
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Toward Scalable, Reliable and Efficient Big Data Publish Subscribe Systems

Permalink
https://escholarship.org/uc/item/6gb4k70x

Author
Nguyen, Hang Thi Thu

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6gb4k70x
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Toward Scalable, Reliable and Efficient Big Data Publish Subscribe Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Hang Thi Thu Nguyen

Dissertation Committee:
Professor Nalini Venkatasubramanian , Chair

Professor Marco Levorato
Professor Michael J. Carey
Professor Sharad Mehrotra

2022

© 2022 Hang Thi Thu Nguyen

DEDICATION

To my family.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xii

1 The Need for Next-Generation Societal Scale Notification Systems 1
1.1 Notification Systems and Applications . 1
1.2 The Need for a New Generation of Notification Systems 3
1.3 Enabling a New Generation of Notification Systems 4
1.4 Key Challenges . 6
1.5 Thesis Contributions and Organization . 8

1.5.1 Thesis Contribution . 8
1.5.2 Organization of Thesis . 10

2 Existing Data Delivery Platforms and Limitations 12
2.1 The Publish Subscribe Systems . 12

2.1.1 Publish Subscribe System Concepts 13
2.1.2 Centralized versus Distributed Publish Subscribe Systems 13
2.1.3 Subscription Model for Publish Subscribe Systems 15
2.1.4 Research in distributed Publish Subscribe Systems 15

2.2 Reliable and Timely Notification for Societal Scale Alerting 16
2.3 Other Data Streaming and Delivering Platforms 18

3 Big Data Publish Subscribe: Approach and Prototype System 20
3.1 The Big Data Publish Subscribe (BDPS) Approach 20

3.1.1 The BDPS Backend: A Big Data Management System 22
3.1.2 Data Publishers . 23
3.1.3 Data Subscribers . 23
3.1.4 Broker Network . 23

3.2 The prototype BAD BDPS System and Usecase Application 24

iii

3.2.1 The prototype backend BDMS - BAD-Asterix 25
3.2.2 The prototype BDPS distributed Broker Network - BAD Brokers . . 26
3.2.3 An Emergency Notification Application 29

4 Multistage Adaptive Load Balancing for Big Data Publish Subscribe Sys-
tems 33
4.1 Motivation and Overview . 34
4.2 System Model and Problem Formulation . 37
4.3 The Multistage Adaptive Load Balancing Approach 42
4.4 The Multistage Adaptive Load Balancing Approach 43

4.4.1 Stage 1: Initial Placement . 44
4.4.2 Stage 2: Dynamic Migration . 46
4.4.3 Stage 3: Shuffle . 48

4.5 Experimental Evaluation . 49
4.5.1 Prototype System Evaluation . 49
4.5.2 Simulation Based Evaluation . 58

4.6 Conclusion . 61

5 REAPS: Quasi-active Fault Tolerance for Big Data Publish-Subscribe Sys-
tems 62
5.1 Motivation and Overview . 63
5.2 The REAPS Approach . 65
5.3 Backup Broker Assignment in REAPS . 69

5.3.1 Backup Broker Assignment Problem Formulation 72
5.3.2 Backup Broker Assignment Algorithms 75

5.4 Broker State Management and State Replication in REAPS 76
5.4.1 Broker State Representation . 77
5.4.2 Quasi-active State Replication . 78

5.5 Failure Model, Detection and Recovery in REAPS 80
5.5.1 Failure Detection and Recovery . 80

5.6 Experimental Evaluation . 83
5.6.1 REAPS Prototype Implementation and Measurement Study 83
5.6.2 Simulation-Based Evaluation . 84

5.7 Conclusion . 89

6 Notification Prioritization in Big Data Publish Subscribe Systems 90
6.1 Prioritizing Notifications . 91
6.2 The Notification Prioritization Approach . 92

6.2.1 Quantifying Notification Value . 93
6.2.2 Notification Arrival and Delivery Queuing Model 97

6.3 The Notification Prioritization Problem: Formulation and Algorithms 98
6.3.1 Notification Prioritization - Problem Formulation 98
6.3.2 Notification Delivery Scheduling Algorithms 101

6.4 Simulation-based Evaluation . 103
6.4.1 Simulation Setup . 103

iv

6.4.2 Simulation Model . 104
6.4.3 A Measurement Study using the BAD Platform 105
6.4.4 Prioritization Techniques: Simulation Results 107

6.5 Conclusion . 110

7 Conclusion and Future Work 112
7.1 Conclusion . 112
7.2 Future Work . 113

Bibliography 115

Appendix A 123

v

LIST OF FIGURES

Page

1.1 Big Data Publish Subscribe Systems . 5
1.2 Thesis Contribution . 10

2.1 IBM WebSphere MQ . 14
2.2 Centralized versus Distributed Publish Subscribe Systems 14

3.1 Big Data Pub/Sub Systems . 21
3.2 BDPS - BAD Broker Architecture . 27
3.3 Interactions between different BDPS components 28

4.1 Multistage adaptive load balancing implementation model 44
4.2 Multistage adaptive load balancing approach 45
4.3 A snapshot showing locations of 400 subscribers and the occurrence of four

emergency events . 51
4.4 Broker load distribution (random broker assignment): (1) RND + No LB (2)

RND + LDM (3) RND + SDM . 53
4.5 Performance metric measurements (random broker assignment): (1) max bro-

ker load (2) coefficient of variation (3) total # of migrated subscribers 54
4.6 Broker load distribution (nearest broker assignment): (1) NR + No LB (2)

NR + LDM (3) NR + SDM . 55
4.7 Broker load distribution (nearest broker assignment): (1) NR + LDM + GSH

(2) NR + SDM + GSH . 55
4.8 Performance metric measurements (nearest broker assignment and dynamic

subscriber migration application only): (1) max broker load (2) coefficient of
variation (3) total # migrated subscribers 56

4.9 Performance metric measurements (nearest broker assignment, combination
of dynamic migration and shuffle): (1) max broker load (2) coefficient of
variation (3) total # subscriber migrations 57

4.10 Total # migrated subscribers (RND, RR, NR placement policies): (1) LDM
(2) SDM . 57

4.11 Broker load distribution: (1) NR placement + No LB (2) NR + LDM (3) NR
+ GSH . 59

4.12 Evaluation of α and β values towards: (1) cov (2) number of migrations . . 60

5.1 Replication Techniques . 65

vi

5.2 REAPS Approach . 68
5.3 The Overall Fault Tolerance Approach . 70
5.4 Replication Techniques . 71
5.5 Broker State Replication . 80
5.6 Notification State Replication and Retrieval of Fail-over Results at Recovery 81
5.7 Recovery Process . 83
5.8 Prototype System: (a) Subscriber Migration Time versus Local Fail-over Time

versus Remote Fail-over Time; (b) Varied # attached Subscribers at the Failed
Broker . 84

5.9 (a) REAPS vs. active replication approach (b)(c) REAPS subscription over-
head: local backup scheme & remote backup scheme 86

5.10 REAPS: state replication evaluation for a single broker failure 87
5.11 REAPS: multi-broker failure evaluation . 89

6.1 Notification Value to an End-user . 92
6.2 Notification Prioritization Approach . 93
6.3 Channel Value Function . 94
6.4 Notification Value Function . 96
6.5 Broker Query Results from BDMS . 97
6.6 Notification Queuing Model . 98
6.7 Simulation Model . 104
6.8 Prototype Measurements . 108
6.9 . 109
6.10 . 109
6.11 . 110

vii

LIST OF TABLES

Page

4.1 The list of channels . 50
4.2 Abbreviation . 52

6.1 Result size of 88 bytes . 106
6.2 Result size of 9 Kb . 106
6.3 Varied result size . 107

viii

ACKNOWLEDGMENTS

First of all, I would like to express my sincerest gratitude to my advisor, Professor Nalini
Venkatasubramanian, who offered me a precious opportunity to join the Distributed Systems
Middleware research group at the University of California, Irvine. I want to thank her for
all her support and guidance throughout the challenging times during my Ph.D. program.
I thank her for giving me valuable advice on all my research topics, encouraging me to
participate in industry internships. Without her help, I could not complete this thesis.

I would like to thank Professor Michael J. Carey for detailed advice on my last research
topic in many weekly meetings. He has given me valuable suggestions on developing and
validating the system simulation model and performance evaluation.

Furthermore, I would like to thank my committee members, Professor Michael J. Carey,
Professor Marco Levorato and Professor Sharad Mehrotra, for their precious feedback and
comments on my research and thesis.

I want to thank my co-author, Professor Yusuf Sarwar Uddin at the University of Missouri-
Kansas City, for his excellent guidance and support in formulating my research problems
and helping with the implementation of the Big Data Publish-Subscribe Systems.

I wish to thank all my peers in the Distributed Systems Middleware Group and Information
System Group for their friendship, valuable feedback, and support, including Andrew Chio,
Fangqi Liu, Praveen Venkateswaran, Qing Han, Guoxi Wang, Qiuxi Zhu, Nailah Alhassoun,
Elahe Khatibi, and many others..

Most importantly, I would like to thank my family, parents, husband Hung Pham, and sons
for their unconditional love, patience, and endless support in my most challenging times. I
am grateful and blessed to have them in my life.

ix

VITA

Hang Thi Thu Nguyen

EDUCATION

Doctor of Philosophy in Computer Science 2022
University of California, Irvine Irvine, California

Master of Science in Computer Science 2010
University of Texas, Dallas Dallas, Texas

Bachelor of Science in Computer Science 2008
Hanoi University of Science and Technology Hanoi, Vietnam

RESEARCH EXPERIENCE

Graduate Research Assistant 2016–2022
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2019–2021
University of California, Irvine Irvine, California

Graduate Reader 2016–2018
University of California, Irvine Irvine, California

WORK EXPERIENCE

Software Engineer Intern Summer 2021
Meta Platforms, Inc. Menlo Park, California

Software Engineer Intern Summer 2020
Microsoft Corporation Aliso Viejo, California

Software Engineer Intern Summer 2019
Microsoft Corporation Aliso Viejo, California

System Engineer 2010-2016
Joint Stock Commercial Bank for Foreign Trade of Vietnam (Vietcombank) Hanoi, Vietnam

x

REFEREED CONFERENCE PUBLICATIONS

Multistage Adaptive Load Balancing for Big Active
Data Publish Subscribe Systems

Jun 2019

13th ACM International Conference on Distributed and Event-based Systems

REAPS: Quasi-active Fault Tolerance for Big Data
Publish-Subscribe Systems

Dec 2021

2021 IEEE International Conference on Big Data (Short Paper)

xi

ABSTRACT OF THE DISSERTATION

Toward Scalable, Reliable and Efficient Big Data Publish Subscribe Systems

By

Hang Thi Thu Nguyen

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Professor Nalini Venkatasubramanian , Chair

Societal-scale notification systems have transformed how people request for and receive in-

formation today - traffic notifications, extreme weather alerts (NOAA alerts), social media

feeds (Twitter), and public health systems (COVID exposure alerts) are examples. At the

heart of several such systems are publish-subscribe-based architectures, where users subscribe

to events of interest proactively and receive notification messages when such events occur.

Distributed publish-subscribe paradigms leverage distributed broker networks in-place for

matching and routing these events to interested subscribers; this helps increase the scale and

scope of information dissemination in such systems.

The rise of big data platforms and cloud computing technologies serve an essential role

in transforming messaging platforms into societal-scale notification systems. This thesis

proposes and designs emerging Big Data Publish-Subscribe (BDPS) systems - scalable hi-

erarchical architectures for the next generation of enriched and customized notification sys-

tems. BDPS systems combine i) the advantages of popular Big Data Management Systems

(BDMS) with scalable storage, efficient query processing, and massive data ingestion capabil-

ities from heterogeneous publishers and sources, which generates a vast amount of enriched

and customized notifications; and ii) distributed publish-subscribe broker networks for scal-

able delivery of such notifications to interested end-users.

xii

We explore three challenging problems about scalability, resilience, and efficiency of BDPS

architectures under dynamic conditions. First, we investigate the problem of potentially

skewed load distributions among brokers due to the dynamic nature of the systems. We

develop a multistage adaptive load balancing framework for handling dynamically skewed

load distributions among brokers, which affects the performance and ability of the systems

to disseminate notifications to subscribers efficiently. Next, we address the issue of fault

tolerance in the broker network. We propose REAPS (REliable Active Publish-Subscribe).

This fault-tolerance framework can handle different classes of broker failures, including ran-

domized failures and geographically-correlated failures (e.g., in a natural disaster), as broker

networks are critical parts of BDPS architectures that mediate interactions between sub-

scribers and the backend BDMS. REAPS implements a low overhead fault tolerance service

using a primary-backup approach; key features include the ability to exploit subscription

similarity among brokers and techniques for quasi-active state replication to support fast

recovery and delivery guarantees of notification services. Finally, we develop techniques for

prioritizing and scheduling the delivery of important notifications to end-users at the bro-

kers when the systems experience high workloads. Techniques such as load balancing are not

applicable to maximize the user benefit and fairness among users, e.g., in situations where

large volumes of notifications must be disseminated in a short time. Overall, we explore and

develop services for creating scalable, reliable, and efficient BDPS systems that can ingest

petabytes of data and generate millions of enriched and customized notifications to reach

mega folks in milliseconds.

xiii

Chapter 1

The Need for Next-Generation

Societal Scale Notification Systems

In this chapter, we first discuss large-scale dissemination systems and their use for societal

scale applications. We then argue that a need exists for a new generation of notification sys-

tems. Finally, we introduce our proposed paradigms for next-generation notification systems,

outline our goals, discuss relevant challenges, and present our contributions in addressing

related research problems.

1.1 Notification Systems and Applications

Notification systems have become ubiquitous, appearing in many application domains and

serving as essential parts of our daily lives. Notification systems involve software and hard-

ware systems that deliver messages from data sources to groups of recipients. The messages

can be disseminated through various media such as outdoor sirens, SMS, MMS, Email [57].

As a result, a wealth of digital information is being generated daily. Several examples of

1

modern data sources include social media feeds, weather forecasts (NOAA alerts), and IoT

systems for monitoring and situational awareness, including traffic notifications, wildfires

monitoring, and car crash detection.

Notification systems are typically used for a large variety of applications. They have a

wide range of scopes, such as in universities, hospitals, neighborhoods, and communities

nationwide. For example, notification systems can be used as an administrative tool to

support communication and classroom interaction, send class cancellation notices, remind

of assignment due dates. In addition, they can be used to inform community residents of

extreme events such as active shooters, building fires, robberies that may affect them [39, 4].

Notification systems are natural parts of every social network, e.g., Twitter, Facebook, and

content sharing platforms, e.g., Youtube, Spotify, that notify users of new content, new

album releases, new feed updates from their friends/favorite people whom they follow. They

are used in hospitals for communicating appropriate information to patients, staff, visitors,

emergency services to alert people of adverse events and to enhance situational awareness

[26]. Modern vehicles are often equipped with automatic accident detection and notification

systems, which depend upon onboard sensors and appropriately notify emergency responders

[5]. In alert systems, alerts and warnings are issued to inform individuals and communities

who are threatened by emergencies and natural disasters. These include examples such as

tornadoes, tsunamis, wildfires, or hazardous chemical spills to help people who have sufficient

time and information to take protective actions, such as sheltering in place or evacuating to

safety; this reduces the possibility of personal injury, loss of life, property damage [63, 57].

2

1.2 The Need for a New Generation of Notification

Systems

Data dissemination has a wide range of applications - disaster alerting, event notification, and

content distribution systems. Data platforms aim to deliver information to a diverse group

of typically geo-distributed end-users. However, the design of scalable platforms capable

of disseminating individualized and enriched notifications to end-users in a timely manner

are not well studied. In this section, we outline motivation for next-generation notification

systems that can meet the needs at a societal scale.

Existing notification systems such as USGS ShakeCast [85], NOAA alerts, traffic notifica-

tions, flood the same warning messages to recipients without any customization or enrichment

to meet the needs of specific users. However, considering the particular case of disaster no-

tification systems, users need to be provided with enriched and actionable notifications that

best guide and help them act against adverse circumstances. For example, impacted citi-

zens will need to receive notifications that can provide localized situational awareness, e.g.,

notifications that are enriched information to help people find the nearest shelter locations

to escape from an earthquake or find a bus route to get home during a hurricane when the

subway system has been shutdown and flooding hinders the traveling by cars.

The need for contextualized and customized notification is also evident in day to day ap-

plications that communities use. Different classes of users may have different prioritization

or preferences on the information they wish to receive. For example, parents are often con-

cerned about any adverse events in their children’s school neighborhoods. Individuals who

commute to and from work daily subscribe to traffic conditions and expect to receive notifi-

cations about traffic incidents, congestion specific to their routes. People at home may want

to receive notifications enriched with pictures and videos to be informed about the current

state of their neighborhood or prefer text messages to avoid significant battery drain on their

3

personal devices and/or running out of their data budget when they are not connected to

the Internet.

1.3 Enabling a New Generation of Notification Sys-

tems

With large volumes of Big Data generated daily, and the rise of Big Data Management

Systems and cloud computing technologies, there is a clear need and advantage for design-

ing notification systems that can ingest huge volumes of data from numerous data sources

to generate meaningful and enriched notifications for end-users. A key observation here is

the need for incorporating new information in an active manner when it becomes available,

without end-users having to explicitly send update requests. An enormous amount of digital

information is being generated daily through social networks, new sources, mobile applica-

tions, IoT devices, etc., and thus, capturing and ingesting these vast amounts of information

can benefit numerous end-users who can now gain timely awareness of situations. However,

this is challenging due to the scale and speed at which systems must ingest and process in-

formation and the scale and speed at which dissemination systems must deliver customized

notifications.

In this thesis, we propose a novel architectural approach to design Big Data Publish-

Subscribe (BDPS) systems that combines prominent Big Data Management Systems (BDMS)

technology for scalable data ingestion, storage, and processing, with scalable geo-distributed

Publish-Subscribe (Pub/Sub) systems for scalable data delivery of customized and enriched

notifications to a very large number of end-users [42, 44, 16]. The BDPS approach aims

to leverage the benefits of both the BDMS and distributed Pub/Sub systems. An exciting

aspect of the proposed BDPS approach lies in our ability to create enriched notifications/re-

4

ports for subscribers by combining information in publications with external data sources.

Furthermore, with the ability to store, enrich incoming streams of publications and subse-

quently leverage them for generating and persisting notifications at the Big Data backend,

BDPS supports both push or pull-based approaches for delivering notifications to end-users,

e.g., users can access notifications stored in the systems when desired or convenient.

Figure 1.1: Big Data Publish Subscribe Systems

In summary, our goals for designing the new generation notification systems are multi-

factored:

• Produce enriched, individualized, and actionable notifications: Enriched, ac-

tionable, and on-time notifications to help provide end-users with sufficient time and

information for taking meaningful actions.

• Accommodate a large-scale workload of notifications to reach a large pop-

ulation of end-users in real time: The system should be able to handle dynamic

workload spikes of generated notification volume when it occurs. For example, in the

case of natural disasters, we may encounter frequent updates and guidelines from agen-

cies that help us make timely decisions. That information must be disseminated to an

extensive group of affected communities and individuals. Accurate knowledge of the

current situation can help save lives, reduce injuries and property damage.

5

• Allow end users to subscribe to the systems and provide active data de-

livery: In general, users may not know when notifications and updates arrive from

publishers. How does one send requests for information retrieval? Also, systems re-

quiring users to make explicit requests one at a time when there are updates, are slow

and do not scale up well. The system should allow users to register subscriptions for

interested information ahead of time; this allows the system to generate and deliver

new results/updates to end-users when they become available.

1.4 Key Challenges

BDPS systems are distributed systems comprised of various components, including entities

outside of the platforms such as data publishers, data consumers, and components within the

BDPS platforms, including the BDMS or data cluster in the back-end and the distributed

publish-subscribe system in the front-end. Hence, BDPS systems face inherent issues as

any general distributed systems, such as scalability, fault tolerance, and recovery. Here, we

demonstrate that dynamicity is the key that makes creating scalable, reliable, and efficient

BDPS systems a challenging task.

Dynamic Publications, Subscriptions, Subscribers:

First, the subscribers in the system are geo-distributed. The subscriber population may be

scattered in one region but crowded in others. Subscribers can leave or join the system or

move randomly as desired. Second, the dynamic nature of publications leads to unpredictable

notification volume generated at the data back-end. Third, the number and the nature of

subscriptions that each subscriber creates can change during operation. All of these factors

make the problem of finding an effective subscribers-to-brokers assignment for management

and service a non-trivial task. The non-uniform distribution of subscribers and the dynamic

6

nature of publications from outside publishers and dynamic subscriptions from end-users

lead to dynamic notification and subscriber workload incurred by brokers in the system.

Designing and building the BDPS system to consider this dynamicity while ensuring the

performance of timely notification delivery is challenging.

Dynamic Infrastructure:

The BDPS system is composed of various components where the failure of any component

may disrupt the whole system and discontinue the provided service. The failures of the

BDMS in the back-end cause failures of critical tasks such as data ingestion and generation.

These failures within the broker network disconnect the subscribers from the back-end data

cluster. The failures in the communication layer disrupt the data dissemination process.

Designing low overhead fault tolerance services, incorporating them into the BDPS systems

for fast recovery in the face of failures, and providing a non-disrupted notification service is

a challenging task.

Dynamic Notification Value and Dynamic User Preference:

The value of a particular notification to an end-user depends on the delivery time of the

notification to the end-user. For example, notifications about the current traffic jam may

be valuable for users that have yet to join the congested roads, thus helping them change to

alternate routes. However, these same notifications may have less value to users who have

already joined such congested roads or do not encounter the congested roads on their routes.

Therefore, it is clear that the value of a particular notification for various end-users is varied

and depends on user preferences. Furthermore, the value of a particular notification also

depends on the nature of the notification or the notification content. Emergency notifications

should be more important and urgent than social media notifications. Together with the

unpredictable volume and nature of the publications, the unanticipated subscription patterns

from end-users and the dynamic nature of notification values and user preferences, the design

7

of efficient and effective policies and techniques for scheduling notification delivery at the

brokers to maximize the value received by all subscribers while ensuring fairness among

them, is a non-trivial problem.

1.5 Thesis Contributions and Organization

In this thesis, we address issues in the design and operation of a Big Data Publish Subscribe

system to enable the next generation of enriched notification systems that can scale to

societal levels.

1.5.1 Thesis Contribution

The thesis consists of three significant challenges that address three main research problems,

which are briefly described below.

Multistage Adaptive Load Balancing: The geographically skewed distribution of sub-

scribers and their dynamic interests, combined with the dynamic nature and volume of

societal scale publications, may create an uneven load distribution in the distributed broker

network. We develop load balancing techniques to mitigate the dynamically skewed load

distribution among brokers due to the non-uniform distribution of subscribers, the dynamic

nature and volume of publications ingested into the BDMS backend, and the dynamic sub-

scription patterns from end-users which affect system performance and ability to disseminate

notifications to subscribers in a timely manner. Our load balancing service comprises tech-

niques for initial end-user placement, smart techniques for subscriber migration that leverage

subscription similarity among subscribers, and shuffle technique for subscriber redistribution

throughout the entire system.

8

Fault Tolerant Dissemination for BDPS Systems: Reliable notification delivery is of

critical importance to a variety of applications, including timely and accurate disaster alerts

(e.g., mandatory evacuation in wildfires), instant messaging platforms for interactions, public

health warnings. The BDPS environment is prone to both small and large failures: hardware

failures at various computing platforms at the BDMS, broker or subscriber side, communica-

tion network failures, and failures of components in the software stack. We propose REAPS

- a fault tolerance service that can handle different classes of broker failures, including ran-

domized failures and geographically-correlated failures (e.g., in a natural disaster). Broker

networks are critical parts of the BDPS architectures that serve to mediate interactions

between subscribers and the backend BDMS. REAPS implements a low overhead fault tol-

erance service using a primary-backup approach; key features include the ability to exploit

subscription similarity among brokers and techniques for quasi-active state replication to

support fast recovery and delivery guarantees of notification services.

Notification Prioritization for Delivery and Fairness in BDPS Systems: The ul-

timate goal of all notification systems is to deliver valuable, actionable notifications to all

target end users in a timely manner. Here, the value of the notifications may be dynamic

and depend on several factors such as notification content, time of delivery, and preference

from end-users. That is, the value of a particular notification to a specific end-user depends

on the nature and content of the notification, the time that it takes for the notification to

reach the end-user, and the user’s preference for that particular notification relative to other

pieces of information. Our goal is to design techniques to quantify value of notifications

to end-users and develop techniques for prioritizing and scheduling delivery of important

notifications to end-users at the broker level to maximize user benefit and user fairness.

This thesis addresses three main research problems and their given challenges. The thesis

contribution is summarized in Figure 1.2

9

Figure 1.2: Thesis Contribution

1.5.2 Organization of Thesis

In Chapter 2, we survey the existing platforms for notification systems and their limitations.

In Chapter 3, we introduce the design prototype of a canonical BDPS system which will serve

as the base system for which the three key challenges of load balancing, fault tolerance, and

notification prioritization are developed.

In Chapter 4, we develop a multistage adaptive load balancing service for handling the

potential of skewed load distribution among brokers due to the dynamic population and

distribution of subscribers among brokers, the dynamic pattern and nature of subscriptions

from subscribers, and the dynamic volume and nature of publications ingested into the

BDMS. We leverage the feature of subscription similarity among brokers and subscribers

to intelligently assign or migrate subscribers among brokers to reduce the overall system

workloads, mitigate the dynamically skewed load distribution among brokers for best system

performance.

10

In Chapter 5, we exploit the subscription similarity among brokers and employ a quasi-

active state replication approach to design a low overhead primary-backup fault-tolerance

service within the broker network to handle failures in the broker network. We provide

fast recovery and guarantee continuity of service despite different classes of broker failures,

including randomized failures and geo-correlated failures.

Chapter 6 develops notification prioritization techniques for efficient notification delivery

when the systems experience unanticipated high workloads. We characterize different im-

portance levels of channels, notifications and develop the model for notification value evalu-

ation which then drives the prioritization policies to maximize the benefit of subscribers and

guarantee fairness among them.

Finally, Chapter 7 concludes the thesis contributions and discusses future research directions.

11

Chapter 2

Existing Data Delivery Platforms and

Limitations

Over the years, there has been much effort in designing various communication techniques

and leveraging various physical network resources to create scalable, reliable, and efficient

data dissemination platforms in academia and industry. In this chapter, we discuss the lim-

itations of existing systems to demonstrate the need for the new proposed BDPS paradigm.

2.1 The Publish Subscribe Systems

We first present the Pub/Sub paradigm, a common framework for exchanging messages in

notification systems.

12

2.1.1 Publish Subscribe System Concepts

The pub/sub systems decouple data senders/publishers and data consumers/subscribers.

Publishers publish the messages (events). Subscribers register/sign-up for receiving messages

and events of interest via ”subscriptions” to the systems. Each entity in a pub/sub system

can play the role of a publisher, a subscriber, or both. Subscribers are not directly targeted

by a publisher. They are instead indirectly addressed according to the content or topic of the

messages. This loose coupling between publishers and subscribers helps seamlessly expand

the framework to massive, Internet-scale size and make it suitable for streaming data in

real-time [9]. With the rise of cloud-based platforms, typical uses of the pub/sub systems

include event messaging, instant messaging, and data streaming. They are commonly used

for real-time messaging in many application platforms in big tech companies such as Azure

Web Pub/Sub and Google Cloud Pub/Sub [56].

2.1.2 Centralized versus Distributed Publish Subscribe Systems

Generally, publishers and subscribers in a pub/sub system are connected via a broker net-

work. The broker network may compose of a single broker - centralized pub/sub architecture,

versus many brokers - a distributed pub/sub system. In a centralized architecture, e.g., IBM

WebSphere MQ messaging system (Figure 2.1), TIBCO Rendezvous, all publishers publish

messages into a centralized server, and subscribers register their subscriptions to and re-

ceive messages of interest from the central server as well. Centralized pub/sub systems may

suit the network of small communities or enterprises, while distributed pub/sub systems are

required for scalable architectures [32, 31].

Distributed pub/subs require functional layers for scalability, including application-level

overlay infrastructure, event routing, and matching algorithms [9]. Broker servers are or-

ganized in hierarchical architectures, unstructured and structured peer-to-peer overlay in-

13

Figure 2.1: IBM WebSphere MQ

frastructures. Each publisher and subscriber attach to one or many brokers in the network.

Publishers publish messages, and subscribers send subscriptions to the attached brokers. The

broker network matches, routes, and delivers notifications/messages from data publishers to

subscribed subscribers [32, 17, 18, 45, 95]. The architectural difference between centralized

versus distributed pub/subs is illustrated in Figure 2.2 [31]. Distributed pub/subs can be

used in societal scale notification systems to handle thousands of concurrent connections,

high volume, and global geographical spread of users.

Figure 2.2: Centralized versus Distributed Publish Subscribe Systems

Overall, pub/sub systems can be classified based on several criteria: system topology, sub-

scription model, and routing approach [76]. First, according to the system typology, Pub/Sub

systems can be categorized into centralized and distributed Pub/Sub. Second, according to

subscription model, pub/sub systems can be categorized as topic-based, content-based and

type-based. Third, according to routing approach, pub/sub systems can be categorized into

filter-based versus multicast-based approaches.

14

2.1.3 Subscription Model for Publish Subscribe Systems

Topic-based Model: The earliest subscription model is the topic (channel) based pub/sub.

Publishers publish messages to topics (channels) in a topic-based system, and subscribers

subscribe to these channels/topics. Brokers deliver all notifications of the same topic to

subscribed subscribers. Thanks to its simplicity, techniques such as network multicast facil-

ities or diffusion trees can be used to disseminate messages to interested subscribers [9, 76].

Examples of topic-based pub/subs include: SCRIBE [18], CORBA Notification Service [33],

ISIS [13]. The main drawback of a topic-based pub/sub system is its limitation in subscrip-

tion expressiveness. Hence, a subscriber receives all notifications for the topic it subscribes

to.

Content-based Model: Content-based pub/sub systems allow fine-grained subscriptions

by enabling subscribers to specify restrictions or predicates on the notification content. The

complexity of subscription languages in content-based pub/sub allows flexible subscription

expressiveness, but requires complex matching operations for filtering notifications. Brokers

match and deliver only notifications that satisfy all constraints specified in subscriptions

to subscribers [32, 9]. Examples of content-based pub/subs are Gryphon [77], SIENA [17],

PADRES [45]. Group communication, application-layer multicast mechanisms can be used

to disseminate messages/events to subscribers [17, 18].

2.1.4 Research in distributed Publish Subscribe Systems

There have been much research efforts in designing pub/sub systems with scalability, relia-

bility, timeliness, and efficiency, including techniques for scalable overlay network, matching

algorithms, dissemination protocols, etc [17, 18, 37, 45, 75, 48, 95]. For example, redundant

overlay networks, e.g., mesh-based, ring-based structures combined with application-layer

multicast, and gossip-based broadcast techniques, have been proposed to handle broker fail-

15

ures and for fast dissemination [75, 95, 28]. Hierarchical client-server, peer-to-peer, cluster-

ing architectures have been introduced for routing subscription advertisements, notifications

among brokers for scalability [17, 18, 45]. Multicast tree pruning or repairing for member-

ship management handles subscribers join, leave, or change subscriptions [18]. Techniques

such as aggregating subscriptions [19], subscription covering and merging [45, 17, 97] have

been studies for scalability. Finally, load balancing, fault tolerance, replication techniques

have also been studied in the context of pub/sub systems for availability, scalability, and

redundancy [45, 37, 47, 66, 27].

While publish subscribe systems provide active data delivery, they usually support only

simple matching algorithms and simple subscription predicates from end-users for scalability.

Publications from publish subscribe systems are routed as-is from individual publishers to

subscribers, and the ability to generate customized and personalized notifications, therefore,

is limited and must be done at the subscriber side.

2.2 Reliable and Timely Notification for Societal Scale

Alerting

Typical notification and alerting systems deployed today are best effort both in terms of

reliability and timeliness. Mission-critical applications require low latency or real-time dis-

semination.

One form of information dissemination that arises in distributed, mission-critical applica-

tions is called flash dissemination. This involves the rapid dissemination of information to

a large number of targeted recipients in a time-constrained scenario. Leveraging available

resources from end-users to create a large P2P architecture and applying gossip-based pro-

tocols is one way to achieve flash dissemination and avoid provisioning dedicated substantial

16

resources [28]. Exploiting path diversity and the use of multiple data paths in a forest-based

application-layer multicast structure can achieve scalability, speed, and reliability as well

[53].

Spatial dissemination is another kind of information dissemination where messages are not

intended for specific groups of users, but rather recipients attached to specific geographic

regions [91]. Spatial dissemination has gained much relevance nowadays in online social

networks for targeted marketing and personalized services [59]. With the widespread prolif-

eration of handheld devices, mobile carriers can be connected at anytime, anywhere. Com-

munication technologies enable people to constitute a social network for sharing information

whenever and wherever. People tend to constitute a community when they share common

interests or are related by family, school, work, transportation or geo-location. Leveraging

social relationships, researchers have proposed several solutions for social aware, geo-social

aware data dissemination [54, 58, 89]. For example, GSFord [54], a geo-social notification

system aims to reliably deliver appropriate messages to all relevant recipients under extreme

scenarios like disasters, by disseminating the messages to geographically correlated target

recipients and socially correlated target recipients.

In temporary circumstances (e.g., entertainment and sporting events, content sharing) or

constrained settings (e.g., emergency response, battlefield, wildfires monitoring), temporary

network infrastructures such as wireless mesh networks [90], WiFi ad-hoc, cellular networks

[92, 29, 30], can be created to enable communication where regular infrastructures are non-

existent or to offload the burden on existing network infrastructures. However, flooding

approaches typically fail to deliver messages to targeted end-users, while multicast methods

fail to individualize messages to distinct end users. Leveraging the prevalence of mobile

devices to create delay tolerance or opportunistic networks for data transmission may fail to

meet the timeliness requirement [96].

17

2.3 Other Data Streaming and Delivering Platforms

Content delivery network (CDN) technology has been a popular architecture for low latency

content delivery at Internet scale [99]. In CDN, a hierarchy of servers contributes to the

delivery of content. The idea behind CDN is to place the content as close to the end-user as

possible for low latency. When a user requests content, the request is routed to the closet

cache. Suppose the content is not present in the cache storage. In that case, the cache will

fetch it from other caches in the same or higher hierarchy level. With the growing demand,

numerous CDN at different scales are implemented and deployed worldwide, including Aka-

mai CDN, Amazon Cloudfront, Netfix CDN, Fastly Managed CDN, etc. However, CDN

is a passive data delivery platform. Caching content is not customized or enriched for an

individual end-user.

Similarly, traditional database systems also provide passive data delivery; user requests for

information must send explicit queries to systems. In many emerging applications today,

queries are evaluated on a database that is being continuously updated, including stock

price prediction, sensor monitoring, network monitoring. Active database systems [22, 87]

allow users to define trigger functionalities that trigger appropriate actions when monitoring

events occur. Continuous query processing systems, on the other hand, allow users to issue

queries over a continuous data stream and actively receive new results when they become

available [79, 10, 8]. For example, the Tapestry system allows users to issue queries for

filtering streams of email, and bulletin-board messages [79]; continuous spatial queries aim

to provide updates to the query result as the data objects are moving [68, 64]. However,

these systems are not capable of supporting a large number of triggers or complex queries

to meet the needs of a vast number of end-users and do not scale to modern data size and

arrival rate.

While state-of-the-art data streaming and processing systems which gain importance today

18

with the rise of cloud-based platforms [36, 78], e.g., Apache Storm [80], Apache Spark [7],

Apache Kafka Stream [84], Microsoft Azure Stream Analytics [12], etc. can support process-

ing of real-time events as they arrive to provide timely insights over the never-ending volumes

of data with low latency, aggregating data over large windows and processing terabytes of

historical data, they are not designed to deliver notifications to a vast number of end-users.

19

Chapter 3

Big Data Publish Subscribe:

Approach and Prototype System

This chapter first introduces our BDPS approach to designing scalable notification systems.

We then present a prototype BDPS system developed atop a open-source BDMS, Apache

AsterixDB, and demonstrate a hypothetical emergency alert use case which are later used

for experimental studies and evaluations for various research problems in BDPS platforms

that we study in this thesis.

3.1 The Big Data Publish Subscribe (BDPS) Approach

The proposed BDPS approach combines traditional distributed broker pub/sub platforms

with a backend BDMS system to leverage the best of both technologies. As expected, tech-

niques implemented within the BDMS (AsterixDB in our case) provide support for scalable

data ingestion, data processing and storage while the broker-based Pub/Sub platform sup-

ports scalable data delivery. Consequently, the BDPS architecture is hierarchical with three

20

layers - (a) a logically centralized BDMS that communicates with (b) a network of distributed

brokers that are in turn connected to (c) end users who subscribe to notifications for various

types of information. [66, 83, 43, 42, 44, 16] - see Figure 3.1.

Figure 3.1: Big Data Pub/Sub Systems

An interesting aspect of our proposed BDPS approach lies in the ability to create enriched

notifications/reports for subscribers by combining information in publications with external

data sources. In contrast to traditional publish/subscribe systems where publications from

a single publisher are routed as is to subscribers, publications in a BDPS system are fed into

the BDMS backend instead of to a node in the broker network. Additionally, the arriving

publications are stored into publication datasets in the BDMS back-end. Each publication

dataset stores streams of publications from external publishers. Notifications in BDPS are

produced against a set of publication datasets; the information in these datasets is further

enriched with selected information in external data sources to create comprehensive reports

for subscribers. For example, an location-based extreme weather alert from NOAA(National

Oceanic and Atmospheric Administration) may be enriched with a map of current open

21

shelters and traffic conditions on roads leading to those shelters. Furthermore, with the

ability to store incoming streams of publications, match and enrich them at a BDMS, BDPS

systems make notifications persistent.

We next describe each component of the hierarchical BDPS architecture in more details.

3.1.1 The BDPS Backend: A Big Data Management System

A key feature of BDPS systems is the presence of a backend BDMS platform (typically a

cluster of storage/processing nodes) - this distinguishes the structure and execution of how

publications are received and notifications generated as compared to the traditional Pub/Sub

paradigm. Here, the BDMS data cluster is responsible for ingestion, storage and manage-

ment of incoming data (e.g., publications from publishers). In our design, we leverage an

existing open-source BDMS, Apache AsterixDB [35] and extend it with features for improved

ingest and enrichment. In particular, the BDMS backend implements an abstraction called

data feeds to allow different data sources (i.e., publishers) to feed their publications into

distinct datasets on which queries can be built using a standard SQL-like query language.

Instead of subscribing to a topic as is done in topic-based pub-sub systems, in BDPS, sub-

scribers subscribe to functions that can match data from more than one data source (i.e.,

datasets) and generate notifications accordingly. We refer to these functions as channels.

Furthermore, these channels can be parameterized to specify custom queries of interest to

the user. Datafeeds implemented on the Apache AsterixDB hosted by the data cluster allow

subscribers to register their interests by specifying values for those parameters in their sub-

scriptions. Each channel has a qualified unique name and the underlying query is written

using the corresponding DML (Data Manipulation Language) supported by AsterixDB.

22

3.1.2 Data Publishers

Data publishers are the data sources that publish information into designated publication

datasets stored in the BDMS. These publication datasets are used to generate notifications

based on the stored subscriptions from end users. The extended feature in BDMS, data feeds

- also enables users to attach user defined functions (UDF) onto the feed pipeline so that

the incoming data can be annotated, enriched if needed before being stored in the BDMS

for generating enriched notifications.

3.1.3 Data Subscribers

The end users/subscribers are represented at the lowermost layer. Subscribers are entities

that are served in the BDPS systems. BDPS systems aim to deliver enriched and indi-

vidualized notifications of interest to the end-subscribers in real time. Each subscriber is

mapped to a broker via a broker-assignment step. Subscribers register their subscriptions

for information of interest to the system via the attached broker. We call them ”frontend”

subscriptions. A subscription is made to a specific channel defined in the BDMS.

3.1.4 Broker Network

The broker network plays an important role in connecting end-subscribers to the data cluster

back-end. On the one hand, the broker network receives, manages front-end subscription

from end-users, performs (subscriptions aggregation) by fusing/aggregating identical sub-

scriptions across multiple users that share common interests. For instance, residents of a

community subscribe to events in their neighborhood. Since the number of end-users may

potentially be large, managing the large number of subscriptions and end-notifications poses

a scalability challenge. To support scalability, we implement novel features within the bro-

23

ker network. In particular, we introduce the notion of frontend and backend subscriptions.

Multiple identical frontend subscriptions from users mapped to a common broker are fused

into a single ”backend” subscription to be executed at the BDMS. Consequently, a large

number of frontend subscriptions from users translate to a reduced number of backend sub-

scriptions at the BDMS. On the publication side, broker nodes retrieve notifications/results

from the BDMS, duplicate and share them with all interested front-end subscribers. We

use the terms notifications or subscription results or results interchangeably. The overall

architecture and the associated techniques reduce network and computation overheads and

spread the notification workload across brokers.

To manage the broker network, we introduce a management node called the Broker Coor-

dination Server (BCS) - this is a specialized node in the broker network that is deployed to

coordinate and mediate interactions between the BDMS, brokers and subscribers. It serves

as a public end-point of the broker network for assigning brokers to subscribers; and also

handles management issues such as load balancing [66] across brokers or fault tolerance [65]

within the broker network.

3.2 The prototype BAD BDPS System and Usecase

Application

The BDPS approach enables modularization and separates the matching and delivery func-

tionalities of notification systems between the BDMS and Pub/Sub platforms. While the

resource-capable BDMS can support content enrichment, the user-facing distributed publish

subscribe platform enables a high fanout to subscribers that are geo-distributed. In this

section, we introduce a prototype BDPS platform called BAD. The Big Active Data [3, 2]

Project is a multi-university collaborative effort to create a novel active data platform for

24

scalable data ingestion/processing and scalable distribution of enriched notifications. Ar-

chitecturally, the BAD BPDS platform consists of two main parts: the BDMS cluster for

ingesting, storing publications from external data sources, and generating subscription re-

sults for subscribers; and the distributed broker network for managing subscriptions from

end-users, relaying them to the backend BDMS and retrieving and delivering results to

subscribers.

3.2.1 The prototype backend BDMS - BAD-Asterix

The backend BDMS chosen for the BDPS prototype leverages the open-source big data man-

agement system, Apache AsterixDB [1] which supports the scalable storage, searching, and

analysis of mass quantities of semi-structured data. The AsterixDB team developed an active

toolkit on top of the Apache AsterixDB BDMS - for details, see the PhD dissertation work

of Steven Jacobs [44]. We refer to this new extended version of AsterixDB as BAD-Asterix.

The active toolkit contains novel concepts and techniques to allow active interactions with

other components of the BDPS platform , including:

• Data Feeds: to allow scalable data ingestion from external publishers into the BAD

BDPS.

• Data Channels: to enable scalable data processing and result enrichment to match

subscriber interests.

Scalability methods in BAD-Asterix include the implementation of the BAD - Repetitive

channel and Query (RQ) engine. A repetitive channel is an active, shared function (param-

eterized query) in AsterixDB with a time period for execution. The query in the channel is

compiled once into a deployed job that will be run repetitively based on the defined channel

execution period to produce individualized results for all subscribers in every period. Our

25

thesis is based on this initial prototype of BAD-Asterix platform. Xikui Wang’s dissertation

[86] further introduces new extensions to the data ingestion framework includingdynamic

data feed which supports complex data enrichment and enable adaptiveness to referenced

data update during ingestion; and the new BAD Continuous Query (BAD-CQ) service that

executes in a batch-continuous manner for providing continuous query semantics and provide

incremental update results to subscribers.

3.2.2 The prototype BDPS distributed Broker Network - BAD

Brokers

In our prototype BDPS system, BAD Brokers implement modules for (a) managing sub-

scribers and subscriptions for users connected to the specific brokers, (b)relaying these sub-

scriptions in a scalable manner to the BAD-Asterix BDMS backend,(c) retrieving notification

results from the backend BDMS and (d) support effective delivery of enriched notification

results to subscribers. The BCS node in the broker network discussed earlier mainly im-

plements modules for managing the broker network, mapping subscribers to brokers and

supporting other developed services described later in this thesis (Figure 3.2).

The BCS and BAD Brokers are RESTful HTTP servers built on top of the Tornado web

framework. We develop a set of RESTful APIs in both BCS and BAD Brokers to support

communication among them and with subscribers. Several basic RESTful APIs in the BCS

are registeruser, registerbroker, requestbroker and in broker servers are login, subscribe, un-

subscribe, logout, etc. We further develop other RESTful APIs in BCS and broker network

to support load balancing and fault tolerance services as later described in this dissertation.

Figure 3.3 demonstrates the detailed interaction among BDPS components. During the

bootstrap phase, each broker first registers itself to the BDMS backend to send subscriptions

and receive notifications of available results at the BDMS. A broker next registers itself with

26

Figure 3.2: BDPS - BAD Broker Architecture

the BCS and it is now available as a prospective broker node that can be assigned to incoming

users/subscribers. When a user/subscriber first arrives in the system, it registers itself with

the BCS (well-known address) and requests for a primary broker to which it can attach. It

then connects to the assigned broker and creates subscriptions of interest over time. The

assigned broker node ensures that the instantiated subscriptions are in turn mapped to

corresponsing channels at the BAD-Asterix backend. When new results associated with a

subscription are generated in BDMS, the associated brokers (those with interested users) are

notified. Those brokers then retrieve and deliver results to matched subscribers.

The BAD-broker platform implements a range of techniques to support a scalable subscriber

population, handle large numbers of subscriptions from end-subscribers, and enable scalable

data delivery of enriched notification results from BDMS to subscribers. An example of one

such technique for scalable data delivery was developed in Uddin et al [83] where caching

strategies at broker reduce communication overheads associated with data delivery to end-

users who may be offline. BAD caching methods determine which result objects to admit

into cache and what to drop when the cache becomes full (eviction-based caching). Such

caching techniques allow subscribers be able to retrieve results with reduced latency while

27

Figure 3.3: Interactions between different BDPS components

also reducing communication overheads. Techniques to enable content adaptation [82] for

delivery of rich notifications have also been developed in RichNote, where notifications about

the availability of rich multimedia content (e.g. music), can be extended with small samples

of the content - such mechanisms are also useful in the context of BDPS systems. The

key contribution in RichNote is the ability to enable progressive presentation levels for the

content based on the utility of each presentation level to the end-user. RichNote develops

techniques to maximize the utility of notifications delivered to end-users under resource

budget constraints. This thesis furthers develop techniques and services which enhance the

scalability, reliability and efficiency of broker network in supporting, managing and delivering

enriched notifications to a large number of end-users.

28

3.2.3 An Emergency Notification Application

We illustrate below how to leverage BDPS architectures and functions in designing a hy-

pothetical emergency notification application. During an emergency, users wish to receive

enriched and actionable notifications beyond the one-size-fits-all general emergency pub-

lications. Customized notifications allow end-users to take appropriate protective actions

against the adverse circumstances. A specific user could customize locations of interest for

emergency events - for instance, a parent would register for information about critical events

in neighborhood schools their children attend, citizens will wish to be informed of crises

that impact their houses, offices and those of friends/family. What is desirable is that these

notifications are enriched with additional information useful in an emergency such as local

helplines, shelter locations, escape routes etc.

The emergency notification application created by Big Active Data team (for details, see the

PhD dissertation work of Steven Jacobs [44]), defines emergency channels in the BAD-Asterix

BDMS to allow end-users to create subscriptions and receive notifications about emergency

events happen at their interested locations, or their current locations. The application

creates two publication datasets in the BDMS: the UserLocations dataset to record the

current user location published by each user to the system via the broker network; and

the EmergencyReports dataset to store emergency events published by various emergency

publishers. The BDMS has a pre-existing EmergencyShelters dataset that holds locations of

about 200 emergency shelters.

The application first needs to create a ”emergencyNotifications” dataverse - ”data universe”

in which to create and manage its data types, dataset, functions and other artifacts.

create dataverse emergencyNotifications;

use emergencyNotifications;

29

It then creates publication data types, e.g., EmergencyReport and publication datasets, e.g.,

EmergencyReports to store publications from individual publishers.

create type EmergencyReportType if not exists as open {

recordId: uuid,

severity: int,

impactZone: circle,

timeoffset: float,

timestamp: datetime,

duration: float,

message: string,

emergencyType: string,

userName: string

};

create dataset EmergencyReports(EmergencyReportType) primary key

recordId AUTOGENERATED;

The application also needs to define a data feed type for each data publisher, e.g., Emer-

gencyReportFeedType, and create a data feed, e.g., ReportFeed, to ingest publications from

the publisher.

create type EmergencyReportFeedType if not exists as open {

severity: int,

impactZone: circle,

timeoffset: float,

timestamp: datetime,

duration: float,

message: string,

30

emergencyType: string,

userName: string

};

create feed ReportFeed with

{

"adapter-name": "socket_adapter",

"sockets": "promethium.ics.uci.edu:23231",

"address-type": "IP",

"type-name": "EmergencyReportFeedType",

"format": "adm"

};

It then connects data feeds to corresponding publication datasets and instantiates the ingest

process.

connect feed ReportFeed to dataset EmergencyReports;

start feed ReportFeed;

Finally, the application defines query functions, each has a unique name and a set of param-

eters. The channels are then created using these parameterized functions. Each channel is

defined as one query function and a specific execution period.

create function recentEmergenciesAtLocation(latitude, longitude){

(select r as reports from

(select value r from EmergencyReports r where r.timestamp >

current_datetime() - day_time_duration("PT20S")) r

where spatial_intersect(r.impactZone,create_point(latitude,longitude)))

};

31

create repetitive channel recentEmergenciesAtLocationChannel using

recentEmergenciesAtLocation@2 period duration("PT20S");

Subscribers are now able to subscribe to specific channels with provided values of interest

for channel parameters. We illustrate below how multiple frontend subscriptions can be

coalesced into a single backend subscription below.

Front-end Subscription:

user1 subscribe to recentEmergenciesAtLocationChannel(33, -117) on BADBrokerOne;

user2 subscribe to recentEmergenciesAtLocationChannel(33, -117) on BADBrokerOne;

Back-end Subscription:

subscribe to recentEmergenciesAtLocationChannel(33, -117) on BADBrokerOne;

The full Asterix Query Language (AQL) script for creating data types, datasets, index, data

channels, data feeds for the emergency application is provided in Appendix A.

32

Chapter 4

Multistage Adaptive Load Balancing

for Big Data Publish Subscribe

Systems

In previous chapters, we motivate and introduce the overall design of BDPS systems. We next

address the specific aspect of managing dynamic workloads in a BDPS system to enable the

next generation notification systems to scale to societal levels. While BDPS systems present

desirable features for scalability, ensuring performance and robust operation under dynamic

condition is challenging. In this chapter, we present our design and approach for an adaptive

load balancing framework to cope with the dynamic skewed load distribution in the broker

network.

33

4.1 Motivation and Overview

Notification systems at the societal scale can induce widely varying workloads based on the

applications at hand. A festival event in the neighborhood, an on-going super bowl in the

city attract huge interest and subscriptions from the residents or fans (high subscription

workload). An emergency application produces a large volume of publications when a disas-

ter event happens, e.g., a tornado or hurricane sweeping through the city. The dynamic user

subscription patterns and the dynamic volume and nature of societal scale publications may

create load imbalance in the distributed broker network which affect the system performance

and ability to disseminate notifications/results to all matched subscribers in a timely man-

ner. The skewed distribution of subscribers geographically may lead to potentially skewed

distribution of subscribers among brokers when the system tries to assign subscribers to

nearest brokers for locality and low latency.

In order to prevent imbalanced load distribution in the broker network, we first need to

determine the factors that contribute to the broker load and the quantification of broker load.

The meaningful quantification of broker load must incorporate notions of management loads

and communication overheads. The management loads at brokers account for the subscribers

and subscriptions management while the communication overheads capture the steps involve

in (a) retrieving notifications/results for all subscriptions from the back-end data cluster and

(b) disseminating notifications/results from the broker to all matched subscribers. It is worth

to note that a broker has the ability to aggregate subscriptions from end users to immensely

reduce the end to end overheads and loads.

The dynamic usage pattern of subscribers in term of the number and the nature of sub-

scriptions that each subscriber generates, the unpredictable states of subscribers (active vs.

inactive), make the effective assignment of subscribers to brokers a non-trivial task. Load

balancing with unpredictable and dynamic workloads in a BDPS system is further influenced

34

by the subscriber broker mapping strategy and the specific interest of subscribers. An initial

formulation of the load balancing problem in such settings is shown to be intractable.

In this chapter, we propose an adaptive load balancing scheme that consists of three phases:

i) the initial placement phase - which assigns a broker to a subscriber after the subscriber

registers itself with the system to start service; policies explored include geo-location based

allocation, round robin and random broker selection; ii) the dynamic subscriber migration

phase - where subscribers are dynamically migrated from highly loaded brokers to lightly

loaded ones to handle the fluctuation of broker load distribution during the course of opera-

tion; iii) the shuffle policy to address the extreme load imbalance condition that re-configures

the entire system to optimally redistribute subscribers among brokers.

Chapter Road-map:

• We begin with a discussion of prior related work on a event processing system and its

connection to load balancing problem in distributed systems.

• We develop a mathematical model for broker load in BDPS and formulate the associ-

ated load balancing problem as an NP hard problem.

• We propose a practical and efficient multistage load balancing framework for BDPS

systems (with initial assignment, dynamic migration and shuffle).

• We design novel algorithms for each stage of the load balancing framework in particular,

dynamic subscriber migration and shuffle policies to fix load imbalance.

• We implement the proposed techniques in a BDPS prototype system; evaluate the

performance of various load balancing policy combinations with real world use cases

on the prototype platform and simulation experiments.

Load Balancing and Distributed Event Processing

35

Load balancing has been a well researched topic since the introduction of parallel and dis-

tributed computing and been largely applied in many distributed contexts from distributed

databases to high performance computing systems. Sample efforts include key-value pair

assignment in distributed networked cache systems [41], request balancing in crowd-sourced

CDNs [61], virtual machine assignment in cloud computing [62], object distribution in P2P

systems [69], sensor partitioning into clusters in WSNs [38, 60], event key-grouping in com-

plex event processing (CEP) engines [94]. etc. A common thread in load balancing efforts

applied across many systems is workload migration [69, 94, 98, 35].

Load balancing in the context of publish/subscribe has been studied in both content-based

[23, 37] and topic-based [27] systems using different architectures, where distributed hash

table (DHT)-based, tree-based, cluster-based and community-based approaches have been

used to organize the broker network. For example, content-based publish/subscribe in [37]

uses DHT overlays over a P2P network to route subscriptions and publications to dedicated

nodes. Here, load on each peer then is composed of subscription storage load and publica-

tion propagation load. Techniques such as zone splitting for subscription storage overload

and zone replication for publication propagation overload upon a new peer arrival have been

proposed. In cluster-based publish/subscribe [47], event/publication space is organized into

partitions. The popularity of the publication determines the number of clusters for each

partition - this allows balancing the subscription maintenance load among clusters while

publication forwarding load is balanced among brokers in the same cluster. In [23], bro-

kers are partitioned into clusters. Each cluster contains one cluster head who serves only

the publishers, and a set of edge brokers who serve subscribers. Clusters are organized

into a hierarchical architecture to allow two levels of load balancing: local load balancing

among brokers within the cluster and global load balancing among cluster heads of different

clusters. Here, bit vectors are used to profile subscription load and offloading algorithms

determine an appropriate set of subscriptions for migration to balance multiple performance

metrics of a broker including input rate, output rate and matching rate. In community-

36

based publish/subscribes [88], the author exploits similarity for clustering brokers then uses

offloading mechanism within a community for inter-community load balancing and uses filter

replication for intra-community load balancing.

Recent work [27] on load balancing for topic-based publish/subscribe system like Apache

Kafka also explores strategies to determine a set of partitions for migration from an over-

loaded broker to a set of under-loaded brokers where the broker load is characterized by its

traffic intensity. Another common way for load distribution in topic-based publish/subscribe

is to allocate topics across broker nodes using consistent hashing [34, 71] where each broker

node in the network has an unique identifier. The topic is hashed to the same domain as

the identifier space and each topic will be assigned to the closest virtual identifier. With

efficient placement of broker nodes in the virtual space, each broker node will be responsi-

ble for an equal share of topics. Ongoing research on publish/subscribe systems focuses on

design choices with regard to overlay topology and routing protocols to improve resource

utilization, raise scalability [20, 24], cope with the dynamic of subscriptions and user churn

[74, 81, 95] or for efficient message dissemination [48].

4.2 System Model and Problem Formulation

Let us consider a BDPS system with a fixed number of m brokers, B = {j : 1, 2, . . . ,m}. Let

there be a collection of n users in the system U = {i : 1, 2, . . . , n} who create front-end sub-

scriptions that are mapped to a total of q back-end subscriptions. To reduce the overheads

associated with instantiating unnecessary notification delivering to inactive/disconnected

subscribers. The system state management distinguish between active versus inactive sub-

scribers. Our BDPS platform aims to deliver notifications to online users, that are currently

active to receive notifications. Offline users are expected to query the broker for pending

notifications when they reconnect. Given the persistent native of results in the BDPS plat-

37

form, any pending notifications can be delivered to subscribers as they come online. The

set of all back-end subscriptions is denoted as S = {k : 1, 2, . . . , q}. Note that front-end

subscriptions are specific to subscribers and each back-end subscription from a broker maps

to a parameterized channel and specified parameter values. A broker can have a back-end

subscription held on it only if it has at least one front-end subscription attached to it. In

the following, if not otherwise stated, we use i, j and k to denote a subscriber, a broker and

a back-end subscription, respectively.

Let yik denote a binary indicator if subscriber i has a front-end subscription that can be

attached to back-end subscription k. Let zjk denote a binary indicator if broker j has to

maintain a subscription to back-end subscription k. As we have said, this only happens

if the broker has at least one front-end subscription for k originated from some subscriber

connected to that broker. Our notion of load balancing is based on the fact that a subscriber

is mapped to only one broker. Hence all subscriptions of that subscriber is mapped to that

broker. Let xij denote the current subscriber-to-broker assignment in the system. That

is, xij is set of 1 if subscriber i is attached to broker j. Actually, this assignment metric

X = {xij} is the one that the system needs to compute at a certain time. This assignment

is done by the BCS.

Now let us consider how the load is constituted at each broker. We define the load of a

broker as the sum of total incoming data and the total amount of outgoing data per unit

of time. For each back-end subscription at a broker, the broker needs to pull the results

from the BDMS each time new results are populated against the associated channel and

pushes the same results onto the subscribers who have front-end subscriptions attached to

that back-end subscription. Let λk be the data rate at which new results are generated for

back-end subscription k. Hence, the broker load, denoted as Fj for broker j, has two parts:

incoming data volume Ij and outgoing data volume Oj.

38

The incoming load at broker j can be computed as:

Ij =

q∑
k=1

zjk × λk (4.1)

where zjk (if broker j has a subscription to k) is given by:

zjk = 1−
n∏

i=1

(1− xij × yik) (4.2)

Let njk be the number of total front-end subscriptions attached to a back-end subscription

k at broker j, which is given by:

njk =
n∑

i=1

xij × yik (4.3)

Therefore, the total volume of data delivered per unit of time to the attached subscribers

from broker j, i.e. the outgoing load, is:

Oj =

q∑
k=1

njk × λk (4.4)

Combining the above two terms, we obtain the total load of broker j as:

Fj = Ij +Oj =

q∑
k=1

zjk (1 + njk)λk (4.5)

Note that the first element of the load depends on the back-end subscriptions that a broker

maintains (which in turn depends on the degree of shared subscriptions by users at the

broker, the more the sharing the less the incoming load), whereas the second part is directly

39

attributed to notification delivery to attached subscribers. This sharing subscriptions among

subscribers adds non-trivial complexity and opportunity to the load balancing problem,

which is considered in our solution strategies.

We formulate the load balancing problem as a minmax problem, that is, the objective of the

load balancing problem is to compute the assignment matrix X = {xij} so as to minimize

the maximum load across all brokers. One can think of other forms of objective functions

to balance load, such as minimizing the difference between the max load and the min load,

or minimizing the variance of load, etc. We assume that these choices are orthogonal to the

problem at hand and can all be good candidates to check as none of them essentially raises

or eases the complexity of the underlying problem. Having said that we define our objective

of load balancing is to minimize the maximum load. More formally:

Given:

R = {λk : k = 1, . . . , q}

Y = {yik : i = 1, . . . , n; k = 1, . . . , q}

Find X = {xij : i = 1, . . . , n; j = 1, . . . ,m} so as to minmax
j

Fj

subject to
m∑
j=1

xij = 1, ∀i = 1, . . . , n

The constraint indicates that at any given time each subscriber can be attached to exactly

one broker. The above problem is NP-Hard, which can be reduced to the Multi-Processor

Scheduling (MPS) problem.

Reduction to the Multi-Processor Scheduling problem. The optimization problem

we examine can be seen as an instance of the MPS optimization problem which is a well-

known NP-complete problem [25]. In MPS problem, there are a set of m identical machines

and n jobs. Each job has a processing time pi ≥ 0,∀i ∈ n and the optimization statement

40

is to assign jobs to machines so as to minimize the maximum processing time among all

machines. Our optimization problem can be reduced to the MPS problem where brokers are

machines and subscribers are jobs. The MPS problem is a special case of our optimization

problem. In more detail, when there is no subscription sharing among subscribers at all

in the whole system, says, each subscriber make a unique subscription and each unique

subscription has a specific load (specific data rate), then finding the allocation of subscribers

among available brokers which generates the most balanced load distribution is exactly the

MPS problem.

Since the problem is NP-Hard, we devise algorithms based on greedy heuristics that we

describe in the next section. The key idea is to iteratively choose one subscriber at a time

(the heaviest one) from from the most loaded broker and assign it to the lightest broker. We

observe that when a subscriber is picked for migration, the additional load introduced at the

destination broker equals to the sum of λ’s of the subscriptions that the subscriber has no

matter which destination broker is chosen. On the other hand, the change in incoming load

at the destination broker depends on the subscription commonality between the subscriber

and the broker itself as the broker only needs to retrieve additional amount of result data

for those new subscriptions from the subscriber which are not currently held by the broker.

This is the key insight in developing the heuristic algorithms we present in Algorithm 1.

A question remains when to invoke this subscriber to broker re-assignment. Ideally, the

re-assignment happens when the system detects an “unbalanced” state from the existing

assignment. The BCS keeps track of loads across all brokers and triggers re-assignment when

needed (we refer to this as dynamic migration). The BCS uses the coefficient of variation

(cov), the ratio of the standard deviation to the mean of broker loads, as an indicator of the

degree of load imbalance across brokers. The cov is calculated as follows:

41

cov =
σ

µ
(4.6)

where

σ =

√∑m
j=1(Fj − µ)2

m
(4.7)

µ =

∑m
j=1 Fj

m
(4.8)

A low cov value indicates a balanced system whereas the higher value indicates an unbalanced

one. The BCS uses a threshold α on cov to determine when to trigger the dynamic migration.

4.3 The Multistage Adaptive Load Balancing Approach

Due to the wide range of load fluctuation that each broker may experience over time, we

need to constantly monitor the load status of the system to take timely actions in order

to balance load in the broker network. In our BDPS platform, such state management is

performed by the BCS. Accordingly, all brokers in the system send their load updates to the

BCS periodically. This helps the BCS to maintain a global view of the system’s overall load

across the brokers and to detect if load is skewed across brokers (based on a quantitative

metric we define later on). The BCS then implements a multistage approach to balance

the load across the brokers in the sense that the system invokes a set of techniques. The

first technique is initial placement that assigns an incoming subscriber to an existing broker.

42

Usually, this initial placement may be subscription-agnostic because the subscriber may not

have any subscriptions when they join (subscriptions originate later on). Because of the

dynamic volume of data generation from the BDMS, the matching rate of each individual

subscription, the changing set of subscriptions that each subscriber makes over time, any

initial placement can lead to a skewed load across the brokers in the future. Therefore, we

propose two more techniques, namely dynamic migration and shuffle to fix the unbalanced

condition depending on how much variation of load among the brokers is detected.

Dynamic migration refers to moving one or more active subscribers from their current brokers

to new brokers. The key task here is to decide who moves to where. The BCS takes these

decisions, generatesmigration plans, sends them to involved brokers and let them be executed

by the brokers. The basic idea is to move heaviest subscribers from heaviest brokers to less

loaded brokers and keep doing this until the system reaches a balanced condition. However,

when the system experiences an extreme load imbalance, to quickly fix the bad situation

and further optimize the distribution of subscribers among the brokers, the system invokes

shuffle, which redistributes the whole set of current active subscribers over all brokers (shuffle

plan) (overhauling the entire subscriber-broker assignment from the scratch). While the

dynamic migration can be invoked in response to a moderate load imbalance, invoking the

shuffle is rare and only happens when the system experiences an extremely unbalanced load

distribution. Figure 4.1 describes the implementation model of our load balancing approach.

4.4 The Multistage Adaptive Load Balancing Approach

Our next design and evaluate techniques to address the different sub-problems of our load

balancing framework. As mentioned earlier, the three phases are: i) initial placement, ii)

dynamic migration, and iii) shuffle. Our overall approach in described in Figure 4.2.

43

Figure 4.1: Multistage adaptive load balancing implementation model

4.4.1 Stage 1: Initial Placement

The initial placement aims to assign a suitable broker to a newly joined subscriber without

knowing apriori the subscriptions of the subscriber. We explore three policies for the initial

placement and the mapping of subscribers to brokers.

The Nearest Broker Assignment As the name suggests, when a subscriber sends a

request for a broker to the BCS, the subscriber also attaches its current location information

to allow BCS return the nearest broker to the subscriber. The distance can be, however, the

geographic distance or the network latency (the choice can be implementation dependent).

Since the broker network is geo-distributed over a very large area, by assigning the nearest

brokers to subscribers the system aims to minimize the latency of results delivery from

brokers to subscribers. However, the skewed distribution of subscribers in space may lead to

a skewed mapping of subscribers to brokers and can degrade the latency experienced by the

subscribers.

The Round Robin Placement The round robin method, on the other hand, balances the

number of subscribers assigned to each broker, ideally each broker serves an equal number

44

Figure 4.2: Multistage adaptive load balancing approach

of subscribers. Since the load of brokers depends on other factors as well other than only

the number of subscribers, such as the number of subscriptions and the nature of those

subscriptions, round robin placement also can not guarantee the balanced load distribution.

The Random Placement In this scheme, the BCS assigns an arbitrary broker to each sub-

scriber. If subscribers have a uniform subscription distribution over the subscription space,

the random assignment can produce a temporarily balanced system, however fluctuation in

publication space may result in imbalance.

One may argue that the least loaded broker placement should be a good policy to explore

intuitively. However, in practice, the least loaded broker placement turns out not to perform

well, especially when many empty subscribers come to the system at a similar time and they

are all assigned to the current least loaded broker which will shortly overwhelm the assigned

broker as those subscribers start generating subscriptions.

45

Algorithm 1: Multistage adaptive load balancing

1 Input:
2 U = {i : 1, .., n} /* subscriber set */
3 B = {j : 1, ..,m} /* broker set */
4 R = {λk : k = 1..q}/* subscription data rate */
5 X = {xij, i = 1..n, j = 1..m} /* subscriber broker assignment */
6 Y = {yik, i = 1..n, k = 1..p} /* subscriber subscription matrix */
7 Output:
8 M = {} /* migration plan */
9 scheme← {LDM, SDM} /* Load-based Dynamic Migration (LDM),

Similarity-based Dynamic Migration (SDM) */
/* extremely skewed load distribution condition */

10 if cov > γ & µ > θ then
11 M ← SHUFFLE

/* medium skewed load distribution condition */
12 if cov > α & µ > β then
13 while cov > α & µ > β do
14 b← argmaxj∈B Fj /* broker of maximum load */
15 Ub = {ui : ui =

∑p
k=1×yik × λk,∀i ∈ U, xib = 1} /* subscriber load at b */

16 for ui in Sorted(Ub, reverse = True) do
17 simTable = {simj : simj =

∑
yik=1,zjk=1 λk, j ∈ B} /* similarity between

subscriber i and broker j */
18 if scheme == LDM then
19 b′ ← argminj Fj

20 if scheme == SDM then
21 b′ ← argmaxj,Fj<µ simTable

22 if Fb′,xib′
= 1 ≤ Fb,xib=1 then

23 M ← {b : [i, b′]}
24 break

25 Update Fb, Fb′

26 xib ← 0, xib′ ← 1

27 return M

4.4.2 Stage 2: Dynamic Migration

The initial placement of subscribers to brokers does not guarantee a balanced system over

time. Therefore, we design a second phase to readjust the system configuration in our load

balancing framework whenever a skewed load distribution is detected. Recall that the BCS

46

collects current loads of all brokers periodically; it calculates the coefficient of variation cov as

a measure of load imbalance across the brokers. If cov exceeds a threshold α and the average

load across all brokers, µ is greater than a lower bound θ (Algorithm 1), the BCS generates

a migration plan and sends the plan to all target brokers to initiate the migrations. The

parameters α and θ are determined by empirical studies. Leveraging the idea of the longest

processing time greedy algorithm to solve the MPS problem, we develop two strategies for

migration: (a) load based dynamic migration and (b) similarity based dynamic migration

as described in detail below. Our general intuition is to keep selecting a subscriber from the

most loaded broker in each iteration as a candidate to migrate to a less loaded broker. By

doing that, after every iteration, the maximum load of brokers is decreased or the number

of brokers with maximum load (if there are more than one brokers with maximum load) is

reduced until no further subscriber migration can be performed or the system reaches the

balanced state.

Load-based Dynamic Subscriber Migration: In this technique, the subscribers from

the heaviest broker are ranked by their individual load. Then, each subscriber is checked

for a valid migration in the order of decreasing load. A migration is said to be valid if

after migration, the load of the destination broker does not exceed the original load of the

source broker. For the load-based migration scheme, the destination broker is always the

currently least loaded broker. For each valid migration, one entry is added to the migration

plan that contains a list of tuples specifying which subscribers need to migrate from their

current brokers to new brokers. The list is indexed by the source brokers and at the end of

the algorithm (once the plan is populated), the respective brokers are notified with the list

of subscribers to shred off and the destination brokers for those subscribers.

Similarity-based Dynamic Subscriber Migration: In selecting the destination bro-

ker for a subscriber migration, different destination brokers will endure the same amount

of additional outgoing load, but different destination brokers will have different additional

47

amount of incoming load. Therefore, the similarity-based migration technique selects the

destination broker as the one that has the minimum increase of load when accepting the mi-

grated subscriber. In other words, the migrated subscriber prefers to move to a broker that

holds the largest subscription sharing with it. The degree of sharing between a subscriber

and a broker is measured as the subscription similarity score, which is defined as the sum

of data rates (λ’s) of those shared subscriptions. However, in order to reduce the number of

redundant migrations which involve the multiple migrations of a single subscriber back and

forth among several brokers, the chosen destination broker should have the current load less

than some threshold (maybe the average load of all brokers) in order to be able to accept a

migrated subscriber.

4.4.3 Stage 3: Shuffle

The shuffle scheme is triggered when the system experiences an extreme skewed load dis-

tribution, e.g., when cov > γ and µ > β. Again, these γ and β values are determined by

empirical studies. The extremely skewed load distribution indicates that the current map-

ping of subscribers to brokers is not appropriate. The shuffle process looks at the whole

set of subscribers and their subscriptions to re-distribute them among available brokers to

potentially produce an uniform load distribution across all brokers. We implement a simple

greedy shuffle algorithm as presented below.

Greedy Shuffle Algorithm: All brokers start with no subscriber. Subscribers are then

ranked by their individual load measured as the total amount of data rates for their sub-

scriptions. We iteratively assign the heaviest subscriber to the current least loaded broker

and the load of the broker is then updated by the equation 4.5. The process finishes when

all subscribers are assigned to brokers.

48

4.5 Experimental Evaluation

We implement and evaluate our proposed multistage adaptive load balancing scheme against

the small scale prototype BDPS system. We also create a large scale simulated BDPS system

for thorough evaluation of our load balancing scheme under different real-world settings.

4.5.1 Prototype System Evaluation

The small-scale prototype system consists of one BDMS cluster, one BCS, five brokers.

Hardware Setup

The BDMS is implemented on a cluster of three Intel NUC nodes and the BCS and five

brokers run on three other nodes. Each node has a four core i7-5557U CPU processor, 16

Gigabytes of RAM and 1TB hard drive. The nodes in BDMS cluster are connected via a

Gigabit Ethernet switch where the broker network and BCS are communicated via Ethernet

network. The four hundred simulated subscribers connect to the system from a desktop

machine and via WiFi network.

49

An Emergency Application

Channel Name Parameters
Channel Execution

Period

Emergencies Of Type Event Type 10 seconds

Emergencies At Location Event Location 20 seconds

Emergencies Of Type at

Location
Event Type, Location 30 seconds

Emergencies Of Type At

Location With Shelter
Event Type, Location 30 seconds

Emergencies Near Me User Location 10 seconds

Emergencies of Type Near Me Event Type, User Location 10 seconds

Emergencies Of Type With

Shelter Near Me
Event Type, User Location 10 seconds

Table 4.1: The list of channels

We leverage the hypothetical emergency notification application as the driving test case. The

application defines seven channels with various channel execution periods. The channels take

different sets of parameters, including parameters on Event Type, Event Location, and User

Location. The channels are listed in table 4.1. The creation and definition of channels, data

types, and datasets used in this and following chapters, are presented in detail in Chapter

3 and Appendix A. The application simulates eight emergency creators as data publishers

who produce synthetic time series publications of emergency reports. These reports are fed

into associated datasets in the BDMS cluster. The Opportunistic Network Environment

simulator [50] is used to model the movements of end-users, the occurrence and travel paths

of emergency events. Figure 4.3 demonstrates a snapshot of 400 subscriber locations and

the locations and impact zones of four emergency events. Over an experimental run-time of

50

Figure 4.3: A snapshot showing locations of 400 subscribers and the occurrence of four
emergency events

35 minutes, eight data publishers creates roughly 600 emergency reports of landslide events,

150 reports of wind events , 200 reports of shooting alerts, 200 reports of flood alerts, 2200

reports of fire events, 200 reports of disease-outbreak alerts, 600 reports of earthquake events,

6000 reports of riot events and the size of reports is in the range of (200, 700) bytes.

We store the time series actions of subscribers, such as logins, logouts, subscriptions, and

un-subscriptions in a scenario file. This scenario file is then played back to model the

interactions of subscribers with the system. Locations of subscribers are updated to the

BDMS continuously when they move. We model subscriber logins to the system over the

first four minutes, and model subscriptions over the next four minutes in an experimental

run. Overall, the system produces around 600 back-end subscriptions and 2200 front-end

subscriptions. We run the same experimental setup multiple times and apply different load

51

balancing schemes to compare the performance of these schemes. We then measure the data

rates of subscriptions, and the loads of both subscribers and brokers, using a moving average,

windowed over five minutes to avoid instantaneous peaks.

Prototype Experiment Evaluation

By applying our proposed load balancing techniques, we aim to minimize the maximum

loads of brokers, as well as load imbalances, as represented by the coefficient of variation

indicator. Therefore, we show effectiveness of our schemes on two performance metrics: max-

imum broker load and coefficient of variation. Cost is measured as the number of migrated

subscribers needed. We show the effects of both dynamic migration and shuffle schemes,

and demonstrate that our load balancing techniques work independently of initial placement

policies. Table 4.2 includes abbreviations used in this chapter.

Abbreviation Phrase

cov Coefficient of Variation

No LB No Load Balancing

NR Nearest Broker Assignment

RR Round-robin Broker Assignment

RND Random Broker Assignment

LDM Load-based Dynamic Subscriber Migration

SDM Similarity-based Dynamic Subscriber Migration

GSH, SH Greedy Shuffle

Table 4.2: Abbreviation

Evaluating effectiveness of the proposed multistage adaptive load balancing scheme:

We study the efficiency of our load balancing scheme on three initial subscriber placement

52

Figure 4.4: Broker load distribution (random broker assignment): (1) RND + No LB (2)
RND + LDM (3) RND + SDM

policies including random broker assignment, round robin assignment, and nearest broker

assignment.

Figure 4.4 presents the broker load distribution over an experiment run where the random

initial subscriber placement is used, for various scenarios when: no load balancing scheme,

load-based dynamic migration technique, and similarity-based dynamic migration technique

is applied separately. Figure 4.5 presents measurements for the performance metrics includ-

ing: maximum broker load, coefficient of variation, and total number of migrated subscribers.

Since the load imbalance in this scenario is small, a few subscribers migrate and the shuffle

is not invoked.

Similarly, Figure 4.6, 4.7 present the broker load distribution following the nearest broker

53

Figure 4.5: Performance metric measurements (random broker assignment): (1) max broker
load (2) coefficient of variation (3) total # of migrated subscribers

placement policy when: no load balancing scheme, only a dynamic migration technique, and

a combination of a dynamic migration and a greedy shuffle is applied separately. In this

experimental setup, the nearest broker placement turns out to produce an extremely unbal-

anced load distribution because of the non-uniform distribution of subscribers geographically.

This extremely skewed load distribution calls out the shuffle process. Figure 4.8 and Figure

4.9 respectively presents the performance metric measurements when a dynamic migration

technique, and when a combination of a dynamic migration technique and a shuffle is ap-

plied. We conclude that our load balancing techniques are able to fix the extremely high load

imbalances as with the nearest broker assignment, and reduce the slight load imbalances as

with the random broker assignment. However, the required number of migrated subscribers

is not the same.

54

Figure 4.6: Broker load distribution (nearest broker assignment): (1) NR + No LB (2) NR
+ LDM (3) NR + SDM

Figure 4.7: Broker load distribution (nearest broker assignment): (1) NR + LDM + GSH
(2) NR + SDM + GSH

55

Figure 4.8: Performance metric measurements (nearest broker assignment and dynamic sub-
scriber migration application only): (1) max broker load (2) coefficient of variation (3) total
migrated subscribers

Figure 4.10 compares the total number of migrated subscribers using load-based migration

technique versus similarity-based migration technique among three subscriber placement

policies. The more skewed load distribution, the more number of migrated subscribers is

required. In this experimental setup, nearest broker assignment policy leads to highest broker

load imbalance hence results in maximal number of required migrated subscribers.

Exploiting subscription similarity between migrated subscribers and destination

brokers: Destination brokers are brokers which migrated subscribers migrate to. Similarity-

based migration technique aims to leverage subscription similarity between migrated sub-

scribers and the destination brokers to minimize the retrieval load. However, retrieval load

56

Figure 4.9: Performance metric measurements (nearest broker assignment, combination of
dynamic migration and shuffle): (1) max broker load (2) coefficient of variation (3) total #
subscriber migrations

Figure 4.10: Total # migrated subscribers (RND, RR, NR placement policies): (1) LDM
(2) SDM

57

is much smaller than delivery load at a broker. Hence, the performance of similarity-based

migration and load-based migration techniques is similar as shown in Figure 4.5 and Figure

4.8.

Examining effectiveness of greedy shuffle technique: Fig. 4.9 (3) shows that a shuf-

fle is triggered at an early stage when a load imbalance is detected, which helps fix the

poor subscriber-to-broker assignment. The shuffle scheme reduces the required number of

migrated subscribers in the future compared to the case when only a dynamic migration

technique is applied.

4.5.2 Simulation Based Evaluation

To further evaluate our proposed techniques in a scaled up setting (beyond the scope of

our prototype experiments), we use a simulation-based approach. We develop a simulator

written in Python3 that mimics the messaging-level interactions among BDPS components:

BDMS, brokers, BCS, and subscribers.

Simulation Setup: In our simulation setting, we model 10 brokers to support 10,000

subscribers. We create 10 channels having execution periods every 5, 10, 20, 30, 60 seconds

and each channel has 100 distinct pairs of (parameter, value). Each back-end subscription

has a notification data rate that follows a Normal distribution with a predefined mean and

a standard deviation value. Subscribers creates a number, in the range from 10 to 30, of

subscriptions, results in roughly 200,000 front-end subscriptions in total. Each simulation

runs for half an hour where all subscribers login and create subscriptions in the first eight

minutes. During the simulation run, we change the notification data rates of some back-end

subscriptions to create a dynamic workload.

58

Figure 4.11: Broker load distribution: (1) NR placement + No LB (2) NR + LDM (3) NR
+ GSH

59

Figure 4.12: Evaluation of α and β values towards: (1) cov (2) number of migrations

Simulation Based Experimental ResultsWe evaluate the load-based dynamic migration

and shuffle techniques on an experiment with the nearest broker assignment policy. Figure

4.11 (1) presents the client distribution among brokers and the broker load distribution when

BCS maps subscribers to brokers based on their geo-locations. The skewed distribution of

subscribers geographically results in an unbalanced allocation of subscribers among brokers.

There is a broker that is assigned more than 2000 subscribers while some brokers only need

to support less than 500 subscribers. We can see highly varied loads among brokers in Figure

4.11 (1). We then apply the load-based dynamic subscriber migration, α = 0.15 and β = 300

MB/sec, and the shuffle respectively, and show the results in Figure 4.11 (2) and Figure 4.11

(3). Both load-based dynamic subscriber migration and shuffle can fix the load imbalance

eventually but the shuffle leads to a more balanced state and requires no further subscriber

migration.

Sensitivity of threshold value selection: We study how the chosen threshold values, α

and β, used in our proposed load balancing techniques, affects the load balancing performance

metrics as shown in Figure 4.12. When we set the α and β values are very small, α = .05 and

β = 300 MB/sec, the load-based migration can eventually achieve a balanced broker load

distribution as good as the shuffle does as shown in Figure 4.12 (1). The smaller the chosen

values of α and β, the more frequent the system triggers the subscriber migration process.

60

This helps the system to achieve a more balanced loads but with a higher cost of number

of migrated subscribers as shown in Fig. 4.12 (2). Therefore, the α and β values should be

chosen carefully to avoid redundant subscriber migrations. The shuffle only comes into play

when the system experiences an extremely skewed load distribution. The shuffle can quickly

fix the subscriber-broker mapping to achieve an uniform load distribution as shown in Fig.

4.11 (3).

4.6 Conclusion

In this chapter, we propose, implement and evaluate a multistage adaptive load balancing

framework. We demonstrate the effectiveness of our proposed load balancing schemes to ad-

dress different levels of skewed load distributions. Our load balancing technique is composed

of three phases: initial subscriber placement, dynamic subscriber migration, and shuffle. We

account for subscription similarity in the way we calculate retrieval loads at brokers. We also

exploit subscription similarity in our proposed similarity-base dynamic subscriber migration

in which we try to migrate subscribers to brokers who have higher subscription similarities

with the migrated subscribers.

61

Chapter 5

REAPS: Quasi-active Fault Tolerance

for Big Data Publish-Subscribe

Systems

As we attempt to provide customized alerts at scale through the BDPS architecture, faulty

components can have a serious impact on whether and when subscribers receive notifica-

tions. In this chapter, we explore fault tolerance techniques and address the challenges in

supporting reliability and scalability in societal-scale BDPS systems. The role of brokers in

this architecture is critical since they serve to mediate interactions between subscribers and

the backend big data system. We propose a novel technique, called REAPS - a primary-

backup fault tolerance framework that can handle different classes of broker failures including

randomized failures and geographically correlated failures.

62

5.1 Motivation and Overview

Fault tolerance is a concern in any distributed system; especially it is critical in societal-

scale disaster response/alert systems where reliability and timeliness of notifications under

extreme events is paramount (e.g. earthquakes, floods) [46, 52, 28, 95]. We start by deter-

mining vulnerable points in the BDPS workflow to focus our efforts in designing resilience

techniques. At one end of the workflow, the back-end big data platforms are typically de-

signed to accommodate large workloads; we assume that they operate on a cluster of servers

with built-in high availability techniques [43, 42, 44, 16]. The other end involves subscribers

that may crash, disconnect, leave or intermittently interact with the system. Failures of

individual subscribers are localized to the subscribers and their behaviors (not under BDPS

control) are hence not likely to impact the overall reliability of the BDPS system. We specif-

ically focus on failures within the broker network as they can be particularly impactful in

a BDPS system - brokers serve as the conduit to connect large number of subscribers/users

to backend BDMS systems. Hardware redundancy and active software replication methods

are hard (and expensive) to realize when the systems must scale to a large number of geo-

distributed users. Additionally, failure scenarios may differ; a natural disaster may induce

geo-correlated failures of multiple brokers in a region while hardware failures within a broker

may be random at best. Towards this end, in this chapter, we design and develop REAPS

a low-overhead fault tolerant service for BDPS systems.

Key contributions of this chapter include:

• Design of REAPS, a primary-backup based fault tolerance service for BDPS that ex-

ploits the unique characteristics of the BDPS architecture. REAPS uses a phased

approach that combines techniques for backup broker selection and quasi-active state

replication.

• Formulation of the backup broker selection problem that exploits knowledge of sub-

63

scription similarity to reduce backup maintenance overheads.

• Design of a quasi-active state replication protocol that executes synchronous subscrip-

tion state replication and asynchronous notification state replication for low commu-

nication overheads.

• REAPS validation via prototype implementation and measurement studies; extensive

evaluation under a variety of failure modes via simulation.

Related Work Over the years, fault tolerance literature has developed a nomenclature

for failure models (e.g. crash, link, omission, byzantine failures) and a slew of masking

techniques to handle them [6, 15, 52, 28]. For example, link failures are handled by the

introduction of redundant links in the physical network or via application layer multicas-

t/broadcast techniques [52, 28]. State machine replication methods are used to address crash

or byzantine failures[6]. Similarly, check-pointing and logging techniques are used for rapid

recovery when failures occur. Publish subscribe systems may fail at different layers of the

execution stack. At the application layer, publishers may fail to send notifications to the

network, subscribers may fail to receive notifications from the network. The network layer

may cause notification corruption, out-of-order delivery or unacceptable delivery latencies

[49]. Fault tolerance in pub/sub systems focuses on strategies such as reliable overlay broker

network construction, subscription managements and routing protocols for reliable message

dissemination [72, 17, 37]. Techniques to mend and adjust the overlay to cope with broker

churn or failure [73, 49, 21, 75, 95], reconstruct routing states at the recovering broker or

buffer messages at the parent of failed brokers for re-transmission [93] have been studied.

The BDPS architecture does not rely on brokers to communicate with each other by forming

overlays to route messages. Hence, these FT approaches for traditional pub/sub systems are

not applicable in BDPS architectures. We develop the REAPS service which handles two

common types of broker failures, i.e. fault models: i) random individual broker failures due

to hardware failures, power outages, software disruptions etc., and ii) geo-correlated failures,

64

where clusters of nearby brokers fail (e.g. in natural disasters).

5.2 The REAPS Approach

The design and implementation of REAPS exploits unique aspects of the BDPS architec-

ture; specifically, the separation of subscription matching and notification delivery and the

persistence of notifications. Each broker serves as the primary or home broker for a subset

of subscribers; during normal operation, primary brokers manage subscriptions, retrieve and

deliver notifications for their attached subscribers. REAPS leverages the presence of multiple

similar servers in the broker network to design a primary-backup replication framework for

fault tolerance service. Traditional primary-backup replication techniques vary in the degree

and type of replication [14, 15] including state machine or active replication, semi-active or

leader-follower replication [11] and passive replication (Figure . 5.1)

Figure 5.1: Replication Techniques

While the active approach may incur significant overhead when applied to a scaled-up BDPS

65

setting, the passive approach may cause significant recovery latency. We leverage the third

variant that falls between purely passive and wholly active replication. i.e. the semi-active

or leader-follower approach [11]. In contrast to traditional semi-active approaches (designed

for computation-centric systems), BDPS systems are communication-centric. In REAPS, we

propose a quasi-active fault tolerant technique to pro-actively maintain notification-related

information, i.e partial state, for subscriptions at backup brokers.

The design goals for REAPS are as follows:

• Provide reliable notification delivery (i.e. eventual delivery)

• Minimize subscriber effort when assigned brokers fail, (e.g. subscribers must not need

to recreate subscriptions)

• Support fast recovery of services under broker failure (minimize recovery latency or

fail-over duration leading to minimum service disruption to end-users)

• Incur low additional overhead for fault tolerance (across layers of the pub/sub plat-

form).

With REAPS, when brokers fail, the system detects failures and restarts service on replica

brokers. For this, broker states must be instantiated/updated at the replica brokers to enable

fast recovery of services. Under normal operation, primary brokers manage the BDMS and

subscriber interactions; during this time, backup brokers remain synchronized through an

adaptive state management protocol that is cognizant of the level of activity in the pub/sub

framework. This enables quasi-active backups to concurrently occur and backup brokers

to rapidly take-over functionality of the failed brokers when needed. We highlight three

features in REAPS to ensure reliable notifications, reduce recovery latencies and diminish

the overheads associated with fault-tolerance:

66

Allocate Backup Brokers: REAPS implements a two-level fault-tolerant framework to

cope with two types of broker failures (section III) - (a) randomized failures where few

brokers may fail randomly and independently and (b) clusters of nearby brokers can fail

concurrently due to (infrequent) geo-correlated events such as disasters. Each primary broker

will be backed up by two other brokers: one local backup in the same cluster to cope with

randomized failures and one remote backup in a different cluster to cope with geo-correlated

failures. Each broker may serve as a backup for multiple other primary brokers. The ultimate

goal of REAPS is to provide a fault tolerant service with no notification loss in case of failures

(perhaps at some additional cost induced by duplicate notifications). In order to realize this,

primary states to be replicated at the backups include information about subscribers, each

subscriber’s subscriptions and delivery of notifications. Note that actual notifications, which

are stored at the big data back-end, are not replicated at the backup brokers. This reduces

voluminous and unnecessary data transfers since past notifications often expire and are

superseded by more recent ones.

Exploit Subscription Similarity: REAPS incorporates a subscription-aware approach

in the selection and management of backups so as to minimize additional work done by

backup brokers. Choosing a backup broker with overlapping subscriptions will incur reduced

overheads for state maintenance and faster recovery. This is especially viable in the local

backup scheme that aims to exploit subscription similarity among nearby brokers. The

remote backup one aims to mitigate concurrent failures of brokers from independent geo-

correlated failure zones.

Support Quasi-active Backup/Replica Management: The REAPS approach aims to

create quasi-active backup brokers (active wrt state replication, but passive wrt service repli-

cation). In particular, the BDMS, primary and backup brokers cooperatively implement a

proactive state-synchronization scheme to keep backups updated about subscriptions at the

primary node as well as notifications being processed at the primary. Unlike active repli-

67

cation techniques, the backup remains passive and does not actively replicate the service,

i.e. process or forward notifications to the subscribers to reduce overheads. The quasi-active

approach in REAPS is adaptive and is able to exploit the rate at which publications arrive

to tune state management overheads. It could also tune state synchronization overheads

for each backup scheme individually. Local backups are proactive, they create and main-

tain subscriptions to the BDMS on behalf of the primary brokers ahead of failure time to

shorten the fail-over process. A more aggressive state synchronization technique with higher

overheads are implemented at the local backups to deal with randomized broker failures of

higher probability occurring. Remote backups, in contrast are more passive and coordinate

with the BDMS backend only when rare events of geo-correlated failures happen. In short,

the local backup scheme in REAPS lies between the semi-active and passive replication. In

the semi-active scheme, followers execute client requests completely, but do not propagate

results to clients. However, local backup brokers only pre-create ”backup subscriptions” but

do not ”execute” them (do not retrieve notifications from the BDMS, nor deliver notifications

to end-subscribers). REAPS’ remote backup scheme is close to passive replication.

Figure 5.2: REAPS Approach

REAPS relies on the BCS for collecting system-level information about the broker availability

(e.g via heartbeats) and broker metadata which includes information about subscribers and

subscribers’ subscriptions for the fault tolerance service. The BCS uses this information

for backup broker assignment decisions and coordinates the recovery process. Figure 5.3

shows our overall design for the fault tolerant service of BDPS systems in three phases.

At the setup phase, subscribers register themselves with the BCS and get assigned their

68

own home brokers. They then connect and make subscriptions via their home brokers.

During normal operation phase, brokers in the network send frequent updates of changes

in their primary subscribers, primary subscriptions to the BCS. BCS performs the backup

broker assignment based on the collected broker states and inform all brokers. Brokers then

inform their attached subscribers. Each broker frequently replicates its primary state to

its backups. The BDPS systems are dynamic in nature such as: subscribers may join or

leave, subscriptions are created or withdrawn, notification rates may vary etc. The BCS

may decide to re-assign backup brokers when the current backup assignment is not optimal

as systems change or after failures. The backup re-assignment can be as simple as to re-

run the backup assignment with current broker states or can be as dedicated as to develop

techniques that consider the tradeoffs between the cost for performing re-assignment versus

the benefit from the new optimal backup assignment. The BCS also monitors the broker

network for failure detection and triggers the recovery phase when failures happen. Finally,

during the recovery phase, the BCS informs backup brokers to take-over on behalf of failed

primaries. Subscribers from the failed primaries re-connect to their corresponding backups.

The BCS may need to run backup re-assignment here, since previously assigned backups

may have also failed in the meantime. REAPS implements three specialized techniques for

i) backup broker assignment; ii) broker state management and replication; and iii) failure

detection and recovery (Figure 5.2). We describe these problems and solution techniques in

the next three sections.

5.3 Backup Broker Assignment in REAPS

In this section, we compute backup broker assignments to implement the REAPS approach.

As indicated earlier, broker networks may suffer from small localized or larger geo-correlated

failures. Locality plays an important role in societal pub-sub systems - brokers that are in

69

Figure 5.3: The Overall Fault Tolerance Approach

close proximity are likely to have many subscriptions in common. For example, users from the

same city often have similar interests in receiving notifications on traffic conditions, incoming

municipal events, or emergency notifications from the neighborhood schools. Locality plays

a role in disaster events that may cause the failure of multiple nearby brokers in the affected

regions. REAPS includes a comprehensive backup assignment strategy that considers the

above issues. In REAPS, the broker network is divided into clusters called availability zones

based on physical locations. The rationale is that clusters that are far away from each

other belong to uncorrelated disaster zones so that broker failure in one cluster seldom

hampers the broker availability in distant clusters. REAPS assigns each primary broker one

local backup among those in the vicinity (same cluster) to leverage subscription similarity,

reduce replication cost and one remote backup from a far away location (different cluster)

to accommodate geo-correlated failures (Figure 5.4). REAPS formulates backup assignment

as an optimization problem aiming to minimize additional overheads cause by the fault

tolerance/replication strategies.

REAPS Notation The following are notational conventions we use as we develop a math-

ematical formulation of the REAPS techniques. Consider a system with a total of M sub-

70

Figure 5.4: Replication Techniques

scribers, L brokers and N backend subscriptions. In the following, if not otherwise stated,

we use the symbols i and j to denote brokers, k to denote a subscription, and u to denote

a subscriber. As stated earlier, each subscriber passes its subscriptions to the broker. The

broker in turn aggregates the identical subscriptions (the subscriptions that are for the same

channel with the same set of parameter values), and passes only the unique subscriptions to

the backend BDMS. Let zik be a binary indicator denoting whether broker i has subscription

k (zik = 1) or not (zik = 0), cik denote the number of subscribers having subscription k at

broker i. Let eij denote whether brokers i and j belong to the same cluster or not (eij equals

1 if they do, else 0). As per the broker network management, all the above information is

maintained at the BCS that makes the broker backup assignment decisions. More precisely,

REAPS maintains three matrices: Z = [zik], C = [cik], and E = [eij]. Given these three

matrices, REAPS computes broker assignments that determine local and remote backup

brokers for each primary broker in the systems. Once the assignment is made, the BCS

passes the assignment information to the corresponding brokers.

71

5.3.1 Backup Broker Assignment Problem Formulation

Let xij be a binary decision variable that indicates whether broker i takes broker j as its local

backup and yij be another set of binary decision variables for the remote backup assignment

(yij is 1 if broker i takes broker j as its remote broker, else 0). Note that xij = 1 only if

eij = 1 (both brokers belong to the same cluster) and yij = 1 only if eij = 0 (brokers belong

different clusters). Let the associated decision variable matrices be X = [xij] and Y = [yij].

The task is to compute these two matrices: X and Y .

Each broker is the primary broker for a set of subscribers and holds their subscriptions.

Those subscriptions are called primary subscriptions and those subscribers are called pri-

mary subscribers. The primary subscriptions at a broker are said active and are replicated to

the backups. A broker needs to continuously monitor new notifications for active subscrip-

tions, retrieve and deliver them to corresponding subscribers. A broker being the backup

for another broker would replicate primary subscriptions of that broker. Those replicated

subscriptions are called local backup subscriptions at the local backup and remote backup

subscriptions at the remote backup. As motivated by the measurement studies in proto-

type systems described in the experiment section, REAPS keeps local backup subscriptions

quasi-active and remote backup subscriptions inactive. That means a broker pre-subscribes

non-existing local backup subscriptions to the back-end BDMS and monitor for their notifi-

cations, but would not retrieve or deliver to local backup subscribers. On the other hand, a

broker only stores its remote backup subscriptions without sending them to the BDMS. The

remote backup subscriptions are only activated as needed to serve remote backup subscribers

when failures happen. These explain some part of the ”quasi-active” in the overall REAPS

framework.

A local backup subscription is not re-created if it is identical with one of the primary sub-

scriptions at a broker. Similarly, a remote backup subscription is not re-created at recovery

72

if it is identical with one of the primary or local backup subscriptions at a broker. That

means, if two brokers happen to have higher subscription similarity (the higher number of

identical subscriptions), assigning one as the backup for the other leads to considerably less

overhead compared to other choices. The backup broker assignment optimizes this when

assigning the backup pairs. A broker can be the local or remote backup for multiple other

brokers. The overhead of the local and remote backup schemes should not be accounted in

the same way. More specifically, for the local backup assignment, REAPS aims to minimize

the total number of non-overlap local backup subscriptions across all brokers to minimize the

so called subscription overhead during normal operation, whereas for the remote backup as-

signment, it tries to minimize the largest number of non-overlap remote backup subscriptions

per broker to minimize the recovery latency. Moreover, in the process of backup assignment,

brokers should not be over-committed, in which, their overall workload (regular plus backup)

should be bounded within its capacity. Each broker specifies its limit, denoted as Di. All

these observations lead to the following multi-objective optimization formulation.

The total number of pre-subscribed local backup subscriptions at broker j for being chosen

as a local backup for some other brokers is denoted as:

Oj =
N∑
k=1

(1− zjk)× (1−
L∏
i=1

(1− xij × zik)) (5.1)

where zjk denotes if broker j has the subscription k or not, and
∏L

i=1 (1− xij × zik) denotes

if any broker being locally backed up by j has subscription k or not. And, the number of

remote backup subscriptions incurred by broker j for being the remote backup for other

brokers, is given by:

Rj =
N∑
k=1

(1− zjk)× (1−
L∏
i=1

(1− yij × zik))×
L∏
i=1

(1− xij × zik) (5.2)

Rj takes into account the fact that broker j has already being assigned as the local backup for

73

some brokers and already pre-subscribed the local backup subscriptions. In the Equation 5.2,

term
∏L

i=1(1− yij × zik) denotes if any broker being remotely backup by j has subscription

k or not; term
∏L

i=1(1 − xij × zik) denotes if any broker being locally backup by j has

subscription k or not. The joint local and remote assignment problem is, therefore, to find

assignment matrices X and Y so as to:

min
L∑

j=1

Oj and min
L

max
j=1

Rj (5.3)

subject to:

xij, yij ∈ {0, 1}, xii = 0, yii = 0, ∀i, j (5.4)

xij ≤ eij, yij ≤ 1− eij, ∀i, j (5.5)
L∑

j=1

xij = 1,
L∑

j=1

yij = 1,∀i (5.6)

Pj,X,Y =
N∑
k=1

λkcjk +
L∑
i=1

(xij + yij)
N∑
k=1

λkcik < Dj (5.7)

The constraints for the assignment problem include (i) the local backup broker should re-

main in the same cluster and the remote backup broker should be from a different cluster

(Equation 5.5), (ii) each broker has exactly one local backup and exactly one remote backup

(Equation 5.6), and (iii) the maximum workload of any broker, which includes its original

workload plus any additional local and remote workload, should be less than its capacity

(Equation 5.7) where λk represents the notification data rate for subscription k. The work-

load is calculated as the sum of the total outgoing volume of data toward the subscribers

(regular plus anticipated future workload due to working as the backup for some others).

The above optimization problem is NP hard. The problem includes 2 parts: the optimization

74

for the local backup assignment can be reduced to the generalized assignment problem [70, 67]

and the remote backup assignment can be reduced to the multi-processor scheduling prob-

lem [51, 40] if these two sub-problems are considered independently. We attempt to solve

two sub-problems independently, solving for local backup assignment followed by remote

backup assignment: solving local backup assignment to minimize the overall subscription

overhead; solving remote backup assignment later to take into account the pre-subscription

of local backup subscriptions from the local backup assignment. Additionally, joint optimiza-

tion problems are typically more complex (NP-hard) and repeated executions in dynamic

situations is time-consuming. In the next section, we describe our proposed two heuristic

algorithms for them.

5.3.2 Backup Broker Assignment Algorithms

We propose the following Least Cost Selection algorithm for the local backup assignment

scheme and Min Max Cost Selection for the remote backup assignment scheme.

Least Cost Selection (LCS) Algorithm: LCS iterates over the set of brokers and selects

a local backup for each broker that produces the minimum additional subscription overhead

(line 10). The algorithm only chooses backup broker candidates that have enough capacity

left (line 8) taking into account the backup assignments made so far. Equation (7) calculates

the maximum possible workload of broker j after some assignments being made as X being

populated, including the current assignment of broker i to j

Min Max Cost Selection (MMCS) Algorithm: The MMCS algorithm aims to minimize

the maximum number of non-overlap remote backup subscriptions per broker. MMCS takes

into account the local backup assignment in place. MMCS iterates over the set of brokers and

selects a remote backup for each broker that produces the minimum of maximum number of

remote backup subscriptions which are not covered by primary or local backup subscriptions

of one broker (line 9).

75

Algorithm 2: Least Cost Selection Algorithm

1 Find: X = {xij}
2 Initialize: X = {xij = 0,∀i, j = 1 . . . L}
3 for i = 1, . . . , L do
4 overhead =∞ /* subscription overhead */
5 b = none /* local backup broker selection */
6 for j = 1, . . . , L and j ̸= i and eij = 1 do7

Pj,X(xij=1)
=

L∑
i=1

xij

N∑
k=1

λkcik +
N∑
k=1

λkcjk (5.8)

/* check potential workload for broker j if xij = 1 */
8 if Pj,X(xij=1)

< Dj then

/* calculate subscription overhead if xij = 1 */9

δj =
N∑
k=1

zik(1− zjk)
L∏
l=1

(1− xljzlk) (5.9)

if δj < overhead then
10 overhead = δj
11 b = j

12 xib = 1

13 return X

5.4 Broker State Management and State Replication

in REAPS

In this section, we describe the formal broker state management methods. Note that each

broker needs to maintain its own primary state about subscribers and their subscriptions,

as well as the notification delivery. Additionally, a backup broker also needs to maintain the

replicated states for its associated primary brokers. The process of state management varies

across the local, remote backups and is also described here.

76

Algorithm 3: Min Max Cost Algorithm

1 Find: Y = {yij}
2 Initialize: Y = {yij = 0, ∀i, j = 1 . . . L}
3 for i = 1, . . . , L do
4 overhead =∞ /* max number of non-overlap remote backup subscriptions per

broker */
5 b = none /* remote backup broker selection */
6 for j = 1, . . . , L and j ̸= i and eij = 0 do

/* check potential workload for broker j if yij = 1 */
7 if Pj,X,Yyij=1 < Dj then

/* check the max # non-overlap remote subscriptions per broker if
yij = 1 */

8 if maxLl=1Rl,yij=1 < overhead then
9 overhead = maxLl=1Rl,yij=1

10 b = j

11 yib = 1

12 return Y

5.4.1 Broker State Representation

Let li and ri denote the local and remote backups for a broker i. Then, we define l(i) =

{j|lj = i} and r(i) = {j|rj = i} as the sets of brokers for which broker i works as a local

and remote backup, respectively.

Broker i’s primary state Γi = [Ui, Si, Di] includes subscriber state Ui = {m}, subscription

state and notification state. Each subscriber has a different behavior pattern: they may join

the system or connect/disconnect from their home broker at a different time. Each subscriber

subscribes to a different set of subscriptions. Therefore, we maintain the subscription state

per subscriber and maintain the notification state per subscriber, per subscription. Each

notification generated at the BDMS is annotated with a timestamp to denote its time of

generation. The subscription state (indexed by subscriber) Si = {m : {k, ...}} and notifica-

tion state (indexed by subscription) Di =
{
k : {(m, tkm), ...}, ...

}
at broker i are represented

using maps of key-value pairs. We denote tkm as the timestamp of newest notification that

77

broker i has sent to subscriber m for the subscription k. When a previously disconnected

subscriber re-connects to its home broker, the home broker must fetch and deliver all past

notifications before sending any new notifications to the subscriber.

In our work, we refer to state replication as the process by which per-broker data-structures

are replicated or synced with local/remote backups. Each broker i must maintain its own

broker state as well as the backup broker states from its associated local/remote backup

brokers. We refer to these local and remote backup states l-states Γl
i and r-states Γr

i . By

construction, these synced states are obtained from the l(i) and r(i) brokers and indexed by

their respective broker identity. That is, Γl
i = {j : Γj} ,∀j ∈ l(i) and Γr

i = {j : Γj} ,∀j ∈ r(i).

The replication process that we describe below works around updating and maintaining the

three states: Γi,Γ
l
i, and Γr

i , across the brokers. We study when and how these states are

copied to the required backup brokers to avoid notification loss and provide an upper bound

to the possible notification duplication overhead during recovery. Here, the recovery refers

to subscribers moving from their failed primary broker to their local or remote backup.

5.4.2 Quasi-active State Replication

Different parts of the Γi state are synced (or replicated) with the local and remote backups

during operation. In particular, when a subscriber joins/leaves the system, the subscriber

state is immediately synced to the backups. When a subscriber creates a subscription or

unsubscribes, the subscription state is also synced as soon as possible. Doing so will avoid

the loss of subscription/subscriber information in case the primary broker fails. Since the

subscriptions and subscribers rarely change, these synchronous updates do not incur much

overhead on the broker. Upon receiving a subscription update, the local backup will create

non-overlap or withdraw no longer exist backup subscriptions accordingly; the remote backup

will update the backup subscription state, but will not make any changes to its current

78

subscriptions. Lastly, the frequent notification state updates are propagated asynchronously

to reduce the overall overhead. Recall that tkm is updated when the BDMS notifies broker i

with new results and the results are retrieved and delivered to the subscribers m that hold

subscription k. Since there is always a gap between the timestamp of new results and the

timestamp of the last delivered notification, the broker will always try to catch up to the

latest timestamp. In this context, we use τ k to denote the latest timestamp of the results

generated at the BDMS; such results have not necessarily been retrieved by the brokers,

nor delivered to their subscribers. Thus, it is clear that tkm ≤ τ k; the gap between these

two timestamps specifies the volume of pending results that must be retrieved from the

BDMS by broker i for subscription k to deliver to subscriber m. Since the notification

delivery timestamps are not immediately synced with the backups, there is a gap between

the currently recorded timestamp and the last synced timestamp. Let us denote ηkm to

represent the latest timestamp of notifications for subscription k which have been updated

to the backup brokers for subscriber m. Then, the gap between tkm and ηkm represent the

notifications that are out of sync with the backups (Figure 5.6). We propose two techniques

to replicate notification states: (a) periodic replication and (b) threshold-based replication.

In the periodic technique, the notification state is replicated to the backup at a sync interval.

On the other hand, in the threshold-based technique, the primary broker sends an update

to its backups when the total volume of delivered but un-synced notifications to subscribers

exceeds a pre-defined threshold, specifically:
∑

k,m(t
k
m − ηkm) × λk > β. We summary our

broker state replication strategy in Figure 5.5.

We formalize the sub-routines for state management and state replication of the broker

network in Algorithm 4. There are two RPC functions implemented on each broker, l sync

and r sync (local sync and remote sync), that are called by primary brokers to sync their

states to the local and remote backups, respectively. The routines show how states and their

various components are updated.

79

Figure 5.5: Broker State Replication

5.5 Failure Model, Detection and Recovery in REAPS

The BCS is the central coordinator for our fault tolerance approach. It frequently receives

metadata updates from brokers, and hence can recover its state soon after its failures. Once

recovered, it can continue managing the broker network, facilitating new subscribers to join

the system, and enable recovery for the broker network if needed. In REAPS, we assume

that a BCS failures and broker failures are mutually exclusive events.

5.5.1 Failure Detection and Recovery

The BCS implements a failure detector with strong completeness - failed broker is eventually

detected and eventual weak accuracy - there is a time after which some correct broker is never

suspected [55]. To detect failures, our system checks for heartbeat messages from correct

brokers. Each subscriber maintains two long lived connections, one with its home broker

for normal application notifications and the other with the BCS for broker failure messages.

In our prototype implementation, the BCS uses the Tornado framework that supports a

non-blocking network I/O, to maintain up to millions of mostly idle connections with every

subscriber. Since our system is asynchronous, the failure detector at the BCS can suspect one

or multiple broker failures if it does not receive heartbeat messages from those brokers within

80

Figure 5.6: Notification State Replication and Retrieval of Fail-over Results at Recovery

a time bound. In this case, the BCS sends broker failure notifications to primary subscribers

of failed brokers and recommends them to migrate to their corresponding non-suspected

local or remote backups. However, if the subscribers can still receive notifications from their

suspected home brokers, they can ignore such warning notifications from the BCS. In another

scenario, some subscribers may be offline when their home brokers are suspected of failure.

As those subscribers come back online, they would connect to the BCS and receive warnings

about their home broker failure. If the subscriber is unable to connect to their home broker,

then they will migrate to the recommended backups provided by the BCS. To maintain the

broker network, the BCS will inform non-suspected local or remote backups to assume the

roles of failed primaries.

The proposed fault tolerance technique allows recovery from multiple concurrent broker

failures as long as the primary broker, local backup and remote backup do not fail simulta-

neously. We define a local/remote fail-over as the fail-over from a primary to a local/remote

backup, respectively. For the local fail-over, we note that local backup subscriptions are al-

81

Algorithm 4: State Replication and Management at Broker i

1 sync-routine: /* called periodically or threshold-based */
2 lsync(i,Γi)
3 rsync(i,Γi)
4 on notification(k, τ k): /* on notifications from BDMS */

5 results = fetch
(
k, τ k

)
6 for online subscriber m subscribed to k:
7 push (results, m)
8 update Di: tkm = τ k

9 on new subscriber m:
10 lsync(i,Γi)
11 rsync(i,Γi)
12 on new subscription k from a subscriber m:
13 If k /∈ Di: subscribe k /* send k to BDMS */
14 lsync(i,Γi)
15 rsync(i,Γi)
16 on lsync (j,Γj): /* on a local update from broker j */
17 subscribe k1 ∈ S1
18 un-subscribe k2 ∈ S2
19 Γl

i[j] = Γj /* update broker state j at local backup */
20 /* S1 = Dj \ {Di ∪ Γl

i(sub)} */
21 /* S2 = Γl

i[j][Dj] \Dj \ ∪p#jΓ
l
i[p][Dp] \Di */

22 /* Γl
i(sub) = ∪j∈l(i)Dj */

23 on rsync(j,Γj): /* on a remote update from broker j */
24 Γr

i [j] = Γj

ready pre-subscribed. Thus, the local backup just needs to retrieve the fail-over notifications

and deliver them to the backup subscribers as shown in Figure 5.10. For the remote fail-

over, the remote backup must first recreate remote backup subscriptions before it retrieves

and delivers the fail-over notifications to the backup subscribers (Figure 5.7. The fail-over

notifications are timestamped (ηkm, τ
k]. To complete the fail-over process, the backup broker

merges its backup subscribers with its own primary subscribers.

Notification Loss versus Duplication - A REAPS Tradeoff

In REAPS, we guarantee that subscribers do not lose notifications. Upon recovery from

primary broker failures, the backups retrieve and deliver fail-over results to backup sub-

scribers which cover the pending results supposed to be retrieved and delivered by the failed

82

Figure 5.7: Recovery Process

primaries since (ηkm, τ
k] ⊆ (tkm, τ

k]. However, each subscriber m receives a duplicate set of

notifications in the window of (ηkm, t
k
m] for each of its subscriptions. Therefore, the number

of duplicate results is bounded by
∑

k,m(t
k
m − ηkm)× λk.

5.6 Experimental Evaluation

To evaluate REAPS on the prototype BDPS system and run simulation studies under dif-

ferent failure models.

5.6.1 REAPS Prototype Implementation and Measurement Study

Modeling Failures and Measurement Studies: We implement REAPS in a prototype

BDPS system as a proof-of-concept and for real measurement studies. The broker network

has four nodes partitioned in two clusters of two nodes. Each broker has the other broker

in the same cluster as the local backup and one broker in the other cluster as the remote

backup. We model 400 subscribers, each of whom is randomly assigned to brokers in the

two clusters with one distinct subscription. Each subscription receives subscription results

about emergency reports near the current location of each subscriber (every user subscribes

to the EmergenciesNearMe channel which has the execution period of ten seconds). Thus,

our system has a total of 400 distinct subscriptions, with each broker assigned to roughly

100 subscribers. To stress the BDMS, we model the extreme case where there were no

83

subscription similarities among brokers. After the fault-tolerance service is established, we

examine the two local/remote fail-over process caused by a single broker failure. Fig 5.8a

illustrates the progress of the recovery process from the failure of a single broker that served

97 subscribers. The red line shows the progress in migration of backup subscribers; the blue

line shows the progress of the local fail-over process; and the purple line shows the progress

of the remote fail-over process. Fig 5.8a shows that the local fail-over takes much less

time than the remote fail-over; this is because the remote fail-over needs to create backup

subscriptions. Fig 5.8b demonstrates that the fail-over duration is directly proportional

to the number of migrated subscribers (23, 50, 74, 97) in both local and remote fail-over

schemes. This conclusion motivates the design of REAPS.

(a) (b)

Figure 5.8: Prototype System: (a) Subscriber Migration Time versus Local Fail-over Time
versus Remote Fail-over Time; (b) Varied # attached Subscribers at the Failed Broker

5.6.2 Simulation-Based Evaluation

We evaluate REAPS overhead and study performance in a simulation based approach un-

der various broker failure models. The simulation models a BDPS system and mi-micks

the messaging-level interactions among components. Our setup consists of 1 BDMS, 100

84

brokers, 100K subscribers, and 100 repetitive channels. Each channel has 10 distinct pa-

rameter value sets. Channel execution periods range from 10 to 600 seconds. The result

size per subscription per channel execution time ranges from 10KB to 10MB for every chan-

nel execution. Finally, the broker network is partitioned into 3 clusters of 30, 30 and 40

brokers. Subscribers are assigned uniformly among the brokers. The subscription pattern

from subscribers follows a Zipfian distribution where a large number of subscribers subscribe

to a small number of popular subscriptions and a small number of subscribers subscribe to

non-popular subscriptions. We consider the following types of fault tolerant overheads: i)

subscription overhead; ii) message overhead; and iii) notification overhead.

REAPS vs. Active Replication: We evaluate REAPS against a näıve active replication

approach. In the active replication, each subscriber connects and sends subscriptions to its

home brokers as well as its backups. Backup brokers retrieve notifications from BDMS but

do not deliver them to backup subscribers unless their primary brokers fail. At times of

primary broker failures, the backup brokers in active replication approach do not need to

send queries for retrieving fail-over results for backup subscribers since retrieving results for

backup subscribers are already parts of the backup brokers’ jobs during normal operations.

Hence, the active replication technique incurs a constant notification overhead while REAPS

incurs none. Fig 5.9 (a) shows the difference of notification retrieval rate per broker between

REAPS versus active replication approach. However, since there is a subscription similarity

among brokers, the notification overhead incurred by the active replication approach is not

too high. When the number of subscriptions per subscriber increases, the subscription

similarity among brokers increases, and the notification overhead in the active replication

approach decreases.

Evaluating Backup Broker Assignment Techniques: We compare the subscription

overhead between REAPS and a random backup broker assignment against the total number

of original back-end subscriptions. The red line in Fig 5.9 (b) represents the total number

85

(a) Notification retrieval overhead

(b) Local subscription overhead (c) Remote subscription overhead

Figure 5.9: (a) REAPS vs. active replication approach
(b)(c) REAPS subscription overhead: local backup scheme & remote backup scheme

of original subscriptions across brokers. The green line represents the sum of total original

subscriptions and total extra local backup subscriptions in REAPS scheme. The black line

represents the sum of total original subscriptions and total extra local backup subscriptions

in random backup assignment scheme. The gap between the green line and the red line repre-

sents the subscription overhead in REAPS scheme. Similarly, the gap between the black line

and the red line represents the subscription overhead in random backup assignment scheme.

Since REAPS assigns backup brokers which minimizes the total non-overlap local backup

subscriptions; it produces much less subscription overhead. Figure 5.9 (c), on the other hand,

shows the maximum number of non-overlapping remote backup subscriptions per broker in

86

REAPS scheme (green line) versus a random remote backup assignment (black line). The red

line represents the average number of original subscriptions per broker. REAPS minimizes

the maximal number of non-overlapping remote backup subscriptions per broker; it leads

to nearly zero non-overlapping remote backup subscriptions in this simulation setup. This

fact can be explained that all remote backup subscriptions at a backup broker is covered by

either the original back-end subscriptions at that broker or the local backup subscriptions

which are pre-subscribed at that broker as it serves as the local backup for other brokers

in the network. Should remote fail-overs are required in case of broker failures, the remote

backup brokers do not need to create remote backup subscriptions for the failed primaries;

which minimizes the fail-over times.

(a) Threshold based replication (b) Periodic replication

(c) Threshold based vs periodic replication

Figure 5.10: REAPS: state replication evaluation for a single broker failure

87

Evaluating State Replication Methods: We evaluate the message overhead during nor-

mal operation and the volume of incurred duplicate notifications at failure recovery of the

two proposed state replication techniques in a single broker failure scenario. Here, we define

the duplicate notification retrieval as the volume of notifications that have been delivered

to subscribers by a failed primary broker, but again be retrieved from BDMS and delivered

to those subscribers by its local backup broker because the replicated notification delivery

state at the backup broker is slower than the actual notification delivery state at the primary

broker. On the other hand, the duplicate notification delivery is defined as the total volume

of duplicate notifications received by all backup subscribers during the fail-over. Figure 5.10

(a) and 5.10 (b) demonstrate the volume of duplicate notification retrieval and delivery at

different threshold values and periodic intervals. The higher the threshold value or periodic

interval is, the less frequent the replication process is; which leads to the less message over-

head but the higher volume of duplicate notifications retrieved by the backup broker and

delivered to backup subscribers during the fail-over. Finally, Figure 5.10 (c) represents the

relationship between the total number of replication messages during a simulation run versus

the volume of retrieved duplicate notifications during the recovery of a single broker failure

for the threshold-based and periodic replication techniques. Again, we can see as shown in

this Figure, a higher message overhead yields a smaller duplicate notification volume dur-

ing recovery. The threshold-based technique incurs a slightly smaller volume of duplicate

notifications compared to the periodic replication technique at the same message overhead.

Multi-Failure Model: Finally, we evaluate REAPS against scenarios where multiple bro-

kers fail. Figure 5.11 (a) and (b) show that a larger number of broker failures within the same

cluster results in a higher volume of duplicate notifications and a higher number of remote

fail-overs which then leads to a higher recovery latency. Similarly, Fig. 5.11 (c) demonstrates

that a higher number of failed brokers across clusters results in a higher probability that a

failed broker having no available backups.

88

(a) (b)

(c)

Figure 5.11: REAPS: multi-broker failure evaluation

5.7 Conclusion

In this chapter, we design and develop REAPS, a fault tolerance service for BDPS systems.

REAPS exploits the hierarchical architecture of a BDPS system with a BDMS cluster and

edge brokers as well as the characteristics of societal notification systems (geo and socially

correlated interests) to address new tradeoffs between reliability, timeliness and scalability

of notification systems.

89

Chapter 6

Notification Prioritization in Big Data

Publish Subscribe Systems

Recent years have seen a dramatic increase in the number of subscription based applications

and data-driven services that endusers subscribe to. Applications ranging from social me-

dia based interactions, e-commerce notifications and community services for public safety

generate frequent notifications to devices to capture the attention of users. While such

notifications can be incredibly beneficial to end-users, a constant stream of important and

unimportant notifications can annoy users and cause them to withdraw/renege from noti-

fication services. The efficiency of a notification system depends on whether it can deliver

the right message to the right person at the right time. Under normal workloads, a BDPS

system can be designed to deliver all notifications to the subscribed end-users as they are

generated with reasonable latency. In times of unexpectedly high workloads, the end-to-end

platforms may fail to deliver critical messages to end-users in a timely manner due to limited

resources. A key observation here is that some notifications are more important and valuable

than others (e.g., emergency notifications versus social media notifications). Additionally,

notifications may have deadlines and can be rendered useless if they get delivered late. For

90

example, timely notifications in emergency alert systems enable protective actions that can

help reduce human injury, loss of life, and property damage.

6.1 Prioritizing Notifications

In this chapter, we develop techniques to prioritize notifications when brokers experience

unexpectedly high workloads. Specifically, we show brokers can implement intelligent noti-

fication delivery scheduling so as to maximize the total benefits for all end-users of a BDPS

system while guaranteeing fairness among them when there are unexpectedly high workloads

at a broker, e.g., an increased volume of publications, an increased number of subscriptions,

and/or an increased number of end-users. In this situation, the deployment of additional

localized resources to accommodate increased workloads can be expensive and challenging.

Techniques such as load balancing are not feasible when there are sporadic bursts of notifi-

cations targeted to end-users at a broker. Inherently, techniques to manage such sporadic

notification bursts must be implemented within the broker so that timely and critical mes-

sages can be delivered to end users. In addition to the dynamic workloads generated on the

channels, and dynamic system conditions (unpredictable network delays), users may have

varying preferences for the arriving information and this in turn can alter the value of the

notification to the end user. Our goal in this chapter is to design techniques to quantify

utility/value of notifications to end-users and leverage this quantification to implement tech-

niques to determine which notifications must be delivered (or dropped) and the order and

time of delivery.

Chapter Road-map:

• We begin by developing a structured model for evaluating the value of notifications to

end-users based on several factors, including channel characteristics, user preferences,

91

and delivery time. For this, we introduce two new concepts: channel value function

and notification value function.

• We next model notification arrival and delivery processes at the broker level to design

notification delivery scheduling policies to maximize user benefits and ensure fairness

among end-users. For this purpose, we define metrics for evaluating user satisfaction

and user fairness.

• We use the above models to develop notification prioritization algorithms. To eval-

uate the prioritization mechanisms proposed, we design a simulation-based approach

to model the functioning of BDPS systems at scale , and validate the developed noti-

fication prioritization policies using simulation-based experiments with real-world use

cases.

6.2 The Notification Prioritization Approach

Note that the value of a particular notification to a specific end-user depends on the nature

and content of the notification, the time that it takes for the notification to reach the end-

user, and the user’s preference for that particular notification relative to other pieces of

information (Figure 6.1). In this chapter, we aim to answer the following questions: What

information is included in the notification? Is the notification still valid when delivered to

the end-user? How much does the user like the notification content?

Figure 6.1: Notification Value to an End-user

To answer these questions, we employ prioritization notification as the key methods. Our

notification prioritization approach operates in two steps(Figure 6.2). We first develop tech-

92

niques for quantifying notification values to end-users and then develop scheduling policies

for notification delivery so as to maximize the total user benefits and ensure fairness among

end-users.

As discussed earlier, The nature of a notification depends on the characteristics of the channel

that generates it. The delivery times of notifications are affected by system workloads.

User preferences vary according to user priorities, interests, and contexts. For example,

parents prioritize emergency events at their children’s schools. Commuters wish to know

traffic information when they are on the road, but they may be more interested in news

and entertainment events when they are at home. Investors have different preferences for

different stock symbols. Citizens in New York are generally less interested in wildfire events

in California. Below, we detail our approach to quantifying the value of notifications to

particular end-users.

Figure 6.2: Notification Prioritization Approach

6.2.1 Quantifying Notification Value

Channel Value Function: From a system perspective (e.g., the design decisions of ap-

plication administrators), the channels can be characterized by channel importance, which

dictates the importance level of the notifications that they generate. In this study, we as-

sume three levels of channel importance: informational, important, critical. For example,

informational channels provide informational notifications such as notifications about sales

events, advertisements, restaurant openings, and soccer match scores. Important channels

provide information that can help end-users take actions and make better decisions in daily

93

life, such as notifications about stock trends, market analysis, business reviews for investors,

traffic conditions for commuters, or school events for parents and students. Finally, criti-

cal channels are channels that provide notifications about critical events to end-users, e.g.,

emergency alerts during natural disasters.

In addition to channel importance, we introduce the concept of channel type. Channel type

determines how the value of a notification from the channel decreases over time. We explore

three types of channels, namely deadline channels, update channels and decay channels. A

notification generated from a deadline channel has a constant value within the deadline,

examples include sensor reading notifications. The notification deadline from a deadline

channel is the channel execution period. However, a notification from an update channel is

valid until the next notification is generated. Finally, the value of a notification from a decay

channel decreases over time and turns to zero when it reaches the deadline. The channel

type and the channel importance together determine the so-called channel value function.

Figure 6.3: Channel Value Function

94

We define three channel value functions below, where c denotes the channel, Td is the no-

tification deadline, Te indicates the channel execution period, and Ic represents the channel

importance. The higher the importance level of a channel is, the higher its value Ic is. The

channel value function is denoted as vf(Ic, t). Channel value function determines the base

value of its notifications at a particular time t, without considering user preferences. Since

notifications from a channel are generated on a repetitive basis. The deadline of a notifica-

tion starts at its generation time tgen. Specifically, a notification that is generated at tgen will

expire at tgen + Td. We present below the abstract channel value function for each channel

type without considering the generation time of specific notifications.

• Step Function - Deadline Channel

vf(c, t) =

Ic t ≤ Td

0 t > Td

• Open-ended Step Function - Update Channel

vf(c, t) =

Ic t ≤ Td = x× Te

0 t > Td

• Decay Function - Decay Channel

vf(c, t) =

Ic × (1− e

t

Td

−1

)

1− e−1
t ≤ Td

0 t > Td

Notification Value Function: We next quantify the value function of a notification n for

subscription s from a channel c to an user u. The value of a particular notification depends

on its channel value function, its delivery time to an end-user and the user preference. We

95

Figure 6.4: Notification Value Function

denote the preference of a particular user u to a specific subscription s from a channel c as

p(s, u). We define a notification value function to quantify the value of a notification over

delivery time t to an end-user u, as follows:

V (n, s, u, t) = p(s, u)× vf(Ic, t)

The equation shows that the higher the channel importance and user preference are, the

earlier the notification is delivered to a subscriber, the higher the benefit the subscriber

receives. Figure 6.4 represents the notification value function for a decay channel (Ic = v1),

where the value of a particular notification at a particular delivery time t to an user is

proportional to the user preference.

96

Figure 6.5: Broker Query Results from BDMS

6.2.2 Notification Arrival and Delivery Queuing Model

In the initial step described above, we designed a structured approach for quantifying noti-

fication value. We next develop a queuing-based model that uses the assigned notification

values to schedule the delivery of notifications to end-users. Recall that a channel is exe-

cuted repetitively at the BDMS to generate notifications for subscribers. When new results

are generated, associated brokers are informed about the availability of new results by the

BDMS (Figure 6.5). Each broker then retrieves available results for all users from the BDMS

using a pull mechanism and inserts them into an its arrival queue. We refer to this as the

notification arrival process at the broker. Notifications in a arrival queue are assigned values

using the value quantification functions described above. Prioritization techniques are exe-

cuted to order notifications and placed in the delivery queue at the broker to be delivered to

end subscribers. Notifications that expire before being sent to all subscribers or notifications

that have been sent to all subscribers are then deleted from the arrival queue. We refer to

this step as the notification departure process. The above prioritization process is repeated

as long as there are notifications to deliver. In this approach, notifications that have not

been delivered to all subscribers but are still valid, are re-quantified for prioritization and

considered for delivery in the next time unit.

97

Figure 6.6: Notification Queuing Model

6.3 The Notification Prioritization Problem: Formula-

tion and Algorithms

In this section, we develop notification prioritization techniques at the broker level to max-

imize the total value of notifications received by subscribers, The goal is to maximize the

overall user satisfaction while ensuring a notion of fairness among subscribers. In this prob-

lem, we define user satisfaction as the ratio between the total received notification value

versus the total expected notification value for a particular user. The prioritization tech-

nique determines which notification is delivered to which subscriber in which time unit.

6.3.1 Notification Prioritization - Problem Formulation

We define a notification delivery scheduleX = {xn,s,u(t),∀n, s, u, t}, where xn,s,u(t) = 1 when

a notification n in the arrival queue for a subscription s is delivered to a user u at time unit

t, and xn,s,u(t) = 0 otherwise. We use Q(t) to denote notifications in the arrival queue at

time unit t. N represents all generated notifications and N(t) denotes all notifications that

have been generated until time unit t. We define a binary matrix Y = {ys,u} where ys,u = 1

if user u subscribes for subscription s. We use zn,s to denote the size of notification n for

98

subscription s in bytes and vn,s,u(t) to indicate the value of notification n for subscription s

to user u at delivery time t. Then we have,

vn,s,u(t) = V (n, s, u, t)

We define Du(X, t) to denote the total notification value delivered to user u until time unit

t as follows:

Du(X, t) =
t∑
τ

∑
(n,s)∈Q(τ)

vn,s,u(τ)× xn,s,u(τ)

Du(X) represents the total notification value delivered to user u across all time units, which

is calculated as follows:

Du(X) =
∑
t

∑
(n,s)∈Q(t)

vn,s,u(t)× xn,s,u(t)

The expected notification value to a user is defined as the value of the notification to the

user at the time of generation. This is calculated with vn,s,u(tgen). Then, the total expected

notification value received by a user u until time t can be calculated as follows:

Eu(t) =
∑

(n,s)∈N(t)

vn,s,u(tgen)× ys,u

Finally, the total expected notification value received by a user u across all time units is

defined as:

99

Eu =
∑

(n,s)∈N

vn,s,u(tgen)× ys,u

Our notification prioritization problem aims to find a delivery schedule X that can ideally

optimize multiple objectives - maximize total notification value delivered to each subscriber,

maximize the total user satisfaction over all subscribers while ensuring fairness across sub-

scribers. The notion of fairness among subscribers can be represented in multiple ways. We

considered the following three possibilities - (1) maximizing the minimum user satisfaction;

(2) minimizing the gap between maximum user satisfaction and minimum user satisfaction;

or (3) minimizing the variance of user satisfaction. We assume that the system has m

subscribers. We cast our problem to an optimization problem that aims to maximize the

sum of average subscriber satisfaction calculated as 1
m
×
∑

u
Du(X)
Eu

, and minimum subscriber

satisfaction calculated as minu
Du(X)
Eu

.

We formalize the optimization problem as follows:

Find schedule X = {xn,s,u(t),∀n, s, u, t}

max
X

(
1

m
×
∑
u

Du(X)

Eu

+min
u

Du(X)

Eu

)
(6.1)

subject to:

∑
u

∑
(n,s)∈Q(t)

xn,s,u(t)× zn,s ≤ β, ∀t (6.2)

∑
t

xn,s,u(t) ≤ ys,u,∀(n, s) ∈ N, ∀u (6.3)

The constraints include (i) the total size of notifications scheduled for delivery in one time

100

unit is less than the broker capacity - outbound bandwidth (Equation 6.2); (ii) each notifi-

cation n for a subscription s is delivered to a subscriber at most once if the user u subscribes

to subscription s (Equation 6.3).

The above prioritization problem is an NP-hard. Here, the Knapsack problem can be re-

duced to a special case of the prioritization problem with one user and one time unit duration.

We hence design and explore a set of heuristic algorithms for notification prioritization and

delivery with different objectives, including enhancing notification value, user satisfaction,

fairness and combinations of these criteria. We present and evaluate multiple such possibil-

ities in detail below.

6.3.2 Notification Delivery Scheduling Algorithms

We next present a family of prioritization algorithms - where each algorithm emphasizes

a different prioritization objective that drives notification delivery. In each prioritization

technique, each broker selects notifications from the arrival queue for possible delivery in

every time unit. The selection process for each time unit at a broker terminates when all

notifications in the arrival queue are selected for delivery to all subscribed users, or when

the broker reaches its bandwidth capacity (the total size of all selected notifications reaches

the broker outbound bandwidth constraint).

• High Value - HiVal; This algorithm prioritizes notifications with highest values to

end-users. In this prioritization technique, notifications in the arrival queue are sorted

and chosen in the descending order of value to end-users until the broker bandwidth

capacity (Equation 6.4) has been reached.

101

arg max
(n,s)∈Q(t),u

vn,s,u(t) (6.4)

• High Satisfaction - HiSat; This algorithm prioritizes notifications to maximize total

user satisfaction. The HiSat algorithm prioritizes notifications in the descending order

of user satisfaction (actual value/expected value) as defined earlier.

arg max
(n,s)∈Q(t),u

vn,s,u(t)

Eu(t)
(6.5)

• High Balance - HiBal: This algorithm prioritizes notifications that achieves a bal-

ance between the maximum total value of delivered notifications and maximum user

satisfaction (Equation 6.6). Let η be a factor to vary the prioritization weight of the

total value of delivered notifications. In our experiment, we set η equal to the number

of subscribers attached to the broker. Intuitively, this puts equal weight on both total

value of delivered notifications and user satisfaction.

arg max
(n,s)∈Q(t),u

η × vn,s,u(t)∑
u Eu(t)

+
vn,s,u(t)

Eu(t)
(6.6)

• High Loss - HiLoss: This algorithm prioritizes notifications that would incur highest

value loss if delayed to the next time unit.

arg max
(n,s)∈Q(t),u

(
vn,s,u(t)− vn,s,u(t+ 1)

)

102

• High Fair - HiFair; This algorithm prioritizes notifications to maximize the minimum

user satisfaction. It selects notifications so as to increase minimum user satisfaction.

arg max
(n,s)∈Q(t)

vn,s,u(t) argmin
u

Du(X, t)

Eu(t)
(6.7)

• Random - Rand algorithm selects notifications randomly from the broker arrival

queue to deliver to attached subscribers and is used primarily for comparison during

evaluation.

6.4 Simulation-based Evaluation

We use a simulation-based approach to evaluate our proposed prioritization algorithms.

Figure 6.7 shows the model of our simulation which is written in Python3.

6.4.1 Simulation Setup

The simulation models an actual BDPS system which consists of a BDMS data cluster,

a BCS, a network of (ten) brokers. In our simulated setting, we model a range of real

world applications that generate notifications with varying levels of importance and ur-

gency. Specifically, We create thirty channels equally distributed across the 3 importance

levels. Accordingly we have ten informational channels, ten important channels, and ten

critical channels. The channels have a uniform distribution over three channel types de-

scribed earlier including - deadline channels, update channels and decay channels. Each

channel has fifty different pairs of (parameter, value) combinations to represent a wide range

of notification possibilities. We hypothesize a community of thirty thousand subscribers.

103

These subscribers are categorized into three groups that represent users with varying in-

terests and roles. Our simulated community includes ten thousand young adults, fifteen

thousand adults and five thousand emergency responders. Each subscriber creates ten front-

end subscriptions. The young adult population subscribes to channels following the Zipfian

distribution on [informational, important, critical]. This implies that young-adults are more

likely to subscribe to information channels as compared to important and critical channels.

Specifically, 74% front-end subscriptions from young adults are to informational channels,

18% front-end subscriptions to important channels and 8% to critical channels. Similarly,

adults subscribe to channels following the Zipfian distribution on [important (74%), critical

(18%), informational (8%)]. The emergency responders subscribe to channels following the

Zipfian distribution on [critical (74%), important (18%), informational (8%)].

6.4.2 Simulation Model

Figure 6.7: Simulation Model

We assume that the client side software at the user-end has a Subscription module which

sends front-end subscriptions to the attached broker. Each broker has a Subscription Man-

agement module which receives front-end subscriptions from end-users and creates distinct

104

back-end subscriptions to the BDMS. The BDMS has a Subscription Management module

which manages back-end subscriptions from brokers. The channels are created in BDMS in

the module Data Channel Creation. Channels are executed periodically against the back-

end subscriptions managed in the Subscription Management module to generate channel

results for brokers in the module Channel Result Generation. When new channel results are

available, associated brokers are notified by push notifications. The broker has a Push Noti-

fication Handler to handle the push notifications from BDMS and issues appropriate queries

to retrieve channel results from BDMS in the Channel Result Retrieval module. The results

retrieved from BDMS are prioritized in the Subscriber Notification Prioritization module

(based on user preferences from Subscription Management module) and inserted into deliv-

ery queues for dissemination to subscribers in the Subscriber Notification Delivery module.

In this simulation, we model the latency in obtaining/retrieving channel results from BDMS

to brokers since multiple brokers may simultaneously send queries asking for results from

BDMS. We describe below our measurement study using the prototype BAD BDPS system

- we specifically conduct a set of latency measurements in retrieving channel results from

BDMS to brokers. Note that latency may also be incurred in disseminating notifications

from brokers to subscribers due to constraints on the broker outbound bandwidth - here

our prioritization algorithms play the deciding role in determining which notifications are

prioritized and delivered before others for maximum user satisfactions and benefits.

6.4.3 A Measurement Study using the BAD Platform

In order to approximately model the latency in retrieving channel results from BDMS to

brokers, we conduct a prototype measurement study. We install a BDMS - AsterixDB

version 0.9.5 on a MacOS with Apple M1 Pro CPU, 16 GB RAM and 500 GB Flash Storage.

We run a simulated Tornado broker server running on the same machine. The broker sends

a set of queries asking for results from BDMS. We measure the round trip time since the

105

broker starts to send the first query until the broker receives the returned results for the last

query. We measure two scenarios where the result size for each query is of 88 bytes and 9 Kb

respectively (Table 6.1 and 6.2). In our next measurement study, the broker sends only one

query for retrieving channel results from BDMS. We measure the round trip time of the query

with varied returned result size since the broker sends the query until the broker receives

the results (Table 6.3). As we can observe from Table 6.1 and 6.2, the large the number of

concurrent queries sent to BDMS, the longer it takes for BDMS to return all requested results

to brokers. As shown in Table 6.3, the larger the returned result size, the longer it takes for

the broker to receive the results from BDMS. Three graphs in Figure 6.8 are drawn for the

measurements from Table 6.1, 6.2, and 6.3 separately. In the simulation, for simplicity, we

assume the same result size of 88 bytes for all subscriptions from all channels. We use the

measurement from Table 6.1 to model the latency for a broker in obtaining results from the

BDMS based on the number of concurrent queries that are retrieving results at a particular

time.

Channel Result Queries Time (ms)

10 40

100 350

300 1000

500 1600

800 2700

1000 3200

1500 4500

Table 6.1: Result size of 88 bytes

Channel Result Queries Time (ms)

10 200

100 1600

300 4800

500 8800

800 12800

1000 16600

Table 6.2: Result size of 9 Kb

106

Result Size (Kb) Time (ms)

9 55

43 226

87 437

406 2397

733 4440

928 5582

1486 8901

Table 6.3: Varied result size

6.4.4 Prioritization Techniques: Simulation Results

In this simulation evaluation, we study the performance of our proposed algorithms against

a set of performance metrics including total value of notifications that have been delivered

to subscribers, average user satisfaction, and user fairness. For simplicity, we assume all

notifications have the same size of 88 bytes. The broker is constrained by its outbound

bandwidth, which is the upper bound on the total size of notifications that can be delivered

to subscribers in our time unit. This results in the constraint on the maximum number of

notifications that can be delivered in one time unit. We use β to denote the total number

of notifications each broker can disseminate to subscribers in one time unit.

First, we measure the performances of all proposed prioritization algorithms on the two

metrics: total value of delivered notifications and the average user satisfaction as shown in

Figure 6.9 a) and Figure 6.9 b), respectively. The red line in Figure 6.9 a), represents the

upper bound on total value of notifications to subscribers - this is an ideal hypothetical setting

where there are no delays incurred by brokers in retrieving results from the BDMS and there

are no constraints on broker outbound bandwidth (β equals infinity). As shown in Figure

107

(a) Result size of 88 b (b) Result size of 9 Kb

(c) 1 Query

Figure 6.8: Prototype Measurements

6.9 a) and b), when we increase β value, the total number of messages a broker can deliver

in a time unit, the total value of delivered notifications and the average user satisfaction

also increase. The HiVal algorithm gives the highest value of delivered notifications. The

HiBal algorithm gives good performance on both metrics: high delivered notification value

and high average user satisfaction. We conclude that, HiVal prioritization technique should

be chosen if achieving the highest total value of delivered notifications is the goal; however,

HiBal is a better choice if both system-wide notification value and overall user satisfaction

are both important.

Second, we evaluate the proposed set of prioritization algorithms on the user fairness perfor-

108

(a) (b)

Figure 6.9

mance metric. We present several fairness indicators such as: minimum user satisfaction, gap

between maximum user satisfaction and minimum user satisfaction as shown in Figures 6.10

a) and 6.10 b), respectively. We can see that HiFair algorithm leads to the highest minimum

user satisfaction and the smallest gap between maximum user satisfaction and minimum

user satisfaction. Again, HiBal algorithm is the second best for user fairness. We conclude

that HiFair prioritization technique should be chosen to prioritize fairness among end-users.

From results shown in Figure 6.9, 6.10, we recommend HiBal prioritization technique for

both user satisfaction and fairness among end-users.

(a) (b)

Figure 6.10

109

Finally, we examine the proposed algorithms against other performance metrics including

the total value of delivered notifications from critical channels, and the objective function

value which is the sum of average user satisfaction and minimum user satisfaction, as shown

in Figure 6.11 a) and b) respectively. Again, HiVal algorithm delivers the maximum value

of notifications from critical channels. We recommend HiVal prioritization technique when

the system wants to deliver maximum value of notifications from critical channels, e.g., in

disaster scenarios. We recommend the HiBal prioritization technique when the system aims

to deliver highest total value of notifications from critical channels while enabling fairness

among end-users (e.g., to make sure all users receives fair value of delivered notifications

from critical channels).

(a) (b)

Figure 6.11

6.5 Conclusion

In this chapter, we propose and demonstrate the effectiveness of various prioritization tech-

niques for the notification prioritization problem in BDPS systems. We aim to maximize

the total benefit that subscribers receive from the system ,i.e. to maximize total notification

110

value received by subscribers, maximize overall user satisfaction, and ensure fairness among

users when system experiences unexpectedly high workloads and fails to deliver all notifica-

tions to all subscribed end-users due to limited resources. We propose a model for evaluating

the value of notifications to end-users taking into account channel characteristics and user

preferences. We also define metrics for user satisfaction and user fairness evaluation. Overall,

we aim to balance the overall satisfaction of all users and fairness among users within the

system.

111

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we studied different challenges and introduced techniques, and services for en-

hancing the scalability, reliability and efficiency of BDPS systems under dynamic conditions.

In Chapter 4, we developed a multistage adaptive load balancing framework to mitigate

the dynamically skewed load distribution among brokers. Our multistage load balancing

framework consisted of three phases: i) Initial Subscriber Placement, which explored different

techniques to first assign subscribers to brokers, ii) Dynamic Migration which tried to achieve

moderately skewed load distributions among brokers by migrating subscribers from highly

loaded brokers to lightly loaded brokers, and iii) Shuffle which redistributed the entire set of

subscribers among all brokers to fix extremely skewed load distributions.

In Chapter 5, we designed and implemented REAPS (REliable Active Publish Subscribe)

- a primary-backup fault tolerance framework to handle different classes of broker failures,

including randomized failures and geo-correlated failures (e.g., in natural disasters). REAPS

112

exploited subscription similarity among brokers and applied a quasi-active state replication

for low overhead, enabling fast recovery and delivery guarantee of notification service.

Chapter 6 developed notification prioritization techniques for efficient notification dissemi-

nation during periods of unanticipated high workload in the system. We developed a model

for evaluating the value of notifications to end-users based on channel characteristics and

user preferences. In addition, we defined metrics for evaluating user satisfaction and user

fairness. Overall, we developed prioritization and delivery scheduling policies to maximize

the total value of delivered notifications to subscribers, total user satisfaction, and ensure

fairness among users when the system cannot deliver all notifications to subscribers before

their deadlines.

7.2 Future Work

This thesis leads to a number of interesting future research directions:

• Applying prediction models in the load balancing work in Chapter 4: In this

work, we developed load balancing techniques based on the current system states, such

as subscriptions from subscribers, subscribers-to-brokers mappings, and notification

data rates for each subscription. The next step in this direction could be to develop

prediction models for the overall system workloads and load distributions, based on the

subscription patterns from end-users, publication patterns from publishers, notification

patterns, and subscriber movements (which may affect the mapping of subscribers to

brokers, e.g., in geo-location-based broker assignments to subscribers). These can be

leveraged to design more sophisticated load balancing techniques to minimize redun-

dant subscriber migrations caused by instant load imbalances.

113

• Exploiting notification correlation, examining other prioritization techniques:

Currently, we evaluate the value of notifications to end-users individually for the noti-

fication prioritization work in Chapter 6. We assume that the total value of delivered

notifications to subscribers equals the sum of all delivered notification values. We do

not look at the correlation among delivered notifications to a subscriber. Furthermore,

in this work, we designed notification prioritization techniques by leveraging the current

system states at the broker level, such as the notification value state and the notifi-

cation queue state. This work could be extended by exploring and examining other

techniques such as Lyapunov-based control techniques, which perform optimizations

across time units.

• Incorporating all developed schemes and services in one integrated solution:

In this thesis, we have addressed each research problem separately. Given these load

balancing, fault tolerance, and notification prioritization techniques, the next step

would be to integrate them into one comprehensive solution for a scalable, reliable,

and efficient BDPS system. The integrated solution should determine appropriate

techniques to trigger as needed. Security issues such as DDOS attacks are interesting

to consider, e.g., overwhelming the system and creating unfairness.

114

Bibliography

[1] Asterixdb. https://asterixdb.apache.org.

[2] Big active data @ uci. http:\/\/asterix.ics.uci.edu.

[3] Big active data @ ucr. http://www.cs.ucr.edu/~tsotras/big-active-data/index.
htm.

[4] Zotalert. https://www.oit.uci.edu/zotalert/.

[5] H. M. Ali and Z. S. Alwan. Car accident detection and notification system using smart-
phone. LAP LAMBERT Academic Publishing Saarbrucken, 2017.

[6] M. J. Amiri, S. Maiyya, D. Agrawal, and A. El Abbadi. Seemore: A fault-tolerant
protocol for hybrid cloud environments. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE), pages 1345–1356. IEEE, 2020.

[7] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica, and
M. Zaharia. Structured streaming: A declarative api for real-time applications in apache
spark. In Proceedings of the 2018 International Conference on Management of Data,
pages 601–613, 2018.

[8] S. Babu and J. Widom. Continuous queries over data streams. ACM Sigmod Record,
30(3):109–120, 2001.

[9] R. Baldoni and A. Virgillito. Distributed event routing in publish/subscribe communi-
cation systems: a survey. DIS, Universita di Roma La Sapienza, Tech. Rep, 5, 2005.

[10] D. Barbará. The characterization of continuous queries. International Journal of Co-
operative Information Systems, 8(04):295–323, 1999.

[11] P. Barret, A. M. Hilborne, P. G. Bond, D. T. Seaton, P. Veŕıssimo, L. Rodrigues, and
N. A. Speirs. The delta-4 extra performance architecture (xpa). In Digest of Papers.
Fault-Tolerant Computing: 20th International Symposium, pages 481–482. IEEE Com-
puter Society, 1990.

[12] A. Basak, K. Venkataraman, R. Murphy, and M. Singh. Stream Analytics with Microsoft
Azure: Real-time data processing for quick insights using Azure Stream Analytics. Packt
Publishing Ltd, 2017.

115

https://asterixdb.apache.org
http:\/\/asterix.ics.uci.edu
http://www.cs.ucr.edu/~tsotras/big-active-data/index.htm
http://www.cs.ucr.edu/~tsotras/big-active-data/index.htm
https://www.oit.uci.edu/zotalert/

[13] K. P. Birman. The process group approach to reliable distributed computing. Commu-
nications of the ACM, 36(12):37–53, 1993.

[14] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. Optimal primary-backup pro-
tocols. In International Workshop on Distributed Algorithms, pages 362–378. Springer,
1992.

[15] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. Primary-backup protocols:
Lower bounds and optimal implementations. In Dependable Computing for Critical
Applications 3, pages 321–343. Springer, 1993.

[16] M. J. Carey, S. Jacobs, and V. J. Tsotras. Breaking bad: a data serving vision for big
active data. In Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems, pages 181–186, 2016.

[17] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems (TOCS), 19(3):332–
383, 2001.

[18] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. Rowstron. Scribe: A large-scale
and decentralized application-level multicast infrastructure. IEEE Journal on Selected
Areas in communications, 20(8):1489–1499, 2002.

[19] C.-Y. Chan, W. Fan, P. Felber, M. Garofalakis, and R. Rastogi. Tree pattern aggregation
for scalable xml data dissemination. In VLDB’02: Proceedings of the 28th International
Conference on Very Large Databases, pages 826–837. Elsevier, 2002.

[20] C. Chen, H.-A. Jacobsen, and R. Vitenberg. Algorithms based on divide and conquer for
topic-based publish/subscribe overlay design. IEEE/ACM Transactions on Networking,
24(1):422–436, 2014.

[21] C. Chen, R. Vitenberg, and H.-A. Jacobsen. Omen: Overlay mending for topic-based
publish/subscribe systems under churn. In Proceedings of the 10th ACM International
Conference on Distributed and Event-based Systems, pages 105–116, 2016.

[22] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable continuous query
system for internet databases. In Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pages 379–390, 2000.

[23] A. K. Y. Cheung and H.-A. Jacobsen. Load balancing content-based publish/subscribe
systems. ACM Transactions on Computer Systems (TOCS), 28(4):1–55, 2010.

[24] A. K. Y. Cheung and H.-A. Jacobsen. Green resource allocation algorithms for pub-
lish/subscribe systems. In 2011 31st International Conference on Distributed Computing
Systems, pages 812–823. IEEE, 2011.

[25] E. G. Coffman, Jr, M. R. Garey, and D. S. Johnson. An application of bin-packing to
multiprocessor scheduling. SIAM Journal on Computing, 7(1):1–17, 1978.

116

[26] H. Cole-Lewis and T. Kershaw. Text messaging as a tool for behavior change in disease
prevention and management. Epidemiologic reviews, 32(1):56–69, 2010.

[27] D. Dedousis, N. Zacheilas, and V. Kalogeraki. On the fly load balancing to address hot
topics in topic-based pub/sub systems. In 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), pages 76–86. IEEE, 2018.

[28] M. Deshpande, K. Kim, B. Hore, S. Mehrotra, and N. Venkatasubramanian. Recrew: A
reliable flash-dissemination system. IEEE Transactions on Computers, 62(7):1432–1446,
2012.

[29] N. Do and N. Venkatasubramanian. Rich content sharing in mobile systems using
multiple wireless networks. In Proceedings of the 9th Middleware Doctoral Symposium
of the 13th ACM/IFIP/USENIX International Middleware Conference, pages 1–5, 2012.

[30] N. M. Do, C.-H. Hsu, and N. Venkatasubramanian. Hybcast: Rich content dissemination
in hybrid cellular and 802.11 ad hoc networks. In 2012 IEEE 31st Symposium on Reliable
Distributed Systems, pages 352–361. IEEE, 2012.

[31] F. T. El-Hassan and D. Ionescu. Design and implementation of a hardware versatile
publish-subscribe architecture for the internet of things. IEEE Access, 6:31872–31890,
2018.

[32] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of
publish/subscribe. ACM computing surveys (CSUR), 35(2):114–131, 2003.

[33] P. Felber. The corba object group service: A service approach to object groups in corba.
1998.

[34] J. Gascon-Samson, F.-P. Garcia, B. Kemme, and J. Kienzle. Dynamoth: A scalable
pub/sub middleware for latency-constrained applications in the cloud. In 2015 IEEE
35th International Conference on Distributed Computing Systems, pages 486–496. IEEE,
2015.

[35] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load balancing in
dynamic structured p2p systems. In IEEE INFOCOM 2004, volume 4, pages 2253–2262.
IEEE, 2004.

[36] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and P. Valduriez.
Streamcloud: An elastic and scalable data streaming system. IEEE Transactions on
Parallel and Distributed Systems, 23(12):2351–2365, 2012.

[37] A. Gupta, O. D. Sahin, D. Agrawal, and A. El Abbadi. Meghdoot: content-based
publish/subscribe over p2p networks. In ACM/IFIP/USENIX International Confer-
ence on Distributed Systems Platforms and Open Distributed Processing, pages 254–273.
Springer, 2004.

117

[38] G. Gupta and M. Younis. Load-balanced clustering of wireless sensor networks. In
IEEE International Conference on Communications, 2003. ICC’03., volume 3, pages
1848–1852. IEEE, 2003.

[39] W. Han, S. Ada, R. Sharman, and H. R. Rao. Campus emergency notification systems.
Mis Quarterly, 39(4):909–930, 2015.

[40] E. S. Hou, N. Ansari, and H. Ren. A genetic algorithm for multiprocessor scheduling.
IEEE Transactions on Parallel and Distributed systems, 5(2):113–120, 1994.

[41] S. Huq, Z. Shafiq, S. Ghosh, A. Khakpour, and H. Bedi. Distributed load balancing in
key-value networked caches. In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 583–593. IEEE, 2017.

[42] S. Jacobs, M. Y. S. Uddin, M. Carey, V. Hristidis, V. J. Tsotras, N. Venkatasubrama-
nian, Y. Wu, S. Safir, P. Kaul, X. Wang, et al. A bad demonstration: towards big active
data. Proceedings of the VLDB Endowment, 10(12):1941–1944, 2017.

[43] S. Jacobs, X. Wang, M. J. Carey, V. J. Tsotras, and M. Y. S. Uddin. Bad to the bone:
Big active data at its core. The VLDB Journal, 29:1337–1364, 2020.

[44] S. G. Jacobs. A BAD Thesis: The Vision, Creation, and Evaluation of a Big Active
Data Platform. University of California, Riverside, 2018.

[45] H.-A. Jacobsen, A. Cheung, G. Li, B. Maniymaran, V. Muthusamy, and R. S.
Kazemzadeh. The padres publish/subscribe system. In Principles and Applications
of Distributed Event-Based Systems, pages 164–205. IGI Global, 2010.

[46] H. Jafarpour, S. Mehrotra, and N. Venkatasubramanian. A fast and robust content-
based publish/subscribe architecture. In 2008 Seventh IEEE International Symposium
on Network Computing and Applications, pages 52–59. IEEE, 2008.

[47] H. Jafarpour, S. Mehrotra, and N. Venkatasubramanian. Dynamic load balancing for
cluster-based publish/subscribe system. In 2009 Ninth Annual International Symposium
on Applications and the Internet, pages 57–63. IEEE, 2009.

[48] S. Ji, C. Ye, J. Wei, and H.-A. Jacobsen. Merc: Match at edge and route intra–cluster for
content-based publish/subscribe systems. In Proceedings of the 16th Annual Middleware
Conference, pages 13–24, 2015.

[49] R. S. Kazemzadeh and H.-A. Jacobsen. Reliable and highly available distributed pub-
lish/subscribe service. In 2009 28th IEEE International Symposium on Reliable Dis-
tributed Systems, pages 41–50. IEEE, 2009.

[50] A. Keränen, J. Ott, and T. Kärkkäinen. The ONE Simulator for DTN Protocol Evalua-
tion. In SIMUTools ’09: Proceedings of the 2nd International Conference on Simulation
Tools and Techniques, New York, NY, USA, 2009. ICST.

118

[51] A. Khan, C. L. McCreary, and M. S. Jones. A comparison of multiprocessor scheduling
heuristics. In 1994 Internatonal Conference on Parallel Processing Vol. 2, volume 2,
pages 243–250. IEEE, 1994.

[52] K. Kim, S. Mehrotra, and N. Venkatasubramanian. Farecast: Fast, reliable application
layer multicast for flash dissemination. In ACM/IFIP/USENIX International Confer-
ence on Distributed Systems Platforms and Open Distributed Processing, pages 169–190.
Springer, 2010.

[53] K. Kim, S. Mehrotra, and N. Venkatasubramanian. Efficient and reliable application
layer multicast for flash dissemination. IEEE Transactions on Parallel and Distributed
Systems, 25(10):2571–2582, 2013.

[54] K. Kim, Y. Zhao, and N. Venkatasubramanian. Gsford: Towards a reliable geo-social
notification system. In 2012 IEEE 31st Symposium on Reliable Distributed Systems,
pages 267–272. IEEE, 2012.

[55] B. Koldehofe, R. Mayer, U. Ramachandran, K. Rothermel, and M. Völz. Rollback-
recovery without checkpoints in distributed event processing systems. In Proceedings of
the 7th ACM international conference on Distributed event-based systems, pages 27–38,
2013.

[56] S. Krishnan and J. L. U. Gonzalez. Google cloud pub/sub. In Building Your Next Big
Thing with Google Cloud Platform, pages 277–292. Springer, 2015.

[57] E. D. Kuligowski, E. D. Kuligowski, and A. Kimball. Alerting under imminent threat:
Guidance on alerts issued by outdoor siren and short message alerting systems. US
Department of Commerce, National Institute of Standards and Technology, 2018.

[58] J. Li, Z. Ning, B. Jedari, F. Xia, I. Lee, and A. Tolba. Geo-social distance-based data
dissemination for socially aware networking. IEEE Access, 4:1444–1453, 2016.

[59] A. Lima and M. Musolesi. Spatial dissemination metrics for location-based social net-
works. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pages
972–979, 2012.

[60] C. P. Low, C. Fang, J. M. Ng, and Y. H. Ang. Efficient load-balanced clustering
algorithms for wireless sensor networks. Computer Communications, 31(4):750–759,
2008.

[61] M. Ma, Z. Wang, K. Yi, J. Liu, and L. Sun. Joint request balancing and content aggre-
gation in crowdsourced cdn. In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 1178–1188. IEEE, 2017.

[62] S. T. Maguluri, R. Srikant, and L. Ying. Stochastic models of load balancing and
scheduling in cloud computing clusters. In 2012 Proceedings IEEE Infocom, pages 702–
710. IEEE, 2012.

119

[63] A. Mehrotra and M. Musolesi. Intelligent notification systems: A survey of the state of
the art and research challenges. arXiv preprint arXiv:1711.10171, 2017.

[64] M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Continuous query processing
of spatio-temporal data streams in place. GeoInformatica, 9(4):343–365, 2005.

[65] H. Nguyen, M. Uddin, and N. Venkatasubramanian. Reaps: Quasi-active fault tolerance
for big data publish-subscribe systems. In 2021 IEEE International Conference on Big
Data (Big Data), pages 368–375. IEEE, 2021.

[66] H. Nguyen, M. Y. S. Uddin, and N. Venkatasubramanian. Multistage adaptive load
balancing for big active data publish subscribe systems. In Proceedings of the 13th
ACM International Conference on Distributed and Event-based Systems, pages 43–54,
2019.

[67] I. H. Osman. Heuristics for the generalised assignment problem: simulated annealing
and tabu search approaches. Operations-Research-Spektrum, 17(4):211–225, 1995.

[68] J. Qi, R. Zhang, C. S. Jensen, K. Ramamohanarao, and J. He. Continuous spatial
query processing: a survey of safe region based techniques. ACM Computing Surveys
(CSUR), 51(3):1–39, 2018.

[69] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load balancing in
structured p2p systems. In International Workshop on Peer-to-Peer Systems, pages
68–79. Springer, 2003.

[70] G. T. Ross and R. M. Soland. A branch and bound algorithm for the generalized
assignment problem. Mathematical programming, 8(1):91–103, 1975.

[71] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and rout-
ing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing, pages 329–350. Springer,
2001.

[72] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. Scribe: The design of
a large-scale event notification infrastructure. In International workshop on networked
group communication, pages 30–43. Springer, 2001.

[73] P. Salehi, C. Doblander, and H.-A. Jacobsen. Highly-available content-based publish/-
subscribe via gossiping. In Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems, pages 93–104, 2016.

[74] P. Salehi, K. Zhang, and H.-A. Jacobsen. Popsub: Improving resource utilization in
distributed content-based publish/subscribe systems. In Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems, pages 88–99, 2017.

[75] V. Setty, M. Van Steen, R. Vitenberg, and S. Voulgaris. Poldercast: Fast, robust, and
scalable architecture for p2p topic-based pub/sub. In ACM/IFIP/USENIX Interna-
tional Conference on Distributed Systems Platforms and Open Distributed Processing,
pages 271–291. Springer, 2012.

120

[76] H. Shen. Content-based publish/subscribe systems. In Handbook of peer-to-peer net-
working, pages 1333–1366. Springer, 2010.

[77] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukherjee, D. Sturman,
and M. Ward. Gryphon: An information flow based approach to message brokering.
arXiv preprint cs/9810019, 1998.

[78] S. Tang, B. He, C. Yu, Y. Li, and K. Li. A survey on spark ecosystem: Big data
processing infrastructure, machine learning, and applications. IEEE Transactions on
Knowledge and Data Engineering, 2020.

[79] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over append-only
databases. Acm Sigmod Record, 21(2):321–330, 1992.

[80] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,
K. Gade, M. Fu, J. Donham, et al. Storm@ twitter. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, pages 147–156, 2014.

[81] V. Turau and G. Siegemund. Scalable routing for topic-based publish/subscribe sys-
tems under fluctuations. In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 1608–1617. IEEE, 2017.

[82] M. Y. S. Uddin, V. Setty, Y. Zhao, R. Vitenberg, and N. Venkatasubramanian. Richnote:
Adaptive selection and delivery of rich media notifications to mobile users. In 2016 IEEE
36th International Conference on Distributed Computing Systems (ICDCS), pages 159–
168. IEEE, 2016.

[83] M. Y. S. Uddin and N. Venkatasubramanian. Edge caching for enriched notifications
delivery in big active data. In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pages 696–705. IEEE, 2018.

[84] G. Van Dongen and D. Van den Poel. Evaluation of stream processing frameworks.
IEEE Transactions on Parallel and Distributed Systems, 31(8):1845–1858, 2020.

[85] D. Wald, K. Lin, L. Turner, and N. Bekiri. Us geological survey’s shakecast system: A
cloud-based future. In Proceedings of the Tenth US National Conference on Earthquake
Engineering (10NCEE), 2014.

[86] X. Wang. Activating Big Data at Scale. University of California, Irvine, 2020.

[87] J. Widom and S. Ceri. Active database systems: Triggers and rules for advanced database
processing. Morgan Kaufmann, 1996.

[88] F. Xia, A. M. Ahmed, L. T. Yang, and Z. Luo. Community-based event dissemination
with optimal load balancing. IEEE Transactions on Computers, 64(7):1857–1869, 2014.

[89] F. Xia, L. Liu, J. Li, J. Ma, and A. V. Vasilakos. Socially aware networking: A survey.
IEEE Systems Journal, 9(3):904–921, 2013.

121

[90] B. Xing, M. Deshpande, S. Mehrotra, and N. Venkatasubramanian. Gateway designa-
tion for timely communications in instant mesh networks. In 2010 8th IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops (PERCOM
Workshops), pages 564–569. IEEE, 2010.

[91] B. Xing, S. Mehrotra, and N. Venkatasubramanian. Disruption-tolerant spatial dissemi-
nation. In 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh
and Ad Hoc Communications and Networks (SECON), pages 1–9. IEEE, 2010.

[92] B. Xing, K. Seada, and N. Venkatasubramanian. An experimental study on wi-fi ad-hoc
mode for mobile device-to-device video delivery. In IEEE INFOCOM Workshops 2009,
pages 1–6. IEEE, 2009.

[93] Y. Yoon, V. Muthusamy, and H.-A. Jacobsen. Foundations for highly available content-
based publish/subscribe overlays. In 2011 31st International Conference on Distributed
Computing Systems, pages 800–811. IEEE, 2011.

[94] N. Zacheilas, N. Zygouras, N. Panagiotou, V. Kalogeraki, and D. Gunopulos. Dynamic
load balancing techniques for distributed complex event processing systems. In IFIP
International Conference on Distributed Applications and Interoperable Systems, pages
174–188. Springer, 2016.

[95] Y. Zhao, K. Kim, and N. Venkatasubramanian. Dynatops: A dynamic topic-based
publish/subscribe architecture. In Proceedings of the 7th ACM international conference
on Distributed event-based systems, pages 75–86, 2013.

[96] Y. Zhao and W. Song. Survey on social-aware data dissemination over mobile wireless
networks. IEEE Access, 5:6049–6059, 2017.

[97] Y. Zhou, A. Salehi, and K. Aberer. Scalable delivery of stream query result. In Proceed-
ings of 35th International Conference on Very Large Data Bases (VLDB 2009), number
CONF. VLDB, 2009.

[98] Y. Zhu and Y. Hu. Efficient, proximity-aware load balancing for dht-based p2p systems.
IEEE Transactions on parallel and distributed systems, 16(4):349–361, 2005.

[99] B. Zolfaghari, G. Srivastava, S. Roy, H. R. Nemati, F. Afghah, T. Koshiba, A. Razi,
K. Bibak, P. Mitra, and B. K. Rai. Content delivery networks: State of the art, trends,
and future roadmap. ACM Computing Surveys (CSUR), 53(2):1–34, 2020.

122

Appendix A

/****** Three Datasets ******/

//create datatypes

create type UserLocationType if not exists as open{

recordId: uuid,

latitude: double,

longitude: double,

userName: string,

timeoffset: float,

timestamp: datetime

};

create type UserLocationFeedType if not exists as open{

latitude: double,

longitude: double,

userName: string,

timeoffset: float,

123

timestamp: datetime

};

create type EmergencyReportType if not exists as open {

recordId: uuid,

severity: int,

impactZone: circle,

timeoffset: float,

timestamp: datetime,

duration: float,

message: string,

emergencyType: string,

userName: string

};

create type EmergencyReportFeedType if not exists as open {

severity: int,

impactZone: circle,

timeoffset: float,

timestamp: datetime,

duration: float,

message: string,

emergencyType: string,

userName: string

};

124

create type EmergencyShelterType if not exists as open {

name: string,

location: point

};

//create datasets

create dataset EmergencyReports(EmergencyReportType) primary key

recordId AUTOGENERATED;

create dataset UserLocations(UserLocationType) primary key recordId

AUTOGENERATED;

create dataset EmergencyShelters(EmergencyShelterType) primary key name;

create index gbTimestampReport on EmergencyReports(timestamp);

create index gbTimestampLocation on UserLocations(timestamp);

create index gbEmergencyTypeReport on EmergencyReports(emergencyType) type keyword;

create index locReports on EmergencyReports(impactZone) type RTREE;

create index locShelters on EmergencyShelters(location) type RTREE;

/****** Five Channels ******/

//create functions

//1) "All emergencies of type T"

create function recentEmergenciesOfType(emergencyType){

(select r as reports from

(select value r from EmergencyReports r where r.timestamp >

current_datetime() - day_time_duration("PT10S")) r

125

where r.emergencyType = emergencyType)

};

//2) "All emergencies at location L"

create function recentEmergenciesAtLocation(latitude, longitude){

(select r as reports from

(select value r from EmergencyReports r where r.timestamp >

current_datetime() - day_time_duration("PT20S")) r

where spatial_intersect(r.impactZone,create_point(latitude,longitude)))

};

//3) "All emergencies of type T at location L"

create function recentEmergenciesOfTypeAtLocation(emergencyType, latitude, longitude){

(select r as reports from

(select value r from EmergencyReports r where r.timestamp >

current_datetime() - day_time_duration("PT30S")) r

where r.emergencyType = emergencyType

and spatial_intersect(r.impactZone,create_point(latitude,longitude)))

};

//4) "All emergencies of type T at location L with shelters S"

create function

recentEmergenciesOfTypeAtLocationWithShelter(emergencyType, latitude, longitude)

{

(select r as reports, shelter as shelters

from (select value r from EmergencyReports r where r.timestamp

> current_datetime() - day_time_duration("PT60S")) r

126

let shelter = (select value shelter from EmergencyShelters shelter

where spatial_intersect(r.impactZone, shelter.location))

where r.emergencyType = emergencyType

and spatial_intersect(r.impactZone,create_point(latitude,longitude)))

};

//5) "The impactZone and message for all emergencies intersecting user U"

create function recentEmergenciesNearMe(userName){

(select r as reports

from

(select value r from EmergencyReports r where r.timestamp >

current_datetime() - day_time_duration("PT10S")) r,

(select value l from UserLocations l where l.timestamp >

current_datetime() - day_time_duration("PT10S")) user

where user.userName = userName

and spatial_intersect(r.impactZone,create_point(user.latitude,user.longitude)))

};

//6) "The impactZone and message for all emergencies of type T intersecting user U"

create function recentEmergenciesOfTypeNearMe(emergencyType, userName){

(select r as reports

from

(select value r from EmergencyReports r where r.timestamp >

current_datetime() - day_time_duration("PT10S")) r,

(select value l from UserLocations l where l.timestamp >

current_datetime() - day_time_duration("PT10S")) user

where user.userName = userName

127

and r.emergencyType = emergencyType

and spatial_intersect(r.impactZone,create_point(user.latitude,user.longitude)))

};

//7) "The impactZone, message, and a list of Shelters for all

emergencies of type T intersecting user U"

create function recentEmergenciesOfTypeWithShelterNearMe(emergencyType, userName){

(select r as reports, shelter as shelters

from

(select value r from EmergencyReports r where r.timestamp >

current_datetime() - day_time_duration("PT10S")) r,

(select value l from UserLocations l where l.timestamp >

current_datetime() - day_time_duration("PT10S")) user

let shelter = (select value shelter from EmergencyShelters shelter

where spatial_intersect(r.impactZone, shelter.location))

where user.userName = userName

and r.emergencyType = emergencyType

and spatial_intersect(r.impactZone,create_point(user.latitude,user.longitude)))

};

create repetitive channel recentEmergenciesOfTypeChannel using

recentEmergenciesOfType@1 period duration("PT10S");

create repetitive channel recentEmergenciesAtLocationChannel using

recentEmergenciesAtLocation@2 period duration("PT20S");

create repetitive channel recentEmergenciesOfTypeAtLocationChannel

using recentEmergenciesOfTypeAtLocation@3 period duration("PT30S");

128

create repetitive channel recentEmergenciesNearMeChannel using

recentEmergenciesNearMe@1 period duration("PT10S");

/****** Three Feeds ******/

//create feeds

create feed ReportFeed with

{

"adapter-name": "socket_adapter",

"sockets": "promethium.ics.uci.edu:23231",

"address-type": "IP",

"type-name": "EmergencyReportFeedType",

"format": "adm"

};

create feed ShelterFeed with

{

"adapter-name": "socket_adapter",

"sockets": "promethium.ics.uci.edu:23232",

"address-type": "IP",

"type-name": "EmergencyShelterType",

"format": "adm"

};

create feed UserLocationFeed with

{

"adapter-name": "socket_adapter",

129

"sockets": "promethium.ics.uci.edu:23233",

"address-type": "IP",

"type-name": "UserLocationFeedType",

"format": "adm"

};

//connect feeds

connect feed ReportFeed to dataset EmergencyReports;

connect feed ShelterFeed to dataset EmergencyShelters;

connect feed UserLocationFeed to dataset UserLocations;

//start feeds

start feed ReportFeed;

start feed ShelterFeed;

start feed UserLocationFeed;

130

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	The Need for Next-Generation Societal Scale Notification Systems
	Notification Systems and Applications
	The Need for a New Generation of Notification Systems
	Enabling a New Generation of Notification Systems
	Key Challenges
	Thesis Contributions and Organization
	Thesis Contribution
	Organization of Thesis

	Existing Data Delivery Platforms and Limitations
	The Publish Subscribe Systems
	Publish Subscribe System Concepts
	Centralized versus Distributed Publish Subscribe Systems
	Subscription Model for Publish Subscribe Systems
	Research in distributed Publish Subscribe Systems

	Reliable and Timely Notification for Societal Scale Alerting
	Other Data Streaming and Delivering Platforms

	Big Data Publish Subscribe: Approach and Prototype System
	The Big Data Publish Subscribe (BDPS) Approach
	The BDPS Backend: A Big Data Management System
	Data Publishers
	Data Subscribers
	Broker Network

	The prototype BAD BDPS System and Usecase Application
	The prototype backend BDMS - BAD-Asterix
	The prototype BDPS distributed Broker Network - BAD Brokers
	An Emergency Notification Application

	Multistage Adaptive Load Balancing for Big Data Publish Subscribe Systems
	Motivation and Overview
	System Model and Problem Formulation
	The Multistage Adaptive Load Balancing Approach
	The Multistage Adaptive Load Balancing Approach
	Stage 1: Initial Placement
	Stage 2: Dynamic Migration
	Stage 3: Shuffle

	Experimental Evaluation
	Prototype System Evaluation
	Simulation Based Evaluation

	Conclusion

	REAPS: Quasi-active Fault Tolerance for Big Data Publish-Subscribe Systems
	Motivation and Overview
	The REAPS Approach
	Backup Broker Assignment in REAPS
	Backup Broker Assignment Problem Formulation
	Backup Broker Assignment Algorithms

	Broker State Management and State Replication in REAPS
	Broker State Representation
	Quasi-active State Replication

	Failure Model, Detection and Recovery in REAPS
	Failure Detection and Recovery

	Experimental Evaluation
	REAPS Prototype Implementation and Measurement Study
	Simulation-Based Evaluation

	Conclusion

	Notification Prioritization in Big Data Publish Subscribe Systems
	Prioritizing Notifications
	The Notification Prioritization Approach
	Quantifying Notification Value
	Notification Arrival and Delivery Queuing Model

	The Notification Prioritization Problem: Formulation and Algorithms
	Notification Prioritization - Problem Formulation
	Notification Delivery Scheduling Algorithms

	Simulation-based Evaluation
	Simulation Setup
	Simulation Model
	A Measurement Study using the BAD Platform
	Prioritization Techniques: Simulation Results

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix

