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Dissecting neural computations in the 
human auditory pathway using deep neural 
networks for speech

Yuanning Li    1,9, Gopala K. Anumanchipalli2,3, Abdelrahman Mohamed4, 
Peili Chen5, Laurel H. Carney    6, Junfeng Lu7,8, Jinsong Wu7,8 & 
Edward F. Chang    1,2 

The human auditory system extracts rich linguistic abstractions from 
speech signals. Traditional approaches to understanding this complex 
process have used linear feature-encoding models, with limited success. 
Artificial neural networks excel in speech recognition tasks and offer 
promising computational models of speech processing. We used speech 
representations in state-of-the-art deep neural network (DNN) models to 
investigate neural coding from the auditory nerve to the speech cortex. 
Representations in hierarchical layers of the DNN correlated well with the 
neural activity throughout the ascending auditory system. Unsupervised 
speech models performed at least as well as other purely supervised or 
fine-tuned models. Deeper DNN layers were better correlated with the neural 
activity in the higher-order auditory cortex, with computations aligned 
with phonemic and syllabic structures in speech. Accordingly, DNN models 
trained on either English or Mandarin predicted cortical responses in native 
speakers of each language. These results reveal convergence between DNN 
model representations and the biological auditory pathway, offering new 
approaches for modeling neural coding in the auditory cortex.

Speech perception involves computations that transform acoustic 
signals into linguistic representations. Listening to speech activates 
the entire auditory pathway: from the auditory nerve (AN) and sub-
cortical structures to the primary and nonprimary auditory cortical 
areas. Natural speech perception is a challenging task owing to vari-
able acoustic cues for linguistic perceptual units (phonemes, syllables 
and words) under contextual factors such as interspeaker variabil-
ity, emotional condition, prosody, coarticulation and speech rate1–3. 

Despite challenges, the auditory system is sensitive to this variability 
yet robustly extracts invariant phonetic and lexical information to 
support speech comprehension2,4–6. A central goal of speech and audi-
tory neuroscience, as well as cognitive neuroscience in general, is to 
understand the computations performed by specific neural circuits 
and the representations generated by such computations7.

Classical cognitive models such as Cohort8, TRACE9 and their 
variants account for many psychological aspects of speech perception 
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different computational architectures (convolution, recurrence and 
self-attention) and training strategies (supervised and unsupervised 
objectives). Furthermore, inspection of DNN computations offers 
insights into the underlying mechanisms driving neural encoding 
predictions. Unlike previous modeling efforts that focused on a sin-
gle language, mainly English, we here use a cross-linguistic paradigm 
to unveil language-invariant and language-specific aspects during 
speech perception.

In particular, we demonstrate the following findings: (1) the hier-
archy in DNNs trained to learn speech representations correlates with 
that in the ascending auditory pathway; (2) unsupervised models 
without explicit linguistic knowledge can learn similar feature repre-
sentations as the human auditory pathway; (3) deeper layers in speech 
DNNs correlate with speech-responsive populations in the nonpri-
mary auditory cortex, driven by specific computations aligned with 
critical linguistically relevant temporal structures, such as phonemic 
and syllabic contexts; and (4) DNN-based models, unlike traditional 
linear encoding models, can reveal language-specific properties in 
cross-language speech perception. Taken together, our findings pro-
vide new data-driven approaches to modeling and evaluating neural 
coding in the auditory cortex.

Results
Overview
Our overall goal is to understand the computations and representa-
tions that occur and emerge throughout the auditory system during 
speech perception. To model the early pathway, we used a simulation of 
biophysical models of the auditory periphery and midbrain31–33, which 
have been highly successful at the cellular level. The biophysical model 
simulation yielded 50 distinct neurons in the AN and 100 distinct neu-
rons in the inferior colliculus (IC). For the later portion of the pathway, 
we used intracranial cortical recordings from both the primary and 
nonprimary auditory cortical areas34 in nine participants (Extended 
Data Fig. 1). Local field potentials were recorded using high-density 
grids while these participants listened to English speech. A total of 553 
electrodes were placed over the auditory cortex, 81 over the primary 
auditory cortex (Heschl gyrus (HG)) and 472 over the nonprimary audi-
tory cortex (superior temporal gyrus (STG)). The amplitude of the 
local field potential in the high-gamma band (70–150 Hz) was used 
as a measure of local neuronal activity35. Neural responses across the 
early and late auditory systems were assessed using a set of 599 English 
sentences from the TIMIT corpus36.

We used five DNNs for the extraction of speech representations. 
These models differ in training objectives. In particular, we used two 
unsupervised models and three supervised models: (1) the HuBERT 
model, a transformer-based self-supervised model trained to predict 
masked portions of speech15; (2) the Wav2Vec 2 unsupervised model, a 
transformer-based self-supervised model trained for contrastive learn-
ing that distinguishes spans of a speech utterance from distractors14; 
(3) the Wav2Vec 2 supervised model, a transformer-based supervised 

but do not explain neural coding or perform well in natural speech 
recognition. Conversely, classical neural encoding models10–12 explain 
neural coding during speech perception but cannot be directly adapted 
to a unified computational framework of speech perception. Modern 
artificial intelligence (AI) models using deep neural networks (DNNs) 
are approaching human-level performance in automatic speech recog-
nition (ASR)13–15. However, their end-to-end ‘black box’ nature hampers 
the interpretation of internal computations and representations. Here, 
we aim to correlate DNN model computations and representations with 
the neural responses of the human auditory system to enhance the 
interpretability of AI models and offer new data-driven computational 
models of sensory perception.

Task-oriented pretrained DNN models have shown promise as 
computational models in sensory neuroscience. Using learned features 
from supervised learning tasks (for example, image recognition or 
sound classification), encoding models predict, with high accuracy, 
neural responses in the visual and auditory cortices16–19. In particular, 
Kell et al. used supervised convolutional neural networks (CNNs) to 
build encoding models for auditory responses in functional magnetic 
resonance imaging (fMRI) recordings and showed an aligned hierarchy 
between the CNNs and the auditory cortex17. Two of the key ingredients 
in DNN models are model architecture and training objective. Model 
architecture determines the computations performed on input signals, 
whereas the training objective affects representations learned through 
optimization. Neural coding in the ventral visual cortex is largely driven 
by spatial statistics in retinotopic space20, favoring CNNs with hierarchi-
cal spatial convolutions as computational models16,19,21.

Unlike core object recognition in vision modeling, which uses 
static images22, speech involves dynamic sequences often modeled 
by sequence-to-sequence (seq2seq) learning in modern AI14,15,23. These 
models extract dynamic representations of speech, shaped by both 
the current input (a nonlinear transformation of the current input) 
and the long-term dependencies in the input sequences (for example, 
the history of an input sequence). Furthermore, supervised model 
training, which often requires an enormous amount of labeled data, 
is not plausible as a generic learning strategy for the human auditory 
system. Human infants can learn phonetic and linguistic categories 
through speech sound statistics in native languages without explicit 
word learning24,25. Recent works have suggested unsupervised mod-
els without labeled data as models of vision and high-level language 
processing in the brain26–28. Therefore, unsupervised speech models 
capturing transient (local) and longer-context features of speech may 
yield more suitable speech perception models29.

This study directly compares state-of-the-art neural network 
models of speech to the human auditory pathway, aiming to uncover 
shared representations and computations between the two systems. 
Neural responses to natural speech across the ascending auditory 
pathway and the corresponding DNN speech embeddings are analyzed. 
Using a neural encoding framework10,30, we systematically evaluate 
the similarity between the auditory pathway and DNN models with 

Table 1 | Summary of network training objectives and architectures

Models Unsupervised objective Supervised objective Architecture ASR task performance  
(word error rate (%))

HuBERT15 Masked prediction NA 7 CNN layers + 12 
transformer-encoder layers

6 (after fine-tuning)

Wav2Vec 2 (unsupervised)14 Contrastive learning NA 7 CNN layers + 12 
transformer-encoder layers

6.3 (after fine-tuning)

Wav2Vec 2 (supervised)14 Contrastive learning ASR 7 CNN layers + 12 
transformer-encoder layers

6.3

HuBERT/Wav2Vec 2  
(pure supervised)

NA ASR 7 CNN layers + 12 
transformer-encoder layers

7.4

Deep Speech 213 NA ASR 3 CNN layers + 5 LSTM layers 8.00

http://www.nature.com/natureneuroscience
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model based on fine-tuning of the Wav2Vec 2 unsupervised model for 
ASR14; (4) the HuBERT/Wav2Vec 2 supervised model (HuBERT super-
vised), a fully supervised model trained only for supervised ASR and 
with no unsupervised pretraining; and (5) the Deep Speech 2 model,  
a long short-term memory (LSTM)-based supervised ASR model13. These 
models share a similar hierarchical framework: a multilayer convolu-
tional feature encoder that extracts temporally constrained lower-level 
acoustic feature representations using one- and two-dimensional 
convolutions from a raw speech–audio waveform or spectrogram and 
a multilayer sequential encoder (with multiple transformer-encoder or 
recurrent (LSTM) layers) that extracts higher-level, context-dependent 
phonetic information from the CNN encoder output. We pretrained the 
speech-learning models on LibriSpeech, a standard corpus of 960 h of 
continuous naturalistic English speech37 (Table 1).

The speech responses from the auditory pathway and DNNs 
were aligned in time to train linear encoding models. Different rep-
resentation layers in the DNNs were used to predict neural responses 
in the auditory pathway (Fig. 1). The performance of these models 

(prediction R2) quantifies the similarity between the DNN-learned 
speech representations and the underlying neural representations. In 
this way, we tested the hypothesis that speech DNN models converge to 
a similar representation hierarchy as the ascending auditory pathway. 
NA, not applicable.

To address heterogeneous signal-to-noise ratios across the audi-
tory pathway areas, participants and signal modalities, we established 
benchmark baselines for each electrode and neuron. For each record-
ing site, we trained two baseline models: (1) a linear temporal receptive 
field (TRF) model using spectrogram features10 and (2) a linear TRF 
model using acoustic–phonetic features, including spectrogram, 
speech envelope/temporal landmark, pitch and phonetic features34 
(Extended Data Fig. 2). The performance of neural encoding models 
using different sets of features was normalized against the second 
baseline model with a heuristic full-feature set in each recording site to 
make evaluations comparable across sites and areas. This normalized 
prediction R2 was termed the brain-prediction score (BPS), a primary 
metric for prediction accuracy at each site.

Midbrain
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temporal gyrus
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temporal gyrus
Inferior

colliculus

DNN

Training objective

Contextual representations

Local feature extractions

Transformer layers (×12)

Convolution layers (×7)

Query

Key

Self-attention

Auditory pathway

Internal layer
representations

Encoding
model

Unsupervised Supervised

Raw speech inputs

Temporal convolution

BPS = R2 

Time Time

Predicted neural activity Actual (recorded/simulated)
neural activity

Deep neural
encoding model

Recording
/simulation

Masked
prediction

Contrastive
learning ASR

Fig. 1 | Overall framework for comparing representations in DNNs and the 
auditory pathway. The architecture of a family of DNN models, HuBERT/
Wav2Vec 2, is illustrated on the left. The auditory pathway is illustrated on the 
right, with highlighted areas indicating the locations of the recorded/simulated 
electrophysiology signals. The same natural speech stimuli were presented to 
both the human participants and the DNN models, and the internal activations 

of each DNN layer were extracted and aligned with the corresponding neural 
activity from each recording site in the auditory pathway. A ridge regression 
model was fitted to predict neural activity from time-windowed DNN 
representations, and the regression coefficient of determination R2 between the 
predicted and actual neural activity was used as a metric of prediction accuracy.
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DNN hierarchy correlates with the ascending auditory 
pathway
We tested whether DNNs trained to learn speech representations con-
verge on the same standard auditory (serial feedforward) hierarchy of 
AN–IC–HG–STG. To do this, we compared the DNN hierarchy and the 
ascending auditory pathway from two different perspectives: (1) does 
the hierarchy of layers in DNNs mirror a similar hierarchy in the ascend-
ing auditory pathway? (2) Are the feature representations learned by 
DNNs more strongly correlated with neural coding than linguistically 
derived acoustic–phonetic feature sets?

First, we considered a representative state-of-the-art self- 
supervised DNN, the HuBERT model15. For every single-layer represen-
tation model in HuBERT, we computed the averaged BPS (normalized 
prediction R2) across all recording sites within each anatomical area  
(Fig. 2; see Extended Data Fig. 3 for raw R2 and noise-ceiling values). Com-
pared to the linear model with heuristic acoustic–phonetic features, 
the performance of the DNN encoding model was 39.9% higher in the 
AN at transformer layer 1 (mean BPS = 1.399, t(50) = 13.97, P = 2.5 × 10−44, 
two-sided), 76.3% higher in the IC at transformer layer 1 (mean 
BPS = 1.763, t(100) = 13.75, P = 5 × 10−43, two-sided), 3.4% higher in the HG 
at transformer layer 1 (mean BPS = 1.033, t(53) = 1.20, P = 0.23, two-sided) 
and 23.0% higher in the STG at transformer layer 10 (mean BPS = 1.230, 
t(144) = 16.1, P = 5 × 10−58) (Fig. 2a). Moreover, of all layers in the same 
unsupervised DNN model, the CNN layers and the first four transformer 
layers in the hierarchy best predicted the AN and IC responses (Fig. 2a). 
A finer-grain analysis suggested that the early part of the CNN layers 
predicted AN responses better than IC responses, whereas the late part 
of the CNN layers predicted IC responses better than AN responses 
(Extended Data Fig. 4). The activity of the speech-responsive STG popu-
lation was best predicted by the later part of the DNN model and peaked 
at the tenth layer out of all 12 transformer layers (Fig. 2a). HG responses 
were predicted equally well by all transformer layers. However, none 
of these layers of speech DNNs outperformed the baseline acoustic 
model in predicting HG responses (Fig. 2a). Furthermore, this general 
hierarchical trend was consistent across several DNN models that shared 
a similar architecture with the HuBERT model but with different training 
objectives (Extended Data Fig. 5).

Next, we tested the hypothesis that the auditory hierarchy is char-
acterized by increasingly long windows of temporal integration. Using 
the baseline spectrogram model, we found that the TRFs estimated 
for each area showed a hierarchy of progressive temporal integration 
of acoustic inputs: temporal responses in the peripheral areas AN and 
IC were mostly transient within 100 ms, whereas neural responses 
in the cortex showed integration time windows longer than 100 ms. 
More specifically, HG responses on average had a consistent temporal 
integration window of 200 ms, and some STG electrodes showed a 
significant sustained temporal integration window of up to 300 ms 
and longer (Fig. 2b and Extended Data Fig. 3). This trend of increasing 
temporal integration window was also consistent with the estimated 
optimal encoding window size that yielded the best prediction in 
encoding models (Extended Data Fig. 3).

Finally, we generalized the evaluations to a set of different DNN 
models (Table 1). We found that, for all areas, all DNN-based encoding 
models outperformed the baseline linear models. On average, com-
pared to the linear model using heuristic acoustic–phonetic features, 
DNN-based encoding models explained 29.3–40.0% more variance 
in the AN, 61.7–76.3% more variance in the IC, −3.5% to 11.4% more 
variance in the HG and 3.1–23.0% more variance in the STG (Fig. 2c). In 
particular, the transformer layers in the unsupervised HuBERT model 
achieved the highest average performance in all areas except the HG. 
Moreover, we found that neural responses to speech in the auditory 
periphery (AN and IC) and primary auditory cortex (HG) were also 
largely characterized by locally resolved filters such as CNN representa-
tions, which had a fixed finite receptive field in time (P > 0.05 compared 
to HuBERT, two-sided t test; Fig. 2c). In contrast, speech responses in 

the nonprimary auditory cortex (STG) were better predicted using 
the deeper transformer layers in the DNNs (Fig. 2c and Extended Data 
Figs. 4 and 5).

To sum up from the above three perspectives, the early to later 
layers in DNNs trained to learn speech representations correlate with 
the successive processing in the ascending auditory pathway. HG 
representation is not modeled well by speech DNNs (P > 0.1 in all lay-
ers compared to baseline; Fig. 1a), although the latencies and tempo-
ral integration windows for TRFs would suggest a serial processing 
pathway.

DNN layers correlate with distinct STG populations
Previous studies have identified neural populations in the STG that 
show distinct speech-responsive profiles, including onset and sustained 
responses34,38. Here, we evaluated whether these functionally distinct 
speech-responsive populations correspond to different layers in the 
same DNN model.

To identify functionally distinct populations in the STG, we per-
formed non-negative matrix decomposition on the averaged speech- 
evoked response to cluster speech-responsive electrodes. Among the 
144 speech-responsive electrodes in the STG, we found two clusters 
that showed distinct onset and sustained response profiles based on 
averaged high-gamma responses across sentences38 (Fig. 3a,b and 
Extended Data Fig. 6). Note that we used a slightly different clustering 
strategy and clustered trial-averaged responses instead of single-trial 
responses as in the study by Hamilton et al.38. We found similar onset 
and sustained functional populations as in Hamilton et al.’s study38 but 
not the same anatomical distinctions. However, our results align with 
those from Hamilton et al.’s recent study34, which demonstrated that 
the posterior STG has a concentrated transient onset response and 
the middle and posterior STG areas have a more distributed sustained 
phonetic and pitch encoding.

We then investigated the best prediction model for STG 
responses, the HuBERT model, and compared the BPSs of different 
layers with regard to the functional clusters. We found that both 
clusters were better explained by the contextual layers in the HuBERT 
model. As shown in Fig. 3c, for the more sustained cluster (cluster 1), 
the best prediction model came from the deep layers of the trans-
former encoder in the DNN (cluster 1: peak BPS = 1.26 at transformer 
layer 10). The deep layers of the transformer encoder performed sig-
nificantly better than the early layers in the DNN (P < 0.05, two-sided 
paired t test; degrees of freedom (d.f.) = 83; no statistical difference 
across layers 6–12). For the more transient cluster (cluster 2), the 
best prediction model was from transformer layer 5 in the DNN (peak 
BPS = 1.20 at layer 5). However, the peak prediction layer did not 
significantly outperform any other transformer layers in the net-
work except the very first one (P > 0.05 for all two-sided paired t 
tests, d.f. = 61 for cluster 2). Clusters 1 and 2 showed a similar optimal 
delay-time window of approximately 200–250 ms (Fig. 3d). As a result, 
the sustained speech-responsive neural activity prevalent in the STG 
can be predicted from the deeper representation layers in the DNN, 
whereas the more transient speech-responsive neural activity, such 
as the onset response, can be predicted in both the early and late 
parts of the transformer hierarchy in the DNN. The DNN maintains the 
transient onset representation throughout the processing hierarchy, 
and the later layers represent both transient and sustained represen-
tations in parallel. This suggests that some features, especially highly 
salient ones such as phrasal and sentence onsets, may be represented 
in multiple layers across the DNN model.

DNN computations explain neural encoding predictions
We next examined the computational mechanism underlying repre-
sentations in the DNN. We asked whether certain types of attentional 
computation for speech in the DNN explain the ability to predict brain 
responses. Here, we particularly focused on attention regarding the 

http://www.nature.com/natureneuroscience
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phonological context, which corresponds to the neighboring pho-
nemes and syllables of the target speech sound.

Specifically, we used the HuBERT model as the target model and 
extracted the attention-weight matrices in each transformer layer of 
the DNN, which quantified the contributions from different context 
parts to the feature representation at each time. Critically, these con-
textual attention-weight matrices were not static filters but rather 
dynamically changed according to the specific speech sequences. 
Therefore, they reflect the stimulus-dependent dynamic extraction 
of contextual information in each speech sequence. Such computa-
tions are important for extracting the informative sequential feature 
representations of acoustic signals.

As a result, for each sentence in the speech corpus, we defined 
templates of attention matrices corresponding to different levels of 

contextual information representation in speech, including contextual 
information within the same phoneme, contextual information from 
the previous phoneme(s), contextual information within the same sylla-
ble and contextual information from the previous syllable(s) (Fig. 4a,b). 
We then computed the averaged correlation coefficient between the 
actual attention-weight matrices in each DNN layer and the templates 
across all sentences, which we termed the attention score (AS) (Fig. 4c). 
We found a general trend that deeper layers had an increased amount 
of contextual attention to linguistic structures (previous phoneme(s) 
and syllable(s)) (Fig. 4c, bar plots). A randomized DNN model with the 
same architecture but no pretraining on speech data did not show such 
progressive contextual attention along the hierarchy (Fig. 4c, black 
lines). Therefore, the alignment of attention with contextual structures 
not only was a direct consequence of the hierarchical architecture of 
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Fig. 2 | Hierarchy of layers in DNNs correlates with the AN–midbrain–STG 
ascending auditory pathway. a, Normalized BPS of the best-performing neural 
encoding model based on every single layer in the HuBERT model (maximum 
over delay window lengths). Magenta bars indicate CNN output layers; cyan bars 
indicate transformer layers. Red star indicates the best model for each area; 
black dot indicates other models that were not statistically different from the 
best model (P > 0.05, two-sided paired t test; n = 50 neurons for the AN, n = 100 
neurons for the IC, n = 53 electrodes for the HG, n = 144 electrodes for the STG). 
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TRF weights (absolute beta weights of the spectrotemporal encoding model) in 
speech-responsive units/electrodes of each area (mean ± s.e.m.; light-shaded 
areas indicate random permuted distributions; black dots indicate time points 
with TRF weights significantly higher than the chance level; t test, two-sided 
P < 0.05, Bonferroni-corrected for 20 time points). c, Normalized BPS of the 
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delay window lengths) for different areas of the pathway. Color key indicates 
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Speech 2 model or HuBERT supervised model; CNN-SSL, CNN layers from the 
self-supervised Wav2Vec 2 or HuBERT model; LSTM supervised, LSTM layers 
from Deep Speech 2; Transformer SSL + FT, transformer layers from the self-
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layers from the self-supervised Wav2Vec 2 or HuBERT model; Transformer 
supervised, transformer layers from the pure supervised HuBERT model; CNN 
random, CNN layers from the randomized HuBERT model; Transformer random, 
transformer layers from the randomized HuBERT model). Red star indicates 
the best model for each area; black dot indicates other models that were not 
statistically different from the best model (P > 0.05, two-sided paired t test). 
Dashed horizontal line indicates the baseline model using full acoustic–phonetic 
features. For a and c, the box plot shows the first and third quantiles across 
electrodes (orange line indicates the median; black line indicates the mean 
value; whiskers indicate the 5th and 95th percentiles). a.u., arbitrary units; ECoG, 
electrocorticography; Spect, spectrogram; feat., features; DS2, Deep Speech 2; 
W2V, Wav2Vec 2; HuB., HuBERT; W2V-A, Wav2Vec 2 ASR supervised model;  
Tr., transformer; Sup., supervised; Ran., randomized.
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the DNN model that emerges with depth but also reflected computa-
tions adapted to extracting speech-specific, linguistically relevant 
representations through training on natural speech (Fig. 4c).

We then tested whether such trends in contextual computations 
would predict the brain-prediction performance of different layers 
in the DNN. Specifically, we correlated the AS with the BPS for each 
brain area in different DNN layers. We found that the phonemic- and 
syllabic-level attention to the linguistic context in speech was posi-
tively correlated with the ability to predict brain activity only in the 
nonprimary auditory cortex (Fig. 4g) but not in the auditory periph-
ery or the primary auditory cortex (Fig. 4d–f). In other words, for a 
given transformer layer in the model, the better the attention weights 
aligned with the linguistic contextual structure, the better the layer’s 
learned representation would be able to predict the speech response 
in the STG. Conversely, the more contextual information attended, 
the less the learned representation would be correlated with the AN–
IC–HG response.

DNN encoding models capture language-specific information
Next, we tested whether DNN computations and representations are 
language specific and reflect higher-level language processing beyond 
the acoustics, such as phonotactic, phonological or lexical represen-
tations. To do this, we used a cross-linguistic approach by comparing 
English and Mandarin (Fig. 5a). Mandarin shares many consonants and 

vowels with English but largely differs in how phonetic and prosodic 
features are combined to give rise to words. In addition to data from 
English-speaking participants, we also analyzed cortical recordings 
from three native Mandarin speakers (Extended Data Fig. 1). Both 
groups were monolingual and had no comprehension of the foreign 
language. We adopted the same paradigm and materials as our previ-
ous study that focused on cross-linguistic pitch perception39. The two 
participant groups were instructed to listen to both naturalistic English 
speech and Mandarin speech in separate recording blocks. In addition 
to the previous HuBERT model pretrained on English speech, we also 
pretrained the same HuBERT model on naturalistic Mandarin speech. 
We then compared the performance of the two HuBERT models on the 
two groups when they listened to different languages (Fig. 5a).

To explicitly test our hypotheses of linguistically relevant, context- 
dependent processing in the auditory pathway as shown in the previous 
section (Fig. 4), we conducted cross-lingual perception and DNN predic-
tion tests. In particular, we hypothesized that the contextual-dependent 
computations in the DNN capture language-specific, higher-level 
processing beyond the acoustics in the STG. Therefore, we expected 
the English-pretrained model to show higher brain-prediction perfor-
mance for the STG in native English speakers and that the prediction 
performance would be better aligned with contextual attention to the 
phonemic and syllabic structures in English than in Mandarin. On the 
contrary, we expected the Mandarin-pretrained model to show higher 
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electrodes for cluster 2). Box plot shows the first and third quantiles across 
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performance of the full acoustic-phonetic feature baseline model. d, Histogram 
of the optimal delay windows corresponding to models in c.
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Fig. 4 | Context-dependent computations explain brain correspondence 
across layers in the DNN. a, Sample speech sentence text, waveform and 
phonemic annotations. The segmentations of phonemic and syllabic contexts 
to the current timeframe (black arrow) are marked in different colors: 
phoneme(0), current phoneme (gray); phoneme(−1), previous phoneme 
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attention-weight matrices for different contextual structures as shown in a. 
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Colored blocks correspond to different contexts. c, Averaged AS (Pearson’s 
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between the AS and the layer index (n = 12 different layers, permutation test). 
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brain-prediction performance and better correlation with contextual 
attention for Mandarin speech in native Mandarin speakers.

First, we examined the results with an English-pretrained model 
and native English speakers. At the acoustic level, the linear spectro-
gram TRF (STRF) model, which included only spectrogram features, 
showed similar performance in predicting neural responses in the 
STG when the participants listened to different languages (mean 
R2 = 0.162 and 0.143 for Mandarin and English speech, respectively; 
paired t(57) = 1.65, P = 0.104, two-sided; Fig. 5b). This suggests that 
lower-level acoustic representations are largely shared across lan-
guages. However, a performance gap was found in the DNN encoding 
models between languages, in which the BPS for English speech was 
significantly higher than that for Mandarin speech (13 of 14 com-
parisons had P < 0.01, paired t test, two-sided; Fig. 5c). Moreover, 
the gap between the two languages monotonically increased in 
deeper layers of the network: ΔBPS = 0.160 at the CNN output layer 
(paired t(57) = 2.55, two-sided P = 0.013), ΔBPS = 0.211 at the first 
transformer-encoder layer (paired t(57) = 3.20, two-sided P = 0.002) 
and ΔBPS = 0.314 at the tenth transformer-encoder layer (paired 
t(57) = 4.56, two-sided P = 3 × 10−5) (Fig. 5c). This suggests that the 
representation in the network demonstrates an increasing level of 
language-specific information. We also evaluated the relationship 
between the computation of phonemic and syllabic contextual infor-
mation in DNN layers and the corresponding brain-prediction perfor-
mance for Mandarin speech in the STG. As opposed to previous results 
(Fig. 4g), no significant correlation was found in either the phonemic 
or syllabic level between the attention patterns in DNN layers and 
the BPSs when native English speakers listened to Mandarin speech 
(P > 0.05 for all cases, permutation test; Fig. 5d).

In contrast, we found opposite results with a Mandarin-pretrained 
model and native Mandarin speakers. At the acoustic level, the linear 
STRF model also showed similar performance for both Mandarin and 
English speech (mean R2 = 0.056 and 0.058 for Mandarin and English 
speech, respectively; paired t(61) = −0.501, P = 0.617, two-sided; Fig. 5e). 
The DNN encoding models showed consistently higher performance 
for neural responses to Mandarin speech than English speech (all 14 of 
14 comparisons had P < 0.01, paired t test, two-sided; Fig. 5f), and the 
gap also increased in deeper layers: ΔBPS = 0.293 at the CNN output 
layer (P = 6 × 10−7, paired t(61) = 5.57, two-sided) and ΔBPS = 0.405 at 
the ninth transformer-encoder layer (P = 6 × 10−9, paired t(61) = 6.76, 
two-sided; Fig. 5f). Moreover, as opposed to the combination of the 
English-pretrained model and native English speakers, we found con-
sistently significant correlations between phonemic- or syllabic-level 
ASs and BPSs when listening to Mandarin speech (P < 0.05, permutation 
test), and no significant correlation when listening to English speech, 
in these native Mandarin speakers (P > 0.05 for all cases, permutation 
test; Fig. 5g).

Therefore, our results demonstrate a double-dissociation pat-
tern between pretrained models and native languages, suggesting 
that DNN computations and representations capture higher-level, 
language-specific linguistic information in the STG that is learned 
depending on language experience.

DNN acoustic–phonetic hierarchy explains brain prediction
The last question we asked is whether the brain-prediction performance 
of the DNN layers can be accounted for by an acoustic-to-phonetic pro-
cessing hierarchy. We tested the feature representations of acoustic, 
phonetic and prosodic information in the DNN layers. Specifically, we 
applied similar linear feature-encoding models to predict the activa-
tions of hidden units in different DNN layers and computed the unique 
variance explained by each set of features. These features are statically 
coded and do not vary according to different contexts. Therefore, 
our analysis here intentionally reflects the static noncontextual part 
of acoustic/phonetic/prosodic representations in DNN layers, as 
addressed in the previous analyses.

Overall, the results demonstrated an acoustic-to-phonetic trans-
formation along the hierarchy (Fig. 6a). In the CNN output layer, acous-
tic (spectrogram) features uniquely accounted for 20.0% of the total 
variance, whereas phonetic features accounted for only 1.70% (paired 
t(768) = 47.6, P < 1 × 10−10, two-sided). However, after the third trans-
former encoder, phonetic features consistently explained more unique 
variance than the acoustic features in the network (3.45% versus 2.66% 
at Tr. 4 for phonetic and acoustic features respectively, paired t(768) 
= 5.77, P = 5.7 × 10−9). The unique variance explained by static phonetic 
features peaked at the 11th transformer-encoder layer with a unique 
R2 of 3.98% (paired t(768) = 9.12, P < 1 × 10−10, two-sided t test against 
acoustic features, which accounted for 2.85%). Meanwhile, temporal 
landmark (envelope) features (for example, speech envelope and 
onsets) and prosodic pitch features (absolute and relative pitch) were 
more uniformly distributed along the hierarchy of the network (Fig. 6a).

Furthermore, when correlated with the BPS of individual layers, 
spectrogram feature encoding showed a significant positive correla-
tion only in the peripheral areas (AN: Pearson’s r = 0.65, P = 0.039, 
permutation test; IC: Pearson’s r = 0.68, P = 0.031, permutation test; 
Fig. 6b). Phonetic feature encoding correlated with the BPS in the STG 
(Pearson’s r = 0.77, P = 0.0025, permutation test; Fig. 6b) but not in the 
other areas (P > 0.05 for all of the other three areas, permutation test; 
Fig. 6b). Taking these together, a similar acoustic-to-phonetic hierarchy 
was found and correlated with both the self-supervised DNN model and 
the ascending AN–IC–STG pathway.

Discussion
We have demonstrated that speech representations learned in 
state-of-the-art DNNs resemble important aspects of information pro-
cessing in the human auditory system. DNN feature representations 
significantly outperform theory-driven acoustic–phonetic feature 
sets in predicting neural responses to natural speech throughout the 
auditory pathway. DNN-layer hierarchy correlates with the AN–mid-
brain–STG ascending auditory pathway. Deeper DNN layers correlate 
with functionally distinct speech-tuned populations in the nonprimary 
auditory cortex. We inspected the core contextual computations in 
DNNs and found that they learn critical linguistically relevant temporal 
structures, such as phoneme and syllable contexts, from purely unsu-
pervised natural speech training. Such ability to learn language-specific 
linguistic information predicts DNN–neural coding correlation in the 

Fig. 5 | Cross-language encoding comparisons reveal language-specific 
representations and computations aligned between the DNN and the STG. 
a, Schematic of the cross-language paradigm. Both English (darker shade) and 
Mandarin (lighter shade) speech samples were fed into models pretrained on 
English or Mandarin. The extracted representations were used to predict neural 
responses recorded in the STG of native English speakers or native Mandarin 
speakers when they listened to the corresponding speech. b, Distribution of 
the prediction R2 values of the linear STRF model in STG electrode recordings 
from native English speakers using English or Mandarin speech. Two-sided 
paired t test. c, Averaged normalized BPS of the encoding model based on every 
single layer in the English-pretrained HuBERT model in native English speakers 
when they listened to English versus Mandarin speech. *P < 0.05, **P < 0.01, 

***P < 0.001, paired two-sided t test; n = 57 electrodes in the STG (a subset of all 
participants who completed the relevant tasks). d, AS–BPS correlation across 
layers in the English-pretrained HuBERT model and the STG in native English 
speakers (Pearson’s correlation, *P < 0.05, permutation test, one-sided). Each 
panel corresponds to one type of attention pattern. Colored bars correspond 
to different contexts, as in Fig. 4. e–g, Same as b–d but using the Mandarin-
pretrained HuBERT model and recordings from n = 61 STG electrodes in native 
Mandarin speakers. Box plot shows the first and third quantiles across electrodes 
(orange line indicates the median; gray line indicates the mean value; and 
whiskers indicate the 5th and 95th percentiles). Dashed horizontal gray line:  
the performance of the full acoustic-phonetic feature baseline model. CNN out, 
CNN output layer; CNN proj, CNN projection layer; NS, not significant.
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nonprimary auditory cortex. DNN-based neural encoding models can 
reveal language-specific coding in the STG during cross-language per-
ception, whereas linear STRF models cannot.

DNN models reveal important neural coding properties in the 
speech–auditory cortex
Encoding models are prevalent methods to approach the neural 
coding of sensory perception10,30,40. Despite achieving success with 
lower-level acoustic–phonetic features10,34,41–43, linear encoding models 

struggle with higher-order speech information, often failing to reveal 
information beyond acoustic stimulus encoding (Fig. 5b,e). Previous 
studies using activation contrasts or linear models have not found the 
language-specific contextual effects of acoustic–phonetic coding in 
local populations in the STG39,44,45, but DNN-based representations 
detect such language-specific coding in single STG electrodes (Fig. 5 
and Extended Data Fig. 7). To account for nonlinear transformations 
of pure acoustic cues in the auditory system, studies have included 
higher-order features, such as phonetic, phonemic, syllabic and lexical 
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features, as predictors34,39,46,47. However, these feature representations 
rely on strong presumptions of hierarchical neural coding of these 
exact divisions, potentially missing intermediate representations in the 
nonprimary auditory cortex48,49. Furthermore, these models posit the 
auditory system as a passive finite response filter, neglecting the preva-
lent non-onset recurrent activity in higher-order speech areas34,48,50.

Traditional hierarchical models of neurobiology suggest that 
specific brain areas specialize in distinct representation levels and 
information is transformed in anatomically defined ‘streams’ (that is, 
sound to phoneme to syllable to word and semantics)9,51. Our results 
challenge this traditional view. Although we observed a transforma-
tion from spectrogram to phonetic features, instead of phonemes and 
syllables as discretely encoded representations, we found complex, 
distributed higher-order representations that also carry forward pro-
sodic information that may originate at earlier auditory levels and that 
processing is highly context dependent in later layers of computation. 
These findings explain the existence of both phonetic-feature tuning42 
and diverse ‘lower-level’ (onset, peak rate, frequency tuning)34,46 and 
‘higher-level’ (context dependence, normalization, lexical effects) 
representations in the STG39,47,52,53.

DNNs as computation models of the auditory pathway
Our results highlight two critical factors behind DNN models’ superior 
performance over heuristic linear models with static speech features: 
(1) DNN model nonlinearity—almost all DNN layers consistently out-
performed feature TRF models, even in the auditory periphery. This is 
consistent with demonstrations of nonlinear processing in the auditory 
periphery54. Despite comparable amounts of predictors (on the order of 
102), DNNs learn nonlinear features for better speech representations. 
(2) DNN models’ dynamic temporal integration of phonological con-
textual information—this is especially pivotal for higher-order speech 

responses in the nonprimary auditory cortex. STG responses were 
better predicted using deeper DNN layers with extended delay-time 
windows. Simply using static nonlinear filters in CNN layers with an 
even longer delay-time window could not achieve similar prediction 
performance for STG responses (Fig. 2). This indicates that specific 
dynamic temporal integration, aligned with the contextual information 
in speech and parametrized by computation models such as trans-
formers or recurrent neural networks, is critical for characterizing 
STG speech responses. Dynamic contextual computations are also 
correlated with higher-level language processing in the cortical lan-
guage network55. Our findings suggest that the STG processes speech 
at dynamic timescales, possibly underpinning temporal binding of 
phonological sequences to form dynamic acoustic–phonetic and ulti-
mately perceptual representations of speech50.

Our results offer new insights into computations in the audi-
tory pathway. In DNN models, model architecture determines the 
computation and representation capacity56. We found that different 
computational architectures better correlate with different parts 
of the auditory pathway: the convolution layers in DNNs are apt for 
the auditory periphery and subcortical areas with locally resolved 
static nonlinear filters; deeper transformer-encoder and LSTM 
layers better fit the speech–auditory cortex, with more complex 
stimulus-dependent temporal dynamics than static spectrotemporal 
filters. These computational attributes emerge as signatures for 
respective parts of the auditory pathway: the auditory periphery 
and subcortical structures are characterized by ascending feedfor-
ward synaptic connections for rapid forward-filtering of signals32, 
whereas the speech–auditory cortex has a multilayer architecture 
with reciprocal connections facilitating sustained computations sim-
ilar to recurrence and attention57. In contrast to prior cortex-centric 
studies, our study reveals speech-relevant computations spanning 
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Fig. 6 | Representations in neural networks demonstrate an acoustic-to-
phonetic transformation hierarchy yet preservation of prosodic cues 
through DNN layers. a, Distribution of the unique variance explained by each set 
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768 units in each transformer layer. Box plot shows the first and third quantiles 
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between the BPS and the unique variance explained by spectrogram features in 
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the entire auditory pathway through the lens of DNNs for speech 
representation learning.

This has major implications for interpreting the functions of the 
primary and nonprimary auditory cortical areas. Dynamic computa-
tions and representations showed limited contribution to predicting 
speech responses in the primary auditory cortex beyond the static 
convolutional filters (Figs. 2 and 4). In contrast, prediction of sustained 
STG responses to speech strongly correlated with dynamic computa-
tions in DNNs (Figs. 2–4). This discrepancy aligns with a recent study 
highlighting distinct phonological and complex sound processing in 
the STG versus tonotopic, narrow-tuned sound processing in the pri-
mary auditory cortex34. The STG also receives direct thalamic inputs 
through the nontonotopic, nonlemniscal pathway58–60 and does not 
appear to be solely dependent on the primary auditory cortex61. Our 
findings challenge the primary auditory cortex’s sole contribution 
to advanced computational models of speech processing, despite 
previous assumptions that it causally functions like the primary visual 
cortex in object recognition processing within the ventral stream51,62. 
Notably, we should also point out that, owing to limited experiment 
time during awake surgeries, we did not evaluate the cross-language 
question regarding the HG in this study.

Self-supervised seq2seq learning and the speech–auditory 
cortex
Our results demonstrate that self-supervised DNNs match or exceed the 
performance of more prevalent supervised models in predicting brain 
responses to speech. The training objective critically shapes DNN rep-
resentations. Previous works have found that supervised discriminant 
learning, such as word classification17,18, leads to feature representation 
correlating with auditory neural responses. Our results are consistent 
with these findings. However, instead of using a discrete classifica-
tion task, we show that a specific type of supervised seq2seq learning 
task, ASR, induces neurally correlated speech features. Furthermore, 
self-supervised learning, including contrastive and predictive learn-
ing, similarly produces matching representations aligning with STG 
responses to speech. For naturalistic speech perception, previous 
studies do not support discrete selective coding for word forms in the 
STG but rather a collection of local populations tuned to complex acous-
tic–phonetic cues and temporal landmarks in speech34,50,53,63. Therefore, 
a single supervised task such as word decoding may not capture all com-
putations and representations in the STG. Meanwhile, self-supervised 
learning yields richer representations beyond the requirement of pure 
speech recognition, such as prosodic information and speaker identity. 
Our results show that fine-tuning supervised ASR tasks on top of the 
unsupervised pretraining does not further improve the overall brain 
encoding performance in the STG. Conversely, we observed that the 
brain-prediction performance for the nonprimary auditory cortex 
decreased in the deep layers after supervised fine-tuning (Extended 
Data Fig. 5).

From a computational modeling perspective, our results extend 
previous successes in using DNNs as models of sensory systems21,64. 
Recent studies have adopted end-to-end training of DNNs to predict 
neural responses65,66. Although this approach directly optimizes 
brain-prediction performance, a considerable amount of data is 
required for training. For instance, the seq2seq DNN models we used 
here have approximately 100 million parameters and were trained 
on ~1,000 h of speech for competitive performance13–15. Collecting 
an equivalent amount of neural data is unfeasible within our clinical 
settings. Furthermore, owing to the nature of intracranial recordings, 
only a sparse sample (~100 electrodes) from the auditory cortex was 
available for each participant. As a result, the learned representations 
from a straight end-to-end optimization of brain activity may be biased 
by the individual difference in electrode sampling. Instead, we used a 
transfer learning paradigm, pretraining DNNs without any neural data 
as inputs, and demonstrated that speech representations learned by 

these DNN models are also transferable to the neural coding process 
in the auditory pathway. Importantly, the DNNs used in this study 
were all trained on a completely independent dataset from the one 
used for neural recordings. Moreover, unsupervised models abstain 
from explicit speech information or linguistic knowledge. Unlike clas-
sical computational models of speech perception, such as TRACE9, 
assuming a strict acoustic–phonetic–lexical hierarchy and explicit 
top–down inference, our pure data-driven self-supervised models 
yield an emerging acoustic–phonetic hierarchy. The self-supervised 
models’ analogous representation hierarchy to the human auditory 
system suggests that the two systems may share similar computations 
that extract critical statistical structures of speech.

Our results extend the current literature on using task-optimized 
pretrained DNN models to predict cortical auditory responses. Com-
pared to the previous pioneering study by Kell et al., which mainly 
used fMRI recordings and CNN models pretrained on tasks such as 
word recognition17,64, our study offers new insights from models with 
different architectures and computational objectives. Coupled with 
use of intracranial electrophysiological recordings with high temporal 
resolution, our approach allows for analysis of dynamic temporal cod-
ing of speech as a rapidly time-varying signal. We also show hierarchical 
processing, as reported in previous studies; however, our results show 
that early processing also occurs in subcortical pathways.

Modern DNN models are complex dynamic systems influenced by 
factors such as architectures, hyperparameters and optimization pro-
cedures. Hierarchical CNNs deterministically enforce receptive field 
growth across layers; however, transformer encoders have no prior 
constraint on the hierarchy of temporal context—each attention head 
in each layer can extend attention to the entire sequence. Therefore, 
the ascending patterns of contextual attention in DNNs (Fig. 4c and 
Extended Data Fig. 8) are learned through data-driven optimization, 
reflecting intrinsic, speech-aligned computations. We have established 
a correlation between linguistically relevant attention and neural 
encoding model performance. Future research remains to be done to 
identify other potential factors and build causal links between specific 
DNN computations and brain encoding.

Limitations
Our results suggest how different levels of speech representations 
emerge from hierarchical bottom–up recurrent or self-attentional 
operations and how these representations correlate with the auditory 
cortex. Omitted are top–down modules and cortical areas beyond 
the auditory cortex, such as the frontal areas. Therefore, it remains 
to be delineated how other areas in the language network interact 
with the auditory cortex, whether these interactions modulate local 
and populational representations of speech, and to what extent these 
interactions can be characterized by our proposed framework. Besides 
coverage, our analysis focused on the temporal dynamics within indi-
vidual electrodes. Future work should address how DNN feature rep-
resentations align with distributed population-level neurodynamics67 
in the auditory cortex.

A potential limitation concerns the biological plausibility of the 
computational models used in this study. The transformer and LSTM 
models considered in this study are bidirectional and noncausal. 
This would complicate the analysis of precise temporal dynamics in 
speech sequences. We focused on learned feature representations 
rather than actual parametrizations and implementations of algo-
rithms such as self-attention or the LSTM mechanism. We cannot 
assert that any of these computations are implemented in the cortex 
or that gradient-based learning mirrors brain mechanisms. Despite 
correlational evidence, formal fine-grained causal and ablation analy-
ses remain to be conducted to investigate the detailed relationship 
between computational components in DNNs and model-predicted 
neural responses. However, it is promising that in silico models con-
verge on a similar representational basis of speech as the brain, with a 
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learning algorithm that does not require millions of labeled examples 
and is a potentially strong candidate for a biologically plausible theory 
of sensory learning26 or higher-level language processing in general27.

Owing to the relatively small number of participants tested, our 
statistical analyses were performed across electrodes and did not con-
sider between-participant variability, thereby lacking interindividual 
generalization across the population. This limitation is common in 
intracranial studies and outweighed by the unique opportunity to 
record intracranially from human patients. Nonetheless, our results 
were largely consistent across participants (Extended Data Figs. 9  
and 10). Future research could explore and validate these findings in 
larger and more diverse populations, as well as with a broader spectrum 
of AI models.

Conclusion
Using a comparative approach, we show important representational 
and computational parallels between speech-learning DNNs and 
the human auditory pathway. From a neuroscientific perspective, 
data-driven computational models excel in extracting intermediate 
speech features from statistical structures, surpassing traditional 
feature-based encoding models. From the AI perspective, we unveil 
an avenue to understand the ‘black box’ representations in DNNs by 
comparing them to neural responses and selectivity. We show that 
modern DNNs may have converged on representations that approxi-
mate processing in the human auditory system.
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Methods
The experimental protocol was approved by the institutional review 
boards at the University of California, San Francisco (UCSF), and 
Huashan Hospital, Fudan University. All participants provided writ-
ten informed consent before undergoing testing. All patient data were 
stored and analyzed on computing servers within UCSF, and Meta AI 
Research performed DNN model pretraining using publicly available 
speech corpora, without access to patient data.

Participants
This study included 12 monolingual participants (6 men and 6 women, 
aged 31–55 years, all right-handed) who were neurosurgical patients 
at either the UCSF Medical Center or Huashan Hospital. No statistical 
methods were used to predetermine sample sizes, but our sample sizes 
are similar to those reported in previous publications34,39,42,47,52. Nine 
native English-speaking participants from UCSF (E1–E9) were either 
eloquent patients with brain tumors (four patients) undergoing awake 
language mapping as part of their surgery or patients with intractable 
epilepsy (five patients) implanted with high-density electrode grids for 
clinical monitoring of seizure activity (all with left-hemisphere cover-
age). We included only participants with tumors that had not invaded 
the auditory cortex. Three native Mandarin-speaking participants 
from Huashan Hospital (M1–M3) were eloquent patients with brain 
tumors undergoing awake language mapping as part of their surgery 
(all with left-hemisphere coverage). The placements of the grids were 
determined solely by clinical needs. All patients were informed (as 
detailed in the institutional review board-approved written consent 
document signed by the participants) that their participation in scien-
tific research was completely voluntary and would not directly affect 
their clinical care. Additional verbal consent was also acquired at the 
beginning and during the breaks of each experimental session. Data 
collection and analysis were not performed blind to the conditions of 
the experiments. No participants were excluded from the analyses.

Experimental paradigm
During the experiments, the participants were instructed to passively 
listen to continuous speech stimuli. No other task was performed dur-
ing passive listening. The acoustic stimuli used in this study consisted 
of natural, continuous speech in both American English and Mandarin. 
The English speech stimuli consisted of materials from the TIMIT data-
set36. The TIMIT set consisted of 499 English sentences selected from the 
TIMIT corpus, spoken by 402 different speakers (286 male and 116 female 
speakers). The sentences were separated by 0.4 s of silence. The task was 
divided into five blocks, with each block lasting ~5 min. The Mandarin 
speech stimuli were a subset of the Annotated Speech Corpus of Chinese 
Discourse (ASCCD) from the Chinese Linguistic Data Consortium68, which 
included read texts of a variety of discourse structures, such as narrative 
and prose. The stimulus set consisted of 68 passages of Mandarin speech 
selected from the ASCCD corpus, spoken by ten different speakers (five 
male and five female speakers). The length of a single passage varied 
between 10 and 60 s. The passages were separated by 0.5 s of silence. The 
task was divided into six blocks, with each block lasting ~5 min.

Depending on their clinical conditions, all participants finished 
3–11 blocks of all tasks. In particular, eight English-speaking partici-
pants (E1–E8) completed all five TIMIT blocks; E9 completed three 
TIMIT blocks; and the three Mandarin-speaking participants (M1–M3) 
completed two TIMIT blocks. Three English-speaking participants  
(E1–E3) and all three Mandarin-speaking participants (M1–M3) com-
pleted all six ASCCD blocks. E4 completed five ASCCD blocks.

Data acquisition and preprocessing
In all patients, the same types of high-density ECoG grids (manufactured 
by Integra or PMT) with identical specifications (4-mm center-to-center 
spacing and 1.17-mm exposed contact diameter) were placed on the 
lateral surface of the temporal lobe. Depending on the exact clinical 

need, the grid may have 32 (8 × 4), 128 (16 × 8) or 256 (16 × 16) contact 
channels in total. In four patients (E6–E9), an additional 32-channel 
(8 × 4) grid with 4-mm center-to-center spacing and 1.17-mm exposed 
contact diameter (Integra) was placed on the temporal plane in each 
patient. During experimental tasks, neural signals were recorded from 
the ECoG grids using a multichannel amplifier optically connected to 
a digital signal processor (Tucker-Davis Technologies). TDT Synapse 
software was used for data recording. The local field potential at each 
electrode contact was amplified and sampled at 3,052 Hz. The raw volt-
age waveform was visually examined, and channels containing signal 
variations too low to detect from noise or continuous epileptiform activ-
ity were removed. Time segments on remaining channels that contained 
electrical or movement-related artifacts were manually marked and 
excluded. The signal was then notch-filtered to remove line noise (at 60, 
120 and 180 Hz for English-speaking participants and 50, 100 and 150 Hz 
for Mandarin-speaking participants) and rereferenced to the common 
average across channels sharing the same connector to the preamplifier.

The analytic amplitude of eight Gaussian filters (center fre-
quency 70–150 Hz) was computed using the Hilbert transform. The 
high-gamma signal was taken as the average analytic amplitude across 
these eight bands. The signal was downsampled to 100 Hz. The tasks 
were divided into recording blocks of ~5-min length. The high-gamma 
signal was z-scored across the recording block.

Electrode localization
For chronic monitoring cases, electrodes were localized by aligning pre-
implantation MRI scans and postimplantation computed tomography 
scans. For awake cases, high-density electrode grids were temporarily 
placed onto the temporal lobe during surgery to record local cortical 
potentials. The three-dimensional positions of the corners of the grid 
were recorded using a Medtronic neuronavigation system and then 
aligned with the preoperative MRI scan. Intraoperative photographs 
were used as references. The remaining electrodes were localized by 
interpolation and extrapolation from those points69.

Data analysis software
All analyses were carried out using custom software written in Python 
and MATLAB. Custom MATLAB code was used for data preprocessing. 
The open-source scientific Python packages that we used included 
PyTorch, Fairseq, HuggingFace Transformers, NumPy, SciPy, pandas, 
librosa and scikit-learn. Cortical surface reconstruction was performed 
using FreeSurfer, and electrodes were coregistered using the Python 
package img-pipe. Praat70 was used to extract pitch features. Figures 
were created with Matplotlib and Seaborn in Python.

Biophysical models for the auditory periphery and midbrain
We used neuronal models of the midbrain and auditory periphery31–33. 
They consisted of a phenomenological model of AN responses, with 
nonlinear properties such as rate saturation, adaptation and synchrony 
capture, and an extended same-frequency inhibition–excitation model 
of the IC, which included both band-pass and low-pass/band-reject IC 
cells. The synaptic outputs from 50 AN neurons with characteristic fre-
quencies uniformly distributed on a log scale within 150–8,000 Hz were 
extracted as the AN signal. These synaptic-output signals were used as 
inputs to the two different types of midbrain neurons in the IC area, which 
resulted in 50 band-pass IC neurons and 50 low-pass/band-reject IC cells.

For each speech sentence, the raw waveform was sent into the 
model as the input, and the corresponding response sequences from 
AN and IC cells were extracted and downsampled to 100 Hz to match 
the high-gamma signals from the cortex.

Definitions of acoustic, phonetic and prosodic features
We used a heuristic set of 208 features as the baseline prediction 
model (161 spectrogram, 13 phonetic, 31 pitch/prosodic and 3 enve-
lope features).
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The spectrogram features of speech were calculated using a 
short-time Fourier transform, with 161 frequency components rang-
ing from 0 to 8 kHz in log scale.

The phonetic features were 13-dimensional binary time series 
similar to those in previous works34,42. These features describe single 
phonemes as a combination of places of articulation (dorsal, coronal, 
labial), manners of articulation (plosive, fricative, nasal) and voicing 
of consonants, as well as the place of the vowel (high, mid, low, front, 
back) and indicator of consonant/vowel.

Pitch features, including absolute pitch, speaker-normalized rela-
tive pitch and pitch change, were extracted in the same way as in our 
previous work39. We also extracted a binary variable indicating when 
pitch values were present, suggesting voicing in the speech. The funda-
mental frequency (F0) was calculated using the autocorrelation method 
in Praat and corrected for halving and doubling errors. Absolute pitch 
was defined as the natural logarithm of F0 values in hertz. Relative pitch 
was computed by z-scoring the absolute pitch values (log(F0)) within 
each sentence/passage (within-speaker). Pitch change was computed 
by taking the first-order derivative (finite difference) in time for log(F0). 
We discretized absolute pitch, relative pitch and pitch change into ten 
bins equally spaced from the 2.5th percentile value to the 97.5th per-
centile value. The bottom and top 2.5% of the values were placed into 
the bottom and top bins, respectively. As a result, absolute pitch, rela-
tive pitch and pitch change were represented as three 10-dimensional 
binary feature vectors. For nonpitch periods, these feature vectors 
would all have a value of zero for all dimensions.

Envelope features included intensity, sentence onset and peak 
rate. Intensity is a continuous scalar sequence representing the enve-
lope of speech. Sentence onset is a binary feature with a value of 1 at the 
onset of the first timestamp of the first phoneme in each sentence and 
0 elsewhere. Peak rate was computed as previously described46 (that is, 
using a sparse time series of local peaks extracted from the first-order 
derivative of the amplitude envelope of speech).

Encoding models
We used time-delayed linear encoding models known as TRF models10. 
TRF models allow us to predict neural activity based on stimulus fea-
tures in a window of time preceding neural activity. In particular, we fit 
the linear model y (t) = ∑F

f=1∑
T
τ=0 β

T
f (τ)xf (t − τ) + ϵ  for each electrode, 

where y is the high-gamma activity recorded from the electrode,  
xf (t − τ) is the stimulus representation vector of feature set f at time 
t − τ, βf(τ) is the regression weight for feature set f at time lag τ, and  
ε represents the Gaussian noise.

To prevent model overfitting, we used L2 regularization and 
cross-validation. Specifically, we divided the data into three mutually 
exclusive sets representing 80%, 10% and 10% of samples. The first set 
(80% of samples) was used as the training set. The second set was used 
to optimize the L2 regularization hyperparameter, and the final set 
was used as the test set. We evaluated the models using the correlation 
between the actual and predicted values of neural activity on held-out 
data. We performed this procedure five times, and the performance of 
the model was calculated as the mean performance across all testing sets.

The performance of each encoding model on an individual record-
ing site (electrode/neuron) was quantified as the (normalized) BPS. In 
particular, BPS = R2

model/R
2
baseline, where R2

model is the R2 value of the predic-
tion model based on cross-validation and R2

baseline is the R2 value of the 
baseline model (full-feature set) for the same electrode/neuron based 
on cross-validation. A BPS of 1 indicates that the proposed model 
performs as well as the baseline model, and a BPS of >1 suggests that 
the proposed model outperforms the baseline model.

For the STRF model and the baseline full-feature model, we used a 
fixed delay-time window of 400 ms. For all DNN-based encoding mod-
els, we varied the time window length from 0 (using only the current 
timeframe) to 400 ms and selected the optimal window length based 
on cross-validation results.

Noise-ceiling estimation
In one of the five TIMIT blocks (TIMIT5), ten sentences were repeated 
ten times. The noise ceiling in each electrode was computed using this 
repeat block. Let s(k)i, j ∈ ℝTi be the recorded signal in electrode k for the 
j th repetition of the ith sentence, where i = 1, …, 10; j = 1, …, 10; and  
Ti is the length of the ith sentence. We used a cross-validation strategy 
to estimate the noise ceiling. Specifically, we computed the averaged 
response from nine repetitions and correlated the averaged response 
to the left-out trial. The averaged Pearson correlation coefficient across 
all repetitions was used as the estimated noise ceiling for this electrode: 

r (k) = 1
10
∑10

i=1
1
10
∑10

j=1 corr ⟨
1
9
∑n≠js

(k)
i,n , s

(k)
i, j ⟩, and the R2 value was the square 

of the Pearson correlation coefficient.

Electrode selection
To select speech-responsive electrodes and avoid numerical instability 
of the BPS caused by dividing the very small R2 values of the baseline 
model, we included only speech-responsive electrodes in our analysis. 
The responsive threshold was set as R2

baseline > 0.05.

DNNs: model architectures
We used five different DNN models: HuBERT15, Wav2Vec 2 unsupervised 
version14, Wav2Vec 2 ASR supervised version14, HuBERT supervised 
version and Deep Speech 2 (ref. 13).

The HuBERT and Wav2Vec 2 models share the same architecture, 
consisting of a convolutional waveform encoder and a transformer 
BERT encoder71. The network uses 16-kHz raw sound waveforms as 
the input. The convolution encoder consisted of seven 512-channel, 
one-dimensional convolution layers with strides of 5, 2, 2, 2, 2, 2, 2 and 
kernel widths of 10, 3, 3, 3, 3, 2, 2. The convolution encoder downsam-
pled the input to a 512-dimensional feature sequence at a 20-ms framer-
ate (50 Hz). The output of the convolution encoder, noted as ‘CNN out’, 
was projected to a 768-dimensional space through a linear layer, noted 
as ‘CNN proj’, and fed into the BERT encoder. The architecture of the 
transformer encoder is similar to that of the BERT base model71, which 
consists of 12 identical transformer-encoder blocks, with an embedding 
dimension of 768, intermediate feedforward layer dimension of 3,072 
and 12 attention heads in each layer.

The Deep Speech 2 model consists of a convolutional spectrogram 
encoder and a recurrent encoder. This model uses the spectrogram of 
the raw audio signal as the input. The spectrogram was computed using 
a short-time Fourier transform with 161 frequency components from 
0 to 8 kHz, time window size of 0.02 s and a stride size of 0.01 s. The 
convolution encoder consisted of two 32-channel, two-dimensional 
convolution layers, with corresponding two-dimensional strides of 
2, 2 and 2, 1 and kernel sizes of 41, 11 and 21, 11. The final output of the 
convolution encoder was a 1,312-dimensional vector at a 20-ms fram-
erate (50 Hz). The recurrent encoder consisted of five bidirectional 
LSTM layers, each with a hidden-state size of 1,024. The output of the 
last LSTM layer was projected to a 29-dimensional feature space by a 
linear projection layer.

DNNs: unsupervised training
The HuBERT model was trained using a self-supervised paradigm 
of masked prediction15. The unsupervised k-means clustering algo-
rithm was used to generate categorical labels of the acoustic speech 
signal, mimicking pseudophonetic labels. During training, a random 
subset of segments in each sentence was selected and masked. After 
masking, the sequence was passed through the network to generate 
a feature-embedding sequence. The embedded sequence was then 
projected to compute cross-entropy loss over discrete code categories.

The Wav2Vec 2 unsupervised model was trained using a self- 
supervised contrastive learning paradigm14. This model uses a quan-
tization module to discretize the output sequence of the convolution 
encoder. Similar to the HuBERT model, a random subset of speech 
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segments was selected and masked. The final output of the transformer 
encoder and the quantized representation from the convolution 
encoder were used to compute the contrastive loss. Specifically, for 
the target output at a given masked timestep, a random set of distrac-
tors was selected from other masked portions in the same sentence. 
The contrastive loss maximizes the distance between the target and 
the discretized output in the distractors while minimizing the distance 
between the target and the discretized output at the target timestep.

Both English models were trained on the 960-h LibriSpeech cor-
pus37. For the cross-language comparison, we also trained a HuBERT 
Mandarin model on the 755-h MAGICDATA corpus of Mandarin speech72, 
using the same procedure as in the English HuBERT model and starting 
from random initializations.

We trained both the English and Mandarin self-supervised mod-
els for two iterations on 32 graphics processing units (GPUs), with a 
batch size of at most 87.5 s of audio per GPU. The first iteration was 
trained for 250,000 steps, whereas the second iteration was trained 
for 400,000 steps using labels generated by clustering the output of 
the sixth transformer layer in the first iteration. Training for 100,000 
steps took ~9.5 h. The Adam optimizer was used with epsilon = 1 × 10−6, 
beta = (0.9, 0.98) and the learning rate ramped linearly from zero to the 
peak learning rate of 5 × 10−4 for the first 8% of the training steps and 
then decayed linearly back to zero.

Data augmentation was applied between the CNN and trans-
former modules. Temporal masks spanned ~200 ms, with a 0.08 prob-
ability of selecting a timestep as the beginning of a mask. We also 
masked channels by choosing several channels as starting indices 
and then covered the following 64 channels. Temporal and channel 
spans may overlap.

DNNs: supervised training
The Wav2Vec 2 supervised model was fine-tuned from the unsupervised 
pretrained initialization14. A linear projection layer was used to project 
the output of the transformer encoder onto 29 classes representing 
characters, spaces and word boundaries. The model was optimized by 
minimizing a connectionist temporal classification (CTC) loss73. During 
fine-tuning, the weights of the convolution encoder were frozen and 
only the transformer layers were fine-tuned.

The HuBERT/Wav2Vec 2 supervised model was trained using a 
CTC loss. The entire weights of the CNN and transformer layers were 
trained altogether from random initializations.

The Deep Speech 2 model was trained, from random initializa-
tions, for the best ASR performance by minimizing the CTC loss13. 
The 960-h LibriSpeech corpus was used for the supervised training 
of all models.

Attention pattern analysis
For a given speech sentence, assume that the embedding sequence in 
a transformer layer was of length T (c1, …, cT), the phoneme boundaries 
were indexed as p1, …, pm and the syllable boundaries were indexed as 
s1, …, sn. The attention templates were defined as follows:

 1. Attention to the current phoneme, phoneme(0): Aph(0) ∈ ℝT×T , 
Aph(0) (i, j) = 1 if pk ≤ i < pk+1 and pk ≤ j < pk+1 for any k; 
Aph(0) (i, j) = 0 otherwise.

 2. Attention to the previous phoneme, phoneme(−1): 
Aph(−1) ∈ ℝT×T , Aph(−1) (i, j) = 1 if pk ≤ i < pk+1 and pk−1 ≤ j < pk  for 
any k; Aph(−1) (i, j) = 0 otherwise.

 3. Attention to the second to the previous phoneme, pho-
neme(−2): Aph(−2) ∈ ℝT×T , Aph(−2) (i, j) = 1 if pk ≤ i < pk+1 and 
pk−2 ≤ j < pk−1 for any k; Aph(−2) (i, j) = 0 otherwise.

 4. Attention to the current syllable, syllable(0): Asy(0) ∈ ℝT×T , 
Asy(0) (i, j) = 1 if sk ≤ i < sk+1 and sk ≤ j < sk+1 for any s; Aph(0) (i, j) = 0 
otherwise. To exclude the current phoneme from the current 
syllable, we used A′sy(0) = Asy(0) − Aph(0) as the template.

 5. Attention to the previous syllable, syllable(−1): Asy(−1) ∈ ℝT×T , 
Asy(−1) (i, j) = 1 if sk ≤ i < sk+1 and sk−1 ≤ j < sk  for any k; 
Asy(−1) (i, j) = 0 otherwise.

 6. Attention to the second to the previous syllable, syllable(−2): 
Asy(−2) ∈ ℝT×T , Asy(−2) (i, j) = 1 if sk ≤ i < sk+1 and sk−2 ≤ j < sk−1 for 
any k; Asy(−2) (i, j) = 0 otherwise.

For each sentence, we computed the attention matrix Wxy at the 
xth layer and yth attention head. The correlation coefficient corr  
(Wxy, Aq) was computed for all templates. Moreover, the AS for layer x 
and template q was computed as the average over all attention heads 
and all speech sentences.

STG clustering analysis
To identify functional clusters in the STG, we used a similar clustering 
approach as described previously38. Note that, instead of using raw 
single-trial responses, we averaged across sentences and used only 
averaged time series. Specifically, we applied convex non-negative 
matrix factorization (convex NMF)74 to decompose the averaged 
high-gamma time series across all STG electrodes. Specifically, 
X ≈ ̂X = FGT  and F = XW, where X (T time points × p electrodes) is the 
ERP matrix for different STG electrodes averaged across all sen-
tences, G (p electrodes × k clusters) represents the spatial weight of 
each electrode for each cluster and W (p electrodes × k clusters) 
represents weights applied to the electrode time series. In particular, 
for X, we considered all 144 speech-responsive STG electrodes  
across all nine participants and computed the averaged ERP response 
for each electrode across all 599 TIMIT sentences. We evaluated  
different k values ranging from 1 to 10 and computed the percentage 
of variance explained by NMF models with different k values. We 
chose the number of clusters at the elbow of the variance curve 
(Extended Data Fig. 6), which yielded k = 2, and explained 94% of the 
total variance.

After choosing the optimal number of clusters, each electrode was 
assigned to a cluster with the maximum cluster weight G.

Statistical testing
We used paired t tests (one-sample) to evaluate and compare the per-
formance of DNN-based encoding models and the baseline models. 
In particular, the performance of different models was evaluated and 
compared on individual electrodes/units in each area. The d.f. of the t 
statistic was determined by the total number of individual electrodes/
units in each area. Two-tailed P values were used to determine statistical 
significance. We also evaluated the effects in single-participant results 
(Extended Data Figs. 9 and 10). Data distribution was assumed to be 
normal, but this was not formally tested.

We used permutation tests to evaluate the statistical significance 
of the cross-layer correlations between BPSs and ASs in each DNN-layer 
prediction model for Figs. 4–6. In particular, we randomly shuffled 
speech sentences 800 times to disrupt the speech-neural correspond-
ence, and reran the corresponding encoding models to compute R2 
and obtain the surrogated distribution of the correlation coefficients. 
One-sided P values were estimated using this empirical distribution of 
correlation coefficients.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The LibriSpeech dataset is available at https://www.openslr.org/12. The 
MAGICDATA dataset is available at https://www.openslr.org/68/. The 
TIMIT dataset is available at https://doi.org/10.35111/17gk-bn40. The 
ASCCD dataset is available at http://paslab.phonetics.org.cn/?p=1763. 
Deidentified patient data that support the findings of this study will be 
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made available from the corresponding author upon request. Source 
data are provided with this paper.

Code availability
The completely developed code that operates on the full dataset 
will be made available from the authors upon reasonable request. 
Source code that implements the core neural encoding algorithm 
and the DNN analysis can be found at https://github.com/yuanningli/
neural_encoding_demo.
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Extended Data Fig. 1 | ECoG grid coverage for individual subjects. For E1-E9, 
electrodes are marked in colors according to anatomical label: superior temporal 
gyrus (red), Heschl’s gyrus (yellow), planum temporale (blue), planum polare 

(green). The numbers of significant speech responsive electrodes in each 
subject, sorted into anatomical areas, are summarized. (HG: Heschl’s Gyrus;  
STG: Superior Temporal Gyrus).
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Extended Data Fig. 2 | Acoustic phonetic feature encoding model. Example  
of feature extraction for a sample sentence, read by a male speaker:’It is well  
liked by the children and faculty.’ From top to bottom: 1) raw waveform; 2) high-
gamma (z-scored) activity at an example electrode; 3) Mel-scaled spectrogram; 

4) intensity of voicing; 5) sentence onset; 6) time course of peak rate; 7) absolute 
pitch (binned into 10 bins); 8) relative pitch (binned into 10 bins); 9) pitch change 
(binned into 10 bins); 10) phonetic features.
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Extended Data Fig. 3 | Temporal profile, raw encoding R2, and noise ceiling. 
a) The temporal receptive field (absolute beta weights of the spectrotemporal 
encoding model) of each individual speech-responsive unit/electrode. (Gray 
shaded areas indicate random permuted distributions of the averaged TRF 
across all units/electrodes, same as Fig. 2c. b) The histogram of the optimal 
delay window lengths corresponding to models in Fig. 2a. c) raw prediction 
R2 of different models. Dashed line: noise ceiling estimated from 10 repeated 
trials. d) Distribution of the normalized brain prediction score of each model 

across individual units/electrodes. Dashed line: noise ceiling estimated from 10 
repeated trials. Red star (*) indicates the best model for each area, black dot (.) 
indicates other models that are not statistically different from the best model 
(p > 0.05, two-sided paired t-test; n = 50 neurons for AN; n = 100 neurons for IC; 
n = 53 electrodes for HG; n = 144 electrodes for STG). Box plot shows the first and 
third quantiles across electrodes, orange line indicates the median, black line is 
the mean value, and whiskers indicate the 5th and 95th percentiles.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 4 | Comparing DNN encoding performance across 
different convolutional layers in the HuBERT model for AN and IC neurons. 
 a) The brain prediction score of the best-performing neural encoding model 
based on each single layer (the 4th – 7th CNN layers and the final convolution 
output) in the HuBERT model model (maximum over delay window length).  
b) The averaged brain prediction score at CNN4 – CNN7 in the HuBERT model 
with different delay window lengths. Note that the sampling rates vary at 

different layers: CNN4–400 Hz, CNN5 – 200 Hz, CNN6 – 100 Hz, CNN7 & CNN out 
– 50 Hz. AN: light shaded bars; IC: dark shaded bars. Box plot shows the first and 
third quantiles across electrodes, orange line indicates the median, gray line is 
the mean value, and whiskers indicate the 5th and 95th percentiles. * p < 0.05,  
** p < 0.01, *** p < 0.001, two-sample t-test, two-sided, n = 50 unique neurons for 
AN, n = 100 unique neurons for IC.
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Extended Data Fig. 5 | Comparing DNN encoding performance across 
different models. The distribution of the normalized brain prediction score of 
the best-performing neural encoding model based on each single layer in the 
DNN model (maximum over delay window length) across individual electrodes. 
a) Wav2Vec 2.0 Unsupervised (SSL) model; b) Wav2Vec 2.0 Supervised finetuning 
(SSL + FT) model; c) HuBERT Unsupervised (SSL) model; d) HuBERT pure 
supervised model. Each column corresponds to one area in the auditory pathway, 

from left to right AN/IC/HG/STG. Magenta bars indicate CNN output layers, cyan 
bars indicate Transformer layers. Red star (*) indicates the best model for each 
area, black dot (.) indicates other models that are not statistically different from 
the best model (p > 0.05, two-sided paired t-test). Box plot shows the first and 
third quantiles across electrodes, orange line indicates the median, black line is 
the mean value, and whiskers indicate the 5th and 95th percentiles.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 6 | Clustering the STG electrodes. a) Percent of total 
variance explained by the NMF decomposition with different number of factors; 
b) The time course of the event-related high-gamma activity (HGA) of the two 

factors from the NMF model; c) the cluster assignment for each STG electrode. 
Each panel is the sentence averaged neural response for one STG electrode, 
colored by the cluster assignment.
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Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01468-4

Extended Data Fig. 7 | Cross-model encoding comparisons reveal language-
specific representation and computations aligned between DNN and STG. 
a) Schematic of the cross-model paradigm. Both English (lighter color) and 
Mandarin (darker color) speech were fed into models pretrained on English or 
Mandarin. The extracted representations were used to predict neural responses 
recorded in STG from native English speakers or native Mandarin speakers when 
they listened to the corresponding speech (English speaker listened to English; 
Mandarin speaker listened to Mandarin). b) The distribution of normalized brain 
prediction score of the encoding model based on every single layer in English-
pretrained HuBERT model (light shaded bars) versus Mandarin-pretrained model 
(dark shaded bars) in native English speakers when listening to English speech.  
* p < 0.05, ** p < 0.01, *** p < 0.001, paired two-sided t-test; n = 57 electrodes in 
STG. c) The AS-BPS correlation across layers in English-pretrained (light shaded 

bars) and Mandarin-pretrained (dark shaded bars) HuBERT model with STG in 
native English speakers (Pearson’s correlation, * p < 0.05, permutation test, one-
sided). Each panel corresponds to one type of attention pattern. (See also Fig. 4).  
d-e) Same as b-c, but using recordings from STG in native Mandarin speakers 
when listening to Mandarin speech (n = 61 electrodes in STG). The performance 
of English-pretrained model (light shaded bars) and Mandarin-pretrained 
HuBERT models (dark shaded bars) are compared. f-j) same as a-e, but for native 
English speakers or native Mandarin speakers when they listened to speech in the 
other language (English speaker listened to Mandarin; Mandarin speaker listened 
to English). Box plot shows the first and third quantiles across electrodes, orange 
line indicates the median, gray line is the mean value, and whiskers indicate the 
5th and 95th percentiles.
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Extended Data Fig. 8 | Analysis on attentions in HuBERT model. a) The averaged 
attention distance in each Transformer encoder layer of HuBERT model (mean ± 
s.d., n = 499 independent sentences). The averaged attention distance is computed 
as token distance weighted by attention weights, averaging across all attention 
heads and across all tokens. The attention weights in each layer are iteratively 
aggregated over previous layers using attention rollout. b) The AS-BPS correlation 
across layers in random model versus English-pretrained model for STG in native 

English speakers (Pearson’s correlation, * p < 0.05, permutation test, one-sided). 
Each panel corresponds to one type of attention pattern. (See also Fig. 4). c) The 
shifted AS-BPS correlation (with attention matrix shuffled in blocks) across layers 
versus unshifted original AS-BPS in English-pretrained model for STG in native 
English speakers (Pearson’s correlation, * p < 0.05, permutation test, one-sided). 
Each panel corresponds to one type of attention pattern.
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Extended Data Fig. 9 | Comparing DNN encoding performance for STG and HG 
in individual subjects. This is supplement to Fig. 2a. The averaged normalized 
brain prediction score on single layer encoding models in the HuBERT model 
(maximum over delay window length). Three representative layers are used: 
the CNN output, the first Transformer layer, and the 10th Transformer layer 
(the optimal layer shown in Fig. 2). a) E1-E9 are the nine native English speakers. 
Each dot in the swarm plot represents one single electrode in STG (only speech 

responsive electrodes are plotted). Box plots show the 25/50/75 quantiles, 
whiskers indicate the 5th and 95th percentiles. The black statistical significance 
markers are determined using two-tailed paired t-test between different layers 
(* p < 0.05, ** p < 0.01, *** p < 0.001, n.s. p > 0.05, n = 17, 25, 9, 6, 22, 42, 10, 10, 3 
individual electrodes.). b) Same as a, for the five participants with HG coverage 
(E5-E9); n = 5, 16, 12, 6, 14 individual electrodes.
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Extended Data Fig. 10 | Comparing DNN encoding performance across 
different languages in STG of individual subjects. This is supplement to  
Fig. 5c. a) The distribution of normalized brain prediction score on single layer 
encoding models in the English-pretrained HuBERT model (maximum over delay 
window length) over individual STG electrodes. The 10th Transformer layer (the 
optimal layer shown in Fig. 2) is used. E1-E4, M1-M3 are the four native English 
speakers and three native Mandarin speakers that listen to both English and 

Mandarin speech. Each dot in the swarm plot represents one single electrode in 
STG (only speech responsive electrodes are plotted). Box plots show the 25/50/75 
quantiles, whiskers indicate the 5th and 95th percentiles. The black statistical 
significance markers are determined using two-tailed paired t-test between 
different layers (* p < 0.05, ** p < 0.01, *** p < 0.001, n.s. p > 0.05; n = 17, 25, 9, 6 
individual electrodes). b) Same as a, for Mandarin speakers M1-M3, n = 26, 15,  
20 individual electrodes.

http://www.nature.com/natureneuroscience
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Population characteristics This study included 12 participants (6 male, 6 female, age from 31 to 55, all right-handed) who were neurosurgical patients at 

either UCSF or Huashan Hospital. These include patients with intractable epilepsy who had high-density electrode grids 

implanted for clinical monitoring of seizure activity, and eloquent brain tumor patients undergoing awake language mapping 

as part of their surgery. 

Recruitment Only the patients undergoing awake surgery with direct cortical stimulation were asked to participant in the study. We only 

included those participants with tumors which did not obviously invade the auditory cortex. All patients have normal hearing 

and intact speech cognitions, therefore we do not expect selection bias from the population. The placements of the grids 

were determined solely by clinical needs. All patients were clearly informed (as detailed in the IRB-approved written consent 

document signed by the participant) that the participation in the scientific research was completely voluntary and would not 

directly impact their clinical care. Additional verbal consent was also acquired at the beginning and during the breaks of each 

experiment session. The participants were compensated $50 for each session of experiment. 

Ethics oversight The experimental protocol was approved by the Institutional Review Board at the University of California, San Francisco 

(UCSF) and by the Huashan Hospital Institutional Review Board of Fudan University. All participants gave their written, 
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