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Abstract

Error analysis and parameter estimation for nanopore based molecular detection

by

Christopher R. O’Donnell

Nanopores are powerful tools for measuring and probing single molecules. A

nanopore is a nanometer-sized opening in a membrane that separates two cham-

bers filled with buffered ionic solution. By applying a voltage and measuring the

ionic current through the nanopore, it is possible to detect the presence of indi-

vidual DNA, RNA and proteins as they pass through the pore, and even read the

sequence of individual nucleobases that make up a single strand of DNA. However,

the speed with which molecules translocate and the size of the sensing region have

presented challenges for using nanopores to sequence DNA. Most nanopore-based

DNA sequencing research focuses on using biological nanopores paired with an

enzyme to slow down the passage of DNA through the pore, but recent advances

in solid-state fabrication technology have made it possible to create artificial solid-

state nanopores in insulating membranes, typically made of silicon. These pores

can be made in a larger range of sizes, are more durable, and are more amenable

to large scale fabrication than their biological counterparts. In order to control

the rate of molecular translocation through solid-state nanopores, researchers are

developing a two-pore architecture, which utilizes time-varying voltage patterns

to enable rereading of individual molecules to gain confidence in feature sensing.

This thesis presents a numerical study that provides an error analysis of an ideal-

ized nanopore sequencing method in which ionic current measurements are used to

sequence intact single-stranded DNA in the pore while an enzyme controls DNA

motion. This analysis presents examples of systematic and random errors associ-

ated with this method of sequencing and demonstrates the necessity of rereading

x



sequences at least 140 times to achieve 99.99% accuracy. Two different methods

of parameter estimation are then presented that overcome the problem of contam-

ination of the measured ionic current by capacitive elements in the system and

facilitate active control with the two-pore architecture.
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Chapter 1

Introduction

Nanopores provide a simple method of serially measuring and manipulating

individual DNA and DNA-protein complexes, one molecule at a time [84]. A

generic nanopore device consists of a nanometer-sized opening in a membrane

that separates two chambers containing a buffered electrolytic solution. An elec-

trode is placed in each chamber and a patch-clamp amplifier applies a voltage

across the membrane creating an ionic current through the nanopore (Figure 1.1).

Charged particles such as DNA are placed on one side of the nanopore and are

electrophoretically driven through the pore by the transmembrane electric field

induced by the applied voltage. When a molecule passes through the nanopore,

the resistance of the pore increases causing a drop in the measured ionic current.

The depth and duration of the current drop reveal information about the size and

charge of the molecule passing through the pore [73]. It is this phenomenon that

enables nanopores to be used as single molecule sensors. The speed and direction

with which molecules pass through the nanopore depends on the amplitude and

the polarity of the voltage, as well as the charge of the molecule, and this creates

the opportunity to use methods from control theory to manipulate and maximize

the utility of nanopores. There are two main classes of nanopore devices: biolog-
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ical and solid-state. As their names suggest, biological nanopore devices utilize

biomolecules (lipids and proteins) to form membranes and nanometer-sized open-

ings while solid-state nanopore devices rely on mechanical means to etch and drill

nanopores in solid substrates such as silicon or graphene.

-
A

V

Cl-

K+
+

Figure 1.1: Schematic of a biological nanopore device. A single α-HL nanopore
is inserted in a lipid bilayer that separates two chambers containing a buffered
solution of KCl. A transmembrane voltage is applied across the bilayer and the
induced ionic current through the nanopore is measured by electrodes in series
with a patch-clamp amplifier.

1.1 Biological nanopores

Biological nanopores offer several advantages for single-molecule DNA analy-

sis. First, large numbers of biological nanopores can be produced with an atomic

level of precision and a remarkable heterogeneity in terms of size and composi-

tion. Second, detailed information about the molecular structure of biological

nanopores is available via X-ray crystallography. Finally, biological nanopores

have the ability to be genetically modified, using established techniques such as

mutagenesis, to tailor the physical and chemical properties of the pore to fit a

given application [84].

2



Many different proteins have been investigated as candidates for biological

nanopores, but the most commonly used protein is α-hemolysin (αHL). Secreted

by the bacterium Staphylococcus aureus, αHL is a cytotoxin that acts as the pri-

mary virulence factor in S. aureas pneumonia by spontaneously inserting into a

foreign cell’s lipid bilayer, disrupting the cell’s electrochemical gradient [65]. αHL

has a mushroom-shaped structure consisting of a spherical vestibule with an inter-

nal diameter of approximately 3.6 nm and a stem consisting of an approximately

5 nm long and 2.2 nm wide β-barrel [74] (Figure 1.2A). The inner diameter of

the nanopore reduces down to approximately 1.4 nm where the stem meets the

vestibule creating a limiting aperture that restricts the size of the molecules that

can pass through the pore. The limiting aperture is wide enough to allow single-

stranded DNA (ssDNA), RNA and unfolded protein chains to translocate through

the nanopore, while double-stranded DNA (dsDNA) can enter the vestibule but

not pass through the pore [52].

Although αHL is the most widely used protein for nanopore experimenta-

tion, the pore does not have the sensitivity required to detect the sequence of a

translocating DNA strand [26, 62, 63]. In an attempt to overcome this problem,

researchers at the University of Oxford (led by Hagan Bayley) first engineering

αHL to have a single DNA oligonucleotide attached to the inside of the vestibule

enabling the pore to identify single-base mismatches in translocating DNA [31].

They further improved the sensitivity of αHL by covalently attaching a molecular

adapter in the lower stem [13] and modifying the amino acid side chains that af-

fect the recognition sites within the β-barrel [76]. Even with these improvements,

αHL has a fundamental structural flaw in the length of the stem where sensing

of molecules takes place. Approximately 10-12 nucleotides at a time can fit inside

the β-barrel that makes up the stem, and all of these nucleotides contribute to the
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measured ionic current, which masks the unique current signatures of individual

nucleotides [76].

Researchers continue to look for alternative proteins to use as biological nanopores

that improve on the sensitivity of αHL and found one in the form ofMycobacterium

smegmatis porin A (MspA). MspA is a channel-forming protein that constitutes

the major diffusion pathway for hydrophilic molecules in the bacterium M. smeg-

matis [75]. Like αHL, MspA has a limiting aperture of ∼1.2 nm which makes

it wide enough for ssDNA to translocate through the pore but too narrow for

dsDNA (Figure 1.2A). Unlike αHL, MspA has a funnel-shaped geometry with a

sensing region at the bottom of the pore that is only ∼0.5 nm long. Researchers

at the University of Washington (led by Jens Gundlach) have genetically modi-

fied MspA so that only 3-4 nucleotides contribute to the measured ionic current

yielding a 3.5-fold enhancement in nucleotide separation efficiency as compared

to wild-type αHL [16]. This improvement along with the possibility of further

genetic modification to improve the sensitivity of the pore has made MspA one of

the most promising biological nanopores for DNA sequencing to date.

Even though the sensitivity of biological nanopores has improved, the speed

with which ssDNA moves through the pore is too fast to perform sequencing

directly in realtime. Under typical experimental conditions, intact ssDNA passes

through a nanopore with an average rate that approaches ∼1 nt/µs while the

hardware used to measure the small ionic currents requires a rate of ≥1 nt/ms

to achieve single base recognition [7]. Researchers have devised several methods

to overcome this issue and slow down the translocation rate of ssDNA. The most

promising of these strategies involves the use of enzymes to regulate the motion

of DNA through the pore [4, 57, 14, 43]. Coupling an enzyme motor with a

nanopore is an attractive strategy because the enzyme-DNA complex forms in
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bulk solution, which allows it to be electrophoretically captured in the nanopore.

Once the enzyme-DNA complex is captured, the enzyme processively steps the

DNA molecule through the nanopore in a relatively slow and controlled manner

providing ample time for the small changes in the ionic current to be measured.

One of the most successful uses of this method was developed by researchers

at the University of California, Santa Cruz (led by Mark Akeson) utilizing the

bacteriophage phi29 DNA polymerase in conjunction with an αHL nanopore [43].

Akeson and his group devised a method of using a blocking oligo which allows

phi29 to attach itself to a DNA strand in bulk phase but prevents the enzyme from

processing the strand until the enzyme-DNA complex is captured in a nanopore

[12]. Once captured in the pore, the blocking oligo is stripped off by the force

of the applied transmembrane voltage and phi29 begins base-by-base ratcheting

of the DNA through the nanopore at a rate of ∼2.5 nt/s, which is suitable for

sequencing [12]. Akeson and his group further improved their sequencing method

by coupling phi29 with the modified MspA nanopore developed by Gundlach and

his research group at the University of Washington (Figure 1.2C). They were

able to show that individual ssDNA molecules traversing through the short and

narrow constriction of MspA under the control of phi29 produced distinct sequence

specific current levels [49]. While these results are very promising, this method

still faces several significant hurdles. First, the measured ionic current levels are

a function of the 3-4 nucleotides residing in the sensing region of the nanopore,

which necessitates a significant computationally effort to deconvolve the signal

into a specific sequence. Second, the multi-nucleotide signal levels combined with

the nondeterministic ratcheting motion of phi29 makes it difficult to accurately

distinguish the number of bases in homopolymer regions of DNA. Finally, phi29

is an imperfect molecular motor that can randomly slip and skip several bases at

5



a time or temporarily ratchet DNA in the opposite direction [12, 49].

While biological nanopores are powerful tools for single-molecule analysis they

do have some inherent disadvantages. The lipid bilayer that supports biological

nanopores is mechanically unstable and most lipids used in academic research

rely on the spontaneous formation of a bilayer. Once the bilayer membrane is

formed, a single protein pore must spontaneously insert into the bilayer through

a process that involves feedback control and perfusion to minimize the chance of

a second insertion. Biological nanopores are also very sensitive to experimental

conditions such as pH, temperature and salt concentration requiring researchers

to tailor experiments around the chemistry of the pore as well as that of the

molecule being investigated. Finally, development of a commercial product using

biological nanopores requires the difficult task of integrating a biological system

into large-scale arrays.

1.2 Solid-state nanopores

Some of the disadvantages of biological nanopores have been addressed by the

use of solid-state nanopores. Solid-state nanopores are nanometer-sized openings

formed in a solid substrate by drilling or etching [15]. In comparison to biologi-

cal nanopores, solid-state nanopores are mechanically and chemically more stable

[33], offer the ability to tune the size and shape of the nanopore with subnanome-

ter precision [77], and the ability to fabricate high-density arrays of nanopores

[36]. The most common substrate used for forming solid-state nanopores is silicon

(typically silicon nitride (SiN) or silicon oxide (SiO2)) due to its high chemical

resistance and low mechanical stress [41], but recently researchers looking to im-

prove solid-state nanopore performance have also used aluminum oxide (Al2O3

[87] and graphene [69, 21] (Figure 1.2B).
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Figure 1.2: Varying types and geometries of nanopores (A, B) and leading
configurations for sequencing (C, D). (A) Relative dimensions (approximate) of
biological pores α-hemolysin and MspA. (B) Dimensions of graphene with single-
atom thickness, and range of pore diameters in varying solid-state substrates. (C)
The mechanism of phi29 polymerase mediated DNA translocation developed in
[12] and implemented on the MspA nanopore in [49]. The motorï£¡s ability to
both polymerize (at ∼40 nt/s) and unzip (at ∼2.5 nt/s) the strand is utilized
to register DNA motion progress and position sensing, with the unzipping di-
rection shown in this illustration. Though dwell times at each position are not
constant, but exponentially distributed, the rates meet the requirements for DNA
speed reduction [7]. (D) Functionalized electrode readers of nucleobases via 4(5)-
substituted 1-H-imidazole-2-carboxamide. Different 180◦ rotations occur over the
specified bonds on the carboxamidemolecules to allow hydrogen bonding with
different nucleobases, causing detectable variations in electron tunneling signals
between two electrodes attached to the two carboxamides.

The size and shape of solid-state nanopores can vary depending on the sub-

strate and fabrication technique used. Researchers at Harvard University (led
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by Jene Golovchenko) developed a novel technique called ion beam sculpting

that uses a focused ion beam (FIB) to mill tiny holes in SiN membranes with

nanometer precision [41]. This technique has been widely used to create pores

with nanometer dimensions and provided a starting point for DNA translocation

measurements [15]. Another group of researchers at Delft University (led by Cees

Dekker) adapted a technique from silicon microfabrication that uses electron-beam

lithography and reactive-ion etching to create relatively large (∼50 nm) holes in

silicon oxide (SiO2). A transmission electron microscope (TEM) is then used to

soften the SiO2 allowing it to slowly deform and shrink the holes down to as small

as 2 nm [77]. This technique enables direct visual feedback through the use of the

TEM and provides a way to fine-tune solid-state nanopores with subnanometer

precision [15]. Several other researchers have used the focused electron beam of a

TEM to directly drill sub-10 nm nanopores [92, 20, 2, 87]. Other promising fabri-

cation techniques including atomic-layer deposition [86], sputtering and evapora-

tion [89], and chemical etching [1] have also been developed. The advancement of

these techniques over recent years has enabled researchers to fabricate nanopores

as small as 1 nm, making them smaller than the limiting apertures of αHL or

MspA [15]. However, unlike biological nanopores, the exact internal dimensions

of solid-state pores are unknown, which means that two solid-state nanopores with

the same size opening can behave differently when conducting ionic current [71].

The sensitivity of solid-state as well as biologic nanopores is predicated on

the size of the sensing region, which for solid-state nanopores is a function of the

diameter of the pore opening and the thickness of the membrane. With this in

mind, it is no surprise that there is great interest in graphene as a potential solid-

state DNA sequencing platform. Graphene is a two-dimensional sheet of carbon

atoms with a thickness of only one atomic layer (∼0.34 nm) [53]. The thickness
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of a single layer of graphene is comparable to the spacing between nucleotides

in ssDNA (0.32-0.52 nm), which means a graphene nanopore could theoretically

detect translocating DNA with single-nucleotide precision [84]. Initial experiments

with graphene nanopores have shown the detection of dsDNA [21, 50, 69] as

well as ssDNA [61]. However, the measured ionic current through bare graphene

nanopores is noisier than that of comparable SiN nanopores and it is difficult to

fabricate the pores without defects [50]. Attempts to ameliorate these issues have

been made by using atomic-layer deposition to coat graphene with TiO2 [50], but

further research and experimentation is needed to realized the full potential of

graphene nanopores.

Another promising technique for detecting individual nucleotides with solid-

state nanopores is the use of a tunneling current. Researchers at Osaka University

were the first to embedded nanoelectrodes within a solid-state nanopore and use

a transverse tunneling current across the pore to identify single nucleotides [80]

and slow the translocation rate of DNA through the pore [79]. Researchers at

Arizona State University (led by Stuart Lindsay), expanded on this technique

by functionalizing embedded electrodes with a benzamide-based molecule that

hydrogen-bonds to DNA bases in different orientations [42]. Translocating nucle-

obases interact with the molecule attached to the tips of the electrodes and create

a transient tunneling current across the nano-gap between the electrodes with a

distinct signal for each base due to the specific bond orientation [32] (Figure 1.2D).

This method leads the field of solid-state nanopore sequencing with a detection

signal-to-noise ratio considerably higher than what appears to be possible with

ionic-current based sensing through biological nanopores.

Even though researchers have developed novel techniques for improving the

sensitivity of solid-state nanopores, the significant challenge of controlling the rate
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of molecular translocation through the pore still exists. Researchers at IBM have

proposed extending the concept of embedded electrodes to create a solid-state

nanopore consisting of a metal-insultator-metal sandwich that acts as a transistor

[60]. This “DNA transistor" has been shown in simulations to be capable of con-

trolling the translocation of DNA through a nanopore in a base-by-base ratchet

fashion [47], similar to phi29 with biological nanopores, but this method has yet

to be demonstrated in actual experiments. It has been postulated that phi29

or other processive enzymes could be coupled with solid-state nanopores to help

with rate control. However, it is unclear if the imprecise and generally unknown

surface structures of solid-state nanopores would be conducive to preserving enzy-

matic function. Researchers have been able to form hybrid biological-solid-state

nanopores by inserting an αHL pore tethered to a strand of DNA into a solid-state

nanopore [27], which may provide a suitable platform to couple with phi29.

1.3 Two-pore architecture

In lieu of the rate control methods described above, researchers at Two Pore

Guys, Inc. (2PG) are developing a two-pore solid-state nanopore architecture that

is designed to slow down the molecule passing through the pores for dramatically

improved sensing. The two-pore architecture consists of two solid-state nanopores,

positioned sufficiently close together as to allow the co-capture of a single strand

of DNA, and three electrically isolated fluidic chambers that enable independent

voltages to be applied across each nanopore (Figure 1.3).

To precisely control the motion of DNA with a two-pore architecture, a strand

must first be captured in both pores. This can be accomplished by applying a

transmembrane voltage across both nanopores to capture a DNA strand first in

one pore and, as it translocates, the leading end of the strand is captured again in
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Figure 1.3: Schematic of the two-pore architecture. Two solid-state pores are
separated by a common chamber creating three electrically isolated fluidic com-
partments. A working electrode is placed in the chambers above each pore and a
common ground electrode is place in the middle chamber. Two separate voltages
are applied across each membrane enabling the capture and control of molecules
in both nanopores.

the second pore. Upon capture in both pores, it is theorized that a DNA strand

can be held between the nanopores by applying equal and opposite voltage forces

across the two membranes or slowly pulled through the pores by creating a small

force differential between the opposing voltages. Once a single strand of DNA

has been captured in both pores, the features of the molecule could be reread

repeatedly by alternating the polarity of the command voltages.

In order to gain statistical confidence about features of a molecule that have

been sensed with a nanopore, many different sensing reads of those features must

be performed and combined to reach a consensus. Multiple reads of a given

molecule can be achieved by creating many copies of that molecule through am-

plification techniques. However, these techniques are costly and have error rates
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of their own resulting in a population of not-quite-perfect copies of the original

molecule [38]. A much more sound strategy is to reread the exact same molecule

multiple times to generate a sufficient number of reads to form a statistically high

confidence consensus.

The two-pore solid-state nanopore architecture under development is capable

of rereading a single molecule multiple times, but this operation requires switching

the polarity of the command voltages on microsecond time scales. A challenge

with time-varying voltages is that the capacitive elements of the nanopore system

induce a transient response when a step change in voltage occurs. This capacitive

effect contaminates the measured ionic current and limits the time-resolution for

detecting DNA or DNA-protein dynamics making it impossible to measure the

population of molecular responses that are faster than the transient settling time

(up to 30% in [90]).

The work presented in this thesis provides motivation for developing the two-

pore architecture as a method to improve the utility of nanopores as single molecule

sensors and details companion tools that are fundamental for achieving that goal.

The first study presented examines the necessity for performing multiple reads of a

single molecule and how to combine those reads into a statistically high confidence

consensus. Two different methods of parameter estimation are then presented that

overcome the problem of contamination of the measured ionic current by capaci-

tive elements in the system and facilitate active control.
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Chapter 2

Error Analysis of Idealized

Nanopore Sequencing

The following chapter describes excerpts from work published in Electrophore-

sis ([55]) for which I was first author.

2.1 Introduction

High-throughput sequencing technologies can generate genome-scale sequence

data with high accuracy, making it possible to identify genomic markers for a

growing list of common diseases, including cancers [91]. The leading commercial

platforms (Roche, Illumina, Life Technologies) can generate 1-100s of gigabases

per instrument run, with run times on the order of hours to days. For technologies

that achieve at most 1% raw error rates, however, read lengths are short, gener-

ally tens to hundreds of base pairs. Such short-read sequencing necessitates mas-

sive data storage requirements and complex bioinformatics algorithms for genome

alignment and assembly, and complicates studies involving linkage analysis. The

short reads also require the devices to have a high degree of parallelization, so that
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there is sufficient coverage of the sequenced DNA to achieve desired error thresh-

olds. Still another drawback is the need for an amplification step using enzymes

that have less then 100% fidelity. In particular, it is common that starting mate-

rial is amplified to create a library for sequencing, which then undergoes a second

amplification reaction to create a clonal colony as in Illumnia’s on-chip bridged

amplification reaction [51]. Such intensive sample preparation may also require

unattainable amounts of starting material. Despite these issues, the short-read

and massively parallel devices control the market principally because they provide

the highest throughput and sufficiently low error rates.

Single-molecule sequencing (SMS) devices have alleviated the sample prepa-

ration requirements of massively-parallel devices by eliminating the need for tem-

plate amplification [78]. The SMS from Helicos Biosciences (HeliScope) preserves

the high-throughput feature (∼3 Gb/day), but reads remain short (< 60 bp) and

errors are higher (3-5%), diminishing the value of simpler sample preparation [91].

The SMS from Pacific Biosciences (PacBio RS) boosts read lengths to 10 kb, but

throughput is reduced (< 0.1 Gb/run) and error rates are considerably higher

(15%). Errors can be reduced with this technology by using circular template

DNA, but at the price of shorter read lengths [78]. Despite the high error rate,

the long-read feature of the PacBio RS technology makes it useful to use in concert

with short-read and low-error platforms, specifically for whole-genome sequencing

in which the longer reads provide alignment scaffolds for the short read contigs

(though DNA mapping technologies [39] are competing for this market).

The ideal sequencing platform would require minimal sample preparation and

zero amplification, would be modular and scalable to ensure sufficient throughput

for any given application, and would have sufficiently long reads and low errors to

permit robust detection of any feature, including rare variants [37] and structural
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variants such as repetitive regions [91]. No single platform currently possesses

all of these assets. Nanopores have been pursued as a candidate SMS platform

in university research labs [7], and a subset of the resulting intellectual property

has been commercialized, most notably by the company Oxford Nanopore Tech-

nologies (ONT) [59]. ONT’s sequencing platform, the MinION, utilizes chemically

modified biological nanopore channels, promising minimal sample preparation and

read lengths up to hundreds of kb [34]. Sample preparation requires no amplifica-

tion, nor labeling of nucleotides; instead, individual DNA strands are captured by

electrophoresis into each nanopore channel from a bulk-phase chamber, and the

impeded channel current is used to sense the nucleotides that pass through the

limiting constriction of the channel. This work considers a model method in which

intact ssDNA is threaded through a biological pore for sequencing [12, 49], as op-

posed to an alternative approach in which mononucleotides are sensed in concert

with exonuclease-catalyzed ssDNA hydrolysis above the pore [13]. Unfortunately,

intact ssDNA passes too fast through the pore when the rates of electrophoresis are

unimpeded (∼1 Mb/s), when compared to the ionic current measurement band-

width (∼1 kb/s) [7]. To keep ssDNA motion within measurement bandwidths, a

leading nanopore sequencing method uses a DNA polymerase enzyme perched on

top of the pore to control the rate of each DNA molecule through the pore [12]. In

this configuration, the sensitivity of biological pores for identifying the sequence

of intact ssDNA has improved, with the occluded current through the MspA pore

a function of 4 nucleotides positioned at the narrowest constriction of the channel

[49], and ONT claiming modified pores that are sensitive to 3 nucleotides at a

time.

We consider an idealized nanopore sequencer in which an enzyme controls ss-

DNA motion through the pore, and the ionic current amplitude is a function of
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one or more nucleotides. When more than one nucleotide affects the current (e.g.,

a triple), systematic errors may make it impossible to resolve certain sequences,

regardless of depth of coverage; we quantitatively consider examples where this is

the case. Notably, such errors would also persist when using nanopores regardless

of the method of DNA control (i.e., with enzymes or by any other method). Ab-

sent these systematic errors, we consider next random errors introduced by the

use of an enzyme to control ssDNA motion through the pore. Specifically, the en-

zyme is idealized by modeling ssDNA motion as moving in single nucleotide steps

with durations from an exponential distribution of known rate (we ignore back-

tracking which has been experimentally observed [12, 49]). When homopolymer

regions move through the pore with no change in current amplitude, the number

of nucleotides associated with each detectable amplitude level must be inferred,

and this introduces random insertion or deletion errors that can be reduced only

by rereading the same sequence multiple times. We derive an analytic expression

for the rate of error decay as a function of the number of reads, and examine the

resulting error rate trends for known sequences (16.6 kb Human Mitochondrial

DNA [68], 4.6 Mb Escherichia coli K-12 [5]). We then simulate nanopore signals

to incorporate the effects of added measurement noise and the consequent low-pass

filtering required to reduce noise for robust amplitude detection. Using a novel

amplitude-level detection and duration binning method for base calling, consensus

sequences generated in the noiseless case are shown to match the analytic trends

exactly, and increasing noise is shown to increase the error rate.
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2.2 Methods

2.2.1 Simulated nanopore signals

All simulations were performed using the Matlab software package. The

nanopore sensor was modeled as having single nucleotide sensitivity producing

distinct ionic current amplitudes at (3, 2, 1, 0) pA for the nucleobases (A,G,C, T ).

We varied this amplitude-to-base assignment and observed no measurable differ-

ence in the computed error rates for the sequences considered (Section 2.5). The

passage of DNA through the nanopore was modeled as unidirectional with the life-

time of each nucleotide in the sensor from an exponential distribution of known

rate. Simulated data was produced by first generating an ideal pulse-train signal

at 10 MHz for a chosen DNA sequence, where the dwell time for each nucleobase

was randomly selected from the exponential distribution with mean 1 ms. White

noise was added to the idealized signal, which was then low-pass Bessel filtered

at 100 kHz and downsampled to 500 kHz. White noise variance, which we label

as ‘1X noise’, was chosen to produce a 2:1 signal-to-noise ratio (S/N) when the

Bessel filter was set to 5 kHz bandwidth to emulate conditions comparable to

those observed experimentally [12, 49]. Analysis of signals with 2X this noise,

and without noise, was also performed. At 1X noise, the mean enzyme rate was

also varied to examine its influence on error rate performance (Section 2.5).

2.2.2 Base-calling algorithm, alignment and consensus

Noise on each simulated signal was reduced by applying a running mean filter

followed by a Savitzky-Golay filter of order 2. To identify ionic current levels,

a custom step detection algorithm was employed using a gradient threshold to

detect transitions between levels and amplitude thresholds to classify levels by
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nucleobase. The number of nucleotides assigned to each current level was deter-

mined using a binning method to sort each level by its duration. The optimal sizes

of the bins were chosen to maximize the sum of the probabilities that each current

level is assigned the correct number of bases (Section 2.5). Error calculations were

performed by comparing the predicted sequence to a known reference sequence.

The current levels of the two sequences were globally aligned using the Matlab

function ‘nwalign’ with affine gap penalties. The numbers of nucleotides at each

aligned level were compared and errors in the predicted sequence were classified

as insertions, deletions, or substitutions. Insertions and deletions were counted on

a per nucleotide basis, whereas substitutions were counted in terms of the number

of current levels with misidentified amplitudes.

Multi-read consensus sequences were generated by first performing a progres-

sive multiple alignment of the ionic current levels of the reads using the Matlab

function ‘multialign’ with the option ‘TerminalGapAdjust’ set to true. The multi-

ple alignment was used to generate a consensus sequence of current levels using the

Matlab function ‘seqconsensus’ with the option ‘Gaps’ set to ‘all’. Nucleotides

were then assigned to the consensus sequence current levels using the optimal

binning method, where the duration of the consensus levels were determined by

computing the mean duration for each level. To ensure that the correct current

levels were included in the calculation, each predicted sequence used to generate

the consensus was globally aligned with the consensus sequence and only the du-

rations of the aligned current levels were used for computing the mean duration

times. Error analysis for the multi-read consensus sequences was performed in the

same manner as for the single-read predicted sequences.
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2.3 The potential for systematic channel errors

In the simplest case that the current amplitude is a function of only one nu-

cleotide in the channel, a necessary and sufficient condition for recovering DNA

sequence is that each letter generate a distinct amplitude that can be detected

above experimental noise. When more than one nucleotide affects the current am-

plitude, it is less clear what sequence can be recovered. Consider the case where

three nucleotides affect the current. If 64 distinct and detectable amplitude levels

are generated for every triple-letter combination of the four nucleotides (i.e., 43),

then there is no ambiguity in the identified sequence. On the other hand, if there

are less than 64 detectable levels, there may or may not be ambiguity. Below, we

present a generalized case in which there are an infinite number of sequences that

can not be recovered, regardless of how many times the sequence is read.

Assume the current is a function of three nucleotides, and suppose the four

triples in the set {CCC,CCA,CAC,ACC} generate the same amplitude. Then,

for any n ≥ 1, there is a set of length-n subsequences Z1 · · ·Zn constructed

from A and C that cannot be distinguished from each other within the sequence

CCZ1 · · ·ZnCC. As a specific example, within the sequence · · ·TCCCACCACCG · · · ,

the subsequence CACCA cannot be differentiated from CCCCC, ACCAC, or

any other 5-letter combination of C and A in which As are separated by two or

more Cs. A proof of the generalized statement, and comparable statements for

cases when the amplitude is a function of two or four nucleotides, are provided

in the Appendix A. Experimentally building a map from letters to amplitude is

required to determine if such channel errors are present for a given nanopore.

Practically, two sequences would be considered to have the “same amplitude” if

the magnitude of the difference between the two amplitude levels has a S/N of less

than 1.5 after applying the low-pass filters designed for signal-to-sequence conver-
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sion (S/N 1.5 is a minimum threshold for idealizing the signal by Markov-based

methods [83, 64], with S/N 2 or larger required for simpler methods [67], Appendix

A). While additional low-pass filtering can always boost S/N and therefore im-

prove discrimination between amplitude levels, too much filtering will result in

excessive deletions of fast events. Thus, the effective filter bandwidth designed

for optimal signal-to-sequence conversion will tradeoff S/N for detection time res-

olution. For the remainder of this work, we idealize the sequencing problem and

assume there are no systematic channel errors. Specifically, the current ampli-

tude is assumed to be a function of one nucleotide at a time (i.e., the channel is

single-nucleotide sensitive).

2.4 Errors due to nondeterministic sensing times

By using an enzyme to control the motion of ssDNA through the nanopore

[12, 49], the strand is temporarily immobilized for sensing before moving in single-

nucleotide steps. A challenge for base calling is that the duration in each immobi-

lized position is nondeterministic. For an ideal enzyme, we can model the duration

as following an exponential distribution of known mean dwell time τ . We consider

two complications with nondeterministic sensing times. First, without some signal

that the enzyme has moved to the next position on the DNA, inferring the length

of each detected subsequence is challenging, and in particular one expects errors to

grow with the length of homopolymer regions. Second, when experimental noise

requires the use of low-pass filtering to permit robust detection of each sequence-

specific amplitude level, a fraction of sensing times are too fast for detection and

result in an increase in deletions. We consider first the errors that are intrinsic to

inferring the length of the sequence that corresponds to each detected amplitude

level, and then the errors induced by adding noise to the idealized sensing signal.
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The sensing problem is idealized by assuming that the current measurements

are noiseless and sensitive to one nucleotide at a time. Specifically, each base

(A,G,C, T ) generates the current amplitude (3, 2, 1, 0) pA, and each level is de-

tectable regardless of duration (i.e., no durations are too fast since no noise filter-

ing is required). A challenge is that we assume the enzyme does not provide an

explicit tracking mechanism within the ionic current signal, which is consistent

with the literature [12, 49], and so no new information can be extracted from the

signal unless a sequence-specific amplitude shift is detected. This makes it difficult

to identify the length of the sequence that corresponds to each detectable level.

Mathematically, let τi be the duration during which the i-th nucleotide along the

DNA is at the sensing position that determines the amplitude level. Each τi is

an exponentially distributed random variable with mean τ . In our model prob-

lem, the transition from the i-th nucleotide to the (i + 1)-th nucleotide being at

the sensing position is detectable only if these two nucleotides are different (and

thus yield different amplitude levels). Let sj be the duration of the j-th segment

along the time series of 4 distinct amplitude levels. If the sequence was entirely

non-repeating, τi = si for all i = 1, . . . , nt, with nt the length of the sequence.

To quantify the challenge of inferring sequence length in general, consider the ex-

ample of the sequence TCCCAGG moving through the nanopore sensor starting

from the right end. Sensing G first, we measure amplitude 2 pA for the duration

s1 = τ1 + τ2. Next, we measure A at amplitude 3 pA for the duration s2 = τ3.

Next, we measure C at amplitude 1 pA for the duration s3 = τ4 + τ5 + τ6. Fi-

nally, sensing T we measure amplitude 0 pA for duration s4 = τ7. The length of

the sequence at each detected level must be inferred. For a single pass through

the sequence, if s4 gets a large sample value from the exponential distribution,

it would appear that more than one T is present; likewise, if s3 is made up of
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three faster-than-average durations, it would appear that less than three Cs are

present. Clearly, such random errors can be reduced only by repeatedly taking

measurements of sj for each level, and generating a consensus (average) time for

that level from which the sequence length estimate is made.
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Figure 2.1: Analytic error rates for enzyme-controlled ssDNA nanopore sequenc-
ing. The idealization assumes a noiseless single-nucleotide sensor, but with no
mechanism for tracking single-nucleotide displacements through homopolymer re-
gions. Durations of each nucleotide in the sensor are from a single exponential
distribution of known rate, consistent with an ideal enzyme controlling DNA mo-
tion through the sensor. The analytic error rates are computed for Human Mi-
tochondrion [68], and for E. coli K-12 [5], for a 50 mer non-repeating sequence
(green) and a 50 mer with length 10 and 20 mer homopolymer regions (red). Error
reduction is accomplished only by rereading the same sequence and averaging the
duration at each resolvable sequence-specific amplitude level.

We derive a time-binning strategy that estimates the length k of each sequence

from the measured duration sj at each nucleotide-specific amplitude level. Since

each sj = ∑k
i=1 τi+i0 is the sum of k independent samples of an exponentially

distributed random variable, each sj has a Gamma distribution. By rereading the

sequence n times, denoting the measured set of durations {s1
j , ..., s

n
j }, the estimate

for sequence length (kest) for each detected level is computed using the variable
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x =
(

1
n

∑n
l=1 s

l
j

)
/τ with the simple equation

kest(n) =



1, if x ≤ b1

2, if b1 < x ≤ b2

3, if b2 < x ≤ b3
...

(2.1)

with optimized bin values (b1, b2, b3, ...) = (1.472, 2.483, 3.488, ...) chosen to mini-

mize the error rate (Appendix A). If the average sj is between 2.483τ and 3.488τ

for a detected level at 1 pA, for example, the estimated length is kest(n) = 3

producing the sequence estimate CCC. Since the random variable (x · n) has

a gamma distribution with shape parameter (k · n) and scale parameter 1, the

error rate per nucleotide for a k-repeat based on measurements from n reads is

Err(k, n) = 1
k

∑
j |j − k|Pr(kest(n) = j). This error rate has an analytical ex-

pression that can be computed in Matlab using the incomplete gamma function

(Appendix A). From this expression, the per-nucleotide error rate g(n) is com-

puted for any given sequence as a function of the number of reads n, and is given

by the equation

g(n) = 1
nt

m∑
k=1

qk · Err(k, n) (2.2)

where nt is the length of the sequence, qk is the total number of nucleotides

belonging to length-k repeats in the sequence, and m is the longest repeat length

present in the given sequence.

We computed error rates using equation (2.2) for four different sequences, in-

cluding the 16.6 kb Human Mitochondrial DNA sequence [68], and for the 4.6 Mb

Escherichia coliK-12 sequence [5] (Figure 2.1). The other two sequences are 50 nu-
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Figure 2.2: Effect of nanopore sensor footprint on the analytic error rates. The
analytic error rates decrease with an increase in the size of the sensor footprint, but
approach the single nucleotide sensor error rate as the number of reads increases.

cleotides in length and are used to show the influence of homopolymer length. Not

surprisingly, the non-repeating sequence has the fastest rate of error decay and,

as expected, longer stretches of homopolymer regions require a greater number of

reads to reduce the error. With no mechanism for tracking the motion progress

through homopolymer regions of ssDNA, rereading the same strand is required

to reduce errors to acceptable levels. The figure suggests that to achieve the Q40

standard (99.99% confidence) requires reading known sequences over ∼150 times.

Achieving multiple reads could be accomplished by single-pass reading of many

copies in parallel in a multi-channel array, or by rereading the same strand at each

pore [12]. When considering nanopore sensors that are a function of more than

one nucleotide, the analytic error rate performance improves, but only if there are

no systematic channel errors (Figure 2.2). Notably, the single-read error improves

from 40.5% per nucleotide for a single-nucleotide sensor to 1.24% per nucleotide

for a four-nucleotide sensor, for the 16.6 kb Human Mitochondrial DNA. The im-

24



provement is a byproduct of being able to detect the length of homopolymers that

are the same length or shorter than the sensor footprint. The improvement is less

dramatic, however, when higher accuracy is needed (the four-nucleotide nanopore

sensor requires 130 reads for Q40 accuracy, Figure 2.2).

2.5 Influence of measurement noise and enzyme

rate on base-calling errors

To consider next the effect of measurement noise on base-calling performance,

we simulate ionic current signals. The mapping of bases (A,G,C, T ) to the am-

plitude (3, 2, 1, 0) pA was again used, with the sequence of the first 50 nucleotides

of the Mitochondrial DNA sequence [68] used to generate each signal. For each

signal, durations for each base were randomly drawn from an exponential dis-

tribution with mean τ = 1 ms. A gradient-based algorithm was developed for

level detection, and the time-binning strategy in equation (2.1) was used to assign

the number of bases for each detected level. The reference sequence was used

to compute the errors for each estimated sequence and for multi-read consensus

sequences. To emulate experimental noise, a sufficient amount of white noise is

added to the unfiltered ideal signal to produce ∼0.5 pA root-mean-square after

low-pass Bessel filtering at 5 kHz bandwidth. This noise we label as ‘1X noise’

and results in S/N of 2 between adjacent amplitude levels at 5 kHz bandwidth,

which is sufficient for detection by standard methods [67] and by our gradient-

based algorithm. The simulation makes use of a model of the nanopore instrument

that has been experimentally validated [22], specifically by including the low-pass

Bessel filter used in the current sensing amplifier. The Bessel filter is set at 100

kHz bandwidth and additional filtering is performed for robust level detection,
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Figure 2.3: Base-calling logic applied to simulated nanopore signals shows error
rate performance that matches the analytic error rate in the absence of noise, and
increasing error rates with measurement noise. (A) Example signal traces for the
first 10 nucleotides in the sequence, with no noise (red), 1X noise (green) and 2X
noise (blue). The randomness of level durations shows the need for multiple reads
to identify sequence lengths with confidence. (B) Mean error rates as a function
of number of reads for the first 50 nucleotides of the Human Mitochondrial DNA
sequence [68]. Data points are the mean error per nucleotide from 900 independent
multi-read consensus sequences, with each consensus computed using the reported
number of reads and with each read being drawn from a set of 10,000 simulated
signals. Error bars are the standard error, computed as the standard deviation of
the error divided by

√
900.

which is similar to what is done experimentally [49]. The case of 2X noise has

two times the variance of the added white noise before filtering, and is also con-
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sidered. We used the same base-calling logic and filter settings for 1X and 2X

noise, though the filter settings were optimized for robust level detection at the

1X noise condition. The tradeoff in noise filtering and level-detection fidelity is

central to sequencing error performance; therefore, settings would be optimized

for the given S/N and time resolution constraints imposed by the instrument and

enzyme rate in actual experiments. Example current traces show the difference

between no noise, 1X and 2X noise (see Figure 2.3A). The error rates for multi-

read consensus sequences are generated as a function of the number of reads, and

compared to the analytic curve for the 50 nucleotide sequence (see Figure 2.3B).
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Figure 2.4: Breakdown of mean error rates into insertions, deletions, and substi-
tutions. (A) Simulated nanopore signal with no additive noise. Insertions account
for the majority of the total mean error rate and substitutions do not contribute
at all. (B) Simulated nanopore signal with 1X noise. Like the no noise case,
insertions account for the majority of the total mean error rate. Substitutions
play a small role when the number of reads is few, but quickly decrease to zero.
(C) Simulated nanopore signal with 2X noise. The additional noise results in a
nearly equal contribution from insertions and deletions to the total mean error
rate. Substitutions also play a larger role.

In the absence of noise, the error-rate performance of our computed consen-

sus sequences matches the analytic trend exactly, validating our simulation and

base-calling algorithm. The errors for both analytic and simulated (noiseless)

trends are broken down as 82% insertions and 18% deletions on average, with no

substitutions (Figure 2.4). The largest source of error is insertions because 68%

of the nucleotides in this specific sequence are non-repeating, and only insertion

27



errors are possible in the noiseless case since every level is detectable. As the num-

ber of reads is increased, insertions become the dominant remaining error source.

When 1X noise is added, the filtering required to reduce noise causes faster levels

to go undetected, creating an increase in the fraction of deletions for each esti-

mated sequence. Specifically, the fastest dwell that our level-detection method

can robustly detect is 170 µs (Figure 2.5), and for a mean enzyme duration of

1 ms, 1 − 1/ exp(0.17/1) = 0.16 or 16% of dwells are too fast for robust detec-

tion. The presence of noise can also cause fast levels to transiently appear at the

wrong amplitude, resulting in substitutions. An increasing fraction of deletions

and substitutions are observed in the error breakdown for consensus sequences

at 1X noise, particularly for a low number of reads (for 3 read consensus, 72%

insertions, 26% deletions, 2% substitutions, Figure 2.4). As the number of reads

is increased, insertions become the dominant remaining error source, consistent

with the noiseless case (Figure 2.4). At 1X noise, we varied the base-to-amplitude

mapping to test if our original mapping choice was biasing the error rate per-

formance with noise. The results show no significant difference in the error rate

trends (Figure 2.6). When noise is further increased to 2X, a substantial new

source of error is that spurious level-changes induced by the noise are detected,

causing substitutions, deletions and incorrect calculation of durations. Insertions

remain a large source of error (40-70%), and deletions become the greatest source

of error for consensus sequences using more than 25 reads (Figure 2.4). While

the base-calling performance at 2X noise is unacceptably bad, it should again be

qualified that the filtering and base-calling logic was not re-optimized for the 2X

noise case but kept the same as for the 1X noise case. Practically, both filtering

and logic will be optimized according to the noise and level-detection performance

of a given nanopore platform.
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Figure 2.5: Worst case scenarios that affect the minimum dwell time for de-
tecting ionic current levels. Simulation of a measured ionic current signal from
nanopore experiments (grey), additionally filtered signal for step detection (black),
and the noiseless ionic current levels (red). (A) A short ionic current level taking
the form of a pulse in the measured signal is difficult to detect if its gradient is
too steep, its peak too narrow, or its maximum amplitude occurs outside of the
threshold. (B) A short intermediate ionic current level between two longer levels
is difficult to detect if its gradient does not sufficiently flatted out.
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Figure 2.6: Effect of changing nucleobase amplitude mappings on mean error
rate. Simulated nanopore signals with 1X noise. Amplitudes (in pA) assigned
to bases decrease from left to right, i.e. for the curve CATG, base-amplitude
mappings are C→3, A→2, T→1, and G→0. The curve AGCT reflects the base-
amplitude mapping used in this work. Rearranging the amplitude mappings has
virtually no effect on the mean error rate.
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With an enzyme that follows a single exponential distribution, the mean dwell

time τ will not be precisely known in practice. Using an estimate τ̂ of the true

mean τ in the base-calling logic will incur errors. If τ̂ < τ , the length of each

sequence will be overestimated causing insertion errors. Likewise, τ̂ > τ will cause

underestimation of sequence lengths and result in deletion errors. Additionally,

the larger or smaller τ̂ /τ becomes, the greater the errors. As an example, if x = 1.3

is computed with known τ and for a level corresponding to the single-nucleotide

C, the estimated and correct length is kest(n) = 1 from equation (2.1). However,

if τ̂ = 0.85τ is used to compute x, then it becomes x = 1.53 and equation (2.1)

produces an insertion error with estimated length kest(n) = 2. To assess the

effect of incorrectly estimating τ on error rate performance, we considered two

extreme cases at 1X noise: overestimating the mean dwell by double (τ̂ = 2τ),

and underestimating the mean dwell by half (τ̂ = 0.5τ). The incorrect estimates

for the mean were used in the calculation of x = (∑n
l=1 s

l
j)/(nτ̂), which is used

to compute the length estimate (kest) of each sequence at each detected level in

equation (2.1). As expected, overestimating the mean dwell creates deletion errors,

with an error rate of 16% that persists even up to 30 reads (Figure 2.7). Error rate

performance is considerably worse when underestimating the mean dwell time by

half, with a persistent error over 100% that is comprised almost exclusively of

insertion errors (Figure 2.7).

Assuming the mean enzyme dwell time τ is known, we considered also the

effect of different τ values on the error rate performance, again using the 1X noise

condition. The filtering required for robust amplitude-level detection at 1X noise

results in an increasing fraction of levels that go undetected as τ is decreased, and

error rates are considerably worse as τ decreases below 1 ms. On the other hand,

our base-calling method applied to 1X noisy signals is observed to perform as well
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Figure 2.7: Effect of estimating the mean dwell time on the mean error rate.
Simulated nanopore signals with 1X noise, a true mean dwell time of 1 ms, and
varying estimates (τ̂) of the mean dwell time (τ) used for base-calling. Underes-
timating the mean dwell time results in more nucleotides being assigned to each
ionic current level, which increases the number of insertions along with the mean
error rate. Overestimating the mean dwell time results in fewer nucleotides being
assigned to each ionic current level, which increases the number of deletions. This
does not increase the mean error rate for a small number of reads because while
the number of deletions is increased, the number of insertions is also decreased.
Since insertions are the main drivers of the mean error rate, this actually improves
the mean error rate for a small number of reads. In both cases, increasing the
number of reads does little to improve the mean error rate.

as is theoretically possible (i.e., matching the analytic trends derived for noiseless

signals) when τ > 10 ms (Figure 2.8). The phi29 enzyme as a replication-driven

ratchet has mean dwell τ = 36 ms, computed as the reported 25 ms median dwell

[12] divided by ln(2), but this does not suggest that the theoretically optimal error

rate is achievable. Specifically, our idealization ignores backtracking that is exper-

imentally observed with phi29, and the noise and channel sensing characteristics

do not match our idealization. Nonetheless, τ = 36 ms means that 99.5% of levels

are resolvable if the setup can robustly detect 170 µs (Figure 2.5). Although a

slower enzyme will reduce the number of deletion errors caused by filtering out fast

events, it also means lower throughput. The viability of a commercial nanopore
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sequencer will be determined by both the throughput and the error rates that are

achievable, and these are a function of the scale of the multi-channel array that

can be incorporated (fluidics, circuitry) into a platform of a given size [48].
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Figure 2.8: Effect of mean dwell time on the mean error rate. Simulated
nanopore signals with 1X noise and varying mean dwell times. The mean error
rates decrease with an increase in the mean dwell time and eventually converge
to the analytic error rate.

2.6 Discussion

Our error analysis shows the need to reread the same molecule at each pore,

or to read identical copies of the molecule serially or in parallel pores, when

ionic current nanopore sequencing is used in conjunction with enzymes to control

DNA motion. Systemic errors caused by the channel’s inability to sense and

differentiate specific sequences may or may not be present for a given pore. If

present, such errors define an error rate threshold below which the platform cannot

go, regardless of the number of reads. Random indel errors, on the other hand, can

be reduced by increasing the number of reads, and we provided the first analytic

expression that defines the best possible rate of error reduction as a function of
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the number of reads.

Reduction in instrument complexity is an advantage for prospective nanopore

devices that may trump any disadvantages associated with higher systematic er-

ror threshold or indel error frequency, though this will only become clear when

such devices become available to users. Specifically, the prospective device pre-

sumably eliminates the need to build or amplify sequencing libraries, reduces the

complexity of fluidics required during the sequencing operation (unlabeled nu-

cleotides), and could make resequencing permissible with no fluid exchange. Even

with the same raw error rate (5-15%) and read lengths (250 bp - 10 kbp) as Pa-

cific Biosciences RS platform [91], a considerably less complex device can be much

cheaper and portable. There is presently no “cheap, quick and dirty” sequencing

technology; however, a hand-held nanopore sequencer may be such a technology.

Even with modestly higher error rates, long read-length and portable sequencing

platforms would undoubtedly find applications, e.g., for fast re-sequencing or tar-

geted sequencing of pathogen strains [45], provided the user interface is as simple

as other devices used routinely in clinical settings.

We conclude this work with a brief discussion on assigning error probabilities to

sequences, as this is a forward-looking issue that will benefit from basic research as

nanopore sequencing technologies come to market. Assigning a statistical measure

of confidence to sequencing data is important for determining the suitability of

sequencing results for a given application, and also for providing a quantitative

basis for comparing data generated from different technologies [8]. The de facto

metric for comparing the probability of error for a sequence across platforms is

the position-specific quality score (Q-score). Quality scores originated with the

base calling program phred, which uses an algorithm and a four-parameter set

associated with the error characteristics of the Sanger method to compute the
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score [19]. The accuracy of the quality scores has been key to the utility of Sanger

sequencing data [30]. The quality scores currently reported for next-generation

high-throughput sequencing techniques are on the same numerical scale as phred

quality scores, but are not as accurate [46, 8, 30]. Quality scores are less accurate

in part because the parameters derived for the Sanger sequencing method do

not isomorphically (in a mathematical sense) capture error characteristics of the

other sequencing methods. To identify an accurate metric of base quality for

a nanopore sequencing method, appropriate parameters built on the base-call

error characteristics of nanopore signals needs to be identified. More broadly,

until a universal standard is developed for defining accuracy for next-generation

sequencing, the value of combining sequence data from different technologies will

not reach its full potential.
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Chapter 3

Parameter Estimation

The following chapter describes excerpts from works published in Proceedings

of the International Conference on Bio-inspired Systems and Signal Processing

([54]) and Proceedings of the 51st IEEE Conference on Decision and Control ([56])

for which I was first author.

3.1 Introduction

Early nanopore work used constant voltages to examine DNA and enzyme-

bound DNA complexes [4], but more recently, the use of time-varying voltages

has expanded the capabilities of the nanopore. For example, nanopore-DNA in-

teractions [3] and polymerase-DNA interactions on the nanopore [90, 57] have

been measured at the single molecule level using active control with step-changing

voltages. Voltage ramps have been used for nanopore dynamic force spectroscopy,

with the aim of modeling the molecular bond energy landscape [17]. With the

assistance of custom hardware and filtering, sinusoidal voltage patterns have made

it possible to monitor the presence of DNA in the pore at zero DC voltage [18, 40].

This application has the aim of producing a zero-force DNA sensor, in which (DC
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bias) force on the DNA can be removed while still sensing the presence of the

DNA in the pore.

A challenge with time-varying voltages is that the capacitive elements in the

system contaminate the measured ionic current for a step voltage change. In prior

work combining active control with nanopores, it was shown that this step-induced

transient response limits the time-resolution for detecting DNA or DNA-protein

dynamics [90], making it impossible to measure the population of molecular re-

sponses that are faster than the transient settling time (up to 30% in [90]). Sinu-

soidal voltages persistently excite the capacitive elements in the system, and thus

continually mask the true value of the conductance. For generic time-varying volt-

ages, we require the use of an estimator to recover the channel conductance as the

parameter used to characterize the state of molecules captured in the nanopore.

The following sections summarize previous work that developed a least-squares

parameter estimation (LSPE) algorithm and a Kalman filter for estimating the

nanopore channel conductance under voltage-varying conditions, including step

and sinusoidal voltages, with the objective of inferring the channel conductance

parameter as continuously as possible.

3.2 Least Squares Parameter Estimation (LSPE)

The classical method of least-squares is based around the concept that the

unknown parameters of a dynamical system can be accurately estimated given a

sufficiently accurate system model and a large enough set of observed response

data. The method dictates that the best estimates of the unknown parameters are

the most probable values that minimize the sum of the squares of the difference

between the observed response in the data set and the predicted response of

the system, hence the name ‘least-squares’. When a system model is linear and
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the noise on the observed data is uncorrelated with a constant variance and a

mean of zero (i.e. white noise), the Gauss-Markov theorem states that the least-

squares estimator is the best linear unbiased estimator of the unknown parameter

values. The modeled approximation of the biological nanopore system fulfills these

requirements making the method of least-squares a good candidate for estimating

the conductance of the nanopore channel. The LSPE algorithm summarized in

this section is shown through simulations to provide efficient online estimation of

the channel conductance during step-changing voltages, and continuous estimation

during sinusoidal voltage inputs, with realistic noise superimposed on the data.

Rc
Cm
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Vp

V

Control 
Logic

A

Amplifier

Voltage
pattern
(step, sine)

Current
response

LSPE

Gc
^ ≈1/Rc

Cp

Figure 3.1: An amplifier applies voltage and measures the ionic current through
the nanopore channel. Control logic is used to monitor the current and control the
input voltage pattern. The known input signal and the measured current response
are used by the LSPE algorithm to estimate Ĝc ≈ Gc = 1/Rc, the conductance of
the nanopore channel. In the circuit model of the system, Rc is the resistance of
the channel, Cm and Cp are the membrane and parasitic capacitances, respectively,
Vp is the voltage at the output of the amplifier, and Ra is the electrolytic access
resistance.

3.2.1 Nanopore System Model

The four-state model of the biological nanopore system in the Laplace domain

has the transfer function H(s) from the input voltage V (s) to the output current
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I(s) given by

H(s) = CΣs+Gc

a1s4 + a2s3 + a3s2 + a4s+ 1 (3.1)

where CΣ = Cp +Cm (pF) is the combined (membrane and parasitic) capacitance

of the system, Gc (nS) is the channel conductance of the nanopore and a1, a2,

a3 and a4 are characteristic of the Bessel filter. For consistency of units, time is

in milliseconds and frequency is in kHz. We can ignore Ra in the model since

it is negligible (∼ 10−4 GΩ) compared to Rc (3 GΩ). In another work, we have

used system identification tools to validate this model with experimental data

[22]. The Bessel filter variables are defined in terms of the 4th-order reverse Bessel

polynomial coefficients and the −3 dB cutoff frequency fc as

(a1, a2, a3, a4) = (1, 10f, 45f 2, 105f 3)
105f 4 (3.2)

with f = 2πfc
2.113917675 ,

where the denominator constant was identified to move the−3 dB cutoff frequency

of the filter to fc. The continuous-time state space representation of equation (3.1)

in control canonical form is

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t); t ≥ 0 (3.3)
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with column vector x = [x1;x2;x3;x4] and matrices

A =



0 1 0 0

0 0 1 0

0 0 0 1

− 1
a1
−a4

a1
−a3

a1
−a2

a1


,

B =



0

0

0

1


and C =

[
Gc

a1

CΣ

a1
0 0

]
.

In the simulations in section 3.2.3, white noise is added to u and y (with different

variances). The system model equation (3.3) and LSPE algorithm can be extended

to incorporate explicit models of noise (white or colored), with such noise models

being experimentally identified. This extension is not done here for brevity.

3.2.2 Least-Squares Parameter Estimation Algorithm

To construct the LSPE algorithm and simulate the response of the nanopore

system the continuous-time model represented by equation (3.3) is discretized and

converted into discrete-time using the delta operator form. Discretization beings

with the solution to (3.3)

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ

y(t) = CeAtx(0) +
∫ t

0
CeA(t−τ)Bu(τ)dτ.

The sample period ∆ defines sample times tk = k ∗ ∆. The input signal is

assumed to be piece-wise constant between the sample times: u(t) = u(tk) for
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all t ∈ [tk, tk+1). Using this, the continuous solution is converted to discrete time

form as

x(tk+1) = Adx(tk) +Bdu(tk), y(tk) = Cdx(tk), (3.4)

with Ad = eA∆, Bd =
(∫∆

0 eA(∆−τ)dτ
)
B, and Cd = C. The matrix A is invertible,

so the matrix Bd can be rewritten as Bd = A−1
(
eA∆ − I

)
B.

Equation (3.4) is the traditional discrete time shift operator form, which mod-

els the absolute displacement of the state vector from sample to sample, whereas

equation (3.3) models the infinitesimal increment of the state vector defined by the

time derivative. This underlying characteristic of the continuous time state-space

equations is more accurately modeled in discrete time using the delta operator

form [23]. Also known as the divided difference operator form, the delta operator

form models the change in the absolute displacement of the state vector from sam-

ple to sample over a given sample period. Using the delta operator, the discrete

time state-space model takes the form

xδ(tk) = Aδx(tk) +Bδu(tk)

x(tk+1) = x(tk) + xδ(tk)∆

y(tk) = Cδx(tk),


(3.5)

with Aδ = (Ad − I)/∆, Bδ = Bd/∆, and Cδ = Cd = C.

Algebraically, the sampled output can be written in terms of the system param-

eters, the state vector and the initial condition by recursively evaluating equation
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(3.5). Beginning with t1, the solution of the sampled output at tn takes the form

y(tn) = Gc

a1

[
x1(t0) +

n−1∑
i=0

xδ,1(ti)∆
]

+ CΣ

a1

[
x2(t0) +

n−1∑
i=0

xδ,2(ti)∆
]

(3.6)

The matrix expression of interest that relates the output to the system parameters

Gc and CΣ can now be defined as



y(t1)

y(t2)
...

y(tn)


=

[
Q1 Q2

]

Gc/a1

CΣ/a1



with

Q1 =



x1(t0) + xδ,1(t0)∆

x1(t0) + xδ,1(t0)∆ + xδ,1(t1)∆
...

x1(t0) +∑n−1
i=0 xδ,1(ti)∆



and

Q2 =



x2(t0) + xδ,2(t0)∆

x2(t0) + xδ,2(t0)∆ + xδ,2(t1)∆
...

x2(t0) +∑n−1
i=0 xδ,2(ti)∆
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which is written in vector notation as

y1,n = Qz

where the matrixQ = [Q1 Q2] ∈ Rn×2 and the column vector z = [Gc/a1; CΣ/a1] ∈

R2.

The least-squares approximation problem is based upon finding the best esti-

mate ẑ of the vector z that minimizes

‖Qz − y1,n‖2

where ‖·‖ represents the Euclidean norm. Since the matrix Q has more rows than

columns and has full column rank, the least-squares approximation problem has

a unique solution [6] in the form

ẑ = (QTQ)−1QTy1,n.

Once the least-squares solution ẑ is computed, the estimates of the channel con-

ductance and the system capacitance are [Ĝc; ĈΣ] = ẑ ∗ a1.

The channel conductance of the nanopore changes when DNA is captured and

translocates through the nanopore. These capture events occur on a micro-to-

millisecond time scale [4]. Thus, the LSPE algorithm must be able to estimate

changes in Gc on these time scales. This is accomplished through sequential

implementation of the algorithm on overlapping windows of length n that span

the input and output data sets of length N , where N � n.
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3.2.3 Simulations

The performance of the LSPE algorithm was tested in simulations with step-

changing and sinusoidal voltages. To emulate realistic experimental conditions,

white noise was added to the input (0.2 mV RMS) and filtered output (1.5 pA

RMS) with variances close to those observed experimentally [90] (noise is white up

to 10 kHz bandwidth). Also, the value of Gc was set to 1/3 nS for positive voltages

and 2/9 nS for negative voltages, consistent with values for experiments performed

in 0.3 M KCl buffered solution [90]. The performance of the LSPE algorithm is

compared here to the performance of a simple ‘I/V method’, defined as estimating

the conductance by Ip(tk)/Vp(tk) at each sample time tk. When voltage is constant,

the current is constant unless changes in Gc occur, for example, if DNA is captured

in the nanopore or polymerase bound to DNA dissociates from the DNA [90, 57].

Thus, when Vp is constant for a sustained period, the I/V method produces an

accurate estimate for Gc. To be of value in estimating Gc, the LSPE should

perform comparably to the I/V method when Vp is constant, and outperform the

I/V method when Vp is time-varying.

3.2.3.1 Step-Changing Input

For a step-changing input, the output current stays constant except when the

input transitions from one level to another. The switching of the input voltage

produces a transient response in the output current the duration of which is

dependent on the amplitude of the input voltage, the amount of capacitance in

the system CΣ, and the Bessel filter cutoff frequency fc. For this work, a cutoff

frequency of 1kHz was used to provide a sufficiently long settling time to test the

LSPE algorithm without contaminating the signal with too much noise.

At 1 kHz bandwidth, 250 kHz sample rate and without noise, the step-response

43



48 49 50 51 52 530.25

0.3

0.35

0.4

0.45

Time (ms)

Ĝ
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Figure 3.2: (A) Voltage step response (120 to 100 mV) of the nanopore system
model. (B) A comparison of the LPSE and I/V methods for generating Ĝc. The
I/V method has a larger steady-state standard deviation (1.36 × 10−2 nS) and
a much larger overshoot (3.669 nS) in response to a step change than the LSPE
algorithm (7.927× 10−4 nS and 9.708× 10−3 nS).

settling time of the LSPE estimate of Ĝc is 0.996 ms, compared to 1.412 ms for the

I/V method. That is, the LSPE estimate converges faster (70%) than the output

current does. Practically, capacitance compensation on the recording amplifier can

speed the current settling time (and thus the I/V method’s estimate). However,

the I/V method with a compensated current will, in general, not work in both step

and sinusoidal conditions without heuristic tuning of the compensation settings

for each set of conditions (voltage pattern, bandwidth), while the LSPE algorithm
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works universally.

The performance of the LSPE algorithm for step voltages is shown in Figures

3.2 and 3.3. The LSPE algorithm outperforms the I/V method by producing an

estimate of Ĝc with a smaller standard deviation. One might argue that the LSPE

algorithm is simply acting as a filter, and the performance of the I/V method could

be improved if the current were first filtered. In fact, the LSPE algorithm is not

a filter but an estimator, recursively computing the value of Ĝc that minimizes

the error between the measured current and current modeled by the discrete-time

form of equation (3.3). Although additional low-pass filtering of the current would

reduce the standard deviation of the I/V estimate, the filter would further increase

the settling time of the estimate.

3.2.3.2 Sinusoidal Input

For a sinusoidal voltage input, the output current is constantly in a transient

state, with the capacitive elements in the system being persistently excited. This

has a positive effect on the LSPE algorithm in that once Ĝc converges, it does not

diverge again even though both input and output signals are non-constant.

The I/V method does not produce accurate values of Ĝc for sinusoidal voltages,

as expected, but we report the results here for comparison. The performance of

the LSPE algorithm for sinusoidal input voltages is shown in Figures 3.4 and 3.5.

In Figure 3.4, Gc = 1/3 nS since the input stays positive. The I/V estimate

has a large standard deviation and follows a 10 Hz sinusoidal pattern of the

measurements, never converging to Gc. The I/V estimate briefly reaches the

true value of Gc only at the peaks of the sinusoidal input voltage since these

are the locations where the current and voltage are momentarily constant. This

also holds for a sinusoidal input that changes polarity, shown in Figure 3.5. The
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Figure 3.3: (A) Voltage step response (120 to −120 mV) of the nanopore system
model. (B) A comparison of the LPSE and I/V methods for generating Ĝc. The
voltage sign change at 50 ms causes a step change in Gc from 1/3 to 2/9 nS. The
two methods have comparable settling times, with the LSPE algorithm having a
smaller steady-state standard deviation (8.898 × 10−4 nS) and overshoot (0.349
nS) than the I/V method (1.34× 10−2 nS and 36.57 nS).

change in polarity results in a step change in Gc, which the LSPE algorithm tracks

well (Fig. 3.5). The LSPE estimate is noisier than when the voltage maintains a

constant polarity (Fig. 3.4), but Ĝc remains centered around the true values of

Gc (1/3 nS and 2/9 nS), whereas the I/V estimate ranges between 3.6 × 103 nS

and −2.1× 10−4 nS.
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Ĝ
c

(n
S

)

0 20 40 60 80 1000

20

40

60

80

100

120

Time (ms)

In
pu

t (
m

V)
, O

ut
pu

t (
pA

)

Input Voltage

Output Current

I/V

LSPE

A

B

Figure 3.4: (A) Sinusoidal voltage response (10 mV peak-to-peak, 10 Hz, 110
mV DC offset) of the nanopore system model. (B) A comparison of the LPSE and
I/V methods for generating Ĝc. The I/V method’s estimate has a larger standard
deviation (2.8× 10−2 nS) than the LSPE algorithm (5.4× 10−3 nS) and does not
generate accurate estimates.

3.2.4 Discussion

The LSPE algorithm presented in this section provides a reasonably accurate

means for estimating the channel conductance of a nanopore under voltage-varying

conditions. The algorithm consistently achieves better performance (in terms of

convergence time and standard deviation of the estimate) than the simple I/V

method for both step-changing and sinusoidal input voltages. Since variance is

improved, DNA or DNA-protein events that can be detected by the measured

current (i.e., there is sufficient single-to-noise ratio) are easier to detect through
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Figure 3.5: (A) Sinusoidal voltage response (120 mV peak-to-peak, 10 Hz, 0 mV
DC offset) of the nanopore system model. (B) A comparison of the LPSE and
I/V methods for generating Ĝc. The voltage sign change at 50 ms causes a step
change in Gc from 1/3 to 2/9 nS. The I/V method does not generate accurate
estimates, whereas the LSPE algorithm does track the change in Gc.

the use of the LSPE algorithm.

For this initial effort, we focused on an online implementation that uses fixed-

length windows of past data to generate the estimated conductance value. Future

work will explore improving the algorithm’s performance by varying the window

length based on detected rates of change of the data [35], and by incorporating

forgetting-factors in the sequential implementation [44]. Also, an offline imple-

mentation that makes use of future windows to compute the estimate can be

developed to further improve the detection resolution of rapid DNA-protein dis-

sociation events that follow voltage changes in active control experiments [90],
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[57].

The cited advantage of AC-signal detection (absent DC bias) is that nanopore/analyte

interactions can be measured while reducing the effects of electroosmosis, elec-

trophoresis, and protein deformation that accompany large DC biases [18]. In [18],

custom hardware (lock-in amplifier) and software permit high frequency (10–20

mV, 1–2 kHz fw) sinusoidal voltage inputs. The LSPE derived here cannot track

Gc at sinusoidal frequencies above 50 Hz (data not shown). Future work will ex-

plore if and how well the LSPE estimate may track the presence of DNA in the

pore at sinusoidal voltages around 0 mV (no DC bias), at 5–50 Hz frequencies, as

an alternative to the high frequency method in [18].

3.3 Kalman Filtering

In the previous section we derived a simple least-squares parameter estimator

(LSPE) to recover the conductance of the nanopore channel. While the LSPE al-

gorithm performed better than the simple method of dividing current by voltage,

its performance can be improved upon, especially for sinusoidal voltages. In this

section we summarize the development of a Kalman filter estimator that more

accurately recovers the open nanopore channel conductance during time-varying

voltages. The filter is tested first in simulations with realistic process and mea-

surement noise, and then on nanopore experiment data using sinusoidal voltage

inputs. The filter is shown to recover the step changes in open channel conduc-

tance that occur when voltage changes polarity with a high degree of accuracy.
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3.3.1 Nanopore System Model

The same transfer function for the four-state model of the biological nanopore

system described in section 3.2.1 is used for developing the Kalman filter. This

model was chosen because it is the simplest model that correctly describes the

nanopore system and eliminates Gc and CΣ from the dynamics matrix. Unlike

in the LSPE algorithm, the transfer function is transformed from the frequency

domain into state space using the observer canonical form instead of the control

canonical form. This form makes it possible for the system model to remain linear

when the parameters Gc and CΣ are added to the state vector.

3.3.1.1 Extension of the system model

The method of Kalman filtering can be used to estimate the states of a linear

stochastic system [29]. In order to use this method to estimate the system param-

eters Gc and CΣ, the state vector x must be extended to include the parameters

as states. This results in an extended system model of the form

ẋe(t) = Aexe(t) +Beu(t) + w, y(t) = Cexe(t) + v (3.7)

with column vector xe = [x1 x2 x3 x4 Gc CΣ]T and matrices

Ae =


A 0 0

0 0 0

0 0 0

 , Be =


B

0

0



and Ce =
[
C 0 0

]
.
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Once Gc and CΣ are included in the extended state vector, equation (3.7) be-

comes nonlinear since Gc and CΣ are also parameters in Be. This is corrected by

rearranging the system equations to get

ẋe(t) = Φ(t)xe(t) + w, y(t) = Cexe(t) + v (3.8)

where

Φ(t) =



0 0 0 − 1
a1

u(t)
a1

0

1 0 0 −a4

a1
0 u(t)

a1

0 1 0 −a3

a1
0 0

0 0 1 −a2

a1
0 0

0 0 0 0 0 0

0 0 0 0 0 0



.

As with the LSPE algorithm, the continuous-time model of the system repre-

sented by equation (3.8) is discretized and converted into discrete-time. However,

this time the typical shift operator form is used for simplicity.

3.3.2 Kalman Filter

The Kalman filter is the statistically optimal estimator for estimating the

state of a linear nondeterministic system [24]. It solves the problem of optimal

linear filtering by recursively calculating an estimate of a system’s state using the

previous state estimate along with knowledge about the system dynamics, noise

statistics and measured input and output data. This recursive process can be

broken down into two steps: prediction and update. In the prediction step, the a
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priori state estimate x̂− is extrapolated using the state transition matrix Φ and

the a posteriori state estimate x̂+ from the previous sample time such that

x̂−(tk) = Φ(tk−1)x̂+(tk−1). (3.9)

The a priori error covariance matrix P− is also extrapolated using Φ along with the

a posteriori error covariance matrix P+ and the process noise covariance matrix

Q from the previous sample time such that

P−(tk) = Φ(tk−1)P+(tk−1)Φ(tk−1)T +Q(tk−1). (3.10)

The initial values for the a priori state estimate are chosen to represent the ex-

pected values for the nanopore channel conductance and system capacitance for

a given set of experimental conditions. The initial values for the a priori error

covariance matrix are chosen to put a greater emphasis on driving the estimates

of Gc and CΣ to their true values more quickly than the other states.

In the update step, the Kalman gain K as well as x̂+ and P+ are obtained

from the equations

K(tk) = P−(tk)CT
[
CP−(tk)CT +R

]−1

x̂+(tk) = x̂−(tk) +K(tk)
[
y(tk)− Cx̂−(tk)

]
P+(tk) = [I −K(tk)C]P−(tk), (3.11)

which utilize the predicted a priori values as well as the measurement sensitivity

vector and measured output data. Also during this step, the process noise coupling

and covariance matrices are updated to reflect the newly calculated a posterior

state estimates.
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3.3.2.1 Change detection

In voltage-varying experiments, the open nanopore channel conductance is

observed to undergo a step-like change when the input voltage switches polarity.

When DNA is in the pore, step-like changes are also observed, signaling the dis-

sociation of a protein from DNA [90, 4], or the motion of DNA through the pore

driven by the catalytic action of an enzyme [12, 57]. In order to track and estimate

the changing conductance with the Kalman filter, it is necessary to reset the a

priori error covariance matrix each time a change is detected. This is because P−

is the only time-varying parameter used to calculate the Kalman gain, which is

what drives the state estimate to the correct value.

To perform change detection, we uses a two-sided cumulative sum (CUSUM)

hypothesis test. The CUSUM algorithm uses a distance measure combined with a

stopping rule to determine when a change in parameters has taken place [25]. The

distance measure is used to quantify the error between the actual system output

and the estimated system output at each sample time. The stopping rule gives

an alarm when the distance measure becomes too large. This alarm is the signal

to the Kalman filter that a change has been detected, so P− is reset to its initial

condition.

3.3.3 Simulations

The discrete-time four-state nanopore system model and Kalman filter were

implemented in Matlab to test the performance of the Kalman filter in simula-

tions with sinusoidal voltages. The Kalman filter was tested over a range of input

frequencies and amplitudes in an effort to characterize the effect of the input pa-

rameters on the performance of the estimator. Random zero-mean Gaussian noise

with a covariance of 0.2 mV2 and 1.5 mV2 was added to the input and output re-
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spectively to emulate realistic experimental conditions [90]. The true values of Gc

used (1 nS for positive voltages and 0.876 nS for negative voltages) were chosen

to be consistent with experimentally observed values in 1 M KCl buffered solu-

tion, derived by fitting a slope to I-V curve data recorded over a set of constant

voltages (data not shown). The input voltage and output current were sampled

at 250 kHz and the Bessel filter cutoff frequency was set to 5 kHz, values equal

to those used in experiments. The performance of the Kalman filter was assessed

on the basis of the root-mean-squared (RMS) error of the Gc estimates taken just

before voltage changes polarity after the Kalman filter has converged.

3.3.3.1 Results

An example sinusoidal input, with a frequency of 1 Hz and a peak-to-peak

amplitude of 200 mV, and simulated output are shown in Figure 3.6A. At this

frequency, the capacitance is barely excited, and the current and voltage are nearly

in phase. The continuous estimate of Gc produced from this data is shown in

Figure 3.6B.

The Kalman filter performs best for inputs with higher amplitudes and lower

frequencies. As shown in Figure 3.7, the RMS estimation error for a frequency

of 100 Hz dropped from 7.049 × 10−2 nS to 8.109 × 10−4 nS as the amplitude

was increased from 1 mV to 100 mV. This shows a nearly linear dependence

between the RMS estimation error and amplitude. Higher amplitudes necessarily

create a larger signal-to-noise ratio (SNR) making it easier for the Kalman filter

to detect and estimate changes in the system’s state as the amplitude increases.

The dependence between frequency and the RMS estimation error, also shown in

Figure 3.7, is more quadratic with the RMS estimation error for an amplitude of

1 mV only increasing from 2.550 × 10−3 nS to 7.049 × 10−2 nS as the frequency
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Figure 3.6: (A) Sinusoidal voltage response (200 mV peak-to-peak, 1 Hz) of the
simulated nanopore system. (B) Kalman filter estimation of Gc, the nanopore
channel conductance. The Kalman filter is able to produce accurate estimates
of the nanopore channel conductance with an RMS estimation error as small as
5.788× 10−7 nS.

was increased from 1 Hz to 100 Hz.

At lower frequencies, the value ofGc changes more slowly providing the Kalman

filter with more data points to use for estimation and change detection between

values. Therefore, the estimator performs better at lower frequencies than at

higher frequencies. When the input was set to the lowest frequency (1 Hz) and

the highest amplitude (100 mV) to achieve maximum performance (Figure 3.6A),

the Kalman filter was able to produce estimates of Gc (Figure 3.6B) with an RMS

estimation error of only 5.788× 10−7 nS.
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3.3.4 Experiments

To validate the results obtained using simulated data, the Kalman filter was

applied to real experimental data gathered from the nanopore device. The ex-

periments were conducted in 1 M KCl buffered solution, in the absence of DNA

molecules, and with all other conditions identical to the simulations. The perfor-

mance of the Kalman filter was also measured in terms of the RMS estimation

error of the Gc estimates for both amplitude and frequency in the same way as in

the simulations using known values of Gc.
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Figure 3.8: (A) Sinusoidal voltage response (100 mV peak-to-peak, 10 Hz) of the
actual nanopore system. (B) Kalman filter estimation of Gc, the nanopore channel
conductance. With the current noise model, the Kalman filter is able to produce
accurate estimates of the nanopore channel conductance from real experimental
data with an RMS estimation error as small as 7.2× 10−4 nS.

3.3.4.1 Results

An example sinusoidal input, with a frequency 10 Hz and a peak-to-peak

amplitude of 100 mV, and recorded output are shown in Figure 3.8A. At this

frequency, the capacitance is excited enough to see the phase lead in the current

when compared to the voltage input.

In general, the Kalman filter still performed best at lower frequencies and

higher amplitudes with the lowest RMS estimation error of 7.117 × 10−4 nS oc-

curring for the data shown in Figure 3.8. The error trends for our preliminary
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testing of the Kalman filter with experimental data are shown in Figure 3.9. The

linear and quadratic dependences between the RMS estimation error and the am-

plitude and frequency shown in simulations were not as evident. We suspect that

a primary reason for the larger errors is that the noise model used by the Kalman

filter is not adequate. In equation (3.3), the process and measurement noise are

assumed to be white, but this assumption may be over simplistic. While our work

in system identification of the nanopore system showed that reasonable model

fitting results are obtained with this assumption, it also points to the possibility

of colored noise in the system [22]. The performance of the Kalman filter is a

direct reflection of the accuracy of the system model [24], and a more realistic

noise model should improve performance. Future work will involve reapplying the
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filter experimentally with revised noise model structures.

3.3.5 Discussion

We have presented our initial work on developing a Kalman filter for contin-

uously estimating the channel conductance of a nanopore in time-varying volt-

age experiments. The simulation results with sinusoidal voltages show that the

Kalman filter produces accurate estimates for a range of amplitudes and frequen-

cies, and provides a basis for choosing input parameters to maximize the per-

formance of the estimator. In general, the time varying voltages are chosen to

meet a control objective that involves positioning of the DNA in the nanopore

[90]. Though we have not yet used sinusoidal voltages for active control of DNA,

these voltages can be used to maintain observability of the channel conductance

as continuously as possible, and are already in use in other nanopore experiments

[40]. The preliminary experimental results show that the Kalman filter can pro-

duce accurate conductance estimates for real nanopore data, and we anticipate

that the performance will be improved with the addition of a more accurate noise

model. By providing a means to accurately estimate the state of a molecule in

a nanopore under voltage-varying conditions, the Kalman filter can lend itself

to further expanding the capabilities of the nanopore instrument for science and

technological applications. Future work will focus on improving the model used

by the Kalman filter, and online implementation of the estimator to facilitate

recovery of sequence information during voltage varying experiments [12].
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Chapter 4

Conclusion

The projects presented in this thesis represent fundamental groundwork that

has been laid towards the goal of actualizing a novel method of single molecule de-

tection and interrogation; the two-pore architecture. In Chapter 2 we investigated

the need for rereading a single DNA molecule to gain statistical confidence about

information contained in its sequence of nucleobases. While this study was focused

on the specific application of sequencing, its lessons translate to any nanopore-

based single molecule sensing application and thus provide ample motivation for

the development of a nanopore device capable of active control. In Chapter 3

we presented two different parameter estimation methods and demonstrated their

necessity and utility for achieving active control over a single molecule that has

been captured in a nanopore.

This work merely represents the start of an ongoing project with a substantial

amount of work still left to be done to realize the two-pore architecture. Apart

from the complexities of fabricating such a device, the other main challenge that

remains is developing the active control logic. In order to use modern control the-

ory to actively control the motion of molecules through the two-pore architecture,

a system model must first be created. This process can build on the work that has
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already been done for modeling the biological nanopore system [22]. The model

can be honed through the comparison of simulated output to actual data collected

from the two-pore architecture until the mathematical model accurately reflects

the performance of the physical system. Once the model has been perfected, it

can be employed for use with active control methods.

Actively controlling molecules translocating through the two-pore system will

require inferring the state of the two nanopores as continuously as possible. The

Kalman filter developed in this work (Chapter 3), can be updated with the new

system model to achieve this. Besides updating the system model, a new noise

model for the Kalman filter must also be developed to better encompass the range

of colored and white noise exhibited by the system. Once the updated Kalman

filter has been thoroughly tested and verified to provide accurate continuous es-

timates of the nanopore channel conductances, it can be incorporated into an

automated control program.

The automated control program can be used to coordinate and switch the

transmembrane voltages for the two nanopores in concert. The first phase of the

control program will be the capture phase where both voltages can be used to

electrophoretically drive a molecule into both nanopores. When the Kalman filter

senses that a molecule has been captured in both pores, the control program can

switch to the holding phase. This phase involves using the two voltages to apply

equal and opposite force on the captured molecule to keep it from leaving either

pore. With the molecule held in both pores, the control program can switch

to the sensing phase. In this phase, the voltages continue to apply opposing

forces, but the amplitude of one of the voltages is increased slightly so that the

captured molecule starts to slowly move in the direction of the increased voltage.

This controlled motion of the molecule can allow features of the molecule (such
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as the nucleobases of ssDNA or RecA filaments on dsDNA) to be sensed with

high fidelity. Once the region of interest on the molecule has passed through the

nanopores, the voltage amplitudes are reversed. This will cause the molecule to

slowly traverse back through the nanopores in the opposite direction. Repeated

application of this sensing phase of the control program can enable the structure

of a single molecule to be reread as many times as necessary to gain statistical

confidence about the sensed features. Once the desired number of rereads has

been met, the control program can switch back to the capture phase, which will

allow the captured molecule to leave the nanopores and clear the way for the next

molecule.

The development of the active control logic and fabrication of the two-pore

device is already well underway. Hopefully the work presented in this thesis

proves to be helpful in achieving the great promise that the two-pore architecture

is poised to bring to the scientific community.
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Appendix A

Supporting Information for Error

Analysis of Idealized Nanopore

Sequencing

A.1 Identifiability of DNA sequences from ionic

current amplitude

If the ssDNA passing through the pore is controlled by an enzyme on the pore,

the ssDNA moves in 1 nt steps, with the dwell time of each ssDNA position being

exponentially distributed, and step-transitions that are instantaneous compared

to the measurement bandwidth [12, 49]. An appropriate idealization for the signal

is a pulse-train, defined by a set ofM amplitudes and a sequence of measured dwell

times. From the single-channel recording and analysis literature [67, 83, 64], there

are a set of techniques that can be applied to estimate the pulse-train idealization

from the noisy recorded data. For sequencing, the pulse train would be compared

to a library of amplitudes identified through control experiments with known
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sequences. In this section, we consider challenges associated with having a limited

number of distinct amplitude levels in the idealization.

If n nucleotides affect the ionic current, then M = 4n amplitude levels are

sufficient to unambiguously identify the sequence. Of course, all 4n amplitude

levels may not be necessary to unambiguously identify the sequence; however, it

is straightforward to construct cases for which less than 4n amplitude levels results

in systematic errors. For the purpose of synthesizing the idealization from noisy

data, each amplitude level must have a signal-to-noise ratio (SNR) of at least

2 for idealization by half-amplitude methods, or at least 1.5 by Markov-based

methods [83]. For n ≥ 3, as in the case of the MspA nanopore [49], achieving

M = 4n amplitude levels with sufficient SNR may not be possible. As stated, we

consider specific examples in which having fewer that 4n amplitude levels makes

it impossible to unambiguously identify the sequence. We construct examples for

n = 2, 3, 4, assuming sequences are identified right-to-left as they pass through

the pore. Thus, AGCTTAG with n = 4 would be identified TTAG, then CTTA,

etc. We refer to M “distinct" amplitude levels when each level has sufficient SNR

for detection. The case for n = 1 nucleotide affecting the current amplitude is

considered first, and is the simplest.

Proposition 1. If n = 1, thenM = 4n = 4 distinct amplitude levels are necessary

to unambiguously identify the sequence.

Proof. This follows trivially. Suppose n = 1 and M = 3. Then two of the four

nucleotides generate the same current amplitude. There is no way to reconcile

which of these nucleotides is present in the sensing region, using solely current

amplitude. If M = 2 or 1, then one or none of the nucleotides are identifiable,

respectively.

Next, for the case n = 2, we construct a case in which having fewer than
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4n = 16 distinct amplitude levels makes it impossible to resolve all sequences.

Proposition 2. Suppose n = 2 and there are M < 4n = 16 distinct ampli-

tude levels. Let X, Y ∈ {A, T,G,C} and X 6= Y . If the three pairs in the set

{XX,XY, Y X} generate the same amplitude I1, then there are an infinite number

of sequences that cannot be identified from the pulse-train. In particular, no sub-

sequence Z1 · · ·Zm can be identified within the sequence XZ1 · · ·ZmX, provided

Zi ∈ {X, Y } for i = 1, ...,m (m ≥ 1) and each Y is separated by one or more Xs.

Proof. Without loss of generality, let X = C and Y = A, and assume the pairs

in the set {CC,CA,AC} generate the same amplitude I1. Then the nucleotide

Z1 ∈ {A,C} within the triple CZ1C cannot be identified. We can show this

by considering an example sub-sequence S1 = TCACG to be identified. The

amplitude that registers CG (assumed to be identifiable) can be used to choose

yCG upon detecting I1, with y = A or C. After the second I1 is detected (as-

suming a tracking counter is enabled) we have xyCG with xy ∈ {CC,CA,AC}.

Next, TC is detected (assuming it is identifiable), which constrains the value of

x = C. The value for y, however, cannot be resolved. Additionally, any subse-

quence constructed from A and C and nested within C · · ·C cannot be identified,

provided each A is nested within Cs. An example is the subsequence CCC within

CCCCC, which is indistinguishable from the underlined subsequences within

CCACC, CACAC, CACCC, and CCCAC. Also, the longer the nested sub-

sequence, the larger the set of subsequences that are indistinguishable.

If one adds Y Y to the set in Proposition 2, the result is a larger number of

unidentifiable subsequences.

Proposition 3. Suppose n = 2 and there are M < 4n = 16 distinct ampli-

tude levels. Let X, Y ∈ {A, T,G,C} and X 6= Y . If the four pairs in the set
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{XX,XY, Y X, Y Y } generate the same amplitude I1, then there are an infinite

number of sequences that cannot be identified from the pulse-train. In particular,

no subsequence Z1 · · ·Zm within the sequence Z0Z1 · · ·ZmZm+1 can be identified,

with Zi ∈ {X, Y } for i = 0, ...,m+ 1 (m ≥ 1).

Proof. The proof follows the same logic as in the proof of Proposition 2, with

the unidentifiable subsequence being nested within X · · ·X, Y · · ·X, X · · ·Y or

Y · · ·Y .

To see the increase in the number of sequences that cannot be resolved, let

X = A and Y = C and assume {CC,CA,AC,AA} generate the same amplitude.

Then the nucleotide Z1 ∈ {A,C} cannot be identified within any of the triples:

CZ1C, AZ1C, CZ1A, or AZ1A. There is also a greater number of subsequence

permutations that cannot be resolved for a given subsequence length m > 1. As

an example, again with X = A and Y = C and assuming {CC,CA,AC,AA}

generate the same amplitude, the subsequence CCCC with m = 4 is not identi-

fiable from within CCCCCC, ACCCCC, CCCCCA or ACCCA. Moreover, all

2m = 16 four-letter combinations of A and C are indistinguishable from CCCC.

We consider next n = 3, which approaches the sensitivity of the biological

pore MspA [49] and matches the claimed sensitivity of the nanopores developed

by Oxford Nanopore Technologies. It is unlikely that all M = 43 = 64 distinct

amplitudes are available for idealization.

Proposition 4. Suppose n = 3 and there are M < 4n = 64 distinct ampli-

tude levels. Let X, Y ∈ {A, T,G,C} and X 6= Y . If the four triples in the

set {XXX,XXY,XY X, Y XX} generate the same amplitude I1, then there are

an infinite number of sequences that cannot be identified from the pulse-train.

In particular, no subsequence Z1 · · ·Zm can be identified within the sequence
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XXZ1 · · ·ZmXX, provided Zi ∈ {X, Y } for i = 1, ...,m (m ≥ 1) and each Y is

separated by two or more Xs.

Proof. Without loss of generality, let X = C and Y = A, and assume the elements

in the set {CCC,CCA,CAC,ACC} generate the same amplitude I1. Then A and

C are indistinguishable within the sequences CCACC and CCCCC, respectively.

We can show this by considering an example sub-sequence S2 = TCCACCG to

be identified. The amplitude that registers CCG (assumed to be identifiable)

can be used to choose yCCG upon detecting I1, with y = A or C. After the

second I1 is detected (assuming a tracking counter is enabled) we have yzCCG

with yz ∈ {AC,CA,CC}. After the third I1 is detected, we have xyzCCG

with xyz ∈ {CCC,CCA,CAC,ACC}. Next, TCC is detected (assuming it is

identifiable), which constrains the value of xy = CC. The value for z cannot be

resolved. Following the generalization for this example, it is straightforward to

show that CC, AC and CA are indistinguishable within CCCCCC, CCACCC

and CCCACC, respectively. The longer the nested subsequence, the larger the

set of subsequences that are indistinguishable.

Proposition 5. Suppose n = 4 and there are M < 4n = 256 distinct amplitude

levels. Let X, Y ∈ {A, T,G,C} and X 6= Y . If the five elements in the set

{XXXX,XXXY,XXYX,XY XX, Y XXXX}

generate the same amplitude I1, then there are an infinite number of sequences

that cannot be identified from the pulse-train. In particular, no subsequence

Z1 · · ·Zm can be identified within the sequence XXXZ1 · · ·ZmXXX, provided

Zi ∈ {X, Y } for i = 1, ...,m (m ≥ 1) and each Y is separated by three or more

Xs.
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Proof. The proof follows the same logic as the proofs for Propositions 2-4. With-

out loss of generality, let X = C and Y = A, and assume the elements in the

set

{CCCC,CCCA,CCAC,CACC,ACCC}

generate the same amplitude I1. Then A and C (where underlined) are indistin-

guishable within the sequences CCCACCC and CCCCCCC, respectively. We

can show this by considering an example sub-sequence S2 = TCCCACCCG to

be identified. The amplitude that registers CCCG (assumed to be identifiable)

can be used to choose zCCCG upon detecting I1, with z = A or C. After the

second I1 is detected (assuming a tracking counter is enabled) we have yzCCCG

with yz ∈ {AC,CA,CC}. After the third I1 is detected, we have xyzCCCG

with xyz ∈ {CCC,CCA,CAC,ACC}. After the fourth I1 is detected, we have

wxyzCCCG with

wxyz ∈ {CCCC,CCCA,CCAC,CACC,CACC,ACCC}

Next, TCCC is detected (assuming it is identifiable), which constrains the value

of wxy = CCC. The value for z cannot be resolved. Following the generalization

for this example, it is straightforward to show that CC, AC and CA are indistin-

guishable within CCCCCCCC, CCCACCCC and CCCCACCC, respectively.

The longer the nested subsequence, the larger the set of subsequences that are

indistinguishable.

The results in Propositions 2-5 show that there may be sequences which cannot

be identified by amplitude level classification. Moreover, the examples do not

cover all possible cases where identifiability is lost; they show only the existence

of cases where identifiability is lost. All cases should be enumerated as part of
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efforts to sequence based on ionic current. Additionally, the cases shown are

not unreasonable, in the sense that such sequences might be expected to have a

common amplitude, particularly for n = 3, 4. Until control experiments reveal

which sequences cannot be robustly separated by distinct amplitudes, and for

what n value(s), it is not clear if the distinct amplitude levels that register in the

ionic current will be sufficient to identify intact ssDNA sequences.
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