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ABSTRACT OF THE DISSERTATION

Triggering Control Methods for Cyber-Physical Systems:
Security & Smart Grid Applications

by

Hamed Shisheh Foroush
Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)
University of California, San Diego, 2014

Professor Sonia Martinez, Chair

This thesis contains work on control and monitoring of Cyber-Physical
Systems (CPS) using triggering control techniques. Cyber-Physical Systems are
remotely controlled and monitored physical systems which pervade our society
today in the form of numerous important applications. However, their deploy-
ment poses numerous challenges due to their limited computing, communi-
cation, and control capabilities and/or environmental constraints. In the con-
trols community, this latter fact has motivated a paradigm shift to a so-called
self/event-triggered approach by means of which algorithms employ scarce re-
sources for control only when needed. In this dissertation, we have studied two

principal problems considering, respectively, a security and smart grid CPS ap-
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plications where we develop novel triggering control techniques to solve these
problems. In brief, these problems can be stated as (i) motivated by importance
of ensuring security of CPS, to develop failure resilient triggering-based control
methods, and (ii) motivated by emergence of smart grid application, to study
robustness of event-based synchronization dynamics under switching topolo-
gies. In the following lines of this abstract, we shall provide a brief closer look
on these problems and our developed solutions to them.

In the first problem, we study the stability of remotely controlled and
monitored single-input and multi-input controllable linear class of systems un-
der power-constrained Pulse-Width Modulated (PWM) Denial-of-Service (DoS)
signals. The effect of a DoS jamming signal is to corrupt the control and mea-
surement channels, thus preventing the data to be received at its destination.
Therefore, a power-constrained DoS signal is modeled as a series of on and off
time-intervals, which restricts communications intermittently. In this work, we
tirst assume that the DoS signal is partially known, i.e., a uniform lower-bound
for the off time-intervals and the on-to-off transiting time-instants are known.
Accordingly, we propose our resilient control and triggering strategies which
are provably capable of beating partially known jamming signals of this class.
Building on this, we then present our joint control and identification algorithms,
JAMCOID FOR PERIODIC SIGNALS and JAMCOID, which are provably able to
guarantee the system stability under unknown jamming signals. More precisely,
JAMCOID FOR PERIODIC SIGNALS algorithm is able to partly identify a peri-
odic DoS signal with known uniform lower bound for the off time-intervals,
whereas JAMCOID algorithm is capable of dealing with power-constrained,
but otherwise unknown, DoS signals whilst ensuring stability. The practicality
of the proposed techniques is evaluated on a simulation example under partially
known and unknown jamming scenarios.

In the second problem, we study the robustness of an event-triggered
synchronization dynamics for a network of identical nodes under various switch-
ing scenarios. We first consider an arbitrary switching scenario where, for a

general class of isolated node dynamics we characterize sufficient conditions
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in terms of network topologies to maintain synchronization. In particular, we
shall also demonstrate that for a specific class of skew-symmetric isolated node
dynamics—which play important role in this class of synchronization problems—
the asymptotic synchronization is not achievable under arbitrary switching. We
then considered two classes of constrained switching signals, namely uniform
and average classes, i.e., Sqwell[7p], and Saverage|Ta, No], respectively, where we
characterize sufficient conditions in terms of the associated parameters, 7p, 7,
and N in order to ensure asymptotic synchronization. We shall wrap up our

discussion by presenting relevant simulation studies.
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Chapter 1

Introduction

1.1 Motivation

Cyber-Physical Systems (CPS) are physical plants which are remotely con-
trolled and monitored via communication networks, and integrate tightly both
computational and physical components. Thanks to growing developments in
the area of sensing and communication technologies, these systems pervade
very diverse areas ranging from aerospace, to energy, to civil infrastructure facil-
ities, manufacturing and transportation networks. Motivated by the use of eco-
nomic communications and computations in these systems, the adaptation of
these processes to external events, as well as by the asynchronous nature of mul-
tiple components, the new control paradigm of triggering control has emerged.
This chapter presents a summary of the main ideas behind the triggering con-
trol approach, and then discusses its use on two applications of interest that are

the focal points of this dissertation.

1.2 Literature Review

As discussed in conventional textbooks [10, 34], one can distinguish be-
tween continuous-time and discrete-time control design. In the former, the con-

trol is getting updated in a continuous fashion; in the latter, the control is up-



dated at every prescribed instants of time which are multiple of a so-called sam-
pling period. The discrete-time control methods discussed in these afore cited
textbooks do not entail a rigorous analytical study addressing, e.g., how to de-
rive this sampling period, in order to ensure some stability and/or performance
properties. This was the initial point of interest in developing rigorous trigger-
ing control methods. Some rather old papers, such as [39, 49, 83, 34, 62], also
compare and discuss discrete-time periodic control with aperiodic control im-
plementation, these papers along with [9, 8], wherein the advantages of aperi-
odic implementation are highlighted, can be regarded as the source of triggering
control methods. One can classify triggering control methods into time-triggered,
event-triggered, and self-triggered control approaches.

The time-triggered control, also known as sampled-data control, meth-
ods are, in terms of implementation, similar to the aforementioned discrete-time
periodic control with the main difference that the sampling period is now de-
rived from a rigorous stability study of the considered class of systems. In this
way, representative studies to be mentioned are [21, 64] where, respectively,
input-output stability and stability properties of sampled-data systems have
been studied, both papers characterize largest sampling period (that they call
Maximum Allowable Time-Interval (MATI)) required to ensure some specific
notion of input-output stability; the other representative studies include [65, 88]
where in both sufficient conditions to ensure stability of a nonlinear sampled-
data system have been derived by discrete approximation of the original system.

The event-triggered control methods are based on the continuous mea-
surement of the states and/or outputs of the system along with checking the
violation of a triggering condition according to which the next time-instant
to update the control is derived, in more specific words, representative stud-
ies [78, 55, 72] have studied event-triggered control with more emphasis on
state-based notion of stability, e.g., input-to-state stability, papers [40, 79, 46]
have also studied event-triggered control, nonetheless, with more emphasis on
out-put based notion of stability, e.g., input-output stability.

The self-triggered control methods were developed to overcome the pos-



sible limitation of event-triggered control in that they do not require continuous
measurement of system states/outputs while this comes at the cost of more con-
servatism at the level of larger sampling time-intervals. On this topic, one may
recall [84] as the vey first study on the topic of self-triggered control which was
then followed by the study [86] in which the stabilizing self-triggered rule is de-
rived based on an input-output stability condition. Besides, papers [6, 58, 60, 5]
have also studied self-triggered control based on some state-based stability con-
ditions, e.g., input-to-state stability property.

Besides the principal papers on triggering control methods mentioned in
the previous paragraphs, there have been certain studies dedicated to extend-
ing those results to other contexts, and dedicated to considering more practi-
cal scenarios. From consensus algorithms [24, 75], to deployment [66, 22], to
synchronization and distributed optimization [50, 51, 45], the new type of algo-
rithms have proven convergence guarantees and, in most cases, present good
non-Zeno behavior. In addition, decentralized event-triggered rules have been
developed in [61, 59, 70] based on state-based and small-gain approaches to
stability. Besides, in [80] the event-triggered control for tracking scenario for
a specific class of nonlinear systems is proposed. Furthermore, [37, 85, 42, 36]
have studied event-triggered control with practical considerations such as in
presence of data packet dropout, delay, quantization, and potential parameter

mismatch.

1.3 Summary of Results & Outline

We summarize the results presented throughout this dissertation in very
brief words in the following paragraphs. It is then followed by presenting the
organization of this dissertation, along with a brief summary of each chapter’s
contents.

The particular problems chosen in this dissertation to illustrate the use of
triggered control are motivated by CPS problems of interest. On the one hand,

the secure and resilient control of CPS systems is an area of high concern, see for



instance [20] and references therein. A particular threat to the secure operation
of cyber-physical systems arises from vulnerable communication links, which
can be disrupted by means of viruses, or external communication-signal inter-
ferences. Motivated by this, we summarize an approach to remotely control
a linear cyber-physical system subject to a general type of Pulse-Width Mod-
ulated (PWM) Denial of Service (DoS) signals by means of adapted triggering
control algorithms. A complete version of this work may be found [32], with
conference versions in [30, 31].

The synchronization of dynamical systems interacting over a network
can model several CPS applications of interest. For example, a smart grid prob-
lem entails the coordination of number of power generators to produce and sup-
ply electric energy to a network of consumers [43, 7]. The aforementioned syn-
chronization dynamics has been studied for identical nodes or different node
(oscillator) dynamics. The major review on synchronization [7] discusses the
differences and resemblances between these two problems. In more detailed
words, the papers [76, 89, 52] study this problem in the context of switched
systems, where switching amongst different potential network topologies has
been considered and, thus, some switching rules have been derived in order to
achieve network synchronization. In these latter studies, it is nonetheless worth
noting that the communication is performed in a continuous fashion. Hence,
there is an apparent gap in the literature in terms of studying synchronization
dynamics by considering event-triggered communications and in the context
of switched systems. This work aims to close this gap by characterizing suffi-
cient conditions on switched networked topologies and robustness conditions

on switching signals that can ensure network synchronization.

Chapter 2: as the initial step to solve the main problem of failure resilient con-
trol of a CPS despite presence of power-constrained DoS jamming sig-
nals on the communication channels, this chapter studies resilient event-
triggered control strategies in presence of partially known periodic DoS
signals. The developed control strategy in this chapter is not parameter-

dependent and the main contribution is proposing a sufficient condition



in terms of jamming signal parameters and given stabilizing controller.

Chapter 3: in sequel of the previous chapter, this chapter studies triggering
control strategies the problem of failure resilient control of a CPS despite
presence of power-constrained DoS jamming signals on the communica-
tion channels by considering only single-input class of systems in pres-
ence of partially known and unknown jamming signals. The proposed
control strategy in this chapter is parameter-dependent and thus the main
contributions of this chapter are, therefore, (i) discussing and characteriz-
ing a parameter-dependent triggering control strategy capable of dealing
with partially known class of DoS signals, (ii) discussing and characteriz-
ing JAMCOID FOR PERIODIC SIGNALS algorithm capable of dealing with
unknown periodic class of DoS signals, and (iii) discussing and character-
izing JAMCOID algorithm capable of dealing with unknown class of DoS

signals.

Chapter 4: as a complementary part to what is introduced and discussed in
Chapter 3, this chapter extends those results to the case of multi-input
class of systems while preserving the classes of power-constrained DoS

signals.

Chapter 5: this chapter studies the robustness of event-based synchronization
problem under switching interactions, more specifically, the discussion be-
gins with discussing the case of arbitrary switching which is then geared
towards the case of constrained switching. In the former, sufficient condi-
tions in terms of network topologies are derived, in the latter, sufficient
conditions on the considered class of switching signals are developed,
where in both cases the main goal is to ensure the asymptotic synchro-

nization.

Chapter 6: this chapter contains the closing remarks on the entire set of results
presented in this dissertation which follow with some venues to explore

for future work.



Chapter 2

On Event-triggered Control of
Linear Systems under Periodic

Denial-of-Service Jamming Attacks

2.1 Summary

In this chapter we study the resilience of a continuous LTI system which
is controlled remotely via a wireless channel. An power-constrained periodic
(partially known) jammer is corrupting the control communication channel by
imposing Denial-of-Service (DoS) attacks. We derive a triggering time-sequence,
addressing when to update the control signal under the assumption that the pe-
riod of the jammer has been detected. Then, we show that, under some suffi-
cient condition, this triggering time-sequence counteracts the effect of the jam-
mer and assures asymptotic stability of the plant. We prove our results theoret-

ically, and demonstrate their validity in a simulation example.

2.2 Introduction

Novel advances in communications and sensing technologies are allow-

ing the remote control and monitoring of a variety of physical plants, span-



ning from Unmanned Aerial Vehicles (UAVs) to power reactors. These types of
systems integrating computation, communication, and physical processes are
called cyber-physical systems. While their emergence has come along with many
advantages, there are some associated challenges, as well. One of them has to
do with system security, as vulnerability comes at the price of ease of deployment
and hard-to-supervise multiple system components; see [20] and [1].

At the communication level, vulnerabilities can be produced by external
communication-signal jammers or attackers. One can distinguish between two
types of attacks, namely Denial-of-Service (DoS) and Deceptive attacks. In the for-
mer, the jammer tries to drop the transmitted data, whereas, in the latter, the
jammer aims to change the transmitted data, see [87] and [71] for more informa-
tion. According to [18] and [3], DoS is the most likely type of attack to control
systems. Amongst DoS jammers, a simple class is that of periodic or Pulse-Width
Modulated (PWM) jammers. From the point of view of the jammer, periodic
signals are motivated by energy constraints, and ease of implementation. It
represents a main type of jamming signals studied in the communications liter-
ature [23, 11, 82, 33]. Motivated by this, we focus on DoS attacks imposed by
PWM jammers whose periodic behavior has already been detected. In particu-
lar, we propose an event-triggering control sequence that is compatible with the
jammer and study under which conditions the strategy guarantees asymptotic
stability.

The topic of security in cyber-physical systems is receiving wide atten-
tion from the controls community and has been studied from different view-
points in the last years. In the framework of multi-agent systems, we refer the
reader to [77, 67, 68]. In these papers, the main problem is the identification of
the malicious agent, who is part of the network, and the cancellation of its con-
tribution. In [14] and [13], identification is not the main issue, and the specific
objective is how to maintain connectivity of the network, despite the presence
of the malicious agents. In [91], the authors develop an attack-resilient method
subject to deceptive attacks. Our problem formulation is related to the cited pre-

vious work in the sense that we assume the jammer has been detected and we



propose an algorithm that aims to counteract its effect.

Other references in the context of secure discrete LTI systems are [26], [3].
In [26], the authors consider deceptive attacks where deception occurs in the
observation channel. In [3], the attack is DoS, the problem is formulated in a
stochastic setup,and moreover, the attacker obeys an Identically Independent
Distributed (IID) assumption, similarly to [74].

The references [2], [38], [81], and [73] model the security problem as a (dy-
namic) zero-sum non-cooperative game, so they can predict the behavior of the
attacker. The authors in [2], [81], and [73] study the vulnerability of the network
towards deceptive attacks which differs from our problem. The closest reference
to our work is [38], which studies a similar problem in a game-theoretic frame-
work. However, a limitation of [38] is the restriction to scalar dynamics, while
the information structure assumed for the jammer is quite rich, which might not
be realistic.

Another important topic when it comes to cyber-physical systems, is that
of achieving desired control goals with economic communications. This has mo-
tivated the topic of triggering control, i.e., control actions triggered only when it
is necessary. One can distinguish between related self-triggered control and event-
triggered control; see [78], [58] and [86], which study LTI systems. The technique
used in [86] is based on Input-Output stability analysis, whereas, the technique
used in [78] and [58] is based on Input-to-State Stability (ISS) Lyapunov con-
cept, which also inspires this work. However, a main distinguishing feature is
the fact that communications may not be always feasible in our formulation.
At last, we would also like to mention [47], which studies a type of system re-
silience against transient faults using an event-triggering method close to [86].

In this chapter, we address the problem of system resilience in the con-
text of event-triggering control. The types of attacks considered are DoS attacks
which we assume have been partially identified. Other than this, we consider
a generic class of continuous LTI systems and a generic class of PWM jammers.
In particular, we propose a novel triggering time-sequence to counteract jam-

mer effects and derive a sufficient condition under which the asymptotic sta-



bility is ensured, i.e., the system is safe and secure. A preliminary version of this
work, which omitted all the proofs of the results and some simulations appeared
in [30].

The rest of the chapter is organized as follows. Section 2.3 includes the
problem formulation and notations. In Section 2.4, we propose a novel attack-
resilient event-triggering law consistent with the jammer signal, and in Sec-
tion 2.5, we analyze and prove the validity of this law. We then demonstrate
the functionality of our theoretical results in a specific simulation in Section 2.6.

We then conclude in Section 2.7 summarizing the results and future work.

2.3 Problem Formulation

In this section, we state, both formally and informally, the main problem
analyzed in the chapter.

We consider a remote operator-plant setup, where the operator uses a
control channel to send wirelessly a control command to an unstable plant, see
Figure 4.1. We assume that the plant has no specific intelligence and is only
capable of updating the control based on the data it receives. We also assume
that the operator knows the plant dynamics and is able to measure its states
continuously.’

In this chapter, we assume that the type of jammer and the period of the
jamming signal has been identified. Future work will be devoted to enlarge the
triggering time-sequence for identification purposes.

Let z € R" be the state vector and v € R™ be the input vector. We con-

sider the following dynamics:
& = Az + Bu(t), (2.1a)

u(t) = KZ’(tk) , YVt € [tk,tk+1[, (21b)

where A, B and K are matrices of proper dimensions, and {#;},., is the trig-

gering time-sequence to be defined later. We denote e(t) = z(t;) — z(t),Vt €

!This information can be obtained by using either local “passive” sensors, e.g., a camera
network, or positioning systems, e.g., GPS, where cheap and safe communication are possible.
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Figure 2.1: Problem Architecture

[k, bt [-
We consider an power-constrained, periodic jammer whose signal can be

represented as follows:

1, (n—
u]'md(t) = (
0, (n-—

1)

T S t S (n— 1)T—|—Toff,
1)T—|— Togg <t <nT,

(2.2)

where n € N is the period number, 7" € R., and 7 = [0, T} is the action-period
of the jammer. Also, Toi € Rog, Togg < T, and Togr = [0, Toge] is the time-period
where it is sleeping, so communication is possible. We further denote T, € R,
and 7on = [Ton, 7] to be the time-period where the jammer is active, thus no data
can be sent. Accordingly, it holds that 7o + 7, = 7. We also note that the
parameter 7,4 need not be time-invariant which recalls Pulse-Width Modulated
(PWM) jamming. Finally, we denote by 7 a uniform lower-bound for 7, i.e.,
T < Tog which we assume holds for all the periods and we have identified as
well. A schematic plot of the jammer signal ujn4(t) is shown in Figure 2.2 for
some example parameter values.

We can now formulate our main objective:

[Problem formulation]: Knowing 7" and T, < Ty, uniformly for all
the periods, determine an event-triggering strategy for the operator
that is sufficient for system stabilization despite the presence of the
jammer.
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Figure 2.2: Scheme of Jammer Signal

2.4 Attack-resilient Event-triggered Strategy

In this section, we introduce an event-triggered strategy which is resilient
towards the jamming attack. To do so, we make use of the ISS approach of [78]
and [58].

Here, we assume that: (i) the system (4.1a) is open-loop unstable, and (ii)
the pair (A, B) is controllable. The latter guarantees that there exists matrix &
such that A + BK is Hurwitz. This implies that for every matrix Q = Q7 = 0,

there exists a unique matrix P = P” > 0 such that the Lyapunov equation:
(A+ BK)'P+ P(A+ BK) = -Q, (2.3)

holds [44]. Given Q, we consider the Lyapunov function V(z) = 27 Pz. Note
that V(t) = V (2(t)) = 2(t)" Px(t), so interchangeably, we shall use V() or V ().
Since () and P are symmetric, positive-definite matrices, then by applying the
Cholesky decomposition, we can express them as @ = L”L and P = U"U, for
some L,U € R™". We also denote by ||.|| and |.|, the Euclidean matrix and
vector norms, respectively.

We introduce our ISS-Lyapunov function next.

Proposition 2.4.1. Consider the system (4.1), where (2.3) holds. Let V (x) = 2 Pz be
the Lyapunov function. If ||Q|| > 1, then the following holds:

O |z < V(w) <y laf” (24)
V(z) < —([Ql = 1) z]* + [|PBK][*|e[* , (2.5)

where 01,0, € Rg. In other words, V' is an ISS-Lyapunov function for (4.1).
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Proof. We can lower- and upper-bound V' (z) as follows:
Amin (P) \x|2 < V(2) < Amax (P) |x|2 )

where A\pin and Apmay, are the minimum and maximum eigenvalues of P, respec-
tively. Since P = PT = 0, then (2.4) holds with 6; £ Ay, > 0 and 6y £ Apax > 0.

Let A= A+ BK and B = BK. Computing the time derivative of V and
plugging in (4.1a), we obtain:

V(z)=a2" (A"P + PA) v+ e"B"Px + 2" PBe.

Recalling the following inequality:
2T’ PBe+ "' BT'Px < 2"z + " B"PPBe ,

we can upper-bound V as:

Viz) < 2" (ATP 4+ PA)x + 272 + " BT PPBe. (2.6)
Using (2.3) and the Cholesky decomposition for @, i.e., Q@ = LT L, we obtain:

V(z) < —(Lx)" (Lx) + (Iz)"(Iz) + (PBe)T(PBe) .

Recalling that ||L||* = ||Q|| > 1, the latter inequality yields (2.5). O

Similarly to [78], one can use the ISS-Lyapunov function of
Proposition 2.4.1, together with a design parameter o € (0,1), to determine a

stabilizing event-triggering law when the jammer is absent:

Proposition 2.4.2. Consider the system (4.1a), along with the Lyapunov function
V(z) = 2T Px associated with ||Q|| > 1. If the control (4.1b) is updated at times
ti, governed by the following triggering law:

-1
e = o2 k1, @)

then the system is asymptotically stable.
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Proof. In order to ensure asymptotic stability, it is sufficient to impose the fol-

lowing constraint on (2.5):
V(z) < (1@l = 1) |«|* + | PBE|*[e|* < 0,

which implies:
IPBE|* e < (IQIf = 1) |2 - (2.8)

Note that in (2.8), and without loss of generality, we can introduce design pa-

rameter o € (0,1):
IPBE|*|e]” < o(|Q] = 1) |2* < (1QIl = 1) |2, (2.9)

which still renders the system asymptotically stable. Let ¢; be the first time

that (2.9) is violated. Hence, we obtain the following:

1
) = o )l

By updating the control at t;, we get e(t;) = x(t;) — x(t;) = 0 and V(t;) < 0.
Moreover, for t > t;, the error e(t) evolves with time and increasing from t;.
As long as (2.9) is not violated, i.e., (2.7) does not hold, we have V(t) < 0, by
construction. Now, let ¢, be the next time when (2.7) holds. Note that, again,
e(ty) = x(ty) — x(ty) = 0 and V (t,) < 0. Therefore, it follows by induction that
by the definition of the triggering sequence according to (2.7), V(t) < 0, V. A

standard Lyapunov argument guarantees the result follows. O

In what follows, we shall study the asymptotic stability of the system de-
spite the jammer presence under a simple modification of the above triggering

law. To do this, we assume a “worst-case jamming scenario”, i.e., Toss = T,

Definition 1. We define the triggering time-sequence despite the jammer presence as

follows:
ten =ttisatisfying (2.7) | t; € [(n — )T, (n — )T + Tog]} U {nT} | (2.10)

Vk € N, Vn € N. In (2.10), k denotes the number of triggering times occurring in n'

jammer action-period.
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In order to interpret the triggering law (2.10), let us consider the n'
action-period, i.e., t € [(n —1)T,nT]. The sequence selects the time-instants
given by (2.7) which also lie in the [(n — 1)T', (n — 1)T + T time-period along
with nT'. In this way, if it ever happens that:

thn = {tisatisfying (2.7) | t; € [(n — )T, (n — )T + Teg]} = 0,
then the only triggering instant would be n7'.

Remark 2.4.3. In the triggering law (2.10), we have:
3r >0, such thatty,, —t., > 7,Vk € N.

This is based on Theorem 111.1 in [78]. In other words, the time-sequence generated by

the triggering law (2.10) does not accumulate.

2.5 Analysis of the Proposed Triggering Law

Having introduced the triggering law (2.10), we present our main result
in this section which studies the asymptotic stability of the system under attack.

In [53], the author proves the following bound for a matrix M € R™"*":
lexp(M)]| < exp(u(M)) (2.11)

where the pi-operator is defined as follows:

M(M):max{,u‘ue)\<M+TMT)}7

with A\((M +M™)/2) be the spectrum of the matrix (M + M) /2. We shall exploit

this bound in the proof of our main result.

Theorem 2.5.1. Consider the system (4.1), along with the triggering law (2.10). The

system is asymptotically stable if the following conditions are satisfied:

(1 - o) T5Ql - 1)
2

> || P|| In(«) , (2.12)
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where,
@ £ exp((T = THIN(A + BK)) + — ot o
BK
(12l 1) (- et — 700 1A
(1~ exp((T ~ Tl A + BK))). .13)
and,
WA+ BK) < 0. (2.14)

Proof. We shall focus on the first jammer action-period, i.e., 0 < ¢t < T. We then
show that under the proposed sufficient condition, it holds that V(7") < TV(0),
for some T € (0, 1), which can be inductively extended to show V((n + 1)T) <
TV (nT), Vn € N. From here we then demonstrate that asymptotic stability
can be guaranteed. For the sake of brevity, we drop n = 1 in the ¢ , annotation.
Without loss of generality, let {t] = 0,¢},5,...,t" } be the time-sequence gener-
ated by the triggering law (2.10), where it holds that t; < T’ and ¢, | > T3E.
We note that there must exist such an m > 0, since according to Remark 2.4.3,
this time-sequence does not accumulate.

We consider the evolution of the Lyapunov function in the time-interval
[tr.t7,,], where 0 < t7,t7, < t,. According to (2.10), in this interval, Equa-
tion (2.7) is not yet violated, hence the following holds:

o _ Q[ -1
o

O < o7 e e OF

Upper-bounding (2.5), by using the latter Equation, yields:
V(t) < —(1=o)(lQl = 1) =) . (2.15)
Now, we note that:

t
VZﬂPW$V§MWMF$—M@FST$%,

with which we can further upper-bound Equation (2.15) as follows:

1-odel-1

YO <=

V(). (2.16)
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By applying the comparison principle on (2.16), we get:

(1-o) QI —1) )
T m) , (2.17)

vt € [tf, t7,4]. Using (2.17) in an inductive way, we can express the evolution of

V(t) < V(&) exp (—

Lyapunov function for the time-interval [0, ¢} ], as follows:

V(t,) < V(0) [] exp (-“ - "ﬂg\?” — 1

i=1

1 -1).

We note that, t7, = S7" ' (tr,, — ), so the latter equation yields:

V(t5) < V(0)exp <— (1= “ﬂé”ﬁ” — 1)15;;) . (2.18)

At this stage, note that, according to the triggering law (2.10), the control cannot
be updated within the time-interval [¢},,7]. As discussed later in this proof, a
sufficient condition for asymptotic stability is given by V (T) < V (0). In order
for this to hold, we firstly develop some estimate for « (7).

We recall the dynamics (4.1), which given the above explanations and

notations, can be written under either:

{:i:(t) = Ax(t) + BKx (t},) , (2.19)
x(tr) =0,
or:
{x(t) = (A+ BK)(t) + BKe(t), (2.20)
z(tr) =,

form. Let us consider (2.20), whose explicit solution evaluated at ¢ = 7" is given
by:
T
z(T) =exp ((T'—t;,)(A+ BK))x(t),) + / exp ((T'—s)(A+ BK))BKe(s)ds.
tn
(2.21)

By applying the triangular-inequality on (2.21), we find the following bound:
|2(T)| <[lexp ((T" = £;,)(A + BK))|[|x(t,) |+

/t *T exp (T — 5)(A+ BK))BKe(s)ds| . (2.22)
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Based on (2.11), Equation (2.22) can be further bounded, which gives the

following:

(1) <exp (T = ,)(A + BK)) a(t;,)| +

/t exp ((T'— s)u(A+ BK)) || BK]|| |e(s)| ds . (2.23)

*
m

Applying the sup-operator on (2.23), yields:
|2(T)] < exp (T — 1) u(A + BK) [ (t;,)| +

T
sup |e(s)| [|BK]| /t exp ((T'— s)u(A+ BK))ds . (2.24)

seltr, T
We can solve the integral term in (2.24) which gives the following bound:

SUDesy, ) le(s)| [| BK]|
(A + BK)

(1—exp (T =t )u(A+ BK))). (2.25)

(1) <exp (T' = t;,) (A + BK)) [x(t,,)| —

In order to further progress in our analysis, we need to find an appropriate

bound for sup,c. 7 le(s)|. This is done in the following claim.

Claim 2.5.2. Consider (2.25), sup,c. 1) |e(s)| satisfies the following:

sup |e(s)| < — |a(ty,)]
seltx,,T]

IBEIN (oo
(“W)X“ p(T—£)AD). (226

Proof of Claim 2.5.2: First, we recall from our notations that e(s) = x(t},) —
x(s), which yields:
le(s)] = [(s) — x(;,)] - (2.27)

Now, consider the dynamics (2.19), we then find an explicit expression for (2.27):

le(s)] = [x(s) —a(t;,)] = |exp ((s — 1;,) A)x(t,) =

x(tr) + / exp ((s — s')A)BKx(t:,)ds'|.
tj;L

The latter equation can be bounded, by exploiting the triangular inequality,

which then results into the following (several algebraic steps are skipped, for
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the sake of brevity):

[ BE]| | (t),)]

e(s)] < llexp (s = ) 4) = Il |a(t5)| + =

(exp ((s = t5) 1Al — 1)
(2.28)

In (2.28), we note that the following holds, recalling definition of exponential-

matrix and for some = € R™ for which |z| = 1:

(s —t)A)F
Z(( m)A)

(exp (5 — £5,)4) ~ | = T
k=1 ’
(s —t,)A)* o |s — 0" All*
S S e A
k=1 ' k=1 '
> S—t* F A k *
=y Bl AR (s — 141 - 1. (2.29)

B
Il

1

Therefore, by definition of the 2-norm of a matrix, we can say

lexp ((s —t5,)A) — I|| < exp((s —t;,)||A]]) — 1. So, by bounding (2.28), with this
expression, we get:

[ BE| [=(t5,)]

e(s)] < (exp (s = ) 14I) = D e(t2)] + 7

(exp (s = 1;,) [[All) = 1)

By applying the sup operator on the latter inequality, we obtain:

* . BK|| |x(t;,
up[efs)l < sup(exp (s — 15, A1) — 1) fa(tz)] + 122 )
selty,, T seftx,,T) || ||

sup(exp (5 — 15,1 41) ~ 1).
seltr, T

In this equation, we note that ||A|| > 0, as A # 0. So, we can compute the sup’s,
appearing on its RHS, to get:

s le(s)] <(exp (T = #,,) |A]]) = 1) [(t;,)[ +

IBE| J(t5,)]

A e (T =) 4D ~1). (2.30)

Performing some simplifications on (2.30), we obtain (2.26), which then com-

pletes the proof of this claim. .
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Now, we plug (2.26) into (2.25) which then by some simplifications yields:
2(T)] < o |=(t,)] (2.31)
where the parameter o' is defined as follows:

) a e I BK]|
o Zexp((T' -t )u(A+ BK)) + ,u(A+BK)X

HBKH — ex — t*
( AT “) (1 —exp((T — t7,) [|All)) %

(1 —exp((T'—t;)u(A+ BK))) . (2.32)

It is worth to note that comparing the parameters o and o/, introduced in (2.13)
and (2.32), respectively, it holds that o/ < «, which is because ¢, < TS and
(A + BK) < 0, by assumption. According to this observation, Equation (2.31)
can be written as:

(T < a2(8,)] - (2.33)
The value of the Lyapunov function at ¢ = 7', can be estimated as follows:
V(T) = a(T)"Px(T) < |IU]* |=(T)]” , (2.34)
which then according to (2.33), can be further bounded:
V(T) < o U a(8)I - (2.35)

Besides, let us define the parameter v to be:

s (1-0) (@l -1
o

v , (2.36)

where we note that v < 0, based on the assumption of this theorem. Then, we
can rewrite (2.18) as in:
V(tr) <exp(yt:,)V(0). (2.37)

We note that as v < 0 and ¢}, < T, we obtain that
exp (VIG)V(0) < exp (vtr,)V (0), based on this inequality, we can impose the
following bound on (2.37):

V() < exp (VT5)V(0) < exp (v1,,)V(0). (2.38)
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Now, along the same reasoning for (2.34), we note that

V(t:) < |U|? |z(t%,)]°. A conservative bound can be imposed as follows:
V(tr) < U fa(t,)1* < exp (VTS V(0). (2.39)
Applying bound (2.39) on (2.35), we obtain:
V(T) < a”exp (vI)V (0) . (2.40)

Let T £ a2exp (7<), we note that T > 0, to wrap up this proof, we shall state

the next result.

Claim 2.5.3. In (2.40), imposing Y € (0, 1) guarantees the asymptotic stability, i.e.,

lim,, o x(nT) = 0.

Proof of Claim 2.5.3: As explained previously, based on V(T') < TV(0),
and in an inductive way, we obtain: V' (nT) < TV ((n — 1)T"),Vn € N. Hence,
we infer that: V(nT") < T"V(0). Based on this latter inequality, along with the

notion of Lyapunov function, i.e., V(nT) = z(nT)? Px(nT), we get:
|2(nT)*Ain(P) < V(nT) = 2(nT)" Px(nT) < Y"V(0) < Y"Apaa(P)] 7ol

which then yields the following;:

l2(nT)|? < (im%"((g) T2 (2.41)

Recalling P > 0, then it holds that Ayax(P) > 0, and Ay (P) > 0; so,
Amax(P)/Amin(P) > 0. Then, according to Claim (2.41) and by imposing T €
(0,1), it is evident that lim,,_,, #(nT") = 0; in other words, the asymptotic stabil-
ity is guaranteed. o
Therefore, according to 2.5.3, a sufficient condition for maintaining the

asymptotic stability is given in the following:
0<YT<1. (2.42)

Now, we recall the definition of parameter v, presented in (2.36), and that T > 0,
by its construction. Also, we note that ||| = ||P||, plus given that exp is a
monotonically increasing function, we can rewrite (2.42) in the form of (2.12).

This, hence, completes the proof. O
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Remark 2.5.4. The result provided in the Theorem 2.5.1 can be interpreted as a feasi-
bility statement. In other words, for a given system in the form (4.1), one has to find the
proper design parameters I, P, Q, and o € (0, 1) such that the following constraints
would be satisfied:

(A 4+ BK): Hurwitz , (2.43a)

(A+ BK)'P+ P(A+ BK) = —Q, (2.43b)
(1- U)Tgfr;(HQH - 1P| In(a), (2.43¢)

w(A+ BK) <0. (2.43d)

We note that, e.g., if I, = T, i.e., the jammer is not malicious at all, then o = 1 and so
the constraint (2.43c) holds for free. The same will be true for TS ~ T. Additionally,
note that more relaxed sufficient conditions for stability can be obtained by imposing
V(knT) <YV ((n — 1)T) for some fixed k > 1, some Y € (0,1), and all n € N.

2.6 Simulation

In Section 2.4, we have developed a triggering time-sequence and in Sec-
tion 2.5 proved that under some sufficient conditions, the system under attack
is asymptotically stable. In this section, we shall show the validity of these the-
oretical results on an academic example.

Let us consider the following system:

[?]:[105 —11][?]+[(1)]“ (2.44)

where © € R. We note that, for this system, (A, B) is a controllable pair. In ad-
dition, it is an open-loop unstable system, provided that eigenvalues of A have

positive real-part. We pick the control gain: K = [ -2.6 -1 ], which renders

the matrix A + BK Hurwitz. Then, we consider the matrix: () = [ ] . We

TSNS,
ol il

note that Q@ = Q7 = 0, and that ||Q|| > 1. Given these matrices, Lyapunov equa-
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1.1477 —0.25

—0.25 0.5125
signal ujmq(t), where T' = 2 and T§j; = 1.8.

We then refer to the Theorem 2.5.1. One can compute that: o = 1.4413,
|P|| = 1.2343 and ||Q|| = 1.559. Thus, the condition (2.12) would be translated
into: 0.5036(1 — o) > 0.4512 = o < 0.1041. It infers that the allowable range

tion (2.3) gives us: P =

] . We consider the jammer, imposing

for the design parameter is o € (0,0.1041). To realize, at this point, all the as-
sumptions of this theorem are satisfied, therefore, we expect that the triggering
time-sequence (2.10) render the system asymptotically stable.

The temporal evolution of the states is shown in Figure 2.3. We can see
that the control policy, along with triggering time-sequence has counteracted
the effect of jamming attacks.

In order to further demonstrate the triggering time-sequence, we have

drawn the temporal evolution of |e(t)|* and ‘Tlgﬂgu{_”? |z(t)|” in Figure 2.4. For
the sake of clarity, we have zoomed on the first four periods. According to this
figure, we note, e.g., that in the time-interval ¢t € (73, T), where the commu-
nication is not feasible, the error grows in an unbounded fashion. This effect,
however, is accounted for in the next period by triggering more often.

The other interesting observation out of our simulation is explained here.
While preserving matrices P and @, for T, < 1.7996, there is no feasible o.
This is to note that for these more malicious attackers, we cannot have a feasible
controller. A solution would be to tune matrices P and Q which has not been
studied in this simulation.

In order to further understand the effect of the length of period, T, we
have conducted a new simulation. In this set of simulation, while preserv-
ing the system introduced in (2.44) and the associated matrices K, P, (), along
with parameter o, we increase parameter 7" and find the following parameter:
Ter

off, min

= min {T|YT < 1}, which is the shortest 7.5 for which the asymptotic
stability is guaranteed, according to the Theorem 2.5.1 of this chapter. The result
of this simulation is presented in Table 2.1. Referring to this table, we note that

by increasing the jammer period 7', the jammer maximum activity decreases,
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Figure 2.3: Temporal evolution of the states

Triggering time-sequence

o -1
B2z el
e (1)

0
0051152253354455556657 758
t(sec)

Figure 2.4: Temporal evolution of the triggering condition, zoomed over the
tirst four periods
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Table 2.1: Guaranteed maximum jammer activity

T(sec) 1 2 3 4 10
TS o (500) 087 | 1.80 | 2.75 | 369 |94

Jammer max. activity | 13% | 10% | 8.33% | 7.75% | 6%
(1 ) x 100

Table 2.2: Guaranteed maximum triggering flexibility

T'(sec) 2 5 10
T(sec) | 1.8 | 19 |464] 48 |49 | 94 [9.6] 9.8
Omax 010771011066 |09 |0.17|0.5]|0.83

which makes sense because it shows that for a larger jammer period 7', the min-
imum time jammer sleeps should be larger as well to be able to guarantee the
stability.

Moreover, in order to study the effect of the triggering strategy, i.e., o, on
the stability of the system, we have conducted another set of simulations. We
have picked the same system as in the previous parts, and while preserving the
matrices K, P, and (), for each value of 7', we compute: oy = max {o|Y < 1},

for some T, < TS < T. The result of this simulations for 7' = 2, T" = 5, and

off, min
T = 10 is presented in the Table 2.2. Referring to this table, we can realize that
for each value of T, by increasing the parameter 7T, omax also increases which

shows that the stability can be guaranteed by lesser number of triggering.

2.7 Conclusions & Future Work

We have considered a plant-jammer-operator setup, where the control
communication channel (from the operator to the plant) is corrupted by a pe-
riodic jammer. For the benefit of maintaining less communication, we have
adopted an event-triggering time-sequence to restrict communications when
necessary. We have then shown, theoretically and in simulation, that this trig-
gering time-sequence is capable of counteracting the jammer attack and also
rendering the system asymptotically stable under some conditions.

As is explained in the manuscript, we assume the jammer has been iden-
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tified to the extent that it is periodic and its characteristic parameters are known
by the operator. Future work will be devoted to extending our triggering strat-
egy on two fronts: (i) allow for more events so that learning and identification
of the jammer is possible, and (ii) exploiting the controllability properties of the
linear system to beat a wider class of periodic jammers. In the future, we would

like to consider more malicious jammer classes.



Chapter 3

On Triggering Control of
Single-input Linear Systems under
Pulse-Width Modulated DoS Signals

3.1 Summary

In this chapter, we study the stability of remotely controlled and ob-
served single-input controllable linear class of systems under power-constrained
Pulse-Width Modulated (PWM) Denial-of-Service (DoS) signals. The effect of
a DoS jamming signal is to corrupt the control and measurement channels,
thus preventing the data to be received at its destination. Therefore, a power-
constrained DoS signal is modeled as a series of on and off time-intervals, which
restricts communications intermittently. In this work, we first assume that the
DoS signal is partially known, i.e., a uniform lower-bound for the off time-intervals
and the on-to-off transiting time-instants are known. Accordingly, we propose
our resilient control and triggering strategies which are provably capable of
beating partially known jamming signals of this class. Building on this, we then
present our joint control and identification algorithms,

JAMCOID FOR PERIODIC SIGNALS and JAMCOID, which are provably able to

guarantee the system stability under unknown jamming signals. More precisely,

26
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JAMCOID FOR PERIODIC SIGNALS algorithm is able to partly identify a peri-
odic DoS signal with known uniform lower bound for the off time-intervals,
whereas JAMCOID algorithm is capable of dealing with power-constrained,
but otherwise unknown, DoS signals whilst ensuring stability. The practicality
of the proposed techniques is evaluated on a simulation example under partially

known and unknown jamming scenarios.

3.2 Introduction

Cyber-physical systems comprise a wide range of systems that tightly inte-
grate both computational and physical components. Thanks to growing devel-
opments in the area of sensing and communication technologies, these systems
are being used in very diverse areas ranging from aerospace, to energy, to civil
infrastructure facilities. Whilst the benefits of cyber-physical systems are many,
they also come at the price of several challenges. Amongst these, one can high-
light a much broader exposure to external actions which threatens their normal
operation, i.e., their stability. The latter has brought up and motivated renewed
research on the topic of system resilience and security, see for instance [20] and
references therein. A particular threat to the secure operation of cyber-physical
systems arises from vulnerable communication links, which can be disrupted
by means of viruses or external communication-signal jammers. In particular,
Denial-of-Service (DoS), resulting in lossy networks, is reported to be the most
common type of interference [18]. Motivated by their power-constrained na-
ture, detection avoidance, and ease of implementation, DoS signals can fur-
ther acquire Pulse-Width Modulated (PWWM) signal pattern [56, 23]. In this work,
we study how to adapt the control of a linear cyber-physical system to power-
constrained PWM DoS jamming signals.

The secure operation of cyber-physical systems has been studied in dif-
ferent contexts. The papers [77, 67] characterize topological network conditions
that allow a multi-agent system to detect other malicious agents injecting false

data; while [13] studies how to maintain group connectivity despite the pres-
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ence of malicious external jamming agents. On the other hand, the work [91]
proposes a Receding Horizon control methodology to deal with a class of decep-
tive replay jammers, potentially introducing system delays in formation control
missions. However, these previous works can only deal with simple dynam-
ics for each agent (second-order integrators in [91]), and box type of state con-
straints at best. In [91] resilience comes at the expense of large receding hori-
zons, which can be computationally expensive and difficult to implement.
Some representative studies in the context of Game Theory focus on ma-
licious attacks on linear systems, leading to problem formulations that models
the jammer and operator interactions as a dynamic zero-sum non-cooperative
game. In this framework, one can single out [63], which consider
power-constrained DoS jamming signals on discrete-time systems. The objec-
tive of this work is the characterization of equilibrium solutions for fixed-resource
agents, which restricts the analytical results to one-dimensional control systems.
The problems of control and estimation over unreliable communication
networks have received considerable attention over the last decade [41]. Topics
of interest include quantization [17], delays [16], sampling [64], packet
dropout [74], DoS jamming signals [3], and clock synchronization [35]. The DoS
signals considered in [3] are modeled by means of a stochastic Bernoulli packet
drop distribution. The goal is the minimization of a finite-horizon quadratic
cost function subject to constraints. This work builds on previous research over
lossy networks such as [74]. However, none of the aforementioned papers con-
siders adaptation in the control law in order to exploit an energy limitation of
the jamming signals. On estimation, the work [35] provides conditions under
which synchronization of a affine-clock network subject to delays is possible.
The method assumes information about the clock times is submitted in mes-
sages, and does not address how to estimate clocks while maintaining economic
communications for an underlying system control. Finally, in the context of
discrete-time linear systems, one can also distinguish [26] on deceptive jam-
mers. Using sensor redundancy and compressed sensing techiques, the authors

propose an encoding algorithm that can be resilient to this type of attacks. The
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algorithm does not account for possible communication interruptions as those
imposed by DoS signals.

Motivated by the emerging use of economic communications in modern
control systems, we shall address the problem of maintaining system stability
in the context of triggering control [78, 58, 86]. In better words, we aim to build
triggering control actions which rely on limited communications and/or mea-
surements and which are then more robust with respect to a class of DoS PWM
jamming signals. In this regard, the works [85, 37] present sufficient conditions
on the maximum number of successive data dropouts that guarantee that a dis-
tributed system employing an event-triggering algorithm maintains stability.
However, communications are not adapted to deal with any type of DoS signal.
Finally, the paper [47] considers a resilience problem formulated in the trigger-
ing framework. This latter, deals with an alternative type of deceptive signals,
which tamper with the control commands. Resilience is based on the switch-
ing between a safe and faulty modes to maintain normal system operation at
all times. In this setting, the detection of the malfunction above a threshold is
always possible, and then the attack has a limited effect on the system perfor-
mance.

In this chapter, we consider three problem scenarios of increasing dif-
ficulty with respect to the assumed knowledge on the DoS signal. First, we
consider a partially known PWM DoS jamming signal where the on-to-off time
jamming instants are known as well as a guaranteed off period. In this set-
ting, we present a resilient control and triggering strategy that can be tuned
arbitrarily to deal with any jammer of this type. Building upon these results,
we consider a second setting, where the jamming signal is assumed to be (non-
necessarily malicious) periodic but of unknown period. To address this case,
we introduce the JAMCOID FOR PERIODIC SIGNALS algorithm that exploits
periodicity to both synchronize while sporadically sample the jamming sig-
nal, and stabilize the system. Finally, in the third problem scenario we con-
sider an unknown, but power-constrained, PWM DoS jamming signal. For

this case, we propose the JAMCOID algorithm, which bestows a joint control
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and identification strategies at the expense of a higher number of communi-
cations. In these three problems, we prove that our proposed strategies en-
sure the system’s asymptotic stability. In contrast with our earlier work [30],
the contributions of this research study may be itemized as follows: (i) propos-
ing a resilient parameter-dependent control and triggering strategies provably
capable of dealing with the partially known jamming scenario, (ii) proposing
the JAMCOID FOR PERIODIC SIGNALS and JAMCOID algorithms to address
the unknown jamming scenario, (iii) simulations on the functionality of both
aforementioned contributions. A preliminary version of this work focusing on
known jammers and systems of low dimension has appeared in [28]. The other
preliminary version, entailing MIMO systems has appeared in [31], where the
detailed proofs are omitted. In these studies, comprehensive simulation studies
are lacking.

The rest of the chapter is organized as follows. Section 5.3 includes the
problem formulation and notations. Then, in Section 3.4, some preliminaries are
provided, where then we propose our resilient control and strategy consistent
with the jamming signal. In Section 4.6, we analyze and prove the stability of the
system equipped with these resilient control and triggering strategies. In what
follows in Section 4.7, we shall explain the jammer control and identification
algorithms, JAMCOID FOR PERIODIC SIGNALS and JAMCOID, then analyze
their asymptotic behavior to prove that they guarantee the system stability. In
Section 5.8, we demonstrate, in simulation environment, the functionality of
our theoretical results under known and unknown jamming scenarios. At last,

in Section 5.9, we summarize the results and state the future work.

3.3 Problem Formulation

We consider a remote operator-plant setup, where the operator uses con-
trol and measurement channels to respectively send and receive data back from
an open-loop unstable plant. The wireless control and measurement channels

are prone to be jammed as depicted in Figure 3.1. We assume that the plant has
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Plant Plant
Measuremernt Control Measuremernt Control
Channel Channel Channel Channel
(secure) | l l
( ]am@ ( ]am@ ( ]am@
Operator — I Operator —
(a) Scenario 1 (b) Scenario 2

Figure 3.1: Problem Architecture. Two scenarios have been considered: in Sce-
nario 1 measurements are secure or indirectly available to the operator, and in
Scenario 2 both the measurement and control channels can be compromised by
a DoS signal.

no specific intelligence and is only able to update the control based on the data
it receives and to accordingly send back the measurement. We also assume that
the operator knows the plant dynamics and is able to compute and send the
control and obtain its state measurements at particular times.

More precisely, we consider the following closed-loop dynamics:

#(t) = Ax(t) + Bult) (3.1a)
u(t) = Kl’(tk) , Vte [tk,tk+1[, (3.1b)

where z € RY is the state vector, u € R is the input, A, B and K are matrices
of proper dimensions, and {#;},. is a certain triggering time-sequence. Here,
we also assume that: (i) the system (4.1a) is open-loop unstable, and (ii) the pair
(A, B) is controllable.

We now introduce the class of DoS signals studied in this chapter. We
consider a power-constrained jamming signal or jammer, blocking the control and
measurement communication channels as follows, see Figure 3.2 for an illustra-
tion:

0, Trl<t<Tt4T0

L, Tr 4Tt <t<Tm,

u]-md(t) = (32)

where we assume that the sequences of real numbers, {1 },cz, {1} nez, satisfy

" < T, 10 € Rog,and Tl < T™ — T, for n € Z. Using these parameters,
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the time-intervals [T, 7™ + T} determine when the signal is off and commu-
nication is possible. We further denote the sequence {17, },cz, with T € R,
and |77, T™"'] as the time-interval where the jammer is active, thus no data can
be sent or received. Accordingly, it holds that T + T3, = T™ — T™ !, ¥n. The
parameters 7" and 77 need not be time-invariant which recalls Pulse-Width
Modulated (PWM) signals. Finally, we denote by 7; a uniform lower-bound
for 17, ie., 0 < T < T, Vn, where we also denote 757" & 7n 1 T In
addition, we assume 7 < oo and {T5"} < oo, Vn € N, these latter assumptions

turther justify the power-constrained nature of the considered DoS signal (4.2)
T (TS0

because 72 < =%~ < oo holds. The last notation, for the case of 7" = nT),
off off

implies T35/ = T' — Ty, hence, we use T = TS5".

At this point we we shall resort to Figure 3.1 where we have introduced
the scenarios considered for the jamming intervention. Then, recalling the sys-
tem dynamics and jamming signal, respectively introduced in (4.1) and (4.2),
we shall be more specific on the jamming intervention in each of these scenar-

ios. The system dynamics (4.1) would be as follows:

&(t) = Az(t) + Bu(t),

u(t> = Kx(hc)u]rnd(tk) s YVt € [tk, tk—i—l[,

where the operator knowledge about the states of the plant would be z(¢) and
x(t)ujma(t) for Scenarios 1 and 2, respectively.

We now consider the following problems:

[Problem 1]: Given a power-constrained jamming signal described
by (4.2), knowing the sequence {7} and the parameter 7, deter-
mine (i) a time-triggered control strategy under Scenario 2 in Fig-
ure 3.1(b), (ii) an event-triggered control strategy under Scenario 1 in
Figure 3.1(a), for the system to be resilient to DoS signals.

The solution to this problem will help us address the following more general
problems. In order to state them, let 7° be the time difference between the initial
time of the operator’s clock and the DoS signal’s clock, assumed w.l.o.g. to be
T° > 0.
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u]md(t)
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0 +1 Trn+2 7 ti
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T Tn+1 Tn+2 Tn+3

Figure 3.2: Scheme of the Jamming DoS Signal

[Problem 2]: Given a power-constrained jamming signal described
by (4.2), assuming that 7" = nT, and given T, propose a time-
triggered control strategy under Scenario 2 to guarantee the asymp-
totic stability of the system, despite lack of knowledge on T, T and
the time 7°.

[Problem 3]: Given a power-constrained jammer described by (4.2),
propose (i) a time-triggered control strategy under Scenario 2, and
(ii) an event-triggered control strategy under Scenario 1, to guarantee
the asymptotic stability of the system, despite lack of knowledge on
{17}, {TS$ Y, TS, and the time, 7°.

The type of DoS signals considered here constitute a class of resource-
constrained jammers, which are not necessarily malicious. Then, it is acceptable
to consider a non-malicious periodic type of disturbance as in Problem 2. The
special case of Problem 2 is distinguished to show how the periodicity of the
DoS signal and the solution to Problem 1 can be exploited to limit communica-
tions over the on jamming time-intervals. Problem 3 addresses the case of non-
periodic and unknown DoS signals but which are power-constrained. However,
in order to deal with any signal of this class, communication over the on periods
is necessary as well. It is also nonetheless worth noting that the current struc-
ture in presenting the problems has been opted because the results of the main
initial Problem 1 serve as the basis for the two afore discussed Problems 2 and 3,
which although both deal with the unknown jamming scenarios, they provide

different solutions.
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3.4 Resilient Control & Triggering Strategy

In this section, we first recall some useful properties of the class of sys-
tems we study, after which we introduce a proper choice of control matrix, K.
We shall then introduce our class of control strategies which consists of choosing
this particular form of K, along with an associated triggering time-sequence,
{ti }ren, based on an appropriate Jordan decomposition. Unless stated other-
wise, we refer the reader to Section 3.9 for the proofs of main results.

Since (A, B) is controllable, the system (4.1a) can be put into a control-
lable canonical form by a proper similarity transformation [12]. Thus, we focus

on systems of the form:

0 1 0 0 0
0 0 1 e 0 0
T = T+ u,
0 0 0 1 0
| —Ga —ag1 —Ggp - —ay | B
u=[~kg+ag, kg1 +ag-1,--,—ki+a]x. (3.4)

Lemma 3.4.1. Consider A\ € R and system (3.4). By choosing K, = [k, ..., k4]

d ,
as k; = ( ) N, i€ {l,...,d}, all the closed-loop system poles are placed at —\.
7
Moreover the eigenvalue —\ has algebraic multiplicity d and geometric multiplicity 1.
Proof. The proof can be deduced from [12]. O

Remark 3.4.2. Note that matrix A + BK) has only one linearly independent eigen-
vector, therefore it is not diagonalizable. This property holds for all values of A € R,.
Moreover, let v be an eigenvector of A+ BK . Then, since the matrix A+ BK + A\
depends on \ in a polynomial way, the components of this eigenvector, given by (A +

BK) + A )v = 0, become rational functions of \.

Remark 3.4.3. For simplicity, we focus here on single-input systems. However, the
previous results can be extended to the multi-input case by using the transformation

techniques in [4]. The interested reader is referred to our study [31].
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From Lemma 3.4.1, the eigenvalues of the matrix A + BK) are at —\.

Thus, the Jordan decomposition of this matrix can be expressed as:
A+ BK, =T\, Ty, (3.5)

where J, = —AI + N and T}, is a matrix built upon the linearly independent
and generalized eigenvectors. We note that the matrix NV has a unique structure
for all values of ), as the geometric multiplicity of this eigenvalue remains un-
changed. Moreover, as discussed in Remark 3.4.2, the only linearly independent
eigenvector of A + BK) depends in a rational way on A. Then, by construction
of the generalized eigenvectors [25], the matrices Ty and 7} ' also depend on A
in a rational way.

Before presenting our control strategy, we introduce a family of coordi-
nate transformations used in this chapter. They are based on the Jordan de-
composition technique explained in previous paragraph. Let us consider sys-

tem (3.4), with the control u(t) = K x(tx). Then, the closed-loop dynamics is:
T = (A—l— BK)\)I’—F BK)\E,

where, e(t) = z(t;) — z(t). Recalling (4.5), the latter dynamics under the static

transformations, e = They, and x = T)x,, yields:
iy = Jyry + Ty 'BK)They . (3.6)

The following result states our first attempt in developing the triggering strat-
egy. Indeed, as it can be verified, the presence of the DoS signal is not accounted
for in this lemma; our resilient triggering strategy comes after. The ISS-based
triggering approach developed in papers [78] and [58] have inspired the deriva-

tion of this lemma.

Lemma 3.4.4. Take A > ||[N|| + 1/2, and K, as in Lemma 3.4.1. Then V(x)) =
x1xy is a common ISS-Lyapunov function for the system (4.6), and the event-triggered

condition:
(2A =1 —2[[N])

|5 BEAT |
guarantees the asymptotic stability of the system, for o € (0, 1).

ex()? < Z ENOIR (3.7)
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Remark 3.4.5. Let t, and ti,, be two consecutive time-instants given by the event-

triggering strategy (4.7). Then, for each X, the following holds:
Jr\ > 0, such that ty 1 —ty > 7)\,Vk € N,

that is to say, parameter T, is the uniform lower-bound for the triggering time-sequence,
{tx} given by (4.7). This latter fact is based on Theorem III.1, presented in [78],
which also shows how to compute such T\ as recalled in Algorithm 1, later in Sec-
tion 5.8. This latter observation also implies that the time-sequence, {t;}, generated by
the strategy (4.7) does not accumulate; that is in other words, all two consecutive time-
instants, t;, and ty.1, are separated by a positive lower-bound, T, which then ensures
limy_yoo tir1 — tx # 0. Since under Scenario 2 we do not assume that the operator can
continuously measure the plant states, we adopt this T as the basis of our economic

time-triggered control strategy.
For parameter 7, and sequence {t, }.cn, we show the following property.

Proposition 3.4.6. Let A\ > | N||+1/2, and let {t; } ,en be the associated time-sequence
generated by the event-triggering strategy (4.7). Consider the parameter 7y introduced
in Remark 3.4.5. Then, the following holds:
lim =0, and )\hm tk+1—tk:0, Vk € N. (38)
—00

A—00

At this point, we present the class of triggering strategies we consider
to solve Problem 1 (both scenarios) starting at 7°, we shall first introduce these
strategies, stability characterization using these strategies is postponed to Sec-
tion 4.6. To do this, we consider the jammer is constantly maintaining a “worst-
case jamming scenario,” i.e., I' = 1'%, Yn € Z. We would like to clarify that this
is a worst case, because in this way the jammer is active the most and is inactive

the least, i.e., T takes its least value for each jamming time-interval.

Definition 2. A time-triggered control strategy for Problem 1, Scenario 2, consists of
u,(t) = Ky,x(ty,) during t € [t} ., tii1 0l k0 € N, where the t},, are the time-

instants:

thn €{lms, | I7n, € [T Tt 4 T, L e Ny U {T"}. (3.9)
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Here, K, is chosen according to Lemma 3.4.1 and Proposition 4.5.2 to guarantee that

the corresponding Ity € [T, T+ T<], for all n € N.

We note that, based on Proposition 4.5.2, and for a given n, we are able
to find a . so that the multiples of 7, lie in the desired interval, for A > A, i.e.,
the former set introduced in (4.8) is never empty. Note that these strategies limit
communications to the off periods of the jamming signal. Similarly, we define

our event-triggering strategy to solve Problem 1, Scenario 1, as follows.

Definition 3. An event-triggered control strateqy for Problem 1, Scenario 1 consists
of un(t) = Ky, x(ty,) during t € [ty ., t; 1,0 k,n € N, where the t; , are the time-

instants:
ty . €{tisatisfying (4.7) | t, € [T" ", T" "+ Tgg],l € Ny U{T"}. (3.10)

Here, K, is chosen according to Lemma 3.4.1 and Proposition 4.5.2 to guarantee that
the corresponding t;,t;,, € [T, T + TSl for n € N. It is also worth to mention
that according to (3.10), ¢; are the time-instants declared by (4.7) stated in Lemma 4.5.1,
which also lie in the desired interval, [T™1, T" ' + Ty, therefore, it does not declare a

continuum interval of times.

The choice of )\,,, which influences both the control effort, K, , and the
frequency of communications, will be made specific in the following section.
We note that both effort K, and frequency of communications will be used to

guarantee asymptotic stability of the linear system.

3.5 Stability Analysis

In this section, we prove how the class of control and triggering strategies
discussed in earlier sections are able to solve Problem 1 (both scenarios) for an
appropriate choice of \,. The presented analysis provides the foundation to
solve Problems 2, and 3, and hence to deal with unknown DoS signals. Unless

stated otherwise, we refer the reader to Section 3.9 for the proofs of main results.
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Given M € R%4, define the p operator:

(3.11)

M+MT)}
2 b)

w(M) = max {u } L € spec (
with spec(.) be the set of eigenvalues. An upper bound of ;1(M) is given by:
par = p(M)] + 1. (3.12)
Moreover, we would like to recall the following lemma.

Lemma 3.5.1 ([57]). Consider the polynomial:

p(2) = ag+ayz + -+ agz?, (3.13)
where, z € R, and a; € R, for i € {1,...,d}. Then, a lower-bound for all the roots of
p(z) = 0 is given as follows:

|a0|
R = . 3.14
max (Jao], Jax] + Jaa] + -+ Jaa] (314

We can now state the main result of this section.

Theorem 3.5.2. (Stability Characterization of Problem 1, Scenario 2) Consider Sys-
tem (3.4), where (A, B) is a controllable pair. Given a jamming signal (4.2), where the

sequence {1} and parameter TS, are known; consider:

a (exp(=(1—0)(2A—1-2|N|)TF/4)
o R ) -
||BK)\|| < cr,n . eXp (_(1 - U)(2)‘ - 1- 2||N||)7_)\) < crn
( [ (e p(Ton :uA) 1) =+ HT)\_IH_I\/R_)\ € p(Ton :uA)) )

wherein Ry is as defined in (3.14) for the characteristic polynomial of the matrix,
(T DT (TY). Let X = inf{\,|C(n,\,) < land, )\, > |N|| + 1/2}, then, for each
n € N, applying control gain K, as chosen in Lemma 3.4.1, along with the time-

triggered strategy (4.8), for any \,, > X}, renders the system asymptotically stable.

Remark 3.5.3. We would like to hereby highlight one important feature of the previous
result. On the one hand and provided our argument in Lemma 4.5.1, we are imposing

the condition, A, > X > |[N|| + 1/2, on the other hand, the control strategy resorts
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to time-triggered strateqy (4.8), which is based on Ty parameter. Hence, recalling our
argument in Proposition 4.5.2, we are inherently imposing 7, < 7 < 7%, where 7" is
associated to \* = ||N|| + 1/2. This latter admittedly imposes a constraint in the sense
that the frequency of communication cannot go beyond 7 during the off sub-periods of
the jammer, nonetheless, this constraint is the price that one has to admit in order to be

able to cope with any jammer of this class.

The previous result, i.e., Theorem 4.6.1, is based on the class of time-
triggered strategies stated in Definition 3. The following corollary characterizes
the alternative class of event-triggered strategy of Definition 3 to solve Prob-

lem 1, Scenario 1.

Corollary 3.5.4. (Stability Characterization of Problem 1, Scenario 1) Consider Sys-
tem (3.4), where (A, B) is a controllable pair. Given a jamming signal (4.2), where
the sequence {T"} and parameter T are known; recall then C(n, ) as characterized
in (3.15) of Theorem 4.6.1 and let \!, = inf{\,|C(n,\,) < land,\, > |[|[N| + 1/2},
then, for each n € N, applying control gain K, as chosen in Lemma 3.4.1, along with
the event-triggered strategy (3.10), for any A, > X%, renders the system asymptotically
stable.

In the following remark, we shall provide some interpretation to what

we have stated thus far in Definitions 3, 3, Theorem 4.6.1, and Corollary 3.5.4.

Remark 3.5.5. We would like to emphasize that in our proposed solutions to Problem 1
(both scenarios) and in order to deal with a power-constrained DoS jamming signal,
the operator tunes a parameter, \, and thus employs two resources, i.e., the “frequency
of communication,” characterized by T, and the “actuation effort,” characterized by
K. More specifically, our objective is to determine a least value for X such that for
a given TS, {T"} and by employing the proposed solutions, we can still guarantee
the stability of the system. It is then indeed the coupling between the frequency of
communication and actuation effort, determined and tuned by a parameter, which yield

the results presented thus far.



40

3.6 Joint Triggering Control & Jammer Identification

In this section, we propose our solutions to Problems 2 and 3, which are
built on the resilient control and triggering strategies introduced in Section 3.4,
along with the stability analysis presented in Section 4.6. First we discuss the
JAMCOID FOR PERIODIC SIGNALS algorithm to solve Problem 2, i.e., knowing
Ty, and the jamming signal is of form (4.2), with 7" = nT’, for some T > 0,
we show that the JAMCOID FOR PERIODIC SIGNALS algorithm guarantees the
asymptotic stability of the system for an unknown 7', and despite presence of an
unknown mismatch in the operator’s and jammer’s clocks initial times. Then,
based on the obtained observations we develop the JAMCOID algorithm to
solve Problem 3, i.e., to guarantee the system asymptotic stability despite pres-
ence of a general jamming signal of the form (4.2), with unknown parameters,
T°, {1}, {15}, TS, where only the existence of T is assumed. Unless stated
otherwise, we refer the reader to Section 3.9 for the proofs of main results.

First, let us denote by wuiq : R>g — {nul | } U {1}, the signal that the oper-
ator uses for jammer identification purposes, where u;4(t) = 1 encodes that the
operator sends message 1 to the plant at time ¢, whereas, uiq(f) = nul | declares
that no message is submitted. Let us also denote by ug. : R5g — {nul | } UR?
the signal rebound from the plant, such that ug.(t) € R? contains a success-
fully delivered message containing state-update information at time ¢, whereas
uste(t) = nul | represents no message is delivered at the operator’s side. Finally,
let uew : R>g — {nul | } UR be the submitted control, where similar to the u;4-
case, uci(t) # nul | induces that a control u.(t) is computed and sent, whereas
U (t) = nul | means that no message is sent.

In fact, we assume that, from the operator viewpoint, the submission of
uig, receipt of uge, and submission of u«q happen in a sequential and instan-
taneous manner. That is to say, first a measurement is requested by sending
uig = 1, then upon receipt of the measurement via uge, a control is sent to the
plant via . Note that ucyi(t) = nul | if uge(t) = nul I, i.e., we do not send
any control if we do not receive any measurement, and this happens when the

jammer is active at ¢.
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Atlast and prior to introducing the afore discussed algorithms, we would
like to discuss various symbols and parameters used in these algorithms. The
parameter, 77 is the time difference between the jammer’s and operator’s clocks
at the j-th iteration of the algorithm—with 7° = T0. The parameter M is the
sampling time with which the operator communicates with the plant. The pa-
rameters, 7, and T are, respectively, the estimate of 7% and 7. The pa-
rameter, /7™ is the estimate of the I-th multiple of the period 7' that is used
in JAMCOID FOR PERIODIC SIGNALS algorithm. The parameter, o € (1, 00) is

also used in order to refine the sampling time, A/, if required.

3.6.1 The JAMCOID FOR PERIODIC SIGNALS Algorithm

Unlike in Section 3.4, we assume here that the operator’s and jammer’s
clocks do not have to be synchronous but have similar linear models. Let 7° be
the time difference between the jammer’s clock’s initial time and the operator’s.
W.l.o.g. assume T° > 0. We realize that, under the “worst-case jamming scenario,”
there are three unknown parameters, 75, 7' and T°, which characterize the jam-
mer’s signal together with the known parameter, T5;.

Intuitively, the core idea behind JAMCOID FOR PERIODIC SIGNALS is
to intelligently generate the triggering time-sequence {¢;} in order to, (i) bound
the asynchronicity, 79, (ii) find a valid useful interval to which the parameter
T, or some multiple of this period, belongs. In fact, this latter algorithm ful-
fills these two latter goals by first employing a periodic time-triggered strat-
egy and second employing a more economic time-triggered strategy closer to
Definition 3, along with reseting the operator’s clock upon completion of ev-
ery step of the algorithm. More specifically, using the periodic time-triggered
strategy, by verifying the success or failure of the transmitted signal at every
sampling time, proper estimates for jamming off sub-period and multiples of
the jamming time-interval would be obtained which are helpful in deriving
the more economic time-triggered strategy. It is also worth to mention that

JAMCOID FOR PERIODIC SIGNALS has an auto-correction module in it in the

sense that based on the observation of the economic time-triggered strategy, it
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may return to the periodic one in order to refine the estimates of jamming off
sub-period and the multiple of its period. These said, by reseting the operator’s
clock upon retrieving these two estimates, the asynchronicity between jammer’s
and operator’s clocks would be also bounded.

The algorithm is described in the flowchart of Figure 3.3 and summa-
rized in the following lines, where uuy(;) is computed as explained in Sec-
tion 3.4, that is uc(tr) = K use(tr), with the gains K given in Lemma 3.4.1.
In the flowchart of Figure 3.3, while following the intuitive explanation men-
tioned earlier: (i) law(0) refers to a periodic time-triggered strategy defined by
the period M = 7, and with associated K; (ii) law(1) refers to a time-triggered
strategy of the class in Definition 3 with a A chosen to guarantee the conditions
of Theorem 4.6.1 for an estimated off period of 7, and assuming that the next
on-to-off time instant is given by ITmext, Briefly, the following steps are per-
formed:

Step I: The operator sends messages to the plant with control content fol-
lowing a periodic triggering strategy. During this phase, we can distinguish two
cases. Case (1): We do never hit the jammer’s on-subperiod, that is, use(t;) #
nul |, Vt¢,. Thus, we can keep updating our control at the prescribed time-
instants, t, = kM, without interruption. This can happen if, in fact, there is
no jammer or, in case there is, the clocks are synchronized and the jamming
on-subperiod falls between consecutive triggering time-instants.

Case (2): We detect an on-to-off jamming signal transition. That is:
Jky such that  wuge(k1M) =nul | and  wuge((ky +1)M) #nul | |
where recalling the jamming signal shape, the following holds:
Jkyand [y such that kM < TP +0L,T < (ki +1)M. (3.16)

Step II: After detecting the jammer is on, the operator applies a first clock
reset so that the clock time difference is upper bounded by the sampling time,
M. In formal words, att = (k; + 1)M, we reset t < t — k; M. Let us denote
79 =T 4+ I, T — k1 M, then by (4.10) it holds that:

0<TYy<M. (3.17)
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Reset:

‘ Apply law(0) with associated K. l
Jam Detect.
Uste (k1 M) =nul |,

NoContinue
with law(0). /_

M« M
[ea
M

A Ast.my = -

Jam Detect.
uste(k2 M) #nul |,
uste (k2 + 1) M) # nul |,

ko < max {ka, (k2 + 1)|uste (ko M) = nul | Juse((k2 +1)M) =nul | },

uste((kl + 1)M) #nul | .
lYes
Reset clock att = (k1 + 1) M:
t«t—kiM,
c—c+1,
store k1.
Reset clock:
Yes t<t— koM,
No
Found ko
Setc « 0, -
T (L —1 =DM, .

ITnext « (ky + 1)M,
Update X consistent with above values.

Apply law(1) with K, /T, and 7<%,
Sample at ko M, (k2 + 1)M, (k2 + 2)M.

i

Figure 3.3: Flowchart of JAMCOID FOR PERIODIC SIGNALS Algorithm

Step III: The operator repeats the strategy described in Step I to obtain

a first estimate of when the jammer changes activity from on to off. This gives

some information on 7" which will be used later to limit communications. Again,

two cases are possible. In Case (2), we detect an on-to-off signal transition. Let

ko € N such that:

ko such that  uge (ko M) = nul |

and  uge((ko + 1)M) #nul | |
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where recalling the jamming signal shape, the following holds:
Jkoand Iy such that koM < Ty + 1,17 < (ko + 1)M . (3.18)

Step IV: A new clock reset is applied, to maintain the time offset bounded
by the sampling time M. With additional information, 7" = nT’, the opera-
tor will have an estimate of when the jamming signal passes from on- to off-
subperiod. This will be helpful to limit the amount of communications used to
probe the jammer. In formal words, at time-instant, ¢t = (k, + 1)M, the operator
resets the clock as t < ¢t — ko M. Further, denote T = T3 + ;T — koM, according
to Equation (4.12), we get:

0<Ty <M, (3.19)

where, additionally, it can be proven that:

(ky — )M < T9 + 15T < (ke + 2)M , (3.20)

Step V: Let | = L%j and consider the time-interval [M, [M]. Since 0 <
Ty < M, from definition of l~, IM < Ty follows. Also, communication with
the plant is feasible at any time in [M, [M]. Hence, [M,M] can play the role of
0, 7] in the known jammer scenario. From (4.13), note that (k; +2) M is a valid
upper-bound for the unknown parameter 73§ + ;7. Thus, we estimate [T by
(k2+2)M. In addition, provided these information, we compute Tgfrf = (l~ —-1)M,
TS = (ky+2)M — (I — 1) M, and plug these parameters back into Equation (3.15)
for C'(n, A), and retrieve the proper \* for which C(n, \*) < 1; accordingly, we
update K, < K)-. We then keep updating the control at time-instants given by

the following triggering strategy:
tr € {IM [ IM € [M,IM]} U{(ks +2)M}, VA ER.y. (3.21)

In addition to communicating with plant at time-instants declared in (4.14), the
operator sets wig(koM) = 1 and wig((k2 + 1)M) = 1, and gathers (k2 M),
Uste((k2 + 1)M). To detect the transition from on- to off-subperiod, we consider
the following cases: Case (1): It holds that uswe (koM ) # nul | # uge((ko + 1)M).

Thus, the operator does not detect the jammer’s on-to-off transition from (I, —
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1)T to [T It also means that the length (I, — 1)T" on-subperiod, is shorter than
M. Therefore, in this case, we reset M <+ &, where o’ € (1, 0) is a design pa-
rameter. We note that, by construction of 7, 3\, such that 7, = % We repeat
from Step 1.

Case (2): Either uge(koM) = nul |, or uge((k2 +1)M) = nul |, or both. In
other words, a jammer’s on-to-off transition happens from (l; — 1)7" to [,T". This

is characterized by kM, where:
k= max{ka, ko + 1|uge(kaM) = nul |, uge((k2 + 1)M) =nul | }.

Reset ky < k,t +t — kM, and TY < T + I,T — kM, for which (4.13) also holds.
Repeat from Step V.

The system asymptotic stability employing
JAMCOID FOR PERIODIC SIGNALS, is shown in the next theorem.

Theorem 3.6.1. Consider System (3.4), where (A, B) is a controllable pair, and a jam-
ming signal (4.2) with constant unknown parameters, ', T, Tir, and constant known

parameter, Ty The algorithm JAMCOID FOR PERIODIC SIGNALS renders the sys-
tem asymptotically stable.

3.6.2 The JAMCOID Algorithm

In order to solve Problem 3, we present here the JAMCOID algorithm.
The main idea behind JAMCOID is to generate the triggering time-sequence
{t1} in order to (i) bound the asynchronicity by applying appropriate clock re-
sets, and (ii) find an underestimate of 7'§; and an overestimate of all {75"} < oo.
In more intuitive words, JAMCOID fulfills these two latter goals by employ-
ing a periodic time-triggered strategy which, based on the success or failure of
the transmitted signal at every sampling time, computes the proper estimates
for the jamming off and on sub-periods and use these estimates to refine its
sampling time. The asynchronicity between jammer’s and operator’s clocks is
also bounded by reseting the operator’s clock once both estimates have been
retrieved. Therefore, this will lead to a conservative algorithm that can handle

the power-constrained signal.
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Pick A, M such that:
M = 1.

Apply law(0) with associated K. ]4

Jam Detect.
Tste (k1 M) Z nul | use((k1 +1)M) = nu

ste(r1M) =nul | uge((r1 +1)M) # nul L.

No ~Continue
with law(0).

Set the estimates:
T(ff’f + min {7

off?
Ton < max {Tg;,

kiM},
(7”1 —+ l)M — k’1]\/f}.

Reset clock at ¢t = (r1 + 1)M: | »| Reset A consistent with Tg& and T,
t<—t—r1M. Reset M = 1.

Figure 3.4: Flowchart of JAMCOID Algorithm

Indeed, as mentioned earlier and as we will be clearer on this point,
JAMCOID provides a solution based on a time-triggered control strategy, i.e.,
under Scenario 2; nonetheless, we shall discuss an extension to an event-triggering
control strategy, i.e., under Scenario 2, following it. The algorithm is described
in the flowchart of Figure 3.4. In this flowchart, while following the intuitive
explanation stated earlier, law(0) refers to a periodic time-triggered strategy de-
fined by the period M = 7,, and with associated K. Briefly, the following steps
are performed:

Step I: The operator sends messages to the plant with control content
following a periodic triggering strategy. During this phase, we can distinguish
between two cases. Case (1): We do never hit the jammer’s on-subperiod, that is,
uste(tr) # nul |, Vt,. Thus, we can keep updating our control at the prescribed

time-instants, ¢, = kM, without interruption. Case (2): We detect an on-to-off
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jamming signal transition. That is first we detect:

Jky such that  wuge(k1M) #nul | and  wuge((ky +1)M) =nul | |
and then we detect,

Jdrysuch that  wuge(ry M) =nul | and  wuge((r1 + 1)M) # nul |,
where recalling the jamming signal shape, the following holds:

Jr;and s, such that M < TP +T° < (r; + 1)M . (3.22)
In addition, the following estimates can be obtained:
T = kM, and, TS = (ry+1)M —k M.

Step II: After detecting the jammer is on, the operator applies a first clock
reset so that the clock time difference is upper bounded by the sampling time,
M. Thatis, att = (r; + 1)M, the clock is reset as t <— t — r M. Let us denote
TY = TP +T" — riM, then by (3.22) it holds that 0 < 7§ < M. In addition, by
obtaining the estimates, 7<;" and 7', we shall find the minimum off-subperiod
and maximum on-subperiod that is computed up to this stage of the algorithm.
In other words:

ricr . rer, 1 ricr ricr rer, 1l rper
o —min {1y T5g}, and, Top < max{T5 , Ts}.

Once we have found the estimates T;j; and 77},

back into (3.15) for C(n, A), and retrieve the proper \* for which C(n, \*) < 1.

we plug the different parameters

We then update 7, < 7\, K < K-, and go back to Step L.
The asymptotic stability of the system, employing JAMCOID, is stated

next.

Theorem 3.6.2. Consider System (3.4), where (A, B) is a controllable pair, and a gen-
eral jamming signal (4.2) with unknown parameters, {T"}, {Ts:"}, and TS, The algo-

rithm JAMCOID renders the system asymptotically stable.
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The JAMCOID algorithm is based on a time-triggered control strategy,
which would be a solution under Scenario 2. In the following remark, however,
we discuss an adaptation of this algorithm to deal with Scenario 1, i.e., an event-

triggered control strategy.

Remark 3.6.3. The JAMCOID algorithm can be adapted for event-triggered strate-
gies, which then provides a solution under Scenario 1. Let {t} be the event-triggered
condition as described in Equation (4.7), Lemma 4.5.1. Then, the JAMCOID proposed

for time-triggered strategies can be changed as follows:

1. In Step I-Case (2), we shall first detect:
Jkq such that  uge(ty,) #nul | and  wuge(ty, 1) =nul ||
and then we detect,
drysuch that  uge(t,,) =nul | and  uge(t,,+1) #nul | |
which then implies the following:
Jryand s, such that t,, < T+ T <t, 1,

which is a counterpart to (3.22). This then provides the estimates, TS;" = ty,,,

off
and, TS =t 11 — tg,.

7 —on

2. In Step II, the reset is performed at t = t, .1 as t < t — t,,, whereby the es-
timates are updated as TS, « min {T5", T} and | TS+ max {1 T,

Then, proper X\* shall be obtained by resorting to (3.15), by means of which the
update on Ky < K-, and event-triggered condition (4.7) shall be performed.

At last, the proof of this extension can be performed in an exact similar way as

in proof of Theorem 4.7.1—this time by resorting to Corollary 3.5.4.

The following remark shall put in contrast bothfAMCOID and
JAMCOID FOR PERIODIC SIGNALS algorithms.
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Remark 3.6.4. The major difference between JAMCOID and

JAMCOID FOR PERIODIC SIGNALS algorithm is that the latter is more economic in
terms of communications than the former. In other words, the periodicity property,
along with the knowledge of Ty, in JAMCOID FOR PERIODIC SIGNALS, lets us first
identify the time-intervals where communications are guaranteed and hence develop a
triggering strategy to ensure the stability. Nevertheless, in JAMCOID, because of
the non-periodicity of the jamming signal, which prohibits possible predictions on the
on-to-off transition time-instants, and lack of knowledge on T, we have to always
communicate over the active jamming time-intervals, as well, in order to update our
estimates on the minimum of TS and max,en {T5"} to ensure the system stability.

This, hence, prevents economic number of communications.

3.7 Simulations

Having established theoretical results in previous sections, here we demon-
strate their functionality on a representative academic example. Hence, we
break this section into two parts; first we discuss the known jammer scenario,

followed by the unknown jammer scenario.

3.71 Known Jamming Scenario

We consider the following system:

0 1 0 0
t=1 0 0 1|z+ |0 |u,
-3 -2 3 1

[ /3 3
u— _<3>A3+3,—<2>)\2+2,—3>\—3]a7. (3.23)

possesses its only eigenvalue at —\, with algebraic and geometric multiplicity of

3, and 1, respectively, referring to Lemma 3.4.1. The only linearly independent
eigenvector is given by solving the equation (A + BK), + AI)v; = 0 for v;. Also,
two other generalized eigenvectors, we solve (A + BK) + Al )vy = vy, and (A +



50

Algorithm 1 C'(\)-Seeking
Input: Matrices: A, B, and N, Sequence: {/\k}fgvzll, Parameters: o, T, and T'.

1: Given controllable pair (A, B), compute the proper similarity transformation ma-
trix, and find (A., B.)—which are in controllable canonical form,

: fork =1to N’ do

Numerically solve the following ODE, with ¢(0) = 0:

W N

¢ =||A+ BEy, | + (|A+ BKy|| + [|BE, )¢ + || BK), |67,

4:  Find 7y,, such that ¢(7),) = o,
5:  Compute C'(\y), as stated in equation (3.43).
6: end for

Output: Sequences {C(\;)}2 | and {ry, Y, .

BK) + AM)vs = vy equations. After some algebraic manipulations, we obtain,
v = (1 -\ )\2>T,U2 = (% —1 0>T,U3 = (% —1 0)T. Hence,
T\ = [v1, va, v3).

In order to perform the simulation, we have chosen o = 0.1, 7" = 1sec,
thus 7" = nT, TS | = 0.9T, TS, = 0.1T, and T , = 0.5T, T, , = 0.5T. We
note 13, , < T 1-

We use the procedure explained in Algorithm 1, to run our simulation.
In order to assess the analysis stated in Theorem 4.6.1, we have chosen sequence
{\r = 10k}3%,. The obtained C'(\;)-sequences are shown in Figure 3.5, where it
confirms limy_,., C(\) = 0. Referring to this figure, we can also list the following

remarks.

Remark 3.7.1. Let us deﬁne: 5\ = minlgkg\p {)\]JV)\ > )\k, C()\) < 1} Then, 5\90% =
1360 and Ao, = 210. Accordingly, in order to guarantee the asymptotic stability,

larger poles are required in the case of 90% active jammer.

In order to show System (3.23) asymptotic stability, we use A5y, = 210,
and \ggy; = 1360—introduced in Remark 3.7.1—along with the resilient trigger-
ing strategy (3), and the same set of parameters. The temporal evolution of the

states is shown in Figure 3.6.
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Figure 3.5: Third-order system, comparing 90% and 50% active jammers

State evolution, 90% active jammer

100 —TJam Sig
50 — 1 t
I — — —a

7507 I €T3 t
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t(sec)

15 State evolution, 50% active jammer
: —Jam Sig
1 — (2
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Figure 3.6: Temporal results, demonstrating the stability despite DoS signals
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Evolution of the parameter 7,

0.08
0.07
0.06}
0.05}
. 0.04f
& 0.03}
0.02f
0.01F

8 2 4

A 6 8 10

Figure 3.7: Third-order system, evolution of 7,

Furthermore, on System (3.23), and along the lines of Proposition 4.5.2,
we have also conducted a study on parameter 7, evolution. This time, {\; =
0.01%}2%, and for each ), we ran the procedure explained in Algorithm 1,
obtained result is presented in Figure 3.7. This figure confirms our result in

Proposition 4.5.2, i.e., lim_,o, 7 = 0.

3.7.2 Unknown Jamming Scenario

We consider System (3.23) introduced in previous subsection, along with
set of parameters o = 0.1, T' = 1sec, thus T" = nT, chfl,l = (.87, Tgfrf,l = 0.27T,
15, = 04T, TS , = 0.67, and for initial purposes, Agoy = 80, Ay = 14.
We then run the JAMCOID FOR PERIODIC SIGNALS algorithm,! the results as

the system state evolution are shown in Figure 3.8. It verifies the asymptotic

stability of the system under JAMCOID FOR PERIODIC SIGNALS algorithm.

3.8 Conclusions & Future Work

In this chapter, we have considered controllable single-input continuous
linear systems subject to power-constrained PWM DoS jamming signals. We
have proposed a resilient parameter-dependent control and triggering strate-

gies in three different problem scenarios which guarantee system stability under

!Obviously, we note that these aforementioned parameters are required for simulation pur-
poses and not needed in the JAMCOID FOR PERIODIC SIGNALS.
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State evolution, 80% active jammer
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Figure 3.8: Temporal results, demonstrating the stability despite DoS signals
using JAMCOID FOR PERIODIC SIGNALS algorithm

different assumptions on the knowledge of the jamming signal. The functional-
ity of the theoretical results entailing both partially known and unknown DoS
signals has been demonstrated in a simulation environment.

There are several questions that we would like to address in future work.
First, the question about how to extend our results to nonlinear systems which
are controllable remains. Nonlinearities and the initial system condition will
play a role in the definition of the appropriate control laws. In addition, one
would have to devise appropriate off-line motion planning algorithms for un-
deractuated systems in order to maintain the system under control during the
on periods. Second, although we have also studied a PWM DoS signals char-
acterized by the deterministic sequence {7} with variable time-intervals, 7" —
T™!; an intriguing question would be what if 7" are chosen stochastically by
the jammer, where the operator is only aware of its probability distribution. In
other words, we would like to investigate how to exploit the probability distri-

bution on 7™ to obtain triggering strategies with reduced communications.
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3.9 Omitted Proofs

3.9.1 Proof of Lemma 4.5.1

Proof. The proof of this result follows from standard arguments in the event/self-
triggering control literature, exploiting the particular structure of J. Let By =
Ty 'BK,\T\. Briefly, the computation of the time-derivative of V' (z,) leads to the
upper bound:

V =iley+aliy <al(JF + Jy+ D)y + ¢l B Byey
<21 (NT+ N — 2\ — 1)I)xy + €3 BY Byey
< —(2A =1 = 2|IN|D[aal® + [ Bal*[eal.

Hence, for A > ||[N|| + 1/2, and recalling V(x),) = |z,|?, we conclude
that V(xy) = 2@, is an ISS-Lyapunov function for System (4.6). Moreover,
let 0 € (0,1), and let the time-sequence be given by the times when |e,|* <
22|22 is violated, it then holds that V < —(1 — 0)(2A — 1 —2|[ N ) |zx[*
Hence, the event-triggering condition, described by (4.7), guarantees the asymp-

totic stability of the system. O

3.9.2 Proof of Proposition 4.5.2

Proof. Recalling Remark 3.4.5, note that 7, < t;41 — t;,Vk € N holds. Let us,
without loss of generality, set ¢, = 0, and denote ¢, 2 t.01. Then, 0 < 7, < ty
holds. In this proof, we shall show lim,_,,, ¢, = 0, which implies both state-
ments in the assertion of this proposition. By construction of (4.7), ¢, is when

the following holds:

Vo(2x—1-2|IN])
th)| = th)l. 3.24
|6>\( A)| ||T)\_IBK>\T)\H |93A( A)| ( )
On the other hand, according to (4.5), BK), = T)J, T, '—Aholds; i.e., Ty ' BK,\Ty =
J\ — Ty ' AT). Hence, (3.24) can be written as follows:

lex(ta)| = \/|O|'Q(I2A)\—_T1‘1_A27’”L]KH) [zA(t)] = F(\)|xa(t))] -

We continue by presenting the following result.
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Claim 3.9.1. It holds that lim,_,, F'(\) = 0.

Proof of Claim 3.9.1: Recalling J, = —AI + N, we rewrite:

Vo2 —1—2[N])

F(X) = - )
I(=AI = TATY) = (=N
where by ||| — A\ — TP ATY|| — || = N||| < [[(=A] — Ty ' ATy) — (—N)||, we obtain:
2\ —1-2||N

- T = A = TAT - | - NN

Recalling that the matrix NV does not depend on A, and 7} 7, = I, we have:

0< lim F(A) < lim —— V29 .
e T YT

On the other hand, for a matrix A € R%*¢, p(A) < || A]| holds, where p(A) is the
spectral radius of A—for further insight, refer to [12]. Hence, the latter equation

can be further bounded as in the following:

0< lim F(\) < lim ——— Y20 . (3.25)
A—00 A—00 p(T)\ ()\I + A)T)\)

Furthermore, recalling T, ' (A + A)T) is the similarity transformation of the ma-
trix A\l + A, p(T5 ' (M + A)Ty) = p(Al + A) holds. Accordingly, we get:

V20
< ki < lm ————~.
0= = I onT

Now, by means of the Gersgorin disc theorem,
p(M + A) € UL, DA + ai, Y-, lai;|) holds. This then implies p(Al 4- A) has a
linear growth as A tends to infinity. Therefore, without loss of generality, we can

write

V2o
0 < lim F()\) < lim ~22 =0,
A—00 A—oo A+ ¢

for some ¢ < oo constant. Hence, the result follows. °
Claim 3.9.2. It holds that limy_,. ty = 0.

Proof of Claim 3.9.2: Recalling (4.7), and by construction of ¢5, we have:

lex(ta)] = F(N)|za(ta)] - (3.26)
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On the other hand, recall that, for t € [0,t,\]: ex(t) = Ty 'e(t) = Ty '(z(t) —
70), which yields e, (t) = x(t) — T} 'zo. Applying the latter equation on (3.26),
bestows:

lza(ts) — Ty "o = F(N)|za(ty)] - (3.27)

In order to prove the result, we consider two cases:

Case (i): |x,(t))| = 0. In this case, by (3.27), z; = 0 holds. Also, since (4.6)
is linear and the control strategy isu = Kz, = 0, () = 0 holds. In other words,
there is no need for updating the control strategy, ¢, = 0, which renders 7, = 0.

Case (ii): |x,(t))| # 0. In this case, dividing (3.27) by |z,(t))|, bestows,
F(\) = [2a(t)—T5 oo, Computing the absolute-value of F'()\), yields:

ENGY]

() = Ty Mo - “%(U” - |T,\_11'0|‘

F\)|=F(\) = >0.
e TG Y I
Now, according to Claim 3.9.1, we obtain:
: [Ty ol . [2A(0)]
lim |1 — =0= lim =1. 3.28
fm [t~ | =0 = dm 2 29

We will then show lim,_,.ty = 0, using a contradiction argument. Assume
limy_ oo

#£ 0; it must be that 3t*  such that, VA > 0,3\ > \,such that,t; > t*. This
implies there is a sequence {\;}ren, where A\, — oo as k — oo, and ¢, > t*.
Because of this, we have |zy, (t,)| < |z, (t*)|, which follows from V(t) < 0
for t < t,,—Dby the choice of our triggering time-sequence—and that V' (t) =

|z, (t)]*. Based on this observation, we derive the following inequality:

b 12O, (0)
55 Jan, ()] = 455 T, (0, )

From Lemma 4.5.1, and the fact that t* < t, , it holds:
|23, ()] < [2a, (0)] exp (—(1 — o) (2Ax — 1 = 2[|N|[)¢7/2),

by recalling that V' is an ISS Lyapunov function for System (4.6), and applying
the comparison principle, this latter equation further yields:

|2, (0)]
|5, (8]

> exp (1 o) (20 — 1 — 2[[N[)t*/2).
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As o € (0,1), by properly letting A\, > 1/2 + ||N|| tend to infinity, we

obtain:

. zy, (0 .o, (0
o M Z % |‘xfk =
which is in contradiction with (3.28). Therefore, it must be that lim)_,, ¢, = 0.
Henceforth, from both Case (i) and Case (ii), the proof of this claim fol-
lows. °
The proof of the proposition follows from the application of both claims.

O

3.9.3 Proof of Theorem 4.6.1

Proof. We shall focus on the first jamming time-interval, i.e., 0 < ¢ < T". For

the sake of brevity, we drop n = 1 in the ¢} , annotation. Without loss of gen-

erality, let t; = k7, for k € {1, ..., m}, be the time-sequence generated by (4.8),

where m is such that, t;, = mn, < T < t; ., = (m + 1)7\. We note that we

can always assume this, since according to Propostion 4.5.2, we can make 7, ar-

bitrarﬂ}; C?mall by choosing A large enough. As 7, > 0, we get m < %“ <m+ 1.
oft

Thus, [ = | = m, where |.] is the floor operator, and

X

tr = {&J Tx . (3.29)
T

It is easy to see that for all @ > 0, if |a| > 1, then |a| > a/2. Based on this

observation, and as ,%frf > 1, then LTLCfrfJ > ;F%Cif holds, which by (3.29), bestows:

A

TCI‘ TCI‘
ty, = {—“J > 2, (3.30)

" T - 2
The rest of the proof goes over the following steps:

1. We break [0, 7] into two subintervals, [0,t;,,,] and [t} ,,,T"]; that is, the

time-intervals during which the jammer is inactive and active, respectively,

2. Then, in order to find an estimate for |z(¢%,,,)|, and |x(T")|, we first trans-
form the original system into new coordinates by the matrix 7); we per-

form some computations, and transform it back into its original coordi-
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nates, by T '—this is done for each subinterval [0, ¢, ], and [t} ,T"]. In

this way, the analysis becomes more tractable,

3. Finally, the theorem conclusion will follow by studying the coefficient
C(n, \), appearing in |z(T")| < C'(n, \)|z(T™')|, and as characterized
in (3.15). On this way, we let C(1, \) = C()), we then show that
limy_,. C(\) = 0, whereby the existence of a A} satisfying C'(A\]) < 1 can
be deduced. Then, this latter implication infers that lim_,,, C(n,\) = 0,
for every n € N; therefore, it guarantees the existence of \; satisfying
C(n,\,) < 1, for A\, > X}, and for each n € N. This fact, accordingly,
shows {|z(1™)|} is a strictly decreasing sequence, which then by using a

Lyapunov argument proves the asymptotic stability.

Let us consider the transformed system (4.6) and times t € [0,¢},.,]. We
observe that, according to Remark 3.4.5, the event (4.7) introduced in
Lemma 4.5.1 holds, and that also V(z,) = zix), = |z,|? is an ISS-Lyapunov
function. Hence, resorting to the proof of this result, the following inequality
holds, Vt € [0, ,]:

V(zy) < =(1=0)2A =1 =2|[N|)]zr* = —(1 = 0)(2A = 1 = 2| N[ )V ().

The latter equation, by applying comparison principle, yields V(z)) <
V(2(0)) x
exp (—(1 — o)(2A — 1 — 2||N||)t), which then, recalling V(z,) = ziz), = |z,\[%
yields:
A ()] < |22 (0)[ exp (—=(1 = ) (2A =1 = 2[|N[})/2). (3.31)

Now, we have to transform the latter equation into original coordinates. First,

by using z(t) = Thxz\(t):
Auin (T3 (T )| < faal® < T3Pl (3.32)

The latter equation is obtained noting that (i) |z|? = 7 (75 ")? (T ')z, and (ii)

the matrix (75 ")7(T ") is a positive-definite symmetric matrix.
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According to (3.32), Equation (3.31) implies:
|75 exp (=(1 = 0)(2A — 1 = 2||N[)5,/2)
VA (T (T5)

|z(t,)] <

ol , (3.33)

which is computed for ¢ = t7.

In an analogous way, this time considering ¢ € [t! ,t* . ], we can obtain

m’ “m+1

the following result:
|75 exp (=(1 = 0)(2A — 1 = 2||N|)73,/2)
V Amin((TTHT(T571))

where we note that 7, appears, as by our resilient triggering strategy, t , , —t* =

x |z(tr)], (3.34)

m

|2 (t41)] <

Ty

The following derivations will be devoted to obtain a bound for |z(7")],
applying those for |z(t},)| and |z(t},,,)| found in (3.33) and (3.34). Let us con-
sider the transformed system (4.6), once more. We consider the time-interval
[ti, 1, T, then ey (t) = zx(t},) — z,(t) and so an equivalent form of (4.6) can be

written as:
j})\ = TA_lAT)\Z’)\ + T)\_IBK)\T)\Z’)\(t;) y Vi S [t;kn+1, Tl] .
Solving this dynamics for the initial condition z (%, ; ), we obtain the following:

wA(t) = exp ((t — 1, 1) T3 " AT )2a(t,40)+

t

/ exp (£ — )T ATV T BE Thaa (£,) dis
(2o

(3.35)

which holds for ¢ € [t7,. |, T"]. In order to further simplify the latter equa-

tion, we use the fact that for a given matrix A € R%*¢, and invertible matrix

T € R™, exp (T7'AT) = T~ 'exp (A)T holds. Hence, Equation (3.35) is simpli-

fied as follows:

t
T)\Z’)\(t) =exp ((t — t:z—i-l)A)T)\x)\(t:m-i-l) + / exp ((t — S)A)BK)\T)\JJ)\(t:l) d_S s
t

*
m—+1
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and, using = T\z) to transform it back into the original dynamics, yields:
t
z(t) =exp ((t —t;, 1) A)x(t, 1) + / exp ((t — s)A)BK z(t )ds.  (3.36)
t:n+1
We upper-bound (3.36), recalling (3.12), whereby |lexp(M)| < exp(u), and

based on which the following can be derived:
t
(@) <[zt )l exp (8 =) pa) + o ()] [ BEA] / exp ((t — s)pa) ds.
(oY
We evaluate the latter equation at ¢ = 7", and then solve the integral to obtain:

o) Slatp) xp (T = o)) + ol oo (0 = )00 - 1),

(3.37)

: cr,l 1 _ rer . : cr * 1 _
Recalling 757" = T — T<;, since by construction, T < tr ., we have T
tr.1 < TS, where in what follows, we use T3 in lieu of 75!, Thus, we can

on /

rewrite (3.37):
| BEAl

|2(T)] <[a(t, )] exp (Toppa) + |2(t,)] (exp (Tgnpa) = 1), (3.38)

Applying now Equation (3.34) on (3.38), we get:

x (T BK
o <125 oy (i - 1+
€Xp (_(1 _ U)(2)‘ —1- 2HNH>TA/2> exp (TcrﬂA)) ) (339)
1751 i (T3 (T51))
Then, combining (3.33) and (3.39), we obtain:
()] _ <exp<<1 — o)A~ 1 - 2N>t:;/2>) . (.40
7o 1751 A (T HT(T))
(LB e () - ) 22O LMD o 7,

Ha 17517 A (T3 T (T57)
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We shall use (3.30) to further bound (3.40), which then results in:

()] (exp( (1-0)2X =1 =2|N|)T, ff/4)) " (3.41)
[0l 1757 (T (T3))

<HB[(>\||(eXp(Tcrlu ) 1)+exp(—(l—a)(Q)\—1—2HNH)T,\) exp (Tvcr,u ))
Ha 175 i (T (T51))
200N

We hereby note that in (3.41), A (75 1)7 (T} ")) is the minimum eigen-
value of matrix (75 ")7(Ty'), i.e., the smallest root of the characteristic poly-
nomial of this matrix. Now, let p(s;A) = 0 be the characteristic polynomial
of (T, )T(Ty '), moreover, let Ry be as defined in (3.14). We note that, (i) be-
cause the arrays of (7, ')T(7; ') depend on ) in a semi-algebraic form, so, by
construction, do the coefficients of its characteristic polynomial, and so, regard-
ing p(z) in Equation (3.13) of Lemma 3.5.1 to be the characteristic polynomial,
then resorting to Equation (3.14) stated in Lemma 3.5.1, does the parameter R,
depend on A in a semi-algebraic fashion, (ii) according to Lemma 3.5.1, the pa-
rameter R, lower-bounds all the roots of p(s; \) = 0, therefore, it lower-bounds
Amin (TTHT(TY)) as well, that is:

0 < Ry < A ((TTHT(TTY) . (3.42)

Applying Inequality (3.42) on (3.41), bestows:
|2(T7)]

o S C(\) < (3.43)
Zo
<exp (1—-0)2X\—1=2|N|)T ff/4)) "
175~V RA
HBKAII o exp (—(1 = 0)(2A — 1 = 2[[N|)7) -
( eXp T IUA) 1)+ ||T)\_1||_1\/R_)\ €Xp (T nHA ))

20

in which the upper-bound is indeed C(1, \) appearing in Equation (3.15) of the
theorem statement. In addition, we can note that for the jamming time-interval,
(7", T, and through the same procedure leading in Equation (3.43), we can

derive C'(n, \) as appearing in theorem statement.
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We shall let C'(\) = C(1, \), and present now the following result on the
coefficient C'(\).

Claim 3.9.3. In (3.43), it holds:

lim C'(\) = 0. (3.44)

A—00

Proof of Claim 3.9.3: In order to complete the proof, we shall break C'())-
expression as C'(\) = C1(A)(Ca(A) + C5())), where,
Cl()\) _ (exp (—(1—o)(2>\—1—2||N||)T§frf/4)), 02<)\> _ w(exp (Tcr,uA) _ 1)/ and,

N "
C5(\) = exp (—(1-0)(2A—1-2||N|)7x) exp (T 1)

R
Then, we shall show lim)_,, C7(A)Cs(A) = 0, and lim_,o, C1(A)C3(A) = 0.

According to (4.5), recalling J, = —\[+ N, we get BK\ = —A+T, (= +N)T),
which then results in BK, = —A — M + T, ' NT), and further | BK,|| = || — (A+
M) + Ty 'NTy||. Applying the triangular-inequality, we get | BK,|| < || — (A +
AD|| + T NT; |, and further, [ BE,| < Al + A + |75 NI T3l

We shall employ this latter inequality in order to obtain a new upper-
bound for C}(A)Cs(A):
LAI + AL+ I NI

KA

0= NG £ ) x (e (150~ 1))

(3.45)
In order to show lim)_,o, C1(A)C2(A) = 0, we note that in the upper-bound
of (3.45), (i) since A > ||N|| + 1/2, and o € (0,1), there exists an exponentially-
decaying term in C;(\), (ii) the other terms in the upper-bound of C;(A)Cs ()
decay in a semi-algebraic way, that is because matrices T), and 7 ' depend on A
in a rational way, so the values ||T} ||, and || 7} '|| depend on X in a semi-algebraic
form [15], so does R), as discussed earlier prior to developing Equation (3.42),
and (iii) by power-constrained nature of the DoS signals and the associated as-
sumption on {T&"} < oo, and in particular, TS = T<! < oco. Therefore, the
exponential decay dominates the semi-algebraic one, and so we conclude the
upper-bound of C(\)Cs(A) in (3.45), tends to zero, as A — oco. Henceforth, since
the lower-bound of C(\)Cs () is zero, then we conclude:

lim Cy(\)Cy()) = 0. (3.46)

A—00
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In the following lines, we show lim,_,o, C1(X)C5(A) = 0. First, we note
that 0 < 7, <T' and —(1 — 0)(2\ — 1 — 2||N||) < 0, therefore, we get:

173 exp (—=(1 — 0)(2A — 1 — 2| N|)T"/2)
VR

exp (TSja) < C(\) <

[l

Also, C1(A) > 0,VA, hence, we multiply the latter inequality by C;()\):

|75 exp (—=(1 = 0)(2X — 1 = 2||N|))T"/2)
VRyexp (=T jua)

C1(A) <CLA)C5(A) <

175 | exp (ke

)
N Ci(N) .

(3.47)

Then, we study the limit of upper- and lower-bounds of (3.47). Let us plug

C'1(N)-expression in the lower-bound of (3.47), we obtain:

LB, (V) 2 |75 12 exp (—(1 — o) (2A ;)j —2IN|)(T/2 + TS /4)) |

In order to show limy_,,, LB¢, ¢, (A) = 0, we recall two facts, (i) since o € (0,1),
A > || N|| +1/2, then there is an exponentially decaying term in L B¢, ¢, (), (ii) as
discussed earlier, || 7}, !|| and R, depend on ) in a semi-algebraic way dominated
by exponential decay.

Having discussed the behavior at infinity of the lower-bound of (3.47),
we study the behavior of its upper-bound at infinity. Let us plug the C;())
expression in the upper-bound of (3.47). We then obtain:

75 P exp (—(1 = 0)(2X — 1 = 2| N|)(T%/4))
UBe . (\) £ & .
o (M) R oxp (—T )

Similar to LB, ¢, (1)), it is easy to conclude that limy_,., UB¢, ¢, (A) = 0 holds.
In previous paragraphs, we have shown that the limit behavior, as A —
oo, of the lower- and upper-bound of (3.47) is 0. Hence, we infer:

A—00
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Finally, having demonstrated Equations (3.46) and (3.48), we have proven (3.44).
This completes the proof of this claim. .

At this stage, we have proven that in [z(T")| < |x|C(A), limy— C(A) =0
holds. Besides, in a similar way, and for every n € N, we can infer

limy_,o, C(n, A) = 0. The main consequence of this conclusion is:
givene > 0,3\, such thatV\, > \) = |C(n, \,)| <, (3.49)

thereby, in other words, we can arbitrarily tune the decaying-rate of the states via
A (and its effect on C'(n, A)). Therefore, imposing € < 1, infers C'(n, A,) < 1 for
A, > A5 Thus, |z(T")] < C(n, \,) < 1|a(T"1)], for C(n, \,) < 1, which then in
an inductive way infers |z(T")| < ([]_, C(i, A;))|xo| which ensures the system
asymptotic stability, i.e., lim,,_, |2(T")| = 0, provided that

lim, o (T2, C(4, \i)) = 0, since every C(n, )\,) < 1 and that by construction of
C(n,\,) in (3.15), C(n, A,) > 0.

We would also like to note that a particular case where the Lyapunov
function, V' is decreasing at every 7™ time-instant while oscillating with increas-
ing amplitude in between every 7! and 7" is excluded. In what follows, we
discuss this latter point resorting to the proof procedure and by considering
t € [0, T"] time-interval, where then the conclusion is deduced using inductive
argument. We note that (i) the Lyapunov function, V(z)) = xf@, is a contin-
uous function, provided there is no jump appearing in the state, =), and that
moreover, V(x,) > 0 for every nonzero x), (ii) over the time-interval, [0,¢},,,],
V < 0, and that for (¢%,,,T"] it may hold that V' > 0, however, the growth
of x,(t) characterized by (3.35) is at most exponential and thus no oscillatory
behavior may occur, and (iii) we have guaranteed that V(7") < V(0); hence it
holds that sup;c(g 1) V(7x) = V(0). Therefore, in an inductive way, it holds that
SUPe(rn—1 7 V(2A(t)) = V(xA(T"7")). This latter is enough to deduce the fact
that V may not oscillate with increasing amplitude between every 7" ! and 7.

U
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3.9.4 Proof of Corollary 3.5.4

Proof. 1t is sufficient to show that under the resilient triggering strategy (3.10),
the analogous equations to (3.30) and (3.34) hold. In order to do so, let us con-
sider the first jamming period. Let us, once more, drop n = 1 in the annotation

of t;.,,, and let the time-sequence {#} }*, be such that:
by, < Tage < trq. (3.50)

This is flawless since according to Proposition 4.5.2, we can make ¢}, and t},
arbitrarily close, and based on Remark 3.4.5, the sequence {t¢;} does not accu-
mulate.
On the one hand, according to the definition of resilient triggering strat-
egy (3.10) stated in Definition 3, and Remark 3.4.5,t; , —t; > 7,k € {1,...,m—
1} holds, where, in particular, t; — 0 > 7,. Accordingly, we can derive ] +
m . —t; > mm, which yields tf, > m7,. The latter equation, along
with (3.50), yields m7, <t} < T < ti .. Given this last inequality, noting

Lot
L

m7y > 0, we can attribute 3L € N, such that, mr, > -, henceforth, we get:

TCI‘
th > mry > %ff (3.51)
In fact, (3.51) serves as (3.30), where in the latter, L = 2.
On the other hand, in an identical way as (3.33) is derived, and for the
times t € [ty ,t¥ ], we obtain:

I3[ exp (=1 = 0) (20 = 1 = 2| N[ (1 = £5,)/2)
VAwn(T7(T3Y)

|2t )] < x| (ty,)]

(3.52)
where recalling —(1 — 0)(2\ — 1 — 2||N||) < 0, and ¢},,, — ¢, > 7», we further
upper-bound (3.52) which yields:

175 exp (—(1 = ) 2A — 1 = 2N )72 /2)
Vi (THT(TSY)
We note that Equations (3.34) and (3.53) are analogous. Indeed, employ-

|2 (4] < x Jx(t,)l,  (3.58)

ing here the same discussion used in Theorem 4.6.1’s proof for after (3.34), shall

wrap up the proof of this result. O
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3.9.5 Proof of Inequality (4.13)

Proof. In (4.12), we obtained, koM < Ty + LT < (ko + 1)M, now multiplying
this equation by 2 and subtracting koM + T3 from it, yields, koM — T3 < (T3 +
LT — kM) + 1,T < (ko + 2)M — T3. We further upper- and lower-bound this
latter equation by (4.11), where we obtain, (ko — 1) M < (15 +1sT — ke M)+ 15T <
(kg +2) M, where, recalling notation 7§ = T3 + 1,1 — koM, latter equation yields,
(ke — 1)M < T9 + 15T < (kg + 2) M, which completes the proof. O

3.9.6 Proof of Theorem 3.6.1

Proof. Since we are interested in the system’s asymptotic stability, we shall first
discuss the asymptotic behavior of the algorithm, whereby we discuss and ex-
clude the other possibilities. The proof is then completed by verifying the sta-
bility of each item listed as asymptotic behavior of the algorithm.

We characterize the asymptotic behavior of

JAMCOID FOR PERIODIC SIGNALS as one of the following items:
1. Case (1) in Step 1,
2. Case (1) in Step III,
3. Case (2) in Step V.

We note that it cannot be otherwise, since Case (2) in Step I, Step II, Case (2)
in Step III, and Step IV are intermediate computations and so cannot be the
asymptotic behavior. Moreover, Case (1) in Step V is out of sight, as it cannot be
running indefinitely in the algorithm. This is because repeating this case, with
the same parameter o’, yields the triggering period, 2%, where given constant

TS, o' € (1,00), and TS, < T,n. Then, we deduce, In* < co € Nsuch thatVn >
M

OJ?’L

n*, &5 < T5. Therefore, in worst case, we shall repeat the Case (1) in the Step V
only n* times.

In order to prove asymptotic stability, we shall study each item. If items 1
and 2 are repeated infinitely often, then the jammer is not corrupting the com-

munication channels. Therefore, since the triggering time-sequence is chosen to
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be k7y, with k € N, thus the asymptotic stability is maintained. Moreover, Item 3
leads to the iteration of Step V (through Case (2)). Stability will follow from the
application of Theorem 4.6.1 for each iteration of this item. Specifically, we can
approximate 7' = (ks + 2)M, and choose a \* associated with (ks + 2)M which
guarantees that the norm of the state decreases in an appropriate manner. This is
enough to conclude the JAMCOID FOR PERIODIC SIGNALS algorithm renders

the system asymptotically stable. O

3.9.7 Proof of Theorem 4.7.1

Proof. Since we are interested in the system’s asymptotic stability, we shall first
discuss the asymptotic behavior of the algorithm, whereby we discuss and ex-
clude the other possibilities. The proof is then completed by verifying the sta-
bility of each item listed as asymptotic behavior of the algorithm.

We characterize the asymptotic behavior of JAMCOID as one of the fol-

lowing items:
1. Case (1) in Step 1,
2. Step I (Case (2))-Step II.

We note that, by construction of the algorithm, it cannot be otherwise.

In order to prove asymptotic stability, we shall study each item. If item 1
is repeated infinitely often, then the jammer is not corrupting the communica-
tion channels. Therefore, since the triggering time-sequence is chosen to be k7,
with k£ € N, thus the asymptotic stability is maintained. Moreover, Item 2 leads
to the iteration of Step I (through Case (2)) and Step II. Stability will follow
from application of Theorem 4.6.1, provided that at every step and for each it-
eration of this item, we keep the asynchronicity bounded as in 0 < 7° < M,
we find conservative estimates for 75, and sup,, {75:"}, and that we update 7,
with proper \* which maintains C'(n, \*) < 1. This is enough to conclude the

JAMCOID algorithm renders the system asymptotically stable. O



Chapter 4

On Multi-Input Controllable Linear
Systems Under Unknown Periodic

DoS Jamming Attacks

4.1 Sumamry

In this chapter, we study remotely controlled and observed multi-input
controllable continuous linear systems, subject to periodic Denial-of-Service (DoS)
jamming attacks. We first design a control and triggering strategy provenly ca-
pable of beating any partially known jammer via properly placing the closed-loop
poles. Building on it, we then present an algorithm that is able to guarantee the
system stability under unknown jamming attacks of this class. The functionality

of this algorithm is also theoretically proven.

4.2 Introduction

Novel developments in the area of sensing and communication technolo-
gies have led to the emergence of complex cyber-physical systems. As first intro-
duced in [19], cyber-physical systems entail network of physical systems which

are remotely controlled and monitored. The advantages of cyber-physical sys-

68
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tems range from ease of implementation to versatile usage in infrastructure fa-
cilities [41]. Whilst posing many advantages, they also bear some inherent chal-
lenges, including a higher exposure to external attacks. This has resulted in
the emergence of an active research on the topic of system security, which aims
to assess the safety of cyber-physical systems and establish more resilient de-
signs [20, 1].

Indeed, the topic of cyber-physical systems security has been widely ap-
pealed within the controls community. To mention a few, in the context of mul-
tiagent systems, [77, 67, 68] aim to identify malicious agents who are part of the
network. The main goal of [14, 13] is to maintain group connectivity despite
the presence of a malicious agent. Also, within the formation framework, [91]
proposes a Receding Horizon Control methodology to deal with a class of de-
ceptive replay attackers inducing system delays. Our problem setup is related
to these studies in the way that the jammer has been detected, and the goal is to
develop a method to counteract its effect.

The other natural framework to study systems security is Game Theory;
to mention a few representative studies, [38, 81, 73]. In these studies, the security
problem is formulated as a (dynamic) zero-sum non-cooperative game. In [90],
the reinforcement learning technique is employed to beat a deceptive attacker.
To the extent of modeling the jammer, the closest work to our studies stated
in this chapter are [38, 63], nonetheless, the method exploited to guarantee the
stability differs greatly in our chapter since game theoretical framework is not
deployed.

In this chapter, we focus on Denial-of-Service (DoS) attacks [87, 71], where
the attacker aims at dropping the transmitted data. In particular, we narrow
our study down to the attacks caused by the so-called periodic, or Pulse-Width
Modulated (PWM) jammers. This type of attack is motivated by the ease of im-
plementation and energy constraints; e.g., see [23, 33].

In particular, we address the problem of system resilience in the context
of triggering control, i.e., control is updated if required. This is motivated by

maintaining the intelligent and economic communications. The recent
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works [78, 58, 86] have inspired our research; the distinctive feature in our study
is that communication is not always feasible. To cover the globe, [47] addresses
the security problem and formulates it in the triggering framework, however, it
differs in its attacker model, indeed, [47] considers a class of deceptive attack.
In brief, we first address the problem of partially known DoS attacks
caused by PWM jammers on multi-input linear systems to be controlled by spo-
radic feedback. Then, built on the obtained results, we introduce joint identifi-
cation and control strategy, JAMCOID, to deal with any unknown DoS jammer
of the same class. With respect to our earlier works, [30, 28], the contributions
of this note are, (i) the proposal of a parameter-dependent resilient triggering
and control strategy for multi-input controllable linear systems, and (ii) the de-
sign of JAMCOID algorithm to address unknown periodic DoS PWM jamming

attacks.

4.3 Problem Formulation

In this section, we state the main problems analyzed in the chapter.

We consider a remote operator-plant setup, where the operator uses a
control channel to send wirelessly the control command to an open-loop unsta-
ble plant, see Figure 4.1. We assume that the plant has no specific intelligence
and is only capable of updating the control based on the data it receives. We
also assume that the operator knows the plant dynamics and is able to obtain
measurements of its states at particular time-instants.

More precisely, consider the following closed-loop dynamics:

#(t) = Ax(t) + Bu(t), (4.1a)
u(t) = Kl’(tk) , YVt € [tk,tk+1[, (41b)

where z € R? is the state vector, u € R™ is the input, A, B and K are matrices
of proper dimensions, and {t;},-, is a triggering time-sequence. Here, we also
assume that: (i) System (4.1a) is open-loop unstable, and, (ii) the pair (A, B) is

controllable.
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Figure 4.1: Problem Architecture

We consider an power-constrained jammer—causing jamming attack on
the control and measurement communication channels—whose signal can be
represented as follows:

wmalt) = 0, (n—DT<t<(n-1T+T4", 42)

L, (n—D)T+T"<t<nT,

where T" € R, and n € N. The sequence T € R., 17 < T, defines the
time-intervals [nT', nT" + 17|, when the jammer is sleeping and communication
is possible. We further denote 77, € R-, and, [T7,, (n+1)T'] be the time-interval
where the jammer is active, thus no data can be sent, and nor the system state
can be measured. Accordingly, it holds that 77+ 77 = T',n € N. In this way, the
parameter 77} need not be time-invariant which recalls Pulse-Width Modulated
(PWM) jamming. Finally, we denote by T} a uniform lower-bound for 7%, i.e.,
TS < Tn., Vn € N, where also we denote TS £ T — T,

In this chapter, we shall first assume the type of jammer and the period of
jamming signal have been identified, accordingly, we study the system asymp-
totic stability. Then, we shall address a scenario where the jammer period is not
known, we propose a way to tackle this situation. More precisely, we study the
following problems:

[Problem 1]: Consider any power-constrained jammer described by (4.2)
with parameters 7" and Tor. Knowing 7" and TS, design a control

and triggering strategy of the form (4.1b) resilient to the action of
this jammer.
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[Problem 2]: Consider any power-constrained jammer described by (4.2),
where also the jammer’s and operator’s clocks are initially asyn-
chronous by some time, ¢;. Knowing 7', propose a method to guar-
antee the asymptotic stability of the system, despite lack of knowl-
edge on 7" and asynchronicity, ¢;.

4.4 Background and Preliminary Results

In this section, we briefly discuss the specific canonical form of a multi-
input system to be considered in this chapter; it is needed to keep the analysis
self-contained and given the fact this form is not unique for this class of sys-
tems. The employed technique is inspired from [54, 4], it comes with certain
advantages useful in our later analyses. We perform here the explanations to
the required extent.

The pair (A, B) in (4.1) is controllable iff the following matrix is full rank:
I'=[B,AB,A’B, ..., A"'B],

where, I' € R¥>4™  Thus, there exist at least d-linearly independent columns

in I'. The paper [4] describes how to extract these d columns. Accordingly, [4]

derives certain numbers, p, and {r;}’_,, which define the static similarity trans-

formation matrix, 7,, to be applied on the system, where it also holds that
?:1 T, = d

Applying this similarity transformation matrix, 75, in the following way:

A— A=TAT ", B— B=1T,B,
K- K=T"K, v — & =T,

transforms Dynamics (4.1) into:

z(t) = Az(t) + Bu(t), (4.3a)
u(t) = Ki(ty), Wt € [ty trs], (4.3b)

where A and B, shall be in a favorite form. In what follows, and with a slight

abuse of notation, wedenote A= A, B=B,K = K,and z = 7.



73

The transformed state-matrix is obtained as follows:

A=
T2 A1
0 - 0 0 - 0
: :
| |
: 0 . O: 0 . 0
0 - 0 0 - 0
: L vy
| |
P Ay 00
| —m 0 0 - 0
| |
: : !
:—m,,1 0 -, —Og

Lemma 4.4.1 ([4]). The matrix A satisfies the following:

1. It is a block-diagonal matrix, with all the elements above the diagonal equal to

zero,
2. The diagonal blocks are r; X r;, where r; € {r;}1_,,

3. All the diagonal blocks are in the controllable canonical form of a single-input

system,

4. The elements below the diagonal blocks are all zero, except on the Zé.:l ri-th,
i € {1,...,p} columns, which, depending on the original system, may or may

not be zero.
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The transformed input-matrix is given by:

p - om—p
00 -0 'x - - x|
I
L |00 .
-
01 -0
|
|
10 -0 1x - - x

Lemma 4.4.2 ([4]). The matrix B satisfies the following:
1. The arrays of B on its j—th column, for j € {1, ..., p}, are given as follows:

. -1
L, i=d—=>1_1"k,

0, otherwise,

bz’j —

which recalls the input-matrix of a single-input system in its controllable canon-

ical form,

2. The other arrays of B on its j—th column, for j € {p+ 1, ..., m}, consist of real

values dependent on the original system.

We now introduce a particular choice of control gains to be applied on

the transformed system.

Proposition 4.4.3. Consider System (4.3), let the control matrix Ky be as follows:

Ky =

0O - 0 - 00 - 0Ky - K1
0O - 0 - 0Ayp, - M0 - O
p |0 - ppy - 20 - 00 - O
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where the elements on its first three rows are chosen as in:

r .

mi=— ") N tan, e {nn),
7
T .

N R LR T IR
7
T .

,Ui:_ 3 )\Z+%’, '5.6{1,---7763}7

.
and, similarly, for the other arrays. Then, all the eigenvalues of the closed-loop matrix,

A+ BK,, i.e., the closed-loop system poles, are placed at —\.

Proof. The proof relies on the exploitation of A + BK, block diagonal structure,

and that every it block is in canonical form. We omit it here. O

We characterize the algebraic and geometric multiplicities of the eigen-
value —\ in the next result. Beforehand, we also note that the unconventional
arrangement of the arrays in matrices A and K is for the ease and consistency

of presentation.

Proposition 4.4.4. Consider System (4.3), along with the control gains stated in Propo-
sition 4.4.3. Also, consider the {1 + Zézo rp_; Y027 ~th columns of A+ BK) matrix,
and let q be the number of columns in this sequence with all the zero-elements below
its {Zézo Ty YZo-th row. Then, the algebraic multiplicity of —\ is d, moreover, its

geometric multiplicity is 1 4+ q, where 1 <14 q < p.

Proof. 1tis easy to see that with this choice of K, det(sI — (A+ BK))) = (s+\)¢
follows. Thus, the algebraic multiplicity of —\ is d.

Note that the geometric multiplicity of —\ is equal to the kernel of A +
BK, + M\, given by [12]:

ker(A+ BK)\ + Al) = d —rank(A+ BK) + \I). (4.4)
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For simplicity, let us assume p = 2. Then, we get:

A+ BK),+ Ml =
) 1
[ 0 10 0 0
|
0 10 0 0 |
A2 pw,+nAi 0 - 0
om0 LA 1 0o
| g
— My —1- 0 L0 0 : 1
| e 0 =N AT (1A
For this matrix, we note, (i) if V& € {1,...,r1},m; = 0, then there are ro — 1

linearly independent columns in the first ro-columns, otherwise, there are r, (ii)
there are r; — 1 linearly independent columns in the second 7,-columns of this
matrix, and, (iii) the first r;-columns cannot influence the linear independence
of the second 7,-columns. Therefore, depending on the values of my, there are
eitherry —1+ry =d—1,0rr; —1+7r; —1 = d— 2 linearly independent columns
in A+ BK, + Al. This implies:

rank(A + BK, + \I) =
d—2, ifm,=0,Vke{l,...,m},
d—1, otherwise.

Let ¢ be as defined in the proposition statement, then, the last argument

attributed for p = 2, can be also extended, where we conclude:
rank(A+ BEKy+ M) =d—1—q.
Now, plugging the latter equation into (4.4), yields:
ker(A+ BK)\+ M) =q+1,

which then implies the geometric multiplicity of —\ is ¢ + 1. Moreover, by
definition of ¢, it is at most p — 1 and at least 0, thus 1 < 1 + ¢ < p. The proof is

complete. O
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4.5 Jordan Decomposition & Triggering Strategy

In this section, we first present the Jordan decomposition of the closed-
loop matrix of System (4.3) where K, is chosen as in Proposition 4.4.3. Then, we
shall introduce the triggering strategy which solves Problem 1.

According to Proposition 4.4.4, matrix A + BK) has at most p linearly
independent eigenvectors, where p < m < d. Thus, this matrix is not diago-
nalizable, this fact motivates us to study its Jordan decomposition. Since the

eigenvalues of A + BK) are placed at —\, we have:
A+ BKy = T\J\ T, (4.5)

where, Jy, = —AI + N, and, T} is a matrix built upon the linearly independent
and generalized eigenvectors of A + BK,.

Note that, by Proposition 4.4.4, the geometric multiplicity of —\ is con-
stant for all A € R.,. Therefore, matrix N is unique for all values of A € R,.
Moreover, since the arrays of A + BK), are polynomial functions of ), the eigen-
vectors of A + BK), are rational functions of \. Hence, T, and T} ! also depend
on ) in a rational way. These observations are useful in the stability analysis
stated in next section.

Based on this Jordan decomposition technique, we introduce a family
of coordinate transformations. Let us consider System (4.3a), with the control,

u(t) = Kyz(tx). Then, the closed-loop dynamics is:
T = (A+ BK)\).T+ BK)\G,

where, e(t) = x(tx) — x(t). Recalling (4.5), the transformations e(t) = Thex (1),
and, z(t) = Thz,(t) yield:

j})\ == J)\l’)\ -+ TA_lBK)\T)\e)\ . (46)

We state the following result as a first step in developing our triggering

strategy.
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Proposition 4.5.1. Take A > ||N| + 1/2 and K, as in Proposition 4.4.3. Then,
V(zy) = alwy is an ISS-Lyapunov function for System (4.6) and the event-triggering

condition:
(22 —1—2[|[NJ))

175 BEATI?
quarantees the asymptotic stability of this system, for o € (0, 1).

ex()? < Z EXOIR 4.7)

Proof. The proof is omitted for space reasons. It follows along the lines of Propo-
sition 4.1 in [28]. 0

Lett; and ¢, be two consecutive time-instants given by event-triggering

strategy (4.7). Then, for each ), the following holds:
37y >0, such thatty,; — ¢, > 7\ ,Vk € N.

This is based on Theorem IIL.1, presented in [78]. In particular, [78] shows
how to compute such 7,. This implies the time-sequence generated by event-
triggering strategy (4.7) does not accumulate. Since in this chapter we do not
assume the operator can continuously measure the plant states, we adopt this

7\ as the basis of our triggering strategy.

Theorem 4.5.2. The parameter, T\, satisfies the following:

lim 7, =0.
A—00

Proof. The proof can be found in Theorem 4.3 in [28]. At a sketch level, the main
idea is to use 7, < ty — t1, where then letting t; = 0, and denoting ¢, £ ¢,
we show limy_,., ty = 0, which then induces lim,_,., 7, = 0. In this way, the
uniqueness of matrix N—for all \—in the Jordan decomposition technique, and,

event-triggering condition (4.7) (at which ¢, holds), play important roles. 0J

In this chapter, we assume the jammer is causing a “worst-case jamming
scenario”, i.e., T}y = TS, Vn € N. Now, using the parameter 7,, we define our

triggering strategy as follows.
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Definition 3. The triggering strategy used in this chapter, despite presence of the jam-

mer and to solve Problem 1, is defined as follows:
thn € {n|im €[(n =T, (n— )T+ T} U{nT} . (4.8)

In this strategy, k € N denotes the number of triggering time-instants occurring in the
n'™ jammer period, and | € N stands for the multiples of T starting from | = 1 in the
first period and adding up afterwards. We also note that based on Theorem 4.5.2, and
for a given T', we can find a \. so that the multiples of 7, lie in the desired interval,
i.e., the set introduced in (4.8) is never empty. At last, we also note that for a fixed n,
the largest t; ,, is n'T whereas t7, , = nT + 7\, thus these two time-instants do not

coincide.

4.6 Stability Analysis of the Control & Triggering
Strategy

Here, we present the main result on the control and triggering strategy

which addresses Problem 1.

Theorem 4.6.1. Consider System (4.3), given a jamming signal (4.2) with a known
pair (T, T), then IX* > ||N|| 4+ 1/2, such that VA > X*, the system with control gain
K as chosen in Proposition 4.4.3 and with triggering strategy (4.8) is asymptotically
stable.

Proof. The analysis is performed in an analogous way as in the proof of Theo-
rem 5.1 in [28], nonetheless for multi-input systems. At a sketch level, the main

idea is to characterize the function C'(\) with the following property:
|2(T)] < C(A) o,
and, to further show:

lim C(\) =0, (4.9)

A—00

whereby, the following can be inferred:

JN\" such thatVA > A", C(\") < 1.
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Therefore, by induction argument, we get the sequence {x(nT')} is a strictly
decreasing sequence; hence, by a Lyapunov argument, the proof will be com-
pleted. On this way, the results explained in Section 4.5, namely, (i) the Jordan
decomposition technique, wherein the uniqueness of matrix N for all values of
)\ is guaranteed, (ii) the rational dependency of T and 7} ' matrices on ), (iii)
the ISS Lyapunov function introduced in Proposition 4.5.1, and, (iv) the asser-
tion of Theorem 4.5.2, are extremely helpful. Due to space limits, the details are

omitted here. O

4.7 Stabilization under unknown jamming signals

In this section, we propose a solution to Problem 2. It is built on the
control and triggering strategy introduced in Section 4.5, along with the stability
analysis presented in Section 4.6. First, we shall state our algorithm, and then

we analyze the asymptotic stability of the system deploying it.

4.7.1 The JAMCOID Algorithm

To begin with, we note that the jammer’s and operator’s clocks need not
be synchronized. Let ¢; > 0 be this asynchronicity, i.e., the time difference be-
tween the jammer clock’s initial time and the operator’s. We then realize there

are three unknown parameters, 7Tj;

on”’

T, and t;, which characterize the jamming
signal, together with the known parameter, 7.

Let uig : R>g — {1} U {nul | } be the signal which operator uses for jam-
mer identification purposes, where u;4(t) = 1 encodes that the operator sends
message 1 to the plant, whereas, u;4(t) = nul | declares no message is submit-
ted. Let also uge : Rsg — {nul | } UR? be the rebound signal from the plant,
such that ug(t) € R? is a successfully delivered message containing state in-
formation, while ug.(t) = nul | represents no message is delivered. Finally, let
Uet : RY — {nul | } UR™ be the control submitted to the plant, where similar to
the uig-case, uyi(t) # nul | induces that a control u.y(t) is computed and sent

to the plant, whereas uq(f) = nul | infers that no message is sent.
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In fact, we assume that the submission of uiq, receipt of ug., and sub-
mission of uq, happen in a sequential and instantaneous manner. That is, first a
measurement is requested by sending w4, then upon its receipt, via ug., a control
is sent to the plant, via ucy. It is nonetheless worth noting that ug. () = nul | if
and only if u.(t) = nul | , i.e., we do not send any control if we do not receive
any measurement, and this happens when the jammer is active at .

Intuitively, the core idea behind JAMCOID is to intelligently plan the
triggering time-sequence {¢;} in order to (i) bound (not necessarily eliminate)
asynchronicity, ¢;, (ii) find a valid useful interval to which 7', or some multi-
ple of this period, belongs. Our JAMCOID algorithm is formally described in
the following lines, wherein the control, uq(tx), is computed as explained in
Section 4.4, Proposition 4.4.3.

Step I: Set uiq(t;) = 1, according to t, = kM, where k € N, for M =7, <
%Cfrf, and some 7, as introduced in Section 4.5. Because 75 is unknown, we can

distinguish between two cases:

Case (1): We do never hit the jammer’s on-subperiod, that is, us.e(t;) #
nul |, Vt;. Thus, we keep updating the control at the prescribed times

without interruption.

Case (2): In this case, we hit the on-subperiod some time on the way. That

is:
Jk; such that uge(k1 M) = nul | and uge((ky + 1)M) # nul |,
where, recalling the jamming signal, following holds:
Jk; and [ such thatk;, M < tjl- + LT < (ki +1)M. (4.10)
If this case occurs, we move on to Step II.

Step II: Attime ¢ = (k;+1)M, the operator resets his clock as t < t—k; M.
Let us denote t; = t; + [,T' — k1 M, then by (4.10), we obtain:

0<ty<M. (4.11)
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Step III: Similar to Step I, we set uiq(tx) = 1 at ¢, = kM. Again, two cases

are possible:
Case (1): Same as Case (1), in Step (1).

Case (2): In this case, we hit the on-subperiod some time on the way. That
is:
Jky such that uge (ko M) = nul | and uge((ko + 1)M) # nul |,
where, recalling the jamming signal, following holds:
ko and Iy such that ky M <t 4+ 1T < (ke + 1) M . (4.12)

If this case occurs, we move on to Step IV.

Step IV: Attime ¢t = (ko+1)M, the operator resets his clock as t < t—k, M.
Further, let us also denote ¢ =t + I,T' — kM, by (4.12), we get:

0<t?<M,
where, additionally:

(ka — DM < 3 + LT < (ks +2)M . (4.13)

Step V: Let | = L%frfj and consider the time-interval [M, [M]. Since 0 <

t;’? < M, from definition of [, IM < Ty follows. Also, communication with the

plant is feasible at any time in [M, [M]. Hence, [M,M] plays the role of [0, 7%
in known jammer scenario; this observation is used in this step.

From (4.13), note that (k2 + 2)M is a valid upper-bound for the unknown

parameter ¢? + [,T. Thus we estimate l;1" by (k; + 2)M. We then keep updating

the control at time-instants given by the following triggering strategy:
tr € {IM | IM € [M,IM]} U {(ks +2)M} ¥ € Ryy. (4.14)

In addition to communicating with the plant at the time-instants declared in (4.14),
the operator sets uiq(k2M) = 1 and wuiq((k2 + 1)M) = 1, and obtains uge (koM ),

Uste((k2 + 1)M); two cases may occur:
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Case (1): uste(k2M) # nul | # uge((k2 + 1)M). Thus, the operator does not
detect an on-to-off transition of the jammer’s signal from (I, — 1)7" to [T
It also means that the length of (I, — 1)7" on-subperiod, is shorter than M.
In this case, we reset M < &, where § € (1,0) is a design parameter. We
note that, by construction of 7, 3\, such that 7, = % Then, repeat from
Step L.

Case (2): Either uge(ko M) = nul |, or uge((ky + 1)M) = nul |, or both. In
other words, an on-to-off transition of the jammer’s signal happens from
(I — 1)T to lT. This is characterized by kM, where:

k = max{ka, ko + 1|use(k2M) = nul |, uge((k2 + 1)M) =nul | }.

Reset ky < k, t <t — kM, and 3 < t3 + 1, — kM, for which (4.13) also
holds. Then, repeat from Step V.

4.7.2 The Stability of the JAMCOID Algorithm

Having stated the jammer identification and control algorithm in Subsec-

tion 4.7.1, we characterize its convergence properties in this subsection.

Theorem 4.7.1. Consider System (4.3), and a jamming signal described by (4.2), with

constant parameters T', Try., and TS}

on’/

where only T<; is known. The jammer identifica-

tion and control algorithm, JAMCOID, renders the system asymptotically stable.
Proof. The asymptotic behavior of JAMCOID is one of the following items:
1. Case (1) in Step 1,
2. Case (1) in Step III,
3. Case (2) in Step V.

It cannot be otherwise, since Case (2) in Step I, Step II; Case (2) in Step III;
and Step IV are intermediate computations. Moreover, Case (1) in Step V is

out of sight, because repeating this case—with the same parameter /—yields
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the triggering period, 42, where given T, constant, § € (1,00), and TS, < Ty,

then we deduce:
* * M CY
dn* < oo € Nsuch thatVn > n*, 5 < 15,

Therefore, in worst case, we shall repeat Case (1) in Step V only n* < oo number
of times.

In order to prove asymptotic stability, we assess possible asymptotic be-
haviors. Under items 1 and 2, the jammer is not corrupting communication
channels. Therefore, since the triggering time-sequence is chosen to be k7,, with
k € N, thus the asymptotic stability is maintained.

Item 3 leads to the iteration of Step V (through Case (2)). Stability will
follow from the application of Theorem 4.6.1 for each iteration of this item via

approximating 7" = (k; + 2) M. This completes the proof. O

4.8 Simulations

In this section, we demonstrate the functionality of the aforementioned
theoretical results on a representative academic example.

We consider the following system:

001 0 0] [0 0 —6 |
, 57 0 0 01 75
T = T+ u,
30 0 1 0 0 83
2 0 65 8 10 9
[0 0 —A2—65 —2\—38
u=| —\2+5 —2A_7 0 0 x,
0 0 0 0

wherein, d =4, m = 3,p = 2,7 = 2, and ry = 2. For the sake of brevity, we do
not introduce the matrices A + BK, Ty, and N, here.

The goal of the simulation is to verify Equation (4.9) stated in the proof
sketch of Theorem 4.6.1. In order to do so, we run the C'(\)-Seeking Algorithm
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Figure 4.2: Fourth-order multi-input system: evolution of C'(\)

presented in [28] to obtain the sequence, {C'(A\;) }}2%9, for { )\, = k}}2%; with set of
parameters, 0 = 0.001, 7' = 1sec, T5, = 0.77, and T = 0.37". The result is pre-
sented in Figure 4.2. Referring to this figure, we observe that lim,_,., C'(A\) =0
holds, i.e., (4.9) is verified.

4,9 Conclusions & Future Work

In this study, we have considered multi-input controllable continuous
linear systems, under periodic PWM DoS jamming attacks. We first recalled
a specific canonical form for this class of systems and introduced our control
strategy. We then elaborated our triggering strategy, entailing the time-instants
to update the control. We then proved this control and triggering strategy is
able to beat the considered partially known jamming attacks. Consequently,
we proposed JAMCOID algorithm, capable of beating considered unknown
jamming attacks.

As future work, we are to extend these results to cope with non-periodic
PWM DoS jamming attacks; and to stretch our problem formulation to a multi-

agent setup.



Chapter 5

On the Robustness of Event-Based
Synchronization under Switching

Interactions

51 Summary

In this chapter we study the robustness of an event-triggered synchro-
nization dynamics for a network of identical nodes under various switching
scenarios. We first consider an arbitrary switching scenario where, for a gen-
eral class of isolated node dynamics we characterize sufficient conditions in
terms of network topologies to maintain synchronization. In particular, we
shall also demonstrate that for a specific class of skew-symmetric isolated node
dynamics-which play important role in this class of synchronization problems—
the asymptotic synchronization is not achievable under arbitrary switching. We
then consider two classes of constrained switching signals, namely uniform and
average classes, i.e., Sqwen|7p], and Saverage|Ta; Vo], respectively, where we char-
acterize sufficient conditions in terms of the associated parameters, 7, 7, and
Ny in order to ensure asymptotic synchronization. This is then followed up by
an extensive study on characterization of maintaining a skew-symmetric ma-

trix in the synchronization dynamics and its importance. We shall wrap up our

86
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discussion by presenting relevant simulation studies.

5.2 Introduction

Cyber-Physical Systems (CPS) are physical plants which are remotely
controlled and monitored via wireless or wired communication channels. Due
to the widespread deployment of cps systems in general infrastructure systems,
they have gathered significant attention in the past few years. More specifi-
cally, amongst various examples of CPS, one may count general example sys-
tems such as the smart power grid. In nontechnical words, a smart grid entails
a number of power generators communicating with each other to produce and
supply electric energy to a network of consumers. In more technical words,
the dynamics governing the smart grid application is cast under synchronization
dynamics [43, 7].

The aforementioned synchronization dynamics has been studied mainly
under two categories: (i) with identical node (oscillator) dynamics and (ii) with
different node (oscillator) dynamics. The major review on synchronization [7]
discusses the differences and resemblances between these two classes; in this
chapter we shall focus on the the first class of synchronization dynamics, i.e.,
with identical node dynamics. We note that, as discussed in [43], this class en-
compasses the dynamics representing a smart grid application—which further
motivates the present study.

There exists already a substantial literature within the controls commu-
nity dedicated to study this specific class of synchronization dynamics. To
mention a few, in [69], the authors study the stability of this type of dynam-
ics by introducing a so-called master stability function which characterizes the
maximum Lyapunov exponent of the governing dynamics.The papers [76, 89,
52] study this problem in the context of switched systems, where switching
amongst different potential network topologies has been considered and, thus,
by characterizing the dynamics of the error variable between the network state

and the average state, some switching rules have been derived in order to achieve
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network synchronization. In these latter studies, it is nonetheless worth noting
that the communication is fperformed in a continuous fashion. In [51, 50] the
authors study the synchronization problem in the context of event-triggered
dynamics for a fixed network topology, while proposing centralized and dis-
tributed event-triggered rules, respectively, to ensure network synchronization.
In order to do so, a set-stability technique is exploited.

Hence, there is an apparent gap in the literature in terms of studying syn-
chronization dynamics by considering event-triggered communications and in
the context of switched systems. This work aims to close this gap by charac-
terizing sufficient conditions on switched networked topologies and robustness
conditions on switching signals that can ensure network synchronization. In-
deed, the CPS nature of the smart grid application also motivates this study by
economic number of communications governed by considering event-triggered
dynamics and the potential unavailability of power generators in a smart grid.

The organization of this chapter is as follows. In Section 5.3, we present
the preliminaries, notations and problem formulation. In Section 5.4, we recall
the event-triggered rule analyzed in this chapter. In Section 5.5, we present our
sufficient conditions in terms of network topologies to ensue synchronization
for the case of arbitrary switching. Then, in Section 5.6, we characterize our
robustness conditions in terms of switching signals. In Section 5.7, this discus-
sion is then followed up by a study on characterization of the considered event-
based synchronization dynamics with a skew-symmetric matrix characterizing
its isolated node dynamics. The functionality of these studies is presented in
Section 5.8 in a simulation environment. At last, we present in Section 5.9 our

conclusions and potential venues for future works.

5.3 Preliminaries & Problem Formulation

In this section, we first present some preliminaries on the synchroniza-
tion, event-based synchronization and switching concepts; this is then followed

by the problems that we have studied in this chapter.
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We consider a network of N identical oscillators, with m number of pos-
sible topologies. Let us consider k& € {1,...,m} be the k" topology of the net-
work, and z; € R", for i € {1,..., N}, be the states of the i" node; then, the

dynamics of this node is as follows:

N

i = Ha;+cY afiTa(th), Vte[thth,], (5.1)

j=1

wherein H € R™" states the dynamics of each node, ¢ > 0 is the coupling
strength, and {¢¥} is the triggering time-sequence associated to the k™ topol-
ogy. Also, I' € R™" is the inner-coupling matrix, and A" = [af;] € RV*V is
the outer-coupling matrix for the k" topology. We further assume that each net-
work is undirected, connected, and balanced, which can then be induced that

matrices A* are symmetric, irreducible, and with zero-sum property, where the

last property implies:
N N
afi = — Z afj =— Z afi, (5.2)
j=1,j#8 =1, j#i
fori € {1,2,..., N}. Indeed, it can also be observed that in this context, outer-

coupling matrix, A*, plays the role of the negative of Laplacian matrix.

.....

the properties of the A* matrix, we realize that these eigenvalues are real and
that the following holds:

M=0>MN>M >0k

.....
-----

of eigenvectors, with ¢ = < [1,1,..., 1] " associated to \} = Oand {3, ..., ¢} }
be such that Z;.V:lgﬁfj =0, forie{2,...,N},
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2. Let ®* = [¢h, ... ¢%] € RVN=1 then OFTOF = [y, and OFOFT = [y —
1y, with Iy and 1y be, respectively, the identity and matrix of all ones with

dimension, N,
3. Matrix A* is diagonalizable with ®*T A*®k = A* = diag {\}, ..., \k} e RV-L
Proof. The proof is stated for each item:

1. We recall that matrices A* are symmetric, therefore, without loss of gener-
ality, the correspondent set of eigenvectors can be selected to be orthonor-
mal. Moreover, we recall the eigenvalue A = 0, then the associated eigen-
vector, ¢} has to satisfy, A*¢} = 0, which then recalling the zero-sum
property—Equation (5.2)—¢} = —<[1,1,...,1]" is a valid eigenvector for
MY = 0. Accordingly, given ¢4 and that {¢}} is a set of orthonormal eigen-
vectors, Z;V:l ¢f; = O0holds fori € {2,..., N},

2. We first check ®*"®" = Iy_;: we note that ®"T®F = [<¢F ¢h >] €
RN=1*N=1 holds for 4,7 € {2,3,..., N}, which then by orthonormality of
the eigenvalues, < ¢f,¢% >= 0 for i # j, and < ¢}, ¢% >= 1fori = j,
thereby it is easy to verify that ®*"®* = Iy ;. We then verify PF®*T =
Iy — +1y: let us denote UF £ ®*®*T € R¥*V then the i diagonal ele-
ment of the matrix U* is derived as uf, = 2;22 ohok fori e {2,3,...,N}
which, recalling particular form of ¢} and orthonormality of the eigenvec-

tors, can be further simplified as follows:

N
1 1
k k ok k ok __ ik Lk _
Uy = ;%z i 0L =< @i, ¢ > N 1- N (5.3)
Moreover, the ;% off-diagonal element of U k is also derived as ufj =
25:2 oy.ok. fori,j € {2,3,..., N}, which then recalling particular form

of ¢} and orthonormality property, can be further simplified as in:

1 1

N
ufy =) ook — not =< of of > N "N (5.4)
p=1

Therefore, by (5.3) and (5.4), we conclude ®* O+ = U*F = Iy — 1.
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3. The proof of this item is straightforward, recalling the algebraic multiplic-
ity of \} = 0is one and that the matrix ®*" contains the eigenvectors of A*

that are correspondent to {\}ici23. . vy
The proof is then complete. O

We then incorporate the notion of Kronecker product, ®, in order to ob-

tain the network dynamics:
i(t) = (In @ H)x(t) + (A" @ D)a(th), Vvt € [th th,], (5.5)

where we recall {t/},cy is the triggering time-sequence associated to the k™
network topology. In addition, we define the switching signal, ¢ : R>, —
{1,2,...,m} in order to declare network topology at the time-instant, ¢, there-
fore, e.g., in (5.5), o(t) = k declares that the kth topology is active where k €
{1,2,...,m}. We assume that the switching signal, o(t), is piecewise constant, i.e.,
it has a finite number of discontinuities in any finite time-interval and that it is
constant between consecutive discontinuities. We also assume that o(t) is con-
tinuous from above, i.e., V¢ > 0, lim, |, 0(s) = o(¢). In addition in this chapter, we
shall denote the switching time-instants—which are indeed the discontinuities
of o(t)—to be sequentially 7; for j € Nj.

We shall also define synchronization in the following formal way. Let
first x(t; 20) = (21(t;20) T, 22(t;20) T, ..., 2n(t;20)T)T € R™ be a solution of the
network dynamics (5.5) with initial condition zy = (z1(to) ", za(to) ", ..., 2n(to) ") "
and some triggering time-sequence {¢F} and switching signal (), the synchro-

nization is then defined as follows that is along the lines of [51].

Definition 4. Let
A, ={z e R"|z; =2y =+ =2y}, (5.6)

withx = (1,25 ,...,2))", be the synchronization manifold. If then there exists a
d > 0 such that the following limit holds

lim |2 (t; 20)] 4, =0, (5.7)
t—o00



92

whenever |xo| 4, < 9, then the network (5.5) is said to achieve local asymptotic syn-
chronization. Moreover, if 6 = oo, then global asymptotic synchronization is

achieved.

We would like to highlight that in this aforementioned definition, |z|4,
states the Euclidean point-to-set distance between the network state vector, z,

and synchronization manifold, A;, defined as follows:

—d ) = inf ||z — v,
ola, = d(, A = inf Jlo =g

with ||.|| be the Euclidean norm. Therefore, it implies that asymptotic synchro-
nization is achieved if the asymptotic distance to .4, vanishes.

We would also like to recall two switching scenarios: (i) arbitrary, and (ii)
constrained switching scenarios. More specifically, and for the case of arbitrary
switching, the switching signal, o(t), does not obey a specific constrained struc-
ture, therefore, in other words, the switching time-instants, {7;}, generated by
o(t) do not possess a specific property. On the other hand, for the case of con-
strained switching, the switching signal, o(t) has to possess a specific temporal
structure. In this chapter, we have considered two classes of constrained switch-
ing signals; namely, Sqwen[7p], with 7p > 0, and S,yerage[a, No}, With 7,, Ny > 0.
The class, Sawen[7p], constitutes of switching signals ¢(¢) where any two consec-
utive discontinuities of o are separated by at least a dwell time, Tp, therefore in
other words, 7,1 —7; > 7p, Vj € Ny. Moreover, the class, Saverage|7a, Vo], contains

the switching signals o(¢) for which the following holds:

T—1

Ny(7,t) < Ny + Vi>1>0, (5.8)

Ta
where N, (7,t) denotes the number of discontinuities of ¢ in the open interval,
(t,7); and the constant 7, is called the average dwell-time and N, is the chatter
bound.
At last, the problems we have studied in this chapter can be stated as
follows:

[Problem 1]: Given the network dynamics (5.5), which triggering strat-
egy to be employed in order to generate the triggering time-sequence
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{tr}; and in addition, considering arbitrary switching scenario, which
sufficient conditions have to be imposed on the network topologies
in order to achieve asymptotic synchronization as characterized in
Definition 4.

[Problem 2]: Given the network dynamics (5.5), which triggering strat-
egy to be employed in order to generate the triggering time-sequence
{tr}; and in addition, considering constrained switching scenario
and under Sgyen and Syyerage classes, which sufficient regulatory con-
ditions have to be imposed on the switching signals in order to achieve
asymptotic synchronization as characterized in Definition 4.

5.4 Single Topology: Lyapunov Function & Trigger-

ing Strategy Characterization

In this section, we shall focus on a single topology scenario whereby we
tirst characterize our specific Lyapunov function along with the triggering strat-
egy. We would like to mention that the content of this section is inspired from
the results in [51], nonetheless we propose alternative expanded proofs.

We first note that without loss of generality and for the ease of presenta-
tion, we shall drop the superscript % for various variables in this section—this
is flawless, provided we focus on a single topology case herein. Let us then
recall the matrix of eigenvectors of 4, i.e., @, as described and characterized in
Lemma 5.3.1. We then introduce ® = ¢ ® I, € R"V*"V=1) whereby we get the

following result.
Lemma 5.4.1. Consider network (5.5) and the network state, x, then the following

holds:

1@ 2]l = |z

A, - (5.9)
Proof. We first recall the notion of Euclidean norm which gives

[Tz =200 r=2" (2 ,)(®" ®I,)x,
which then recalling the properties of Kronecker product and properties of the

matrix ¢ stated in Lemma 5.3.1, yields

_ 1
@7 z|? =2"(®®") @ (I,)xr = 2" (Iy — NlN) ® Iz,
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which can be further expanded as follows

- 1
H<I>TxH2 = xT(InN — NlN ® I,)x

N 1 N
_ ; 2 ¥ ;%H . (5.10)

For notational simplicity, let us also denote 7 = Zjvzl z;, then recalling the
synchronization manifold, A, as characterized in (5.6), we note that the follow-

ing holds

|z

N
2= Ml — ) (5.11)
=1

Hence, by (5.10) and (5.11), we note that ||® " z|| = |z| 4, holds, and therefore, the

proof is complete. O

Remark 5.4.2. Indeed, motivated by the previous result, one can define y = @'z
to be the component of state vector, x, which evolves traverse to the synchronization
manifold. Therefore, resorting to Definition 4, by ensuring lim,_, ||y(t;yo)|| = 0, we
shall ensure (5.7) stated in the latter definition and thus we can ensure the asymptotic

synchronization of the original state, x.

In the next result and before discussing our triggering strategy, we intro-

duce a proper Lyapunov function to ensure synchronization of the network:

N
= Hr;+c¢Y ayla;(t) i€{l,2,... N}. (5.12)

J=1

Proposition 5.4.3. If there exist matrices P, = P,' = 0 € R"™" such that
H'P,+PH; <0, ic{23,... N}, (5.13)

with H; = H + ¢\, then
V(z)=2"®Pd z, (5.14)

is a Lyapunov function for the network (5.12), i.e., it ensures its asymptotic synchro-
nization, where P = diag { Ps, Ps, . .., Py} and \; are eigenvalues of Aand ® = d® 1,
obeying the property discussed in Lemma 5.4.1.
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Proof. Let us first recall dynamics (5.12), where we can derive the network dy-
namics as in

i=(In®H+c(A®T)),

where then, along the lines of Remark 5.4.2, we shall transform the dynamics to

y-dynamics with y = ®"z. This is performed in the following lines.
=" = (" (In@ H)+cd"(Ax1D))z,
where by recalling, " = ' ® I,,, and properties of Kronecker product, we get

=" QL) INn® Hx+c(®" @ L) (A® )z
= (" IN@ I,H)r +c(PTA® I,D)x. (5.15)

In order to further simplify this latter equation, we prove the following claim.

Claim 5.4.4. Consider (5.15), the following holds:
Iy =In_1®" and PTA=AD, (5.16)

with A = diag {\o, A3, ..., A\x} be as introduced in Lemma 5.3.1.

Proof of Claim 5.4.4: Let us first recall ®®" = Iy — 11y property from
Lemma 5.3.1, then multiplying both sides from left by &' yields:

1
PTOPT =Ty — N(I)TlN’

where then recalling ® "1y = 0y_1xny—which is induced from the orthonormal-
ity property of the set of eigenvectors—and ®'® = Iy_; as both discussed in
Lemma 5.3.1; the latter equation yields ® "Iy = Iy_1®" which proves validity
of the first property in (5.16).

Let us then recall ' A® = A—again from Lemma 5.3.1—then multiply-
ing both sides from right by @' yields ®T A®®" = A®T; where by recalling
PPT =TIy — w1y, weget T A(Iy — +1x) = AP, Indeed by recalling the zero-
sum property of A, which governs Aly = 0, this last equation can be further
simplified as follows:

PTA=AD",
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which proves validity of the second property in (5.16). .
Next, having shown (5.16) in Claim 5.4.4, we can simplify (5.15) in the

following way:

= (Iny_1®" @ HL,)z + c(A®" @ T'L,)x
=(Ina@H)("T@ L)z +c(AxT) (" @ 1,)r,

where recalling y = ¢ @ I,x = &'z, the latter dynamics bestows

g=(Una@Hy+c(AaT)y, (5.17)
which given A = diag {2, A3, ..., Ay} and by the properties of Kronecker prod-

uct can be reformulated as follows:

U= (Un1®H+cA@D)y =diag;cos vy {H + cAl}y, (5.18)

.....

where we shall denote K £ diag,cry 5 ny {H + cAL'}.

Let us now also recall the Lyapunov function V(z) = 2" ®P® "z, which

.....

under state transformation y = ® "z can be re-stated as follows:
V(y)=y'Py. (5.19)

Indeed, the rest of this proof is devoted to show that under assumption (5.13),
the Lyapunov function (5.19) proves the asymptotic stability of the dynam-
ics (5.18). First, we note that P, = P," = 0, therefore P = diag { P, P, ..., Py} >~
0 which then shows that V(y) = y' Py is a positive-definite function. In addi-

tion, given dynamics (5.18), we derive the following;:
Viy) =4 Py+y Py=y (K'P+ PK)y,

where then recalling the diagonal form of the matrices P and K, we can refor-

mulate the latter equation as follows:

V(y) =y (diag,eqos,. ny {H P+ PH Yy (5.20)

.....

with H; = H+c\,I'; thus, provided (5.20), we note that, under assumption (5.13),

V(y) is a negative-definite function. Hence, we conclude that this Lyapunov
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function proves asymptotic stability of the transformed dynamics (5.18). There-
fore, along the lines of Remark 5.4.2, we can then conclude that Lyapunov func-
tion (5.14) proves asymptotic synchronization of the network (5.12) under as-

sumption (5.13). This then completes the proof of this proposition. O

Having discussed and proven a proper Lyapunov function in the previ-
ous proposition, let us recall now the triggered dynamics (5.5) (for the case of

single topology):
(t) = (In @ H)x(t) + c(A@D)x(t,), Ve [ty tp],

which by introducing the error variable, e(t) = x(¢,) — (), can be reformulated

as follows:
t(t) = (UINOH+cARTD)x +cA®@7Te(t), VteE [ty tpr]. (5.21)

The following result characterizes an event-triggering strategy addressing how
to generate the time-sequence, {t,},cn, while maintaining the asymptotic syn-
chronization of the network. We appreciate that the strategy is inspired from [51],

nevertheless, we provide a comprehensive proof for this result.

Proposition 5.4.5. Consider the triggered network dynamics (5.21), and assume there
exist matrices P, = P, = 0 € R™ " such that
H'P,+ PH; = —2I,, i€{23,...,N}, (5.22)

with H; = H + c\;I', where \; be eigenvalues of A and matrix ® = ® ® I,, be as
introduced earlier. Then, the asymptotic synchronization is ensured under the following

event-triggered strategy:

s =int {155 [87e(0] = 218Ta0) |, v, 623

with e(t) = a(t,) — x(t), § € (0, 1), and,

o= _max {~c\|PT|}
In addition, under this triggering strategy, the Lyapunov function V(z) = 2T ®P® "z,

with P = diag;c(o 5 . ny { P31}, satisfies the following dynamics:

.....

V(e) < =201 = )87a?, Vi € [ty tyual. (5.24)
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Proof. Let us first define e,(t) = ®Te(t), therefore, the network triggered dy-
namics (5.21), can be transformed into the y-dynamics by multiplying this latter

dynamics by ® " which gives the following equation:
J=Un1®@H~+c(AxD))y+c(AxTD)e,, (5.25)

where we have used the similar technique to derive this equation as used to

derive (5.17). Then, we further simplify (5.25) as follows:

Y= diagie{2,3 N} {H +c\l}y + Cdiagi6{2,3 ..... N} {)\ir}ey )

-----

where then we shall denote A £ diag,, (23,8} 1A'}, and recall

K = diag;cqa 3. ny {H + cA\il'} from the proof of Proposition 5.4.3 to obtain:

.....

=Ky + cAe, . (5.26)

The next step is to show that the triggering strategy (5.23) guarantees the asymp-
totic synchronization of the z-dynamics (or equivalently, the asymptotic sta-
bility of the y-dynamics) based on a Lyapunov argument with given V(z) =
7' ®P®"x. We then transform this latter V' (z) to obtain V(y) = y' Py, where
then we recall the dynamics (5.26) and compute the temporal derivative of V' (y)

to obtain the following:
V(y) =9 "Py+y Pj=(y' K" +e, AN Py +y P(Ky + Ae,),
which by some rearrangement of terms results in the following equation:
V(y) =y (K"P+ PK)y + e;ATPy +y' PAe, (5.27)

where for the first term in this latter equation, we can derive the following equa-

tion:
K'P+ PK = diageqo3. Ny {H,'P, + PH;} =
diagie{2,3 ..... N} {_QIn} = _2In(N—1) ) (5.28)

wherein Equation (5.22) from the assertion of this proposition have been helpful.

Let us then plug (5.28) back in (5.27), where we get

V(y) = _2yTIn(N—1)y + e;ATPy + yTP.Aey .
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We then bound V() in this latter equation where we get
V(y) < —=2[lyll> + lleg 1A Pyl + v T IHIPAl eyl (5.29)

wherein recalling the diagonal form of the matrices A and P, we have A" P =

cdiagera s ny {NI' P;}; therefore, for (5.29), we can derive
V(y) < =2[lyll* + 2llyllllc diagie 25,...51 INT T B}yl (5.30)

wherein recalling the norm property of a block diagonal matrix, the following
holds:

ledingicqss,..xy (NTTPH = _max {JeAPII} = _max {=eh|IPT},

777777777777

where we have used the fact that {\;(4)}Y, < 0. Let us then recall the pa-
rameter & = maxX;c(23.. 8} { —cAi|| L]} from the assertion of this proposition,

thereby (5.30) can be simplified as follows:
V(y) < =2yl* + 2lylllle, (5.31)

where we note under triggering strategy (5.23), and Vt € [t,, t,11], [|®Te(t)]| <
21|@T2(t)|| holds. That is in other words, |le, (t)|| < 2||y(t)||, Vt € [t,, tps1[ This
latter observation along with Equation (5.31), yields

V(y) < =20 =0)yll*, vt € [ty tpeal. (532)
At last, derivation of (5.32), under the triggering strategy (5.23), approves:

1. the asymptotic synchronization of z-dynamics. This is because provided
6 € (0,1), (5.32) guarantees V (y) < 0, Vt € [t,,t,.1[, where also by
V(y(t,))) = V(y(t,)) and that V(y) = y' Py is a positive-definite function,
the asymptotic stability of the y-dynamics is ensured; which then by Re-

mark 5.4.2, the asymptotic synchronization of z-dynamics is inferred,.

2. the validity of inequality (5.24). This is because recalling the coordinate

transformation, y = ® "z, Equation (5.32) is indeed equivalent to (5.24).

Therefore, the proof of this result is complete. O
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The following corollary characterizes the nonexistence of Zeno behavior
for the triggering time-sequence, {f, } ,cn, generated by triggering strategy (5.23)

stated in the previous proposition.

Corollary 5.4.6. Consider the triggered network dynamics (5.21), and let the assump-
tions of Proposition 5.4.5 hold, then 3t > 0 such that Vp € N, t,.1 — t, > 7, where
{t,}pen is the triggering time-sequence generated by (5.23).

Proof. We again resort to the coordinate transformation technique, i.e., we recall

the following transformed dynamics:
y = Ky + cAe,, (5.33)

which is stated in the y-coordinates. In addition, we note that the triggering
time-sequence {t,} given by triggering
strategy (5.23): [|®"e(ty11)]| = 2[|PTz(t,11)]| is the same as for the transformed

strategy: 5
ley(tpsn)ll = ally(tpH)H ; (5.34)

this is because the considered transformation under ® " matrix is static. Hence, it
is sufficient to show the existence of the uniform lower-bound, 7, based on (5.34)
and for (5.33). In order to do so, we shall resort to Theorem III.1 and corol-
lary IV.1 stated in [78]; where we have to show that (i) the dynamics y = Ky is
globally asymptotically stable and (ii) the Lyapunov function V(y) = y' Py is
an ISS Lyapunov function for (5.33); the rest of this proof is devoted to this aim.

Item (i) can be simply verified, provided that the dynamics y = Ky is
globally asymptotically stable given K = diag,c(»5 _ny {H + c\i['} and that as-
sumption (5.22) holds. Item (ii) can be also verified, provided P = P" = 0 and
that Equation (5.31) has been proven. Therefore, having discussed the validity

of items (i) and (ii), the proof of this corollary is complete. O

By the end of this subsection, we present the following remark which

compares propositions 5.4.3, and 5.4.5.
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Remark 5.4.7. In contrast with sufficient condition (5.13), stated in Proposition 5.4.3,

we remark that in Proposition 5.4.5, we have specifically used
H'P,+ PH, = —2I,, i€{23,...,N},

which is indeed helpful in performing the analysis of this latter proposition. The alter-

native possibilities may be studied which is one of our future works.

5.5 Multiple Topologies: Arbitrary Switching

In this section, we shall address problem 1 stated and discussed in Sec-
tion 5.3, i.e., we consider the arbitrary switching scenario and shall discuss un-
der which conditions on the network topologies one can guarantee asymptotic
synchronization of the network. The analysis of this section is performed under
two cases: (i) General Network Dynamics, wherein matrix A in dynamics (5.5)
can be any given matrix, and (ii) Particular Network Dynamics, wherein ma-
trix H is restricted to be a skew-symmetric matrix. These two latter cases are

discussed under two separate subsections which follow next.

5.5.1 General Network Dynamics

Let us first recall our discussion in Proposition 5.4.5, where then by re-
sorting to Equation (5.22), and for every k' topology, with k € {1,...,m}, we
get:

HF'PF+ PFHF = 21, i€{2,...,N}, (5.35)

wherein Hf = H + AT with {\!}Y, be eigenvalues of the outer-coupling
matrix, A"—as characterized in Lemma 5.3.1. Let us also recall from Proposi-
tion 5.4.5, the quadratic Lyapunov function, V*(z) = 2" ®* P*®*"z, with matri-
and ®* are as characterized in Equation (5.35) and Lemma 5.3.1.

We then recall from [48] that in order to ensure the uniform asymptotic

stability of a switched system, © = f,(x), with x € R”, for the case of arbitrary



102

switching, and for a family of topologies, p € P, one has to develop a common
Lyapunov function, i.e., a positive-definite continuously differentiable function,
V :R"™ — R, and a positive-definite continuous function, W : R® — R, such that
the following holds:

ov

folz) < —W(z), VzeR", WpeP. (5.36)

Hence, in order to adopt this aforementioned argument to the case of switched

triggered synchronization dynamics (5.5):
i(t) = (Iy @ H)x(t) + c(A* @ D)a(ty), Vt e [th th,],

one has to develop a Lyapunov function of the earlier-discussed form: V*(z) =
2T ®* P*®kT 1 which is common for every topology, k € {1,...,m}. The follow-
ing result studies the existence of such a Lyapunov function for specific network

topologies.

Proposition 5.5.1. Consider dynamics (5.5), where k € {1,...,m}, and assume
there exist matrices PF = PFT = 0 € R™", i € {2,3,..., N}, satisfying condi-
tion (5.35), for every k € {1,...,m}. Moreover, let 6 € (0,1), e(t) = z(tk) — (¢),
ap = MaXie(as,. Ny {—CN| BT}, P* = diag;c(o5. ny { P}, and {t;} be the trig-

gering time-sequence generated by (5.23), that is restated as follows:
_ 5 .
[ el = e ()]l pe N, ke {1, m}. (5.37)

Then, the asymptotic synchronization of (5.5) is ensured under arbitrary switching

scenario if the following condition holds:

.....

¥ (diag;. o.ny (H +H+ AT +T)Her T (5.38)

forevery k, k' € {1,...,m}.

Proof. The main idea of the proof is to demonstrate that under condition (5.38),
the resultant Lyapunov functions of the form V*(z) = 2" ®*P*®*"z are equal

for every k € {1,...,m}. We note that this latter argument would be sufficient
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provided that under the considered triggering strategy (5.41) and recalling from
Proposition 5.4.5, the following inequality, i.e., inequality (5.24), holds:

Vh(a) < —2(1— )8 a2, V€ [t 2.
therefore:

1. provided under (5.38), the resultant Lyapunov function is the same for
every topology, one can consider V' = V* in inequality (5.36), given it is,

by construction, positive-definite and continuously differentiable,

2. function W (x) in (5.36) can be considered as W (z) = 2(1 — §)||®*"z|?%
this is flawless provided that 6 € (0, 1), therefore, 2(1 — ¢) is a positive
coefficient, in addition, function ||®*"z||? is (i) common for all topologies,
provided properties of ®* = ®* @ I,, matrix—discussed in Lemma 5.3.1—

which would ensure the following:

1O Tl = VaT®FOF o = /2T (0F ® 1,)(BFT @ L)z =
1
VT (PFPFT @ I,)x = \/xT(IN — vz,

(ii) positive-definite by construction, and (iii) continuous, provided that at

switching time-instants, 7;, no jump occurs at the state value, z(¢).

The rest of the proof is devoted to this aim.
Let us consider two topologies, k, k' € {1,...,m}, then ensuring V*(z) =
V¥ (), yields:

o (O PEOFT — oF PF OF Ty = 0, Vo € R™. (5.39)

Discussing solutions to this latter equation, we admit, that + = 0 and = €
N (PFPERFT — F P¥ OF'T) satisfy (5.39); nonetheless, this equation has to hold

for all x € R", therefore, one has to ensure:

PP PrOFT = N P K (5.40)

-----

to Equation (5.35), i.e.:

HF'PF 4 PFHF = 21, i€ {2,...,N},
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with HF = H + cM\T. We hereby note that indeed this latter equation is a
continuous-time Lyapunov equation with matrix Q = 2/,, and P = P}, hence,

one can solve for this equation, whereby the following shall be obtained:
pF :/OOO (exp (T(H + eAT)))(21,) (exp (T(H + eAIT)))dr =
2 /0 " exp [F((H + AT)T 4 (H + eXFT))]dr
2 /OOO exp[T(H" + H) + cAF(DT 4+ T))]dr,
which solving for the integration can be further simplified as follows:
PF=(H"+H)+ AT +T) " xexp (r[(H" + H) + cA{(TT + D)5

This latter equation can be further simplified, noting that lim, ., exp (H + cAfT) 7 =
0, which is flawless provided that matrix HF = H + cAfI" is Hurwitz given it is
a solution to the Lyapunov Equation (5.35). This simplification yields P} =
—(H" + H+ cA¥I'T + 1)) and similarly, P¥ = —(H" + H + cA¥(TT +T))7%
Henceforth, plugging these two latter values for matrices, P} and P* back in

Equation (5.40), bestows:

-----

.....

which is indeed Equation (5.38) stated in the proposition statement. This then
completes the proof. O

5.5.2 Particular Network Dynamics

In Subsection 5.5.1, we studied the arbitrary switching scenario for the

case of general switched triggered synchronization dynamics (5.5):
i(t) = (Iy @ H)x(t) + c(A* @ D)x(ty), Vi e [thth,],

wherein we developed Proposition 5.5.1 to characterize specific class of topolo-

gies for which a common Lyapunov function can be derived. Motivated by
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these results, in this subsection, we shall narrow our studies down to a partic-
ular class of dynamics, for which H + H' = 0, i.e.,, matrix H € R"™*" which
characterizes the dynamics of each node is skew-symmetric. We note that this
class of dynamics is interesting provided our discussion in Section 5.7. Having
stated these points and along the lines of Proposition 5.5.1, we shall develop the

following proposition for this particular class of dynamics.

Proposition 5.5.2. Consider dynamics (5.5), where k € {1, ..., m}, and assume first
that the matrix H is skew-symmetric, i.e., H + H' = 0, and second that there ex-
ist matrices PF = PFT = 0 € R™™, i € {2,3,..., N}, satisfying condition (5.35),
for every k € {1,...,m}. Moreover, let 6 € (0,1), e(t) = z(th) — x(t), ap =
maxe(23,. N} {—CAF||PFL||}, PP = diagicrns ) {P}}, and {t}} be the triggering

time-sequence generated by (5.23), that is restated as follows:
_ 5 -
[ el = 19 el pe N, ke {1, m}. (5.41)

Then, the asymptotic synchronization of (5.5) can never be ensured under arbitrary

switching scenario.

Proof. The proof of this result shall follow upon the proof of Proposition 5.5.1, in
the sense that provided the assumptions of these two results are similar and that
the dynamics in Proposition 5.5.1 encompasses the dynamics considered here,
one can perform exactly the same procedure in order to develop Equation (5.38),

ie.:

Then, based on this fact and by skew-symmetricity property of the matrix H,

which implies H" 4+ H = 0, this latter equation can be further simplified where

we get:

.........

(5.42)
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in which the same coefficient ¢ has been discarded on both sides. Then, in this

.....

. ~ . r'+n)-!
dlagie{Z ..... N} ()\?(FT +1)) P = dlagiE{Z ..... N} % = (5.43)
. 1 _
dlagi€{2 ..... N} F ® (FT + F) ! ) (5.44)

wherein we recall that {\¥}Y, are nonzero eigenvalues of the outercoupling

matrix, A¥, as discussed in Section 5.3 and further in Lemma 5.3.1. Referring

.....

.....

thanks to which Equation (5.42) can be rephrased as performed in the following;:
(@ @ L)(AN) e @ +T) )@ @ 1,) =
(" @ L)(A") e (T +T) ™) (@ T ® L),

where we have used ®* = ®* © I,, and " = ®* ® I,,. This latter equation, by

properties of the Kronecker product, yields:

((I)k (Ak)—lq)k'l') ® (FT + F)—l _ ((I)k/ (]\k')—lcpk'T) ® (FT + F)—l7
which, provided the term (I'" + I') 7! is identical on both sides, yields:
OF(AF)LPFT = oF (AF) 1P (5.45)

We would now like to recall the property ®*" A*®* = A*, which indeed pro-
vided ®*®*" = Iy — £ 1y and the zero-sum property of the outercoupling ma-
trix A*—as stated in Equation (5.2)—can be re-written as in A¥ = ®FAFPFT,
Therefore, having obtained this latter equation, and recalling (5.45), we shall
assess whether there is a relationship between matrices, A*¥ = ®*A*®*T and

Pk (AF)~1®*T. The next claim is devoted to this aim.
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Claim 5.5.3. Recall the outercoupling matrix, A* = ®FA*®*T. Then, the pseudo-

inverse of this matrix is given as follows:
(AM)T = F(AF)~1OFT (5.46)

Proof of Claim 5.5.3: According to the definition of a pseudo-inverse [12],
we shall verify the following properties in order to prove that (4*)" as stated
in (5.46) is indeed the pseudo-inverse of A*. On this way and for the ease of
notation, let first X = ®*(A*)~1®"*T, then we shall verify the following, wherein

properties ®*T®* = Iy_; and ®*®*" = Iy — {1y play an important role:
(i) AXA = (DFARDFT)(OF(AR)1OFT)(DFARDFT) = FAFDH — A,
(ii) XAX = ((I)k(]\k)—lq)k‘l')(q)k]\k@k‘r)((I)k(]\k)—l(bk‘l') _ ((I)k(]\k)—lq)k‘l') — X,

(iii) on the one hand, AX = (®*AFPFT)(PF(AF)1PFT) = §FPFT = [y — L1y, on
the otherhand, (AX)" = (Iy—+1n)" = Iy—+1n; therefore, (AX)" = AX,

(iv) ontheonehand, XA = (®F(A")"1FT)(PFARDHT) = §FPFT = [y — L1y, on

the otherhand, (XA)" = (Iy—+1n)" = In—+1n; therefore, (XA)T = X A.

(]

At this stage and having developed Claim 5.5.3, we shall resort again to
Equation (5.45), where then we get the following:

(A = (44)"

that is to say that for the case of skew-symmetric matrix /, and in order to
ensure asymptotic synchronization under arbitrary switching, pseudo-inverse
of the outercoupling matrices A* and A* have to be equal. This fact, provided
that the pseudo-inverse for a matrix is unique, implies that indeed the two outer
coupling matrices have to be the same. This latter observation shall conclude the

proof of this proposition. O
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5.6 Multiple Topologies: Switching
Signal Design

In this section we shall recall two classes of switching signals introduced
in Section 5.3, i.e., Sqwell[7p] and Sayerage[Ta, No|. In order to solve Problem 2, we
then characterize sufficient regulatory conditions on the switching signals asso-
ciated to these classes, such that the asymptotic synchronization of the switched
triggered network (5.5), introduced in Section 5.3 be guaranteed. On this way,

first Sqwen is discussed, and then S,yerage-

5.6.1 Regulatory Conditions on Sgywen[7p] Class

In this subsection we first discuss the switching between two topologies,
we then characterize regulatory condition in terms of 7p, and triggering strat-
egy (5.23), discussed in Proposition 5.4.5, such that the asymptotic synchroniza-
tion of the switched triggered network (5.5) be ensured.

Theorem 5.6.1. Consider dynamics (5.5), where k € {1,2}, and assume there exist
matrices PF = PF' = 0 € R™", i € {2,3,..., N}, satisfying condition (5.22), as
stated in Proposition 5.4.5, for every k € {1,2}. Moreover, let 6 € (0,1), e(t) =
(ty) — 2(t), o = maxieqo,. vy {—CAF|PFT|}, P* = diagiepa s, vy {57} and {t;}
be the triggering time-sequence generated by (5.23), that is restated as follows:

_ 5 -
2" Te(ty)|| = a—k||<1>’”x<t§§>|| ,peN, ke {12} (5.47)

Then, the switching signal, o : Rso — k, where o(t) € Sawen|Tp], ensures the asymp-
totic synchronization of (5.5) under the following condition:

1 )\max<P2>>\max(Pl)

™D % 5= 5) hewae (P + A (P1) U1 T2 (5.48)

with
o )\max(Pl)2)\max(P2)
Tl B log( )\min(Pl)z)\min(Pz) ) '
)\max(P2)2)\max<P1)
Ty =1 . !
2 Og( )\min<P2)2)\min(Pl) ) (5 9)
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Proof. Let us first denote by {7;};cn the sequence of switching time-instants,
which are then the discontinuities of the switching signal, o(¢). Indeed, pro-
vided o(t) € Sawen[7p), it holds that 7,1 — 7; > 7p, Vj € Nj. The rest of this
proof is to characterize 7 such that the synchronization of dynamics (5.5) un-
der triggering rule (5.62) and this class of switching signals be ensured. In order
to do so, and without loss of generality, we shall consider the time-intervals,
(70, T1[, [11, T2, [72, T3, and [r3, 74; where, respectively, we assume that the first,
and second topologies have been active. The proof shall be complete by charac-
terizing 7p such that || ®%"z(73)|| < ||®*Tz(n)], and [|®1T2(m)| < ||®L 2 () ||—
with [|®Tz(¢)|| and ||®1 T x(t)| be as discussed earlier in Lemma 5.4.1. This latter
argument is sufficient to complete this proof because, in an inductive way, one
obtains strictly decreasing sequences, {||®?"x(my;11)||} and {||®*"z(7;)|}, that
ensure the strictly decreasing distance to the synchronization manifold.

Let us then consider [ry, 71| where, as assumed earlier, the first topology
is active. This latter, together with dynamics (5.5) while incorporating error,
e(t) = x(ty) — x(t), implies that for the times, ¢ € [ry, 71|, the following dynamics
is active:

i(t) = (In @ H+ cA' @ D)a(t) + cA' @ Te(t) .

Let us also consider, without loss of generality, that the triggering time-instants,

{t1}7L,, occur within [ry, 71 time-interval, such that ¢} < 7—this is flawless,

recalling corollary 5.4.6 which excludes Zeno behavior from these triggering
time-instants. We also recall inequality (5.24), from Proposition 5.4.5, that for

everyt € [t |, t)[C [r, 71[, the following holds:

Vit) < —2(1—8)||9  z?, (5.50)

where also, recalling Lyapunov function, V!(z) = 2" ®! P*®! "z, we obtain
Amin(PH|| @1 T2 ]2 < V() < Apax(P)[| @17 2]|%; which, in particular, bestows:
Vl

i)l—l— 2 > -
|97 2

(5.51)

Then, by (5.50) and (5.51), we obtain:

(1-9)

Vi) < _27)\max(P1)

Vi), vee [t t,

p—1>"p
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which by comparison principle, computing over [t, ,,t,|, yields:
2(1—0)
VI(t) < VA, exp (—m@; - t;_o) |
therefore, in particular, computing the latter inequality over [, 7| time-interval,
yields:

Vi < Vi) enp (—2 D - m)) 552

Having established the latter equation, we now consider [, 72| time-
interval, where the second topology is active. Therefore, in an analogous way as
we derived (5.52), this time assuming {¢2}"2, to be the triggering time-instants
belonging to |1y, 72| such that tf, , < T2, we obtain:

V(1) < V(1) exp <_i:x7(_P62))(7-2 — 7‘1)) : (5.53)

At this point, and having established (5.53), we assess the relation be-
tween V(7)) and V(7). However, we have to first study the jumps at switch-
ing instants, 7, and 7,. At 7y we switch from the first to second topology, there-

fore, we have V?(7y) = o(7y) " ®2P?®?" 2(7,), where then we can derive:
Amin(PH[[@*T2(m) |2 < V(1) < Amax(P)[|@* T (m) |12 (5.54)

Now, in order to connect V2(7;) to V!(7;), we have to connect ||®!" ()| and
|®*"z(71)||. On this way, provided ® = ® ® I, and recalling properties of ®

matrix stated in Lemma 5.3.1, the following holds:

8] = VT = /(8 6 L)@ & L)

1

= \/xT((I)k(I)kT & ]n)ZL' = \/ZL’T([N — NlN)l’,

which demonstrates that ||®*"z|| is independent of k. Therefore, one concludes:

12Tl = [|2* ] (5.55)
Accordingly, recalling (5.54) and by (5.55), we develop the following:

V(1) < Anax(P?) |97 2(71) [ = Amax (P?) ]| @ 2(71) |

~ Amax(P?) - Amax(P?)
= m)\min(Pl)Hq)lTl’(Tl)||2 < mvl(’ﬁ), (556)
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wherein Apin (PY)[|®! " z(1)]|? < V() is used, which is flawless recalling the
aforementioned discussion on V!(z) function.

Hence, putting together equations (5.52) and (5.56), we obtain:

2 )‘maX(Pz) 2(1 B 5) 1
Vi) < mex <—m(7'1 — TO))V (70) ,

where then plugging (5.53) into the latter inequality yields:

Amax (P?) 2(1—9)

V(1) Si)\mm(Pl) exp <_7)\max(P2> (10 — Tl)) X
exp <_i:x7(—fjl))(ﬁ — 7'0)) Vi(r),
which then can be simplified by (i) recalling the considered class of switching
signals for which 7, — 7 > 7p and 7, — 79 > 7p hold, and (ii) exploiting inequal-
ity Vi(n) < 12:((521)) V?2(7,) that can be derived similar to (5.56). The resultant
inequality would be as follows:

Vi) S V03

o (= (5p + ) 209

Then, incorporating inequalities Apin(P1)[|®!Tz(72)[|? < V() and V(7)) <

Amax (P || @' T 2()]|?, we obtain:

— = )\max ! 2)\max 2
||(I)1TJJ(T2)||2 < ||(I)1Tl’(7'0)||2 )\mingiliz)\min((ﬁz)) X
1 1
P (‘ (Am(pl) ’ Amax<P2>) A ‘”TD) | 7

Henceforth, based on (5.57), in order to impose ||®'"z(m)|| < [|[®!"z(7)]|, it is

sufficient to guarantee the following:

1 )\max(P1>)\max(P2> )\min(Pl)z)\min(fﬁ)
D > x log
2(1 - 5) )\max(Pl) + )\max(Pz) )\max(Pl)2)\max(P2)

In an analogous way, resulting in (5.58), this time focusing on V?(7;) and

(5.58)

V?(13), we obtain:
)\max(Pl))\max(Fﬁ)

V2(T3) S VZ(Tl) )\min(Pl))\min(Pz) X

P (‘ (Amxl(Pl) ’ Ama:(Pz)) A= 5)“?) |
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Algorithm 2 7p-Seeking

Input: m: number of topologies; matrices P satisfying condition (5.22) for every i €
{1,...,m}; Amax(P?) forevery i € {1,...,m}.
1: fori=1tom —1do
2: forj=1tom—1do

3: fork =1tomdo
4: Compute the possible dwell-times:
. 1 T Amax(P)
TD(Zaj7k) _2(1_5) g:i )\max(Pq)X
)\max Pk j_')\max P1
/\min(Pk) szz Amin(Pq)
5: end for
6: end for
7: end for
Output: 7p = max; i, {7p(i, j, k)}.
which by incorporating Amin(P?)||®2"2(73)||* < V2(73) and
V(1) < Amax(P?)[| @1 T2(71)]?, we get:
_ - Amax(P?)? Amax (P1)
2T 2 2T 2 7'\max max
197 2(73)||” < |27 x(m)] Amin(P2)?Amin (P1) x
1 1
_ 2(1 -9 ) 5.59
exp ( (Amax(Pl) + N (P) ( )TD) ( )

Hence, in order to ensure ||®2"z(73)|| < ||®*"x( )], it is sufficient to ensure the

following condition on 7p:

1 )\max<P1>)\max(P2> )\min(P2)2)\min<P1>
D > x log :
2(1 - 5) )\max<P1) + )\max(Pz) )\max(Pz)2)\max<P1)

At last, we conclude the proof noting that 7, has to be greater than the

(5.60)

lower-bounds introduced in the two inequalities (5.58) and (5.60), which is in-

deed equivalent to (5.48) stated in theorem statement. O

The previous result has been established for the case of two topologies;
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nonetheless, it can be extended to the case of switching amongst m topologies.

The following corollary elaborates on this point.

Corollary 5.6.2. Consider dynamics (5.5), where k € {1,...,m}, and assume that the
assumptions stated in Theorem 5.6.1 hold; moreover, let T}, be the dwell time given by
Algorithm 2. Then, the asymptotic synchronization of dynamics (5.5) is ensured under
triggering strategy (5.62) and switching signal, o : R>o — k, where o(t) € Sawen[Tn],

for mp > 17,

Proof. The proof of this corollary goes along the lines of the proof of Theo-
rem 5.6.1; where it needs to be noted that parameter 7}, given by Algorithm 2 is
indeed the worst-case dwelling time, i.e., it considers switching between all the
possible topologies of the network. To be specific, the dwell times, 75 (7, j, k), as
computed in Equation (5.61) are an extension to the uniform lower-bound (5.48)

discussed for the case of switching between two topologies. O

5.6.2 Regulatory Conditions on S,yerage|74; No| Class

In previous subsection, we discussed regulatory conditions on Sgwei|[7p]
class of switching signals, in this subsection, we shall discuss switching signals,
0(t) € Saverage|Tas No)-

For this class and as briefly discussed in Section 5.3, the number of dis-
continuities of switching signal, o(¢), over time-interval (¢, 7), i.e., N,(7,t), sat-
isfies N, (7,1) < Ny + = with parameters N, and 7, be respectively average
dwell time and chatter bound. The main goal of this subsection is to charac-
terize sufficient conditions on these two parameters such that the asymptotic
synchronization of the triggered network dynamics (5.5) be guaranteed. The

next theorem is to serve for this aim.

Theorem 5.6.3. Consider dynamics (5.5), where k € {1,...,m}, and assume there
exist matrices PF = PFT = 0 € R™", i € {2,3,..., N}, satisfying condition (5.22),
as stated in Proposition 5.4.5, for every k € {1,...,m}. Moreover, let § € (0,1),
e(t) = x(ty) — (), o = maxierzs...xy {—A|PTI}, PP = diagicpos. . vy {P},
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and {t}'} be the triggering time-sequence generated by (5.23), that is restated as follows:

Hé“e(t’;)n = |<I>”x(t’;)u ,pEN, ke {l,.... m}. (5.62)

-
ay
Then, the switching signal, o : R>o — k, where o(t) € Saverage|Ta, No), ensures the
asymptotic synchronization of (5.5) with N, € N, and under the following condition:

j\min S\max
1 .
Ta>2(1_5) og(A ), (5.63)

Z2min

where,

1,...m}
S\max - ma‘X )\max Pk bl

{1,., m}{ (P}
A=  mj Amin (PF) V. 5.64
Amin keg}{}m}{ (P%)} (5.64)

Proof. In order to establish the proof of this result, we shall consider, without
loss of generality, the time-interval (0,7"), over which switching between differ-
ent topologies would occur. Then, at last, we shall express [|®7T)Tz(T)||, that is
the distance to the synchronization manifold at time 7" and characterize 7, and
Ny such that limg ., [|[®°7)T2(T)|| = 0 holds. This latter argument induces
asymptotic synchronization recalling Definition 4 and provided Lemma 5.4.1.
Let us first recall the Lyapunov function, V*(z) = 2" ®*P*®*Tz, associ-
ated to every topology, k € {1,...,m}, where matrices P* are as discussed in
theorem statement and matrices ®* are as characterized in Lemma 5.3.1. We
note that the inequality Apin(PF)||®*7[|? < VF < Apax(P¥)[|®*Tz|? holds. In ad-
dition, we also recall (5.55) from proof of Theorem 5.6.1, by which ||®PTz| =

|®7"z|| for every topology, p,q € {1,...,m}. Therefore, one can obtain:

A

2min | |

ékaEllz < Vk(x) < S‘maXHékTﬂPa

wherein, \_... and Anax are as introduced in (5.64) of theorem statement.

Moreover, under the triggering rule (5.62) and as discussed in Proposi-
tion 5.4.5, Equation (5.24), it holds that V* < —2(1 — §)[|®*Tz||?; nonetheless, we
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are interested in obtaining a uniform upper-bound for V*, therefore we derive

the following:

. Amin (P*) | = —2(1-19) 1—9
V< —2(1—6) 2|08 T z? < ———ZLVF < 2 = %
o ( >)\min(Pk) H JJH o )\min(Pk) o )\min 7
where Ay, is as introduced in Equation (5.64), of theorem statement. Let us also
1-§

Amin

denote Ay = +=2; hence, we get:

VE< 2\ VE. (5.65)

Let us also consider some arbitrary 7" > 0, t, = 0 and the switching time-
instants, 7,7, ..., 7n, (1,0, and the triggering time-instants belonging to each
time-interval, [7;, 7;41] to be {t; z;l. Let us then consider the function W (t) £
exp (2Xot) Vo) (x(t)), and time-interval, [7;, 7,41, then recalling (5.65), we get:

W = 20W + exp (200t) Vi(r) < 20W — 2Xg exp (200t) V() < 0. (5.66)
Then, developing W (7;41), in terms of W (7;), yields:
W (Tit1) =exp (2)\07'i+1)va(n+1)($(7i+1)) <
1 exp (2A0Tis1) Vo(r) (2(Tiv1)) = pW(714) (5.67)

wherein 4 is obtained as follows. Let p and ¢ be two topologies belonging to set
{1,...,m}, then the following holds:

Vi < AmaX(Pp)H(T)pwa < j‘maXH(I)pTxH2a

Vi 2 Anin(PI)| 97 2?2 A |97 2,

which can be rearranged to obtain —V? < [|®7 T[] and -V, > [|®77z|?,

in

where then recalling ||®*"z|*> = ||®?" z||?, one can obtain:
Xr[‘lax
VP < Smaya
Zmin
A Ama
where p = 2=

min

Also, we note that by (5.66), the function W (¢) is a decreasing function

over time-horizon [7;, 7,41 [. Therefore, by (5.67), we get:

Wi(Tiy1) < uW(ry) < pW(n),
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this latter inequality, in an inductive way, and for i = 0 to N, (7,0) — 1, yields:
W(T™) < W(tn, o) < " TOW(0),
which then recalling definition of W (¢) function, bestows:
exp (20T) Vg ((T)) < N TOW(0) = pN= OV, 4 ((0)) . (5.68)

In addition, as we have considered the switching signal, o(t) € Saverage[7a> No),
then N, (T,0) < N0+%. Therefore, Equation (5.68) can further take the following

form:

Vo) (2(T)) < exp (=2X0T) exp (log (1) No (T, 0)) V() (2(0)) <

exp (=20 + (N + 2 1og(1) ) Vi 210),

a

or, equivalently:

Voo (@(T)) < ™ exp <<1°g(“) . %)T) Vao(@(0). (569

Ta
At this stage, and recalling our earlier discussion on the proof procedure,
we transform inequality (5.69) to obtain proper bound for ||&7T)T2(T)]| as fol-

lows:

a

= - max lo o
0 < 7T T (T2 < 2mNo o e (( a0 —2A0>T)H<I> OT (0|2, (5.70)

hence, based on this latter inequality and in order to ensure
limy o | @77 Tx(T)|| = 0, it is sufficient to ensure % — 2)\¢ < O—that is,

in other words, the argument of the second exponential appearing in (5.70) be

negative. Let us then recall parameters, ;1 = 4> and Ay = 1=2; we can reform
Zmin min
log (1)

condition == — 2} < 0 in the following way:

> j\min lo S\max
791 -0) S\ )

2min

which is in accordance with Equation (5.63) stated in theorem statement. This
then completes the proof. We would also like to note that referring to (5.70),
there is no need to impose specific condition on the chatter bound, N, i.e., it
can take any value in N; this is because Nj appears as in the o term, wherein

i is constant for a given set of topologies and which does not depend on 7. [
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In previous result, the asymptotic synchronization property is guaran-
teed under described conditions, where the decay rate of the synchronization
cannot be designed. Indeed, an alteration in the targeted triggering strategy can
help us characterize an exponential decay rate for the asymptotic synchroniza-

tion; the following corollary is devoted to this aim.

Corollary 5.6.4. Consider dynamics (5.5), where k € {1,...,m}, and assume there
exist matrices PF = PFT = 0 € R™™, i € {2,3, ..., N}, satisfying condition (5.22), as
stated in Proposition 5.4.5, for every k € {1,...,m}. Moreover, let §; > 0, 6 € (0, 1),
such that 6, + 6, € (0,1), e(t) = 2(th) — 2(t), ar = maxseqas,. Ny {—cAF||PT][},
P* = diagico s ny {PF}, and {t} be the triggering time-sequence generated by (5.23),

that is restated as follows:
_ Sy =
|8 eIl = =119 e(t)| . p €N, k€ {1,....m}. (5.71)
k

Then, the switching signal, o : R>q — k, where o(t) € Saverage|Ta, No), ensures the
asymptotic synchronization of (5.5) with the exponential decay rate of:
o1

A= 5.72
T (5.72)
with Ny € N, and under the following condition:
j\min j\max
w s () o7

where the parameters Amin, Amax, and A
rem 5.6.3.

are as stated in Equation (5.64) of Theo-

min

Proof. The proof of this corollary is similar to the proof of Theorem 5.6.3 with
the main difference that by triggering strategy (5.71), we shall obtain:

V< 2\ VF, (5.74)

with g £ 5% It is worth to mention that (5.74) is the counterpart to (5.65)

defined earlier, nevertheless, )\, is defined differently herein.
Then, following the same computations resulting in Equation (5.70), we
re-obtain:

N Amax lo —
0< ||<I>"(T )Tx(T)||2 < )\—,LLNO X exp ((y — 2>\0)T) | P (O)Tx(0)||2, (5.75)

Zmin a
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where we recall © = % Let us then, this time, impose the following condition:

log (1)

Ta

9\ < —2)\%, (5.76)

with A* € (0, \o); then inequality (5.75) for ||®°T ) Tz(T)||? can be further upper-

bounded as follows:

T - j\max
0 < [|o7 T (T)|? < S

exp (25— gy ) 8T <

a

)\max * =0
A—_MNO exp (—2X*T)[| 27O T (02 (5.77)

Provided (5.77), i.e., the bound

0 < [|@7TITo(T)|? < AmaxyNoexcp (—2X*T)|| 87O T 2(0)||? it can now be verified
that the decay of ||(T>"(T;)I$X;J(T) |>—which declares the asymptotic synchroniza-
tion behavior—is dominated by an exponential term whose decay rate is de-
clared by \*; where also, without loss of generality, we can consider \* = %,
i.e.,, Equation (5.72) in theorem statement. This way, nevertheless, given \* €
(0, \), and that \y = =% it is easy to verify that 6; > 0 and 6; + 0, € (0,1)

)\min

which are also attributed on in the theorem statement.
As the last step, let us recall parameters ji, Ao, A*, then by (5.72) and pro-
vided \* < \g, we obtain:

o [(mex Amin
@ ” 8\ )20 (6,1 )

that is in accordance with (5.73). The proof is then complete, where we note that
by (5.77), parameter N, does not influence the asymptotic behavior of

|®2T7)T2(T)|| and thus it can be chosen to be any value in natural numbers, i.e.,
No € N. U
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5.7 Particular Network Dynamics: Skew-Symmetric

H

In this section, we shall discuss the consequences of the matrix I be

skew-symmetric in our synchronization dynamics (5.5):
i(t) = (Iy @ H)x(t) + c(A* @ D)a(ty), Vvt € [th th,][.

In particular, we are interested in assessing its effect on dynamics of the av-
erage state, 7(t) = + Zjvzl x;(t). This latter is motivated by the fact that by
Lemma 5.4.1, where we demonstrate by (5.9) that the distance to synchroniza-

tion manifold, |z| 4, can be characterized by the set of eigenvectors of A*; namely,

where we prove that ||®"z|| = |z|4, holds, we also assert the following:
) N | X
ola, = 1@Tall* = 3 llos — 5 D5l (5.78)
i=1 j=1

On the other hand, recalling Definition 4, we note that synchronization is in
place as long as lim; . |z(t;20)|4, = 0 is ensured. This latter, provided the

above equation, implies that we would like to ensure:

t—o0

N

. 1 . _

tim [J:(8) — < D 50 = lim [lai(t) — 2] = 0.
j=1

for every node, i € {1,..., N}—this is provided that (5.78) entails summation
of nonnegative terms, thus the summation is zero as long as every individual
term is zero. Henceforth, once synchronization is guaranteed, the asymptotic
behavior of the states of every node, z;(t), follows indeed the average state,
#(t) = 25N, oy (0).

In what follows, we shall first characterize the average dynamics, as per-

formed in the following result.

Lemma 5.7.1. Consider network dynamics (5.5), with outercoupling matrices, A*, be

symmetric, irreducible, and with zero-sum property. Then, the following holds:

i=HT. (5.79)
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Proof. Given the network dynamics (5.5):
i(t) = (Iy @ H)x(t) + c(A* @ D)x(ty), Vi e [thth,],

the dynamics of each node can be then obtained as follows:

N
i =Hri+c Y afTa(th), veelth [
j=1

Thereby recalling the average state, Z(t) = + Z;VZI z;(t), we shall perform the

following computations:
N N
Z Hx; + CZ afjf‘xj(t’;)

j=1

N
ZZak ij tk

i=1 7

2 |

Z

LT
le CZ Za] La( tk Hzx,

=1 =1

.

wherein the zero-sum property of A*—as debated in (5.2)—has been helpful.
These latter equations indeed confirm that z = HZ, and thus completes this

proof. O

At this stage, and before stepping forward, we shall recall some useful
properties of skew-symmetric matrices which would be helpful in our subse-

quent analysis.

Lemma 5.7.2 ([12]). For a given skew-symmetric matrix, H € R™*", the following
properties hold:

1. Arraysof matrix H: h;; = 0,Vi € {1,...,n},and h;; = —h;;, Vi, j € {1,...,n}.
2. Eigenvalues of matrix H:

(a) if mod (n,2) = 0: {£i); }j%:l, that is to say all the eigenvalues are purely

imaginary eigenvalues,

(b) if mod (n,2) = 1: \y = 0, with algebraic multiplicity, 1, and {£i), }J 2,5,

that is to say all the remaining eigenvalues are purely imaginary.
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3. Eigenvectors of matrix H:

(a) if mod (n,2) = 0: {vg}p_, is the set of complex eigenvectors associated

to the correspondent set of eigenvalues, {+i); };-5:1, which are also complex

conjugate to each other,

(b) if mod (n,2) = 1: set of eigenvectors consist of a real eigenvector, vy,
associated to \y = 0, and {vy,}}_, the set of complex eigenvectors associated

n—1
to the correspondent set of eigenvalues, {+i);},2,, which are also complex

conjugate to each other.

Having stated properties of a skew-symmetric matrix in Lemma 5.7.2, in
the subsequent result, we shall study the response to the average states dynam-
ics: © = Hz stated in (5.79), Lemma 5.7.1.

Proposition 5.7.3. Consider the average state dynamics (5.79): & = Hz, with some
initial condition, T, € R". Let H € R"*" be skew-symmetric, then the response to this
dynamics satisfies the following:

1. if mod (n,2)=0:

n
2

7i(t) = D [ D (kv + thatng) cosOut) + D (it — i) sin(At)i | 2o,

j=1 k=1 k=1
(5.80)
forie{l,...,n},
2. if mod (n,2) = 1:
n n nTil
Ti(t) = Z [(vm)(voj)f@j] + Z [ (UkiVkj + UgiOk;j) cos(Agt)+
j=1 j=1 k=1
n—1
2
(Ukivkj — ’(_Jki’(_ka) SlIl()\kt)Z i’oj y (581)
k=1

forie{l,...,n},

where in both (5.80) and (5.81), {£i); }j%:1 and {v; }p_, stand, respectively, for the
eigenvalues and eigenvectors of H, as characterized in Lemma 5.7.2. In addition, v

stands for the complex conjugate of v.
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Proof. The proof of this result is categorized under two parts, in conjunction
with items 1 and 2 stated in the assertion. Nonetheless, in order to proceed in
both cases we shall use the eigen-decomposition technique for . On this way,
notations of Lemma 5.7.2—\y;_; = i\j and \y; = —\; for j € {1,..., 5}, where
then H = VDV holds. This latter technique shall be useful, provided that
exp Ht = Vexp (Dt)VT.

Case 1: mod (n,2) =0. Let n’ = %, then diagonal matrix D can be
written as follows: _ _
i
—iN\
D = )
A/
L _i)\"/_
where then, the following holds:
[ exp (iArt) |
exp (—iAit)
exp (Dt) =
exp (iApt)
I exp (—i)\n/t)_

Having developed the latter equation and recalling eigendecomposition

of the matrix, H, we shall then compute the following expression for exp (Ht):

exp (Ht) = Vexp (DOVT = 0,01+ - 00 | X
I EEEN
exp (iAit) —v] —

exp (—iAit) —] —

exp (1A t) —V,,—
exp (—iAyt) | |—v,—
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This latter equation can be further expanded as follows, where (i) we note exp (iAt) =

cos(At)+isin(\t) and (ii) the eigenvectors are denoted tobe v; = [vj1,vj2, -+ , Vjn] "
and v = [T_le, T_JjQ, cee ,’(_Jjn]T forj S {1, - ,n’}:
-UU(COS()\lt)+ : ]
isin(\t)) 11 (cos(Ayt) — isin(Agt)) v - -
| o —
’U12(COS()\1T/)+ I T
: ' : ' — U —
1sin( At 12 (cos(Ait) — isin(A\qt)) - -
exp (HT) = ____E_1_)2__:_12_(__(__1_)_____(_1_)_) - E
e i
e o —
V1 (cos(Ait)+ |
isin(Ait))  Wrn(cos(Ait) — isin(Agt)) + - -

Let us then denote exp (Ht) £ [EXP;;], for i, j € {1,...,n}, the following
holds:

n’ n’

EXP;; = Z (vgi) (vgj) (cos(Agt) + isin(Agt)) + (Uki) (Ugj) (cos(Agt) — isin(Agt)) ,

(5.82)

we shall then use this latter equation to derive solution to the average dynamics:

¥ = Hz, with initial condition, Z,. This fact is shown below, where we have

considered Ty = [i’(]l, Tog, - ,fon]—r:

Zo1
_________________ f
7(t) = exp (Ht) o

Kl

0:

'EXP,; EXP,; - EXP,,]
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This latter equation then yields:

Ti(t) =Y EXPj;z;, i€{l,....n}.
=1
Therefore, plugging from (5.82) in terms of EXP;; in this latter equation, yields:

/ /

7i(t) = D7 [ D (wnivg + itng) cosOut) + D (vnivig — atig) sin ()i 7o

=1 k=1 k=1

which, recalling n" = %, validates Equation (5.80) stated in the proposition for
the case of even n. Therefore, proof for this case is complete. We shall then state
the proof for the case of odd n.

Case2: mod (n,2) = 1. The proof for this case of the proposition is sim-
ilar to the previous case. Let, this time, n’ = ”T‘l, then recalling our discussion
in Lemma 5.7.2, matrix H possesses one zero-eigenvalue, with algebraic multi-
plicity of one. Therefore, without loss of generality, the diagonal matrix D can

be considered as follows:

0
A
Do —iM |
A\
— 1Ay
where then, the following holds:
-1
exXp (’l)\lt)
exp (—iAt
exp (Dt) = D ( 1t)
exp (1Apt)
exp (—i)\n/t)
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Therefore, provided the eigendecomposition of H, we shall express exp (Ht) as

follows:

exp (Ht) = Vexp (DOVT = |vgu,0- - - vy | X

exp (iA1t) —v —

exp (—iAit) — —

exp (iAyt) —,—

SR

exp (—iApt) | |—70,,

This latter equation can be further expanded as follows, where the eigenvectors
are denoted to be v; = [Ujl,’Ujg, s ,’an]T and v; = [T_)jl,’(_Jjg, ce ,’(_Jjn]T for j S

{1,...,n'}:

0 S R

U B O R

exp (Ht) =

[ von, W1a(exp (M) B (exp (—igt)) -] b :

We then note that exp (iAt) = cos(\t)+isin(\t), let us also denote exp (Ht) =
[EXP’;;], fori,j € {1,...,n}, then the following holds:

!

EXP,Z‘j :(UOi)(U0j> -+ Z (vki)(vkj)(cos()\kt) +1 Sll’l()\kt))

n/

+ > (Uki) (Ug) (cos(Agt) — isin(Agt)), (5.83)

k=1
we shall then use this latter equation to derive solution to the average dynamics:

¥ = Hz, with initial condition, Zz,. This fact is shown below, where we have
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considered Ty = [ZTo1, Tz, - » Ton| '

e e - a2

Zo1

___________________

To2

=i

z(t) = exp (Ht)

0:

_____ e jon

[EXP',; EXP'y - EXP,,)

This latter equation then yields:
Ti(t) =Y EXP;z;, i€{l,....n}.
j=1
Therefore, plugging from (5.83) in terms of EXP’;; in this latter equation, yields:

n

2i(t) =Y [ (w0 (w005 |+

j=1
Z |:Z (Ukﬂ)kj + T_Jkﬂ_)kj) COS()\]J)—F
j=1 k=1

nl

Z (U]ﬂ"Ukj — @ki@kj) Sln()\kt)l] [i’()j s

k=1

which, recalling n’ = 251, validates Equation (5.81) stated in the proposition for
the case of even n. Therefore, proof for this case is complete.

Hence, the proof of this proposition is complete. O

Having discussed the response to the average state dynamics in the pre-
vious proposition. We shall discuss the properties of this response in the follow-

ing remark.

Remark 5.7.4. For the case of even n: we refer to Equation (5.80), stated in Propo-
sition 5.7.3, where we observe that every i™ component of the average state, 7; for
i € {1,...,n}, is characterized by eigenvectors of the matrix, H, i.e., {vy}, as the

amplitudes of the harmonics, along with eigenvalues of H, {£i\}, as the frequencies
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of the harmonics. In addition, it is also observed that the temporal average value of this
summation of harmonics is zero, thus there is no biased term in the obtained response.

For the case of odd n: we refer to Equation (5.81), stated in Proposition 5.7.3, where
then similar observation as for the case of even n can be obtained, nonetheless, this time
we also observe that the temporal average of this summation of harmonics is not zero.
That is to say, there exists a bias term characterized by the purely real eigenvector, v,

associated to the zero eigenvalue of H.

5.8 Simulations

In this section, we demonstrate the functionality of the regulatory condi-
tions on Sqwen[7p] and Saverage[Ta: No| classes of switching signals as discussed in
Section 5.6. We first introduce the system and different associated parameters
necessary to conduct our simulation, it is then followed by discussing simula-

tions for Sqwel[7p] and Saverage|7a; Vo] classes.

5.8.1 Simulations Basic

In this set of simulations, we have considered network of 5 agents each
of which characterized by 2 states, i.e., N = 5, and, n = 2. Accordingly, the

following matrices, H, and, I' have been considred:

0 -05 025 0
H = ., I'= ,
05 0 -1 0.25
where we note that (i) these matrices are indeed common for all the topologies,
and (ii) the eigenvalues of matrix H are A\, = £0.5¢ (with i = /—1) which
declares that the asymptotic behavior of the average dynamics, z = I; ® Hz, en-
compasses two principle time-periodic solutions—in accordance with the even
and odd states—with period, ' = 2T = 4, to which the synchronized states

have to converge, asymptotically. This latter fact is insightful in our discussion

of this section.
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We have then considered three potential topologies for the network, each

characterized by the outer-coupling matrices, A', A, and A®, described as fol-

lows:
(31 1 0 1|
1 -3 1 1 0
A= 1 1 -4 1 1 |,
0 1 1 =3 1
1 0 1 1 -3
(2 1 1 0 0|
1 -3 1 1 0
A= 1 1 -4 1 1 |,
0 1 1 =3 1
0 0 1 1 =2
(11 0 0 0|
1 -2 1 0 0
A=l0 1 -2 1 0 |, (5.84)
0 0 1 -2 1
0o 0 0 1 -1

where we note that the set of eigenvalues of these topologies are, respectively,
A =0,M,=-3AM;= -5\ =0\ =-1588 \ = -3, \} = —4.4142, and
A2 = —5; AP =0, A3 = —0.382, \3 = —1.382, A} = —2.6188, A} = —3.618. This
latter, in fact, demonstrates also that the networks associated to topologies 1, 2,
and 3 may be ranked from the most to the least connected ones—this is valid
recalling the fact that outer-coupling matrix plays the role of the negative of
Laplacian matrix and that connectivity can be measured by the second smallest
eigenvalue [27], and therefore, it can be observed that [A\}| > |A\3] > |A3|. This
latter observation will be insightful in our discussion of this section.

In addition to set of eigenvalues, we compute set of eigenvectors for the
outer-coupling matrices introduced in (5.84). Recalling then the notations intro-

duced in Lemma 5.3.1, we get ¢} = ¢? = ¢} = %[1, 1,1,1,1]7; in addition, we
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get:
[ _0.7071 0 04082 0.3651 |
0 —0.7071 0 —0.5477
P! = 0 0 0.8165 0.3651 | ,
0.7071 0 —0.4082  0.3651
0 0.7071 0 —0.5477

_0.6533 —0.5 02706 —0.2236 |
—0.2706 0.5 —0.6533 —0.2236
P? = 0 0 0 0.8944 | ,
0.2706 0.5 0.6533 —0.2236
0.6533 —0.5 —0.2706 —0.2236

_0.6015 —0.5117 —0.3717 —0.1954 |
_0.3717 01954 0.6015  0.5117
P? = 0 0.6325 0 —0.6325 | ,
03717 0.1954 —0.6015 0.5117
0.6015 —0.5117 03717 —0.1954

where then we get % = &% ® I, for k € {1,2,3}.

As the next step, recalling our discussion in Proposition 5.4.5, associated
ogy, k € {1,2,3}—provided that Equation (5.22) is indeed a continuous-time
Lyapunov equation.

We have then conducted two sets of simulations, namely in accordance

with Sywen[7p] and Saverage[Tp] classes.

5.8.2 Simulations for Sgwen|[7p]

For this set of simulations, we consider various parameters introduced in
the previous subsection. We then consider the “worst-case switching scenario,”
where every topology is active for 7, seconds, we note that for Sqwen[7p] class

of switching signals, this scenario is indeed worst-case, because as discussed in
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the proof of Theorem 5.6.1, 7 is the minimal amount of time required for every
topology to be active in order to ensure the overall stability.

Indeed, provided we have considered 3 topologies in Subsection 5.8.1,
the appropriate parameter 7, may be obtained recalling our discussion in Sub-
section 5.6.1; more specifically, Algorithm 2. In addition, we would like to note
the presence of parameter 6 € (0, 1) in Equation (5.61) of this aforementioned al-
gorithm as well as its presence in the triggering strategy (5.62). Accordingly, in
this set of simulations, we shall study the trade off in terms of choosing higher
and lower values for 9.

Case 1: let 6 = 0.5, then for the set of parameters stated in Subsec-
tion 5.8.1, we obtain 7p = 9.8993. We then conduct the simulations for the
afore discussed worst-case switching scenario, where we consider consecutive
time-intervals, [n7p, (n + 1)7p[, n € Ny, where for n = 3k, n = 3k + 1, and
n = 3k + 2, with & € Ny, the first, second, and third topology are active, re-
spectively. The motivation behind choosing this sequence of topologies is that,
as discussed previously, this way the topologies are ranked from the least to
the most connected ones, rendering the simulations more tractable. It also goes
without saying that for every time-interval, [n7p, (n+ 1)7p], the triggering strat-
egy (5.62) is implemented. The results are shown in Figure 5.1(a), where asymp-
totic synchronization despite presence of switching and under triggering strat-
egy is demonstrated.

Case 2: let 6 = 0.9, then for the set of parameters stated in Subsec-
tion 5.8.1, we obtain 7p = 49.4964. Then, we conduct our simulation along the
same lines as discussed in Case 1. The results are shown in Figure 5.1(b), where
asymptotic synchronization despite presence of switching and under triggering
strategy is demonstrated.

At this point, comparing the simulation results obtained from Cases 1
and 2, demonstrated in figures 5.1(a) and 5.1(b), we shall validate that increas-
ing ¢ yields less frequent triggering and larger allowable dwell time, 7. This
trade off is indeed in accordance with our theoretical assessment attributed in
Subsection 5.6.1.
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5.8.3 Simulations for Syverage|Ta; Vo]

In this set of simulations, we again consider the set of parameters intro-
duced in Subsection 5.8.1. We then recall the properties of switching signals
associated to this class, for which, provided the chatter bound, Ny, and aver-
age dwell time, 7,, the number of discontinuities over every (¢, 7) time-interval,

N,(7,t), is characterized by Equation (5.8) that we recall as follows:

T—1

Ny(1,t) < Ny + Vt>71>0.

Ta

Also, in our simulations, we consider the time-intervals, (¢,7) = (3n7,,3(n +
1)7.), with n € Ny, where then the number of discontinuities would be charac-
terized as N, (3n7,,3(n + 1)7,) < Ny + 3. We then recall that the chatter bound,
Ny, can be chosen as an arbitrary value in natural numbers, provided our dis-
cussion in Subsection 5.6.2, more specifically, in Theorem 5.6.3; therefore, in here
we consider Ny = 1, which then yields N, (3n7,,3(n + 1)7,) < 4; hence, we
pick N, (3n7,,3(n + 1)7,) = 3, which infers that we shall consider the number
of discontinuities over every (3n,, 3(n + 1)7,) time-interval to be 3—this is in-
deed in accordance with number of topologies we have considered in this set
of simulation. In order to complete our simulation setup, we add that within
every (3nt,,3(n + 1)7,), we shall consider the subintervals, (3n7,, (3n + 1)7,),
((3n + )74, (3n + 2)7,), and ((3n + 2)7,,3(n + 1)7,) wherein the third, second,
and first topologies are active, respectively. This latter has been chosen moti-
vated by the fact that this way the topologies have been ranked from the most
to the least connected. The simulation results are then discussed in the follow-
ing under Cases 1 and 2, where again the trade off of choosing ¢ € (0, 1) on the
lower-bound of parameter 7, described in Equation (5.63) and triggering strat-
egy (5.62) both stated and characterized in Theorem 5.6.3 shall be elaborated.
Case 1: let 6 = 0.5, then for the set of parameters stated in Subsec-
tion 5.8.1, we obtain 7, = 1.5350. We then conduct our simulation along the
lines of the afore discussed switching scenario, where we have considered con-
secutive time-intervals, [n7,, (n+1)7,[, n € Ny, where for n = 3k, n = 3k+1, and

n = 3k + 2, with k& € Ny, the first, second, and third topology are active, respec-
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tively. It also goes without saying that for every time-interval, [n7,, (n + 1)7,],
the triggering strategy (5.62) is implemented. The results are shown in Fig-
ure 5.2(a), where asymptotic synchronization despite presence of switching and
under triggering strategy is demonstrated.

Case 2: let 6 = 0.9, then for the set of parameters stated in Subsec-
tion 5.8.1, we obtain 7, = 7.6751. Then, we conduct our simulation along the
same lines as discussed in Case 1. The results are shown in Figure 5.2(b), where
asymptotic synchronization despite presence of switching and under triggering
strategy is demonstrated.

At this point, comparing the simulation results obtained from Cases 1
and 2, demonstrated in figures 5.2(a) and 5.2(b), we shall validate that increasing
d yields less frequent triggering and larger allowable average dwell time, 7.
This trade off is indeed in accordance with our theoretical assessment attributed

in Subsection 5.6.2.

5.9 Conclusions & Future Work

In this chapter, we have considered a specific class of synchronization
problems with identical nodes. We have then recalled and characterized specific
event-triggered rules to ensure the synchronization of this class of dynamics.
We have then studied the robustness of this class of event-triggered synchro-
nization dynamics in the face of various switching scenarios. More specifically,
under arbitrary switching scenario, we characterized conditions on network
topology to achieve asymptotic synchronization. At last, we have also char-
acterized certain robustness conditions for two classes of constrained switching
signals, namely uniform and average, under which asymptotic synchronization
is ensured.

As future work, there are several venues to be yet explored. This in-
cludes, studying the similar type of robustness on switching signals for (i) dis-
tributed event-triggered rules—this latter would entail considering a slightly

different type of dynamics for the network, for which the analyses presented
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in this chapter would serve as an initial point, and (ii) other classes of synchro-

nization problems, i.e., with different isolated node dynamics.



Chapter 6

Conclusions & Future Work

This chapter contains a review of the results of this dissertation, as well
as potential directions and venues for future work. The presentation of the two
subsequent sections of this chapter is then performed in accordance with the

two major problems assessed in this dissertation.

6.1 Conclusions

In this dissertation, we have studied two major problems, i.e., failure-
resilient control using triggering control techniques, and robustness analysis of
event-based synchronization dynamics with switching topologies. These prob-
lems have been motivated, on the one hand, by the growing interest in CPS
and their associated applications, e.g., security and smart grid, and on the other
hand, by more economic number of communications that is the result of using
triggering control methods. In this section, we shall summarize the representa-
tive conclusions deduced studying these problems.

In order to study the failure-resilient problem, we have considered a
plant-jammer-operator setup, where the plant is remotely controlled and mon-
itored via unreliable communication channels modeled as some jamming in-
terventions cast under the jammer element. The considered plant is assumed
to belong to controllable class of linear systems and the jammer is assumed to

maintain power-constrained Denial-of-Service jamming signals, that is to say, it
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corrupts the communication channels in the sense that the data can be sent or
not. Recalling our motivation on developing and employing triggering control
solutions, this major problem has been then studied through analysis of two
complementary smaller problems. In the first one, we have developed some
sufficient conditions which in conjunction with a resilient event-triggered strat-
egy is capable of ensuring the asymptotic stability of the system. The control
law in this latter problem is not in any sort adaptive and thus the main focus of
the derived sufficient condition is on jamming parameters. In the second prob-
lem, however, while preserving the structure of the problem, the main goal has
been to render the triggering control strategy depend on some tunable parame-
ter in order then to be able to deal with any given jamming intervention of the
afore discussed class. The second problem has been assessed by first studying
single-input class of systems where first principal features of the jamming sig-
nal were known, second while adding periodicity assumption, these features
were assumed unknown, and third, the periodicity assumption on the jamming
signal is also dropped—these results then have been extended to encompass
multi-input class of systems, as well—developed algorithms to solve these latter
unknown scenarios are, respectively, JAMCOID FOR PERIODIC SIGNALS and
JAMCOID algorithms which while tightly depend on the analysis performed
on known scenario and are provably functional. In both these aforementioned
problems and case scenarios, rigorous analysis on the proposed results have
been developed and provided throughout this dissertation.

In order to study the event-based synchronization, we have considered
a network of identical oscillators where the topology of the network is prone to
switching. We have first considered single topology scenario, thus no switching,
where we reviewed and improved a proper event-triggered strategy that is able
to ensure asymptotic synchronization of the network. We have then considered
the switching case scenario where we solved two complementary problems, i.e.,
arbitrary and constrained switching scenarios. For the arbitrary switching sce-
nario, we developed some sufficient conditions in terms of network topologies

amongst which switching occurs in order to ensure overall asymptotic synchro-
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nization. For the constrained switching scenario, we considered two classes
of switching signals, i.e., uniform and average switching, where we developed
regulatory conditions on switching signal and event-triggered strategy param-
eters in order to ensure asymptotic synchronization. In both these problems,
rigorous analysis on the proposed results have been developed and provided

throughout this dissertation.

6.2 Future Work

In terms of future work to what have been performed and presented in
this dissertation, there are many problems and venues yet to be explored and
studied. In what follows in this section, some condensed discussion on these
directions shall be provided. The content of this section has been categorized
in accordance with the two major problems assessed in this dissertation whose
conclusions have been summarized in the previous section along with a sum-
mary on leading directions for triggering control methods.

In terms of the failure-resilient problem, the main points to be yet studied
are, (i) extending the class of systems to encompass nonlinear class of systems,
(ii) extending the triggering strategies to account for the communication issues
such as quantization and delay, (iii) extending the class of jamming signals to
stochastic class of jamming signals, i.e., where the on and off time-intervals
along with the transiting time-instants obey some probability distribution and
thus are no longer deterministic, and (iv) extending the problem formulation to
account for more distributed /multiagent setup.

In terms of the event-based synchronization problem under switching
topologies interaction, the main points to be yet studied are, (i) extending the
class of event-triggered strategies to encompass decentralized event-triggered
strategies, (ii) extending the class of constrained switching signals to encompass
alternative classes as well, (iii) extending the class of synchronization dynamics
to encompass alternative dynamics, e.g., with nonindentical nodes.

At last and as it regards the broader area of triggering control, the au-
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thors believe that the core concepts of event-triggered, time-triggered, and self-
triggered control have been studied within the past decades, the main leading
directions and venues for the future would be the application of these concepts
to other somewhat “classic” areas of control, this latter includes but is not lim-

ited to the fields of robust, adaptive and distributed optimization.
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