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Abstract

Statistical modeling of high-dimensional matrix-valued data motivates the use of a low-

rank representation that simultaneously summarizes key characteristics of the data and en-

ables dimension reduction. Low-rank representations commonly factor the original data into

the product of orthonormal basis functions and weights, where each basis function represents

an independent feature of the data. However, the basis functions in these factorizations are

typically computed using algorithmic methods that cannot quantify uncertainty or account

for basis function correlation structure a priori. While there exist Bayesian methods that

allow for a common correlation structure across basis functions, empirical examples motivate

the need for basis function-specific dependence structure. We propose a prior distribution

for orthonormal matrices that can explicitly model basis function-specific structure. The

prior is used within a general probabilistic model for singular value decomposition to con-

duct posterior inference on the basis functions while accounting for measurement error and

fixed effects. We discuss how the prior specification can be used for various scenarios and

demonstrate favorable model properties through synthetic data examples. Finally, we apply

our method to two-meter air temperature data from the Pacific Northwest, enhancing our

understanding of the Earth system’s internal variability.

Key Words: Bayesian Singular Value Decomposition, Probabilistic Low-Rank

Representation, Probabilistic Basis Functions, Stiefel Manifold, Spatio-Temporal Random

Effect

1 Introduction

1.1 Orthonormal matrices in statistical modeling

Within the field of statistics, orthonormal matrices are the cornerstone of many model-

ing approaches, including exploratory data analysis, factor analysis (Harman and Harman,
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1976; Mulaik, 2009), principal component analysis (PCA; Hotelling, 1933; Jolliffe, 2002),

singular value decomposition (SVD; Stewart, 1993), and proper orthogonal decomposition

(POD; Berkooz, 1993). Each of these techniques uses orthonormal matrices to decompose

matrix-valued data with the goal of summarizing its key characteristics as well as dimension

reduction (Kambhatla and Leen, 1997) and data compression (Chen et al., 2022). Across

many areas of science, technology, and medicine, orthonormal matrix factorizations of data

are highly useful because the measurements of interest in these fields often arise from lower-

dimensional processes with physically interpretable structures. Examples include factor

analysis in physiological studies (Fabrigar et al., 1999), PCA in geography (Roden et al.,

2015) and ecology (Jackson, 1993; Peres-Neto et al., 2003), and SVD and PCA for medical

imaging (Smith et al., 2014).

For mean-zero data Y ∈ Rn×m, SVD decomposes Y = UDV′, where U ∈ Rn×l is an

orthonormal matrix, D ∈ Rl×l is a diagonal matrix, V ∈ Rm×l is an orthonormal matrix,

and l = min{n,m}. Alternatively, PCA decomposes YY′ = ABA′, where now A ∈ Rn×l is

an orthonormal matrix whose columns are the eigenvectors of YY′, B ∈ Rl×l is a diagonal

matrix whose elements are the eigenvalues of YY′, and l = min{n,m}. Note that the

equivalence between SVD and PCA comes from YY′ = (UDV′) (VD′U′) = UDD′U′ =

ABA′, where the diagonal elements of D are the square root of the eigenvalues of YY′, the

columns of U are the eigenvectors of YY′, and the columns of V are the eigenvectors of

Y′Y.

In the climate sciences where data are spatially- and temporally-oriented, the columns

of orthonormal matrices define empirical orthogonal functions (EOFs; Lorenz, 1956; North

et al., 1982; Hannachi et al., 2007), which are analogous to PCA. EOFs are used to summa-

rize modes of climate variability (see, e.g., Thompson and Wallace, 2000; Mantua and Hare,

2002), identify the drivers of extreme weather events (Grotjahn et al., 2016), and quantify

human-induced changes to the global climate system (O’Brien and Deser, 2023). Addition-

ally, spatial modeling of climate data often uses EOFs to incorporate spatial and temporal

information via spatially-indexed basis functions and spatial random effects (Stroud et al.,

2001; Nychka et al., 2002; Cressie and Johannesson, 2006, 2008).

1.2 Inference and challenges

The basis functions contained in the orthonormal matrices U and V and the elements of

D are traditionally computed via iterative methods (Golub and Kahan, 1965; Demmel and

Kahan, 1990), which we refer to as classical SVD (C-SVD or C-PCA) henceforth. However,

these classical procedures have several important limitations. First, when n is large with

respect to m, the basis functions contained in the orthonormal matrices estimated from C-
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SVD can be noisy and therefore lose their physical interpretation (Wang and Huang, 2017).

C-SVD and C-PCA are not able to distinguish between measurement and signal variation,

which means that estimates of the basis functions are heavily influenced by the presence

of measurement noise (Bailey, 2012; Epps and Krivitzky, 2019). Furthermore, since their

algorithms are deterministic, C-PCA and C-SVD do not provide measures of uncertainty in

either the basis functions or their weights. Finally, the estimated basis functions only exhibit

dependence or structure implicitly via data correlations since C-PCA and C-SVD cannot

take advantage of explicit structure that may be present in the data generating mechanisms.

A variety of approaches have been developed to address limitations associated with C-

SVD and C-PCA. Regarding the issue of noise, large n with small m, and structure in

the basis functions, a regularized PCA approach can be adopted (Shen and Huang, 2008;

Zou et al., 2006; Jolliffe et al., 2002). Wang and Huang (2017) extend the regulariza-

tion approach by incorporating smoothness and local features into their penalization using

smoothing splines and an ℓ1 penalty, producing spatially explicit orthogonal basis functions.

To further account for uncertainty quantification in the basis function, one possibility is

to take a Bayesian approach and specify a prior distribution for the orthonormal matrix.

The set of orthonormal matrices Vk,n = {X ∈ Rn×k : X′X = Ik}, where Ik is the k × k

identity matrix, is called the Stiefel manifold (Chikuse, 2003). Considerable effort has been

put into understanding theoretical properties associated with distributions on the Stiefel

manifold and optimal methods for computation and sampling (Mardia and Jupp, 1999;

Chikuse, 2003; Hoff, 2007, 2009; Byrne and Girolami, 2013; Wang and Gelfand, 2013, 2014;

Hernandez-Stumpfhauser et al., 2017; Pourzanjani et al., 2021; Jauch et al., 2021). Hoff

(2007) developed a uniform prior for orthonormal basis functions (the invariant or uniform

measure on the Stiefel manifold) that enables the specification of a Bayesian SVD model,

and showed how to sample from the full conditional distributions of the model. However,

the approach in Hoff (2007) requires sampling from the von Mises-Fisher (or Bingam-von

Mises-Fisher) distributions, which can be difficult, and does not allow for the basis functions

to be structured. Additionally, support for these distributions in probabilistic programming

languages such as Stan is limited (Carpenter et al., 2017), providing yet another barrier for

implementation. Hoff (2009) and Byrne and Girolami (2013) propose tractable methods for

sampling from von Mises-Fisher distributions, but these require the underlying statistical

model to abide by specific conditions and forms which limits the application areas. Recent

work by Pourzanjani et al. (2021) and Jauch et al. (2021) addresses both sampling and flex-

ibility of distributions on the Stiefel manifold by simulating unconstrained random vectors

(i.e., not orthogonal and not unit-length) and then transforming these draws to be orthonor-

mal via an appropriate Jacobian to obtain samples on the Stiefel manifold. Importantly,
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Figure 1: Estimated length-scale from a fitted Gaussian variogram for each spatial and temporal
basis function computed from the singular value decomposition of the two-meter air surface
temperature data described in Section 5.

these methods are computationally efficient, can be incorporated into probabilistic program-

ming languages, and allow for the basis functions to be modeled dependently. However, the

dependence structure is limited in that it is shared across the basis functions and is unable

to accommodate the basis function-specific structures that are present in real-world data

sets.

Particularly in the climate sciences, the physical structures summarized by orthonormal

matrices have different scales (e.g., spatial or temporal), wherein the leading modes or basis

functions reflect larger-scale variability while the later modes reflect finer-scale variability.

To illustrate this, we calculated the SVD of monthly maximum two-meter air temperature

from a 0.25◦ × 0.25◦ longitude-latitude grid over the United States Pacific Northwest from

1979 through 2022 (see Section 5 for details on the data) using standard statistical software.

We then estimate the length-scale of a Gaussian variogram for each spatial and temporal

basis function, the columns of the left- and right- singular matrices, respectively. Figure 1

shows empirical estimates of the length-scale for each basis function for U and V in panels

a) and b), respectively. From this figure it is clear the length-scale of the leading modes

for both the left- and right- singular matrices is at least one order of magnitude larger than

that of the later modes, following a quasi-exponentially decreasing trend. This suggests

estimating a common spatial or temporal structure for all of the basis functions will miss

important features of the data, resulting in oversmoothing and underfitting for the leading

modes and undersmoothing and overfitting for the later modes.

1.3 Contributions

Here, we develop a prior distribution for orthonormal matrices that enables basis function

specific structure and construct a probabilistic model for SVD. The resulting full conditional

distributions for the basis functions are available in closed form, yielding an analytically

straightforward posterior for sampling orthonormal matrices. Furthermore, we discuss how

the prior can be used for a variety of modeling purposes. Our prior is in general not uni-
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formly distributed on Vk,n (although the uniform distribution is a special case) and we are

able to impart information into the prior through our specification of a correlation matrix.

We show how the correlation matrix can be specified to either impart smoothing onto the

basis functions (producing results similar to Wang and Huang, 2017) or recover the prior

developed by Hoff (2007), and also demonstrate how the mean of the full conditional distri-

butions for the basis functions of our probabilistic SVD model coincides with the classical

approach (C-SVD) under certain conditions. Our resulting prior, along with the proposed

Bayesian hierarchical model, is quite general and allows each basis function to have a unique

dependence structure that is learned from the data, which has not been previously possible.

The remainder of the manuscript is organized as follows. Section 2 develops the prior

distribution for orthonormal matrices. Section 3 proposes a general probabilistic model

for matrix factorizations with a specific focus on SVD and then expands other possible

modeling choices. Three simulation studies are conducted in section 4, where we show the

importance of basis function-specific structure, the model rank and signal-to-noise ratios,

and the impact a linear trend has on basis function recovery. In Section 5, we apply our

probabilistic model for SVD to decompose monthly maximum two-meter air temperature

into its major modes of variability and provide uncertainty bounds for these modes, allowing

better understanding of the spatial relationships in the data and illustrating the importance

of basis function-specific structure. Section 6 concludes the paper.

2 A prior distribution for orthonormal matrices with basis

function-specific structure

We construct a prior distribution for matrices on the Stiefel manifold Vk,n that is conjugate

with a normal likelihood model. The prior is constructed from the projected normal distri-

bution that has been augmented with a latent length (see Wang and Gelfand 2013, 2014 and

Hernandez-Stumpfhauser et al. 2017 and the references therein for details on the projected

normal).

2.1 Generating mechanism

One method of drawing an orthonormal matrix from the uniform distribution on Vk,n is

outlined in the appendix of Hoff (2007). As part of the construction, the underlying normal

distribution from which the orthonormal matrix is generated specifies the identity matrix

as the covariance, and the resulting distribution is uniform on Vk,n. Here, we extend this

generating mechanism to allow for structure in its covariance, specific to each column, such

that the prior implied by Hoff (2007) is a special case. By construction, the resulting
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distribution is not necessarily uniform on Vk,n.

For fixed k, let zi independent Nn(0,Ωi) and Ωi ∼ πΩ, for i = 1, 2, . . . , k, where πΩ is a

valid distribution for symmetric positive definite matrices. Define P0 = In, x1 = P0z1, and

Xi = [x1, . . . ,xi], Pi = In −Xi(X
′
iXi)

−1X′
i, xi+1 = Pizi+1

for i = 1, 2, . . . , k− 1. Then xi|Xi−1 ∼ Nn(0,Pi−1ΩiP
′
i−1) and x′

ixj = 0 for i ̸= j. Further,

define

wi =
xi

(x′
ixi)1/2

, Wi = [w1, . . . ,wi] (1)

for i = 1, 2, . . . , k. By construction, Wk ∈ Vk,n is an orthonormal matrix. The conditional

distributions of each column given the preceding columns arewi|Wi−1 ∼ PNn(0,Pi−1ΩiP
′
i−1),

where PNn(·, ·) denotes the n-dimensional projected normal distribution (Wang and Gelfand,

2013, 2014; Hernandez-Stumpfhauser et al., 2017).

Let
d
= denote equality in distribution. We now provide two key properties associated

with the distribution of W ≡ Wk based on the constructed matrix X ≡ Xk, with proofs

deferred to appendix A.

Proposition 1. The columns of W = X(X′X)−1/2 are exchangeable. That is, for any per-

mutation π of the set {1, . . . , k}, p([w1, . . . ,wk])
d
= p([wπ(1), . . . ,wπ(k)]).

Proposition 2. wi|Wi−1
d
= Ni−1w̃i|Wi−1 where the columns of Ni−1 form an orthonormal

basis for the null space of Wi−1 and w̃i, the projected weight function, satisfies w̃i|Wi−1 ∼

PNn−i+1(0,N
′
i−1ΩiNi−1).

Proposition 1 implies the columns of W are exchangeable, and therefore the conditional

distribution wi|WQ is invariant to the choice of subset of columns Q ⊂ {1, . . . , k}. When

proposition 1 is taken with proposition 2, the conditional distribution of wi|WQ given

any subset of columns Q is equal in distribution to NQw̃i, where NQ is an orthonormal

basis for the null space of WQ and w̃i|WQ ∼ PNn−|Q|+1(0,N
′
QΩiNQ). Therefore, we

now focus on a prior distribution for w̃i, the projected weight function, where w̃i|W−i ∼

PNn−k+1(0,N
′
iΩiNi) (i.e., Q = {1, . . . , i− 1, i+ 1, . . . , k}) and the columns of Ni span the

null space of W−i.

2.2 Projected normal prior distribution

From the construction in Section 2.1, we have w̃i|W−i ∼ PNn−k+1(0,N
′
iΩiNi). However,

sampling from a high-dimensional projected normal distribution is difficult because of the

form of the density function. To make sampling from the projected normal tractable, we
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augment the distribution w̃i|W−i using a latent length variable ri. The joint distribution of

(ri, w̃i)|W−i can be derived by transforming the random variable xi to spherical coordinates

(see supplement S.4), where the density function is

p(ri, w̃i|W−i) = (2π)−n∗/2|N′
iΩiNi|−1/2 exp

{
−1

2
(riw̃i)

′(N′
iΩiNi)

−1(riw̃i)

}
rn

∗−1
i I(w̃i ∈ V1,n∗),

(2)

which we denote as p(ri, w̃i) ∼ Nn∗(0,N′
iΩiNi)r

n∗−1
i with n∗ = n − k + 1. The indicator

function I(w̃i ∈ V1,n∗) is an integrating constant that is independent of the angle of w̃i

and dependent only on its length. Note for k = 1, the Stiefel manifold V1,n is the n − 1-

dimensional unit sphere and V1,n ≡ Sn−1. The length variable ri can be sampled using either

a slice sampler (Hernandez-Stumpfhauser et al., 2017) or a Metropolis-Hastings algorithm.

However, we have found the slice sampler has numerical issues when n is large, and use a

Metropolis-Hastings within Gibbs algorithm (see supplement S.1) for all examples presented

herein.

The PN prior is convenient because if the data distribution is normal, the resulting

full conditional distribution is proportional to a normal, which is easy to sample from (see

Section 3.1 and supplement S.1 for more detail).

2.3 Incorporating explicit structure into the prior

From our formulation of the prior, we have the ability to specify or estimate the correlation

structure for the projected basis functions. The non-informative choice is Ωi ∝ In, implying

there is no dependence between the elements of the basis functions. As discussed in the

supplement (S.2), when Ωi ≡ I the generating mechanism is equivalent to that proposed

by Hoff (2007), resulting in w̃i being distributed uniformly on the (n− k + 1)-dimensional

sphere and the prior being equivalent to Hoff (2007).

A more general choice is to model Ωi = σ2
iCi, where Ci is a positive-definite correlation

matrix that specifies structure among the elements in the ith basis function and σ2
i is a

common variance parameter for those elements. (While σ2
i does not impact the distribution

of w̃i or wi directly because they are of unit length, it does affect the joint distribution

(2) of (ri, w̃i).) In most cases, Ci ≡ C(θi) will depend on hyperparameters θi that can

either be specified or learned within the hierarchical model. Across many areas of science,

including spatial statistics, machine learning, and emulation of complex physical models,

the elements of Ci are modeled via kernel functions Cθ(·, ·) that are positive definite on the

domain specified by the input space S. For example, when S ⊂ Rd, a popular choice is the
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Matérn kernel

Cν,ρ(s, s
′) =

21−ν

Γ(ν)

(
2ν

||s− s′||
ρ

)ν

Jν

(
2ν

||s− s′||
ρ

)
, (3)

defined for s, s′ ∈ S, where Γ is the gamma function, Jν is the Bessel function of the

second kind, and θ = {ν, ρ} are hyperparameters that describe the differentiability and

length-scale of the implied stochastic process, respectively. Special cases of the Matérn

kernel are for ν = 0.5, in which (3) simplifies to the exponential kernel C0.5,ρ(s, s
′) =

exp{−||s− s′||/ρ}, and the limit as ν → ∞, in which (3) reduces to the squared exponential

or Gaussian kernel C∞,ρ(s, s
′) = exp{−||s − s′||2/ρ}. Kernel functions like the Matérn are

useful for modeling generic dependence because they are highly flexible, depend on only a

few hyperparameters (each of which is interpretable), yield data-driven smoothing that can

characterize nonlinear structures in the underlying data, and require minimal a priori or

subjective specification. Furthermore, such kernel functions do not require offline tuning of

bandwidth or regularization parameters (as is needed in, e.g., smoothing splines; see Wang

and Huang, 2017) since these aspects of the kernel can be inferred from the data within the

Bayesian hierarchical model.

3 General probabilistic model

Define Z ∈ Rn×m to be the observed data which is modeled as

Z = M+Y +AΞB, (4)

where M ∈ Rn×m, Y ∈ Rn×m, Σ = AA′ ∈ Rn×n, Φ = BB′ ∈ Rm×m, and Ξ = [ξ1, . . . , ξm]

with ξi independent Nn(0, Im) for i = 1, . . . ,m. Then Z|M,Y,Σ,Φ ∼ MNn×m(M +

Y,Σ,Φ) where MN is the matrix normal distribution, M +Y is the mean of Z, Σ is the

covariance matrix for the rows of Z, Φ is the covariance matrix for the columns of Z, and

the density function is

p(Z|M,Y,Σ,Φ) =
1

(2π)nm/2|Φ|n/2|Σ|m/2
exp

{
−1

2
tr
[
Φ−1(Z−M−Y)′Σ−1(Z−M−Y)

]}
.

(5)

Equation (4) is a mixed-effects model, where M is a fixed-effect mean structure that is

dependent on observed covariates, which we discuss in Section 3.2.2, and Y is a “smooth”

random effect that we will represent using basis functions and weights. Generally, we assume

Y is a mean zero random effect and explains any discrepancy in Z not explained by M.
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For example, if Z is oriented such that the rows index spatial locations and the columns

index temporal observations (or replications), Y would be considered spatial random effects.

We now specify a non-parametric model for the random effects Y using singular value

decomposition and the prior distribution proposed in Section 2.2.

3.1 A probabilistic model for singular value decomposition

For now, we assume the mean of Z is zero (i.e., M = 0) and focus on a model for Y.

In models such as (4), the process Y can be represented as a reduced-rank process. One

example of a reduced-rank model is the singular value decomposition (SVD) Y = UDV′,

where U ∈ Rn×l is an orthonormal matrix, D ∈ Rl×l is a diagonally structured matrix,

V ∈ Rm×l is an orthonormal matrix, and l = min{n,m}. To reduce the dimension of the

process, we set k < l (typically k ≪ l) where k is some pre-specified value. This results in

Y ≈ UDV′, where now U ∈ Rn×k, D ∈ Rk×k, and V ∈ Rm×k are of reduced dimension. In

traditional SVD (similarly in PCA), the amount of variance explained by each component

can be used to inform the value of k. For now, we will assume k is fixed and refer the reader

to Section 3.1.3 for further discussion.

In (4), Φ = BB′ represents the covariance between replicate observations (columns).

We make the simplifying assumption Φ = Im (i.e., independence between replicates) and

model all variation in the data through Σ, which represents the covariance within observa-

tions (rows). The resulting probability model is Z ∼ MNn×m(UDV′,Σ, Im), where Σ now

accounts for the approximation of choosing k ≪ l and the density function is

p(Z|U,D,V,Σ, Im) =
1

(2π)nm/2|Σ|m/2
exp

{
−1

2
tr
[
(Z−UDV′)′Σ−1(Z−UDV′)

]}
.

(6)

3.1.1 Model priors

To complete our model specification, we assign priors to U,D,V, and Σ, and estimate the

model parameters using Bayesian techniques. Define U−i ≡ [u1, . . . ,ui−1,ui+1, . . . ,uk],

V−i ≡ [v1, . . . ,vi−1,vi+1, . . . ,vk], D−i ≡ diag(d1, . . . , di−1, di+1, . . . , dk), and E−i ≡ Z −

U−iD−iV
′
−i, so that Z−UDV′ = E−i−diuiv

′
i. Factoring the trace of the exponent of (6),

tr[(Z−UDV′)′Σ−1(Z−UDV′)] = tr[(E−i − diuiv
′
i)

′Σ−1(E−i − diuiv
′
i)]

= tr[E′
−iΣ

−1E−i − 2diviu
′
iΣ

−1E−i + d2iviu
′
iΣ

−1uiv
′
i]

= tr[E′
−iΣ

−1E−i − 2diu
′
iΣ

−1E−ivi + d2iv
′
iviu

′
iΣ

−1ui]

= tr[E′
−iΣ

−1E−i − 2diu
′
iΣ

−1E−ivi + d2iu
′
iΣ

−1ui].

9



The distribution Z ∼ MNn×m(UDV′,Σ, Im) can then be written

p(Z|ui,vi, di,U−i,D−i,V−i,Σ) = (7)

1

(2π)nm/2|Σ|m/2
exp

{
−1

2
tr
[
E′

−iΣ
−1E−i − 2diu

′
iΣ

−1E−ivi + d2iu
′
iΣ

−1ui

]}
,

which enables inference on the columns of U and V and the elements of D individually

(e.g., inference on ui and vi). Recall from Section 2.2 that ui|U−i
d
= Nu

i ũi|U−i and

vi|V−i
d
= Nv

i ṽi|V−i where the columns of Nu
i and Nv

i span the null space of U−i and V−i,

respectively. We specify the prior distributions

diũi|U−i ∼ Nn−k+1(0,N
u ′
i Ωu

i N
u
i )d

n−k
i I(ũi ∈ V1,n−k+1)

diṽi|V−i ∼ Nm−k+1(0,N
v ′
i Ωv

iN
v
i )d

m−k
i I(ṽi ∈ V1,m−k+1)

di ∼ Unif(0,∞).

(8)

For simplicity, we assume Σ = σ2In, but this simplification can be relaxed if desired,

e.g., by allowing Σ to be a structured non-diagonal covariance matrix. Last, we specify

Ωu
i = σ2

u,iCu(θu,i) and Ωv
i = σ2

v,iCv(θv,i) where Cu(θu,i) and Cv(θv,i) are valid correla-

tion matrices (i.e., the matrices are positive definite; see Section 2.3) and σ2
u,i and σ2

v,i are

variance parameters. For σ2, σ2
u,i and σ2

v,i we assign the non-informative half-t prior on the

standard deviation as proposed by Huang and Wand (2013); specifically σ ∼ Half-t(1, A),

σu,i ∼ Half-t(1, Au,i) and σv,i ∼ Half-t(1, Av,i).

One major benefit of our proposed prior is now realized: the full conditional distribution

of ũi and ṽi is proportional to a normal distribution (see supplement S.1). This results

in a Gibbs update step for both ũi and ṽi within the larger Markov chain Monte Carlo

(MCMC) sampling scheme (shown in supplement S.1), with computational benefits coming

from known tricks for sampling from the normal distribution (e.g., the Cholesky decompo-

sition). Additionally, we have the ability to specify, or learn, unique correlation matrices

Cu(θu,i) and Cv(θv,i) for each basis function which, to the best of our knowledge, has not

been previously considered.

3.1.2 Special cases

As discussed in Section 2.3, when Ωi ≡ I our specified probabilistic model for SVD is equiv-

alent to the fixed-rank SVD model proposed by Hoff (2007). Another interesting property

is the relationship to the classic algorithmic approach, C-SVD. As discussed and shown em-

pirically through simulation in the supplement (S.2.1), when Ωi = I the mean of the full

conditional distribution for the basis functions is equivalent to the estimates obtained by

10



C-SVD.

3.1.3 Model implementation

The SVD model (6) has several parameters that need to be specified: the number of basis

functions k, the correlation matrices Cu(θu,i) and Cv(θv,i), and any hyperparameters as-

sociated with the correlation matrices θu,i and θv,i. While in principle the value k can be

estimated either informally, e.g., scree plots (Cattell, 1966), or formally, e.g., cross-validation

(Wold, 1978) or the variable-rank model proposed by Hoff (2007), that is not the focus of

this work. Through empirical testing, we have found that if the true k∗ is less than the

specified k, then the last k−k∗ basis functions of both U and V will have posterior credible

intervals that cover zero at all, or nearly all, observations implying the basis function is not

significant. Conversely, if the true k∗ is greater than the specified k, there is little to no

impact on the first k basis functions (i.e., the kth basis function is not biased to account for

the lost information by not estimating the remaining k∗ − k basis functions). In choosing k

for the proposed model, an empirical Bayes approach could also be taken. Specifically, one

could compute the C-SVD, compute the cumulative amount of variance explained by the

basis functions, and inform the value of k based on this “traditional” approach.

Regarding the correlation matrices Cu,i and Cv,i, as previously mentioned the hyper-

parameters θu,i and θv,i can either be specified directly or learned within the broader hi-

erarchical model. The latter choice would involve specifying a prior p(θu,i,θv,i) for these

quantities and subsequently updating them within the MCMC algorithm. In the case of

using the Matérn kernel to specify Cu(θu,i) and Cv(θv,i), recall that θu,i = {νu,i, ρu,i} and

θv,i = {νv,i, ρv,i}, where ν(·) describes the differentiability of the implied stochastic process

and ρ(·) describes the length-scale of the basis functions. We generally recommend setting

ν(·) = 3.5 so the basis functions are third-order continuous but not over- or under- smoothed

(e.g., infinitely differentiable with ν = ∞ or non-differentiable with ν = 0.5, respectively). If

the length-scale parameters are not estimated within the MCMC algorithm, they could be

estimated offline via geostatistical techniques, e.g., estimating a semivariogram separately

across both the rows and columns. In the simulations presented in Section 4 and for the

application in Section 5 we opt to estimate the length-scale parameters within the MCMC

algorithm.

3.2 Other modeling choices

Section 3.1 proposes a general model for observed data using a low-rank approach. However,

there are other model specifications and corresponding matrix factorizations that can be seen

as special cases of the SVD model. We discuss a few of these choices.
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3.2.1 Principal components

As discussed in the introduction, PCA and SVD can be shown to produce an equivalent

matrix factorization. To this end, we can analogously represent the process Y = UA

where U is an orthonormal matrix of the eigenvectors of YY′, also known as the principal

components, A = DV′ = [a1, . . . ,ak] where ai ∼ N(0, λiIm), and Λ = diag(λ1, . . . , λk)

are the eigenvalues of YY′, also known as the principal loadings. To estimate U,A, and Λ

under this parameterization, there are two choices: (1) factor E−i = Z−U−iA−i in (7) and

we assign the prior λiũi|Ui ∼ Nn−k+1(0,N
u ′
i Ωu

i N
u
i )λ

n−1
i , or (2) estimate the parameters

from the SVD model and compute A as the posterior product of D and V′. For choice (1),

only the columns of U are dependent where the elements of A are independent, resulting in

only the principal components having dependence. If choice (2) is taken, then the columns of

U and rows A can be modeled dependently, where A is dependent through the specification

of V. For PCA parameterization, we advocate for choice (2) as there is more control over

the model than choice (1).

3.2.2 Including covariates

The general model (4) allows for more complex model structure, such as including covari-

ates. Traditionally, data are centered, or de-trended, prior to computing the SVD/PCA

decomposition. However, within (4) a mean term can be accommodated by modeling

M. We first consider a linear model for M, vec(M) = Xβ, where X ∈ Rnm×p is a

matrix of observed covariates and β ∈ Rp is a vector of unknown parameters. To esti-

mate U,D,V under this parameterization, E−i = Z − [Xβ] − U−iD−iV
′
−i in (7), where

[Xβ] denotes the reconstructed matrix of size n × m. To estimate β, we vectorize the

model to get vec(Z) ∼ MVNnm(Xβ+vec(UDV′), Im ⊗Σ), assign the diffuse normal prior

β ∼ MVNp(0, σ
2
βIp), with σ2

β large, and get a standard normal-normal conjugate update

for β.

This idea can be extended to a nonlinear function, say vec(M) = f(X,β), where f() is a

nonlinear function. For example, generalized additive models (Hastie and Tibshirani, 2017)

or differential equations (Berliner, 1996; Wikle, 2003) could be used to model the nonlinear

function. However, care will likely need to be taken for the nonlinear case such that the

nonlinear function is not too flexible, thereby conflicting with the random effect (e.g., see

4.4).
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4 Synthetic data examples

We conduct three simulation studies to illustrate various aspects of the prior. The first

simulation provides justification for basis function-specific structure as opposed to a shared

structure for all the basis functions. The second illustrates how measurement error and

model rank impact basis function recovery. The last simulation investigates the ability to

recover covariates when there may be confounding between the fixed and random effects.

4.1 Data generation

For all simulations, the target “true” basis functions U and V are simulated according to

the generating mechanism described in section 2.1 (e.g., to produce the orthonormal matrix

in (1)) with Ωu
i = Cu(θu,i) and Ωv

i = Cv(θv,i) where the elements of Cu(θu,i) and Cv(θv,i)

are defined by the Matérn correlation function with θu,i = (νu,i, ρu,i) and θv,i = (νv,i, ρv,i).

Data is simulated according to Z(x, t) ∼ N(M(x, t) + Y (x, t), σ2) with x = x1, . . . , xn

equally spaced in X = [−5, 5], t = t1, . . . , tm equally spaced in T = [0, 10], n = 100,

m = 100, and Y (x, t) being the (x, t) element of the matrix Y = UDV′. The specification

of M = [M(x, t)](x,t)∈X×T is described in each of the following subsections. The value of σ2

is chosen to match a target signal-to-noise ratio (SNR): let η be a random n×m matrix of iid

standard normal random variables, then, σ =
√

var(M+Y)
SNR∗var(η) . Ultimately, the simulated data

is Z = M+Y+ση (see the supplement Figure S.5) with var(M+Y)/var(Z−M−Y) = SNR.

4.2 Synthetic example #1: basis function-specific length scales

The first simulation study assesses how our model recovers the underlying basis functions

when the true basis functions have differing length-scales. We compare our “variable model,”

in which we allow each basis function to have unique structure that is estimated from the

data, to a “grouped model,” in which all basis functions have a shared structure that is also

estimated from the data. A distinguishing feature of our methodology is that we can model

basis function-specific structure, in comparison to other recent work (Pourzanjani et al.,

2021; Jauch et al., 2021) wherein all basis functions have the same length-scales. Both

models are described in Section 3.1: in the variable model, ρ·,i and ρ·,j need not be equal,

while in the grouped model, we impose the restriction that ρ·,i = ρ·,j , for i, j = 1, . . . , k. The

grouped model is a special case of the variable model, illustrating the enhanced flexibility

of our methodology relative to existing approaches.

To explore the effect of basis function-specific structure, we generate data where the

length-scale for each basis function varies from larger to smaller in an exponentially decreas-

ing trend similar to what is shown in Figure 1. To determine the effect of measurement
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Figure 2: Box plots of the ratio of the RMSE for the variable model divided by the grouped
model for U (left) and V (right) stratified by SNR (sub-panel) and basis function (color) with a
horizontal line at 1. For each box, the lower and upper hinge are the 25th and 75th percentiles,
respectively, the line within the box is the median, and the lower and upper whiskers are 2.5
and 97.5 percentiles. Note, we have limited the y-axis to ease visual comparison between panels
and only the first panel, with a SNR = 0.1, has values outside of the range.

error in conjunction with varying basis function length-scale, we generate data sets with σ2

chosen such that SNR = [10, 5, 2, 1, 0.5, 0.1]. For this simulation study, we do not consider

the effect of M, and all data is simulated with M ≡ 0. For all data generation, we specify the

true number of basis functions k = 4 with covariance parameters ν(·),i = 3.5 for i = 1, . . . , k

and ρ(·) = (3.5, 1, 0.5, 0.25) for both U and V, and diagonal matrix D = diag(40, 30, 20, 10).

For each SNR, we obtain 10000 posterior samples of the model parameters and discard the

first 5000 as burn-in for both the variable and grouped model. The process is repeated 100

times for each SNR to help understand the variability in the results.

For each simulation and model, we calculate the element-wise average root mean squared

error (RMSE) of the posterior mean for each basis function in U and V compared to their

corresponding true value. To compare the RMSE estimates of the variable to grouped model,

Figure 2 shows the ratio of the RMSE estimate for the variable model over the group model

for U (left) and V (right) stratified by the SNR (sub-panels) and by the basis function

(color) along with a horizontal reference line at one.

RMSE ratios less than one favor the variable model. From the figure, we see basis

functions 2 and 3 for both U and V have ratios closest to 1 for all values of SNR. In

contrast, basis functions 1 and 4 for both U and V have ratios that are systematically

less than 1 for all values of SNR except 0.1. The reason the variable model has improved

RMSE performance for 1 and 4 is because the estimate for ρ for the grouped model is

pulled toward the average length-scale value, which is close to the true length scale for basis

functions 2 and 3. This bias results in the grouped model over-fitting basis function 1 (since

the pooled estimate of the length scale is less than the true length scale) and under-fitting

basis function 4 (since the pooled estimate of the length scale is larger than the true length

scale); see estimates in Figure S.3 for a visual example of the over- and under-fitting.
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In summary, our first synthetic example verifies that when the data have differing struc-

tures in the underlying basis functions, failing to account for those different structures results

in systematically larger errors in the basis function estimates. The true structures can only

be appropriately captured when the underlying statistical model directly accounts for basis

function-specific structure.

4.3 Synthetic example #2: model rank

We now conduct a simulation study to illustrate the impact of SNR and model rank k on basis

function recovery. To determine the effect of measurement error, we again generate data

sets with σ2 chosen such that SNR = [10, 5, 2, 1, 0.5, 0.1]. As with the previous simulation

study, all data is simulated with M ≡ 0. For all data generation, we set the true number of

basis functions k∗ = 5 with covariance parameters (ν(·),i, ρ(·),i) = (3.5, 3) for both U and V

and for all i = 1, . . . , k∗, and diagonal matrix D = diag(40, 30, 20, 10, 5). One realization of

the simulated data with SNR = 1 and the U and V basis functions are shown in Figure S.4

in the supplement.

As discussed in Section 3.1.3, using this model only requires specification of k, the number

of basis functions used in U and V, and kernels for Cu(θ) and Cv(θ). To investigate

how possible mis-specification of the number of basis functions impacts model recovery, we

estimate the model with k = [3, 4, 5, 6, 7] for each level of SNR. Additionally, we specify a

Matérn kernel with smoothness parameter ρ = 3 for the correlation structure for all basis

functions. For each SNR and k combination, we obtain 10000 posterior samples of the model

parameters, discarding the first 5000 as burn-in. We repeat this process 100 times.

For each posterior simulation, we calculate the 95% coverage rate (CR) and RMSE for

U, V, and the “true” surface Y = UDV′. If the true k∗ is greater than the specified k,

the empirical CR and RMSE are computed only for the first k basis functions and then

averaged over the k estimates (e.g., we do not consider the last k∗ − k basis functions when

computing CR and RMSE). If the true k∗ is less than the specified k, the empirical CR and

RMSE for the “extra” k−k∗ basis functions are compared to the zero line and the reported

CR and RMSE values are obtained by averaging over the k estimates. Additionally, for each

simulation we computed the C-SVD using the base linear algebra library, LinearAlgebra.jl,

in Julia (Bezanson et al., 2017) and computed the RMSE of the calculated U,V, and

reconstructed surface Y assuming the same truncation value k. The coverage rates and the

RMSE are shown in Figure 3. The results of one simulation are shown in Figure 4 based on

the data shown in Figure S.4 in the supplement.

From Figure 3(a), we see our median coverage rate for theU (middle row) andV (bottom

row) basis functions (blue line) is near the nominal level (horizontal black line) and the 95%
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(a) Coverage rate, aggregated across repeated samples
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(b) Root mean square error, aggregated across repeated samples
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Figure 3: Validation results from the synthetic data example, showing coverage rate (top) and root
mean square error (bottom). In each panel, the solid blue line is the median Monte Carlo coverage rate
and shaded regions are the 95% Monte Carlo uncertainty bounds for the coverage rate over synthetic
replicates. Results are shown for varying levels of SNR and values of k for the recovered surface Y (top),
U basis functions (middle), and V basis functions (bottom). The SNR values range from 0.1 (left) to
10 (right). The black vertical line indicates the true value k∗ = 5 and the horizontal black line for (a) is
at 95% (the nominal coverage rate). In panel (b), the black point and error bars show the median and
95% bootstrapped confidence interval for the RMSE using the algorithmic C-SVD method.
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Figure 4: Posterior mean (blue line), 95% credible intervals (shaded blue region), truth (black
line), and C-SVD estimate (red line) for the U and V basis functions from a random simulation.
The data associated with this random simulation is shown in Figure S.4.

Monte Carlo uncertainty bounds (MCUB) for the coverage rate (blue shaded region) covers

the nominal level for all SNR levels and regardless of the specification of k. This implies that

posterior uncertainties are well calibrated and robust to mis-specifications of the number of

estimated basis functions, regardless of the magnitude of the noise. For the recovered data

(top row), we see the 95% MCUB cover the nominal level for all SNR levels with k greater

than 5. However, for k less than 5, achieving the nominal coverage depends on SNR: in

low signal cases (e.g., SNR = 0.1), the uncertainties are well calibrated, while posterior

uncertainties are too small (i.e., coverage of the truth is much less than the nominal level)

when the signal is stronger (SNR > 0.5). This counterintuitive result is due to the impact

of unaccounted signal for higher-order basis functions (i = 4 and/or i = 5) on the signal:

for large SNR, individual basis functions both (a) contribute more to the overall uncertainty

in the data and also (b) have narrower posterior distributions, such that ignoring one or

more true basis functions causes the model to underestimate data uncertainties (e.g., see

Figure 4). Conversely, for smaller SNR, there is more uncertainty in each basis function

estimate and the impact of higher-order basis functions on the estimated surface is reduced,

to the extent that the model can recover the nominal coverage of the data.

For the RMSE, shown in Figure 3(b), the most notable result is that the median RMSE

for our approach (blue line) is systematically lower than the corresponding RMSE from

the algorithmic C-SVD approach for both data (top row) and basis functions (middle and

bottom rows), across SNR levels and specification of k. In other words, estimates of the

basis functions in both U and V and the recovered data have systematically lower errors

than what one can obtain from the algorithmic approach. Regarding RMSE for estimates
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of the recovered surface, the median error (blue line) decreases as a function of SNR, as

expected, and interestingly the data RMSE is relatively insensitive to specification of k. For

the U and V basis functions (middle and bottom rows, respectively, of Figure 3), we see

that trajectories of RMSE estimates for our proposed approach and the C-SVD mirror each

other, with our estimates being systematically, but not significantly, lower. However, across

SNR levels, the RMSE actually increases as one moves from k = 3 to k = 7 (even though

the true k∗ = 5). For SNR equal to 5 and 10, we see a dramatic spike in the RMSE estimate

and uncertainty for the U and V basis functions for k = 6 and 7. This is because we are

comparing against the zero line for these cases: while the uncertainty bounds for these basis

function covers the zero line (as seen in the coverage results in Figure 3a.), there is a lot of

variability in these estimates (with relatively lower uncertainty due to larger signal), leading

to inflated RMSE values.

In conclusion, this synthetic data example shows the proposed method has well calibrated

uncertainty and significantly reduces the impact of measurement noise on the basis function

estimates. However, there is a significant trade-off in choosing k to be too small or large

based on the magnitude of the SNR. Based on our simulation, there will be significant bias

in the recovered surface but not in the estimated basis functions if k is too small and the

SNR is low. Additionally, there will not be significant bias in the recovered surface or in the

estimated basis functions if either k is too small and the SNR is large or k is too large. The

only trade-off for k too large is inflated RMSE’s for the extraneous basis functions, which

could lead to underestimated RMSE’s in the recovered surface. Therefore, we suggest erring

on the side of choosing k to be too large.

4.4 Synthetic example #3: covariates

To illustrate how covariates impact the estimation of the basis functions, we now include

the fixed effect M when simulating data and specify the SNR to be 2. We consider three

different cases of the model forM: (M1) independent fixed and random effects, (M2) strongly

confounded spatial and temporal fixed and random effects, and (M3) weakly confounded

spatial and temporal fixed and random effects. For all three models, we specify vec(M) =

Xβ where β = (β1, . . . , β4) = (−2, 0.6, 1.2,−0.9) and X is a nm by 4 matrix. For each

model, the covariates are generated as:

M1 - Each element of X is i.i.d. N(0, 0.22).

M2 - Let x̃1,s, x̃2,s ∼ Nn(0,Σs), x̃t ∼ Nm(0,Σt), and xst ∼ Nnm(0,Σst) where Σs,Σt,

and Σst are correlation matrices specified using the Matérn kernel with smoothness

parameter ν = 3.5 and length-scale parameter ρ = 3, 3 and 1, respectively, which is

equal to the length-scale of the spatial and temporal random effect, respectively. Then,
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model β1 β2 β3 β4

true -2 0.6 1.2 -0.9

mean -2.032 0.632 1.204 -0.873

M1 lower CI -2.082 0.583 1.156 -0.921

upper CI -1.983 0.680 1.252 -0.824

mean -1.995 0.636 1.071 -0.875

M2 lower CI -2.036 0.531 1.014 -0.913

upper CI -1.943 0.747 1.118 -0.807

mean -2.005 0.601 1.194 -0.908

M3 lower CI -2.016 0.589 1.179 -0.938

upper CI -1.994 0.614 1.209 -0.882

Table 1: Posterior mean (top row), lower 95% credible interval (middle row), and upper 95%
credible interval (bottom row) for the regression coefficients of models M1–M3 (top-bottom).

X = [x1,s,x2,s,xt,xst] is a nm × 4 matrix where x1,s = Im ⊗ x̃1,s,x2,s = Im ⊗ x̃2,s,

and xt = x̃t ⊗ In.

M3 - The covariate matrix is created in the same manner as in M2 except the length-scale

of Σs,Σt, and Σst are ρ = 0.3, 0.3 and 1, respectively.

For each covariate specification M1–M3, we implement our methodology with k = 5, a

Matérn kernel with smoothness parameter ν = 3 for the correlation structure for all basis

functions, and a diffuse normal prior, N(0, 102), on each element of β. We obtain 10000

posterior samples of the model parameters, discarding the first 5000 as burn-in. Posterior

summaries of the regression coefficients are shown for each model in Table 1. From the

table, we see only β3 from M2 has a credible interval that does not cover the true value,

indicating the model is able to reasonably recover the fixed effects under all three scenarios.

To determine the model’s ability to correctly recover the random effect, we computed the

point-wise 95% posterior coverage rate for the random effect Y = UDV′ for each M1,

M2, and M3, which are 0.965, 0.276, and 0.984, respectively. Therefore, when the fixed

and random effect are independent or they have different spatial and temporal frequencies

(weakly confounded), the model is able to correctly identify both model components. When

the fixed and random effects have similar, or in this example equal, spatial and temporal

frequencies, the model is unable to properly capture the random effect but can still capture

the fixed effect.

Based on previous work by Paciorek (2010) discussing the issue of scale with spatial

mixed-effects models, our results are not surprising. Specifically, if the fixed and random

effects operate on different scales (either spatially or temporally), Paciorek (2010) rigorously

argues the fixed and random effects are identifiable. If they operate on similar (or equivalent)

scales, they are not identifiable. If interpretation of the random effect is not important,
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the random effect can restricted to be orthogonal to the fixed effect, thereby making the

random effect identifiable on the space orthogonal to the fixed effect (Reich et al., 2006;

Hodges and Reich, 2010; Hanks et al., 2015). However, there has been debate as to the

validity of modeling the random effect on the restricted space (Zimmerman and Ver Hoef,

2022). Because this is not the main goal of the paper, for now we simply recommend being

cognizant of these issues.

5 Surface air temperature

As discussed in the introduction, empirical orthogonal functions, or EOFs, are commonly

used in climate sciences to summarize modes of variability in atmospheric systems. Typi-

cally, external factors that could be driving the system are referred to as climate forcings and

modeled as fixed effects, while “unforced” year-to-year variability is modeled as a spatial,

temporal, or spatio-temporal random effect and referred to as internal variability. Impor-

tantly, when EOF analysis is applied to climate data where the long term trends have been

removed, this can be considered a method for characterizing the internal variability of the

system. Particularly for extreme temperature events, EOFs are an important tool for un-

derstanding how internal variability combines with long-term trends to produce short-term

events that have a large impact on human systems (Grotjahn et al., 2016). Historically,

estimates of the internal variability are derived from ensembles of climate models and rarely

computed from observational data products. Here, we explore our ability to estimate the

internal variability of monthly maximum two-meter air temperature in the Pacific North-

west, where it is important to account for spatial and temporal structures in the extreme

measurements (again see, e.g., Grotjahn et al., 2016). Such estimates are important for

understanding the statistics of monthly maximum temperatures in this region, particularly

in light of the recent devastating heatwave that impacted this region in the summer of 2021

(Bercos-Hickey et al., 2022).

We use gridded monthly maximum two-meter air temperature data (tXx) by extracting

the largest daily maximum two-meter air temperature each month from the ERA5 reanalysis

dataset (Hersbach et al., 2020) at 0.25◦ horizontal resolution from January 1979 to December

2021. The data are centered by subtracting off the global mean. We focus on the subset of

data from 44◦- 53◦N and 116◦- 128◦W, for a total of 1813 spatial locations across 516 time

points. While it is possible to include relevant covariates for this analysis (e.g., greenhouse

gas emissions, the El Niño/Southern Oscillation, urbanization, and drought conditions)

using a model for M (e.g. Section 3.2.2), this would have resulted in a substantial number

of parameters to estimate and is not the main focus of this work. Therefore, we opt instead to
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focus on the model for the random effect and simply centered the data a priori to parameter

estimation.

As discussed in the introduction, Figure 1 shows empirical evidence that the basis func-

tions resulting from a SVD of tXx may have different structure. We proceed with this

assumption. Therefore, we parameterize the covariance matrix for the prior of the spatial

basis functions using the Matérn kernel with smoothness ν = 3.5 and the covariance matrix

for the prior of the temporal basis functions using the Gaussian kernel. The effective range

for both the spatial and temporal basis functions are estimated along with other model pa-

rameters. We specify k = 10 based on the first 10 basis functions explaining approximately

99% of the variance as determined from the C-SVD decomposition. We obtain 10000 sam-

ples from the posterior, discarding the first 5000 as burn-in, where convergence is assessed

graphically with no issues detected.

Posterior summaries of three spatial basis functions (2, 5, and 7), three temporal basis

functions (2, 5, and 7), and all length-scale estimates are shown in Figure 5 A), B), and C),

respectively. We highlight basis function 2 because it has little to no significant difference

between C-SVD estimate, and 5 and 7 because they contain many spatial and temporal

locations with significant differences. Panel a) depicts summaries of three spatial basis

functions u2 (top), u5 (middle), and u7 (bottom), where the left column are the estimates

from C-SVD, the middle column are the posterior means from our proposed model, and the

right column are the posterior difference between the posterior mean and the algorithmic

estimate where locations whose 95% credible interval does not cover zero are denoted with

an ‘x’. Panel b) contain estimates of three temporal basis functions u2 (top), u5 (middle),

and u7 (bottom), where the black line is the C-SVD estimates, blue line is the posterior

mean from our proposed model, and blue shaded region are the 95% CIs where a vertical

line denotes the 95% CI does not cover the C-SVD estimate. The last panel, c), are posterior

mean estimates of the length-scale parameter (dot) and 95% credible intervals (error bars)

of the correlation kernel for each spatial (left) and temporal (right) basis functions, where

blue estimates correspond to the selected basis functions for panels a) and b). Posterior

summaries of all 10 spatial and temporal basis functions are included in the supplement.

Comparing the spatial plots of the posterior mean to the deterministic counterpart (Fig-

ure 5A), the posterior estimates are much smoother spatially and for the fifth and seventh

basis functions, the estimates are significantly different over much of the spatial region.

The estimates, both deterministic and probabilistic alike, have an interpretation that makes

sense physically. The second basis function (top row) has a clear land-sea contrast and

distinguishes between the plains (purple) and mountains (green). The fifth basis function

captures the influence of the low-lying coastal region and foothills of Canadian Rockies (pur-
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A) B)

C)

Figure 5: a) Estimated spatial basis functions u2 (top), u5 (middle), and u7 (bottom). The
left column are the estimates from C-SVD, the middle column are the posterior means, and
the right column are the posterior difference between the posterior mean and the algorithmic
estimate where locations whose 95% credible interval does not cover zero are denoted with an
‘x’. b) Estimated temporal basis functions v2 (top), v5 (middle), and v7 (bottom). For each
panel, the black line are the estimates from C-SVD, blue line are the posterior means, and blue
shaded region are the 95% CIs where a vertical line denotes the 95% CI does not cover the C-
SVD estimate. c) Posterior mean estimate of the length-scale parameter (dot) and 95% credible
intervals (error bars) of the correlation matrix for each spatial (left) and temporal (right) basis
functions. Estimates in blue correspond to the selected basis functions for panels a) and b).

ple) in contrast to the wet/dry regimes in Canada and Oregon/Washington (green). The

seventh combines multiple physical features and aligns well with geographical features such

as topography and appears to capture steep gradient contrasts.

Regarding the temporal estimates (Figure 5B), the second basis function (top) does not

have any time points with significantly different estimates than the C-SVD counterpart.

However, both the fifth (middle) and seventh (bottom) do have significant differences (de-

noted with the vertical lines), and we see the posterior means produce smoother estimates

than the C-SVD counterparts.

Additionally, the basis functions all have different posterior mean length-scale estimates.

For the spatial basis functions, u6,u7, and u10 have significantly smaller values than the

other six, as determined by the range of the 95% CI (Figure 5C, left), and for the temporal,

the first three have significantly larger values than the other seven, as determined by the

range of the 95% CI (Figure 5C, right). This shows we are able to capture the spatial

and temporal relationship within each basis function and that the spatial and temporal
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relationship is different across basis functions.

Importantly for climate science, we are able to provide estimates of the internal variabil-

ity of a system from observational data, in this example monthly maximum two-meter air

temperature of daily maxima, by reconstructing the internal variability using posterior esti-

mates of our structured basis functions. The estimates account for measurement uncertainty,

spatial and temporal dependence, and have quantifiable uncertainty. These estimates can

then be used to account for the internal variability of a system and help isolate the extent to

which external factors are driving changes to the system. Additionally, producing ensembles

of weather variables like extreme temperature using climate models can be computationally

intensive. However, we can now sample directly from the posterior distribution of the in-

ternal variability of extreme monthly temperatures, accounting for the spatial structures

innate to the underlying data. These posterior samples are analogous to ensembles of the

climate system and computationally much cheaper to compute than ensembles of climate

model runs.

6 Discussion

We proposed a novel prior distribution for structured orthonormal matrices that is an ex-

tension of Hoff (2007), where the individual basis functions can be modeled dependently.

The prior is based on the projected normal distribution which we augment with a latent

length parameter. When our prior is combined with a normal data model, the resulting

full conditional distributions for the basis functions are conjugate, resulting in analytically

straightforward MCMC sampling. We describe how the prior can be used to conduct poste-

rior inference on a general class of probabilistic SVD models and how to extend the proposed

model to various other applications. We discussed various mathematical properties of our

probabilistic SVD model (supplement S.2) and illustrated its capability through multiple

simulation studies. The model is then used to draw inference on the internal variability

of extreme two-meter air temperature, allowing us to quantify space-time structures in a

complex climate process.

The synthetic data examples and application presented in Sections 4 and 5, respectively,

all highlight the model’s efficacy on gridded, i.e., uniformly spaced, data. However, the model

is equally well suited for non-uniformly spaced data so long as the spacing is consistent within

space and within time. If the data are not spaced consistently within space and within time,

this would constitute a missing data problem, which we plan to explore in future work. In

addition, our model assumes normally distributed errors. This assumption can be relaxed

by, for example, assuming a hierarchical structure and modeling the mixed-effects as a latent
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process.

Another area for possible extension could explore the concept of regularized basis func-

tions through the posterior mode of the basis functions. Similar to the Bayesian Lasso (Park

and Casella, 2008) or Bayesian Group Lasso spatial data (Hefley et al., 2017), an ℓ1 penalty

could be imposed by representing a Laplace distribution as a scale mixture of normal dis-

tributions. The addition of a penalty term, especially a penalty that forces values to zero,

could produce sparse dependently structured basis functions whose importance within the

spatial context is explored by Wang and Huang (2017).

The choice of the number of basis functions, k, is the only major subjective choice in

our proposed probabilistic SVD model. While we show the mis-specification of k does not

have a negative impact when erring on the side of k being too large, a more flexible model

estimating k is attractive. To estimate k, Hoff (2007) proposed a variable-rank model uti-

lizing the so-called spike-and-slab variable selection prior (Mitchell and Beauchamp, 1988).

However, because of the difference in our prior compared to the prior proposed by Hoff

(2007), incorporating the spike-and-slab prior into our proposed model would require extra

theoretical work. Work focused on estimating the rank k with our framework would produce

a very flexible approach for modeling spatio-temporal random effects.

Finally, our proposed prior does have the disadvantage of relying on a column-wise

sampling strategy. Specifically, within each MCMC iteration, there is a required O(n3) cost

of computing the orthonormal basis for the null-space Nu
i and Nv

i (see the supplement for

more discussion). The additional flexibility our approach offers comes at the cost of the

computational gains from the methods by Pourzanjani et al. (2021) and Jauch et al. (2021),

which propose solutions to this column-wise strategy.
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A Appendix

A Proofs of propositions

We now prove the propositions describing the properties of the orthogonal matrix con-
structed in section 2.1.

Lemma 1. The generating random variables zj and Ωj are exchangeable.

Proof. The generating random variables zi are exchangeable because they all independent
and have the same marginal distribution. Specifically, because Ω1, . . . ,Ωk ∼ πΩ all have
the same distribution, if we marginalize zj , we get p(zj) =

∫
Ω
p(zj |Ωj)p(Ωj)dΩ is the same

for all j = 1, . . . , k.

Lemma 2. For any permutation π of the columns of the n × k matrix X, denoted Xπ, the
matrix Pπ ≡ I−Xπ(X

′
πXπ)

−1X′
π is the unique projection onto the orthogonal complement

of column space of X. That is, Pπ = P.

Proof. Since X and Xπ share the same column space, the result is immediate by the pro-
jection theorem.

Proposition 1. The columns of W = X(X′X)−1/2 are exchangeable. That is, for any

permutation π of the set {1, . . . , k}, p([w1, . . . ,wk])
d
= p([wπ(1), . . . ,wπ(k)]).

Proof. We first show the columns of the matrix X are exchangeable. That is, for any

permutation π of the set {1, . . . , k}, p([x1, . . . ,xk])
d
= p([xπ(1), . . . ,xπ(k)]). Then, we use the

exchangeability of X to show exchangeability of W.
Define Xπj = [xπ(1), . . . ,xπ(j)] and Pπ(j) = I − Xπj (X

′
πj
Xπj )

−1X′
πj

= Pj . To show
exchangeablility, we show the characteristic function of X is equivalent to the characteristic
function of Xπj

. For a n × k random matrix X, the characteristic function is defined as

φ(X) = E[exp{itr(T′X)}] = E[exp{i
∑k

ℓ=1 t
′
ℓxℓ}], where T = [t1, . . . , tk] is a n× k matrix,

i is the imaginary unit, and tr(·) is the trace operator. We show the proposition using proof
by induction:

1. For k = 1, we have Xπ1
= xπ(1) = P0zπ(1)

d
= P0z1 = x1 = X1, where zπ(1)

d
= z1 by

lemma 1. Therefore, X1
d
= Xπ1 .

2. Assume for k = j, Xj
d
= Xπj

.

3. By the characteristic function of Xπj+1 ,

φ(Xπj+1
) = E

[
exp

{
i

j+1∑
ℓ=1

t′ℓxπ(ℓ)

}]

= E

[
exp

{
i

j∑
ℓ=1

t′ℓxπ(ℓ)

}
exp

{
it′j+1xπ(j+1)

}]

= E

[
exp

{
i

j∑
ℓ=1

t′ℓxπ(ℓ)

}
E[exp

{
it′j+1xπ(j+1)

}
|Xπj

,Ωπ(j+1)]

]
(iterative expectation)

= E

[
exp

{
i

j∑
ℓ=1

t′ℓxπ(ℓ)

}
E[exp

{
it′j+1Pπ(j)zπ(j+1)

}
|Xπj

,Ωπ(j+1)]

]

= E

[
exp

{
i

j∑
ℓ=1

t′ℓxπ(ℓ)

}
exp

{
t′j+1Pπ(j)Ωπ(j+1)P

′
π(j)tj+1

}]
.
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The induction hypothesis implies {Xj ,Pj}
d
= {Xπj

,Pπ(j)}. Also, Ωπ(j+1) is inde-

pendent of Xj and Pj . Therefore, {Xj ,Pj ,Ωj+1}
d
= {Xπj

,Pπ(j),Ωπ(j+1)} because
Xπj

⇒ Xj by induction hypothesis, Pπ(j) ≡ Pj by lemma 2, and Ωπ(j+1) ⇒ Ωj+1

because it is independent of Xj and Pj and it is exchangeable. Thus,

φ(Xπj+1) = E

[
exp

{
i

j∑
ℓ=1

t′ℓxℓ

}
exp

{
t′j+1PjΩj+1P

′
jtj+1

}]
= φ(Xj+1),

and Xj+1
d
= Xπj+1 .

The exchangeability of W follows from the exchangeability of X. Specifically, be-
cause the diagonal matrix R ≡ (X′X)−1/2 = diag[(x′

1x1)
−1/2, . . . , (x′

kxk)
−1/2] ≡

diag[r1, . . . , rk] where the elements r1, . . . , rk are the norm of the random vectors
x1, . . . ,xk, respectively, is simply a rescaling of the columns of X, and the permu-

tation of the scaling is preserved, Wπ
d
= W.

Proposition 2. wi|Wi−1
d
= Ni−1w̃i|Wi−1 where the columns of Ni−1 form an orthonormal

basis for the null space of Wi−1 and w̃i|Wi−1 ∼ PNn−i+1(0,N
′
i−1ΩiNi−1) is the projected

weight function.

Proof. The following argument is similar to Hoff (2007), except now we account for de-
pendence structure and the resulting distribution is different. By construction, wi =
Pi−1zi/(z

′
iP

′
i−1Pi−1zi)

1/2 where Pi−1 has n−i+1 eigenvalues equal to 1 and the rest being
0. Let the eigenvalue decomposition bePi−1 = Ni−1N

′
i−1 whereNi−1 is an n×(n−i+1) ma-

trix whose columns span the null space of Wi. Making the substitution Pi−1 = Ni−1N
′
i−1,

wi =
Pi−1zi

(z′iP
′
i−1Pi−1zi)1/2

=
Ni−1N

′
i−1zi

(z′iN
′
i−1Ni−1Ni−1N′

i−1zi)
1/2

= Ni−1

N′
i−1zi

(z′iNi−1N′
i−1zi)

1/2
.

Note that Pi−1 = I − Wi−1W
′
i−1, so wi|Wi−1

d
= Ni−1

N′
i−1zi

(z′
iNi−1N′

i−1zi)1/2
. Because zi ∼

Nn(0,Ωi), we haveN
′
i−1zi|Wi−1 ∼ Nn(0,N

′
i−1ΩiNi−1) and

N′
i−1zi

(z′
iNi−1N′

i−1zi)1/2
≡ w̃i|Wi−1 ∼

PN(0,N′
i−1ΩiNi−1).
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S Supplemental Material

S.1 Full conditional distributions

The diagonal matrix D and the length-scale parameters ρu,i and ρv,i do not have conjugate
updates and so we use a Metropolis-within-Gibbs step to estimate these parameters. For all
Metropolis steps, we use a truncated normal for the proposal distribution with the mean set
to the most recently accepted value. For D the upper truncation bound is set to infinity and
for ρu,i and ρv,i the upper truncation bound is set to the max distance for U (e.g., greatest
distance between spatial locations) and V (e.g., greatest span between time points) divided
by 2, respectively. Because the variance of the proposal can influence the acceptance rate,
we automatically tune the proposal variance for each parameter individually such that the
acceptance rate is between 25% and 45%.

Sampling Algorithm
For each iteration of the MCMC algorithm, do:

1. Update D using a Metropolis step

2. For i ∈ {1, . . . , k} update ui|U−i
d
= Nu

i ũi where ũi

[ũi|·] ∼ N(S−1
u mu,S

−1
u )I(ũi ∈ V1,n)

mu = diN
u ′
i Σ−1Eivi

Su = d2i (N
u ′
i Ωu

i N
u
i )

−1 + d2iN
u ′
i Σ−1Nu

i .

3. For i ∈ {1, . . . , k} update vi|V−i
d
= Nv

i ṽi where ṽi

[ṽi|·] ∼ N(S−1
v mv,S

−1
v )I(ṽi ∈ V1,m)

mv = diN
v ′
i E′

iΣ
−1ui

Sv = d2i (N
v ′
i Ωv

iN
v
i )

−1 + d2iu
′
iΣ

−1uiIm.

4. Recall, we parameterize Σ = σ2In. The full conditional distribution for σ2 is

[a|·] ∼ IG((ξ + 1)/2, (1/A2) + ξ/σ)

[σ2|·] ∼ IG((nm+ ξ)/2, ξ/a+ vec(Z−UDV′)′vec(Z−UDV′)/2).

We specify ξ = 1 and A = 105 which corresponds to the prior σ ∼ Half-t(ξ, A) ≡
Half-cauchy(A).

5. Recall, we parameterize Ωu(θu,i) = σ2
u,iCu(θu,i). For i ∈ {1, . . . , k} update σ2

u,i from

[au,i|·] ∼ IG((ξ + 1)/2, (1/A2) + ξ/σu,i)

[σ2
u,i|·] ∼ IG((n− k + 1 + ξ)/2, ξ/au,i + (d2i ũ

′
i(N

u ′
i Ωu

i N
u
i )

−1ũi)/2),

with ξ = 1 and A = 105.

6. Recall, we parameterize Ωv(θv,i) = σ2
v,iCv(θv,i). For i ∈ {1, . . . , k} update σ2

v,i from

[av,i|·] ∼ IG((ξ + 1)/2, (1/A2) + ξ/σv,i)

[σ2
v,i|·] ∼ IG((m− k + 1 + ξ)/2, ξ/av,i + (d2i ṽ

′
i(N

v ′
i Ωv

iN
v
i )

−1ṽi)/2),

with ξ = 1 and A = 105.

7. For i ∈ {1, . . . , k} update ρ2u,i using a Metropolis step

8. For i ∈ {1, . . . , k} update ρ2v,i using a Metropolis step

S.2 Identity correlation

When Ωi = In, w̃k in proposition 2 is uniformly distributed on the Stiefel manifold. To see

this, note that for zk ∼ N(0, I), N′
k−1zk ∼ Nn−k+1(0, I), and

N′
k−1zk

(z′
iNi−1N′

i−1zi)1/2
is uniformly
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distributed on the n − k + 1 sphere. Also, we see proposition 1 is now equivalent to Hoff
(2007), and W is the uniform probability measure on Vk,n.

The resulting full conditional distributions for ũi and ṽi when Ωu
i = In and Ωv

i = Im
for the SVD model in S.1 become the von-Mises Fisher distribution, which is equivalent
to the full conditionals of Hoff (2007). To see this, note the mean of [ũi|·] is S−1

u mu =

1
σ2+1

1
di
Nu ′

i Eivi and the covariance is S−1
u =

(
d2i +

d2
i

σ2

)−1

. The full conditional distribution

[ũi|·] ∝ exp

{
−1

2
tr

[
−2ũ′

idiN
u ′
i Eivi

(
1

σ2 + 1
+

1

σ4 + σ2

)]}
= exp

{
−1

2
tr

[
−2ũ′

idiN
u ′
i Eivi

(
1

σ2

)]}
,

which is the kernel of the von-Mises Fisher distribution. The same result holds for ṽi.

S.2.1 Relationship to algorithmic SVD

Computing the SVD of Y,

Y = UDV′

Y = U−iD−iV
′
−i + diuiv

′
i

Y −U−iD−iV
′
−i = E−i = diuiv

′
i

1

di
E−ivi = ui,

so the ith basis function can be expressed as a function of the data and other basis func-
tions. The mean of the full conditional distribution [ũi|·] is S−1

u mu = 1
σ2+1

1
di
Nu ′

i Eivi, and

E[ũi|·] → 1
di
Nu ′

i Eivi as σ
2 → 0. Mapping to the original space,Nu

i E[ũi|·] = 1
di
Nu

i N
u ′
i Eivi =

1
di
Eivi. While not shown here, the same argument applies for V. Therefore, when the co-

variance is taken to be the identity matrix, the posterior mean of the basis functions is
equivalent to the C-SVD basis functions.

To see the relationship, we repeat one of the simulation conducted in Section 4.3 with
SNR = 5, k = 5, and set the correlation matrices Cu and Cv to be the identity. Here, we
still estimate the basis function specific variance σ2

u,i and σ2
v,i. We obtain 10000 samples

from the posterior, discarding the first 5000 as burnin. The resulting estimates for the
U and V basis functions are shown in Figure S.1, where the posterior mean of the basis
functions (blue) is nearly identical to the C-SVD estimates (red). In all cases, we see the
95% intervals (blue shaded region) cover the C-SVD estimates but has ≈95% coverage of
the true line (black).
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Figure S.1: Posterior mean (blue line), 95% credible intervals (shaded blue region), truth (black
line), and C-SVD estimate (red line) for the U and V basis function.
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S.3 Computation and scalability

While the proposed prior is relatively simple to specify and implement, there are some
computational aspects to consider. On one hand, the fact that the prior is conjugate with
a normal data distribution means that MCMC updates for the columns of U and V can be
obtained in a straightforward manner. On the other hand, calculating the full conditional
distributions (from which the Gibbs draws are sampled) is computationally intensive for large
n. From the formulation in Section 3.1, the full conditional distributions for the columns
of U and V involve matrix inverses (Nu ′

i Ωu
i N

u
i )

−1 and (Nv ′
i Ωv

iN
v
i )

−1, respectively (see
supplement S.1), each of which are dense (n−k+1)×(n−k+1) and (m−k+1)×(m−k+1)
matrices, respectively. Therefore, in order to update U and V once in an MCMC iteration,
we need to calculate 2k matrix inverses (one for each of the k columns of U and V), which is
computationally challenging for large n orm. Furthermore, updating the hyperparameters of
the kernel (e.g., the length-scale parameters ρu,i and ρv,i) requires Metropolis-Hastings steps.
In this case, the likelihood involves a multivariate Normal density: when the covariance of
the multivariate Normal is non-diagonal and dense (as is the case here), the number of flops
associated with evaluating the determinant and solving quadratic forms scales with O(n3).
Again, each iteration of the MCMC requires 2k of these calculations. As such, without
significant computing resources, the required computation for the model as-is proves difficult
for data where either n or m is greater than 1000. More specifically, Figure S.2 shows an
estimate of the amount of time needed to update all parameters in a single iteration of the
MCMC for the special case of k = 5 across different sample sizes n and m on a personal
laptop.

In spite of these apparent limitations, there are a variety of approaches one could take
to reduce the associated computational burdens of this model. The simplest approach
would be to parameterize the covariance matrix as Ωi = σ2

iCi(θ) where θ is specified
and not estimated: this would remove the Metropolis-Hastings steps required to estimate
ρu,i and ρv,i. Alternatively, one could use a compactly-supported kernel function (see, e.g.,
Wendland, 1995; Buhmann, 2000; Genton, 2000; Gneiting, 2002; Melkumyan and Ramos,
2009) and leverage sparse matrix techniques. These approaches are targeted at reducing
the cost of estimating Ci(θi) and the associated parameters. In either case, however, our
proposed prior does have the disadvantage of relying on a column-wise sampling strategy and
the corresponding matrix calculations needed to sample each column. Specifically, within
each MCMC iteration, there is a required O(n3) cost of computing the orthonormal basis for
the null-space Nu

i and Nv
i and the ensuing inverses. In other words, we must calculate the

inverse of N
(·) ′
i Ω

(·)
i N

(·)
i which is dense irrespective of the sparsity of Ω

(·)
i . For this reason,

implementing sparse matrix techniques for the Ωi will not solve this challenge.
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Figure S.2: Median log computation time for a single MCMC iteration as a function of sample
size n (x-axis) and m (line color).

S.4 Projected normal distribution

Let zj ∼ Nn(0,Ω), j = 1, . . . ,K and Z = [z1, . . . , zK ]. Then W = Z/∥Z∥ ∼ PN(0,Ω)
where wj is a length-n directional vector with n − 1 angles θj = [θ1,j , θ2,j , . . . , θn−1,j ].

Using spherical coordinates, rj = ∥zj∥ =
√
z21,j + · · ·+ z2n,j ,

w1,j = cos(θ1,j)

w2,j = sin(θ1,j) cos(θ2,j)

...

wn−1,j = sin(θ1,j) · · · sin(θn−2,j) cos(θn−1,j)

wn,j = sin(θ1,j) · · · sin(θn−2,j) sin(θn−1,j)

and

z1,j = rj cos(θ1,j)

z2,j = rj sin(θ1,j) cos(θ2,j)

...

zn−1,j = rj sin(θ1,j) · · · sin(θn−2,j) cos(θn−1,j)

zn,j = rj sin(θ1,j) · · · sin(θn−2,j) sin(θn−1,j)

with rj ≥ 0, θ1,j , θ2,j , . . . , θn−2,j ∈ [0, π], and θn−1,j ∈ [0, 2π]. Augmenting the distribution
with its latent length rj , we get the joint density of (rj ,wj) is

p(rj ,wj) = (2π)−n/2|Ω|−1/2 exp

{
−1

2
(rjwj)

′Ω−1(rjwj)

}
rn−1
i I(wi ∈ V1,n),

where the area element on the unit sphere is rn−1
j sinn−2(θ1,j)sin

n−3(θ2,j) . . . sin(θn−2,j)drjdθ1,jdθ2,j . . . dθn−1,j .
For properties of this distribution, see Hernandez-Stumpfhauser et al. (2017).

S.5 Additional simulation figures
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Figure S.3: Randomly chosen results from one simulation described in Section 4.2 with a SNR
of 1. The U (V) basis functions are shown on the left (right) and within the sub-plot the results
from the variable (grouped) model are shown on the left (right) where the top row corresponds
to the first basis function (e.g., u1 or v1) and the bottom row corresponds to the fourth basis
function (e.g., u4 or v4). In each panel, the black line is the true basis function, blue line is the
posterior mean, and blue shaded region denotes the 95% credible interval (CI).

Figure S.4: Randomly simulated data Z (main plot) with a signal-to-noise ratio of 1 and the
randomly simulated U (left) and V (top) basis functions.
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Figure S.5: Example of simulated data with varying levels of signal-to-noise ratio.
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S.6 Surface air temperature
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Figure S.6: Estimated spatial basis functions u1 (top) through u5 (bottom). The left column
are the estimates from the deterministic SVD, the middle column are the posterior means, and
the right column are the posterior difference between the posterior mean and the algorithmic
estimate where locations whose 95% credible interval does not cover zero are denoted with an
‘x’.
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Figure S.7: Estimated spatial basis functions u6 (top) through u10 (bottom). The left column
are the estimates from the deterministic SVD, the middle column are the posterior means, and
the right column are the posterior difference between the posterior mean and the algorithmic
estimate where locations whose 95% credible interval does not cover zero are denoted with an
‘x’.
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Figure S.8: Estimated temporal basis functions v1 (top) through v5 (bottom) from January
2010 to December 2021. The black line is the algorithmic estimate, the solid blue line is the
posterior mean, and the blue shaded regions are the 95% credible intervals. Because it is
difficult to see the differences, time points where the 95% credible interval does not cover the
deterministic estimate are marked with a vertical line.

42



2015-01

2017-01

2019-01

2021-01

−0.1

0.0

0.1

2015-01

2017-01

2019-01

2021-01

−0.1

0.0

0.1

2015-01

2017-01

2019-01

2021-01

−0.1

0.0

0.1

2015-01

2017-01

2019-01

2021-01

−0.2
−0.1
0.0
0.1
0.2

2015-01

2017-01

2019-01

2021-01

−0.1

0.0

0.1

Figure S.9: Estimated temporal basis functions v6 (top) through v10 (bottom) from January
2010 to December 2021. The black line is the algorithmic estimate, the solid blue line is the
posterior mean, and the blue shaded regions are the 95% credible intervals. Because it is
difficult to see the differences, time points where the 95% credible interval does not cover the
deterministic estimate are marked with a vertical line.
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