built-in to larger imperial lathes. The standard
square cross section magnet wire used in our group (hollow conductor kapton-wrapped mag-
net wire from S&W Wire) happens to be about 1/8” wide. In considering ways of making
more precise magnetic fields, I noted the compatibility of 1/8” wire with a seven-per-inch
pitch and, furthermore, was able to find square magnet wire with approximately 1/16” width
(14 AWG square conductor wire with polyimide enamel from MWS Wire Industries), com-
patible with 14-per-inch pitch. Furthermore, half density windings of the thinner wire could
be achieved. Using the thinner wire allows more layers with different numbers and pitches
of turns in the same space, and allows finer control of the turn density. The procedure for
winding the slower is detailed in Appendix A. A snapshot of the precise winding is shown in
Fig. 2.12

2.3.5 Testing the slower

Before installing the slower, it is very helpful to run a few tests. Resistance measurements
between unconnected conductors can reveal shorts (oops!) and four-point resistance mea-
surements of the various contiguous layers will serve as a baseline for future reference. Drops
in resistance over time could indicate shorts between layers. It’s also important to make an
accurate measurement of the magnetic fields generated by the various coils, both as a test for
shorts between layers and also to aid in simulating the function of the slower, if necessary.

We used F.W. Bell transverse and axial hall probes to measure the magnetic field at
centimeter intervals along the center of the coils. As expected, the field is mostly axial.
The magnetic field measurements were performed in a differential manner with DC current
switched on and off at each position. The main set of coils, including the 1/8” base layer,
is composed of seven different pieces of conductor. The field due to each conductor was
measured separately to allow for the possibility of optimizing the operation of the slower by
running slightly different currents through the different conductors that comprise the main
section. The boost, stretch, and anti-gradient coils were measured separately as well.
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Figure 2.13: Measured slower field. The agreement with the expected field is very good,
but the measured field curvature at the transition from stage II to stage III is less than
we had hoped for. Details on the performance of our slower, and suggestions for further
improvements, can be found in our publication, Marti et al. [48].
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Figure 2.14: A screenshot of our numerical optimization using the simulated slower and
fields (left) allowed us to vary multiple parameters and estimate the effect on the capturable
flux. Data from our actual optimization (right) showed similar trends, but aligning slow
lithium and rubidium flux with a large boost current proved more difficult in reality than in
theory. The large purple dot in the right-hand plot represents large rubidium flux with zero
boost current. An island of high flux with high boost is seen around 125 amps. Parameters
aside from the boost and main currents are not the same in the left and right figures.
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With the field well measured, the performance of the slower can be simulated numerically
in great detail—accounting for beam inhomogeneity and finite linewidth, for example—
allowing one to vary a wide range of parameters to assist in finding suitable settings. We
found that including the magnetic fields produced by the MOT in the simulations of the
slower improved their ability to predict our observed loading rates. Ultimately, the proof of
the slower is in its performance in loading a real MOT. The measured fields of our slower, its
real-world performance, and suggestions for future improvements based on lessons learned
since its original design are detailed in our publication, Marti et al. [48]. A screenshot of
some of our numerical optimizations, in which many simulated parameters are varied, and
MOT fluorescence data tracking a similar variation in parameters, is shown in Fig. 2.14.

Our goal of producing a stage III that slows lithium but not rubidium was only partly
achieved. Operating in dual species mode as intended, we were unable to find settings that
produced a large rubidium flux with exit velocities low enough to be captured by the MOT,
owing to the limited field curvature at the transition from stage II to III. New slower designs
based on this concept would do well to place more emphasis on increasing the curvature in
this region, perhaps with smaller boost coils or by placing the boost coils further from the
main coils, as suggested in our publication.

The slower works very well as a single-species slower—no stretch, boost, or anti-gradient
currents required—as very few compromises were made in its rubidium performance in the
effort to accommodate lithium, and the smooth field and aggressive deceleration payoff in
the rubidium flux. Other than producing the data for Marti et al. [48], the slower has been
operated in rubidium-only mode for all of the experiments described in this work. In this
mode, only the main sections of the slower are powered. The stretch, boost, and anti-gradient
coils remain, but are idle.
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Chapter 3

Microfabricating a magnetic ring trap

The initial goal for our team was to trap and condense atoms in a magnetic ring trap, building
upon work that had been done along these lines in our group on a different apparatus [23].
In contrast to that work, which employed hand-wound millimeter-scale coils with sufficient
magnetic field inhomogeneity to preclude filling a ring with a BEC, our experiment would
build upon the micro-fabrication expertise developed by members of our group’s atom chip
experiment [70] to produce coils capable of trapping atoms in an extremely flat potential
with a circular minimum.
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Figure 3.1: Overview of the microfabricated chip design, including labeled crosssection
of the assembled stack of four chips, magnetic field profiles, and schematic of the overall
assembly.
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The basic requirements and design of the microfabricated chips were worked out by our
postdoc Anton Öttl, and are shown in Fig. 3.1. Prior to my assuming a role in the fabrication
process, two members of our research group, Tom Purdy and Dan Brooks, had developed
and demonstrated a process for micro-machining deep (100s of microns), high-aspect ratio
(>10:1) and sub-micron positioned through-silicon features on double-sided silicon wafers.
Preliminary work had been done on copper plating and planarizing these microfabricated
chips, though these aspects of the process were largely undeveloped. Tom had been able to
show very promising proof-of-concept electroplating of the larger, lower-aspect-ratio (2.5:1)
antibias coils. The metalization process we employ leaves metal on the surfaces of the chips,
which must be removed. Tom had demonstrated the ability to remove this metal in antibias
chips with copper on one side.

An overview of the project goals and status as it stood when I assumed the lead, produced
as part of a request for proposal in an attempt to outsource the chip fabrication project to
Teledyne Scientific, can be found in Appendix B. Several aspects of the chip fabrication had
yet to be developed completely. In particular:

1. Consistent void-free copper filling of the high-aspect-ratio “wires” (6:1) on the curva-
ture chip had not been achieved.

2. A compatible planarization process for removal of excess copper had not been developed
for the curvature chips.

3. Planarization of double-sided chips had not been achieved.

4. Post-processing procedures (e.g. annealing of plated copper) were largely unexplored.

5. The methods and procedure for the assembly and precise alignment of chips into a coil
stack was required.

6. Destructive and non-destructive methods of testing the electrical and mechanical ro-
bustness of the chips required refinement and further development.

7. Operational capabilities and limitations (i.e. current carrying, heat sinking and distri-
bution, handling) needed to be determined.

The unique nature of our chip coils (large, high-aspect-ratio, high density features dis-
tributed over a large area of both sides of the silicon) place them in a regime which has been
sparsely explored by industry and academia. The development of our process has therefore
been guided by a combination of prior research on thin (nanometer scale) films and on sparse
100 nanometer to 10 micron-scale high-aspect ratio features.

The development of an appropriate process was further complicated by the fact that we
had a very limited number of quality samples from the first (micro-machining) stages of
production, necessitating excessive care on ensuring a high yield on these samples. Tom
was available to introduce me to many aspects of the chip fabrication procedure, but the
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knowledge and skill required to micro-machine quality double-sided chips remained his alone.
Thus, most process development was done on stand-in chips differing in key ways from
the actual production samples. In most cases, single sided chips were used at first. The
process was then extrapolated to double-sided chips and tested on discarded and early-stage
(often with shallower features) or defective (with broken sidewalls, for example) double-
sided chips. A “best effort” would then be performed on the production samples. In an ideal
scenario, many identical production chips would have been available for testing and process
development, allowing for more parallel testing and more accurate indication of the process
efficacy.

The details of the chip micro-machining procedure, as well as the specific parameters of
the electroplating process that we developed for both the curvature and antibias wafers can be
found in Appendix A of Purdy [70]. In this chapter, I will touch on a few of the challenges
that we overcame in developing the electroplating recipe, including some suggestions for
further improvement. Mainly, though, I will report on subsequent stages of development,
including our planarization, annealing, chip verification and testing, and bonding procedures.
Preliminary measurements of the thermal capabilities of the completed chip stack are also
reported.

3.1 Electroplating

Before the electroplating process is to begin, a metal layer (or two) is deposited onto the
silicon-oxide substrate. In our case, a thin layer of titanium serves as an intermediary between
the silicon-oxide and a layer of copper. The metal layers serve two main purposes. First, the
copper serves as a seed on which more copper can be deposited by electrochemical means.
Second, the metal serves to provide electrical connectivity between all areas where we desire
copper to grow.

There are two basic strategies for electroplating deep features. The most straight-forward
way is to deposit copper (or electrically connect) only the bottom of the future wires and
grow the copper in a bottom-up fashion. This approach works when all of the wires can
be joined with minimal electrical resistance such that the growth rate in all of the wires is
nearly the same. The other approach is to coat all of the surfaces with a seed layer and
grow copper everywhere, even where it will not be wanted eventually. This approach has the
advantage of great electrical conductivity, and is useful in cases like ours where the wires are
very long (so that the resistance of a seed layer lying within them would be large) or where
many features that require copper are electrically isolated. The challenge of this approach
is filling deep features completely, without voids. In order for this to be done, the copper in
the trenches needs to grow from the side in, with a preference for faster growth deep in the
trenches.

The electroplating procedure that we developed was based on the work of Sun et al. [85].
There, 10 micron square by 70 micron deep vias were filled with copper using a commercial
plating apparatus, a homemade plating solution, and special current sequence involving a
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forward plating pulse, a quick reverse de-plating pulse, and a period of no current flow.
Electroplating dynamics are very complex, and a priori it was not clear how to best apply
their work to ours. There were several key differences between their application and ours.
Notably,

1. Their features are square and sparse, resulting in a much lower (several orders of
magnitude) density of “deep” features. Our features are not square, but are distributed,
and are densely packed. Our features have 3 distinct dimensions rather than two.

2. Their features are evenly distributed over the entire surface, whereas ours have very
high density in some areas and low density in others.

3. Their commercial plating apparatus agitates the solution in a different way than our
homebuilt one.

The plating process is, by necessity, very sensitive to the local concentration of different
molecular constituents and chemical intermediaries present in the plating solution. The
local electric field and rate of various chemical reactions on the chip surface interact with
(and maintain) these chemical gradients, allowing the copper deposition to occur in the non-
uniform, bottom-up manner that we require to completely fill the deep wire and via features
present on the chips. Thus, we were not surprised that the parameters that worked for Sun
et al. [85] did not apply directly, in an obvious way, to our needs.

Through much iteration of plating parameters (solution additive concentration and main-
tenance procedures, plating current values and pulse lengths) we found a process that pro-
duces adequate results. Limitations of the process as it stands are that plating quality is
not uniform across the whole sample being plated, though it may be adequate for our needs.
Improvements to the plating apparatus that would create more symmetric and/or uniform
electrical and chemical environment, such as more uniform agitation, would likely improve
this, though the degree to which the inherent non-uniformity of the chip (rather than the
plating apparatus) is responsible for plating non-uniformity we do not know.

Another possible improvement may the use of a larger amount of plating solution, either
by performing the plating in a larger bath or using some form of recirculation with an
external reservoir. The overall amount of copper deposited in our process is quite large, and
the plating solution likely changed a lot in constitution throughout the process. We found
that using fresh solution in each plating run produced the best results; it’s possible that
keeping the solution more fresh would have further improved things.

Photos of electroplated samples are shown in Fig. 3.2. Such polished cross-sections, along
with surface inspection, are the tools with which we can evaluate the process at this stage.
Resistance measurements of the final polished and annealed sample would likely provide a
better “figure of merit,” however other variations in the chip (etch depth, most importantly)
can make comparisons between chips difficult. Most importantly, we did not have the time or
resources to optimize the process using this better figure of merit (resistance) and each step
of the process was tackled individually by necessity. Details of our electroplating apparatus,
and our adapted plating solution, parameters, and process, are detailed in Purdy [70].
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Figure 3.2: Photos of the curvature coil electroplating. (Left) A polished cross section
of the wires in the curvature coil shows voids. (Center) Using our best known parameters,
void-free filling has been achieved, at least in the section of the chip shown here. Extreme
copper overfilling in this section of the chip was deemed necessary to insure adequate copper
filling in the large pads of the chip. In retrospect, overfilling with so much copper may not
have been prudent, as removing such a thick layer of copper poses a challenge. (Right) The
surface of the chip as it appears during electroplating.

1 micron silicon dioxide Silicon substrate copper

20 micron
fragile features!!Copper over plated 

50-150 microns

Have Want Want Avoid

Figure 3.3: Planarization scheme and photos of some common pitfalls of purely mechan-
ical polishing: (top to bottom) surface shorts, cracking of wire sidewalls, and wholesale
delamination of copper.

3.2 Planarization

The plating procedure we developed leaves 50–100 microns of copper on the surfaces of the
chip (really the “chip” at this stage is a quarter wafer containing several individual coils).
This excess copper must be removed while preserving delicate silicon features and copper
below the surface of the chip. This process is complicated by several factors:

1. Chips with copper on both sides do not have a flat reference surface and copper is not
evenly distributed on the surfaces. Thus, purely mechanical polishing that does not
distinguish between Cu and Si or Si-oxide will tend to remove a substantial amount of
material below the chip surface.
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2. Each side of the wafer may have a different amount of copper because of differences
in the duration of plating. Ideally, this factor could be minimized by more consistent
plating.

3. The wafer must be mounted to a chuck to be polished, and standard (reversible)
mounting procedures involve hot wax bonding. Thermal expansion and bowing of
the piece during temperature cycling may result due to different thermal expansion
properties of Si and Cu, and due to different amounts of Cu on different sides of the
chip. Thermal stress on the Cu-Si surface can cause delamination of copper from this
surface and/or damage to delicate silicon features.

4. Traditional mechanical lapping procedures are rough on the thin Si walls.

Photos illustrating some of the effects of these complications are shown in Fig. 3.3. These
sort of poor polishing results lead us towards developing a chemical-mechanical polishing
(CMP) process for our chips.

CMP, when done right, can allow for highly selective and highly planar material removal.
In the ideal case for our application, the CMP process would be unable to remove any Si
or Si-oxide while gently removing only copper that is in contact with the polishing surface.
The way in which this ideal is approximately achieved is an active area of research [88, 75],
but it can be schematically thought of as a competition between several processes. First, a
chemical reaction dissolves copper, removing small amounts of copper from the surfaces of the
chip and quickly dissolving any copper particulates that have been removed by mechanical
means. Second, a slow reaction passivates the copper surface, inhibiting its chemical removal.
Third, slight mechanical agitation removes the passivating layer, along with small amounts
of copper, allowing the chemical etch to continue in abraded areas. The resulting effect
is that copper areas that are not in contact with the polishing pad are protected by the
passivation reaction, but that copper in contact with the pad is removed quickly by the
combined chemical and mechanical process. Ideally, the Si and Si-oxide parts of the chip
are affected only by the mechanical aspects of polishing, which can be minimized when the
primary means of copper removal is chemical.

After a lot of trial and error and in consultation with CMP experts in industry and
in other departments at Berkeley—notably Professor Fiona Doyle and former students of
hers, Shantanu Tripathi, now at Intel, and graduate student Seungchoun Choi, along with
Professor David Dornfield’s graduate student Joshua Chien—we found an effective CMP
slurry and process for our double sided chips. This process is detailed in the rest of this
section.

First, excess copper on the surface of the chips is reduced from 100–200 microns to 10–50
microns by a purely chemical wet copper etch process. Reducing the thickness of the copper
layers not only reduces the CMP time (the CMP process removes material slowly), but it
reduces the stresses on the surface of the chip during CMP and during the thermal cycling
employed in mounting. The primary reason the chips have so much additional copper on
the surface in the first place is that the narrow wire features accumulate copper at a much



CHAPTER 3. MICROFABRICATING A MAGNETIC RING TRAP 34

Figure 3.4: Chip after wet etch. The area around the pads, which were masked by super
glue, is etched at an accelerated rate.

chuck

handle wafer

polished
piece

Figure 3.5: CMP chuck and machine in action. The chuck (left) consists of an aluminum
mount with inset region for the handle wafer. The handle wafer has space in the center for
the piece to be polished (shown) and consists of a 4 inch wafer with slightly thinned wafer
pieces epoxied around the edges. The chip is affixed to the center of the handle wafer with
bonding wax.

higher rate than the large-area pads used for connecting the leads to the surface. In order
to bring the level of copper in the pads to the level of the silicon substrate, the rest of the
chip must accumulate an excess. The pads, though, have only a tiny excess. Thus, during
the initial chemical removal of excess copper, the large interconnection pads are protected
by covering them with super glue, so they are not etched.

The wet procedure employs a commercial etchant, Aluminum Etchant Type A from
Transene Co., Inc., heated to 50◦C. We etch the chips one side at a time by covering the
non-etched side with Kapton tape. The etch speed is roughly 3 microns/minute. The etch
time is varied in order to leave 10–50 microns of copper on the surface of the chips and,
most importantly, above the chip wires. Interestingly, we observe the etch rate is accelerated
around the masked (super glue-covered) regions, as shown in Fig. 3.4.

Next, we employ our CMP procedure to remove the remaining excess copper. We use a
G&P Technology POLI-500 DC Chemical-Mechanical Polisher with a custom chuck, shown
in Fig. 3.5. The general procedure for using the polisher can now be found in chapter 10.3
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table on 90 rpm oscil on DI off
head1 on 60 rpm slurry 1 on slurry 2 off
head2 off 0 rpm head1 down head2 up
pressure 100 g/cm2

slurry flow 100 mL/min

Table 3.1: POLI-500 DC settings. The piece to be polished is affixed to head1.

of the Marvell Nanolab manual [50] (though I don’t believe this document existed when our
work was underway), and include our procedure for conditioning the IC1000 polishing pad.
The POLI-500 settings we settled on are shown in Tab. 3.1.

The slurry that ended up working best for us consisted of (per liter deionized water) 10–
20 grams 0.3 micron alumina abrasive powder, 7.5 grams glycine, 0.15 grams benzotriazole
(BTA), 50 milliliter of 30% hydrogen peroxide, with smaller amounts of abrasive used for
the final stages of planarization. In this slurry, BTA plays the role of an inhibitor [34],
reducing the chemical etching of copper by the hydrogen peroxide and glycine, and allowing
the copper to be polished with minimal “dishing” of the copper beyond the Si or Si-oxide
surface, as shown in the profiles in Fig. 3.6.

In order to polish both sides of the chips, we first run the CMP on one side using our
optimized slurry. The chip is mounted using a low-temperature bonding wax with only
moderate hardness (MWM070 from South Bay Technologies) to reduce thermal expansion
stresses. Not all surface copper is removed from this side. We cease CMP when polishing
appears to be uneven and Si-oxide is exposed on part of the wafer. Si-oxide can be identified
by its deep blue or Newton ring rainbow coloration. We then continue CMP on the second
side. When polishing appears uneven, the wafer/wax/chuck assembly is temperature cycled
to relieve strain on the wafer caused by the thermal expansion. This periodic re-seating of
the polished piece by temperature cycling is critical to obtaining uniform polishing of double-
sided samples. Polishing continues on the second side until all surface copper is removed.
Finally, CMP is resumed on the other side, temperature cycling as necessary, until all of the
surface copper is removed.

3.3 Singularization, Annealing, and Testing

The polished chips were inspected and photographed under a microscope for defects acquired
during the polishing and plating steps. An ASIQ profilometer can produce a surface profile of
features & 10 microns in size with sub-nanometer precision, allowing us to evaluate “dishing”
and surface quality. Sample microscope images and ASIQ profiles are shown in Fig. 3.6.

Next, the chips were “singularized,” that is, the individual coils were cut out from the
quarter-wafer of similar coils that have been processed thus far. The singularization process
was performed on an Esec dicing saw. The dicing procedure is well described in Purdy [70],
Appendix A, section 1.5.
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Figure 3.6: CMP results. Top left, even polishing of one side of the curvature chips is
indicated by the mostly intact oxide layer. The oxide is originally one micron in thickness.
Right, elevation profiles of the annulus (top) and leads (bottom) show sub-micron dishing
of the copper and sidewall features. Bottom left, a close up of one of the polished coils.
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Annealing of the plated copper can reduce stresses within the copper and on the silicon as
well as decrease the resistance of the copper. For thin films, at least, the reduced resistance
arises more quickly than the bulk restructuring than the copper crystal, and can actually be
achieved with a relatively short low temperature anneal [10]. This is good because heating
our chips too much can cause the copper to pop out of the silicon owing to the differences
in thermal expansion. Therefore, we do a 250–300◦C anneal of the polished chips for several
hours in a nitrogen atmosphere. We have seen this reduce the resistivity of the copper by
approximately 10%, as shown in Fig. 3.7. The resistance can be accurately measured by
four-point probe, where probes are placed with the aid of a micro-motion stage under a
microscope.

Such four point resistance measurements, taken at various (and numerous) positions
along the turns of the polished chips, provide a non-destructive window into the quality of
the chips at this point in the process. If the depth of the etching on the chips is known
and approximately uniform, such measurements provide an indication of local electroplating
quality and can indicate the presence and location of shorts between turns of the coils. Shorts,
while undesired, need not pose too much of a problem if they are sufficiently large that they
completely “cut out” a single turn of the coil, and can for the most part be compensated for
with a small amount of extra current. A four point resistance measurement as a function of
current across a short could determine the robustness of the short by measuring, essentially,
it’s heating via resistance rise.

3.4 Chip stack bonding

We bonded the stack of four chips together using a low-viscocity, heat-curing, non-conductive
epoxy on a home-built temperature-controlled micro-manipulation stage. The chip stack was
back-illuminated with infrared light. Each of the chips had alignment markings that could be
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Figure 3.9: Chip stack bonding. (Left) Alignment marks of two chips, as seen through
the chips, are nearly in alignment. (Right) A cross section of the bonded chips reveals a
sub-10 micron wide interface between the two chips.

Figure 3.10: Our best, fully-assembled ring trap coils.

viewed through the stack on a microscope-mounted camera. First we bonded the outer pairs
of coils, one curvature and one anti-bias coil. During the bonding and alignment process,
etalon fringes were generated by the narrow gap between chips and served as an indicator of
parallelism.

Then, as shown in Fig. 3.1 and in Appendix B, the two sides of the stack were bonded
and aligned with a 2 mm spacer in between. The spacer was made of highly-parallel pieces
of silicon. We did not precisely measured the alignment precision of our bonding setup, but
I estimate it is the range of 10 microns. The parallelism across the chips was on the order
of 5-10 microns, which was the thickness of the epoxy layer. Images of alignment marks in
alignment and of the bonded interface, with annotated scale bars, are shown in Fig. 3.9.

We measured the thermal conductivity through a stack of chips and found that a thin
layer of non-condutive epoxy more effectively transfers heat than a thicker thermally con-
ductive epoxy, by about a factor of two. This was likely because all surfaces are very smooth
and thus the 50 micron-scale silver particles present in many thermally conductive epoxies
could not do their typical job of filling in the cracks.
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Figure 3.11: Mounting and heat sinking the chip stack. (Right) A CAD model of the chip
stack mounting and heat sinking hardware, as described in the text, with inner ceramic
mount (top) in contact with outer ceramic mount (middle) in contact with copper cooling
tubes (middle, bottom). (Left) An assembled (test) chip stack mounted in the holding arm,
which is formed by the copper cooling tubes, ready to go into vacuum.

Our final best-effort chip stack is shown in Fig. 3.10.

3.5 Mounting, thermal testing, and in situ

monitoring

The cooling and mounting apparatus we employed was designed by our postdoc Anton Öttl
and is shown in Fig. 3.11. The mounting setup could be considered a sandwich, with the chip
stack as the meat and two symmetric form-fitting ceramic mounts as the bread. The ceramic
bread interfaces with complementary ceramic pieces that are epoxied to copper cooling tubes,
through which we could flow coolant. The ceramic employed was a machinable aluminum
nitrate called shapal.

By applying a known heat load to the chip stack and measuring the equilibrium tem-
perature at multiple places along the path of heat flow—on the chips, on the inner ceramic
mount, on the outer ceramic mount, and on the coolant-filled copper tubes—we determined
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Figure 3.12: Thermal cycling curves for two different pairs of chips, each with a bias and
anti-bias coil. The chips tested on the left appear more robust than the ones on the right,
as indicated by the lack of hysteresis. The first points in each series of measurements are
indicated with the large right-pointing triangle, while the final point is indicated by the
large square.

the heat sinking capabilities of our chip stack and the cooling/mounting apparatus in which
it sits. In particular, we determined the thermal bottlenecks.

Overall, we measured a temperature rise at the chips of 1◦C per Watt. The thermal
bottleneck was the interface between our outer ceramic mount and the copper tubing. Heat
transfer at the interfaces between the chips and the inner ceramic mount, as well as between
the inner and outer ceramic mounts, was facilitated by thin graphite sheets. Graphite has
excellent thermal conduction only in-plane, so the graphite sheets were kept thin. These
thermal joints were overall very effective at transmitting heat. On the other hand, the
interface between the outer ceramic mounts and the copper tubing relied upon thermally
conductive epoxy.

Regardless, with the setup as-is, we determined that we should be able to constantly run
our target current, four amps, through each chip with a temperature rise of 150◦C. This
temperature rise would be acceptable if we were to cool the chips to -60◦C with methanol,
which was within our capability. With a modest two-fold improvement of the ceramic-copper
junction the estimated temperature rise would be reduced to 75◦C, which would be both more
manageable and leave a greater margin for error. Still, we had a lot of doubt as to whether
the chips could survive repeated cycles of temperature variation.

Thus, we investigated the question of what sort of temperature cycling our chip stack
can stand, at least in the short term. To do this, we temperature cycled the chips by flowing
various amounts of current while monitoring the resistance and temperature of the coils.
Changes of the resistance with temperature are normal, and can be predicted if assumptions
about the distribution of resistivity in the copper wire are made, but hysteresis or changes in
resistance at a given temperature after cycling can indicate structural changes and failure of
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the stack. Preliminary data tracking the resistance of two different pairs of chip coils as the
temperature was cycled are shown in Fig. 3.12. The data suggested that chip resistance over
time may be a good indicator of robustness and possible failure. Preliminary measurements
of the radio-frequency transfer function of early versions of the chips were also performed.
Such transfer function measurements could also be tracked over time and may serve as
additional indicators of chip quality and reveal shorts or other material changes over time.

3.6 Moving on

Because of issues with other aspects of the apparatus, most notably the magnetic transport
of cold atoms into the area where the chips were to be placed, and because of the fact
that we only managed to assemble one chip stack that we deemed suitable for use in our
apparatus, we abandoned efforts to use the microfabricated chips in our actual apparatus.
We deemed the substantial effort required to fully realize the magnetic transport through
the tight apertures imposed by the holding arm and the chip stack not to be worthwhile,
as the likelihood that the chip stack would fail in some way upon installation and repeated
temperature cycling was substantial. Without a backup stack, such a failure would make all
of that additional effort for naught.

As true believers in the sunk cost fallacy, we decided to move on. The “best-effort” chip
stack shown in Fig. 3.10 remains in a drawer in the lab, and we decided to pursue ring
trap and spinor physics in the MOT chamber, in spite of the fact that this chamber lacked
some important features that might have been desired of a top-tier apparatus. Desirable, but
missing features included plentiful optical access, an RF antenna, and magnetic field control.
Nonetheless, we made it work, as evidenced in Marti [49] and the rest of this dissertation.

Were we to continue towards our initial goal of trapping atoms in the magnetic ring trap,
our next step would have been to measure the magnetic fields produced by the assembled
stack of chips. We began development of a system for accurately measuring the fields of the
chip stack that I will briefly describe.

First, we obtained a sensitive magnetic field probe from Micro Magnetics with a spatial
resolution of must a few microns. We mounted this probe on a 3D micro-translation stage
from Newport so that we could sample the magnetic field in the region of the chip stack
with high resolution and precision. The magnetic probe was linear and sensitive only at
fields much less than one Gauss, which meant we could not simply map the field at anything
approaching our process currents. Our plan, which we never implemented, was to put the
magnetic sensor in loop with a compensation coil. This compensation coil would be large
enough to provide a very uniform magnetic field in the region of the chip stack and would
be driven with a precision current source such that the magnetic field at the position of the
sensor be precisely canceled. The relevant magnetic field signal would be the current through
the compensation coil.

In order to mitigate the effects of large near-DC magnetic field noise, our plan was to
drive both the chip stack and the compensation coils with AC currents. Owing to differences
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in complex impedance, the phases of the driving currents of the chips and the compensation
coil might would likely have needed to vary. We never got around to deciding on a concrete
implementation for the phase-locked AC driving currents.
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Chapter 4

Spin vortices

Though we abandoned our efforts to place atoms in an ultra-smooth magnetic storage ring,
we did not abandon ring shaped traps all together. Our explorations of Bose condensed 87Rb
in a 30 µm diameter optical ring trap are detailed in our publication, Ref. [46] and in Ch. 3
of Marti [49]. In this work, we characterized the collective modes of the scalar BEC order
parameter— phonons—and showed how they could potentially be used to perform accurate
and bias-free rotation measurements, even in an imperfect trap. While we did not have
sufficient signal-to-noise to measure a rotation signal, we performed a detailed experimental
and theoretical analysis of the noise in our system and demonstrated that it operated at
the atom shot noise limit. Our signal was limited primarily by unexpectedly large damping
rates, which we now attribute to finite-temperature effects.

The bias-free nature of our phonon gyroscope has its origin in the fact that the trapped
BEC is irrotational at low energy: The order parameter, the phase of the condensate, must
be single-valued, and thus rotation, which corresponds to an accumulated phase around a
closed contour within the condensate, must be quantized.

The order parameter(s) of spinor condensates admit a wide range of interesting structures
[31], some of which are topologically non-trivial. In future versions of this chapter we will
summarize our work creating, imaging, and characterizing interesting spinor structures. Our
main focus will be on the spin vortex in a ferromagnetic condensate, which is topologically
non-trival in the magnetization space but trivial in the larger order parameter space.

While not officially part of my dissertation, my plan is to release an updated version of
this chapter1 wherein I discuss the following topics:

• Making the first spin vortex.

• Varying the vortex core size.

• Analyzing the topological character of the spin vortex.

1Try the Stamper-Kurn group website http://ultracold.physics.berkeley.edu or the ArXiV pre-print
server http://www.arxiv.org.
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• Comparing the stability of the spin vortex with similar looking spin structures without
rotation.

• Accounting for missing transverse magnetization in the imaged spin vortices

• Improvements to the experimental apparatus that would be necessary to improve upon
this work.

At the time of this writing, a discussion of our imaging techniques and images of some of
our spin vortices can be found in Ch. 4 of [49].

Ultimately, our work on spin vortices was put on hold to make the aforementioned im-
provements to the apparatus. While many of these improvements were made (some are
discussed in Ch. 5), we never returned to the spin vortices. Instead, we initiated a pro-
ductive investigation of an even simpler excitation of the spinor condensate: the magnon, a
Goldstone mode associated with symmetry breaking of the ferromagnetic order parameter.
Eventually, a return to the study of spin vortices using the techniques that we developed
might prove quote fruitful.

The basics of magnons are discussed and experimentally validated in Ch. 5 of [49]. In
the following chapter, I use these properties of magnons to extend accurate thermometry of
the BEC into new regimes of low entropy. I also show how magnons can be used to cool a
spin-polarized BEC.



45

Chapter 5

Thermometry and cooling with
magnons

The low [56, 38], even (gasp!) negative [9] temperatures reached in ultracold atomic and
molecular [66] systems are deservedly praised, sometimes even in the popular press (cf.
Ref. [16]), for allowing experimenters to “access new regimes of physical phenomena.” How-
ever, the emphasis in this archetypal phrase is almost always misplaced. The key phrase
should really be new access rather than new physical phenomena. Most of the strange
quantum phenomena the cold atom community explores are quite common. A paper ti-
tled “Cooling to 0.002 times the Fermi temperature” could represent a huge technological
and scientific breakthrough in cold quantum gases, but would be rather unremarkable if the
cooling in question was performed by placing a block of aluminum in a typical household
refrigerator1.

New access to phenomena that exist in a wide range of materials is very appealing. In
exchange for a massive effort in cooling technology, ultracold atomic gases have provided
experimenters with a remarkable window into the quantum world, allowing time- and space-
resolved readout and control of archetypal many-body and condensed matter systems. Still,
in spite of their name, relative to relevant physical energies, many ultracold gases might
be considered quite hot relative to solid-state systems of interest. The entropy per particle
(S/N), rather than the temperature, is the pertinent parameter when comparing physically
similar systems with different length and energy scales. See Table 5.1 for a sample of S/N
in various systems.

In some simple cases, the entropy per particle can be calculated in a straightforward way.
For non-interacting harmonically trapped quantum degenerate Bose and Fermi gases, for

1In solid aluminum, the electron Fermi temperature TF ∼ 135,000 K.
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System Temperature S/N (kB)
Nitrogen gas 300 K 22

Rubidium (metal) 300 K 8.8
Water 300 K 8.4

Sodium (metal) 300 K 6.1
Ideal Fermi gas, harmonic TF 4.2
Ideal Bose gas, harmonic Tc 3.6

Aluminum 300 K 3.0
Ideal Bose gas, box Tc 1.3
Two-level systems ∞ 0.7

Diamond 300K 0.28
Ideal Fermi gas, harmonic 0.05× TF 0.25

Ideal Bose gas, box 0.3× Tc 0.2
Ideal Bose gas, harmonic 0.3× Tc 0.1

Aluminum 77 K 0.06
Aluminum 2 K 0.0001

Table 5.1: Table of entropy per particle in some reference systems. Even when entropy
per particle cannot be calculated from first principles, the measured entropy per mole, or
“standard molar entropy,” can be be looked up at for certain substances and a specified
temperature in chemical tables.

example,

(S/N)Bose = kB × 4
ζ(4)

ζ(3)

(
T

Tc

)3

(5.1)

(S/N)Fermi = kB ×
π2

2

T

TF
−O(T/TF )3, (5.2)

where ζ is the Riemann zeta function. For strongly interacting Bose gases deep in the
Bogoliubov phonon regime, and, in general, for a medium that supports phonon excitations,
such as a crystal lattice well below the Debye temperature2,

(S/N)phonon = kB × γ
2π2

45n~3c3
(kBT )3 , (5.3)

where c is the speed of sound, n is the number density of the medium and γ the number
of phonon polarizations (one for BEC, three for a crystal). In the general case where the
equation of state is not known, or must be calculated numerically, as in Ch. 6, estimating the
entropy per particle is either not quite as straightforward or simply impossible. Regardless,
using these simple relations, the 500 pK sodium gas of Ref. [38] has an entropy per particle
S/N ∼ 1.5 kB, about that of the same sodium cooled as a solid to liquid nitrogen temperature.

2Note that the Debye temperatures of the alkali are quite low. For rubidium it is 56 K.
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At first glance, (weakly interacting) gaseous and (strongly interacting) solid sodium may
seem too dissimilar for the entropy per particle to provide a meaningful comparison, but
because of the manner in which experiments on ultracold atoms are often performed, this
is not necessarily the case. Weakly interacting gases are routinely transformed, ideally
adiabatically, into strongly interacting lattice-trapped systems [22, 3, 65, 86, 78] where the
physics of solids are at the forefront. Without powerful techniques for reducing the entropy
in optical lattices, which have largely, though not entirely [4], remained elusive [53], the
entropy of the initially prepared gas sets a lower bound on the entropy that can subsequently
be achieved in the transformed system.

Entropies per particle in the 0.5–few kB range commonly reached in cold atom exper-
iments have been sufficient to implement quantum simulators exploring a range of funda-
mental effects, including the superfluid to Mott insulator transition of the Bose-Hubbard
model and the universal dynamics of Fermi gases at the BEC-BCS crossover [8]. However,
the entropy required to reach the regimes of non-trivial (e.g. antiferromagnetic or frustrated)
magnetic ordering in multi-component Bose-Hubbard [1, 11] and Fermi-Hubbard [64] sys-
tems is expected to be just beyond what is commonly achieved. At even lower entropy,
perhaps a few orders of magnitude lower than has been achieved with cold atoms thus far,
with fractional filling of the lattice, such systems may be important to understanding the d-
wave superconductivity known to exist in the cuprates [29]. Nobody knows the full richness
(or not) of the multi-component Hubbard models at partial filling, and whether exotic super-
fluid/superconducting phases exist somewhere in them, because they remain theoretically
intractable. To be able to simulate them, then, would be a Very Big Deal.

Why does a small amount of entropy spoil some quantum phases and not others? I
am not aware of a good discussion of this question, but I can offer a few thoughts. Some
systems display quantum behavior at high entropy owing to entropy compartmentalization.
For example, in a BEC, the non-condensed fraction can carry a large amount of entropy over
a wide range of low energy modes, leaving a zero entropy condensate. The non-condensed
fraction interacts weakly with the condensate, making the distinction between condensed
and non-condensed fractions quite stark. In other systems, such as Mott insulating states,
strong localization allows entropy to be compartmentalized spatially, for example, at the
edge of the Mott lobes. The center of a Mott lobe may appear to have quite low entropy.

Interesting spin models often present different situation, as they frequently rely on the
fact that spins are not localized, and interactions between spins necessarily constitute a
dominant energy scale. In “strongly correlated” systems, interesting states may require
correlations that build up over long distances, and perhaps it doesn’t take many thermal
fluctuations to disrupt the long-range quantum ones. In Fig. 5.1, the “spin” pattern is
revealed at S/N = 0.1 kB. If, however, “Berkeley” were more spread out, or had larger
quantum fluctuations, it might still be obscured. In addition, the number of degrees of
freedom in spin systems is typically quite small. For a two-component spin system with one
spin per site, the maximum entropy is S/N = kB×ln 2 ≈ 0.7 kB. Clearly, to reach an ordered
phase, the entropy needs to be less than the maximum. Little is known about the microscopic
physics behind the d-wave superconducting states, but in solid state systems they appear with
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(a) S/N = 2.77 kB (b) S/N = 1 kB (c) S/N = 0.1 kB (d) S/N = 0.001 kB

Figure 5.1: What does entropy look like? In general, it’s not easy to determine, let alone
“see”, the entropy in a system. Here is a special case. Each of these images is 200 by 200
pixels, and each pixel can independently take on one of 16 grayscale values. When all values
are equally likely, the entropy per pixel is log(16) ≈ 2.77 kB. In digital images, entropy is
more frequently measured in bits: log2(16) = 4 bits per pixel. If not all colors are equally
likely—here white is favored as the entropy is reduced—the expected entropy per pixel is
the average S/N =

∑
i pi log(1/pi), where pi is the probability of a pixel having color i. At

lower entropy, a message may emerge from the “thermal” noise if the contrast of this figure
is high enough. This message has some noise of its own, however not all noise is thermal!
Incidentally, the GIF format does a good job of compressing these images, with the overall
file size tracking closely to the true average entropy per pixel.

less doping (i.e. less filling) and at lower temperatures than the antiferromagnetic phases.
The greatest promise of quantum simulation using cold atoms hinges on accessing models

about which theory has been able to say very little, and in order to do this, experimenters
need to be able to reliably create and characterize samples with lower entropy than has
been done before. In this chapter, I describe our experimental efforts exploring cooling
and thermometry of a highly degenerate bulk ferromagnetic F=1 Bose gas using collective
spin excitations known as magnons [27]. Our study reveals that forced evaporative cooling
can produce gases an order of magnitude colder than had been commonly thought, as low
as T/Tc ≈ 0.02 in our experiments, which we estimate (see Ch. 6) corresponds to S/N ∼
0.001 kB at equilibrium. Our thermometry is remarkably precise, operating near fundamental
noise limits, and could pave the way for precision studies of thermodynamics at low entropy.
In addition, we demonstrate a novel cooling method, cycled decoherence cooling, a form of
demagnetization cooling, that does not rely on lowering the trap depth, and that we find
can reach S/N ∼ 0.3 kB. With technical improvements, it may be able to reduce the entropy
even further. Producing low entropy bulk gases does not solve the problem of producing low
entropy gases in optical latices, however, the ability to create and characterize such samples
is a substantial step forward.
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5.1 The challenge of low entropy

Both thermometry and cooling rely on distinguishing the excitations that differentiate a
system from its ground state. At very low entropy per particle the system is very near
its ground state and detecting (or removing) these minor differences becomes difficult, as
doing so requires very high sensitivity to small and rare fluctuations in the state of the
system as well as detailed knowledge of the ground state. For example, the temperature
of an ideal gas is manifest entirely in the variance in its kinetic degrees of freedom. At
high temperatures, crudely sampling the velocity of the constituent particles is sufficient
to establish the temperature. At sufficiently low temperature (and entropy), however, the
variations in velocities can get arbitrarily small, and so arbitrarily precise measurements
would be required. Likewise, reducing the entropy of such a gas in isolation requires a
velocity dependent force or the selective removal of its most energetic constituents.

In a weakly interacting Bose gas with harmonic confinement, the situation is not im-
proved, as the number of non-condensed atoms, Nth drops very quickly below the conden-
sation temperature, Nth/N ≈ (T/Tc)

3, so that not only does the variation in the kinetic
motion decrease, so does the number of atoms with varying motion. For weakly interacting
gases at temperatures comparable to the chemical potential, kBT . µ, the kinetic degrees
of freedom acquire a collective phonon-like character, and can no longer be characterized by
their velocity. In this regime, it becomes increasingly difficult to distinguish thermal fluctu-
ations from quantum ones [74, 84], and it is not obvious on theoretical grounds [63, 45, 33]
that evaporative cooling should continue to function.

While direct measurements of the system itself may not readily yield its temperature,
thermometry may still be possible by placing the system in thermal contact with a system
that would exhibit considerably higher entropy at the same temperature. Additionally, unless
the thermometer is prepared at the same temperature as the system in question before being
placed in thermal contact, the thermometer can be expected to change the temperature of the
system it is measuring. For a highly degenerate ferromagnetic condensate, spin excitations
can constitute such a thermometer.

Spin excitations can constitute an excellent thermometer for several key reasons. First,
in most of the commonly used ultracold gases, collisions that change the projection of the
gas magnetization along the magnetic quantization axis essentially do not occur. Thus,
the number of spin excitations created out of an initially polarized gas can be controlled
precisely. In particular, the number of spin excitations created can be made to be as large
as possible while still keeping the number of spin excitations below the critical number for
their condensation at equilibrium. In addition, in the presence of a weak magnetic field,
spin excitations that differ in magnetic moment from the majority spin component can be
addressed spectroscopically or separated from the majority component by a magnetic field
gradient, allowing them to be imaged with high signal to noise independent of the majority
gas by common techniques, as in Ch. 4.

Any spin or pseudo-spin excitation that thermalizes at constant (pseudo-)magnetization
might make an excellent thermometer, but magnons have some advantages over generic spin
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Figure 5.2: Schematic of effective trapping potentials for different hypothetical spin excita-
tions. (a) In the Thomas-Fermi limit, the majority spin condensate (red) fills the harmonic
trap V (x) up to the level of the chemical potential µ. (b,c,d) The interaction energy be-
tween minority spins and the majority spins is represented in gray. (b) For magnons, the
peak mean field interaction energy n(0)g, with n(0) the majority density at the trap cen-
ter, is equal to µ. The effective potential Veff(x) = V (x) + n(x)g has a flat bottom. (c)
A minority spin with n(0)g > µ interacts with the majority spins more strongly than the
majority spins interact with each other and is repelled from the trap center. (d) Minority
spins with n(0)g < µ experience a weakened harmonic trap in the region occupied by the
minority condensate.

excitations. Neglecting small magnetic dipolar interactions, the magnon is a gapless Gold-
stone excitation corresponding to the rotational symmetry of real spins [47]. Accordingly,
the s-wave scattering lengths that characterize the interactions between two majority-spin
atoms, a−1,−1, and between a majority and minority-spin atom, a−1,0, are identical. Thus,
the mean-field interaction energy ng between magnons and the majority-spin atoms, where
n is the majority density and g = 4π~2a2

−1,0 is the interaction strength parameter, is ex-
actly the same as the interaction energy between majority-spin atoms themselves. Because
of this, in the Thomas-Fermi limit, the magnons see an effective box-like potential, shown
schematically in Fig. 5.2(b), as variations in the majority density compensate energetically
for variations in the confining potential. The consequences of this are that magnons disperse
as free particles down to T = 0 and have a relatively high density of states, and thus larger
critical number for condensation, compared to confined particles of the same mass. Addi-
tionally, magnons can be created with zero energy, less the Zeeman energy. Apart from the
presence of magnetic field gradients, the Zeeman energy is constant and conserved, and thus
does not contribute to the gas dynamics [79]. Mathematically, the Zeeman energy can be
eliminated by boosting the system to a frame rotating at the Larmor frequency.

In contrast, spin excitations involving a different hyperfine state are gapped, in general,
and creating them involves depositing (or removing) interaction energy inhomogeneously, as
illustrated schematically in Fig. 5.2(c,d). In addition to providing a heating mechanism, the
low energy density of states of the spin excitations is reduced by the variation in interaction
energy, and with it the critical number of condensation, reducing the potential temperature
signal. In practice, in 87Rb, all of the inter- and intra-species hyperfine ground-state scat-
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tering lengths are nearly equal [89], and the temperature at which magnons should have a
distinct advantage over hyperfine pseudo-spin excitations is quite low, on the order of a few
percent of the chemical potential. Thermometry using co-trapped pseudo-spin impurities is
a common technique in Fermi gas systems [72, 59, 77, 54].

5.2 Cooling at low entropy

The same characteristics that make spin excitations a good thermometer—high relative
energy and entropy per particle—enable them to cool the majority gas in two distinct ways.
First, spin excitations created in a degenerate Bose gas can decrease its temperature by a
process known as decoherence [39] or demagnetization [19, 56] cooling. Immediately after
the RF pulse that creates the magnons is applied, the minority spin population has the
same energy and momentum distribution as the initially polarized degenerate Bose gas,
with a large condensed fraction, which carries no energy above the chemical potential, and
a small normal fraction, which carries on the order of kBT of energy per particle. Upon
thermalization, the normal fraction within the minority spin gas increases, bounded from
above by its critical number for condensation, and the energy and entropy of the minority
spins increases. The energy gained by the minority is energy lost by the majority, as,
for magnons, the entire process occurs at constant energy, neglecting from the effects of
magnetic field inhomogeneities and dipolar interactions. After thermalization, the magnons
can be expelled from the sample and the process of decoherence cooling can be repeated.
We call this “cycled decoherence cooling.”

This cooling process can also be understood as a form of demagnetization cooling. The
majority gas and the magnon gas are the longitudinal and transverse magnetization, re-
spectively, of a magnetized gas. Transverse magnetization is created by slightly tipping the
magnetization of the longitudinally polarized gas. While the longitudinal magnetization is
conserved owing to the symmetry breaking applied magnetic field, the transverse magneti-
zation is allowed to dissipate at constant energy.

In Fermi gas systems, a similar process would lead to heating as the minority spins would
be created with relatively high average energy (some fraction of the majority Fermi energy)
and equilibrate to a lower average energy (some fraction of the much smaller minority Fermi
energy). Energy lost by the minority spins is, more or less, energy gained by the majority,
leading to heating overall. Thus, to perform thermometry using spin excitations in Fermi
gases, the spins are typically allowed to equilibrate at higher temperature before evaporating
to the final trap depth. It turns out that this sort of evaporation protocol can also lead to
enhanced cooling in bosons by increasing the efficacy of evaporative cooling.

Forced evaporative cooling from a trap with an effective trap depth Ueff � kBT has a
cooling power proportional to the number of thermal excitations with excitation energies
above Ueff . In a weakly interacting single-component degenerate Bose gas, the number
of thermal excitations is determined by the temperature and is independent of the total
particle number, fixing the evaporative cooling rate. By seeding the gas with additional
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Figure 5.3: Schematic illustration of magnon cooling and thermometry protocols with
sample thermometry data. Magnons are created via a RF pulse in a spin-polarized gas at
the final trap depth (a, b) or at an intermediate trap depth (c, d). The magnetized gas
can be viewed schematically as an arrow, initially pointed in the direction of an applied
magnetic field. Introducing magnons corresponds to tilting the gas magnetization. Unlike
the longitudinal magnetization, the transverse magnetization is not conserved, and as the
magnon population loses coherence, the average transverse magnetization dissipates. This is
indicated schematically by the magnetization arrow losing its tilt. The incoherent transverse
magnetization is indicated by the fuzzy background arrows. Equivalently, the magnons
can be viewed as an admixture of mF=0 atoms whose coherence dissipates quickly at the
intermediate trap depth and slowly at the final trap depth. Magnons created at the final trap
depth cool the gas via magnon decoherence cooling, which can repeated in the same sample
as cycled magnon decoherence cooling. Magnons created at the intermediate trap depth
improve the efficiency of forced evaporation. In both cases, the magnons serve as a sensitive
thermometer. As the gas is cooled, the majority gas (or, equivalently, longitudinal spin
component) becomes highly condensed and the temperature signal is lost (e). In contrast,
the magnons (mF=0 component or minority gas) provide a relatively large temperature
signal even at low temperatures (f,g).
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Figure 5.4: Sample preliminary cycled decoherence cooling data. Top row images show the
majority condensate and thermal cloud atoms in time-of-flight. The bottom row of images
shows the corresponding distribution of minority atoms. The graph shows the absolute
and relative (to the critical temperature Tc) temperatures extracted from the majority
atoms. The estimates of temperature are not well calibrated and the critical temperature
is unreliable owing to large uncertainty in the trap frequencies and trap anharmonicity.
Regardless, cooling is clearly working and shows real promise.

spin excitations at constant total particle number, the total number of thermal excitations,
and thus the evaporative cooling power, increases. We call this sort of cooling “magnon
assisted evaporation.” Once again, in Fermi gases, a different situation presents itself, as the
excitations of the minority spins will in general have much lower energy than the excitations
of the majority, and will not contribute to evaporation. Our cooling and thermometry
schemes are illustrated schematically in Fig. 5.3.

In this chapter, we discuss the details of our implementation of sensitive and accurate low-
entropy thermometry using magnons, as well as our efforts characterizing the two different
magnon cooling schemes. As most of the most salient scientific results are in our publication,
Ref. [62], the focus of this chapter will be the experimental and behind-the-scenes details and
evolution of that work. It will probably help the reader to be familiar with that reference
before proceeding.

5.3 First cooling: a benchmark for improvements

Our first attempts at doing cycled decoherence cooling went remarkably smoothly. For
reasons of history and convenience (we had microwaves set up and not RF) we chose to
cool by mixing in a small amount of F=2 into the polarized F=1 condensate using a brief
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microwave pulse. That cooling was occurring was evident immediately from the in situ
images of the majority gas. Even at this early stage, it seemed that a magnetic field gradient
was important in achieving thermalization in a finite amount of time. An example of our
preliminary cooling data are shown in Fig. 5.4.

The preliminary data were very promising, but indicated a need for substantial improve-
ment to be quantitatively convincing. For example, we had little confidence in the estimated
temperature and critical temperature. To do accurate thermometry, lots of things need to
work right and be well calibrated. There are many things to cross-check to assure us that
we’re moving towards reliable measurements, or not.

The BEC critical temperature for an ideal non-interacting Bose gas in a harmonic trap
depends on several quantities that we need to calibrate accurately:

kBTc = ~ω̄
(
N

ζ(3)

)1/3

. (5.4)

Here, ω̄ = (ωxωyωz)
1/3 is the geometric mean of the trapping frequencies, N is the number

of atoms, and ζ is the Riemann zeta function. We can experimentally produce a cloud
with temperature T = Tc by finding settings at which a small condensate barely forms. If
everything is well calibrated, we should find that the Tc calculated using Eq. 5.4 and our
measurements of N and ω̄ agrees well with our estimate of the temperature of the cloud.
The equality should hold over a range of Tc and N .

In the Thomas-Fermi regime, the chemical potential, µ, is another quantity that can allow
us to find consistency between our parameters, relating the trap frequencies, condensate
number, and the in situ size of the condensate:

µ =
1

2
mω2

iR
2
i =

ω̄

2

(
15~2Nca (mω̄)1/2

)2/5

, (5.5)

with Ri the condensate radius along the direction with trap frequency ωi, and Nc the con-
densate number.

Finally, we can measure temperature by different methods, and these methods should
agree in regimes where they are valid. For example, near Tc we can measure the temperature
of our gas by imaging its size as a function of the time following its release from the optical
trap (“time-of-flight” or TOF) along two different axes, with two independently calibrated
imaging systems.

Our first attempts at cooling with magnons clearly showed a gas getting colder, but ex-
actly how much we could not be sure, as the thermometry failed several of these consistency
checks. This spurred us to make a range of changes to our thermometry, imaging, and trap-
ping setups. In the next sections I will describe many of the calibrations and improvements
to our apparatus that ultimately enabled our final study.
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5.4 Momentum space focusing

In a non-interacting, non-degenerate classical gas (obeying Boltzmann statistics), the tem-
perature is manifest in both spatial and momentum degrees of freedom separately. At every
point in position space, the momentum distribution is identical, apart from a multiplicative
constant, and likewise for points in momentum space, as is easily seen from the separa-
bility of the Hamiltonian entering the exponential of the classical phase-space probability
distribution function:

P (x,p) = e(µ/kBT−V (x)/kBT−p2/2mkBT)/Z. (5.6)

Unwanted degrees of freedom can essentially be ignored, as integrating over them yields
trivial multiplicative factors.

For a gas at or near quantum degeneracy, the Boltzmann distribution in Eq. (5.6) is
replaced by the appropriate Bose or Fermi distribution, and the separability of real-space
and momentum-space distributions is no longer obvious. However, the dependence of the
momentum distribution on the trapping potential turns out to take a fairly simple form, at
least for potentials that are well described by a single power law (e.g. box and harmonic).
In the case of bosons, integrating over j quadratic degrees of freedom yields a probability
for the remaining quadratic degrees of freedom s of

P (s) ∝ gj/2

(
e(µ/kBT−(c·s)2/kBT)

)
, (5.7)

where c is a vector of coefficients for the s degrees of freedom, e.g.
√

1/2m for momentum
degrees of freedom, and gj/2 is the Bose function or polylogarithm of order j/2. The sig-
nature of the integrated degrees of freedom (e.g. the trapping potential if we are observing
only momentum degrees of freedom) is in the order of the polylogarithm and, indirectly, the
chemical potential µ. µ appears in Eq. (5.6) but is irrelevant to the shape of the probability
distribution; it’s a multiplicative factor. In Eq. (5.7), however, µ appears inside the polylog-
arithm, and can affect the overall shape of the probability distribution. Note that gj(z) ≈ z
for z � 1 and thus far from quantum degeneracy, or at sufficiently large c ·s, Boltzmann-like
statistics prevail.

In-trap (position-space) images of non-condensed gases thus provide direct access to
the temperature, provided one knows the potential V . However, in situ images are rarely
used for thermometry for several reasons. First, in the presence of a condensate, the non-
condensed part of the gas may be largely obscured, and high optical density makes imaging
such distributions challenging. Even in the absence of a condensate, tightly confining traps
push the relevant temperature signal to small length scales where imaging may be less
sensitive. Finally, the temperature signal is sensitive to the details of the trapping potential,
which may be poorly constrained.

Time-of-flight measurements are the thermometric workhorse of the cold-atom commu-
nity and overcome many of the limitations of in situ thermometry. In most imaging setups,
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Figure 5.5: Principle of momentum space focusing. The action of a harmonic oscillator is
to rotate a system in phase space, shown here with one space and one momentum dimension
versus the harmonic oscillator phase φ = ωt. A few points with the same in situ (φ = 0)
momentum are marked with yellow dots. The imaged distribution, at the top of each
column, shows only position space. The dashed axes show the positions of the initial axes
rotated through angle φ. At φ = π/2, points with the same momenta converge to the same
real-space coordinate.

the signal-to-noise for temperature measurements increases with free expansion time (for
some time, at least) and the expanding cloud asymptotically approaches a shape that re-
flects its momentum distribution.

Momentum space focusing [87, 76] (MSF) takes time-of-flight one step further in yielding
pure momentum-space distributions in an adjustable (and perhaps signal-to-noise optimized)
time, removing most of the dependence on the trap geometry from temperature calculations.
For magnons, which can experience an effective trapping potential that varies with their
temperature (which is related to how much of the trap they explore beyond the edge of the
majority condensate) [18], this feature is quite attractive.

The key insight involved in MSF is that harmonic motion manifests as rotation in phase
space (with coordinates appropriately scaled), and thus a distribution of momenta manifests
as a distribution of positions after a quarter cycle (rotation in phase space by π/2), and vice
versa, as shown in Fig. 5.5. Atoms with initial momentum p will converge on real-space point
xp = p/mω, where ω is the harmonic trap frequency. By releasing our atoms from their
trap into a two-dimensional isotropic harmonic magnetic potential, with the symmetry axis
coincident with the imaging axis, the atoms’ in situ in-plane momentum distribution will
appear after a quarter cycle, neglecting interactions after the trapping light is extinguished.

In the following subsections, I will describe how we implement and characterize MSF in
our system.
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5.4.1 Experimental procedure

Two-dimensional confinement is provided by the same coils that produce the spherical
quadrupole3 and bias fields for the MOT. Near the center of the quadrupole field, the field
produced can be written in terms of the offset and gradients as

B(r) = B0 + JBr, (5.8)

where B0 is the bias field, and JB is the Jacobian matrix of partial derivatives of B. For the
quadrupole, in a basis with the z-axis aligned with the vertical symmetry axis, this Jacobian
has a simple diagonal form:

JB =

∂xBx 0 0
0 ∂yBy 0
0 0 ∂zBz

 =

−B′/2 0 0
0 −B′/2 0
0 0 B′

 , (5.9)

where we write B′ for the vertical gradient ∂zBz. The trapping potential for a spin-polarized
atom with magnetic moment µ and bias field B0 = B0ẑ oriented along the z-axis is

V (r) = µ|B| ≈ µ

(
Bo + zB′ +

x2 + y2

2

B′2

4Bo

)
, (5.10)

where the approximation assumes B0 dominates the other terms in parenthesis. The in-plane
curvature of V implies a harmonic trapping frequency ω2 = µB′2/4mB0. The quadrupole
and bias field are configured such that atoms in the |F = 1,mF = −1〉 and |F = 2,mF = 1, 2〉
states are confined by the field curvature and supported against gravity by the field gradient.

The MSF sequence begins 5 ms after the optical trapping light is extinguished. During
this time, the purging and state preparation (Sec. 5.13) sequences are completed and the
atoms we wish to image are in the |F = 2,mF = 1〉 state and in free fall under the influence
of gravity. At this point we quickly ramp on the bias field B ≈ 36 G over 500µs. B′ rises
more slowly from zero to B′ ≈ 42 G/cm with an exponential time constant of roughly 5 ms.
This gradient overcompensates for gravity (mg = µ×30.4 G/cm) in order to slow the falling
atoms to a stop. After approximately 45 ms, the atoms are stopped (Fig. 5.6b) and B′ is
set to 30.4 G/cm in concert with B in order to maintain a constant transverse curvature of
B′′ ≈ 12 G/cm2, which corresponds to a transverse trapping frequency of ω ≈ 2π × 3 rad/s.
Calibrations, discussed below in Sec. 5.4.3, will reveal a more precise version of this number.

With the magnetic field so configured, the vertical field gradient opposes gravity, lev-
itating the center of mass of the cloud at a constant height. Nonetheless, the atoms are
free to continue their expansion in the vertical direction, as motion along the vertical axis is
unconfined. I will have more to say about this in Sec. 5.4.4.

3Aside: Etymologically, multipoles are assembled from a hodgepodge of prefixes of Greek and Latin
origin. Pole can swing both ways. Multi comes from Latin; the Greek would by poly. Mono and di are
Greek, while quad is Latin and Octo can go either way. For higher-order moments, people tend to steer
towards the Greek, as in tetrakaidecapole for the fourteenth moment.
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Figure 5.6: Experimental sequence for MSF. (a) Gradient and bias fields are first config-
ured to slow and stop the falling cloud. Blue traces show measured coil currents plotted as
magnetic fields. The gradient coil ramps up exponentially with a weak 2 ms time constant
and dominant 11 ms time constant (red fit). As soon as the atoms are stopped (b), the
fields are reconfigured to levitate the cloud until it is focused. The MSF trap frequency is
held roughly constant.

One complication that we need to consider carefully is that the ramps of the gradient
field are slow, limited by the slew rate and bandwidth of the driving power supply, as shown
in Fig. 5.6a and Fig. 5.7a. At one point early in developing MSF on our apparatus we
optimized the gradient field turn-on using the resonant switch in order to have appropriate
field curvature established within a few milliseconds, however we realized later that these
settings were never used for subsequent calibrations and data. To figure out the impact, or
lack thereof, of non-constant field curvature during MSF, we simulate the process using the
experimentally measured field ramps. These simulations will verify that MSF behaves as we
expect, and will guide our calibrations.

5.4.2 Simulating the magnetic focusing lens

The results of simulating the magnetic focusing lens with our measured gradient and bias
coil ramps are summarized in Fig. 5.7. The only free parameter in these simulations is
the equilibrium magnetic trap frequency, ω0 = 2π × 3.05 rad/s, which I adjust to achieve
focusing at the observed time tfoc = 97 ms. The focusing trap is assumed to be harmonic
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Figure 5.7: Simulation results for MSF with our measured field ramps and focusing time
of 94 ms. (a) The gradient (red) and bias coil currents (teal) in arbitrary units, along
with inferred magnetic trap frequency (black), are shown in the top panel. The middle
panel shows the real-space trajectories of atoms with different momenta (different colors)
originating from different locations in the cloud. The bottom panel shows width of a 20
nK cloud with different initial sizes (different colors). (b) The simulated real-space focusing
position of atoms with various energies (blue dots) are plotted in the top panel along with the
focusing positions that would be expected in a SHO with various frequencies. Fractional
errors of the different SHO models, shown in the bottom panel, are constant. In these
plots, for simplicity, representative momenta and temperatures are related by the relation
p2/2m = 2kBT .

and isotropic with time-varying trap frequency ω(t) in both transverse directions, and the
longitudinal direction is ignored.

The simulations show several important features of the 2d-harmonic focusing lens. First,
the magnetic lens is free of aberration in spite of the time varying frequency. Individual
momenta focus to a point (lines with the same color in Fig. 5.7a cross at a point), and
different momenta focus at the same time (all colors cross themselves at the same time).
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Further, the time at which the momenta focus is close to, but not quite, the time at
which the oscillator phase θ(t) =

∫ t
0
ω(τ)dτ = π/2, as it would be for a perfect turn-on.

Importantly, the focusing time tfoc corresponds to the time at which the cloud width achieves
a local minimum. For our cloud, with one very long axis, this local minimum is quite sharp.
tfoc can thus be readily measured, as done in Fig. 5.8. Note that the focusing time does not
coincide with the global maximum of the width of small clouds, as it does in the constant ω
case.

Finally, the simulation shows in Fig. 5.7b that the real-space positions at which different
momenta focus are well described by the simple harmonic oscillator (SHO) model with a
single effective momentum-independent frequency ωeff = ωfoc/0.88 such that xp = p/mωeff .
Thus, in spite of the varying curvature of the magnetic lens, the momentum space images
it produces are faithful to the simple model presented above, with one simple adjustment.
Computing temperatures using ωfoc = 2π/4tfoc, instead of ωeff would lead one to underesti-
mate temperatures by 25%.

5.4.3 Calibrating MSF

The key parameters in MSF are the magnification, 1/mωeff , which allows us to infer momenta
from real-space data, and the focusing time, tfoc, at which we should take images in order
to find the momentum distribution in focus. Because these two parameters are related,
knowing one of them is sufficient.4 Nonetheless, we can boost our confidence, and precision,
by measuring both parameters quasi-independently.

The focusing time tfoc is perhaps the easiest parameter to pin down. The long axis of
the condensate focuses very tightly, making the focusing point easy to spot to within a few
milliseconds by eye. The focusing time can also be easily extracted from non-condensed
gases, so long as the focused size is smaller than the initial spatial extent of the gas. In
this limit, the cloud size has a minimum that can easily be fit. The colder the gas—the
smaller the focused size—the sharper the minimum. Furthermore, neglecting effects of the
expanding condensate and misalignment of the focusing plane (see Sec. 5.4.4), the size of
the non-condensed gas should be equal in all directions at the focusing time. Sample data
for these calibrations are shown in Fig. 5.8a. With tfoc = 97 ± 3 ms, and including 0.5%
uncertainty in the ratio ωfoc/ωeff , we find ωeff = 2π × 2.9± 0.1 rad/s.

Measuring ωeff directly, without the help of a simulation, is easy if one knows a priori
the momentum distribution and an approximate value of tfoc: simply look at the spatial
distribution around the focusing time and use the relation xp = p/mωeff . Thus, accurately
measuring the temperature via a traditional method, such as time-of-flight, can serve to
calibrate MSF directly. We would prefer, however, to measure ωeff without reference to
temperatures, as this allows us to gain confidence in the temperatures measured by MSF
and time-of-flight by their mutual agreement.

4In principle, ω0 would also be sufficient information to fully calibrate MSF. However, in our system, ob-
serving more than a single oscillation in the MSF trap proved difficult, owing to persistent vertical expansion
and residual vertical motion of the gas.
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Figure 5.8: Calibrating MSF. (a) The time at which the vertical size of the condensate
reaches a minimum can be discerned easily by eye (top). The focusing time tfoc of the
non-condensed atoms shows a distinct minimum as well, even if it is hard to see by eye.
Coupled to simulations, these measurements allow us to determine the magnification of
MSF. (b) The magnification of MSF is measured directly by fitting in-trap center-of-mass
oscillations in situ and in MSF to an exponentially decaying sinusoid. The decay times
τ and oscillation frequencies ωi are the same, but the oscillations differ in phase by π/2,
the expected phase difference between real-space and momentum-space quadratures of the
same oscillation, and they have different amplitudes. The frequency associated with the
MSF magnification is ωeff = ωiAi/Am. Vertical axes are shown on the same scale.

Rather, in Fig. 5.8b we illustrate another (related) way of measuring ωeff by comparing
the amplitude and phase of center-of-mass oscillations measured in situ and in MSF. In
effect, we are measuring the in-trap velocity and mapping it to a position in MSF, but by
considering the amplitude of oscillation we have a straightforward way of averaging many
measurements. Given the amplitude Ai and frequency ωi of in-trap motion, the maximum
center of mass momentum is pi = mAiωi. This maximum momentum maps via MSF to
the maximal position xp − x0 = Am = pi/mωeff , with Am the measured amplitude of the
oscillations as imaged in momentum space. Thus, ωeff = ωiAi/Am. Our calibration yields
ωeff = 2π × 2.8± 0.2 rad/s.
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This calibration depends only weakly on the chosen value of tfoc. The center-of-mass
motion is quite small, and the MSF trap is nearly centered on the atoms during all phases
of the in-trap oscillation. Thus, even with the field ramps as slow as they are, as can be seen
from the trajectories that begin near zero in Fig. 5.7a, the center-of-mass velocity reaches
a quadratic turning point near tfoc. Therefore, we can consider this direct measurement
of ωeff independent of the one obtained from tfoc and average the two values, weighting by
uncertainty.

As it stands, the measurement based on tfoc dominates the weighted average, but we
gain confidence knowing that the two measurements agree with each other. The direct
measurement of ωeff could be repeated, or even better, more points could sampled at early
times of the in situ oscillation to reduce the uncertainty in our determination of Ai. The
3% uncertainty in our measurement of ωeff is the primary source of systematic uncertainty
in the temperature measurements.

5.4.4 Practical considerations and limits of MSF

So far, we have been relying on two assumptions that merit further scrutiny. First, we have
assumed that the momenta of the atoms are fixed when we release them from the optical
trap, and that the momenta we observe in MSF correspond to the momenta in situ. For
weakly interacting atoms, for example non-degenerate alkali atoms, this assumption is typi-
cally very good. Clouds composed exclusively of such atoms expand nearly ballistically and
isotropically. However, the interactions between atoms in the condensate are not negligible,
and interactions between the condensed and non-condensed parts of the gas may not be ei-
ther. In addition, we have mostly ignored the vertical axes of MSF, imaging, and the optical
trap, and we have tacitly assumed they are well aligned to each other. Poor alignment of
these axes, and the expansion of the condensate along one or more of them—aggravated by
interactions—can broaden the momentum signal anisotropically, as discussed below.

For a large condensate deep in the Thomas-Fermi regime, the change in the velocity
of the condensate atoms is well described by a hydrodynamic theory [14]. In particular,
upon being released from confinement, a condensate expands most rapidly in the direction
in which it had been most tightly confined, with radii growing as Ri(t) = Ri(0)bi(t). The
scaling parameters bi, with i ∈ {x, y, z}, satisfy the equation

b̈i =
ω2
i

bibxbybz
, (5.11)

where ωi are the (extinguished) trap frequencies. To understand intuitively why the conden-
sate expands rapidly along the tight axis, recall that the phase of the trapped Thomas-Fermi
condensate in equilibrium is uniform, evolving at a rate θ̇ = µ(0) = µ(ρ)+V (ρ), where ρ is a
radial coordinate and the minimum of the trapping potential is V (0). The interaction energy
varies across the cloud, but the sum of the interaction and potential energy is constant5, and

5Reminder: in the Thomas-Fermi approximation one ignores the kinetic energy of the ground state.
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Figure 5.9: The expansion of the condensate. (a) Interaction energy turns into kinetic
energy after the optical trap is turned off, shown here for the case of optical trap setpoint
VODT = 2. The magnons might inherit this velocity, which, via the relation mv2

RMS/2 =
kBT , corresponds to a temperature, shown in (b), where vRMS is the RMS velocity of the
condensate after 100 ms.

hence the phase evolves at the same rate everywhere. When the trapping potential is sud-
denly turned off, this is no longer the case, and the phase accumulates most rapidly where
the interaction energy µ(x) is largest. A phase gradient develops and is most steep where
µ(x) changes most rapidly: along the direction of (formerly) tightest confinement. In a su-
perfluid, a gradient in phase corresponds to a velocity. An equivalent semi-classical picture
is that the interaction energy constitutes a type of potential energy, and thus the expansion
force is proportional to its gradient, allowing the interaction energy to be reduced as quickly
as possible.

Our optical trap is highly anisotropic, and the condensate expansion is predominantly
directed along the vertical axis. This can be a nice feature, as it means the image of the
condensate in momentum space is quite small, allowing narrow momentum distributions
to be seen unobscured. However, the vertical expansion is not without side effects. First,
the optical density of the condensate increases dramatically as its shadow on our camera
gets smaller; we make no attempt to accurately count condensate atoms in MSF. Second,
a condensate expanding at 5 µm/ms (see Fig. 5.9a) will be nearly 500 µm long at the
focusing time. The Rayleigh range of our approximately 8µm-resolution imaging system
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is around 250 µm and thus it is unsurprising that MSF images with a condensate include
aberration at and around the location of the condensate. Finally, if the tight z-axis of the
optical trap does not coincide precisely with the unconfined axis of MSF, a component of
the condensate’s “vertical” expansion may be present in the transverse momentum signal,
causing the condensate to appear larger or more anisotropic than it really is.

The simple Thomas-Fermi hydrodynamic theory applies only to the condensate; in gen-
eral, it’s not particularly useful in quantitatively understanding the interactions between
condensed and normal gases6. Nonetheless, to the extent that the condensate can be consid-
ered a medium for excitations—magnons or non-condensed atoms—we can imagine that, in
the worst case, the expanding medium imparts its own additional expansion velocity onto its
excitations. Thus, the additional velocity acquired by the condensate during MSF serves as
an upper bound on the additional velocity obtained by the normal atoms, neglecting interac-
tions between only normal atoms. In service as a thermometer, this extra velocity imparted
by the condensate has the potential to set limits on the temperatures we might be able to
measure, and so it is worth estimating this effect, as in Fig. 5.9b.

In our system, all three axes—MSF, imaging, and optical trap—would ideally be aligned
to gravity and thus closely coincide. The spherical quadrupole coils used in MSF were roughly
aligned to gravity upon their installation, but there is likely some residual tilt. A small tilt
around an in-plane axis by an angle θ would rotate the plane in which focusing occurs around
that same axis by 3θ, but would not lead to any other more onerous aberrations. To calculate
this, consider a variation on Eq. (5.8) with the quadrupole coils rotated around the x̂-axis,

B(r) = B0ẑ +Rx(θ)JBR
T
x (θ)r, (5.12)

where B is written in the gravity-referenced coordinates, and JB is diagonal in the rotated
coil-referenced coordinates. Once again, write the trapping potential V as in Eq. (5.10) and
compute the Hessian (curvature) matrix H of V ,

Hij =
∂2V

∂xi∂xj
,

evaluated at the origin and keeping terms up to O(θ). Unlike in the case of perfect alignment,
H is not diagonal in the gravity-referenced basis. However, the trapping frequencies, the
eigenvalues of H, are unaltered, while the axes of oscillation/no confinement, the eigenvectors
of H, are rotated from the gravity-referenced basis by an angle 3θ.

The imaging axis can easily be well aligned to gravity: when viewed from above, falling
atoms should not vary in their transverse position. The optical trap can also be aligned well
to gravity, especially in the direction of the long axis of the condensate, where our procedure
for leveling is most sensitive (see Sec. 5.8). However, at the lowest temperatures explored in
this work, the anisotropy of the momentum signal seems to be the most sensitive probe of the

6Ref. [32] has a well written section on the ways in which normal and condensed fluids can interact.
Though much work has surely advanced the state of the art in this area, this reference suffices as a first pass
for many experimenters.
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optical trap alignment in the tight in-plane direction. Thus for two reasons—broadening of
the momentum distribution from in-plane condensate expansion and additional broadening
from out-of-plane expansion projected into the imaging plane—we will use the temperature
measured along the long axis of the optical trap as our primary thermometer. Regardless,
misalignment should never cause us to underestimate the temperature.

5.5 Imaging

To extract quantitative, accurate temperatures from our images, we need to make sure our
images accurately represent the distribution of the atoms we wish to image. Taking and
interpreting absorption images of atoms is so integral to most ultracold atom experiments
that most of the salient points have been detailed countless times. On the other hand,
because imaging systems are so common, it is easy to take many important aspects of their
operation for granted. Regardless, in the course of conducting this research we found that
understanding our imaging process was both essential and non-trivial.

Our apparatus has two imaging systems, shown in Fig. 5.10, oriented at right angles to
each other. The side imaging system has a wide field of view, roughly 1 cm across, and
is used primarily for atom counting and calibrating the atoms’ vertical position. The top
imaging system has a narrower field of view, roughly 2 mm across, and is the source of most
of our quantitative data. All of the imaging relevant to this study was performed with light
resonant with the F = 2 → F ′ = 3 cycling transition of the D2-line. The camera used for
imaging from the top is an Andor Ixon 885 EMCCD camera (with EM, electron multiplier,
turned off), while the camera used for the side is a Stingray CCD camera by Allied Vision
Technologies.

One salient feature of our top imaging system is that the primary objective is set back
from the vacuum chamber to allow a MOT mirror to slide in under it. This reduces the res-
olution of the imaging along this axis to about 8–10µm, but has some advantages. Notably,
with the MOT mirror out of the way, there is space to place a removable pick-off mirror that
places the focus of the imaging system outside the chamber. The pick-off mirror is mounted
on a Thorlabs KB1X1 kinematic base, allowing it be replaced with a high degree of accuracy.
This has proved very useful in aligning optical paths that enter or exit the chamber from
top.

If the imaging system is well aligned to the atoms, optical targets or cameras can be
accurately placed in the corresponding image plane outside of the chamber by moving them
into the focus of the imaging system. Once a target is so positioned, the target can be used as
a proxy for the atoms in future alignments. This allows us to change aspects of our imaging
system quite quickly. For example, once a target is placed, and an image of it is saved with
the position of the atoms noted, lenses could be reconfigured to change the magnification
and subsequently realigned to the target in real time. Aligning to the atoms directly might
involve a lengthy search through the alignment parameter space with one observation every
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Figure 5.10: Optical trap and imaging system. The ODT axis, side imaging axis, and
top imaging axis are oriented at right angles to each other. The focal position of the top
imaging system can be scanned by translating a lens on a translation stage, though the
change in magnification with focal position must be accounted for. A beam pick off point
is a useful feature of this system. Several features of the imaging system are not used in
most of this work described in this chapter, including an intermediate focal plane for a razor
blade and a cube for overlaying additional trapping or manipulation beams from the top.

twenty seconds. Alternatively, if a camera is placed at the secondary image plane, top-down
beams can be readily aligned and focused on the “atoms.”

It is not always trivial to find the focal plane in which the target should be placed, though;
one needs something sharp to focus on, and whatever this thing is should be illuminated
with light near the imaging wavelength of 780 nm. Optical test patterns with features at
many different length scales, back lit by a diffused 780 nm laser, can be roughly placed by
hand, and brought into fine alignment with a 2D or 3D translation stage. Cameras are more
difficult to align, as the sensor surface is typically very smooth and reflective, leaving few
features to focus on. In this case, we roughly find the imaging focus by illuminating a piece
of paper with small type with diffuse laser light. Type on the paper should reveal itself when
the paper is near the appropriate position, and the combination of letters seen can serve to
indicate the portion of the paper that is being imaged. With this location noted, the camera
sensor is positioned to roughly this spot and likewise illuminated. At this point, one hopes
that there is dust on the sensor that can be discerned and brought into focus. Some sensors



CHAPTER 5. THERMOMETRY AND COOLING WITH MAGNONS 67

also have lines that can be discerned if illuminated properly.

5.5.1 Focusing the imaging system

We focus our imaging system in situ using the procedure described in Ch. 4 of Guzman
[24]. In short, this procedure involves imprinting a spin winding of known wave vector
k onto the BEC by applying a magnetic field gradient to a condensate with a coherent
transverse magnetization (or transverse pseudo-spin). We then use our spin-selective imaging
(described in Refs. [49, 47]) to image a single component of the spin winding, which should
have features with 100% contrast at the specified k. By noting the contrast of these features
in our images for different values of k, we determine the modulation transfer function of our
imaging system. We can then adjust lenses in our imaging system to optimize the modulation
transfer function.

It is important to note that it is not sufficient to bring a single sharp feature, such as a
narrow BEC, or a single wave vector into focus. In a real imaging system with aberrations,
one can bring some length scales into greater focus at the expense of others. In addition, the
Talbot effect will cause features with a narrow range of wave vectors to appear with high
contrast when the imaging system is focused on any of several planes aside from the plane of
the condensate. A rough focus can be found by looking at long length scale features where
the Talbot effect can be mostly ignored owing to the finite extent of the condensate.

In many of our experiments we image the atoms after they have been released from
the trap. In many cases, the atoms fall out of the focus of our imaging system, such as
after momentum space focusing or after several milliseconds of time-of-flight. Thus, we run
the MTF calibration procedure at a few times of flight. The resulting focal positions are
consistent with a simple model that adjusts the lens position in accord with the expected
atom position:

lens position at time t = in situ lens position− ct2.

The calibrated constant c ≈ 0.064 mm/ms2 incorporates the acceleration due to gravity as
well as the imaging system magnification.

Once the focus is calibrated in time-of-flight, we can focus any cloud by observing its
position from the side, relating this position to that of a condensate dropped in time-of-flight,
and setting the focusing lens accordingly. We checked the vertical position of our atoms after
MSF and adjusted the focal position employed during MSF every day (or more) to assure
that the images we used for thermometry were in focus.

5.5.2 Calibrating the imaging system

The images we want to end up with are three-dimensional: two in-plane spatial dimensions,
along with an number coordinate. We derive the number of atoms imaged by pixel i, Ni, by
combining data from three exposures.7 An exposure of the atoms back-lit by a light pulse

7 Exhaustive treatments of quantitative absorption imaging are available in Refs. [32] and [49].
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of duration t yields a number of “counts,” arbitrary units delivered by the camera’s ADC,
n′a (“a” for absorption). An exposure of empty space back-lit by a light pulse of the same
duration yields n′b counts (“b” for bright field). An image without imaging light and without
atoms yields nd (“d” for dark field). nd is non-zero primarily because of background light
in our lab, but also because of noise on the CCD and offset in the camera readout. This
background is subtracted to yield nb/a = n′b/a − nd, and the number of atoms is

Ni =
A

σ0

log
nb
na

+
2

Γtqg
(nb − na), (5.13)

where A = (pixel size/magnification)2 is the real area imaged by the pixel, σ0 is the res-
onant cross-section for the imaging light on the atomic transition, Γ is the line-width of
the transition, q is the quantum efficiency of the CCD (photon to photo-electron conversion
factor), and g is the “gain” of the camera readout (photo-electron to ADC count conversion
factor). The first term dominates at low intensities, I � Isat, and represents a regime in
which the atoms scatter a certain fraction of photons that pass through them. The second
term dominates at high intensities and represents a regime in which the atoms are saturated
by the imaging light and scatter a fixed number of photons at a rate Γ/2.

Our side imaging system operates in the regime I � Isat (Sec. 5.5.6), and thus only the
first term is relevant. Improper calibration will lead to errors in overall atom counting. Our
top imaging system operates with I ∼ Isat, and thus both terms need to be calibrated. In
this case, because the intensity of the imaging light varies across our field of view, failure
to properly calibrate both terms in Eq. (5.13) can lead to errors in the column density
that vary with position, which can bias the temperature measurements. Fortunately, in the
end, we have a powerful way to check that our system is working: we can verify that our
atom counting is independent of imaging intensity, and that our atom number counting is
consistent between the two independent imaging paths.

5.5.3 Magnification

Calibrating the magnification from the side is quite straightforward. We release a cloud of
atoms from the trap and watch it fall. Since gravity acts in the plane of our imaging, we
can be sure that, neglecting magnetic or electric effects, the position of the cloud’s center-of-
mass will change in accordance with a well-known uniform acceleration. Vertical magnetic
gradients can skew this measurement and are difficult for us to measure in our setup owing
to our trap geometry. By dropping clouds composed of mF=− 1, mF=0, and mF=1 atoms,
we can deduce the presence of gradients that act with force greater than about 1% that of
gravity. In our system, no such gradients were detected.

To calibrate the magnification from the top, we employ an optical micrometer with 25µm
divisions placed in the pick-off path. The magnification changes slightly with focal position,
so the apparent size of the micrometer needs to be measured in a range of focal positions, as
shown in Fig. 5.11b. The fractional change in length scale over the range of focal positions
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Figure 5.11: Calibrating the top imaging magnification. At several positions of the fo-
cusing lens we bring the micrometer into focus by translating it and measure the apparent
size of the pixels on the CCD.

is around 7%, which, if unaccounted for, would lead to errors in inferred temperatures and
atom numbers of up to 14%.

5.5.4 Gain and efficiency

The gain-efficiency product qg in Eq. (5.13) represents the conversion rate of photons in the
image plane to A/D counts in the digital output of the camera. Gain and efficiency have dif-
ferent effects on the noise of the imaging system—a fact employed by camera manufacturers
to determine the gain of the ADC for individually calibrated cameras—but for the purposes
of atom counting the product is important.

The procedure we use is straightforward. First, we focus or iris the imaging beam so
that it is small enough to fit on the measurement surface of an optical power meter near the
atoms—before and/or after the vacuum viewports—and on the camera sensor. The inferred
optical power at the atoms can be turned into a photon flux and compared to the rate at
which counts accumulate on the camera. The resulting value of qg should be consistent with
the value estimated from the camera’s specified gain and approximate quantum efficiency,
combined with reasonable optical losses between the atoms and the camera, as it is in our
case.

5.5.5 Polarization, cross-section, and optical pumping

The D1 and D2 lines in alkali atoms are very well characterized. In the case of 87Rb, the
relevant numbers are all contained in Ref. [82]. The main thing for us to do is to make
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Figure 5.12: Side imaging light polarization and pulse duration. (a) Having the right
imaging light polarization is important to accurate atom counting. Fortunately, calibrating
the polarization is straight forward. (b) The maximum atom signal for opposite circular
polarizations differ as a consequence of slow optical pumping by the low-intensity imaging
light. (c) In this case, accurate atom numbers require long imaging pulses. Pulses can be
made shorter by increasing the pulse intensity as described in the text. Atom number is
scaled by the maximum atom number.

sure that our atoms and light are polarized in accordance with the assumptions implicit
in the cross-section and line-width we are using. In our case, we assume that the atoms
are optically pumped into the stretched state (with respect to the quantization axis set by
the imaging light, to which we also align a small applied magnetic field to simplify optical
pumping), and that the light is circularly polarized.

In alkali atoms, the strongest transition (largest cross-section) is the stretch-state transi-
tion with the appropriate circularly polarized light. Thus, as shown in Fig. 5.12a for the side
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imaging system, we can verify that the imaging light is polarized properly by maximizing the
atom signal with respect to the optical polarization, controlled in our case by the orientation
of a λ/4-plate following a polarizing cube.

The difference in the maximum signal for atoms initially (before any repump is applied)
in the |F = 1,mF = −1〉 and |F = 1,mF = +1〉 states is due a breakdown in our assumption
that the atoms are quickly pumped into the stretch state and scatter most of the photons that
contribute to our signal from this state. In the case of the side imaging system, with light
intensity far below the saturation intensity, each atom only scatters a handful of photons,
and the rate at which atoms scatter on the weaker optical pumping transitions, as well as
their initial Zeeman sublevel, is important. We can reduce the impact of the uncontrolled
scattering rate during optical pumping by making the atoms scatter more photons either by
using longer imaging pulses or more intense imaging light. In the case of the side imaging
system, we place a ND filter in the imaging path after the atoms to avoid saturating the
camera. We do not observe any problems with optical pumping in the top imaging setup,
which can use more intense light without saturating the camera sensor, owing to the higher
magnification.

5.5.6 Pulse duration and intensity

There are both practical and fundamental considerations involved in choosing an imaging
pulse duration and intensity. For our purposes, the following factors were considered most
important.

Signal to noise Probably the most fundamental consideration is signal to noise. Appendix
A of Marti [49] includes a discussion of signal and noise in resonant absorption imaging,
ultimately concluding that, everything else being constant and in the limit of low
optical density (na ∼ nb), the noise is minimized at intensity I = Isat, with δN ≥√

16A/(qσ0Γτ). Equality in this relation is achieved in a system where photon shot
noise is the dominant source of noise. By this consideration alone, the pulse length τ
should be maximized. The condition na ∼ nb may seem to make this analysis moot—
don’t we care most about noise when and where atoms are present?—but it doesn’t.
In optically dense regions, the dominant noise source is likely to be atom shot noise,
rather than photon shot noise.

Laser detuning drifts Imaging near saturation, as already mentioned in Sec. 5.5.2, means
that the calibration of the imaging system is important to avoid errors that are cor-
related with light intensity. The validity of the calibration, however, depends on the
imaging light being on resonance. We found that in our system, our laser lock set point
could drift on the order of 1–2 MHz, enough to noticeably change the apparent number
of atoms and, more importantly, their spatial distribution. Imaging at lower powers,
perhaps with longer pulses to increase the signal to noise, can reduce sensitivity to
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Figure 5.13: The inferred atom column density (left) and the repump beam profile (right).
Red circles are for spatial reference and mark the same area. The wings of the atom column
density should be smooth. Instead, they have structure that correlates with the repump
intensity. Using microwaves to repump removes these features. We note that the repump
and imaging beam have the same spatial structure, and in some cases the imaging beam
can be the source of such features.

these drifts8. Regardless, during data acquisition, we had to take care to check the
lock drift regularly and recenter it around zero as necessary.

Camera dynamic range Longer laser pulses with more photons increase the signal to
noise, but the camera can only count so many photons per pixel. To have reliable
images, it’s important the none of the camera pixels in the region of interest are
saturated by any of the imaging pulses.

Atom motion Each time an atom scatters a photon, its momentum changes. On average,
scattering N photons leaves an atom with momentum p‖ = N~k momentum along

the direction of the imaging laser, and p⊥ =
√
N~k transverse to that direction. The

longitudinal motion and Doppler shift limit the time the atoms remain in focus and the
number of photons that can be scattered, respectively. The transverse motion causes
the image to blur. In imaging small sharp features, such as the edge of a Thomas-Fermi
profile, it’s important to verify that imaging pulses are sufficiently short to capture the
desired level of detail. In our system, we found that changing from imaging pulses of
200 µs at I ∼ Isat/4 to 40 µs at I ∼ Isat was important to bring the calculated Thomas-
Fermi radii in accord with the one observed in in situ images of the condensed gas, per
Eq. (5.5).

8At very high powers, above saturation intensity, power broadening may also help alleviate the effect of
drifts, though we have not explored this option.
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5.5.7 Dealing with high OD

In our work with phonons, described in our publication (Ref. [46]) and Ch. 3 of Marti [49],
we imaged optically dense samples by repumping a fraction of the total number of atoms
using off-resonant repumping light. Off-resonant, not merely low intensity, light was key to
this scheme, because it guaranteed that the gas appear nearly transparent to the repumping
light, allowing for the gas to be uniformly excited. The excitation, however, can only be
made as uniform as the excitation beam. In the phonon work, the gas was sufficiently small
that this condition was well met. In the present work, wherein we image thermal magnons
in momentum space, the clouds can cover a substantial portion of the repumping beam, and
unless the cloud is fully excited to the F = 2 state, which in the case of high OD may not be
desired, the spatial profile of the repump impacts the apparent spatial profile of the atoms.
On longer length scales, this can bias temperature measurements. At shorter length scales,
fringes on the repumping beam add unwanted noise, as in Fig. 5.13.

In this work, we employed a microwave repump instead of an optical repump, even when
imaging spin-polarized samples for which the state selectivity of the microwaves is not needed.
In free space, the microwave field is uniform at scales smaller than its wavelength (λ ∼ 4.5 cm)
and even on resonance interacts weakly with the gas, such that even the largest condensates
have negligible optical depth and are excited uniformly. There are some downsides to using
microwaves for repumping the atoms before imaging that should be considered. Chief among
these are:

• The microwave excitation is sensitive to the magnetic field direction and strength, so
inhomogeneous magnetic fields can cause inhomogeneous excitations. Thus, magnetic
fields need to be well characterized and controlled.

• The absence of a dark state makes fully repumping a sample less automatic and less
robust.

• The time it takes to repump is typically longer with microwaves (100-400 µs in our
system) than with resonant light (< 50µs in our top imaging setup).

5.5.8 Tracking photons

Eq. (5.13) relies on an assumption that all of the counts present at a pixel correspond
to photons that were present in the appropriate area of the image plane, converted via a
stochastic process with the quantum efficiency of the camera and nearly perfectly by the
gain of the ADC. This assumption can be violated in a number of ways. Relevant to this
work were variations in dark counts, vignetting, and light scattering between the atoms and
the camera.
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Dark counts

Dark counts are generally well dealt with in cold atom experiments, in which frames typically
have thousands of photo-electrons, by subtracting the dark image. This process is not
perfect though. The dark levels in each frame have fundamental variations from shot-to-
shot which means that dark counts cannot be perfectly subtracted. This is a very important
consideration in applications with long exposures and low light levels. In our system, photon
shot noise should dominate this noise source. However, beyond the fundamental issues, we
discovered that our camera seemed to have considerably more dark counts in the first frame
acquired (the one with atoms) than in subsequent frames, and that the dark counts were
not uniformly distributed, leading to a non-uniform bias in the distribution of atoms. We’re
not sure where these dark counts came from—they did not seem to be related to the room
lights—but we were able to get rid of them by reading out a throwaway frame before the
typical imaging sequence. When it is not acquiring, our camera is supposed to be continually
flushing the CCD so that dark counts don’t accumulate. Evidently in our camera this process
was not ironclad. Fortunately, the solution was straightforward.

Vignetting

In vignetting, well described in Ref. [40] as it pertains to fluorescence imaging, the effective
aperture varies with position in the image plane. In fluorescence imaging the problem here
is obvious, as the solid angle over which photons are collected, which relates to the aperture
size and position, is a key parameter in estimating the number of scattered photons and
hence the number of scatterers. If the aperture varies spatially, getting smaller at the edge
of the image, the inferred spatial distribution of scatterers will be skewed.

This effect can also be present in absorption imaging. Recall that according to the optical
theorem, the total cross section of a scatterer is related to the forward scattering amplitude,
σtot ∝ =(f(0)). The k = 0 component of the atoms’ shadow has all of the information
on their total cross section, or number. Non-zero k components of the shadow, or forward
scattered light, contain the spatial information and are key to allowing the imaging system to
reconstruct how atoms are distributed. Young students often wonder why the imaging lenses
need to be so much larger than the imaging beam; this is why. The solid-angle over which
forward-scattered light is captured, or equivalently the numerical aperture, is an important
parameter in the resolution of the imaging system regardless of whether images are captured
with absorption or fluorescence. If vignetting is present, even though the total atom number
information may be intact, the inferred spatial distribution of atoms can be skewed.

Light scattering after atoms

Light scattering between the atoms and the camera has two main effects. If the scattered
photons leave the imaging system, the scattering effectively reduces the quantum efficiency of
the camera, perhaps in a spatially dependent way. At low light levels, where the calibration of
the camera gain and efficiency is not important, this has only minor impact on the noise. At
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Figure 5.14: Saturation of the OD. Scattered light after atoms limits the maximum OD
that can be inferred and can lead to under counting atoms in dense areas. In this image
(left frame), the condensate OD is given a “flat top.” (Right frame) A slice through the
image (red) is compared to a harmonic guide to the eye (dashed gray line).

higher light levels this could lead to spatially dependent calibration errors and, in principle,
bias quantitative analysis if the errors are correlated in some way.

More onerous in our system was light that scattered after the atoms and remained within
the imaging system, leading to counts at a pixel that cannot be blocked by the atoms imaged
by that pixel. This effect is contained within the description of image analysis in the appendix
A. to Ref. [32], in which the first term of our Eq. (5.13) is recast as, with our labeling,

na
nb

= e−Niσ0/A + si
(
1− e−Niσ0/A

)
, (5.14)

where si is the fraction of photons at pixel i that are present owing to scattering after the
image plane, and is presumed to be small. The quantity Niσ0/A is the optical density.
With si = 0 and I � Isat, this equation is equivalent to Eq. (5.13). If one calculates the
optical density in the usual way as − log(na/nb), the effect of non-zero si is manifest in a few
important ways. First, the maximum optical depth that can be inferred is − log(si), reducing
the dynamic range. Moreover, the number of atoms in each pixel will be underestimated
with the degree of error getting more severe when there are more atoms and also when light
intensity is lower. This can lead, for example, to peaked atom distributions getting flattened,
as shown in Fig. 5.14, which is a problem if one is trying to measure temperatures accurately.

In principle, one could measure the si and take them into account in calculating Ni. We
were able to reduce si to a suitable level by cleaning the optics in the imaging path. In
particular, dust accumulates on horizontal optics, such as the chamber’s top viewport, and
needs to be removed from time to time. We use a shop vac for this purpose. At the time
the data of Fig. 5.14 were taken, these optics had not been cleaned in several years.
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Figure 5.15: A condensate in the new, more harmonic, trap. Condensate profile before had
clear non-harmonic structure, as seen in Fig. 5.14 where the condensate outline is not round.
The condensate in the new trap, shown here, has a harmonic profile, but narrow directions
are broadened slightly by our imaging resolution and, if we are not careful, imaging pulse
duration.

5.6 Characterizing the optical trap

With imaging and MSF well characterized and calibrated, we begin to have confidence in
the momentum distributions and atom numbers we measure. However, for the pieces to fit
together in Eqs. (5.4) and (5.5), it’s also important to have a well characterized trap. For
our trap, this means measuring the harmonic trap frequencies as a function of the optical
power and verifying that the trap is, in fact, sufficiently harmonic.

For a sufficiently cold condensate to which the Thomas-Fermi approximation should
apply, an easy first pass at characterizing the trap is to image the atom density in situ and
to compare its profile with the one expected for a harmonic trap,

n(x, y) ∝
(
µ− ω2

xx
2

2
−
ω2
yy

2

2

)3/2

,

where the column density n is the integral of the full density along the z-axis. A discrepancy
between the measured and expected size of the condensate could indicate anharmonicity,
though it is also important to note that such a discrepancy could also be indicative of other
issues, such as imaging pulses that are too long, poor imaging resolution, or an out-of-focus
imaging system. Other indications of anharmonicity include heavily damped center-of-mass
oscillations and oscillation frequencies that vary with amplitude.

The optical trap we used for many of the preliminary cooling and thermometry experi-
ments had significant anharmonicity, probably owing to the exceptionally weak focus along
the x-axis coupled to the exceptionally strong focus along the z-axis. The anharmonicity
can even be seen by eye in the shape of the condensate shown in Fig. 5.14. For such a trap,
the trap minimum is determined by the position of the z-focus, and the position of the beam
focus along x is difficult to determine. Ideally, the lens responsible for forming the ODT
transforms short length-scale structure in the collimated trapping beam into long length-
scale structure at the beam focus, and vice versa. Thus, ideally, the atoms, confined near
the center of the focused beam, are not exposed to the short length-scale crud that is present
on the collimated laser beam. However, if the focus is poorly determined or too weak, the
desired short and long length-scale decomposition might not occur. Additionally, the ratio
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Figure 5.16: Cross section through the center of combined optical/gravitational potential
at (a) low trap depth and (b) higher trap depth along the vertical axis. Dashed red line
shows the harmonic potential corresponding to the curvature at the trap minimum. Insets
show region near the trap minimum. Gray patch highlights a typical chemical potential
for the given trap parameters, showing extent of a BEC in our experiments. When the
chemical potential is a significant fraction of the trap depth, the condensate extends beyond
the harmonic region at the very center of the trapping potential, both with gravity (shown)
and without (not shown).

of trap depth to peak optical intensity increases as the z-focus becomes tighter, which means
that at constant trap depth and temperature, the extent of the transverse optical potential
explored by the atoms increases as the z-focus becomes tighter, possibly exposing the atoms
to the more aberrant parts of the beam.

Characterizing such a trap is more complicated than just measuring trap frequencies,
so we swapped out some lenses in our system to make the z-focus less aggressive and the
x-focus more so. The resulting trap is long and narrow (and still quite thin vertically),
and much more harmonic, as indicated by the condensate Thomas-Fermi profile and in-trap
oscillations. A condensate in the modified trap is shown in Fig. 5.15. Importantly, in the
updated trap, Eqs. (5.4) and (5.5) are satisfied. Having a well-calibrated trap potential is
also very useful in calibrating the trap depth, as we shall see.

5.7 Measuring the trap depth

We infer the trap depth using a model of the trapping potential, including the effects of
gravitational and optical forces, wherein beam parameters are set to values consistent with
observed trapping frequencies and measurements of the trapping light.

The model for the trap includes the optical potential of a Gaussian focus and the linear
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Figure 5.17: Fitting trap parameters. We use the measured trap frequencies to fit the
peak AC stark shift, beam waists, and Rayleigh length. The resulting model predictions
are shown in red for (a) the trap depth and (b) trap frequencies, where the light red patch
is the error in the estimate implied by the fit. The blue line in the central panel of (b) is
the predicted ωy based on the Rayleigh range implied by the beam waist wz.

potential of gravity

Utrap =
−U0√

1 + (y/yRz)
2
√

1 + (y/yRx)
2

exp

(
−2z2

w2
z

(
1 + (y/yRz)

2) +
−2x2

w2
x

(
1 + (y/yRx)

2)
)
−mgz,

(5.15)
where the trapping laser beam propagates along the y-axis, U0 is the maximum optical
potential depth (peak AC Stark shift), and wz (wx) and yRz (yRx) are the beam waist
and Rayleigh length, respectively, along the z-axis (x-axis). For an ideal Gaussian focus,
yRz = πw2

z/λ. For our trap, wz � wx and thus a good approximation is to take yRx →∞.
Including the effects of gravity, the trapping potential no longer has a global minimum,

as shown in Fig. 5.16, and at low enough power does not even have a local minimum. When
a local minimum exists, the trap frequencies are related to the curvature of the trap potential
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Parameter Fit or inferred value Measured value
Beam waist, wx 210 µm ∼200 µm
Beam waist, wz 22 µm ∼25 µm

Peak AC Stark shift, U0 -3000 nK/V
Optical power 145 mW/V (at atoms) 133 mW/V (after chamber)

Table 5.2: Trap parameters. The beam waists, wx and wz, along with peak AC Stark
shift, U0, are fit to the Gaussian beam model with gravity, using the measured trap fre-
quencies. From these fits, the optical power is derived from the expected AC stark shift,
152µK/(mW/µm2).

at the local minimum, which is shifted downward by gravity,

mω2
i =

d2Utrap

dx2
i

∣∣∣∣
x=0,y=0,z=zmin

, (5.16)

and the trap depth is just the difference between the potential at the local maximum and
the local minimum,

U = Utrap|x=0,y=0,z=zmax
− Utrap|x=0,y=0,z=zmin

. (5.17)

The main parameters of our model are the beam waists and optical potential depth, U0(V ),
as a function of the optical power set point (in volts). The inputs to our model are the
measured trap frequencies along all three axes, {ωi(V )}, where i ∈ {x, y, z}, as a function of
the optical power set point.

The vertical trap frequencies depend on the vertical beam waist and optical potential
depth only, so we first fit for wz and U0(V ) using the measured {ωz}. Next, we fit for wx
using the measured {ωx}, holding wz and U0(V ) constant. In principle, this determines yRz,
however we can also choose to fit for yRz using the measured {ωy}; the difference is minor.
Fig. 5.17 shows the trap frequency data and resulting fits. The middle panel of Fig. 5.17b
shows the fit-free estimate of ωy in blue, while the estimate with yRz as a free-parameter is
shown in red. In estimating trap depth and trap frequencies, we use the model with fitted
yRz, though the difference is negligible, especially at low trap depths.

As a check of consistency, we compare our inferred trap parameters to what we expect
based on our knowledge of atomic physics and what we can measure about the trapping
beam. Tab. 5.2 compares fitted/inferred and calculated/measured values. It’s difficult to
make precise measurements of the trapping laser beam before it enters the chamber, as it is
larger than any of our cameras in the vertical direction in order to make a tight focus, and
optical access is limited. Still, the beam waists we infer are consistent from what we expect
from rough measurements of the beam size and focal length.

We measured the optical power as a function of set point voltage after the chamber, and
we found the relationship to be stable and linear. The measured slope varied by about 2%
over many months (within our measurement error), and the zero-power voltage was fixed
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Figure 5.18: (a,b) Contour plots show the combined gravitational and optical potential
that confines the atoms at very low trap depth. The optical focus is at the origin, but the
trap minimum is offset, primarily along the z-axis. Minimum trap depth and center position
are sensitive to trap tilt along both y- (a) and x-axes (b), but much more so along y, where
the trap local minimum disappears entirely at a few hundredths of a degree tilt. The trap
potential along the lip of the trap (red, blue, and green lines in [a] and [b]) is shown in (c).

by our transimpedance amplifier. The measured slope was about 10% less than the value
inferred from the trap frequencies and the expected AC stark shift of the 1064 nm laser on
87Rb in its ground state. The discrepancy is likely accounted for by additional losses as the
beam exits the chamber, the difficulty of capturing the full beam power on a meter (owing
to the large beam size), and the calibration of our high-power optical power meter.

5.8 Leveling the ODT

Our procedure for leveling the ODT in situ9 takes advantage of the extreme sensitivity of
the trap depth and the position of the trap minimum to tilts, as shown in Fig. 5.18. The
optical table on which our experiment rests floats on air cushions, and the precise height
and tilt of the table as a whole can be adjusted. The tilt can also drift over time, so this
procedure had to be repeated at regular intervals.

First, we choose a trap setting V2 that is as low as possible, but that reliably still has a
condensate present. We evaporate to V2 and then ramp the trap back up to V1 � V2 over a

9This procedure is relevant for a trap that is already mostly aligned. Upon the initial installation, or if
the trap is strongly tilted, a different procedure needs to be used.
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few seconds. With these settings, we take an image of this condensate and mark its center
with a persistent cross hairs in our imaging software, for future reference. With the trap at
V1, the optical potential dominates gravity along the in-plane dimensions, so the cross hairs
marks the optical trap center. Next, we evaporate to V2 and image the condensate. If the
condensate center has shifted with respect to trap center, we assume gravity is pulling it and
can work out which way the trap is tilted based on how the directions in the image relate to
the physical world. In our setup, conveniently, “up” is parallel, roughly, to the propagation
of the trapping laser.

The trap tilt can be adjusted using optics, but if we are well aligned through the center
of all the optics, there is no single knob that will level the trap without potentially making
something else worse, e.g. the vertical position of the trap relative to the chamber. The
floating table lets us adjust the trap tilt without changing the relative alignment of any
other components of the apparatus. Ideally, the optical beam was installed very close to
parallel to the table, with the table level to gravity (using a sensitive bubble level), and only
small tweaks are needed. This was the case in our experiment.

The floating table has three adjustment points, one on each of three legs. The fourth
leg is self-adjusting to maintain the constraint that all four corners are supported. Once
we know about which axis we want to tilt the table, we need to figure out which knob to
turn (i.e. which corner to adjust). There are three axes about which the table can tilt, each
passing through two of the adjustment knobs. No axis runs through the self-adjusting leg.
To rotate around one of these three axes, we tweak the knob at the leg that does not define
the axis.

The self-adjusting leg cannot be entirely ignored. It is important that as the table is
adjusted, the self-adjusting leg be able to respond by either raising or lowering. Therefore, it
should not be at a limit of its range of motion. If it reaches a limit, which can be ascertained
by inspecting the leg, the height of the table can be adjusted by turning all three adjustment
knobs in equal measure.

Once a tweak has been made, we reinspect the condensate at V2. If it is centered, we
move on, if not, further tweaks may be needed. If the condensate is well centered at V2, the
trap may be further leveled at a lower trap depth V3 using the same procedure. At very
low trap depths and when the chemical potential is a large fraction of the trap depth, the
number of atoms in the condensate may be a more sensitive probe of the trap alignment.
Thus, to reach a final precise alignment we optimize the tilt of the trap (along both x and
y) for condensate number.

Fig. 5.18 reveals something interesting about the trap at low depth/high chemical po-
tential: the trap depth varies substantially as a function of the in-plane position. Along the
y-axis, the lip of the trap is lowest at the edges, where the density if lowest. The opposite
is true along x. In our work, including our published write-up of this work [62], we have
typically reported the trap depth as would be measured vertically through the center of the
gas (at x = y = 0). However, the minimum energy required for an atom to leave the trap
may be substantially (as a fraction) less than the trap depth defined in that manner. The
average energy of an atom lost is probably somewhere in between.
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Figure 5.19: Calibrating the circularly polarized trap. (a) We use the observed trap
frequencies of atoms in the |mF=1〉 (red) and |mF=−1〉 (blue) states to relate voltage
control levels of the circularly polarized trap, and thus the AC Stark shifts, to the well-
calibrated linear trap. The fractional difference in the slopes for ±1 atoms is 0.025, close
to the expected value of 2 × 0.011 = 0.022. (b) The resulting trap depths are shown,
with the lowest control voltage setting used in this work indicated by the vertical dashed
gray line. Dashed black line is the trap depth for atoms in the |mF=0〉 state. Light colored
patches show the systematic error carried over from the (linear) trap depth calibration. Dark
colored patches are an additional (independent, essentially negligible) systematic error from
the calibration in (a).

5.9 Setting up a state-dependent trap

Most of our experiments are done with linearly polarized trap light, which couples equally
to the atoms regardless of their Zeeman state (ignoring the small tensor stark shift). For
some experiments, however, we will want to vary the trap depth for atoms in different states.
One way to achieve this is with magnetic field gradients. However, our apparatus lacks the
ability to control gradients and bias fields independently, possibly leading to complications.
Another approach is to use circularly polarized trap light, which we calculate can apply a
differential Stark shift of about 1.1% between atoms in the |mF=0〉 and |mF= ± 1〉 states
if the spin quantization axis of the atoms (defined by a bias magnetic field) aligns with the
quantization axis of the light. In our case, the bias magnetic field and optical trap axes are
nearly aligned.

The differential Stark effect, measured to be about 1.2% in our system, is small compared
to what can be achieved with magnetic field gradients, however a small fractional change
in Stark shift can translate into a large fractional change in trap depth when the trap is
shallow, around 30% at our lowest trap depths, as shown in Fig. 5.19. With the same
circular polarization, and all other experimental parameters fixed, we can change the trap
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potential of the majority atoms, by using either |mF=1〉 or |mF=−1〉 atoms, while keeping
the trapping potential for the |mF=0〉 atoms constant.

Changing the trap polarization from linear to circular is straightforward, but with the
change in polarization, the relations between ODT control voltage, optical power, and AC
Stark shift are no longer known. However, a single scaling parameter captures the effects of
all of these uncertainties, as the trap geometry is unaltered. Thus, to calibrate the circularly
polarized trap, we measure the trap frequency for atoms in the |mF= ± 1〉 states at two
different control voltages.

5.10 Noise performance and trap depth limits

The optical trap level is maintained by a home built PI controller. The setpoint is established
by the 13-bit DAC of our National Instruments PXI-6723 control card. With outputs ranging
from −10 V to +10 V, this card gives us 2.4 mV resolution in defining the set point. The
trap level is measured by picking off a fraction of the trapping light after it passes through
the chamber and focusing it onto a Hamamatsu S11499 photodiode connected to a SRS
SR570 current preamplifier. The trap level is adjusted by varying the diffracted optical
power through an AOM via a variable RF attenuator that adjusts the driving power.

The SRS preamplifier is an expensive solution to a simple problem, but it allows us to
easily tune various parameters—bias voltage, transimpedance gain, and bandwidth— for
optimal stability, noise, and dynamic range. We examined the performance of our feedback
loop by measuring the noise on an out-of-loop photodiode with and without feedback. We
found that very few of the knobs we could tune had much impact on the noise, as measured
with a fast FFT spectrum analyzer. The largest improvement to our setup was replacing an
older Thorlabs photodiode with the Hamamatsu, which is optimized for the infrared. Ulti-
mately, integral gain and transimpedance gain were set to give the largest possible dynamic
range (trap levels are varied from 7–8 V to less than 1 V in a typical experiment) and to
make the trap level stable over its entire range of operation.

This latter requirement turns out to dictate a level of feedback gain that is just sufficient
for the trap to reach its highest setpoint10. The open loop response of the optical trap level
is non-linear owing to the variable RF attenuator and AOM. If the integral gain is set too
high, the optical trap power can oscillate as the level is changed within a certain window,
even if it is stable in another window. We monitor the optical power on an oscilloscope to
make sure it is not manifestly unstable.

In spite of the unsophisticated manner in which we optimize our optical trap, we find it
to be very stable. At the lowest trap depths, the stability of the temperature we measure
suggests the trap level is stable to much better than the 2.4 mV resolution of our control
card, which corresponds to a nearly 20% change in trap depth at our lowest values. More-

10Recall that a real integrator can only integrate up to a finite level before saturating, and so the DC
gain of the feedback loop is not, in fact, infinite, as it would be for an ideal integrator.
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Figure 5.20: Heating rate and trap lifetime in the optical dipole trap. (a) The gas is
cooled via cycled decoherence cooling from the temperature indicated by the dashed gray
line and then allowed to heat. Two repetitions of the experiment are shown in green and
blue, with temperatures extrapolated to zero magnon number using the slopes derived from
the data of Sec. 5.19. During heating, no magnons are present. The solid line shows the
expected heating based on peak scattering rate. The dotted line is based on heating at twice
the expected scattering rate. (b) The lifetime of the majority (red) and magnon (blue) gas
at different trap depths, along with statistical error in the measured lifetimes. Black dotted
and solid line are inverse scattering rates from (a).

over, lifetime and heating rates seem to be nearly consistent (within a factor of 2) with a
fundamental process: spontaneous scattering from the far-detuned trap.

Each photon scattered in the trap should deposit its recoil energy, ER = 97 nK, in the
gas at a rate that varies with the AC Stark shift U , ignoring counter-rotating terms,

Rsc ≈ Γ
U/~
∆

,

with Γ the excited state linewidth and ∆ the detuning [83, 67] of the trap light from the
relevant atomic resonance. Fig. 5.20a shows the temperature of the gas as it sits in the
optical trap at constant power with evaporative cooling turned off by precooling with cycled
magnon decoherence cooling. The heating rate that we observe is consistent with about
twice the rate expected owing to spontaneous scattering from the optical trap 11. This result
suggests the heating rate could be improved somewhat, but it is approaching a fundamental
limit given the current trap.

The source of additional heating beyond scattering from the ODT is not known. Possible
sources include three-body collisions, optical intensity fluctuations, magnetic field noise, and
mechanical noise. Three body decay is evident in the initial atom number decay after optical

11Initially we thought the heating rate equaled the expected value, but more careful calibration caused
us to correct our temperature estimates upwards, yielding the present estimate.
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evaporation but is generally not seen at longer times. The number of atoms present during
heating does seem to decline initially before leveling off, as shown in the inset of Fig. 5.20a.

We also measured the lifetime of the gas in the trap, which after initial three-body decay,
was consistently 35-45 seconds and consistent with one-body loss. One might expect to lose
one atom for each Utrap worth of energy deposited 12, however this is not what we observe.
For example, as shown in Fig. 5.20b, at a trap depth of 1000 nK, the lifetime of roughly
40 s is consistent with losing one atom for every two scattered photons, since the solid black
line corresponds to a scattering rate of half the observed value. Two scattered photons
corresponds to about 200 nK, rather than the 1000 nK that the simple model predicts, once
again indicating some additional heating.

Historical note: we initially performed the experiment of Fig. 5.20a in which magnons
present during the hold time and found that the temperature seemed to equilibrate to a
much lower value than expected. This prompted us to perform the experiments that revealed
magnon-assisted evaporative cooling.

5.11 Magnetic field gradient control

In many ways, our experiments depend on reliable, repeatable control of magnetic fields.
Unfortunately, as mentioned in Sec. 3.6, the chamber where we do science was not designed
with exquisite control of magnetic fields in mind. Typically, in a sensitive experiment like
ours, one would at minimum like to have control over all three bias fields and all five (in-
dependent) gradients. Our experiment, however, can only control one gradient via a single
spherical-quadrupole-producing coil. However, as described well in Sec. 4.4.2 of Ref. [49], we
are able to control the magnetic field gradients seen by our atoms by canceling one in-plane
gradient and maintaining a magnetic bias field along the direction of the other in-plane gra-
dient. Our scheme has the benefit of not requiring any additional coils beyond the ones used
for our MOT, but the disadvantage that it constrains the bias fields that we can apply and
couples external bias field fluctuations to gradient fluctuations.

Sensitivity to bias fields is somewhat onerous because in general, environmental bias fields
fluctuate much more than gradients. This can be mitigated by operating with higher bias
fields, which reduce the effect of background fluctuations on the orientation of the overall
field. However, at high bias fields, the Zeeman energy increases and the RF fields required
to drive transitions between Zeeman states are at a higher frequency. Unfortunately, as
our (improvised) science chamber does not have an integrated internal RF antenna, we
resort to coupling RF into our system from the outside, and in this configuration higher
frequencies are more strongly attenuated, reducing the reliability with which they can drive
magnetic transitions. High bias fields also increase the quadratic Zeeman shifts, which can
be undesirable. By acquiring data when the magnetic environment is most quiet (late night
on weekends when the elevators are not moving), we have been able to control gradients to
better than 1 mG/cm.

12Atom lifetimes measured in the magnetic trap exceed several minutes.
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Figure 5.21: Top: The floor plan of Birge subbasement, indicating the location of our
experiment table and the elevators. Bottom: Magnetic field gradients are measured by
Ramsey interferometry with a 20 ms time between pulses. The magnetic field gradient
present at the atoms varies from roughly 10 mG/cm to 25 mG/cm as the nearby freight
elevator moves from the subbasement to the top floor.

We were able to improve on this situation by implementing active magnetic field stabi-
lization of the slowly varying bias fields. To do this, a reference measurement is taken of the
magnetic field value at a particular time in the experimental sequence where the fields under
experimental control are stable in a “reference” configuration, for example during optical
evaporation. The field is measured by a magnetometer placed near the atoms, but external
to the chamber. Then, in subsequent runs of the experiment, the currents through large bias
coils are adjusted to maintain the reference field value as long as the applied experimental
fields are in the reference configuration. If the experiment requires fields to deviate from
the reference configuration (e.g. to change the magnetic field gradient), the current through
the bias coils is held constant at the last best value. The magnetic environment relevant to
the experiment is thus held constant from run to run, even as the elevators move or faraway
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superconducting magnets are slowly cycled.
To perform field stabilization, we use six coils in three pairs oriented along the axes of our

optical table. The coils are large and rectangular, varying from 1–2 m across. Pairs are 1–3
m apart, with each pair controlled by a 0–10 amp, 0–25 V Kepco ATE power supply. Each
coil is centered as well as possible on the location of the atoms in the chamber. Ideally, these
coils would be in a Helmholtz configuration, however, as these coils were added after the
chamber was constructed and were designed to minimally disturb a functioning experiment,
the members of each coil pair are not equidistant from the plane of the atoms and their
dimensions were allowed to deviate from the ideal. The number of windings in each coil
was set such that the same common current (max 10 amp) and voltage (max 25 V) could
cause each pair to generate a maximum field large enough to compensate bias field drifts
up to about 0.03 Gauss with minimal magnetic field gradient at the position of the trapped
atoms. Thus, opposing coils that were not equidistant from the atoms necessitated different
numbers of windings. In the end, each coil was composed of 4–13 windings of 18 AWG wire.
Winding the wire in situ was facilitated by using a single-turn of ribbon cable and joining
the ends with the ribbon offset by one.

Three-axes of magnetic field control requires (at least) a three-axis measurement of the
field. We achieve this by placing a Bartington Mag690 three-axis fluxgate magnetometer
outside the main chamber, axes aligned with the coils. The magnetometer is close enough to
the position of the atoms that the stabilization field is roughly constant in the space between
them. This magnetometer can accurately measure fields up to 1 Gauss in magnitude. Thus,
it’s important that the reference field at the magnetometer not exceed this value.

The output of the magnetometer, ±10 V full scale for each of three channels, is filtered
by active double-pole ∼20 Hz low-pass filters and digitized by a 16-bit Texas Instruments
ADS7825 ADC. The power supplies are each controlled by a 0–1 V analog voltage, which we
generate with three MAX541 16-bit DACs. In between the ADC and DACs sits an Arduino
AVR-based microcontroller system, which can sample the ADC and write to the DACs at a
rate of roughly 50 Hz for each channel while running a control and feedback logic loop. The
Arduino is programmed to accept two digital control inputs that set it to either

(a) hold its analog output at the most recent value;

(b) measure a reference field and update the reference set point;

(c) feedback to the control voltages to achieve and maintain the reference field set point;
or

(d) hold its analog output at a predetermined fixed value, typically zero amps.

The arduino also accepts commands over a serial interface that allow the set points to be
manually adjusted and to manually tweak or override the current settings for both (a) and
(d) control scenarios.

Much of our experimental sequence was optimized with no stabilization fields, so we
begin our experimental sequence (MOT loading, magnetic evaporation, and initial loading
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π/2 pulse, no feedback π/2 pulse, with feedback

Figure 5.22: With feedback on, the bias magnetic field is more stable, and thus RF
transitions are more stable. Here the populations of the three Zeeman states are shown
after a 300 µs π/2 pulse, with the elevator in motion between experimental cycles.

of the optical trap) with the stabilization fields off, which corresponds to stabilization control
configuration (d). After the ODT is loaded, during the initial optical evaporation and as
we adjust the bias field and gradients to their reference values, we set the stabilization
coils to configuration (a), which causes the stabilization field to ramp over 100 ms from
zero Amperes to the current that last achieved the reference set point. Once the reference
fields are stable, we enter configuration (c) to compensate for any changes to the magnetic
field environment. We continue feedback until the experiment compels us to change the
fields from the reference configuration, at which time we switch back to (a). Whenever
the reference field configuration is changed or recalibrated, we set the stabilization currents
to three Amperes. This assures that field variations can be tracked in future runs of the
experiment by our stabilization coils, which are driven by unipolar power supplies. Once
the reference levels are recalibrated, the reference field level is saved as the new set point by
running the experiment with stabilization configuration (b) instead of (c).

With the stabilization coils integrated into the experimental sequence, bias fields are well
stabilized at the one second timescale to better than 1 mG at the atoms. As a result, the
applied, or rather, mostly canceled magnetic field gradients are quite stable—we can easily
maintain an in-plane gradient of less than 0.5 mG/cm—from run to run and even day to day.
The stability of the bias field means that RF transitions are much more stable, as shown
anecdotally in Fig. 5.22.

Long RF pulses (>500 µs) are still limited by higher-frequency noise and sub-mG vari-
ations of the bias field at the atoms. The dominant source of higher-frequency noise is in
phase with the line voltage and can largely be eliminated by synchronizing critical RF pulses
with the 60 Hz line. Regardless, such pulses need to be recalibrated frequently.
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Figure 5.23: Our initial scheme for purging magnons as a level diagram (a) and viewed
in a schematic dressed-state picture (b). There is a second dressed state that is unresolved
in this picture, wherein the optical transition is not saturated.

5.12 Purging magnons from the trap (for cycled

cooling)

Our strategy for purging magnons from the trap has evolved over time. Our usual method
of purging atoms is illustrated in Fig. 5.23a. We simultaneously apply resonant microwaves
to transfer atoms to the F=2 ground-state manifold and imaging light to cycle atoms on
the F=2→ F ′=3 transition, causing them to accumulate sufficient momentum to leave the
trap. However, in general, the dynamics of a three-level quantum system with two drives
and dissipation is not trivial, and perhaps it’s not surprising that this scheme for purging
atoms can have some side effects and limitations.

In the limit that the optical drive is resonant and large compared to the microwave
drive, but still small enough to avoid saturating the optical transition, Γ � Ωopt � Ωµ, we
can consider the |F=2〉 states to be lightly dressed by the optical field, admixing a small
amount of the excited |F ′=3〉 states. The resulting admixture has an effective line width
and decay rate Γeff , as shown in Fig. 5.23b. The microwave drive that we apply during purge
is resonant with atoms in the |mF=0〉 state and is detuned for atoms in the |mF=−1〉 state
by ∆ = ωL ≈ 100 kHz, the Larmor frequency. In this simplified scenario, where we also note
∆� Ωµ, the ratio of “bad” scattering to “good” scattering is

R−1

R0

≈
ΓeffΩ2

µ/(4∆2)

ΓeffΩ2
µ/Γ

2
eff

=
Γ2

eff

4∆2
. (5.18)

Thus, if we are willing to excite 1,000 magnons before we excite a majority atom, then we
would limit Γeff . 5 kHz. This requires Ωopt . 50 kHz, about 1/100 of the saturation intensity
(which is about 6 MHz). Conveniently, our maximum microwave Rabi frequency is roughly
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Figure 5.24: (a) Checking the purge process. We repeat cycles of magnon creation and
purge. The final cycle does not include a purge. We simultaneously image the number of
majority atoms and magnons after the last cycle to get both the atom number (top) and
fraction of atoms converted into magnons (bottom, red points), which is roughly constant
as the same RF pulse is used at each cycle. The atom decay rate (black dashed line) is
compared to the magnon fraction and, being higher, indicates additional loss beyond the
purged magnons. (b) A closer look at the loss of atoms in one purge cycle using the pump-
probe procedure. Purge is applied (unfilled circles) to gases prepared with (red) and without
(blue) magnons. Larger circles indicate more optical power in the purge pulse. When the
purge sequence is applied to a gas without magnons (or with very few), almost no atoms
are lost. When magnons are present, there is additional atom loss. Additional losses are
slightly worse when the optical power is higher.

Ωµ ≈ 5 kHz, so that we can nearly saturate the microwave transition to the dressed excited
state. In this scenario, the magnon lifetime with the purge is τ0 ≈ 1/(2Γeff) ≈ 100µs, whereas
the majority atom lifetime is τ−1 ≈ 4∆2/(Ω2

µΓeff) ≈ 0.32 s. Clearly this purge procedure is
not non-destructive—0.32 s is a short lifetime by our standards—but ideally we only need
to purge for several τ0 to eliminate all of the magnons.

Our experience suggests, however, that the world is not ideal. For purging small numbers
of atoms, this approach has worked well, approximately as expected. However, when a
large number of magnons need to be purged, the effects of high optical density can become
important: With a large number of atoms in the F=2 manifold, the purge light does not
penetrate far into the gas, and the purge process takes many times longer than the simple
analysis presented here would suggest. In this case, one might think of the atoms being
purged in layers, one “OD” at a time. Purging a large fraction of the atoms can take several
milliseconds.
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Also, in this approach to purging, it is important that the light driving the optical
transition be close to resonance, as even weak driving can result in a considerable AC Stark
shift of the |F=2〉 levels. Such a shift could reduce the detuning from resonance of undesirable
scattering events and decrease the rate of desirable scattering. Finally, our top-imaging beam
typically operates near saturation intensity, and it is difficult to cut the intensity reliably
by two orders of magnitude without feedback, so generally purging works best with our side
imaging beam, which operates far below saturation intensity.

We were able to increase the reliability and robustness of the purging procedure by im-
plementing a pump-probe procedure, rather than driving microwave and optical transitions
simultaneously. In this scenario, we purge by first pumping the atoms with an (approximate)
microwave π-pulse. Then we apply imaging light for a brief period, 50–150 µs depending on
the optical depth of the atoms, to push the atoms out of the trap. To account for imperfect
π-pulses, the procedure can be repeated several times. This purge procedure can be faster
than our original method and is more robust to drifts in laser frequency and power. The
final cooling data for our publication were acquired using the pump-probe purge method.

5.13 State purification and preparation

Atoms in the |F=1,mF=− 1〉 state, our majority gas, are magnetically trappable, and their
presence in the imaging field of view can introduce unwanted aberration in our images of
the magnon momentum distribution. Even if they remain 6.8 GHz out of resonance with
the imaging light, their high density and moderate polarizability makes them an excellent
lens that can cast a formidable shadow. Therefore, in order to image small numbers of
magnons accurately, we begin an optimized purge process, similar to the one applied to
trapped magnons in Sec. 5.12, but with microwaves resonant with the |F=1,mF=− 1〉 →
|F=2,mF=0〉 transition, removing the majority atoms from the field of view. The purge
process begins about one millisecond after extinguishing the optical trapping light.

Purging majority atoms from the field of view presents some additional challenges beyond
those encountered in purging the magnons. Unlike the trapped the magnon gas, the majority
atoms are extremely dense, so considerations of high optical density are not just footnotes,
they are front and center. The OD in the center of our BEC can easily exceed 50. In addition,
the majority atoms far outnumber the magnons, and thus the constraints on the ratio of
desirable to undesirable scattering events, such as that given for magnons in Eq. (5.18), are
more severe.

We have used two different majority-atom purge procedures. The first procedure is a
variation on the pump-probe purge that we adapted for use on the majority atoms. In this
purge process, forces due to optical scattering remove the atoms from field of view. The
second procedure relies on the magnetic field gradient used in MSF to push the majority
atoms from the field of view. In this latter process, the majority atoms are transferred to a
magnetically anti-trapped state. In the next few paragraphs I detail both of these purging
procedures and discuss their relative merits.
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Figure 5.25: Our ultimate scheme to remove |mF=− 1〉 atoms from the imaging field
of view and to make |mF=0〉 atoms compatible with momentum space focusing. Densely
dotted levels are magnetically trappable.

The pump-probe optical majority purge Most of our data were acquired using a
variation on the pump-probe purge, with alternating microwave (pump) and optical (probe)
pulses. To reduce the optical depth, we used a pump power and pulse length that transferred
only a fraction of the |mF=− 1〉 atoms into the F=2 manifold in each pump-probe cycle.
The microwave pulses, probe power, probe duration, and number of pump-probe cycles could
be varied to purge reliably while losing as few |mF=0〉 atoms as possible.

In spite of this our attempts at optimization, the purge process removed between 10% and
40% of the |mF=0〉 atoms, depending on the number of majority atoms being purged and
on the particular mood of the experiment. These losses could possibly have been reduced by
waiting longer before the purge sequence, at which point the density would be lower, or by
using a magnetic field gradient to separate the clouds in momentum space. However, doing
either of these things would have changed the timing of our momentum space focusing and
imaging procedure, which we had already carefully calibrated. Crucially, the atom loss does
not visibly impact the momentum of the minority atoms that remain. In counting magnons,
we have to consider these losses.
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The pump-sweep magnetic majority purge Eventually, after most of our cooling and
thermometry data had been taken but before acquiring the state-selective trap data, we
implemented a more efficient purge process that kept the same MSF timing. This process
is depicted in Fig. 5.25. Enabled by better control and stability of the magnetic fields
(Sec. 5.11), along with the ability to synchronize the levitation sequence with the line voltage,
we found that a π pulse resonant with the |F=1,mF=− 1〉 → |F=2,mF=− 1〉 transition
was stable enough to transfer reliably nearly all of the majority atoms. The |F=2,mF=− 1〉
state is magnetically anti-trapped, and so the action of the momentum space lens is to push
atoms in that state out of the field of view.

Preparing the magnons for momentum space focusing In order to make the |mF=0〉
atoms compatible with the levitating momentum space lens, we use a Landau-Zener (LZ)
sweep to transfer them to the |F=2,mF=1〉 state. This same sweep will also transfer any
|mF=1〉 atoms to the |F=2,mF=0〉 state. In our apparatus, it is easier to ramp a magnetic
field bias value than it is to ramp the microwave frequency, so we implement this sweep by
fixing the microwave frequency and sweeping a magnetic bias field through the appropriate
resonance. The ramp begins about 20 kHz detuned from resonance and moves to within a
few kHz of resonance in about 0.5 ms. It then crosses to within a few kHz on the other side
of resonance in 1 ms before darting to 20 kHz detuned in another 0.5 ms. We achieve more
than 95% transfer efficiency with a microwave Rabi frequency of about 5 kHz.

With the magnons so prepared, we ramp on the momentum space focusing fields.

5.14 Data and data management

The primary data generated by our experiment are in the form of images. Associated
with these images are innumerable experimental settings, most under computer control,
along with even more responses of the environment to these settings. The environmental
responses are, of course, highly correlated with the settings, otherwise our experiments would
not work. But the responses are analog, even when the settings are digital, and subject to
variations and fluctuations outside of our (formidable) control. We monitor many of the
responses on our instruments: current clamps, power meters, magnetometers, error signals,
oscilloscopes. Recorded or not, these measured responses are auxiliary data and potentially
of use. Typically we discard these data, or account for them by eye or via a note in the lab
book.

In a moderately complex study like the one described in this chapter, the volume of data
we generate, and the variety of experimental settings, is fairly large. However, it is not
generally so large that technological constraints force us to be clever in how we deal with
it. We can store the raw data and the sequence files that generate it on disk indefinitely,
allowing us to analyze it post hoc in whatever ad hoc way we choose. Auxiliary data and
settings are hopefully noted in hard copy. If not, they may be safe to ignore. But maybe
not. There have been times when I wished we could associate our data with, for example,
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Figure 5.26: Some tables used to store data and analysis results. In the top row, two
snapshots show tables that store experimental parameters and quantities pulled directly
from primary data files derived from momentum space images and side images. There may
be multiple images of from the side associated with each momentum space image, or vice
versa. In the bottom left table, multiple different fits are applied to each piece of momentum
space data, each yielding different derived quantities, such as temperature and condensate
fraction. In the bottom right table, multiple different temperature results with different
settings are combined to yield an extrapolated and/or average temperature.

the magnetic field measured in the lab at the moment it was acquired. However, the need
has never been pressing enough to make it so, and the way we manage our data does not
trivially lend itself to such coordination.

The ability to decide after the fact how to deal with primary data, and thus secondary
and aggregated data that our analysis may generate, is a valuable luxury. Even though we
may analyze the data as they come in, we frequently realize that the experiment is not what
we think it is, and we are free to approach the data from an entirely different angle at a
later time. Regardless, the way we organize data and analysis can have a big impact on
our ability to tease out the patterns and trends they contain, on our ability to adapt them
to testing evolving hypotheses, and on the way in which preexisting software tools can be
applied to them.

In some ways, choosing how to manage data is akin to choosing a programming language
for a project. A sensible default is to adapt what has been done before, or to use the tools
with which one is familiar. In the programming space, in some senses— such as “Turing
completeness”—all choices are equivalent. As a practical matter though, in terms of what
sorts of things are easy, fast, or efficient, such choices can matter a great deal. In the
sections that follow, the data, analysis, and results of our study will rightly take center
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stage. However, the manner in which data and analysis were managed and stored will be
a minor character, moving the story along. Let me introduce, briefly, that minor character
now.

The primary data, the images, are acquired by edcam [2], a home built MATLAB-based
image acquisition program. Edcam does basic processing of absorption images and produces
files containing the inferred column density, as well as the raw image frames, should they be
needed. These data files are stored on disk with a name determined by the operator, and
are typically organized by date.

Information about the primary data, including metadata, such as variables relevant to
the experimental sequence that generated a primary data file, and analysis results, were
stored in an impromptu relational database [90] built on MATLAB’s table data structure.
A relational database makes a lot of sense for much of our data because there are strong
relationships between different aspects of the data. For example, one or more images of
the momentum space distribution of the atoms may be related to one or more images of the
atoms from the side (to determine the atom number) and one or more images of the atoms in
situ, all acquired with the same experimental parameters. These different pieces of primary
data may be the source of many different derived quantities, such as the temperature or
chemical potential. Additional quantities can be derived from these derived quantities, and
so on, such as an average or extrapolated temperature. By taking care to structure the data
in an intelligent way, writing code to analyze the data, perhaps in unforeseen ways, can
become a lot easier.

Relational databases, along with other (possibly) relevant types of data management
systems and concepts, are often covered in “programming for scientists”-type courses, such
as Berkeley’s “Python computing for science” [71]. Materials are often available online.
Though such courses often focus on a particular programming environment, the principles
of data management are quite general and might fill a much needed gap in the formal
education of many experimental physicists. Keeping the many types of data in mind when
building a new experiment might allow one to easily integrate environmental responses and
other process data with the primary data, potentially allowing variability to be reduced via
post-selection or more sophisticated data modeling.

5.15 Temperature fitting

Atom column momentum densities np are fit to a Bose-enhanced momentum distribution
np = b+ Agj(e

x), with gj the Bose function (polylogarithm) of order j and the argument

x = α− (pw − pw0)2/2mkBTw − (pt − pt0)2/2mkBTt. (5.19)

For non-degenerate gases, α = µ/kBT is a free parameter of the fit, along with the zero
of momentum (pw0, pt0), the background level b, peak level A, and temperatures Tw and Tt
along the weak and tight in-plane axes of the optical trap, respectively. For degenerate gases,
α = 0. If necessary, we also add a term that allows for a linear background gradient.
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Generally, Tw = Tt within the error of the fit. However, at low temperatures, several
effects cause Tt be an unreliable estimate of the gas temperature. Although the conden-
sate expands primarily along the unfocused vertical direction, at very low temperatures the
condensate expansion along the more tightly confined in-plane direction can be manifest
(Fig. 5.9b). Also, the tilt of the trap in the tight direction is more difficult to calibrate, lead-
ing to a (fictitious) systematic upward shift in the apparent Tt by the mechanism explained
in Sec. 5.4.4. Finally, Eq. (5.19) is expected to describe a Bose gas under the assumption
that the semiclassical condition kBT � ~ω holds along both the tight and weak axes of the
trap. However, in our system ~{ωw, ωt}/kB ∼ {0.05, 1} nK, and thus at the lowest tempera-
tures we achieve this approximation is not valid along the tight axis. Thus, while we fit the
full two-dimensional momentum densities to Eq. (5.19), throughout this work we estimate
temperatures by T = Tw alone.

5.15.1 Masking the condensate

Eq. (5.19) describes the normal component of the gas only, so we must exclude regions of
the column density that include condensed atoms. Our final data set consists of nearly 5000
images with condensates and non-condensates of different shapes and sizes. Automating
much of the fitting process, including finding and masking the condensate, if one is present,
was quite important. Our procedure for masking a condensate is shown, in part, in Fig. 5.27.
The algorithm for establishing the condensate mask is approximately as follows:

Compute the curvature of the image A Laplacian of a Gaussian (LoG) filter is applied
to the image of the atom column density. The standard deviation of the Gaussian
filter can be adjusted but is generally set to roughly twice the imaging resolution. The
resulting image gives the curvature, Ci, of the smoothed image at each pixel i.

Mark points below a curvature threshold The distribution of curvature values differs
markedly when a condensate is present and when one is not, as shown in Fig. 5.27b
and 5.27c. Without a condensate, the distribution of curvatures is approximately
symmetric. With a condensate, a long tail of negative curvatures is present. Candi-
date condensate pixels are established by marking pixels with a curvature less than
−max(Ci)/β, where β is a tunable constant of order unity that sets the sensitivity of
the threshold.

Unmark regions less than a minimum size Noise in our images can cause isolated pix-
els or small groups of pixels to be tagged in regions where there is no condensate, or
even no atoms. Thus, we unmark candidate pixels that are part of a group of candi-
date pixels smaller than a certain size, using the standard “closing” image morphology
operation. We used a threshold radius of 3 pixels. We call the resulting marked pixels
the mask.

Expand the mask To make sure the mask covers the whole condensate, we expand it
by a variable amount using a “dilation” operation. We may want to mask a region
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Figure 5.27: Masking the condensate automatically. (a) Top row: the image of the trans-
verse momentum distribution, with color scale indicating density (left) and its curvature
(right). Bottom row: The mask (left) and expanded mask (right) are shown in dark blue,
superimposed on the transverse momentum density distribution. The distribution of cur-
vatures is also shown both with (b) and without (c) a condensate. The masking threshold
calculated from the distributions is indicated by the vertical blue line. Insets show the
corresponding transverse momentum density distributions. Color scales assign dark red to
maximum unmasked density or curvature in each image.

much larger than the condensate, for example to just fit the wings of the momentum
distribution, so the amount by which we expand the mask may be quite large.

Merge with minimum mask Even if there is no condensate detected, we may want to
mask the central part of the distribution. Thus, we combine the automatically deter-
mined mask with an adjustable minimum-size mask centered on the density distribu-
tion.

This masking procedure has been remarkably successful at finding the condensate in a wide
range of our data, including momentum space, in situ, and time-of-flight images. The tuning
constants have proven to be quite robust, and require only minor tweaks depending on the
data.
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Figure 5.28: Assortment of fits varying the mask size. Fits using the Bose function g2

are in red while fits using g1/2 are in blue. The mask size (x-axis) is normalized by the
standard deviation of the selected fit, which is indicated by the square box. The first two
frames are typical of samples with a condensate present, while the last frame is typical of
samples without a condensate. Notice that both functions underestimate the temperature
at smaller mask sizes (when a condensate is partially unmasked). At intermediate mask
sizes, where the Bose-enhanced parts of the non-condensed distribution are present, the g1/2

fits tend to overestimate the temperature. Fits with g2 generally converge to the correct
temperature (as indicated by the wings of the distribution, which are insensitive to the fit
function employed) at smaller mask sizes.

5.15.2 Selecting a fit

In order to have reliable temperature estimates, we must verify that the temperature is
insensitive to the size of the masked exclusion region. Thus we fit each image multiple times
with masks of varying size. In addition, it is not clear a priori which Bose function we
should be fitting to. At high temperatures, kBT � µ, the non-condensed atoms (including
magnons) have little overlap with the condensate, and the statistics should be those of atoms
in a harmonic trap. In such a case, the function g2 should describe the momentum column
density. At low temperatures, when kBT � µ, the magnons are confined to the region of
the condensate and see an effective “square well” potential, implying a momentum column
density approaching g1/2. However, g1/2(ex) diverges unphysically as ex → 1, and ex = 1 at
the center of a quantum-degenerate gas. This incongruity suggests that some other physics
should keep the unphysical g1/2 behavior from being realized. For example, weak interactions
and finite size should prevent a true divergence. In addition, more recent work in our lab
on the condensation of magnons suggests that the timescales for true equilibration of the
magnons at the longest length scales is longer than the lifetime of our gas.

Fortunately, the high-momentum tails of the momentum distribution np are insensitive to
the particular Bose function employed (gj(e

x)→ ex as ex → 0). Thus, it is important to make
sure that some of our fits include only the high-momentum data points. In addition, we will
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also fit our data with two candidate Bose functions, g1/2 and g2. We can then determine which
Bose function best applies to our data by seeing which function most consistently estimates
the temperature and magnon number as the mask size is varied. If we determine the proper
Bose function, we can increase our signal to noise by including more low-momentum data in
the fits while maintaining temperature consistency with the unbiased high-momentum tails
of the distribution.

Both g2 and g1/2 tend to underestimate the temperature when the mask is very small
and parts of the condensate are included in the fitting region. As the mask grows, the
temperature predicted by g2 tends to rise before it plateaus. In contrast, as the mask size
grows, the temperature implied by g1/2 will tend to rise above the asymptotic temperature
value before converging on the true temperature from above. In both cases, once the mask
is too large, the fits become unreliable as the signal to noise drops to zero. This behavior
can be seen in the examples of Fig. 5.28 and in panel 10 of Fig. 5.29, where the temperature
predicted by g2 (red points) and g1/2 (blue points) are shown versus mask size.

In general, when fitting condensed samples, g2 seems to converge to the true temperature
value faster than g1/2. Often, especially at low temperatures, they converge equally well.
The fact that g2 underestimates and g1/2 overestimates the temperature when the central
part of the degenerate distribution is included in the fit suggests that j ∼ 1 or 3/2 might
fit the data better. Indeed, in our ongoing (as of this writing) work exploring magnon
condensation, this seems to be the case. While the choice of Bose function is not critical in
estimating the temperature using the tails of the momentum distribution, it can impact the
inferred condensate fraction a great deal. The more highly peaked Bose functions—those
with smaller j—tend to ascribe more of the atoms in the central region to the non-condensed
fraction.

Much of our thermometry data were obtained by imaging entirely non-condensed sam-
ples. Far from degeneracy, both g2 and g1/2 are equally good at describing the momentum
distribution. This is the typical case for much of our data, including the third panel in
Fig. 5.28. Even for samples approaching degeneracy, we noticed once again that in general
g2 seemed to describe the observed distribution better than g1/2, even at low temperatures.
This behavior is a bit puzzling and is being investigated in more detail in ongoing work. I
hypothesize a partial explanation: First, as mentioned previously, the timescales required to
achieve thermal equilibrium at long length scales seem to be quite slow in our system. This
has also been observed in other experiments in our lab [25] and elsewhere [15]. The result of
this may be that at long length scales, where the difference between g1/2 and g2 behavior is
manifest, the gas is unaware, in some sense, that it is approaching degeneracy. In addition,
when kBT < µ and g1/2 may be expected to apply, the effects of trap anharmonicity in the
vertical direction become relevant, softening the box somewhat. Regardless, for this study,
reliable temperatures could be obtained by yielding to the well-thermalized long length scales
(e.g. high momentum), as necessary.

Our procedure for efficiently fitting and examining the fits leverages the relational data
storage described briefly at the end of Sec. 5.14. When data were initially acquired, the
location of the primary data files and the experimental parameters are entered into a table
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> am4 22
> am4 20
> save
> am4 0
> save
> am4 16
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> save

File: MAG_0135.mat
current ID: − 618
vODT: 1
tRF: 80
tHF: 4.00
vortex: 2
Tx: 15.6778
Ty: 14.5592
uB: −0.1463
CondFrac: 0.4181
r2: 0.1934
stdev: 0.3968
sROI: []
hold fit: 0
auto fav: 0

s|idx|cnd| polylog|m1| m2|m3|m4|l|   Tx|   Ty|    N|  cFrac|  muBet|     r2|   sdev|fv|mask
y| 18|  0|   g_two|10|1.0| 3|28|0|15.68|14.56|34572| 0.4181|−0.1463| 0.1934| 0.3968| 0|40.96
n|  1|  0|   g_two|10|1.0| 3|22|0|14.71|13.86|34236| 0.3917|−0.0025| 0.2588| 0.3974| 0|34.24
y|  2|  0|   g_two|10|1.0| 3|12|0|10.80|10.35|32480| 0.3436|−0.0000| 0.3982| 0.4007| 0|23.93
y|  3|  0|g_onehalf|10|1.0| 3| 0|0| 5.35| 3.90|23809|−0.1017|−0.0001| 0.6474| 0.4415| 0|12.73
y|  4|  0|g_onehalf|10|1.0| 3|10|0|22.05|20.12|35083| 0.1329|−0.0002| 0.4351| 0.3994| 0|22.13
y|  5|  0|   g_two|10|1.0| 3| 6|0| 8.43| 7.73|30828| 0.3087|−0.0004| 0.4979| 0.4080| 0|17.83
y|  6|  0|   g_two|10|1.0| 3| 8|0| 9.22| 8.66|31466| 0.3207|−0.0003| 0.4673| 0.4043| 0|19.63
y|  7|  0|   g_two|10|1.0| 3|10|0|10.02| 9.59|32034| 0.3329|−0.0001| 0.4277| 0.4020| 0|22.13
y|  8|  0|   g_two|10|1.0| 3|18|0|13.13|12.55|33608| 0.3747|−0.0031| 0.3103| 0.3981| 0|29.98
y|  9|  0|g_onehalf|10|1.0| 3|18|0|18.22|17.25|34768| 0.3370|−0.1593| 0.3112| 0.3979| 0|29.98
y| 10|  0|g_onehalf|10|1.0| 3|22|0|16.81|15.79|34646| 0.3815|−0.4010| 0.2589| 0.3974| 0|34.24
y| 11|  0|g_onehalf|10|1.0| 3|26|0|15.80|14.72|34570| 0.4152|−0.8897| 0.2146| 0.3970| 0|38.49
y| 12|  1|   g_two|10|1.0| 3|24|0|15.53|14.52|34520| 0.4002| 0.0000| 0.2324| 0.3972| 0|36.72
y| 13|  0|   g_two|10|1.0| 3|24|0|15.45|14.45|34485| 0.4003|−0.0038| 0.2324| 0.3972| 0|36.72
y| 14|  1|   g_two|10|1.0| 3|32|0|16.36|14.93|34665| 0.4144| 0.0000| 0.1642| 0.3966| 0|44.51
y| 15|  0|   g_two|10|1.0| 3|32|0|15.83|14.47|34600| 0.4304|−0.3129| 0.1643| 0.3966| 0|44.51
y| 16|  0|   g_two|10|1.0| 3|34|0|15.79|14.39|34601| 0.4368|−0.4770| 0.1461| 0.3964| 0|46.98
y| 17|  1|   g_two|10|1.0| 3|36|0|16.64|15.07|34705| 0.4195| 0.0000| 0.1330| 0.3963| 0|48.75
y| 19|  0|   g_two|10|1.0| 3|36|0|15.56|14.12|34588| 0.4510|−1.3824| 0.1331| 0.3963| 0|48.75
y| 20|  1|   g_two|10|1.0| 3|44|0|16.70|14.89|34697| 0.4178| 0.0000| 0.0842| 0.3959| 1|57.23
y| 21|  0|g_onehalf|10|1.0| 3|30|0|15.65|14.41|34573| 0.4305|−1.2768| 0.1781| 0.3968| 0|42.74
y| 22|  1|   g_two|10|1.0| 3|16|0|13.45|12.81|33908| 0.3679|    NaN| 0.3339| 0.3985| 0|28.20
y| 23|  0|g_onehalf|10|1.0| 3|14|0|19.51|18.25|34867| 0.2954|−0.0701| 0.3612| 0.3985| 0|26.41
y| 24|  0|g_onehalf|10|1.0| 3|36|0|15.73|14.27|34607| 0.4485|−1.9095| 0.1331| 0.3963| 0|48.75
y| 25|  0|g_onehalf|10|1.0| 3|46|0|16.37|14.49|34674| 0.4536|−1.6147| 0.0724| 0.3958| 0|59.69
y| 26|  1|   g_two|10|1.0| 3| 0|0| 4.02| 3.07|25464| 0.2069|    NaN| 0.6248| 0.4554| 0|12.19
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Figure 5.29: The “fit maker” was used to check fits, apply new fits, and select the favorite
fit for each datum. This makeshift GUI is just an interactive MATLAB figure window.
Panels 1–3: The original transverse momentum distribution and integrated profiles with
integrated fits. The mask used for the fit is superimposed on the momentum distribution.
Panels 4–6: Corresponding momentum distributions and integrated profiles with the masked
data excluded. These panels show only the data used to produce the fit. Panels 7–9: The
implied condensate column density and integrated profiles are obtained by subtracting the
fitted non-condensed density. Panel 10: A graphical summary of the different fits performed
on this datum shows the temperature vs. mask size. The three different colors differ in
parameters other than mask size. Red and green points use g2 Bose function with degeneracy
parameter α free and fixed to zero respectively. Blue points use g1/2 function and α free.
The currently displayed fit is marked with a circle. The favorite fit is marked with a square.
Clicking on a data point selects it for display. Panel 11: Numerical summary of different
saved fit results and parameters. Panel 12: Information on the experimental parameters
used for this datum, as well as a few fit highlights and configuration parameters of the
fit maker. Panel 13: A command line allows new fits to be generated and saved, for fits
to be selected as favorite, for navigation between data, and for settings of the fit maker
to be changed. Time saving settings included automatically selecting the last-viewed fit
as favorite and locking the fit settings while navigating between different data so that, for
example, good fit settings do not need to be reentered manually for each item of related
data.
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and marked as new. A simple script is called to examine any new data and to add a
standard battery of desired fits (which depend on the experimental parameters) to another
table. Another script monitors this table of fits and would-be fits for unprocessed rows and
calls the fitting routine to fill in any missing fit results. Each fit can take several seconds to
perform, and at times, such as when a new battery of fits is to be applied to all of the data,
many thousands of new fits might need to be performed. With the data tables stored on a
central server, the fitting routine can easily be parallelized. To make viewing and recalling
fits faster, the results of calls to the fit procedure are cached in a hash table whose key is
uniquely determined from the data and fit settings.

While our fitting routing is quite robust and well automated, picking a particular set of
fit parameters that produce the best unbiased fit is not. We need to check that the choice
of Bose function and mask size are reasonable and that the fit results don’t have a strong
dependence on particular, somewhat arbitrary, choices. In some data, we need to decide
whether to compensate for a linear background, or not; we may need to decide whether to
fix the degeneracy parameter α (owing to the presence of a condensate), and to be sure this
choice does not bias the data. And we need to do this for several thousand different images.
To make this process relatively easy, we built a simple tool for browsing the data while
adding, comparing, and selecting fits: the “fit maker,” shown in Fig. 5.29. The fit maker
shows a summary of all of the fits that have been performed on a particular image along with
details and views of a particular fit. It includes a capability to add new fits with varying
parameters, and to select a particular “favorite” fit for use in subsequent analysis. All of the
data and fits employed in this work were examined and selected using the fit maker.

5.16 Thermalization

In order to function as a thermometer and to cool the gas, the magnons have to be able to
exchange energy with the majority gas at a rate sufficient to achieve a suitable approximation
of thermal equilibrium. When kBT > µ, the thermal excitations of the majority gas disperse
quadratically, similarly to the magnons, and the magnon gas would be expected to thermal-
ize in step with the majority gas itself. However, when kBT < µ, the thermal excitations
of a homogeneous Bose-Einstein condensate are linearly-dispersing phonons, and thus ther-
malization of the magnons with the majority gas requires collisions between quasi-particles
with very different dispersion.

We found that an applied magnetic field gradient could expedite thermalization between
initially coherent spin components. With no gradient (though a small background curvature
remains, roughly 50 mG/cm2 along the long axis of the trap), the out-of-equilibrium two-
component condensate can persist for several seconds when the temperature is sufficiently
low. A less dramatic demonstration of the effects of a magnetic field gradient is shown in
Fig. 5.30, where the “melting” of the condensate is shown to be expedited by moderate
gradients. The optimal gradient to achieve thermalization in our system is moderate, on the
order of 0.2–2 mG/cm, depending on the temperature of the gas. We avoid larger gradients
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Figure 5.30: Images of the magnon gas in situ at an intermediate temperature in an
older trap geometry are shown with varying magnetic field gradient and hold time. At
short times, a dense condensate is seen, reflecting the in situ distribution of the initially
spin-polarized gas. In the presence of low gradients (top row), the dense condensate persists
to later times, “melting” slowly. Higher gradients initially facilitate faster melting, as the
condensate moves more quickly towards the edge of the trap. When the gradient is too
large, however, the magnons re-condense in a reduced trap volume.

for several reasons. First, a large gradient has the potential to deposit extra energy in the
condensate, leading to atom loss and low-order collective motion of the gas that takes time
to dissipate. Additionally, recall that the magnons have an effective magnetic moment [47],
so a gradient that is large compared to the temperature of the gas divided by the size of
the trap reduces the trap volume for magnons by confining the magnons to the edge of the
trap, lowering the magnon condensation temperature. This effect can be seen in Fig. 5.30,
wherein the condensate is seen not to melt at the larger gradients.

A gradient of 0.2 mG/cm corresponds to an energy of approximately h×10 Hz = kB×0.5
nK across the longest dimension of our gas and was sufficient to produce a saturated non-
condensed fraction of the |mF=0〉 state in 100–2000 ms, depending on the temperature of the
gas. Thermalization of magnons created out of a degenerate gas at different temperatures
are shown in Fig. 5.31. In this thermalization experiment, the total time after the end of
the evaporation ramp is constant, so that effects of thermalization of the entire gas following
evaporative cooling are removed.

When magnons are created at an intermediate trap depth before the final evaporation
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Figure 5.31: Thermalization of magnons of magnons created at trap depths of kB×35 nK
(top row), kB × 210 nK (second row), and kB × 1275 nK (bottom row), with total time
following evaporative cooling ramp held constant. In the first column, integrated profiles
(blue-green lines) and fits to the thermal component (red lines) are offset for clarity. The
points corresponding to each fit in column one are marked by same-color circles in the
second and third columns. Several features of magnon thermalization can be seen here. At
the lowest trap depth, the temperature cannot be determined until after nearly one second
of thermalization, at which point the temperature has reached steady-state and does not
depend on the number of magnons. At this trap depth, the number of magnons does not
seem to saturate (likely due to high loss rates) and the peak number of magnons seems
to vary with the size of the initial magnon condensate. At the intermediate trap depth,
the temperature can just barely be determined from the initial momentum distribution.
Note the scatter in initial temperatures owing to the very low signal. The temperature
reflected by the magnons initially rises by an amount inversely proportional to the number
of magnons created, but the final temperature achieved is lower when more magnons are
created owing to decoherence cooling. In contrast to the low trap depth case, the thermal
magnon number saturates to a value independent of the initial condensate number, as long
as the initial condensate number is sufficiently large. At high trap depth, similar patterns of
thermalization occur, but are more pronounced. The initial temperature is well determined.
At this trap depth, we typically do not create enough magnons to saturate the thermal gas.
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Figure 5.32: Thermalization of magnons created in a non-degenerate sample at a high
trap depth before a several second ramp to a final trap depth of kB × 35 nK (top row),
kB × 210 nK (second row), and kB × 810 nK (bottom row). In the first column, integrated
profiles (blue-green lines) and fits to the thermal component (red lines) are offset for clarity.
The points corresponding to each fit in column one are marked by same-color circles in
the second and third columns. At low trap depths, the temperature signal is generally
larger than when magnons are created at the final trap depth, as in Fig. 5.31. In the
second and third fits in the top row, slow thermalization of the low energy magnons is
evident in the messy distribution near the peak. However, the higher momentum wings still
give a consistent temperature signal. At higher trap depths, the effects of magnon-assisted
evaporation can be seen. Note also that steady-state temperatures are actually reached
faster at lower trap depth. This is likely due to the smaller size of the gas and the increase
in evaporative cooling power as the ratio of effective trap depth to temperature drops.
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Figure 5.33: Saturation of the thermal gas. Number of non-condensed magnons and
condensed magnons created at an intermediate trap depth (blue) and final indicated trap
depth (red) are plotted with x- and y-axes set to the same scale in each frame. Scale differs
from frame to frame, with fewer magnons at lower trap depths. All points are normalized
by the trap volume, which depends on the number of majority atoms. At moderate trap
depths, saturation behavior is clear as the number of non-condensed magnons increases to a
threshold before the appearance of condensed atoms. At high trap depth, we do not create
enough magnons to saturate the gas. At low trap depths, the higher signal of the magnons
created before the final phase of evaporation is apparent. For magnons created at the final
trap depth, the number of non-condensed magnons varies with the condensate number.

stage, thermalization is indicated by the achievement of a steady-state temperature that
varies with the majority trap depth even when the magnon trap depth is fixed (see Sec. 5.17)
and that is consistent with that of the majority gas alone (when it is measurable) and that
of magnons created in the degenerate sample under similar conditions. Fig. 5.32 shows the
temperature and number trajectory of magnons created at an intermediate trap depth. The
saturation of the magnon gas apparent in Figs. 5.31 and 5.32 is explored further in Fig. 5.33.

We speculate that thermalization of the magnons occurs primarily at the edges of the
condensate where low condensate density, and hence smaller local chemical potential, implies
a better match between majority and minority spin dispersion. In addition to facilitating
decoherence, the applied gradient may aid in thermalization by driving the transport of
low-energy magnons to the edge of the condensate.

Magnon-phonon interactions are expected to occur even in the homogeneous BEC in
the first order beyond the Bogoliubov mean-field theory (the Beliaev theory) [68], though I
am not aware of any calculated estimates or direct measurements of the thermal phonon-
magnon cross section. Our data are not sufficient to produce such an estimate, as our
images do not provide reliable estimates of the number of condensed magnons, and the
high magnon loss rate at the lowest trap depths makes accounting precisely for magnon
production rates difficult. Moreover, as discussed in Sec. 6, our condensate is not well
approximated as uniform, or even locally uniform, so frameworks that depend on the local
density approximation are unlikely to apply.

The physics behind the decoherence and thermalization of spin impurities, and the vari-
ables that affect it, remains a compelling direction of future research. Previous experiments
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on degenerate F=1 87Rb gases have found magnetic field inhomogeneity to facilitate deco-
herence and thermalization of spin populations, typically on timescales of several 10’s–100’s
of milliseconds [12, 39, 37]. In our work on contrast interferometry with magnons, we ob-
served coherence between magnons in different momentum states out to several hundred
milliseconds [47] with a negligible gradient. However, none of these experiments claim to
have operated in the highly-degenerate phonon-dominated regime kBT < µ. On the other
hand, in strongly-interacting Fermi gases, decoherence of spin impurities has been well char-
acterized and is limited by a fundamental lower-bound on the spin diffusivity, ~/m [5, 36].
Thus, in contrast to weakly interacting Bose systems such as ours, in the strongly interacting
Fermi gas, the role of the gradient in driving diffusive spin transport is well understood.

5.16.1 Real-space magnon thermalization

When the magnons are initially created, their real-space distribution matches that of the
harmonically trapped majority gas. However, at low temperatures, the equilibrium spatial
distribution of non-interacting (dilute) magnons is that of free particles confined to a box.
To observe the transition, we imaged magnons in situ as they thermalized. Indeed, in the
data shown in Fig. 5.34, the faint shadows of the gas at long equilibration times do seem
flatter than the initial profile. Unfortunately, the combination of low signal owing to atom
loss and the small width of the cloud in this data set make a quantitative demonstration of
the flat magnon potential difficult. In more recent work, we have observed in situ profiles
of thermalized magnons that demonstrably match the predicted profile of magnons in a
box better than magnons in a harmonic trap by employing a trap with rounder transverse
dimensions [18].

Initially, our in situ observations of magnon thermalization showed a lot of unexpected
clumping of the magnons, as shown in the left panel of Fig. 5.34. Further investigation
revealed the presence of vortices in the majority gas (the vortices could be seen in the
majority gas after a long time of flight as density dips in the condensate distribution). By
evaporating more slowly, we could eliminate the vortices, and the degree of clumping of
the magnons during thermalization was greatly reduced, as shown in the right panel of
Fig. 5.34. The reason that some clumpiness remains, even without vortices, is a mystery,
though it could be related to the emergence of a length scale that appears in many of our
group’s experiments on condensation in spin mixtures [25].

Much of our data in which magnons are created in a degenerate sample at the final trap
depth have been acquired using similar evaporation parameters to those where we observed
vortices. To determine whether vortices impact the temperature indicated by the magnons,
we repeated some of our previous experiments with vortex-free evaporation ramps. Other
than the in situ character of the thermalizing magnons, the presence of vortices does not
seem to matter.
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Figure 5.34: Magnons are created in a degenerate gas at low temperature and imaged
in situ. When the majority gas contains vortices owing to a fast evaporation ramp, the
magnons clump as they thermalize. Without vortices, the magnons clump much less. The
distribution of magnons at long times should be more uniform as their 3-D density is
expected to be constant in the trapping volume.

5.17 State dependent trap

Our data show clearly that the magnon gas thermalizes and reaches a steady-state tempera-
ture. However, we need to verify that the temperature reached by the magnons reflects energy
exchange with the majority gas and not just independent evaporation and self-thermalization
of the magnons. To do this, we vary the trapping potential depth of the majority gas, and
thus its temperature, while holding the trapping potential depth of the magnons constant.

Varying the trapping potential depth of the majority gas changes the number of majority
atoms and thereby changes the chemical potential and effective trap depth of the magnons,
which is the potential energy depth minus the chemical potential, Ueff = U − µ. If the
magnons thermalize independent of the majority gas then we expect the magnon temperature
to vary in proportion to their effective trap depth, even when the trap potential depth
is constant. On the other hand, if the magnons thermalize with the majority atoms, the
magnon temperature should vary with the majority atom trap depth. Fortunately, these two
competing effects—self- and co-thermalization—pull the magnon temperature in opposite
directions.

Fig. 5.35 shows clearly that co-thermalization is the dominant effect, as at constant
magnon trap potential depth the magnon temperature varies counter to the effective magnon
trap depth and with the majority atom effective trap depth (and trap potential depth).
However, the data also suggest that the temperature reflected by the magnons is not strictly
proportional to the estimated majority atom effective trap depth. There are several possible
explanations for this that might warrant further study.
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Figure 5.35: Temperatures indicated by the magnon momentum distribution in the state-
dependent trap have a positive correlation with the majority effective trap depth and a
negative correlation with the magnon effective trap depth at constant magnon trapping
potential depth. Here, same-color data connected by a dashed line were acquired at the
same magnon trapping potential depth, but with varying majority atom trapping potential
depth that was either lower (squares), higher (circles), or the same (diamonds) as the
magnon potential depth. Different majority atom numbers result in different effective trap
depths for the magnons even when the trapping potential depth is constant. The magnitude
of the temperature changes is discussed in the main text. Vertical error bars show standard
error of the mean over several measurements and horizontal error bars show systematic
uncertainty in the trap depth predicted by the model of Sec. 5.7.

First, variations in the temperature at the same majority atom trap depth (but varying
magnon effective trap depth) could be due to magnon assisted evaporation, which we have
documented at higher trap depths. We have not observed that temperature varies with the
number of magnons at these low trap depths, however, the dynamics of evaporation at such
low trap depths is not well understood, and it is possible that magnon-assisted evaporation
does occur but saturates at low magnon numbers. Second, the trap depth itself is not
precisely calibrated, or even well defined, at such low trap depths. The systematic error
in our estimates of trap depth are proportionally large. Moreover, as explored in Sec. 5.8,
the trap depth is not constant across the trap and can be very sensitive to tilts. The data
displayed in Fig. 5.35 was acquired with a tilt in the less-sensitive short in-plane axis that
was noticeable in the momentum-space expansion of the cloud orthogonal to the direction
used to infer temperatures.
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5.18 Error analysis

5.18.1 Statistical error

One of the powerful features of our magnon thermometer is that its high signal-to-noise ratio
allows us to estimate temperatures from a single image. In essence, each magnon indepen-
dently samples the collective momentum distribution, and each image of the gas constitutes
the results of hundreds to hundreds-of-thousands of identical, simultaneous experiments,
giving us a formidable atomic signal, as well as atom shot noise. Each individual atom is
probed by a large, random number of photons, yielding a large optical signal, along with the
inevitable13 photon shot noise. Our camera is sensitive, but relies on stochastic quantum and
thermal processes that can introduce additional noise. Finally, technical noise—including
dust and vibrations—has the potential to further spoil our precious temperature signal. The
noise in our imaging system is dominated by photon shot noise [49] and when imaging a
sufficient number of atoms, the atom distribution can be determined at the atom shot noise
limit, at least at moderate length scales [46].

By default, our temperature fits do not take noise into account. In effect, this means that
the fitting algorithm, which is based on a non-linear least-squares optimization (MATLAB’s
nlinfit), assumes that the error on each pixel is equal and drawn from a normal distribution.
However, this is not the case. While the imaging noise is roughly equal across the fitting
region insofar as the imaging beam intensity is roughly constant across the region, the atom
shot noise varies considerably. We need to verify that ignoring the variation in error is not
biasing our fits. In addition, when errors are not explicitly included in the fitting routine, the
fitting routine must determine from the data and the fit itself what size of a deviation from
the least-squares result is statistically meaningful, or not, once again employing assumptions
that may not hold up.

To better understand the uncertainty of our temperature estimates, and to verify that the
fits are not systematically shifted by having done the bulk of our fits without specifying the
pixel-by-pixel errors, we perform two additional fits. First, we refit the lowest temperature
data using our selected fit settings with noise-weighted errors. We estimate the noise at pixel
i as

Var (ni) = σ2
i = ñi + Var ({nj}) ,

where ñi is the estimated number of atoms in pixel i obtained from the previous non-noise-
weighted fit and the {nj} are a selection of column densities obtained from pixels without
atoms present, but with comparable imaging optical power. The first term accounts for
atom shot noise and the second for imaging noise, which is dominated by photon shot noise.
As shown in Fig. 5.36, the temperature estimates with and without noise weighting are not
substantially different.

Next we use the results of this fit to construct a simulated image that is perfectly described
by our model. To do this, we use the parameters of the fit to produce a (noiseless) column

13Unless we can somehow use highly squeezed states for imaging.
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Figure 5.36: The difference between temperature estimates from fits with and without
uncertainty weighting is minor for the 271 lowest temperatures, generally much less than
the uncertainty in the fit itself.

density profile. We then add to each pixel independent Gaussian noise with variance σ2
i and

refit the resulting (noisy) data. The errors on the parameters of the fit of the simulated
data can be compared to the errors on the parameters of the fit to our actual data. If
our experimental data are well described by our model, and their noise is as expected, the
simulated and actual fits should be essentially identical. Note that our noise model neglects
correlations in the atom shot noise between different pixels, which might be the case owing
to finite imaging resolution. The experimental and simulated errors are compared in the left
panel of Fig. 5.37.

We can also analytically estimate what the error in our temperature estimates should be
given our noise in the limit that each pixel represents an independent measurement of the
momentum distribution and that all parameters of the fit except the temperature are fixed.
Obviously, this later requirement is not entirely valid, and in reality the variances of and
covariances between different fit parameters probably cannot be ignored. Still, in this simple
limit, the expected error in the temperature estimated from pixel i is derived from the fit
function np as

Var (Ti) = Var (ni) /

(
∂np
∂T

)2

.

The overall variance in the parameter T estimated from a weighted average over the indi-
vidual measurements (i.e. each pixel) would then be

Var (T ) = 1/
∑
i

Var (Ti)
−1 . (5.20)

The calculated and experimental uncertainties are compared in the left panel of Fig. 5.37.
The calculated error is suggestively close to a factor of two less than the experimental and
simulated errors. It is not surprising that the calculated error is less given the assumptions
made in the calculation, but one might wonder if a factor of two is missing somewhere. In
a careful examination, none was found.
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Figure 5.37: Comparison of experimental, calculated, and simulated statistical uncertainty
in the single-shot temperature estimates. In the left panel, the uncertainty derived from
our actual data assuming atom shot noise and photon-dominated imaging noise matches
well with that derived from perfect simulated data perturbed by the assumed noise. In the
right panel, the simple model of uncertainty described in the test underestimates the actual
noise observed by a factor of two. The dashed gray line has a slope of two, the solid gray
line has a slope of one.

The temperatures were measured many times at each trap depth, and if the error esti-
mates given by our fitting routine are correct, they should accurately reflect the variation in
the independent repeated experiments. In statistics, a simple (and like much in statistics,
much abused) test of such consonance is the reduced Chi-square statistic,

χ2
red =

1

N − 1

∑
i

(Ti − T )2

Var (Ti)
.

χ2
red ∼ 1 when the individual variances Var(Ti) are consistent with the scatter of the (assumed

to be independent) data. Here, N − 1 is the number of degrees of freedom, N measurements
less one degree of freedom to determine the uncertainty-weighted average temperature T .
For example, if the Ti are independent and drawn from identical normal distributions with
known standard deviation σ =

√
Var (Ti), the numerator is just N − 1 times the unbiased

estimate of σ2 and the expected sum would be one.
As shown in Fig. 5.38, at the lowest temperatures that we access, the scatter of the data

are consistent with the uncertainty assigned by the fitting routine, with the χ2
red hovering

around unity. One outlier shows gives a χ2
red ∼ 4. Closer inspection reveals this deviation to

be due to a few fits with uncommonly low error, but differing estimates of the temperature.
Regardless, in all cases, using weighed and unweighted means give very similar temperatures.
At higher temperatures, a weighted mean no longer describes the data as the temperature
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Figure 5.38: The χ2
red statistic is plotted versus the weighted average over many runs with

the same settings. In general, at the lowest temperatures shown χ2
red ∼ 1 as expected when

the error assigned by the fitting routine matches the scatter of the data.

varies with the number of magnons, as described in the Sec. 5.19. In cases where the
uncertainties are well matched to the scatter in the data, such as our lowest temperature
points, we can confidently reduce our uncertainty in the weighted mean of the independent
measurements just as in Eq. (5.20).

5.18.2 Systematic error

There are several sources of systematic error in our system, most of which have already been
discussed. The dominant source of systematic error arises from the uncertainty in the MSF
magnification (Sec. 5.4.3), which results in a constant 6% uncertainty in the temperature.
Another source of systematic error that we consider is in the imaging resolution. Uncertainty
in the magnification of our imaging (Sec. 5.5.2) system contributes a relatively minor 2%
uncertainty to the temperature estimates. The combined uncertainty of these two effects is
about 6.5%, which is what the value used to compute the uncertainties quoted here and in
our publication [62].

Assuming a Gaussian thermal distribution, the effect of finite imaging resolution (Sec. 5.5.1,
approximately 8 µm in our system) should be to introduce a constant positive offset of 0.2
nK in the measured temperature. We do not correct our reported temperatures for this
effect (though we note this effect in the methods section of our paper), which means that
our reported temperatures likely overestimate the true temperatures by this amount. An
alternative approach would have been to correct the temperatures for the imaging resolution
and incorporate the uncertainty in our imaging resolution (and the uncertainty introduced
by the various ways in which one might choose to correct the data) into the systematic error.
We chose to avoid additional data processing and to error on the side of overestimates.

An additional source of error pertains to the variable effective mass of the magnon, m∗,
which we previously measured to be 3% heavier than the bare 87Rb mass in our system
[47], though in a different trap geometry. The origin of such a large shift is not entirely
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known. Some amount of the shift, 0.3% can be accounted for by considering interactions
one order beyond the usual mean-field Bogoliubov theory (the Bilaev theory) [68]. We
suspect the remaining portion may owe something to dipolar interactions. Regardless, it
is not obvious how this shift in the magnon mass affects the interpretation of the MSF
data. Do the MSF data reveal the in situ momentum distribution? In such a case the
shifted effective mass m∗ should be used to infer the temperature from the momentum
width: A momentum p implies E = p2/2m∗. Do the MSF data reveal the in situ velocity
distribution? In this case, E = m∗v2/2 and the momentum revealed by MSF would need
to be corrected to account for the mass difference between the in situ magnons and the
free atoms undergoing MSF. Perhaps neither momentum nor velocity is conserved, and the
change in magnon momentum requires a dynamic description akin to the hydrodynamic
theory discussed above. My intuition is that the magnon momentum is conserved as the
condensate density drops after the trap is extinguished, and that the effective mass should
be used to infer the temperature. However, we use the bare mass of 87Rb in all of our
estimates. We did not consider this affect in our initial analysis, and so it is not included in
our estimates of the systematic error, though it probably should be. While not necessarily
negligible, the systematic error due to the uncertainty in the magnon mass (and how to
incorporate it), around 3%, would not be a dominant source of systematic error.

5.19 Temperature extrapolation

At higher temperatures, the presence of magnons clearly impacts the temperature. In such
cases, we can still obtain a reliable and low-uncertainty estimate of the temperature of the
majority gas without magnons by extrapolating the temperature signal to the zero-magnon
limit. The way we do this in practice involves two steps, shown in Fig. 5.39.

In most of our data sets, we obtain temperatures with varying numbers of magnons
and with varying hold times after evaporation (in the case that magnons are created at an
intermediate trap depth) or after magnon creation (in the case that magnons are created in
a degenerate sample at the final trap depth). The first step in our extrapolation procedure
is to select the hold times at which the temperature is constant and at which sufficient
magnons are present for reliable temperature fits. These data can then be aggregated and
the variation of temperature with magnon number fit to a line. The zero-magnon intercept
and its uncertainty are taken to be the magnon-free estimate of the majority gas temperature
and the uncertainty of this estimate.

We perform a similar process to estimate T/Tc of the majority gas, in general with
different hold times, as T/Tc and T are not in general constant at the same hold times. In
fact, T/Tc generally rises as atoms are lost, while T remains constant. We select hold times
where T/Tc is roughly constant and minimal.

Along with our measurements of T and T/Tc, we also quote the number of atoms and
quantities derived from it, such as the chemical potential µ. The atom number, however,
decreases slowly with hold time, so there are a range of atom numbers we could reasonably
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Figure 5.39: Extrapolating the temperature T and ratio of temperature to majority
condensation temperature Tc to the zero magnon limit at a trap depth of kB × 590 nK. To
obtain reliable, low-noise limits, we perform the extrapolation on data acquired at several
hold times where T (T/Tc) is constant. The first (third) column shows T (T/Tc) as a
function of hold time after the final evaporation (after magnon creation, with constant
hold after evaporation). Different colored points and connecting lines indicate different
initial magnon numbers. The vertical colored bars highlight the data used in the second
(fourth) column, where T (T/Tc) is plotted versus the number of non-condensed magnons.
The circle points are colored to indicate the hold time at which they were acquired, with
colors matched to the bars in the first (third) columns. The linear fit to T (T/Tc), and
uncertainties derived from the extrapolation, are indicated by the solid line and error bars
at end points. The extrapolated T (T/Tc) and uncertainty is the left end point and error
bar. The mean and standard deviation of the mean are indicated by the dashed black line
and error bars on the end points. The linear extrapolation describes the data better than
a simple mean.
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state with each measurement. In general, when we quote a single number, we chose the
largest measured atom number relevant to both the extrapolation of T and Tc. The range of
choices for atom number is typically less than the systematic uncertainty we assign to our
atom number estimates.

5.20 Optimizing cycled decoherence cooling

Several experimental parameters can affect the efficacy of cycled decoherence cooling, includ-
ing the number of magnons created at each cycle, the thermalization time following magnon
creation, and the magnetic field gradient. These parameters might not be constant from cycle
to cycle. For example, as temperatures are lowered, the number of magnons created should
drop with the critical number for magnon condensation. We optimized cycled decoherence
cooling several cycles at a time by varying the parameters and plotting the resulting T/Tc
and majority atom number achieved, as in Fig. 5.40. The best parameters are those where
the slope of T/Tc versus majority atom number is steepest with the additional cycles. For
simplicity, we did not optimize the gradient degree of freedom, but rather chose a gradient
sufficiently small that the magnon box was effectively flat even at the lowest temperatures
reached by decoherence cooling.

In the end, we found that fairly simple heuristics could be applied to roughly optimize
cycled decoherence cooling without searching the entire parameter space. At each cycle of
decoherence cooling, the number of magnons created should be small such that no magnon
condensate persists upon thermalization. The thermalization time should be as short as pos-
sible such that only a negligible magnon condensate persists. In practice, we optimize cooling
four to ten cycles at a time, breaking cooling into several stages with different parameters.

5.21 Two types of cooling

When we initially undertook our exploration of magnon decoherence cooling, we did not
foresee the phenomenon of magnon-assisted evaporation. Our original protocols for both
cooling and thermometry only included producing magnons at the final trap depth in the
degenerate sample. It was only upon investigating heating rates in the trap that I suspected
an additional cooling effect due to the evaporation of magnons.

The heating experiment involved performing cycled decoherence cooling to a sufficiently
low temperature that evaporative cooling would cease. Magnons produced in the final step
of cooling were retained for a variable number of seconds in order to probe the temperature
of the gas as it heated in its trap. Surprisingly, I found the temperature to level-off at a lower
value than the initial value reached by (non-magnon-assisted) evaporation. I hypothesized
that the magnons improved the power of evaporative cooling, and our experiments in which
we produce magnons at an intermediate trap depth proved that to be the case.
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Figure 5.40: Optimizing cycled decoherence cooling at a trap depth of kB × 810 nK after
nine cycles of cooling. The solid black point is the T (top) or T/Tc (bottom) achieved after
one cycle of magnon creation and thermalization. The sizes of the open circles indicate
the length of the RF pulse used to create magnons in each cycle, with longer RF pulses
indicated as larger circles. Longer RF pulses convert more atoms to magnons in each cycle,
leading to fewer majority atoms, but also potentially more cooling. Data points are color
coded by the thermalization time employed in each cycle. Short thermalization times can
be effective when the RF pulses are short. Longer thermalization times are needed when
the RF pulses are longer. An optimal parameter choice would be to use the steepest slope,
indicated by the dotted gray arrows. To continue the optimization, parameters are selected
for the first nine cycles and new parameters are tried in subsequent cycles, generating a
similar plot.

Initially, the discovery of magnon-assisted evaporation challenged our straightforward
interpretation of our previously acquired magnon-decoherence data. Could the cooling we
observed just be magnon-assisted evaporation turning on with the introduction of magnons?
To tease apart the two types of cooling, we combined them, as shown in Fig. 5.41a. In this
experiment, we evaporate with a large number of non-degenerate magnons present. Upon
waiting some time at the final trap depth, we purge the non-degenerate magnons and begin
cycled magnon decoherence cooling wherein the number of magnons created each cycle is
less than the number of magnons that survived evaporation. As a result the power of any
magnon-assisted evaporation is reduced. Regardless, decoherence cooling proceeds to lower
the temperature as expected.

When magnons are first created at the final trap depth, it is likely that, initially, some
magnon-assisted evaporation does occur along with magnon decoherence cooling. This is
evident in Fig. 5.41b, which plots the energy removed per magnon as indicated by the slopes
of the temperature extrapolation described in Sec. 5.19, wherein single pulses with varying
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Figure 5.41: (a) Combining magnon-assisted evaporation and cycled decoherence cooling.
Evaporation is performed with magnons present. Trajectories in which a variable number
magnons are held at the final trap depth (points with lines between them) are compared
to trajectories in which these magnons are removed from the trap and cycled decoherence
cooling is applied using a smaller number of magnons than had been removed (filled circular
points). Cycled decoherence cooling continues to cool the sample despite fewer magnons
being present to assist in evaporation. (b) The energy removed per magnon for a single
cycle of magnons created before (red) and after (blue) the final evaporation ramp in units
of kBT are derived from the slopes and uncertainty of the extrapolated temperature versus
magnon number. Decoherence cooling applies only to the blue data, while magnon-assisted
evaporation applies primarily to the red data. Additional magnon-assisted evaporation
likely also applies to the blue data, especially when kBT > µ.

numbers of magnons perform varying amounts of decoherence cooling or magnon-assisted
evaporation. At higher temperatures, the energy removed per magnon in magnon-assisted
evaporation is on the order of 4–6 kBT . At similar temperatures, the energy removed per
magnon when magnons are created in the degenerate sample rises to 6–8 kBT , consistent
with a 3 kBT contribution from decoherence cooling in addition to some contribution from
magnon-assisted evaporation.

5.22 Benefits of a square well potential

The fact that magnons disperse like free massive particles, as opposed to harmonically
trapped or massless particles, can substantially benefit the signal to noise achievable by
the magnon thermometer. This is shown dramatically in Fig. 5.42, where it is shown that
the number of non-condensed magnons from which we derive our temperature signal at very
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Figure 5.42: The number of non-condensed magnons estimated from fits over a wide
range of data from our data set is compared the critical number for magnon condensation
as computed for magnons confined to a harmonic trap with trapping frequencies derived
from our optical trap and for magnons confined to a square well with volume equal to
the calculated volume of the majority condensate under the Thomas-Fermi approximation.
Runs with magnons created before the final evaporation ramp are plotted as dots while runs
with magnons created at the final trap depth are plotted as open circles. Color varies with
the ratio of the measured temperature to the calculated chemical potential of the majority
gas.

low temperatures is more than an order of magnitude more than the maximum number of
non-condensed particles that we would expect to exist in the harmonically trapped majority
gas. Rather, the maximum number of non-condensed magnons scales very much like the
prediction for particles confined in a flat box.

In the present work, we do not have as high confidence in our estimates of the non-
condensed magnon number as we do the temperature. Unlike our estimates of temperature,
the estimates of non-condensed magnon number can be shifted systematically by the incorrect
Bose function in the fits of the transverse momentum distribution, as discussed in Sec. 5.15.2.
We are exploring in better detail the characteristics of magnon condensation and thermal
position/momentum distributions in ongoing work.

5.23 Thermometry and cooling results

Details of the results of our experiments and analysis are covered in Ref. [62], so here we
include just a brief summary. Fig. 5.43 shows the temperature and level of degeneracy
reached by evaporative cooling only, magnon decoherence cooling, and magnon assisted
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Figure 5.43: Thermometry and cooling results. Three runs (blue circles, green squares,
black sideways triangles) differ in initial atom number (about 2.5, 3, and 5 million atoms at
T = Tc, respectively). Magnons in black run were created at the final trap depth, blue and
green at an intermediate trap depth. (a) T and (b) T/Tc are measured at various optical
trap depths. Lower T and T/Tc are achieved in runs with larger initial atom number. T and
T/Tc achieved by cycled decoherence cooling and magnon assisted evaporation are shown
by colored downward triangle and cross (“x”) points, respectively, with the color coding
the final trap depth in each of four runs. Dotted lines connect corresponding points at
the same trap depth. In (a), thermometry using the majority spin population (light gray
diamonds) agrees with thermalized magnon thermometry extrapolated to the zero-magnon
values (circles, squares, triangles). Error bars show statistical uncertainty of extrapolated
temperature (vertical) and systematic uncertainty in trap depth (horizontal). Thin diagonal
gray lines show contours of η, the ratio of trapping potential depth to temperature. Thick
gray lines show calculated Tc and µ/kB in (a) and µ/kBTc, calculated using the frequencies
of the kB×60 nK deep trap, in (b). (b) Efficiency of evaporation only (circles, squares, side-
ways triangles), with error bars showing statistical uncertainty of the extrapolated T/Tc, is
compared to magnon-assisted evaporation (crosses) and cycled decoherence cooling (down-
ward triangles). Solid lines connecting points are guides to the eye, with a steeper slope
indicating more efficient evaporation. A variation of parts of this figure appeared in our
publication, Ref. [62].
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Figure 5.44: Close up of lowest temperatures, plotted against the effective trap depth,
the trapping potential depth minus the chemical potential. Plotted this way, the evapora-
tive cooling efficiency is seen to decrease slightly, though the decrease is not statistically
significant, and different runs with different numbers of atoms (the different colors here)
essentially collapse to a single trajectory.

evaporation. The key takeaways illustrated in this figure are as follows.

• Temperatures measured with magnons can be extrapolated to the zero magnon limit
and agree with temperatures measured by conventional thermometers in the regime
where conventional thermometers are applicable.

• Evaporative cooling is extremely effective at reducing temperature and entropy, even
in the regime T < µ/kB. We measure temperatures as low as T = 1.04(3)stat(7)sys nK,
corresponding to T/Tc = 0.022(1)(2) where Tc is calculated using the measured atom
number, N = 8.1× 105, and optical trap frequencies. For this lowest-temperature gas,
kBT/µ ≈ 0.07. Its entropy per particle, as estimated in Ch. 6, is S/N = 1× 10−3 kB,
the lowest value ever reported for an atomic gas by two orders of magnitude.

• The evaporative cooling efficiency is typically characterized by the parameter η, which
is the ratio of trap depth to temperature. In the regime T < µ/kB, one should consider
the effective η, ηeff , the ratio of effective trap depth to the temperature. The effective
trap depth is the difference between the trapping potential depth and the chemical
potential. As shown in Fig. 5.44, ηeff is essentially constant over the entire range of
our data.

• In the regime T & µ/kB, magnon assisted evaporation yields colder, more highly
degenerate samples without compromising the number of majority atoms at the final
trap depth. When T . µ/kB we cannot discern an additional cooling effect of magnon
assisted evaporation.
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• Cycled decoherence cooling allows low temperatures and entropy to be reached in a
deep trap. We reach an temperatures as low as T ≈ 22 nK, corresponding to η ∼ 30,
in a kB × 700 nK deep trap.

• The efficiency of cycled decoherence cooling, in terms of the number of atoms sacrificed
to reach a desired temperature or entropy, is much lower than that of evaporative
cooling. This makes sense, as each atom lost by evaporation carries away an energy of
roughly ηkBT while each atom lost in decoherence cooling carries away roughly 3 kBT
plus the chemical potential.

• In our experiments, decoherence cooling saturates at temperatures T ∼ µ/kB in spite of
our initial expectations that decoherence cooling should be most effective in this regime
because the gas heat capacity drops quickly as it becomes increasingly degenerate. We
suspect the discrepancy lies in the slow speed of thermalization in this regime, which
results in the magnons being unable to remove energy faster than it is deposited by
heating processes.

• Magnon decoherence cooling can only barely reduce the entropy at T/Tc ∼ 0.9. This
is consistent with our expectation that the entropy should only be reduced by the
decoherence cooling process for T/Tc < 0.96.

To derive this limit, consider that in an ideal Bose gas in a harmonic trap with
geometric-mean frequency ω, the following relations for the saturated thermal atom
number Nth, energy E, and heat capacity C, at the temperature T , apply:

Nth = ζ(3)

(
kBT

~ω

)3

(5.21a)

E = 3 ζ(4)
(kBT )4

(~ω)3
=

3ζ(4)

ζ(3)
kBTNth (5.21b)

C =
dE

dT
= 12kB

ζ(4)

ζ(3)
Nth. (5.21c)

Suppose we transfer dN > 0 atoms to the minority spin state (where dN is far below
the critical number for magnon condensation), let them thermalize, and eject them. To
lowest order, the majority gas loses energy dE = −3kBTdN , and thus the temperature
changes by dT = dE/C = −3(kBT )/C dN . The non-condensed fraction changes as,
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using Eqs. 5.21,

d

(
Nth

N

)
=

1

N

[
dNth +

Nth

N
dN

]
(5.22a)

=
1

N

[
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dT
dT +

Nth

N
dN

]
(5.22b)
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N
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T
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]
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=
dN

N

[
3Nth

T
(−3kBT )

ζ(3)

12kBζ(4)Nth

+
Nth

N

]
(5.22d)

=
dN

N

[
−3ζ(3)

4ζ(4)
+
Nth

N

]
. (5.22e)

Thus, we must have Nth/N < (3ζ(3)) / (4ζ(4)) = 0.83 to reduce the non-condensed
fraction through such cooling. This corresponds to, for the case under consideration,
T/Tc < (0.83)1/3 = 0.94.

In reality, the experimental upper limit of T/Tc may be somewhat less than 0.94 in
cycled decoherence cooling as additional condensate atoms are lost in the magnon
purge process.

Fig. 5.45 shows the results of our analysis of magnon decoherence cooling. The upshot
of this analysis is as follows.

• At higher temperatures, when T > µ/kB, decoherence cooling works essentially as
expected, with each magnon carrying away an energy of roughly 3 kBT .

• At lower trap depths, the energy carried away by each magnon decreases, as indicated
by the temperature change and using the heat capacity of a non-interacting gas. There
are several effects that explain this, and our data do not allow us to easily untangle
them. First, when T � µ/kB the magnons are in an effective “box” potential and
their thermal energy is expected to average only 3/2 kBT per particle. Second, the
condensate heat capacity in this regime becomes that of a phonon gas, which drops
more slowly with temperature than the non-interacting gas. We do not know of a
good theory for the heat capacity in this crossover regime14. Finally, neither of these
effects account for the quenching of decoherence cooling, which, as already mentioned,
is likely related to slow thermalization of the gas.

14If we know the entropy in this regime, we can derive the heat capacity. The following chapter details
calculations of the entropy at very lowest temperatures we encountered, 1–3 nK. Doing similar calculations
at higher temperatures, in the 10–20 nK crossover regime, may be possible, though they would require
accurately enumerating a much larger number of states of the trap, which may prove quite difficult.
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Figure 5.45: A closer look at decoherence cooling. (Left) Magnons are created at the final
trap depth and cool the gas as they thermalize. Thermalized magnons can be removed from
the trap and the cooling process repeated before measuring the temperature by imaging the
momentum distribution of the thermalized magnons. Each non-condensed magnon removed
from the trap takes energy from the gas. Here, decoherence cooling trajectories are plotted
versus cumulative number of magnons removed at several trap depths, coded by colors
that correspond to those of Fig. 5.43. Closed circles show temperatures after a single cycle
of decoherence, but with varying numbers of magnons. Some additional magnon-assisted
evaporative cooling may also be present. Open triangles show repeated cycles of magnon
creation, thermalization, and purge, with representative error bars on first and last triangles
giving statistical error over several repetitions. Solid lines show zero-free-parameter theory
predictions assuming each non-condensed magnon removes 3 kBT energy. Solid patches
indicate the range of predictions included within the uncertainty in the cumulative number
of magnons removed. (Center) We image 75%±10% of the magnons present after each cycle
of decoherence cooling. From these magnons, we extract the temperature. In a separate
run, we also extract the total number of atoms remaining in the trap. Here we compare
the number of atoms lost along each cycled cooling trajectory to the cumulative number of
magnons imaged. If atom loss were due only to removing magnons, the number of atoms
lost would lie in the gray region, which accounts for the ∼75% efficiency of our magnon
imaging sequence. Instead, the cumulative number of atoms lost in each decoherence cooling
trajectory is larger than this owing to additional atom losses unrelated to decoherence
cooling, such as finite trap lifetime and 3-body loss. The dotted line represents 100%
magnon imaging efficiency and no additional atom loss. (Right) The amount of energy
removed by each magnon, in units of kBT , is plotted versus the ratio of µ/kBT , where each
point is based on an estimate of the slope over 4 consecutive triangle points in the left frame.
We observe that the net energy carried away by the magnons vanishes when T . µ/kB. A
variation of parts of this figure appeared in our publication, Ref. [62].
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Chapter 6

Calculating the entropy per particle

The entropy per particle of a Bose-Einstein condensate deep in the phonon regime, where
T � µ/kB, can be calculated using the standard relations for Planck-distributed phonons,
Eq. (5.3), provided one can make the local density approximation. For the gas of Ch. 5 at
the lowest entropy settings, the chemical potential is µ ≈ kB × 15 nK, the speed of sound
is c =

√
µ/m, and density is n = µ × m/(4π~2a), with a the scattering length, and this

calculation yields S/N ≈ 1.5× 10−5 at the point of highest density at the center of our trap
at T = 1.04 nK. This naive calculation underestimates the entropy in our gas.

We cannot rely on the local density approximation to calculate the entropy per particle
because the thermal phonon wavelength λ = hc/kBT ≈ 50µm is far larger than the trans-
verse Thomas-Fermi radii of the condensed gas (15µm, 2.5µm). To understand the entropy,
we will have to estimate numerically the spectrum of excitations along these dimensions.
However, since the condensate radius along the longest axis is large (around 300 µm), we
can apply a one-dimensional local density approximation to determine the entropy. In this
chapter I detail and build confidence in this important calculation.

6.1 Numerical objective

In general, the entropy S and number of atoms N in a Bose gas at equilibrium temperature
T and with chemical potential µ can be calculated as [69]

S/kB =
∑
i

(εi − µ) /kBT

e(εi−µ)/kBT − 1
− log

(
1− e(µ−εi)/kBT

)
(6.1a)

N =
∑
i

1

e(εi−µ)/kBT − 1
, (6.1b)

where the many-body excitation spectrum of the gas is {εi}. For example, plugging in the
spectrum of single-particle excitations in a harmonic trap one can derive the well-known
formula for the entropy of a Bose gas in a harmonic trap. These formula are accurate even
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in the presence of interactions, provided one accounts for interactions properly in deriving
the {εi}.

The excitation spectrum of a weakly interacting (with s-wave interactions) trapped Bose
gas is typically well described by the zero-temperature Gross-Pitaevskii theory [69], wherein
the ground state order parameter Ψ0 satisfies the time-independent Gross-Pitaevskii equa-
tion, (

T + V (x)− µ+ g |Ψ0(x)|2
)

Ψ0(x) = 0, (6.2)

with the kinetic energy operator T = −~2∇2/2m, confining potential V , and the interaction
parameter g = 4π~2a/m. The condensate density is n = |Ψ0|2. Note that in the limit g → 0
Eq. (6.2) reduces to the time-independent Schrödinger equation for a single particle, with µ
the energy eigenvalue. Also, the solution Ψ0 is not necessarily unique; Ψ0 = 0 is always a
trivial solution.

For a particular static solution Ψ0(x), the small amplitude excitations can be written

Ψ(x, t) =

(
Ψ0(r) +

∑
i

[
ui(r)e−iωit + v∗i (r)eiωit

])
e−iµt/~,

where “∗” denotes complex conjugation, and the Bogoliubov amplitudes u and v satisfy the
coupled eigenvalue equations

~ωiui(r) =
(
T + V − µ+ 2g |Ψ0(r)|2

)
ui(r) + gΨ0(r)2vi(r)

−~ωivi(r) =
(
T + V − µ+ 2g |Ψ0(r)|2

)
vi(r) + gΨ∗0(r)2ui(r). (6.3)

Once again, in the limit g → 0 these equations are equivalent to the Schrödinger equation
with eigenvalue ~ωi +µ. The excitation energies relevant to Eqs. (6.1) are thus εi = ~ωi +µ.

This is our challenge: derive the spectrum of excitations of our gas in our trap, and employ
Eqs. (6.1) to calculate S/N . Our approach is to numerically solve Eq. (6.2) for the ground
state order parameter Ψ0 and then to plug this into the eigenvalue equations Eqs. (6.3) to
pull out the excitation spectrum. To begin, we need a way to discretize the relevant equations
such that the solutions we obtain are sufficiently accurate and the numerics tractable.

6.2 Discretizatation strategy

The näıve way of discretizing involves choosing a Cartesian grid {xi} with spacing ∆x
between points, on which one will define the spatially varying functions Ψi = Ψ(xi) and
Vi = V (xi). The kinetic energy operator can then be approximated using finite-differences.
To do this, one defines the one-dimensional difference operator ∂x,

∂xΨj = Ψ(xj + ∆x/2)−Ψ(xj −∆x/2),

so that
∂2
xΨj = Ψj+1 − 2Ψj + Ψj−1,
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and relates it to the one-dimensional derivative operator ∇x via the translation operator,

Ψ(xj + ∆x/2) = e∆x∇x/2Ψ(xj).

The difference operator can then be written

∂x = e∆x∇x/2 − e−∆x∇x/2 = 2 sinh (∆x∇x/2) ,

allowing one to solve and expand to find

∇2
x =

(
∂2
x − ∂4

x/12 + ∂6
x/90 +O(∂x)

8
)
/(∆x)2.

This expression allows the kinetic energy operator T to be written as a matrix to arbitrary
accuracy (if one employs an arbitrary number of mesh points). The Gross-Pitaveskii equation
can then be written in a discrete form as∑

i

(
Tij + Viδij + g |Ψi|2 δij

)
Ψi = µΨj. (6.4)

Formulated in this way, it is not obvious what assumptions and approximations are
made in the discretization, and what their impact might have on the numerics. It should
be clear that the approximation to the derivative ∇x in terms of a truncated series of finite
differences ∂x depends on the finite differences being small. More generally, recall that the
Gross-Pitaevskii equation can be derived by minimizing the energy functional

E =

∫ (
~2

2m
|∇Ψ0(x)|2 + V (x) |Ψ0(x)|2 +

g

2
|Ψ0(x)|4

)
dx (6.5)

with respect to the conjugate order parameter Ψ∗0, with the constraint that particle number
is conserved. The accuracy of the finite difference method relates to the precision with which
the integral in the energy functional (and also the particle number) can be approximated by
a rectangle-rule sum: ∫

f(x)dx→
∑
i

f(xi)∆x.

The energy of a particular configuration {Ψi} computed via the rectangle rule may overes-
timate or underestimate the true minimum energy. While with a small enough grid spacing
this approximation can be very good, as we shall see, there are more nuanced discretizations
that lead to a sum rule that achieves a higher degree of accuracy with fewer mesh points.

First, let’s consider another common way to discretize an equation: in function space via
a basis approximation. To discretize using N orthonormal basis functions {φi}, we write

Ψ(x) =
∑
i

Ψiφi(x). (6.6)
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For convenience, we will once again consider a one-dimensional problem. We plug Eq. (6.6)
into Eq. (6.2), multiply on the left by φ∗j(x), and integrate to obtain the expression

∫
dx φ∗j(x)×

∑
i

T + V (x) + g

∣∣∣∣∣∑
k

Ψkφk(x)

∣∣∣∣∣
2
Ψiφi(x) = µ

∑
i

Ψiφi(x)

 , (6.7)

which we write more concisely as∑
i

(Tij + Vij + gIij) Ψi = µΨj. (6.8)

The matrices T and V only need to be computed once (for time-independent problems),
however the non-linear interaction matrix I needs to be computed for any change to the
weights Ψi. Thus, solving Eq. (6.8) using an interative procedure like Newton’s method
requires N multiplications of a different N × N matrix at every step, as with the finite
difference approach. However, in the present basis function approach, calculating each N×N
matrix requires an explicit numerical integration:

Iij =

∫
dx φ∗j(x)φi(x)

∣∣∣∣∣∑
k

Ψkφk(x)

∣∣∣∣∣
2

. (6.9)

This integration can be performed to arbitrary precision, regardless of the number of basis
functions employed.

An advantage of the basis function approach over the finite difference approach is that
the solution Ψ(x) is defined at every point x, and thus the energy of the configuration
computed via Eq. (6.5) constitutes of a lower bound of the true ground state energy, as
in a variational calculation. In addition, with the proper choice of basis, a relatively small
number of basis functions may be required to achieve high accuracy. Regardless, it appears
that the computational requirements—many many numerical integrations of Eq. (6.9) at
every iteration—are quite high. The basis approach allows us to understand explicitly the
assumed interaction energy and order parameter in all space, but at the cost of making local
information cumbersome to calculate.

It turns out that the integral Eq. (6.9) can be calculated quite painlessly and accurately
with the appropriate choice of basis functions, allowing us to combine the best of the finite
difference and basis function approach. Suppose we choose orthonormal basis functions {fi}
and mesh points {xi} such that

fi(xi) = λ
−1/2
i δij (6.10)

and write
Ψ(hx) =

∑
i

Ψiλ
1/2fi(x),
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where Ψi ≡ Ψ(hxi) and h is a scale factor that allows us to fit the range of {xi} to the region
in which we want to find Ψ (i.e. hx is dimensionless). Then, remarkably, integrals involving
Ψ can be computed very accurately via the quadrature rule∫

dxF (x) ≈
∑
i

λiF (xi). (6.11)

In fact, this quadrature rule gives exact results for inner products of functions proportional
to the fi, such as the order parameter. With this basis, many of the virtues of finite difference
return, for example the potential energy and the interaction energy are well approximated
as diagonal matrices,

Vij =

∫
dx f ∗j (x)V (hx)fi(x) ≈

∑
k

λkf
∗
j (xk)V (hxk)fi(xk) = V (hxi)δij ≡ Viδij

Iij ≈
∑
k

λkf
∗
j (xk)

∣∣∣∣∣∑
l

Ψlfl(xk)

∣∣∣∣∣
2

fi(xk) = |Ψi|2 δij, (6.12)

and while the kinetic energy matrix T is clearly not diagonal, we will chose functions {fi}
such that it can be easily computed exactly. Note that with the scale factor, the condensate
density is integrated as

n0 =

∫
dx′ |Ψ(x′)|2 =

∫
dx h |Ψhx|2 ≈

∑
i

λih |Ψi|2 . (6.13)

With this straight-forward construction, called the Lagrange mesh method [6, 7]—the
class of functions {fi}, which vanish at all mesh points except one, are called generally
called Lagrange functions— the discrete Gross-Pitaevskii equation reads∑

i

(
Tij/h

2 + Viδij + g |Ψi|2 δij
)
λ

1/2
i Ψi = µλ

1/2
j Ψj, (6.14)

where the scale factor h is needed to scale the kinetic energy to match the scaled order
parameter. Once we have chosen our Lagrange functions, the equations we need to solve are
no more complicated than those of Eq. (6.4), but we have gained some important features.

First, like in the finite difference case, we only need to keep track of the value of the
order parameter Φ(hx) at the mesh points x ∈ {xi}. However, in contrast to the finite-
difference approach, the order parameter implied by the weights {Ψi} is defined everywhere.
As a result, the kinetic energy can be calculated exactly. In addition, the Lagrange mesh
comes with a quadrature rule that permits a wide range of relevant integrals, including the
interaction energy, to be approximated with a high degree of accuracy using fewer mesh
points. Thus, the solutions to Eq. (6.14) are closely related to a variational solution to
Eq. (6.5) on the chosen basis. The Lagrange-mesh method is closely related to a broader
class of discretization schemes known as “discrete variable representations,” about which
much has been written [42].
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Figure 6.1: The Hermite basis Lagrange functions fi (colored curves)with 10 mesh points
and quadrature weights {λi} (black points) shown above their mesh points. As desired,
only one basis function is non-zero at each mesh point. The mesh points are more closely
spaced near the origin. Such spacing is well suited to problems where the kinetic energy is
largest near the origin.

6.3 The Hermite mesh

A key part of the success of the numerical methods we employ in this section is the selection
of the right basis functions, and in the Lagrange mesh approach, their accompanying grid
points. Different problems, with different boundary conditions, coordinate systems, and
potentials will demand different bases. For the anisotropic harmonic oscillator, a mesh based
on the Hermite polynomials with Gaussian weighting is particularly well suited. Recall that
orthogonal polynomials are typically orthogonal with respect to a particular weighted inner
product. For the Hermite polynomials {Hn},∫ ∞

−∞
dxHm(x)Hn(x)e−x

2

=
√
π 2nn! δnm.

For g = 0 and with a harmonic potential, the solutions to Eq. (6.2) are in fact Hermite
polynomials with Gaussian weighting, and these basis functions should constitute a perfect
variational foundation.

The general procedure for constructing the Lagrange functions and mesh points from a
basis of orthogonal polynomials can be found in the Refs. [6] and [7], including the partic-
ular case of the Hermite mesh. The procedure is straightforward, with the N mesh points
{xi} corresponding to the zeros of the Nth Hermite polynomial and the basis functions con-
structed from particular prescribed linear combinations of the remaining N basis functions:

fj(x) = λ
1/2
j

N−1∑
i=0

χ∗i (xj)χi(x) =
χN(x)

(x− xj)χ′N (xi)
, (6.15)
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with χi(x) the ith normalized, exponentially weighted Hermite polynomial. Care must be
taken with the second, compact form for fj in Eq. (6.15) because the singular denominator
at x = xj can cause issues in finite-precision calculations. The quadrature weights are given
simply by

λi = 2/ (χ′N(xi))
2
.

The 10 Lagrange interpolating functions {fi} corresponding to a mesh with 10 points are
shown along with the weights {λi} in Fig. 6.1. Finally, the kinetic energy matrix for the
Hermite mesh can be written explicitly and exactly as

2m

~2
Tij =

{
(4N − 1− 2x2

i )/6 i = j

(−1)i−j (2(xi − xj)−2 − 1/2) i 6= j
. (6.16)

If this seems like a lot of work to create a grid for a calculation, don’t be fooled. The
only results we actually require for our calculation are the mesh points, weights, and kinetic
energy matrix. The interpolating functions are only needed if we want to understand the
character of our solution in between, or outside, the mesh points.

6.4 Solving a simple 1D problem

To illustrate the method and to check our numerics, we solve Eq. (6.14) in one dimension with
very low atomic density and with harmonic confinement, in which case interactions should
be negligible and the resulting energies and excitation vectors should be those of a quantum
harmonic oscillator. Solved with the constraint of constant (low) density, the ground state
energy µ should be simply ~ω/2. As written, Eq. (6.14) is non-linear matrix equation for
Ψ0 where µ is specified. In order to allow µ to be a free parameter and to constrain the
atom number n (in the 1D case, the atom number is really a 1D linear density), we add an
additional equation: ∑

i

hλi |Ψ0|2 − n = 0. (6.17)

We then solve the system of equations via Newton’s method. In practice, this is achieved by
using Mathematica’s FindRoot or MATLAB’s fzero.

Once the ground state Ψ0 and energy µ are determined, we plug them into Eq. (6.3)
along with the matrices T and V . The resulting equation is linear in the u and v, and so its
eigenvalues and eigenvectors can be computed via standard exact or approximate methods.
Note that u and v must be solved for simultaneously, and thus the matrix equation must
combine both lines of Eq. (6.3) and is thus twice as large in each dimension as the grid
on which u, v, and Ψ0 are discretized. In spite of the great deal of structure present in
this matrix—its eigenvalues come in positive/negative pairs and it is anti-symmetric, for
example—there do not seem to be extraordinarily efficient exact or approximate methods
for its diagonalization, as there are for Hermitian and real-symmetric matrices.
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The choices we have to make in solving for the Ψ0 and µ are two: we must choose the
number of grid points N and the scaling h of the grid. For convenience, we calculate the
excitations and excitation energies on the same grid as we use in solving for the ground state.
However, it is possible to choose different N and h for these two problems, as the value of
Ψ0 is determined everywhere by the interpolating Lagrange functions. Choosing a new grid
for the eigenvalue problem would simply involve resampling Ψ0 at the new grid points with
high accuracy using the functions {fi}.

To develop a sense of the role of the grid scaling h, we solve the problem using several
values and compare the estimated excitation energies to their exact values in each case. In
calculating the entropy, our primary concern is to compute system’s energy levels accurately
up to several times higher than the thermal energy. The spatial extent of the Nth harmonic
oscillator wave function scales as N1/2, so to be able to accurately describe high (compared
to N) energy excitations the mesh should grow accordingly. Thus, we scale the mesh such
that hxN = sxho

√
N , where xN is the Nth (largest) mesh point and xho =

√
~/mω is the

harmonic oscillator length. The energy and excitation vectors are shown for N = 50 and
three values of s in Fig. 6.2.

With the proper scaling, it is not surprising that most of the energies and excitation
vectors are reproduced exactly1. With s = 1.5 the spectrum is very accurate out past
the 40th (of 50) eigenvalue. From Fig. 6.2b, we can derive a useful heuristic for finding
a grid scaling: On one hand, the grid should be large enough in extent to fully contain
the eigenvectors. The discretization forces the excitation functions to zero just beyond the
edge of the grid, and if the exact solutions are not zero there, the energy implied by our
interpolation will differ from the exact solution. If the mesh is too small, increasing the
number of sample points will be of limited use in gaining additional accuracy. On the other
hand, making the grid too large in extent will mean that the mesh does not have sufficient
resolution to describe the excitation vectors. In such a case, adding more sample points
(with the mesh extent constant) should benefit the calculation.

6.5 Higher dimensions

Solving problems in higher dimensions is relatively straightforward. In understanding the
various options for simulating in higher dimensions, I found the thesis of McPeake [55] to
be helpful. Here, we will continue to focus on Cartesian coordinates and the Hermite mesh,
but bear in mind that for problems with cylindrical or spherical symmetry, other coordinate
systems and meshes based on other Lagrange functions may be more suitable. To extend our
current approach into two dimensions, we construct two one-dimensional meshes, perhaps
with different numbers of mesh points, Nx and Ny, and different scalings, hx and hy, and
combine them. The coordinate grid is a straight-forward outer product of the two 1D meshes,
in the usual Cartesian style.

1Indeed, for some scaling, the basis is constructed of the exact solutions, and the exact energies should
be recovered.
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Figure 6.2: (a) The energy of excitations in a harmonic trap, in units of the harmonic
oscillator energy ~ω, are taken from the zero and positive eigenvalues of Eq. (6.3) discretized
with N = 50 mesh points and scale h such that hxN = sxho

√
N , where xN is the Nth

(largest) mesh point, xho =
√

~/mω is the harmonic oscillator length, and s = {0.5, 1.5, 2}
for the blue, orange, and green curves and points, respectively. The red line is the exact
harmonic oscillator solution. The residuals show the difference between the calculated and
exact results. (b) The probability densities corresponding the ground state (blue), 5th
(orange), 20th (green), and 42nd (red) excitations, calculated as |u(x) + v∗(x)|2, for each
of the scalings. The frame border colors are coded to the mesh scaling, in accord with (a).
Lagrange interpolating functions are used to infer the value of the excitation functions in
between grid points. The x-axes have different scalings; the blue ground state curve is the
same width in all cases. The top panel has a well scaled mesh and captures the details of
the exact excitation vectors well. The benefits of a well chosen basis are evident in the way
features between grid points are well described. In the second panel, the mesh is too large
and detail is lost in the center of the mesh. Wiggles are missing or are not of full height in
the green and red curves. In the third panel, the mesh is too small.
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Figure 6.3: A sample kinetic energy matrix for 1D 8 point mesh (left) and 2D 8× 8 mesh
(right). Matrix elements that are identically zero are left white. The 2D matrix is quite
sparse.

The most natural way to formulate our equation is probably to consider our state vector
as a rank-2 tensor and our Hamiltonian as rank-4 tensors, or something like that. In practice,
though, we need to flatten everything into the same sort of matrix equation that we had
in the 1D case, so that we can compute eigenvalues and solve the appropriate system of
equations using the usual well-worn tools. There is not a unique way to do this, but there
are lots of ways that don’t work. I made a few errors in my first attempt at setting up the
right equations in 2D, so for the sake of posterity I present my explicit construction.

First, we assign a linear index to each Cartesian point. To do this, we construct a
mapping from linear index i to Cartesian indices (α, β). I will refer to this map a few times,
so let’s give it a name, g(i), g : i → (α, β). This part is very straightforward; just number
the grid points going down the columns first, for example. With this map, we can associate
each index of our state vector Ψi with a Cartesian point (xα, yβ). Easy so far.

Constructing the diagonal interaction and potential energy matrices I and V is similarly
straightforward, for example Vii = V (xα, yβ). Constructing the appropriate linearly indexed
form of a non-diagonal matrix, such as the kinetic energy matrix, is a little more tricky.
First we construct the appropriate 1D kinetic energy matrices, T (x) and T (y). From these,
the linearly indexed 2D kinetic energy matrix can be generated, with g(i) = (α, β) and
g(j) = (κ, λ), as

Tij =
h2

h2
x

T (x)
α,κδβ,λ +

h2

h2
y

T
(y)
β,λδα,κ,

where h = hxhy is the 2D scaling parameter. The state vector has NxNy entries, and the
kinetic energy matrix is NxNy × NxNy, which means that for larger meshes the matrices
get large. Fortunately, T is quite sparse, which can substantially speed up calculations and
reduce memory usage. With the relevant matrices and state vector constructed, solving the
2D problem is exactly like solving the 1D problem, with one caveat. If the size of the mesh is
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large, finding the exact eigenvalues of the resulting matrix Eq. (6.3) might be prohibitively
slow. In this case, the desired number of approximate eigenvalues can be found via iterative
methods.

6.6 Comparing to the Thomas-Fermi limit in 2D

The Gross-Pitaevskii ground state can be computed trivially in the Thomas-Fermi limit, and
in the case of 2D harmonic confinement with cylindrical symmetry, the excitations can be
computed analytically [28]. With ω the transverse trap frequency, the collective excitations
of the trapped sample are given by

εnm = ~ω
√

2n2 + 2n |m|+ 2n+ |m|, n ≥ 0 ∈ Z, m ∈ Z.

To test the accuracy of our numerics, and to further understand the key parameters
involved, we use our numerical procedure to compute the ground state and spectrum for a
harmonically trapped system with transverse confinement, deep in the Thomas-Fermi regime,
with µ/ω ≈ 250. We use Nx = Ny = 50 points for each dimension of the mesh (2,500 total
mesh points) and set the scaling parameters hx and hy such that the largest mesh point
sits at 1.4 times the Thomas-Fermi radius. Cuts through the center of the resulting ground
state density and excitation densities are shown in Fig. 6.4 along with a comparison of the
calculated and exact energy spectrum.

The basis functions are clearly not as ideally suited to describing the Thomas-Fermi
distribution as they are to the harmonic oscillator distribution, as small additional wiggles
can be seen in the interpolation. The mesh points themselves fall perfectly on a Thomas-
Fermi profile, which suggests that the ripples seen in the interpolation are related to the
quadrature rule imperfectly approximating the integrated interaction and potential energies.
In essence, the quadrature approximation seems to result in the ripples being ignored by the
potential and interaction energy terms. The energy of the ripples is included in the kinetic
energy of the ground state, but in the Thomas-Fermi limit the kinetic energy is negligible
compared to the interaction energy.

Once again, we see good agreement with the expected spectrum result as long as the
excitation vector amplitudes vanish before they reach the edge of the mesh. The excitations
show a little bit of additional ripple between mesh points as well. The ripples evidently have
negligible effect on the energy.

We can transform this 2D problem into a 3D problem easily, as long as we are happy
with the third dimension remaining unconfined. To do this, we promote our 2D ground
state solution to 3D by the trivial transformation Ψ0(x, y, z) = Ψ0(x, y), that is, without any
dependence on the third dimension. Next, we adjust slightly the ansatz from which Eq. (6.3)
is derived, writing the excitations u and v as

u(x, y)→ u(x, y)e−ikz, v(x, y)→ v(x, y)e−ikz.
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Figure 6.4: The Thomas-Fermi limit with transverse harmonic confinement. (a) Section
of the ground state density |Ψ0|2 through the trap center. (b) Slices through the trap center
of a few low lying excitations, shown as |Ψ|2 − |Ψ0|2, where Ψ = Ψ0 + u + v∗, including
the center of mass mode (blue), scissors mode (green), and two quadrupole modes (red and
gold). The excitions plotted in this manner illustrate the motion of the whole gas under
each excitation. (c) The computed excitation spectrum matches the exact result for the first
100 lowest lying excitations. The chemical potential has been subtracted from the energy of
the Thomas-Fermi and computed excitations. (d) Slices of the first 120 excitation vectors
are shown as |u+ v∗|2, which highlights the probability density of the excitation. The
excitations are generally concentrated in regions of low or zero condensate density. As in
the harmonic case, the energy of the excitations deviates when the excitation vectors retain
some amplitude near the edge of the mesh (blue curves are plotted behind red curves).
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Figure 6.5: Spectrum of the cylindrical Thomas-Fermi condensate in three dimensions
showing the lowest 50 transverse excitations at each longitudinal wavenumber, color coded
in order of energy. The initial slope of the pure longitudinal excitation is consistent with the
expected phonon dispersion, with effective harmonic channel speed of sound c =

√
µ/2m,

until the phonon wavelength approaches the transverse diameter, at k = 1/2. Even at
higher wavenumbers, crossings with the transverse excitations seem to be evident.

The resulting eigenvalue equation, which keeps terms to linear order in u and v, is the same
as before, but with the substitution

µ→ µ− ~2k2/2m. (6.18)

We obtain the 3D excitation spectrum in the unconfined limit by computing the eigenvalues
of the adjusted eigenvalue equation with a range of longitudinal wavenumbers k. The 3D
spectrum of excitations for the cylindrical harmonically trapped gas in the Thomas-Fermi
limit is shown in Fig. 6.5, where the expected speed of sound is seen in the low energy
longitudinal excitations.

As we move into numerical territory without precise results to compare to, we can now
understand how to be confident in our results. First, we should rely only on ranges of the
energy spectrum where the excitation vectors are fully contained by the mesh and do not have
such high frequency wiggles that the mesh cannot accommodate them. This later condition
can be tested for by increasing the mesh density and looking for improved accuracy. Based on
our experiences in two extreme limits—Thomas-Fermi and non-interacting—we will choose
a scale such that the largest mesh point along either axis satisfies

xmax = max(1.4xTF, 1.5
√
Nx xho), (6.19)

with xTF and xho the Thomas-Fermi radius and harmonic oscillator lengths, respectively,
and Nx the number of mesh points. This heurstic for defining the mesh scale will allow us
to find the ground state and excitation spectrum at a range of densities.
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Figure 6.6: Slices through the center of the condensate density along x (left) and z (right).
Our solution is in blue, while the Thomas-Fermi and harmonic ground state densities, with
the same total number of atoms, are shown in yellow and green respectively. Horizontal
axes are scaled by the Thomas-Fermi radius in the appropriate direction, x or z.

6.7 Simulating our (harmonic) trap

We are primarily interested in the spectrum of our gas at the lowest trap depth settings,
where we achieved the lowest T/Tc. This trap has trap frequencies (ωx, ωy, ωz) = 2π ×
(18, 0.78, 109) rad/s and on average we achieved a temperature of 1.04 nK with 8.1 × 105

atoms. Clearly, no axis of our trap is unconfined. Can we simulate the full 3D trap?
Simulating the full 3D trap is computationally prohibitive for us. The weak axis trap

frequency corresponds to a lowest energy of 0.03 nK. Using the 1D Thomas-Fermi energy
spectrum,

εn = ~ω
√
n(n+ 1)/2, n ≥ 1 ∈ Z,

we can estimate that in order to compute energies up to ten times the temperature of
interest, we would need to have nearly 500 accurate eigenvalues along the z axis alone. In
the Thomas-Fermi limit, which is most valid along the z axis, this would require a mesh with
a few thousand points along one axis. By contrast, we expect that 50 mesh points should be
sufficient along x and 20 points more than sufficient along z. The full 3D calculation would
then require on the order of a million mesh points. While not impossible to deal with, as the
matrices involved would be quite sparse, the resulting calculations would take a very long
time on a personal computer.

Instead, we will make use of Eq. (6.18) to turn a 2D solution into a quasi-3D solution,
employing what is known as the local density approximation (LDA). Under the LDA, we
assume that properties like the entropy and energy can be defined locally, and that global
properties can be estimated by integrating slowly varying local ones. For this sort of descrip-
tion to make sense, the density of the gas should change slowly compared to the wavelength
of the thermal excitations. At 1 nK, the thermal phonon wavelength at the center of our
trap is about 50µm. This is larger than either of the x or z dimensions, but much shorter
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Figure 6.7: Spectrum of our trap, modeled as harmonic, with the longitudinal wavenumber
k = 0. (a) The 300 lowest energy excitations are enumerated and compared to those of
a 2D anisotropic harmonic oscillator and of two independent 1D Thomas-Fermi gases of
the appropriate sizes. The chemical potential µ is included in the energy of the calculated
and TF spectra in order to emphasize the interaction energy compared to the harmonic
oscillator estimate. (b) Only the first 50 energies are shown. The lowest energies match the
TF model exactly, as the lowest energies are excitations along x only. At higher energies, no
agreement should be expected. (c,d) Slices of the eigenvectors, plotted as |u+ v∗|2, along
the x and z axes, respectively.

than the weakly confined y dimension, which has a Thomas-Fermi radius of roughly 340µm.
Near the edge of the trap, along y, the speed of sound drops and the thermal wavelength
gets shorter. The thermal de Broglie wavelength for free particles is about 10 µm. This
situation lends itself well to the LDA.

We begin by looking at the spectrum of excitations at the (longitudinal) trap center. To
do this, we use Nx = 50 and Nz = 20 mesh points along x and z, respectively. We set the
chemical potential to the value predicted in the Thomas-Fermi limit, µ/kB ≈ 14.5 nK. The
scaling factors employ the heuristic Eq. (6.19), which leads to scaling limited by the harmonic
oscillator term along both axes. The 2D spectrum (longitudinal wavenumber k = 0) and
eigenvectors are shown in Fig. 6.7. The eigenspectrum initially has a Thomas-Fermi-like
character, with the excitation vectors concentrated at the edge of the gas and the energies
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Figure 6.8: (a) Spectrum of our trap, modeled as harmonic, with the longitudinal
wavenumber plotted in units of 2π/xtf , with xtf the Thomas-Fermi radius along x. The
dotted line shows the 1D Boboliubov dispersion. As energy levels cross the Bogoliubov
dispersion from above, they tend to become degenerate with other levels. (b) One such
degeneracy is visualized by plotting a 2D cross section of the density excitation, plotted as
|Ψ|2 − |Ψ0|2, in the xy plane. Axes are not to scale. At low k, the lowest mode is a pure
longitudinal excitation, with slightly higher amplitude at the edge of the gas than in the
middle. The second mode energy is dominated by a dipole excitation along x that is con-
centrated near the edge of the gas. When k is higher, such that the longitudinal wavelength
is on the order of the Thomas-Fermi radius along x, the longitudinal excitations are highly
localized at the edges of the gas. The excitations confined at each edge are uncoupled, and
can have any relative phase, leading to the degeneracy.

growing somewhat like a simple model that adds the energy of two independent 1D Thomas-
Fermi gases. At higher energies, however, the energy grows more like a that of harmonic
oscillator, and the excitation vectors look more like those of the harmonic oscillator. Only
the first 50 or so eigenvalues will be needed to enumerate energies up to ten times the
temperature (above the chemical potential).

The quasi-3D spectrum at the trap center is shown in Fig. 6.8. At low longitudinal
wavenumber k, the lowest energy excitations scale with k as expected for phonons in a
transverse harmonic channel. At higher values of k, the energy spectrum bends upwards
in accord with the expected Bogoliubov dispersion. The spectrum has many interesting
features. For example, as the longitudinal excitations become shorter in wavelength, lower
energy transverse excitations form degenerate groups.

To calculate the entropy per particle, we first calculate the entropy per length. To do
this, we select some scale length L and calculate the energy spectrum for each k = jπ/L,
j ∈ {0,±1,±2, ...}, up to some cutoff kmax. The entropy S can then be calculated using
Eq. (6.1a), where one must be careful to recall that the computed energy eigenvalues are
already relative to the chemical potential, and the entropy per length is simply S/L. Note
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Figure 6.9: Entropy at the longitudinal center of the trap at the lowest depth setting.
Entropy per particle is plotted against (a) the maximum energy eigenvalue considered and
(b) the temperature, with two different values of εmin (see text). In (a), kBεmin ≈ 0.1 nK.
Including eigenvalues up to ten times the temperature is more than sufficient to saturate
the entropy estimate.

that the ground state is excluded from the sum in Eq. (6.1a). The entropy per particle can
then be found by dividing S/L by the total 1D density n = nth + n0: S/N = S/(Ln), where
the non-condensed 1D density is nth = N/L, with N given by Eq. (6.1b), once again with
the ground state excluded, and the condensate density is given by Eq. (6.13).

The entropy per particle at the longitudinal trap center is shown in Fig. 6.9 as both
a function of temperature and a function of the maximum energy included in the sum of
Eq. (6.1a). The entropy largely saturates after energies roughly five times the temperature
are included. In general we calculate energies up to ten times the temperature. This threshold
energy dictates the number of eigenvalues we need to calculate at each value of k, as well as
the maximum longitudinal wave vector kmax. In Fig. 6.9b, it is notable that in the regime
of temperatures between 0.2 nK and 2.5 nK the entropy per particle grows like the square
of the temperature. This may be due to the fact that the thermal excitations of the gas are
effectively 2D. The lowest energy excitation along the tight z axis corresponds to roughly 5
nK, which is largely frozen out in this temperature range.

If one is not careful, the length L employed in the discretization of k can affect the
estimate of the entropy. The lowest energy above the ground state that our calculation
considers corresponds to a longitudinal excitation with wavenumber kmin = π/L. In order
for the entropy estimate to be independent of L, the variation in the relative occupations of
the lowest lying states should be small. Equivalently, the energy of the lowest lying state,
εmin = ckmin in regions with a condensate, the c the longitudinal speed of sound, should
be much less than the temperature, kBεmin � T . For our calculations, we use L such that
kBεmin ≈ 0.1 nK. As seen clearly in Fig. 6.9b, lowering εmin does not change the entropy
estimate at 1 nK.
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Figure 6.10: The calculated peak density in our trap as a function of µ is compared to
the Thomas-Fermi and non-interacting ideal Bose gas predictions.

6.8 Entropy in our harmonic trap

We can now calculate the total entropy of our gas in a harmonic trap with the trap frequencies
corresponding to our lowest trap depth settings, with T = 1.04 nK, by using the local density
approximation and by assuming that the chemical potential varies in accordance with the
Thomas-Fermi limit along the long y axis. To do this, we calculate the entropy and number
of atoms as in Sec. 6.7 at a range of chemical potentials, yielding the entropy and number
density as functions of µ: S

L
(µ) and N

L
(µ). We then write the total entropy of the gas as

S =

∫ ∞
−∞

S

L

(
µmax −

1

2
ω2
yy

2

)
dy, (6.20)

and the total number of atoms as

N =

∫ ∞
−∞

N

L

(
µmax −

1

2
ω2
yy

2

)
dy, (6.21)

where µmax is chosen to yield the experimentally measured value of N . The entropy per
particle of the gas is then S/N . We need the Thomas-Fermi approximation along y in order
to define the way the chemical potential varies with trapping potential. We do not need to
rely on the Thomas-Fermi approximation along x and z, however, and the peak chemical
potential µmax may not take on its Thomas-Fermi value. In fact, as shown in Fig. 6.10,
for a given value of µ, the atom density is generally somewhat less than the Thomas-Fermi
prediction. As µ increases, the Thomas-Fermi approximation becomes more valid.

The range of µ at which we calculate the number and entropy densities clearly needs to
include µmax. In principle, there is no lower bound chemical potential implied by the limits
of integration on Eqs. (6.20) and (6.21). In practice, as shown in the left hand panels of
Fig. 6.11, both number density and entropy density fall off exponentially for µ < ~ωx/2 +
~ωz/2, and thus the integrals can be truncated (or extrapolated) without consequence.

While the overall entropy per particle is significantly higher than the expectation for a
non-interacting Bose gas—we calculate S/N ≈ 0.0012 whereas with the same atom number
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Figure 6.11: Entropy density, entropy per particle, and linear atom density in a harmonic
trap with our trap frequencies. The gas becomes quantum degenerate for µ > ~ωx/2 +
~ωz/2 ≈ kB × 3 nK. The entropy density is roughly constant in the condensed region,
consistent with the expectation for an ideal Bose gas. The entropy and atom density both
fall off exponentially at negative µ.

and temperature in the non-interacting limit we would expect S/N ∼ 0.00003—in many
ways, the entropy behaves similarly in the non-interacting and interacting gases. For ex-
ample, in the degenerate non-interacting gas, the entropy is independent of the total atom
number, and thus the entropy per particle varies like 1/N (in Eq. (5.1) note that T 3

c ∝ N).
In our interacting gas, the entropy per particle drops only slightly faster than 1/N in the
region of degeneracy. Equivalently, entropy density is roughly constant as µ varies in the
regime of degeneracy.

The overall entropy per particle and the entropy per particle at the one-dimensional
(along y) trap center are within a factor of two of each other. As noted in Sec. 6.7, the
entropy at the trap center scales with the square of the temperature around 1 nK. Indeed,
we can verify that varying the temperature by 10% changes the overall entropy by 20%.
Thus, our estimate of the entropy, to one significant digit, is not affected by the systematic
and statistical error in our thermometer. It is likewise not affected by the atom number
uncertainty at this level of precision, as the peak µ scales weakly with the atom number.
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Figure 6.12: Line profiles of the excitation densities through the center of the trap, shown
as |u+ v∗|2, with the profile of the trapping potential superimposed. The zero-level of the
densities is shown roughly at the chemical potential level of the trapping potential. Along
the x axis the potential is nearly harmonic. Along the z axis the trapping potential is
not harmonic and many of the excitations are unconfined, with non-negligible amplitude
beyond the lip of the trap.

6.9 The trap is not harmonic

We have calculated an estimate of the entropy per particle at equilibrium in a harmonic
trap with trap frequencies corresponding to those in our system at the lowest trap depth.
However, as shown clearly in Secs. 5.8 and 5.7, the optical trap deviates significantly from
harmonicity in the region where the condensate is confined when the chemical potential is
a considerable fraction of the trap depth, as it is at the settings we are considering. How
might taking the anharmonicity of the trap into account affect our estimate of the entropy?

Estimating the entropy in the anharmonic trap is complicated by a few factors. First
and foremost, the gravity-tilted optical trap is not confining and lacks a global minimum.
Irrespective of this, by setting the initial guess for the ground state such that it has no
amplitude beyond the Thomas-Fermi radius, Newton’s method has no problem finding the
necessary meta-stable ground state Ψ0. The excitation spectrum, however, includes many
states that are clearly not confined, as shown in Fig. 6.12. These states pose a problem
because their energies are not reliable—the excitations are clearly not contained to the
mesh—and regardless, atoms occupying these states would quickly leave the trap.

We will take two main approaches to work around this issue. One approach is to post-
select excitations that do not have significant amplitude outside the confining region of the
trap. Physically, this approach may be justified by noting that because these states couple
strongly to the continuum, the lifetime of atoms in these states would be short, and thus
at steady state they are likely to be less occupied than their energy (which we don’t trust
anyway) might suggest. In taking this approach, we decide how much excitation density we
permit to be unconfined, and reject energy levels that exceed this threshold. The metric
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Figure 6.13: Two approaches to dealing with the lack of confinement in the anharmonic
trap. (a) By computing a measure of the confinement (see text) associated with the calcu-
lated excitations, we can exclude from our entropy estimate states that fall below a certain
threshold of confinement. Here we show the unconfined fraction f of the first 100 states
at µ/kB ≈ 15 nK and with longitudinal k = 0, plotted against the energy of the state
referenced to the effective trap depth. Many states with energy larger than the effective
trap depth are confined; such states are excited predominantly in the mostly-harmonic x
direction. One of the thresholds that we use is indicated by the dashed line. (b) Alterna-
tively, we can make the anharmonic trap confining by adding a wall at the trap lip. The
line profiles shown are analogous to those of Fig. 6.12.
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Approach S/N
Harmonic trap 0.0012

Anharmonic wall 0.0012
Anharmonic f = 0.1 0.0012

Anharmonic f = 0.02 0.0011
Anharmonic f = 0.01 0.0011

Table 6.1: Summary of different entropy per particle estimates. There is not much varia-
tion.

we use to gauge the level of unconfinement is the fraction of the excitation density that is
beyond the lip of the trap, in the continuum C:

f =

∫
~x∈C d~x |u(~x) + v∗(~x)|2∫
~x
d~x |u(~x) + v∗(~x)|2

.

The unconfined fraction f is shown for the first 100 excitations in Fig. 6.13a. The choice
of f is somewhat arbitrary, but fortunately the outcome is not particularly sensitive to this
choice.

Another approach is to restore confinement while preserving most of the anharmonicity
of the trap. There are many ways to do this. One näıve and simple approach is illustrated in
Fig. 6.13b: add a hard wall at the trap lip. The ground state in this trap is unchanged, but
the excitations are confined. With this approach, we can calculate the entropy as we do with
any other trap, with no postselection of the computed excited states. In either approach to
calculating with anharmonicity, we continue to approximate the trap as harmonic along the
long axis y and we assume that the trap geometry along x and z does not depend on the
y coordinate. With this assumption in place, we need only vary µ to estimate the entropy
density at various points along the y axis.

The entropy estimated by taking account anharmonicity in any of these ways is essentially
unchanged over the harmonic case, as seen in Tab. 6.1. The entropy is dominated by the
lowest energy excitations—longitudinal phonons and a few of the lowest lying transverse
excitations. As shown in Fig. 6.14, the lowest energies are nearly identical in the harmonic
and anharmonic traps. The entropy density is generally somewhat higher in the anharmonic
trap than in the harmonic one, but not enough to make a large difference overall.

It is interesting and important to note the difference in entropy density between the two
anharmonic approaches at high chemical potential. When using the postselection procedure,
the entropy density drops rather quickly above a particular value of µ. This should make
sense, as the zero point energy of the excitations is the chemical potential, and thus with
larger µ the excitations need less energy to leave the trap. At larger µ, the effective trap
depth is lower. At smaller µ, the effective trap depth increases and more excitations can
be considered confined. Here we see the significance of our assumption that the transverse
trap geometry, and hence the trap potential depth, is constant, regardless of the value of the
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Figure 6.14: (Left) The energy spectra calculated in the anharmonic trap, with two dif-
ferent approaches to the confinement problem, are compared to the results in the harmonic
trap. At low energy, the difference between traps is small. (Right) The entropy density
is plotted against the chemical potential, for the same traps. The anharmonic trap has
slightly higher entropy density in general. The postselection procedure causes the entropy
density to drop when the the chemical potential is large.

longitudinal coordinate y. In fact, as seen clearly in Fig. 5.18, the trap depth is not constant
along the y axis. In fact, the trap potential depth decreases away from the trap center. As
a result, we are likely overestimating the entropy away from the trap center.

Why not vary the transverse trap potential with µ? This is certainly possible, though
because we do not know ahead of time the peak chemical potential µmax that results in
the correct total number of atoms, we may have to repeat the calculation a few times with
different µmax. But our first guess at µmax is likely to be good, as the peak values of µ that
we find generally don’t deviate much from the Thomas-Fermi prediction. One could do this
calculation, and it is very likely to find a slightly smaller estimate for the entropy.

We have not done this version of the calculation, though, because we would rather es-
timate the entropy as conservatively as is reasonable. It is not obvious how states that are
coupled to the continuum should contribute to the entropy at steady state. Based on the
high per-atom loss rate in our trap at the lowest trap depths, we know that at steady-state
many atoms do occupy states that are coupled to the continuum, and these states are likely
to have lower occupancy than the temperature might suggest. Fully accounting for the effect
of continuous evaporation in the estimated entropy likely requires machinery that is beyond
the scope of this work.
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6.10 Adjustments to the chemical potential

In our work we generally report Tc and µ as calculated by standard formulas for Bose gases
in the non-interacting and Thomas-Fermi limits, respectively. In particular,

kBTc = ~ω
(
N

ζ(3)

)1/3

(6.22)

µ =
~ω
2

(
15Na

aω

)2/5

, (6.23)

where ω is the geometric mean trap frequency and aω =
√
~/(mω) is the associated harmonic

oscillator length. Several effects can shift the true values of Tc and µ. These simulations
allow us to estimate some of them.

The value of µ is shifted by two main effects. In the Thomas-Fermi approximation, kinetic
energy is neglected compared to the interaction energy. As a result, Eq. (6.23) underestimates
the true value of µ for finite values of Na/aω [13]. In addition, the anharmonicity of the
vertical trapping potential results in a larger trap volume than predicted by ω, skewing the
calculated value of µ upward. Our calculation of the trap entropy via µmax takes into account
both of these opposing effects and estimates the peak value of µ to be shifted upwards by
barely more than 1% of the harmonic Thomas-Fermi value, with each effect contributing no
more than a 5% shift when considered individually.

The value of Tc is likewise shifted by two main effects: trap anharmonicity and interac-
tions. Both effects are expected to be small. Trap anharmonicity should reduce Tc, similarly
to µ, by a few percent at the very lowest trap depths. At higher trap depths, the anhar-
monicity is reduced. Interactions are estimated to produce a fractional shift [21] in Tc of

δTc
Tc

= −1.32
a

aω
N1/6 ≈ −0.02. (6.24)

The resulting combined shift is on the order of the systematic uncertainty in our temperature
measurements.
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Chapter 7

The future

The future of our experimental apparatus is bright as a new crew of smart and motivated
personnel have taken over as its stewards. It takes years to learn the ins and outs of an
apparatus as complex (and haphazard?) as ours, but already my colleague Fang Fang has
shown an exceptional ability to produce impressive and compelling data. The work she has
lead, already mentioned as Ref. [18], to be published soon, continues our work with magnons
by exploring the details of their condensation, or as it turns out quasi-condensation. In that
work, we leverage our ability to fully image the gas magnetization to map the emergence of a
magnon condensate phase as a function of temperature and other experimental parameters.
As we expected from our other work with magnons, magnons do indeed condense in a box-like
potential. In our most recent work, we can see a clear crossover from harmonic to box-like
condensation as a function of the ratio of temperature to chemical potential.

The new members of our experimental team are already looking beyond magnons to an
improved apparatus capable of producing molecules of rubidium and lithium, eventually in
an optical lattice. This work involves reviving some of our early dual-species efforts and,
likely, a major overhaul of our main vacuum chamber and the surrounding optics. I will not
be an integral part of that effort, but I look forward to seeing many impressive results in the
future.
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Appendix A

Winding the slower

The procedure for winding contiguous (single-wire) layers of the slower was roughly as follows.
The general idea is that positions along the slower are referenced to particular point, the
home position, which we place at the end of the main section of the slower, in terms of turns
of the chuck with the fourteen-per-inch threading gears engaged. All of the windings on a
particular piece of stock are referenced to the same home position. Here a one inch outer
diameter tube hosts the base layer of coils (1/8 inch wire) on which are wound the main
section (1/16 inch wire, to the “left” of the home position) and the boost coils (1/8 inch
wire, to the “right” of the home position). The stretch coils and the anti-gradient coils are
on separate pieces of stock with a larger OD.

To begin winding a layer with a new conductor, the starting position for the first turn of
wire is identified in terms of the number of fourteen-per-inch turns from the home position.
The chuck and slower are then rotated the appropriate number of turns, with the threading
gears engaged at fourteen-per-inch, to bring the winding tool into position. The starting
position of the layer is then marked with an indelible felt-tip marker. To protect against
shorts, the prior layer of wire is coated with a single layer of kapton tape, and to hold the
new layer in position, the kapton tape is coated with a thin layer of thermally conductiive
epoxy. We used JB Weld.

Before affixing the wire, we consider how to achieve the appropriate winding pitch. The
design of the slower necessitated turns of the thin wire with one-quarter density (shown
in the winding diagram, Fig. 2.10, as one coil every four slots), which could not be made
with the lathe directly. Such turns require some manual intervention; however appropriate
positioning of the lathe tool (always moved by turning the chuck with gears engaged) is still
important. In this case, rotate the chuck (no wire attached) to bring the winding tool to
the point at which half- or single-density windings commence. Then, set the gears to the
closest approximation of quarter-density that is available (we used half-density) and turn the
chuck backwards a number of full rotations equal to the number of quarter-density turns.
Next, affix the new wire lead, which passes through the winding tool, at the previously
marked starting position with a padded hose clamp. At this point, the winding tool and the
wire position on the slower do not line up precisely. Next, turn the chuck to lay down the
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Figure A.1: Winding the slower. (a) An overview of the first half of the wound slower.
One-quarter, one-half, three-quarter, and full density turns are clear. (b) Close-up of the a
retaining ring used to step the number of layers. (c) The slower being wound on the lathe.
The wire spool was supported (support not shown) and allowed to freely rotate to reduce
tension on the wire. Tension could be controlled by the winding tool. (d) The winding tool,
made of delrin, had a slot for both the 1/16 inch and 1/8 wire. The slot precisely positioned
the wire on the slower and kept it properly oriented.

appropriate number of quarter-density turns. Using the underlying layers as a guide, adjust
the spacing of the fresh-laid wire to approximate one-quarter density. The winding tool is
presently in position to begin laying half- or single-density turns, and the wire and winding
tool should line up precisely. Change gears as necessary and continue laying down turns
according to the winding diagram, using the threading functionality of the lathe to guide
the wire placement.

When quarter-density turns are not required, no shenanigans are needed and the wire can
be affixed directly at the position of the winding tool when it is set to the starting position.
If multiple layers are to be put on top of one another such that the number of layers jumps
at the starting position by more than one, a retaining ring should be affixed gently at the
starting position. Such a ring has a slot for the lead wire to pass through and abuts the first
turn on the layer. When using such a ring, be careful with the wire insulation. Delrin or
teflon rings are ideal. Excessive tension on the wire lead should be avoided. Set the gears
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for the appropriate winding density and begin counting turns of the chuck.
Each run of wire in the main section of the slower includes at least one out-and-back.

The taper in the number of turns makes getting leads out easy, as shown in Fig. A.1. A
large retaining ring is fixed at the home position at the end of the main section to allow the
wire at this position to stack. If all is done right, the left-to-right (low field to the left) layer
should reach the stop at the home position after the correct number of turns. The direction
of travel of the lathe tool is then reversed, and the next layer is placed in similar, but reverse,
fashion. Of course, when laying wire, the chuck is always turned in the same direction; only
the direction of travel of the lathe tool is changed.

After our first (few) attempts at winding the slower, we discovered shorts between some
of the layers. The polyimide enamel coating of the small wire was not as robust as the kapton
tape coating of the larger wire (even though kapton is made of polyimide). Shorts are avoided
by wrapping a layer of kapton tape between layers and by maintaining the tension with which
the wire is wound to just above the level where the wire is held in place and lays flat. Shorts
are found by two techniques. Shorts between layers produced by separate conductors can
be identified by finite conductivity between conductors where there should be none. Shorts
between layers composed of the same conductor can be found by anomalous (low) resistance
between ends of the conductor, or by abrupt changes in the measured magnetic field.
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Appendix B

Chip fabrication proposal

An overview of the chip fabrication project goals, and its status when I assumed the lead
role on the project, can be found in the following three pages. This document was developed
as part of a request for proposal in an attempt to outsource the chip fabrication project
to Teledyne Scientific. The document overstates slightly our capability (at the time) with
respect to electroplating and planarization—in reality, we could only reliably achieve void-
free electroplating of the larger, lower-aspect-ratio bias chips, and we had only attempted
to remove excess copper material from chips with copper on one side—but it is a helpful
overview of the project nonetheless.

Teledyne’s proposal came back indicating, essentially, that their capabilities with regard
to fabrication roughly matched our own, and that they had little to no experience with the
parts of the project that we had yet to figure out, namely the metalization, lapping and
polishing of copper, and bonding of the final chip stack. For a few hundred thousand dollars,
they would be willing to make a “best effort” attempt at developing a successful process and
producing the desired product, but they could make no guarantees. The time frame they
proposed, if I recall correctly, was roughly a year.
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Introduction: For our new experiment where we want to create a magnetic ring trap for ultracold atoms, we need 
very precise magentic fields., i.e. magnet coils. These can be achieved by microfabricated chip coils,  controlling its 
dimensions to the required degree of precision on the order of one micrometer.  For the specific magnetic field configu-
ration, we require four distinct double-sided chip coils with very high aspect-ratio microfabricated wires (120 um deep) 
to carry ~4A. Furthermore we would need some bonding/stacking of these 4 chip coils on a micron level, where two of 
these chip coils need to be bonded together, respectively and subsequently bonded with a 2mm thick thermally 
conductive spacer (sapphire? silicon?). However, we should differentiate between these two fabrication steps. In the first 
phase we are looking for getting a number (maybe 2-10 wafers) of these microfabricated chip coils cut into dies. We will 
try to perform the bonding/stacking ourselves in the lab with thermally conductive epoxy.  However, both quality and 
quantity is probably improved if we can also outsource this step.  Therefore,  in parallel to our own effort, Teledyne should 
also work on this second phase, which involves die bonding (potentially with Au thermal compression bonding) and 
wire/lead attachments. But let us first define the requirements on the chips themselves.

To introduce our terminology we like to call the smaller 
coils “Curvature Coils” and the larger ones “Antibias Coils”. 
For one assembly we need two Curvature Coils of opposite 
helicity and two Antibias Coils of opposite helicity. Their 
dimensions are the following:

   Curvature Coils Antibias Coils

Number of Turns  21   27
Wire Width [um]  20   50
Wall Thickness [um]  10   10
Trench Depth [um]  120   120
ID [mm]   2   4.5
OD [mm]   3.3   7.9

The dies carrying these coils should have a thickness of ~525 um. Their size is about 28.6 x 8 mm. The exact dimensions 
and location of the spiral coils are depicted below.  In the center of each coil we need a hole through the substrate for 
optical access. Furthermore the location of the soldering pads is off-axis to allow one corner to be cut out, which facili-
tates solder connections in the bonded final assembly. The location of alignment marks (chip-to-chip and stack-to-stack) 
is indicated as small squares. This is where we can have backside illumination with IR light  for chip glueing in our lab.
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This page should define the basic requirements we have on these chip coils. Hopefully without biasing you too much, on 
the next page, however, we would like to show you some examples of the chips that were made in the Berkeley Microlab 
by Tom Purdy and Dan Brooks from silicon with electroplated copper. But in principle our coils could be made with other 
materials, different processes, order of processes, etc. The finished chip coils have to withstand temperatures of ~200C for 
several days (vacuum bakeout ~30C/h) and -80C (daily cycle from/to room temperature in ~ 1h) whithout mechanical 
failure, i.e. cracking and plastic deformation of the conductor spirals.

Chip Coil Specifications: In general, each of these four different coils is a microstructured conductor on a substrate 
formed by two flat spirals connected through the chip substrate by a via.  A schematic drawing of a single chip coil is 
shown here without the substrate. Leads coming in on the top surface from a soldering pad (not shown), spiraling inward 
in about 20 turns (counter-clockwise in this example), connected to the other side through the substrate by the via, 
spiraling outwards again (also counter-clockwise when viewed form the other side), and leading out in parallel to the 
incoming lead to  a second solder pad on the bottom side of the substrate surface.

~ 100 um
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Masks: We do have masks for 4” wafers made by photo-sciences with mirrrored, clear drawn 
features (material 5090CRSL, product code F10CS5090).  There is one mask per 
Curvature/Antibias coil for holes that are etched all the way through (via, central hole, L-shaped 
cut to break off one corner plus alignment marks) and one mask each for patterning the features 
(spiral, leads, solder pads plus alignement marks). The “features masks” are for front + backside 
and opposite helicites are already integrated. A fifth mask was made with 50 x 50 um squares (10 
um in between) for Au thermal compression bonding. The data format is DXF and GDSII. I will 
send along those files for you. Maybe you could use them in the fabrication, maybe we/you will 
have to draw new masks.
Deep Etching: First the holes were etched almost all the way through 
(-120um) before the actual features were etched down about 120um on 
each side. For the central hole only a 70 um rim was etched to avoid to 
much contamination. Etching has to be very accurate, because it leaves 
behind very high-aspect ratio features (walls between turns are 10 x 
120um).

Insulation: Before backfilling the trenches with copper an insulating thermal oxide layer (1um) 
was put on. How can we specify and measure the leakage current between turns an from the top 
to the bottom spiral? Would it be possible to bias the substrate?

Adhesion: To improve adhesion the leads were spread out in parallel and addditional “anchors” 
around the soldering pad were implemented. Do you have other ideas on how to improve adhe-
sion? (How) can we specify it?
Lapping/polishing: Can you do double-sided wafer polishing? Or would you have to cut the 
dies first and then do the polishing? Please note the drastic differences in local densities (areas of 
very high and very low copper). So far Tom has achieved surface roughnesses across the coil of 
100’s of nanometers. Which tolerances could you meet?

Central Hole: If you have the capabilities to drill (etch, machine) the 
central hole as one of the last steps in the fabrication process this could 
be advantageous. It would eliminate the copper layer on its sidewalls 
seen in our chips. The dimension and position of this hole are less critical. 
It is only for optical access. 

Tolerances: What are reasonable tolernaces you can achieve in the alignment of the front and 
backside masks? What will be your tolerances on the smoothness of the bottom of the etched 
trenches?
The via is offset from the last turn to accomodate its size (60 x 120 um). However, if you could 
make the via as slim as 20um it could be integrated in the last turn! This would allow us for 
instance to increase the size of the central hole and have a larger NA for optical access.

Plating: The growing (electroplating) process has to be done in a way that leaves no voids in the 
high-aspect ratio trenches and the vias.  What could be the tolerances on defects (not visible on 
the surface) from the growing process (most likely reflecting the roughness of the etched 
trenches)? Can you analyze it by taking cross-sections or do you have other means?
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Add-ons:  Is it possible (and would it make sense) to put an 
insulation layer on top of the chips? Out of curiousity, how 
difficult would it be to integrate additional gadgets, like a 
platinum temperature sensor, a Hall probe or a microwave 
patch antenna at 6.8 GHz?
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2 mm

7.8 mm

2 mm (spacer)

525 um

27 turns / 120 um deep
50um wire / 10 um wall

21 turns / 120 um deep
20um wire / 10 um wall

Chip Bonding/Stacking: Each chip coil has its own electrical connections. There is no current flowing between 
different chips. But for our magnet coil arrangement one Curvature coil chip and one Antibias coil chip need to be 
bonded together, respectively and the two pairs need to be bonded together with a 2mm thermally conductive spacer 
for the final assembly. A cross-section of the complete stack is also shown below. 

Curvature (-)

spacer

Curvature (+)

Antibias (+)

Antibias (-)

Antibias (+)
Curvature (-)

Curvature (+)
Antibias (-)

The order of the 4 distinct coils (from top to bott-
tom) is the following: Antibias (+) - Curvature (-) - 
spacer - Curvature (+) - Antibias (-), where the +/- 
denotes left/right handed coils. The leads for the Anti-
bias coils face the same way, so do the leads of the 
Curvature coils, but in the opposite direction. The 
order is unique and given/labelled by the key-shaped 
markers next to the soldering pad.

Bonding between chips could either be done by gold thermal com-
pression bonding or glueing with a thermally conductive insulating and 
ultra-high vacuum compatible epoxy.. Differential thermal expansion 
coefficients will be a critical  issue (temperature range: -80C - 200C) and 
electrical shorting between chips, i.e. coils has to be avoided. Moreover, 
flatness, i.e. parallelity between the coils is very important.

The Spacer should be thermally conductive, of 
similar thermal expansion coefficient  and  should 
have very close tolerances on the parallelism of its 
faces. We thought about sapphire, but e.g. Si or any 
other suited material should also be ok.  The bonding 
should be stable (there will be no mechanical forces 
on the stack) whithout inducing too much stress 
through the temperature cycles.

Wire attachment: Do you have the capabilities to 
already attach wires/leads to the solder pads? The 
process and the flying leads (~1”) have to be ultra-
high vacuum compatible and be able to carry ~4A.  

Alignment marks (50 x 50 um squares) for 
chip-to-chip and stack-to-stack bonding would 
be available in diagonal corners on our masks. 
What would be reasonable tolerances for your 
alignement and bonding processes?



156

Bibliography

[1] Ehud Altman et al. “Phase diagram of two-component bosons on an optical lattice”.
In: New J. Phys. 5.1 (Sept. 2003), pp. 113–113. issn: 1367-2630. doi: 10.1088/1367-
2630/5/1/113.

[2] amoberkeley / edcam — Bitbucket. url: https://bitbucket.org/amoberkeley/
edcam (visited on 06/19/2015).

[3] W S Bakr et al. “Probing the superfluid-to-Mott insulator transition at the single-atom
level”. In: Science 329.5991 (July 2010), pp. 547–50. issn: 1095-9203. doi: 10.1126/
science.1192368.

[4] Waseem S Bakr et al. “Orbital excitation blockade and algorithmic cooling in quantum
gases”. In: Nature 480.7378 (Dec. 2011), pp. 500–3. issn: 1476-4687. doi: 10.1038/
nature10668.

[5] A B Bardon et al. “Transverse demagnetization dynamics of a unitary Fermi gas”. In:
Science 344.6185 (May 2014), pp. 722–4. issn: 1095-9203. doi: 10.1126/science.
1247425.

[6] D Baye and P-H Heenen. “Generalised meshes for quantum mechanical problems”.
In: J. Phys. A. Math. Gen. 19.11 (Aug. 1986), pp. 2041–2059. issn: 0305-4470. doi:
10.1088/0305-4470/19/11/013.

[7] Daniel Baye. “Lagrange-mesh method for quantum-mechanical problems”. In: Phys.
status solidi 243.5 (Apr. 2006), pp. 1095–1109. issn: 0370-1972. doi: 10.1002/pssb.
200541305.

[8] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbène. “Quantum simulations with
ultracold quantum gases”. In: Nat. Phys. 8.4 (Apr. 2012), pp. 267–276. issn: 1745-2473.
doi: 10.1038/nphys2259.

[9] S. Braun et al. “Negative Absolute Temperature for Motional Degrees of Freedom”.
In: Science 339.6115 (Jan. 2013), pp. 52–55. issn: 0036-8075. doi: 10.1126/science.
1227831.

[10] SH Brongersma and E Richard. “Two-step room temperature grain growth in electro-
plated copper”. In: J. Appl. Phys. 86.7 (1999), p. 3642.

http://dx.doi.org/10.1088/1367-2630/5/1/113
http://dx.doi.org/10.1088/1367-2630/5/1/113
https://bitbucket.org/amoberkeley/edcam
https://bitbucket.org/amoberkeley/edcam
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1038/nature10668
http://dx.doi.org/10.1038/nature10668
http://dx.doi.org/10.1126/science.1247425
http://dx.doi.org/10.1126/science.1247425
http://dx.doi.org/10.1088/0305-4470/19/11/013
http://dx.doi.org/10.1002/pssb.200541305
http://dx.doi.org/10.1002/pssb.200541305
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1126/science.1227831
http://dx.doi.org/10.1126/science.1227831


BIBLIOGRAPHY 157

[11] B. Capogrosso-Sansone et al. “Critical entropies for magnetic ordering in bosonic mix-
tures on a lattice”. In: Phys. Rev. A 81.5 (May 2010), p. 053622. issn: 1050-2947. doi:
10.1103/PhysRevA.81.053622.

[12] Ming-Shien Chang et al. “Coherent spinor dynamics in a spin-1 Bose condensate”. In:
Nat. Phys. 1.2 (Oct. 2005), pp. 111–116. issn: 1476-0000. doi: 10.1038/nphys153.

[13] Franco Dalfovo, Stefano Giorgini, and Sandro Stringari. “Theory of Bose-Einstein con-
densation in trapped gases”. In: Rev. Mod. Phys. 71.3 (Apr. 1999), pp. 463–512. issn:
0034-6861. doi: 10.1103/RevModPhys.71.463.

[14] F Dalfovo et al. “Nonlinear dynamics of a Bose condensed gas”. In: Phys. Lett. A 227.3-
4 (Mar. 1997), pp. 259–264. issn: 03759601. doi: 10.1016/S0375-9601(97)00069-8.

[15] S. De et al. “Quenched binary Bose-Einstein condensates: Spin-domain formation and
coarsening”. In: Phys. Rev. A 89.3 (Mar. 2014), p. 033631. issn: 1050-2947. doi: 10.
1103/PhysRevA.89.033631.

[16] Jesse Emspak. “Molecules Reach Coldest Temperature Ever”. In: Sci. Am. (2015).

[17] Manuel Endres et al. “The ’Higgs’ amplitude mode at the two-dimensional super-
fluid/Mott insulator transition”. In: Nature 487.7408 (July 2012), pp. 454–8. issn:
1476-4687. doi: 10.1038/nature11255.

[18] Fang Fang et al. “Condensing magnons in a degenerate ferromagnetic spinor Bose gas”.
In: (Nov. 2015), p. 5. arXiv: 1511.05193.

[19] M. Fattori et al. “Demagnetization cooling of a gas”. In: Nat. Phys. 2.11 (Oct. 2006),
pp. 765–768. issn: 1745-2473. doi: 10.1038/nphys443.

[20] ME Gehm. Properties of 6Li. 2003. url: http://www.physics.ncsu.edu/jet/

techdocs/pdf/PropertiesOfLi.pdf (visited on 08/18/2015).

[21] S. Giorgini, L. Pitaevskii, and S. Stringari. “Condensate fraction and critical temper-
ature of a trapped interacting Bose gas”. In: Phys. Rev. A 54.6 (Dec. 1996), R4633–
R4636. issn: 1050-2947. doi: 10.1103/PhysRevA.54.R4633.

[22] Markus Greiner et al. “Quantum phase transition from a superfluid to a Mott insulator
in a gas of ultracold atoms”. In: Nature 415.6867 (Jan. 2002), pp. 39–44. issn: 0028-
0836. doi: 10.1038/415039a.

[23] S. Gupta et al. “Bose-Einstein Condensation in a Circular Waveguide”. In: Phys. Rev.
Lett. 95.14 (Sept. 2005), p. 143201. issn: 0031-9007. doi: 10.1103/PhysRevLett.95.
143201.

[24] Jennie Sara Guzman. “Explorations of Magnetic Phases in F = 1 87Rb Spinor Con-
densates”. PhD thesis. University of California, Berkeley, 2012.

[25] J. Guzman et al. “Long-time-scale dynamics of spin textures in a degenerate F = 1 87
Rb spinor Bose gas”. In: Phys. Rev. A 84.6 (Dec. 2011), p. 063625. issn: 1050-2947.
doi: 10.1103/PhysRevA.84.063625.

http://dx.doi.org/10.1103/PhysRevA.81.053622
http://dx.doi.org/10.1038/nphys153
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1016/S0375-9601(97)00069-8
http://dx.doi.org/10.1103/PhysRevA.89.033631
http://dx.doi.org/10.1103/PhysRevA.89.033631
http://dx.doi.org/10.1038/nature11255
http://arxiv.org/abs/1511.05193
http://dx.doi.org/10.1038/nphys443
http://www.physics.ncsu.edu/jet/techdocs/pdf/PropertiesOfLi.pdf
http://www.physics.ncsu.edu/jet/techdocs/pdf/PropertiesOfLi.pdf
http://dx.doi.org/10.1103/PhysRevA.54.R4633
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevLett.95.143201
http://dx.doi.org/10.1103/PhysRevLett.95.143201
http://dx.doi.org/10.1103/PhysRevA.84.063625


BIBLIOGRAPHY 158

[26] James Michael Higbie. “First Steps toward Precision Measurements using Multicompo-
nent Bose-Einstein Condensates of 87Rb”. PhD thesis. University of California, Berke-
ley, 2005.

[27] Tin-Lun Ho. “Spinor Bose Condensates in Optical Traps”. In: Phys. Rev. Lett. 81.4
(July 1998), pp. 742–745. issn: 0031-9007. doi: 10.1103/PhysRevLett.81.742.

[28] Tin-Lun Ho and Michael Ma. “Quasi 1 and 2d Dilute Bose Gas in Magnetic Traps:
Existence of Off-Diagonal Order and Anomalous Quantum Fluctuations”. en. In: J.
Low Temp. Phys. 115.1-2 (Apr. 1999), pp. 61–70. issn: 1573-7357. doi: 10.1023/A:
1021894713105.

[29] W. Hofstetter et al. “High-Temperature Superfluidity of Fermionic Atoms in Optical
Lattices”. In: Phys. Rev. Lett. 89.22 (Nov. 2002), p. 220407. issn: 0031-9007. doi:
10.1103/PhysRevLett.89.220407.

[30] Gregor Jotzu et al. “Experimental realization of the topological Haldane model with
ultracold fermions”. In: Nature 515.7526 (Nov. 2014), pp. 237–240. issn: 0028-0836.
doi: 10.1038/nature13915.

[31] Yuki Kawaguchi et al. “Topological Excitations in Spinor Bose-Einstein Condensates”.
In: Prog. Theor. Phys. Suppl. 186 (June 2010), pp. 455–462. issn: 0375-9687. doi:
10.1143/PTPS.186.455. arXiv: 1006.5839.

[32] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn. “Making, probing and under-
standing Bose-Einstein condensates”. In: (Apr. 1999), p. 90. arXiv: 9904034 [cond-mat].

[33] Wolfgang Ketterle and N.J. Van Druten. “Evaporative Cooling of Trapped Atoms”.
In: ed. by Benjamin Bederson and Herbert Walther. Vol. 37. Advances In Atomic,
Molecular, and Optical Physics. Academic Press, 1996, pp. 181–236. doi: http://dx.
doi.org/10.1016/S1049-250X(08)60101-9.

[34] In Kwon Kim et al. “Effect of corrosion inhibitor, benzotriazole, in Cu slurry on Cu
polishing”. In: Jpn. J. Appl. Phys. 47.1 (2008), pp. 108–112. issn: 00214922. doi:
10.1143/JJAP.47.108.

[35] Charles Kittel and Herbert Kroemer. Thermal Physics. W. H. Freeman, 1980, p. 473.
isbn: 0716710889.

[36] Marco Koschorreck et al. “Universal spin dynamics in two-dimensional Fermi gases”.
In: Nat. Phys. 9.7 (May 2013), pp. 405–409. issn: 1745-2473. doi: 10.1038/nphys2637.
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